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Abstract

We introduce numerics-informed neural networks (NINN), a framework designed to learn source
terms in hyperbolic partial differential equations. NINNs combine classic numerical schemes with
neural networks to accurately solve inverse problems related to these equations. In this work, we
present the general framework, along with a convergence result that relates the source approx-
imation error to the training loss. To implement training, we develop two specialized algorithms
tailored for different usecases, and evaluate their performance on a hyperbolic system. The sweeping
algorithm, in particular, enables the use of NINNs in scenarios where complete solution measure-
ments are unavailable. We extensively test the proposed method on a diverse set of problems,
comparing its performance under varying data quantities. In combination with this thesis, a Py-
thon library for performing differentiable simulation of hyperbolic partial differential equations
was developed. Our work showcases the potential of NINNs as a powerful tool for solving inverse
problems with hyperbolic partial differential equations, paving the way for future advancements in
this field.

Vi introduserer numerikkbevisste nevrale nettverk (NINN), et rammeverk utviklet for å lære kildeledd
i hyperbolske partielle differensialligninger. NINN kombinerer klassiske numeriske metoder med
nevrale nettverk for å løse inverse problemer knyttet til disse ligningene. I dette arbeidet presenterer
vi det generelle rammeverket sammen med et konvergensresultat som relaterer feilen i kildeapprok-
simasjonen til treningsfeilen. For å h̊andtere treningen utvikler vi to spesialiserte algoritmer tilpas-
set ulike bruksomr̊ader, og evaluerer ytelsen p̊a et hyperbolsk system. Spesielt muliggjør sweeping-
algoritmen bruk av NINN i scenarier der komplette målinger av løsningen ikke er tilgjengelige. Vi
tester den foresl̊atte metoden grundig p̊a en rekke ulike problemer og sammenligner ytelsen under
varierende mengder data. I tillegg er det utviklet et Python-bibliotek for differensierbar simulering
av hyperbolske partielle differensialligninger i kombinasjon med denne avhandlingen. V̊art arbeid
viser potensialet til NINN som et kraftig verktøy for å løse inverse problemer med hyperbolske
partielle differensialligninger og legger grunnlaget for fremtidige fremskritt p̊a dette feltet.
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Chapter 1

Introduction

Many physical models useful in engineering are based on the concept of a balance law. Basically,
these laws model the change in some interesting quantity by considering its movement around the
domain due to forces acting on it, in combination with potential sources of creation or destruction
of the quantity. Such models give rise to partial differential equations (PDE), a class of equations
that in many cases are hard or even impossible to solve exactly. An important subfield of applied
mathematics is therefore to construct efficient numerical methods for approximating solutions to
PDEs, and during the past 300 years mathematicians have built a comprehensive toolkit of methods
for dealing with PDEs numerically. These methods generally solve the forward problem related to
PDEs: given a PDE, find or approximate a representation of the solution.

In certain cases, we are not interested in finding a solution to a given PDE. Instead we seek to
use information about the solution, such as measurements, to infer unknown properties of the
PDE itself. Examples include finding the mass distribution of the earth given measurements of
the gravitational force on the surface, and inferring the shape of an object given its resonant
frequencies. The latter was famously covered by Marc Kac in his 1966 lecture named ”Can one
hear the shape of a drum?” [21]. These types of problems are called inverse, and their analysis is
complicated and computationally demanding [19, 4].

Recently, Raissi et. al. [34] published a revolutionary framework for handling both forward and
inverse problems related to PDEs based on neural networks, which are powerful machine learning
models capable of representing general functions in high dimensional spaces. Their method, called
physics-informed neural networks (PINN), essentially sidestepped the established methods on the
domain completely by providing a way of iteratively coercing a neural network to approximately
solve a PDE globally. PINNs have also shown some promise for inverse problems [20, 34, 3], as
unknown scalar parameters of the PDE can be included as learnable parameters in the network.

However, PINNs generally require the solution to be smooth. This is a problem when dealing
with balance laws where advection is dominant, as these result in hyperbolic PDEs, a class of
equations that are known to produce non-smooth solutions. There are ways of adapting PINNs to
these cases; notably cPINNs [20], wPINNs [6], and perturbing the PDE slightly to avoid a hard
discontinuity. Unfortunately, these adaptations can be difficult to work with in practice.

We propose a way of mediating some of these issues. Our method, named numerics-informed
neural networks (NINN), use established and powerful numerical methods within the framework of
PINNs in order to solve general inverse problems related to hyperbolic PDEs arising from balance
laws. We start by presenting some general theory regarding balance laws, hyperbolic equations,
and neural networks, before thoroughly testing the performance of NINNs on a selection of test
problems with increasing complexity. We will show that NINNs are capable of accurately solving
inverse problems in cases where the PDE solution develops discontinuities, where the unknown
target function is non-smooth, and even when the solution measurements are incomplete. Finally
we discuss general insights developed throughout this work before suggesting interesting ways of
further developing this type of method.
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Chapter 2

Qualitative behaviour of balance
laws

2.1 Motivation

Let Ω be a domain, and u : R+ × Ω → R be some quantity distributed across Ω. We can think of
u as the concentration of a solute in a container, the heat distribution of some body, or density
of cars along a road. A simple model for the distribution of u can be constructed by considering
two factors contributing to change in u, its flux and its sources. More precisely, looking at some
subset ω ⊆ Ω we relate the time rate of change of the total amount of u in ω to the amount of u
exiting ω plus the amount of u created inside ω. Mathematically, we may describe this relation by
the equation

d

dt

∫
ω

udω = −
∫
∂ω

f · nds+

∫
ω

q dω , (2.1)

where f = f(u) is the flux of u, n is the unit normal pointing out of ω, and q is the source
function. We call (2.1) a balance law in integral form. Note that negative values for q signify the
destruction of u, and negative source functions are sometimes called sinks. If q ≡ 0, we say that
(2.1) is homogeneous, and we call it a conservation law. Assuming u is smooth and bounded almost
everywhere in Ω, we can use the divergence theorem and the general Leibniz rule to write (2.1) as∫

ω

ut dω = −
∫
ω

∇ · f dω +

∫
ω

q dω∫
ω

ut +∇ · f dω − q dω = 0.

This must hold for any t and any measurable ω ⊆ Ω, which implies that the expression

ut +∇ · f = q (2.2)

holds almost everywhere on R+ × Ω. Equation (2.2) is called a balance law in differential form,
and most of the equations we will study here is of this form. Mathematically, (2.2) is a hyperbolic
partial differential equation. We often extend this definition to cases where u : R+ × Ω → Rm, in
which case (2.2) is called hyperbolic if the Jacobian of f is diagonalizable over the real numbers.
This is always true in the scalar case, when m = 1. Later we will see that solutions to hyperbolic
PDEs can develop discontinuities known as shocks, breaking the assumption of smoothness of u.
This will eventually lead us to relax our definition of a solution of (2.2), but it is important to
know that in these cases, the actual description of the system is given by the integral form (2.1).

2



2.2 Characteristics of hyperbolic equations

We will from now on limit ourselves to the case of a single spatial dimension, although many of the
methods described here also apply to more general cases. Initially, we also assume u is smooth.
This assumption will be challenged in Section 2.3, but it allows us to define a useful method for
solving (2.2) in simple cases. As the solution is smooth, the chain rule gives (f(u))x = fu(u)ux,
allowing us to rewrite (2.2) as

ut + fuux = q. (2.3)

Let x(t) be some path in the xt plane. We examine the value of u along this path. By the chain
rule we have

d

dt
u(t, x(t)) = ut(t, x(t)) + ẋ(t)ux(t, x(t)).

Notice that if ẋ(t) = fu(u(t, x(t))), we can use (2.3) to infer that

d

dt
u = q (2.4)

along x(t). Paths x(t) such that ẋ(t) = fu(u(t, x(t)) are called characteristic curves, or just
characteristics, of (2.3).

Now, if we impose an initial condition on the solution to (2.3) we get the initial value problem
(IVP) {

ut + fuux = q

u(0, x) = u0(x)
(2.5)

for known functions f, q, u0. Let x(t) be a characteristic starting in x0 ∈ R, that is x(t) solves the
IVP {

ẋ(t) = fu

x(0) = x0.

This is often called the characteristic equation corresponding to (2.5). Using (2.4) we get that

u|x(t) = u0(x0) +

∫ t

0

q|x(s) ds , (2.6)

where
u|x(t) ≡ u(t, x(t)).

Thus, the value of u is known along the characteristic. In fact, we can obtain the solution in
any point (t̃, x̃) as long as there is some characteristic x(t) of (2.5) such that x(t̃) = x̃. This
solution approach is called the method of characteristics. Informally, (2.6) describes some initial
value u0(x0) being carried along the characteristic, picking up or losing magnitude along the way
according to sources and sinks described by q.

The simplest example of a balance equation of the form (2.5) is the case of linear transport, where
f(u) = au for some constant a ∈ R. This gives the IVP{

ut + aux = q

u(0, x) = u0(x),
(2.7)

with corresponding characteristic equation{
ẋ(t) = a

x(0) = x0.
(2.8)

The characteristics take the form
x(t) = x0 + at,

and are plotted in Figure 2.1 for different x0 and a.

3
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(b) a = 1

Figure 2.1: The characteristics of (2.7) for different values of a.

Along these lines, the solution is given by (2.6). Notice that every point in the xt halfplane is hit
by exactly one characteristic. In fact, the characteristic hitting a given point (t̃, x̃) starts at

x̃0 = x̃− at̃,

and is thus given by the equation
x(t) = x̃+ a(t− t̃).

Substituting into (2.6) yields

u(t̃, x̃) = u0(x̃− at̃) +

∫ t̃

0

q(s, x̃+ a(s− t̃)) ds . (2.9)

That is, the value u0(x̃0) is carried along the x axis with speed a, changed only by the compounded
contributions of q along the way.

2.3 Weak solutions

Notice that the form of the characteristics in the case of linear transport were particularly nice. The
fact that fu was independent on the solution u meant we could easily find a closed form expression
for the characteristic lines. In addition, every point in the xt halfplane were hit by exactly one of
these lines. This is not true for general fluxes f , which can be illustrated by considering the flux
function f(u) = 1

2u
2, yielding the inviscid Burgers’ equation{

ut + ( 12u
2)x = q

u(0, x) = u0(x).
(2.10)

Now the characteristic equation reads {
ẋ(t) = u|x(t)
x(0) = x0,

that is, the shape of the characteristics depend on the solution value they carry. In order to find
an expression for the characteristics, we first note that since

d

dt

(
u|x(t)

)
= q|x(t),

along a characteristic x(t), we have that

u|x(t) = u0(x0) +

∫ t

0

q|x(s) ds ,

4
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Figure 2.2: Characteristics of Burgers’ equation with initial condition us
0. Characteristics starting

in positive and negative x0 are colored differently to signify that they are carrying different solution
values.

just like in (2.6). We can substitute this into the characteristic equation to get{
ẋ(t) = u0(x0) +

∫ t

0
q|x(s) ds

x(0) = x0.

Thus, the characteristics satisfy the implicit equation

x(t) = x0 + u0(x0)t+

∫ t

0

∫ τ

0

q|x(s) dsdτ . (2.11)

For simplicity, assume now that q(t, x) = 0, meaning the solution is constant along the character-
istic lines. It is perfectly possible to consider a more general source function, but it contributes an
unnecessary complication to the following example. The characteristics become

x(t) = x0 + u0(x0)t, (2.12)

which are straight lines with slope equal to the initial condition value at their x intercept. Choosing,
for instance, the initial condition

us
0(x) =

{
1 x ≤ 0

0 x > 0
, (2.13)

the characteristics will meet in the right half plane (see Figure 2.2). This means the points in
the right half plane no longer have a unique characteristic, and therefore a unique solution value,
associated with it. We call this phenomenon a shock, and we will later see that this causes a moving
discontinuity, or shockwave, in the solution.

Hyperbolic equations with piecewise constant initial conditions containing a single discontinuity
(such as (2.13)) are often called Riemann problems, and they are an important special case of the
general equation (2.2). Finite volume methods for instance, an important class of numerical tech-
niques for more general hyperbolic equations, are built by considering a superposition of Riemann
problems on a grid on the domain. More on this in Section 3.

When beginning the discussion on characteristics in Section 2.2, we assumed the solution was
smooth. However, even in the case of linear transport it is clear that this assumption breaks down
when we use discontinuous initial data. We can see this from (2.9), which in the homogeneous
case simply translates the initial data according to the wave speed a. One can imagine that by
restricting ourselves to smooth initial data, we avoid the problem of discontinuities in the solution
entirely. This is true for the linear flux discussed in Section 2.2. Unfortunately however, in the case
of nonlinear flux, the emergence of shocks is not restricted to cases with discontinuous initial data.
In fact, even when u0 is infinitely smooth, as long as there is some point xs for which u′

0(xs) < 0,
the corresponding solution to Burgers’ equation will develop a discontinuity in finite time. We do
not prove this fact here, but note that it prohibits a global classical solution to Burgers’ equation
for practically all interesting initial data.

5
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Figure 2.3: The characteristics of Burgers’ equation with initial data given by (2.14) and no source.

As an example, consider the homogeneous Burgers’ equation with initial data

u0(x) = − sin(πx). (2.14)

The characteristics are plotted in Figure 2.3. Notice how the characteristics meet at x = 0 after
some amount of time. The solution (we will shortly define precisely what we mean with the word
”solution” in this case) at various time points can be seen in Figure 2.4. Notice how the two
extrema move towards each other and collide to produce the discontinuity at the same point in
time and space for which the characteristics collide.

In order to handle initial data that induce shocks, we need to introduce the concept of a weak
solution. Let Ω = R+×R and imagine there exists a smooth solution to the general 1D hyperbolic
equation {

ut + f(u)x = q on Ω,

u(0, x) = u0(x)
. (2.15)

Define the space C1
c (Ω) of continuously differentiable functions on compact support in Ω, and

let φ ∈ C1
c (Ω). In particular, this means that there exists a K ∈ R such that for all t, x > K,

φ(t, x) = 0. We call such a function a test function. Multiplying (2.15) by φ and integrating over
Ω, we get

∫
Ω

utφ+ f(u)xφ =

∫
Ω

qφ∫
R

∫
R+

utφ+

∫
R+

∫
R
f(u)xφ =

∫
Ω

qφ

∫
R

[
[uφ]∞0 −

∫
R+

uφt

]
+

∫
R+

[
[f(u)φ]∞−∞ −

∫
R
f(u)φx

]
=

∫
Ω

qφ∫
Ω

uφt + f(u)φx = −
∫
Ω

qφ−
∫
R
u0φ0. (2.16)

Here φ0(x) = φ(0, x). We call u ∈ L∞(Ω) a weak solution to (2.15) if relation (2.16) is satisfied
for all φ ∈ C1

c (Ω). If u satisfies (2.15) pointwise, we call it a strong or classical solution. It is clear
that any strong solution to (2.15) is also a weak solution, and it can be proven that if u ∈ C1(Ω)
is a weak solution, then it is also a strong solution. The difference is that weak solutions are not
required to be differentiable or even continuous, they only need to be in L∞(Ω).

2.4 Rankine-Hugoniot and entropy conditions

The concept of weak solutions allow us to talk about discontinuous functions as solutions to (2.15).
However, we still need to find them. In particular we need to be able to describe the shockwave,
that is the discontinuity in the solution that arises from the collision of characteristics. Recall that

6
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(a) t = 0
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(c) t = 0.5

Figure 2.4: The solution to the homogeneous Burgers’ equation with sinusoidal initial data for three
different time points.

when u is discontinuous, the physical interpretation is described by the integral form (2.1). The
problem with weak solutions to the differential form (2.2) is that they are in general not unique.
The physics they model, however, are deterministic. Thus we need to find a set of constraints
that reduce the number of weak solutions considered ”physical”. The first, known as the Rankine-
Hugoniot condition, can be derived by considering conservation over a domain surrounding the
shockwave. The following discussion is based on example 1.3 in [15].

Assume for a moment that q(t, x) = 0, and that a weak solution u to (2.15) has an isolated
shockwave moving along the curve x = γ(t). Isolated means there exist a neighborhood around γ
in which u satisfies (2.15) classically on each side of γ. Let D be such a neighborhood, meaning γ
intersects it and separates it into two regions D+ and D− where u is a strong solution, see Figure
2.5. Importantly, the trace of u along γ is different in D+ and D−. Let φ be a test function whose
support is contained in D. Then

0 =

∫
D

uφt + f(u)φx

=

∫
D+

[uφt + f(u)φx] +

∫
D−

[uφt + f(u)φx] . (2.17)

Using the fact that u is a strong solution in D+, we get∫
D+

uφt + f(u)φx =

∫
D+

uφt + f(u)φx + (ut + (f(u))x)φ

=

∫
D+

(uφ)t + (f(u)φ)x

=

∫
D+

[∂t, ∂x]
T · [uφ, f(u)φ]T

=

∫
∂D+

φ[u, f(u)]T · n+, (2.18)

where we used the divergence theorem to obtain the last relation. Here n+ is the unit normal
pointing out of ∂D+. A similar computation can be done for ∂D−, yielding∫

D−
uφt + f(u)φx =

∫
∂D−

φ[u, f(u)]T · n−.

Since φ has support contained in D, it is zero everywhere on ∂D+ except along γ. Define γφ =
γ ∩ supp(φ). Then, ∫

γφ

φ[u+, f(u+)]T · n+ =

∫
γφ

φ[u−, f(u−)]T · n+, (2.19)

where u+ and u− denote the trace of u along γ when restricted to respectively D+ and D−. Notice
that we use n+ on both sides of (2.19). This is because n+ = −n− along γφ, which combined with
(2.17) yields (2.19). Since n+ = k[−γ′(t), 1] for some normalizing constant k,∫

I

(−u+γ′ + f(u+))φ =

∫
I

(−u−γ′ + f(u−))φ, (2.20)
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Figure 2.5: Diagram showing the setup for the Rankine-Hugoniot condition. We have strong solu-
tions u+ and u− in respectively D+ and D−, separated by the shockwave γ.

where I = {t ∈ R+ : γ(t) ∈ γφ} is drawn in Figure 2.5. Since φ and D (and thus I) are arbitrary,
the integrands must be equal. Rearranging, we find

dγ

dt
=

f(u+)− f(u−)

u+ − u− . (2.21)

We call (2.21) the Rankine-Hugoniot condition.

The Rankine-Hugoniot condition gives a condition that the shockwave must satisfy in order for it
to be a physically acceptable weak solution. Revisiting the homogeneous Burgers’ equation with
initial data us

0 defined in (2.13), we apply the condition to find that

dγ

dt
=

12

2 − 02

2

1− 0

=
1

2
.

Noticing that γ(0) = 0, we can solve this to find the shockwave path

x = γ(t) =
1

2
t. (2.22)

The characteristics carrying different values are now separated by the shockwave, and every point in
the xt halfplane outside of the shockwave have a unique solution value associated to it. Specifically,
the weak solution in this case is given by

us(t, x) =

{
1 x < 1

2 t

0 x > 1
2 t

. (2.23)

The characteristics of this solution, along with the shockwave, are plotted in Figure 2.6.

In summary, the collision of characteristic lines produce shocks in the solution, and these shocks
propagate according to the Rankine-Hugoniot condition (2.21). However, we do not yet have a
way of handling areas of the domain containing no characteristics. Define

ur
0(x) =

{
0 x ≤ 0

1 x > 0
, (2.24)

and notice that using this as the initial condition in the homogeneous Burgers’ equation will
produce an area in the domain that no characteristics ever reach. This case is illustrated in Figure
2.7, which corresponds to two wavefronts moving away from each other.

Recall that an issue with dealing with weak solutions is that they are generally not unique. For
instance, the function

ũ(t, x) =

{
0 x ≤ 1

2 t

1 x > 1
2 t

(2.25)
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Figure 2.6: Characteristics of Burgers’ equation with initial condition us
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satisfying the Rankine-Hugoniot condition separating them.

1.0 0.5 0.5 1.0

0.5

1.0 t

xBy Bendik Skundberg Waade @ NTNU <bendik@waade.net>
Commit: 5c4ec083a9de7623b98496e78a2ba846b7774e0c

Repo: git@github.com:benwaad/ai-numerics.git
Hostname: Bendiks-MacBook-Air

@5c4e

Figure 2.7: Characteristics of Burgers’ equation equation with initial condition ur
0.

is a weak solution to the homogeneous Burgers’ equation with initial condition ur
0. However,

this solution leads to characteristic lines emanating out of the shock, see Figure 2.8(a). This is
problematic as it means the solution is not stable to perturbations. Specifically, by adding a small
viscosity term to (2.10), yielding

ut + (
1

2
u2)x = ϵuxx, (2.26)

we change the solution dramatically. We would like the solution of the inviscid Burgers’ equation
to be the limit of (2.26) as ϵ → 0, so this instability with respect to the addition of viscosity is
undesirable in a physical solution.

In order to avoid this instability, we can require that no characteristics move out of the shock. For
a Riemann problem with shock position γ, left value ul, and right value ur, this means requiring

f ′(ul) >
dγ

dt
> f ′(ur). (2.27)

Equation (2.27) is called the Lax entropy condition. We will discuss this name at the end of this
section, but notice for now that ũ breaks this condition.

We can construct a solution that satisfies (2.27) by noticing that solutions to the general homo-
geneous scalar hyperbolic equation are scale invariant. That is, let u is a solution to

ut + f(u)x = 0, (2.28)

and define uλ(t, x) = u(λt, λx). Then[
uλ
t + f(uλ)x

]
(t,x)

=
[
λut + λf(u)x

]
(λt,λx)

= 0,

so uλ is also a solution to (2.28) (with initial condition uλ(0, x) = u(0, λx)). It is therefore
reasonable to search for solutions u(t, x) = w(x/t) = w(ξ). Assume for a moment that f ∈ C2 and
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(b) Stable (ur).

Figure 2.8: Characteristic lines for different weak solutions to Burgers’ equation.

f ′ is monotone, and insert w(ξ) into (2.28). We get

− x

t2
wξ +

1

t
f ′(w)wξ = 0. (2.29)

Since f ′ is monotone, we can invert it to obtain

w = (f ′)−1(ξ). (2.30)

As an example, take Burgers’ equation with (2.24) as initial condition. The characteristics are
x = x0 for x0 < 0, and x = x0 + t for x0 > 0. Here f ′(u) = u, so (2.30) gives us the solution
w(t, x) = x

t . Using this solution to connect the two wavefronts, we obtain

ur(t, x) =


0 x < 0
x
t 0 ≤ x < t

1 t ≤ x

. (2.31)

This solution is called the rarefaction wave solution. Note that ur is continuous, and it satisfies
(2.27) since it lacks a propagating shock. In fact, this solution is the limit as ϵ → 0 of the solution
of (2.26). A discussion on this solution and its properties can be found in [40]. The characteristics
for the rarefaction wave can be seen in Figure 2.8(b).

Recall that during our motivation for the rarefaction wave solution, we claimed it was reasonable
to look for solutions u(t, x) = w(ξ) with ξ = x/t. Notice that both the shockwave (2.23) and
the rarefaction wave (2.31) can be formulated as functions only of the variable ξ. This will be
important later in Section 3.

When f ′ is not monotone, we must replace it by a monotone function which in some sense is close
to f ′. We will not do that here, but refer the reader theorem 2.2 in [15], where Holden and Risebro
shows that given some regularity conditions, the rarefaction solution satisfies (2.27) when replacing
f by its so called convex envelope.

In reality, both the Rankine-Hugoniot condition (2.21) and the Lax entropy condition (2.27) are
special cases of the more general Kružkov entropy condition. Consider the hyperbolic PDE

ut + f(u)x = 0. (2.32)

The general entropy condition can be derived by forcing solutions of (2.32) to be the limit of
solutions to the viscous equation

uϵ
t + f(uϵ)x = ϵuϵ

xx (2.33)

as ϵ → 0. Let H,G be differentiable functions, with H convex, satisfying

H(u)t +G(u)x = 0 (2.34)

for smooth solutions u of (2.32). We call such a pair of functions an entropy pair.
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Assume now that u is a weak solution to (2.32). We say that u satisfies the Kružkov entropy
condition if

H(u)t +G(u)x ≤ 0 (2.35)

is satisfied weakly, that is, ∫∫ (
H(u)φt +G(u)φx

)
≥ 0 (2.36)

for all test functions φ, where the inequality is flipped due to a negative sign arising from integration
by parts. In this case, we call u an entropy solution.

Recall that the reason we sought conditions such as Rankine-Hugoniot and the Lax entropy condi-
tion was that weak solutions to (2.32) were in general not unique, and often represented unphysical
solutions. The Kružkov entropy condition solves this in the sense that for a piecewise twice differ-
entiable flux f and L1 initial data u0 of bounded variation, there exists a unique entropy solution
to (2.32) (theorem 2.14 of [15]).

In practice, it is often easier to apply Rankine-Hugoniot together with Lax entropy, which is valid
for convex fluxes, than to apply Kružkov directly. For nonconvex fluxes, one can switch Lax entropy
for the Olĕınik entropy condition

f(k)− f(ur)

k − ur
<

dγ

dt
<

f(k)− f(ul)

k − ul
,

which is equivalent to Kružkov in scalar problems with isolated discontinuities ([15], p. 59).
It is important to note that although the existence and uniqueness result for entropy solutions
of (2.32) is satisfactory in the scalar case, the situation becomes considerably more difficult in
multidimensional systems.
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Chapter 3

Numerical schemes

One of the biggest challenges with building numerical schemes for hyperbolic equations is the
existence of shocks. The finite difference approximation to the derivative

u(t, x+∆x)− u(t, x)

∆x

blows up in the presence of a shock as ∆x → 0, indicating that we should not expect finite
difference methods to provide good approximations near discontinuities. We instead typically
employ finite volume methods (FVM), a general class of schemes designed to handle discontinuities.
An advantage of FVMs is that they are conservative, meaning in particular that they produce
solutions with the correct shock position.

The purpose of this chapter is not to provide a thorough explanation of modern FVMs, but rather
to introduce a few simple methods that can approximate hyperbolic equations to a reasonable
accuracy. Nevertheless, we will later see that the methods presented here are powerful enough to
allow numerics-informed neural networks, the main topic of this thesis, to solve inverse problems
with hyperbolic equations to a very high accuracy. We will first explore the rationale behind FVMs
and present two first order schemes, the Godunov and Lax-Friedrich schemes. Then we present
the second order Lax-Wendroff scheme along with a more general and modern Central Upwind
scheme due to Kuragnov et. al. [24].

Finite volume methods essentially reduce the solution of a hyperbolic equation with general initial
condition to the solution of a set of Riemann problems. Recall that a Riemann problem is a
hyperbolic equation

ut + f(u)x = 0 (3.1)

equipped with the initial condition

u0(x) =

{
ul x ≤ 0

ur x > 0
. (3.2)

In this chapter we will analyse the homogeneous case, as the addition of a source function is
quite simple numerically. We will explain this further in Section 4.4. In Sections 2.3 and 2.4 we
analyzed properties of the solution of Riemann problems, focusing especially on Burgers’ equation.
In particular we explored how solution values are conserved along characteristic lines, and how
collision and separation of characteristics produce shocks and rarefaction waves in the solution.

The discussion in this chapter is based on [30]. In the finite volume framework, we imagine our
spatial dimension is partitioned into a finite number of volume elements, or cells, Cj . We are
interested in approximating the cell averages

Un
j =

1

h

∫
Cj

u(tn, x) (3.3)

12



Figure 3.1: Finite volume grid in one spacial dimension.

for time points tn in some grid, where h is the volume of Cj . To this end we would like to build
an update rule for finding {Un+1

j }j given the cell averages {Un
j }j at the previous time point.

Assume the spatial domain is the interval [a, b]. Let xj = a + (j + 1/2)∆x, j = 0, . . . , N , denote
the cell midpoints, where ∆x = b−a

N+1 . The corresponding set of volume elements is

Cj = [xj−1/2, xj+1/2).

The time discretization is defined by tn = n∆t for some time interval ∆t. The grid is plotted in
Figure 3.1.

In order to find our time stepping rule we integrate (3.1) over Cj × [tn, tn+1], yielding∫
Cj

∫ tn+1

tn

ut +

∫
Cj

∫ tn+1

tn

f(u)x = 0 (3.4)∫
Cj

u(tn+1, x)−
∫
Cj

u(tn, x) = −
∫ tn+1

tn

f(u(t, xj+1/2)) +

∫ tn+1

tn

f(u(t, xj−1/2)). (3.5)

Dividing both sides by ∆x and applying the approximation (3.3) we obtain

Un+1
j = Un

j − ∆t

∆x
(Fn

j+1/2 − Fn
j−1/2), (3.6)

where

Fn
j+1/2 =

1

∆t

∫ tn+1

tn

f(u(t, xj+1/2)). (3.7)

Equation (3.6) can be interpreted as expressing that the change in cell average from one time point
to the next is equal to the net flux into the cell during the time interval. Different finite volume
methods are constructed by applying different approximations to Fn

j+1/2, and these approximations
are often called numerical fluxes.

Sections 3.1 to 3.3 present methods designed for scalar equations, while Section 3.4 considers a
method built specifically for hyperbolic systems. The scalar methods can also be extended to
handle systems. For more information on how this extension can be done, [30, 27, 40, 15] provide
comprehensive discussions. In particular, we will need a system scheme for the shallow water
system in Chapter 8.

3.1 Godunov

One of the simplest numerical fluxes is that of Godunov [10]. Godunov’s scheme is based on the
observation that cell averages are constant in each cell. Cells can have different averages, so there
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may be discontinuities at cell interfaces xj+1/2. Thus, at each timestep tn, we have a Riemann
problem 

ut + f(u)x = 0

u(tn, x) =

{
Un
j , x ≤ xj+1/2

Un
j+1, x > xj+1/2

(3.8)

for every cell interface.

Recall from Section 2.4 that the solution to the Riemann problem of Burgers’ equation was a
function of the single variable ξ = x/t both for ul > ur and for ul < ur. This is not special
for Burgers’ equation, but happens for every homogenous hyperbolic equation as long as each
component of the flux function is twice continuously differentiable. This statement is a corollary
of Lax’ theorem, which is presented with proof as theorem 5.17 of [15]. Therefore we know that
the solution to the Riemann problem across the interface xj+1/2 can be written as a function Ūj(ξ̄)

with ξ̄ =
x−xj+1/2

t−tn
. In particular, this means that the solution is constant at the cell interface

ξ̄ = 0.

Now, Ūj is either continuous or discontinuous at the interface. Let Ūj(0
+) denote the limit of

Ūj when ξ̄ → 0 from above, and let Ūj(0
−) denote the limit when ξ̄ → 0 from below. If Ūj is

continuous, then f(Ūj(0
−)) = f(Ūj(0

+)) trivially. If it is discontinuous we have a stationary shock
at ξ̄ = 0. Rankine-Hugoniot gives

f(Ūj(0
+))− f(Ūj(0

−) = 0 · (Ūj(0
+)− Ūj(0

−)) = 0,

so the fluxes at either side of the interface are still equal. Thus, at the interface, Ūj is constant
and the flux is continuous. The numerical flux reduces to

Fn
j+1/2 =

1

∆t

∫ tn+1

tn

f(U(t, xj+1/2)) = f(Ūj(0)).

Godunov provides an explicit formula for the numerical flux by solving the Riemann problem
exactly. However, this formula involves an optimization procedure for each cell interface at each
timestep, and is time consuming for complicated flux functions in high refinement. However, for
flux functions with a minimum at U∗ and no other extremal points, the formula can be written

Fn
j+1/2 = max

{
f
(
max{Un

j , U
∗}
)
, f

(
min{Un

j+1, U
∗}
)}

. (3.9)

This formula can be used for instance with Burgers’ equation, where U∗ = 0.

In order for the previous analysis to work, it is important that the solutions to the Riemann
problems at different cell interfaces do not interact. In other words, we must not allow enough
time to pass between steps that wavefronts from adjacent Riemann problems can collide. The
maximum wavespeed in our problem setup will be

max
j

|f ′(Un
j )|,

so if we require

max
j

|f ′(Un
j )|

∆t

∆x
< 1 (3.10)

we can guarantee that the Riemann solutions will not interact before the next timestep. We call
(3.10) the CFL condition.

To illustrate Godunovs performance, we apply it to Burgers’ equation for two different Riemann
initial conditions. The first case uses ul = 1, ur = 0 to illustrate shock solutions, and the second
uses ul = −1, ur = 1 to illustrate rarefaction waves. The results are plotted in Figure 3.2.

3.2 Lax-Friedrich

Godunov’s method works well with Burgers’ equation because we have an explicit expression for
the solution of the Riemann problem (3.8) in this case. However, such an expression may not be
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Figure 3.2: Godunov method on Burgers’ equation with Riemann conditions, M = 50.

available for more general hyperbolic systems. In addition, if the flux function does not possess a
single optimum we have to compute an optimization step at each cell interface at each timepoint,
which can be very costly when the mesh is highly refined.

In order to mitigate some of these issues, we try to approximate the solution to the Riemann
problem instead of calculating it explicitly. We model the solution as given by two waves traveling
to the left and right of the interface with speeds slj+1/2 and srj+1/2. The approximate solution
becomes

u(t, x) =


Un
j , x ≤ slj+1/2t

U∗
j+1/2, slj+1/2t < x ≤ srj+1/2t

Un
j+1, x < srj+1/2t

, (3.11)

where U∗
j+1/2 can be found by applying the Rankine-Hugoniot conditions. This gives

f(Un
j+1)− Fn

j+1/2 = srj+1/2(U
n
j+1 − U∗

j+1/2)

Fn
j+1/2 − f(Un

j ) = slj+1/2(U
∗
j+1/2 − Un

j ),

where Fn
j+1/2 is the intermediate flux value. If we consider the wave speeds known, we can solve

this system of equations to get

Fn
j+1/2 =

srj+1/2f(U
n
j )− slj+1/2f(U

n
j+1) + srj+1/2s

l
j+1/2(U

n
j+1 − Un

j )

srj+1/2 − slj+1/2

. (3.12)

Different schemes can be built by choosing different values for slj+1/2 and srj+1/2. The Lax-
Friedrich scheme chooses these values as the maximum allowed speeds still ensuring that neigh-
boring Riemann problems do not interact in a single timestep. That is,

slj+1/2 = −∆t

∆x
, srj+1/2 =

∆t

∆x

Using these values in (3.12) yields the Lax-Friedrich flux

Fn
j+1/2 =

f(Un
j+1) + f(Un

j )

2
− ∆x

2∆t
(Un

j+1 − Un
j ). (3.13)

We apply the Lax-Friedrich method to the same test problems as Godunov. The results are
plotted in Figure 3.3. Notice that Lax-Friedrich is more diffusive than Godunov. This reduction
in performance is balanced by the fact that we do not need to exactly solve the Riemann problems
in each step, making it less computationally demanding for more complicated fluxes.
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Figure 3.3: Lax-Friedrich method on Burgers’ equation with Riemann conditions, M = 50.

3.3 Lax-Wendroff

In order to understand why Lax-Friedrich is so diffusive, notice that its numerical flux satisfies

∆t

∆x

[
Fn
j+1/2 − Fn

j−1/2

]
=

∆t

∆x

[
f(Un

j+1)− f(Un
j−1)

2
− ∆x

2∆t
(Un

j+1 + Un
j−1)

]
=

∆t

∆x

[
F̄n
j+1/2 − F̄n

j−1/2

]
−

Un
j+1 − 2Un

j + Un
j−1

2
(3.14)

where

F̄n
j+1/2 =

f(Un
j+1) + f(Un

j )

2
.

Thus the Lax-Friedrich scheme is equivalent to adding an artificial diffusion term (∆x2/∆t)uxx,
and then approximating the averaged flux integral (3.7) using forward Euler

1

∆t

∫ tn+1

tn

f(u(t, xj+1/2)) ≈ F̄n
j+1/2, (3.15)

meaning the flux at the interface is approximated as the average of the left and right fluxes at
t = tn. As ∆t/∆x is determined by the CFL condition this diffusion term will disappear in the
limit ∆x → 0, but it is significant for lower refinements.

Following the approach of [13], the Lax-Wendroff scheme can be derived by approximating the flux
integrals (3.7) using the midpoint rule

1

∆t

∫ tn+1

tn

f(u(t, xj+1/2)) ≈ f
n+1/2
j+1/2 .

In order to approximate the midpoint flux value f
n+1/2
j+1/2 , we use the Lax-Friedrich method on a

grid with ∆̃x = 1
2∆x over a timestep ∆̃t = 1

2∆t. Then

U
n+1/2
j+1/2 = Un

j+1/2 −
∆̃t

2∆̃x

[
F̄n
j+1 − F̄n

j

]
+

1

2

[
Un
j+1 − 2Uj+1/2 + Un

j

]
U

n+1/2
j+1/2 =

1

2
(Un

j+1 + Un
j )−

∆t

2∆x

[
F̄n
j+1 − F̄n

j

]
, (3.16)

and the numerical flux becomes
Fn
j+1/2 = f

(
U

n+1/2
j+1/2

)
. (3.17)

The Lax-Wendroff scheme is formally second order [27], but it is known to produce oscillations near
shocks. This can be seen in Figure 3.4, where we have applied Lax-Wendroff to Burgers’ equation
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Figure 3.4: Lax-Wendroff method on Burgers’ equation with Riemann conditions, M = 50.

with the same Riemann initial conditions as in Sections 3.1 and 3.2. There are ways of mediating
this, for instance with the use of flux limiters, but we will reserve the use of Lax-Wendroff to
linear equations with smooth initial conditions where we can achieve second order convergence.
For information about the oscillation issue and flux limiters the reader is referred to chapter 15
and 16 in [27].

3.4 Central Upwind

As previously mentioned, the mathematical theory underlying systems of hyperbolic equations,
as well as corresponding finite volume extensions, are not within the scope of this work. How-
ever, a system solver is necessary in order to address the shallow-water equations discussed in
Chapter 8. Consequently, we present a numerical scheme known as the central upwind (CUW)
method, developed by Kurganov et al. [24], without going into too much detail.

The CUW method offers several advantages. It is computationally efficient, straightforward to im-
plement, and avoids the substantial numerical diffusion associated with methods like Lax-Friedrich.
Notably, its successful application to the shallow-water equations can be found in prior studies such
as [13].

The general form of a 1D hyperbolic system is

Qt + f(Q)x = q, (3.18)

with solution Q : R+ × R → Rm, flux f : Rm → Rm, and source q : R+ × R × Rm → Rm. Let
Jf denote the Jacobian of f , and let λ1(Q), λm(Q) denote respectively the smallest and largest
eigenvalue of Jf . Suppose we are looking at a cell interface where the values of the solution Q at
the left and right of the interface are respectively QL and QR. Define

a+ = max
Q∈{QL,QR}

(
λm(Q), 0

)
a− = min

Q∈{QL,QR}

(
λ1(Q), 0

)
.

The numerical flux of the CUW method is then given by

FCUW =
a+f(QL)− a−f(QR)

a+ − a−
+

a+a−

a+ − a−

(
QR −QL

)
. (3.19)

As we will see in Chapter 8, the shallow-water flux has a closed form expression for the eigenvalues
of its Jacobian. This means the constants a+, a− can be computed very fast, making the CUW
scheme inexpensive.
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Chapter 4

Neural networks

In essence, neural networks are highly parameterized, smooth almost everywhere mappings from
Rn to Rm. They consist of a certain number of affine maps called layers, that are composed
with nonlinear functions called activations. Each layer consist of a number of parameters that
need to be determined in order to optimize performance in some given task. The determination
of these parameters is called training. The history of neural networks traces back to the late
1950s with Rosenblatt’s groundbreaking work on the Perceptron [35]. However, it wasn’t until
the introduction of the backpropagation algorithm in 1986 [37] for efficient parameter optimization
that neural networks gained significant academic interest. This advancement enabled the training
of large networks with remarkable efficiency.

Since then, neural networks have emerged as the cornerstone of some of the most powerful computa-
tional models ever devised. Notably, convolutional networks have revolutionized image processing
[12], while recurrent networks have excelled in analyzing time series data [38]. More recently,
transformer models built on the attention mechanism [41] have made significant strides in video
and text processing [28].

In this work we will use neural networks as approximators to source terms in hyperbolic PDEs,
which will require some customizations to the standard training procedure usually applied to
networks. However, we start with an explanation of the structure of the most basic neural networks
used in practice today, the so called multilayer perceptron models (MLP), and their usual training
procedure.

4.1 Multilayer perceptrons

4.1.1 Basic structure

An MLP is a function ΦH
θ : Rn → Rm that can be written as a composition

ΦH
θ (x) = AL ◦ φ ◦AL−1 ◦ φ ◦ · · · ◦A1(x) (4.1)

of affine maps Aℓ : Rdℓ → Rdℓ+1 , ℓ = 1, . . . , L, and nonlinear activation functions φ acting compon-
entwise on their input. That is, the activation φ : R → R is extended to Rd using the convention
φ([x1, . . . , xd]

T) = [φ(x1), . . . , φ(xd)]
T. The affine maps can be defined by

Aℓ = Wℓx+ βℓ, (4.2)

where Wℓ ∈ Rdℓ+1×dℓ is called the weight and βℓ ∈ Rdℓ+1 is called the bias. Here dL+1 = m and
d1 = n. The affine maps Aℓ are called layers, with input dimension dℓ and output dimension or
node count dℓ+1. Notice that the output dimension of layer ℓ is the input dimension of layer ℓ+1.
The specific elements of each layer’s weight and bias are the trainable parameters of the network,
in other words the parameters that are optimized during the training procedure. We denote by
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Figure 4.1: Different types of activation functions.

θ = {Wℓ, βℓ}ℓ the set of all trainable parameters. We call structure defining parameters such as
L and {dℓ}ℓ hyperparameters, and they need to be chosen explicitly by the user. We denote by
H = {L, {dℓ}ℓ, φ} the set of hyperparameters of the network.

Note that the specific choice of activation function φ is also a hyperparameter. The most common
choice today is the rectified linear unit (ReLU) function [39], defined as

ReLU(x) = max{0, x}.

Recall that this function will be applied componentwise to its Rd input. Other choices are available,
such as for instance the sigmoid

σ(x) =
1

1 + e−x
(4.3)

or the hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x
. (4.4)

Common for these these functions is that they can be evaluated and differentiated quickly on a
computer, and that they are nonlinear. Their shapes are plotted in Figure 4.1.

Neural networks are useful in problems that can be cast as function approximation tasks. For
instance, image classification tasks can be cast as approximating the function f mapping images
in some image space to the probability distribution representing their correspondence to a set of
labels. Usually we train networks by applying them to datasets where we know the correct output
of f , measure the error made by the network, and apply some gradient based nonlinear optimization
routine to determine the trainable parameters θ. Such datasets are called training sets, and we
measure the network error using a function known as the loss or objective. For instance, if we are
trying to approximate a function f : R2 → R, the training set S ⊂ R2×R will consist of a discrete
set of points {xi}i∈I ⊂ R2 and their corresponding images under f , {yi = f(xi)}i∈I ⊂ R, where I
is some index set. Then S = {(xi, yi)}i∈I . The loss function is usually based on the mean squared
error,

1

|S|
∑

(x,y)∈S

(ΦH
θ (x)− y)2. (4.5)

4.1.2 Universal approximation

MLPs demonstrate exceptional performance in practical function approximation tasks. This is not
a mere coincidence, as MLPs possess the interesting property of being ”universal approximators”.
Under certain conditions, this theoretical property ensures their ability to approximate arbitrary
measurable functions with arbitrary precision.

Intuitively, the universal approximation property guarantees that within a compact domain, any
measurable function can be accurately approximated by an MLP. This powerful notion was form-
alized by a series of articles by among others Hornik et. al. in 1980s-90s, where they established
several variants of the universal approximation theorem (UAT) for MLPs [9, 17, 18, 16, 33].
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The establishment of the universal approximation property for MLPs, a significant theoretical ad-
vancement, solidifies their role as versatile function approximators, providing a theoretical backing
to their wide-ranging practical success.

Universal approximation is a property related to the density of the class Σφ(Rn,Rm) of neural
networks from Rn to Rm with activation function φ. Thus the reason for the many variants of
the UAT: they are based on different notions of density, different network architectures, and in
particular different classes of activation functions. In 1993, Leshno et. al. gives a general result
providing necessary and sufficient conditions on φ for Σφ(Rn,Rm) to have universal approximation
in Lp on compact subsets of Rn [26]. We state a modified version here.

Theorem 1 (Universal approximation theorem I). Let µ denote the Lebesgue measure, Σφ(Rn,Rm)
denote the class of neural networks from Rn to Rm with activation φ and C ⊂ Rn be compact.
Then Σφ(Rn,Rm) is dense in Lp

µ(C,Rm) if and only if φ is not a polynomial.

Theorem 1 is both powerful and general, and as stated by Hornik et. al. when discussing their own
version of the result, ”it implies that any lack of success in applications must arise from inadequate
training, insufficient number of hidden units or the lack of a deterministic relationship between
input and target” ([17], p. 363). However, it has its limitations. Specifically, in Chapter 8 we
will use a neural network ΦH

θ to approximate a function B while simultaneously using ∂xΦ
H
θ to

approximate Bx. Theorem 1 does not guarantee arbitrary approximation to both a function and its
derivatives. Luckily, this case was covered in a paper by Hornik et. al. in 1990 [18], guaranteeing
universal approximation to a function and its derivatives up to some order. It even applies to weak
derivatives, making it very useful in the context of hyperbolic equations. A modified version is
presented here.

Theorem 2 (Universal approximation theorem II). Let U ⊂ Rn be open and bounded, and define
the class Wm

p (U, µ) of functions having (weak) derivatives up to order m belonging to Lp
µ(U).

Suppose there exists a point x ∈ U such that any ray originating in x has a unique intersection
with ∂U . Then Σφ(Rn,Rm) is dense in Wm

p (U, µ) whenever φ is given by (4.3) or (4.4).

The version of Theorem 2 stated in [18] is more general than this, in particular allowing any l-finite
activation function, but the version stated here will suffice for our purposes. The property that U
contains a point x such that any ray originating in x has a unique intersection with the boundary
∂U , known as being starshaped with respect to a point, is always satisfied for the rectangular
domains [0, T ]× [xl, xr] considered in our experiments.

4.1.3 Training

Assume now we want to train a network ΦH
θ to approximate a function f : Rn → Rm, and that we

have access to a training set S ⊂ Rn × Rm. Define the loss

LH
θ (x, y) =

∥∥ΦH
θ (x)− y

∥∥2. (4.6)

The goal is to find the trainable parameters θ∗ that optimizes the performance of the network on
the training set under this loss function,

θ∗ = argmin
θ

∑
(x,y)∈S

LH
θ (x, y). (4.7)

Notice that since ΦH
θ is a composition of smooth a.e. functions it is differentiable a.e., in particular

with respect to its weights and biases. Since LH
θ is differentiable with respect to ΦH

θ , we can use
standard gradient descent to optimize θ. That is, for every point (x, y) ∈ S we evaluate LH

θ (x, y)
and change the weights of the network according to the step

θ 7→ θ − η∇θ

∑
(x,y)∈S

LH
θ (x, y), (4.8)
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where η > 0 is known as the learning rate. It is important to note that the problem of nonconvex
optimization is NP-hard in the worst case [31], and that we cannot guarantee convergence in
the general problem. Even though it can be shown that this method will converge under certain
regularity assumptions [25, 1], in practice we can only rely on empirical evidence for its convergence.
In the case of the vanilla gradient descent algorithm in (4.8), empirical evidence suggest it to be
very slow in practice [36].

Today, it is common to employ some variant of batched stochastic gradient descent (SGD). These
methods are based on randomly drawing some subset Ŝ ⊂ S of the training set and evaluating∑

(x,y)∈S̄

∇θLH
θ (x, y), (4.9)

using this in place of the full-dataset gradient in the parameter update of (4.8). In the next
iteration, a different subset is drawn. This way we can perform multiple parameter updates for
every pass through the entire training set, or epoch, while still providing enough data each update
to optimize against the more global statistical properties of the dataset. In other words, assuming
S̄ is large enough that its distribution approximates that of S (with properties such as the mean
approximately equal), each parameter update using (4.9) will be a step in the approximate direction
that minimizes the expected loss on the entire dataset

Ep(x,y)

[
LH
θ (x, y)

]
,

over θ. One of the most common variants of SGD in industry today is the ADAM optimizer [22].
its name is derived from adaptive moment estimation, and it uses estimates of the first and second
moments of the gradient to adapt the learning rate between iterations. We will use ADAM in the
numerical experiments presented in the following chapters.

To practically evaluate the derivatives, notice that as the network is a composition of smooth
functions, its gradient will be the product of the derivatives of the components. This fact is used
in the backpropagation algorithm [37] to evaluate the gradient of the network with respect to its
trainable parameters given a point xi, i ∈ I. In essence the algorithm computes LH

θ (xi, yi) while
storing the latent outputs of all layers in the network, then evaluates each layer’s gradient function
on the previous layer’s output before multiplying them all together, finally multiplying with the
gradient of LH

θ with respect to the network outputs. The reader is referred to [37] for details.

Backpropagation has allowed researchers to develop programming interfaces for training general
neural network architectures, some notable examples being Google’s TensorFlow [29] and PyTorch
[32] of the PyTorch Foundation. Both libraries are open source, and widely used in industry. Tech-
nically, TensorFlow and PyTorch provide an API to perform general automatic differentiation, of
which backpropagation is an example. Details on different techniques for automatic differentiation,
along with practical examples, can be found in section 6.5 of [11].

In this work, we will mainly use PyTorch v.2.0.0 with Python v.3.10.10 as programming language.
There are several reasons for this. Python was chosen for its fast prototyping speed, as well as its
large ecosystem of packages for numerical simulation and visualization. There are, for example,
preexisting packages for simulating hyperbolic equations, most of them based on fast C++ backends
available through for instance the NumPy interface [14]. This motivates the choice of PyTorch as
the automatic differentiation backend, as the PyTorch Tensor constructs share most of their API
with NumPy NDArrays. Thus, a lot of preexisting simulation code can be applied practically
without modification to PyTorch Tensors, which support automatic differentiation. PyTorch also
has a C++ API, providing access to the vast amount of preexisting C++ simulation code as well.
Nevertheless, a custom numerical simulation library in Python was developed in conjunction with
this thesis, specifically designed to natively support PyTorch Tensors. The code is uploaded to the
ninn GitHub repo (https://github.com/benwaad/ninn) [2].
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4.2 Usage in PDEs

Assume we have a PDE
ut +D(u;λ) = 0, x ∈ Ω, t ∈ [0, T ] (4.10)

for some function u and differential operator D(u;λ) acting on u, parameterized by λ. There are
several ways neural networks can be useful in the analysis of (4.10). Notably, several variants of
physics-informed neural networks (PINN) have emerged in literature after their introduction in
2017 by Raissi et. al. [5, 34]. PINNs are neural networks that are trained to satisfy (4.10), along
with initial and boundary conditions, by encorporating a residual term in the loss function and
minimizing at randomly chosen collocation points in [0, T ]×Ω. Specifically, we define the residual

F(t, x) = ∂tΦ
H
θ (t, x) +D(ΦH

θ ;λ)(t, x),

where the derivatives can be computed using automatic differentiation, and incorporate the term

MSEH
θ (F) =

1

N

N∑
i=1

|F(ti, xi)|2, (4.11)

where {(ti, xi)}Ni=1 ⊂ [0, T ]×Ω is the set of collocation points, into the loss function together with
terms penalizing deviation from the initial and boundary conditions. Hence the name physics-
informed: the network incorporates the physics of the problem, described by (4.10), into its training
procedure.

PINNs can be used to obtain a neural network representation of a solution of (4.10) in an unsuper-
vised and mesh free fashion, and with the inclusion of known values of u at the collocation points
we can simultaneously learn the parameters λ in simple cases [34]. Recall that the problem of
learning the model parameters λ was called inverse problems, as opposed to the forward problem
of learning the solution u. This technique can be adapted to hyperbolic operators D arising from
conservation laws by separating the computational domain into finite volume cells and represent-
ing the solution in each cell by a separate neural network, enforcing continuity of flux at the cell
interfaces with an additional MSE term in the loss function. Jagtap et. al. introduce this method,
known as cPINN, in [20] and show that it performs better than regular PINNs on conservation
laws.

PINNs allow the inclusion of general system constraints as terms in the loss function, making them
a very flexible class of methods for general PDE problems. For instance, [3] shows that they can
be employed with success in complex scenarios in fluid dynamics for both forward and inverse
problems. As they are generally mesh free, PINNs are also well suited to tackle problems in high
dimensional domains where traditional computational methods break down due to the curse of
dimensionality [23].

However, most PINN experiments with inverse problems have focused on learning a small, discrete
set of unknown parameters λ. For instance, [34] experiments with learning λ = (λ1, λ2) in the
viscid Burger’s equation

ut + λ1uux − λ2uxx = 0,

and [20] considers a phase field with two unknown parameters in a biomedical flow system. Their
performance on inverse problems involving for instance general solution dependent source functions
have not yet been properly investigated.

In addition, PINNs represent the unknown solution u by a neural network also in the inverse
problem when we have access to measurements {Ui}i, relying on forcing the network output at
the collocation points {(ti, xi)}i to equal the measured values. Although this allows for general
positioning of the collocation points, the introduction of a network representation of u introduces
an error to the system that can be removed by relying on well tested numerical algorithms for
PDEs. In particular, methods such as the ones described in Chapter 3 encodes the physics of the
problem in discrete time stepping schemes based on a proper mathematical foundation, eliminating
the need for a network representation of u in inverse problems. Thus, we can use the methods
from Chapter 3 in combination of a network representation of all unknown parts of D(·;λ) itself
in order to solve inverse problems without the need for an explicit model of the solution. This will
be the topic of the following section.

22



4.3 Numerics-informed neural networks

Assume a PDE is given by (4.10) for Ω ⊂ Rn, u : [0, T ]× Ω → Rm, where

D(u; q) = ∇ · f(u)− q

is a hyperbolic operator containing an unknown source term q : [0, T ] × Ω × Rm → Rm. Define a
finite volume mesh on [0, T ] × Ω with centroids {xi}Mi=0 and timesteps {tn}Nn=0, with spatial and
temporal grid spacing ∆x and ∆t respectively. Assume also that we have some numerical scheme
G acting on stencils sni of the grid, such that

Un+1
i = G(sni ) + ∆tq(tn, xi, U

n
i ) (4.12)

For example, in the Godunov method from Section 3.1, n = m = 1, sni = {Un
i−1, U

n
i , U

n
i+1}, and

G(sni ) = Un
i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2)

where Fn
i±1/2 is the Godunov numerical flux given by (3.9). In the specific case of hyperbolic

operators, the solution can develop discontinuities that make it difficult to provide an error analysis
of (4.12), which for smooth solutions or simpler differential operators is usually simple. However,
in the scalar case there does exist convergence results even for very general problems. For instance,
Fjordholm and Lye proves a convergence theorem for monotone finite volume schemes even when
the initial data is of unbounded total variation( theorem 1 of [8]). The theory of convergence
for numerical schemes is wasted in the standard PINN framework, as we attempt to directly
minimize the PDE residual using nonlinear optimization techniques without robust convergence
results. There are modifications that can be done to standard PINNs that allows for a proper error
analysis, such as the wPINN algorithm [6], but the added complexity make them more diffult both
to implement and to train.

Assume we have access to a set of measurements Un
i , i = 0, . . . ,M , n = 0, . . . , N . Define the index

sets
X = {0, . . . ,M}, T = {0, . . . , N − 1}, J = T × X . (4.13)

Our training set is
S = {(tn, xi, s

n
i , U

n+1
i )}(n,i)∈J

Recall that sni consists of stencils of the measurements {Un
i }J , meaning that S consists entirely

of known values. Values that depend on the network parameters will be marked with a caret.

It is common to refer to an element (tn, xi, s
n
i , U

n+1
i ) ∈ S as a row of the training set, as we in

practice typically arrange the elements of S in a matrix where the indices i, n change along the
column dimension. A column is then all the measurements of a single variable given in the dataset.

The idea is to represent the source function q with a neural network, and use the numerical
scheme (4.12) to design a loss function. Let ∥·∥ denote the Euclidian 2-norm, and define a network
q̂Hθ : R× Rn × Rm → Rm with the loss function

LH
θ (tn, xi, s

n
i , U

n+1
i ) =

∥∥Un+1
i −G(sni )−∆tq̂Hθ (tn, xi, U

n
i )

∥∥2, (4.14)

where we have assumed that every stencil sni contains its central point Un
i . As (4.14) is smooth as

a function of the network parameters θ, we can proceed to train the network with standard SGD
optimizers such as ADAM. Notice that this loss function is scheme agnostic, meaning it allows us
to freely choose a numerical scheme on a case to case basis. This means we can easily adapt it to
any PDE for which we can define a numerical scheme. It is also simple to extend it to different time
stepping algorithms than the simple Euler method employed in (4.12) and the general conservative
scheme (3.6). We will call q̂Hθ , together with (4.14), a numerics-informed neural network (NINN).
NINNs can be adapted to perform a forward problem by adding a network representation of u,
but unlike PINNs they are specifically designed to perform inverse problems when the parameter
space is an infinite-dimensional function space.

Note that NINNs are designed to train in an offline setting. This means that we first collect and
organise the dataset, then train the network to approximate the source. The opposite is called
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online training, where we continuously receive new training set rows and use this incoming stream
of observations to gradually train the network. While it is possible to construct an online training
procedure for NINNs, this aspect has not been emphasized in this work.

4.4 A convergence result

We want the NINN loss function (4.14) to be related to L2 approximation error of the network’s
source prediction. In fact, Eidnes and Lye proved that for systems of ordinary differential equations
(ODE), the NINN loss as defined in (4.14) is proportional to the L2 source approximation error
with proportionality constant ∆t, when using the simple forward Euler method as the numerical
scheme (theorem 1 of [7]). We will return to ODEs and the forward Euler method in Chapter 5,
but first we provide a similar result for the general NINN loss function.

Recall from Chapter 3 that finite volume schemes, at least in their simplest forms, represent the
solution to a PDE by its average inside a collection of computational cells {Ci}i on a timegrid
{tn}n. Recall that

Un
i =

1

∆x

∫
Ci

u(tn, x),

that is the value of the ith cell average at timepoint tn. Consider the general hyperbolic scalar
equation

ut + f(u)x = q, (4.15)

with the source function q = q(t, x, u). Following the same procedure as in eqs. (3.4) and (3.5), we
arrive at the expression

Un+1
i = Un

i − ∆t

∆x

[
Fn
i+1/2 − Fn

i−1/2

]
+

1

∆x

∫
Ci

∫ tn+1

tn

q, (4.16)

where

Fn
i+1/2 =

1

∆t

∫ tn+1

tn

f(u(t, xi+1/2)).

Assume we employ a numerical method G acting on stencils {sni }ni , and that this scheme has a
truncation error τG(∆t) associated with it. That is,

Un+1
i = G(sni ) + τG(∆t) +

1

∆x

∫
Ci

∫ tn+1

tn

q.

Notice that τG(∆t) is independent on ∆x, as ∆x = c∆t by the CFL condition (3.10). Thus, the
NINN loss function (4.14) can be written

LH
θ (tn, xi, s

n
i , U

n+1
i ) =

∥∥∥∥τG(∆t) +

[
1

∆x

∫
Ci

∫ tn+1

tn

q

]
−∆tq̂Hθ (tn, xi, U

n
i )

∥∥∥∥2. (4.17)

Assume that the scheme has order p, that is τG(∆t) = O(∆tp+1). We use the fact that q̂Hθ =
q + (q̂Hθ − q) to write

LH
θ (tn, xi, s

n
i , U

n+1
i ) =

∥∥∥∥[ 1

∆x

∫
Ci

∫ tn+1

tn

q

]
−∆tq(zni )−∆t

(
q̂Hθ (zni )− q(zni )

)
+O(∆tp+1)

∥∥∥∥2,
(4.18)

where we have simplified by writing zni = (tn, xi, U
n
i ). A simple Taylor expansion gives that∫ tn+1

tn

q (t, xi, u(t, xi)) = ∆tq(zni ) +O(∆t2),

meaning

1

∆x

∫
Ci

∫ tn+1

tn

q =

∫ tn+1

tn

q (t, xi, u(t, xi)) +O(∆x2∆t) (4.19)

= ∆tq(zni ) +O(∆t2) +O(∆x2∆t). (4.20)
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Thus,

LH
θ (tn, xi, s

n
i , U

n+1
i ) =

∥∥∥∆t
(
q̂Hθ (zni )− q(zni )

)
+O(∆tmin(1,p)+1) +O(∆x2∆t)

∥∥∥2 (4.21)

=
1

∆t2

∥∥∥(q̂Hθ (zni )− q(zni )
)
+O(∆tmin(1,p)) +O(∆x2)

∥∥∥2 (4.22)

Ignoring second order terms and higher, we can write

∥∥q̂Hθ (zni )− q(zni )
∥∥2 =

LH
θ (tn, xi, s

n
i , U

n+1
i )

∆t2
, (4.23)

meaning the loss function (4.14) provides a scaled estimate of the L2 error of the network approx-
imation to q in the point (tn, xi, u(tn, xi)). The mean square error using LH

θ as kernel is then a
scaled estimate of the global L2 error of the network approximation.

Notice that the proportionality constant is now ∆t2, whereas the result in [7] simply had ∆t.
This is because the result in (4.23) is stated using squared norms. The reason for this is that the
mean square error, which is applied batch-wise when training, is an approximation to the squared
L2 error, not the L2 error itself. From a training perspective, applying the square root to the
computed loss is an unnecessary operation, as it does not change the optimum. Thus we chose to
work with squared norms.

Indeed, the analysis done in this section can be extended practically without modifications to apply
for the general p-norm. In eiter case, if we take the pth root of the loss function to obtain the actual
p-norm, we end up with the familiar ∆t proportionality arrived at by Eidnes and Lye, meaning
eq. (4.23) extends theorem 1 in [7] to work with arbitrary schemes for PDEs.

In fact, (4.21) preserves the truncation errors made when the scheme is not exactly satisfied by
the measurements, which extends the analysis in [7]. For instance, it tells us that not much is
gained in terms of convergence from increasing the order of the scheme G. The reason for this is
that the error in the integral approximation in eqs. (4.19) and (4.20) will dominate the truncation
error of the scheme. If we used a numerical quadrature with higher order, we would gain more by
increasing the accuracy of the scheme. We have not explored this in this thesis, but it represents
a possible avenue of further research.

Section 6.3 of [7] provides a discussion as to why the result (4.23) is interesting and necessary.
During training, we are generally trying to find q̂Hθ by minimizing the Lp norm of the difference

between the measurements {Un
i }ni and the solution predictions {Ûn

i }ni , that is the cell averages
generated with the numerical scheme using the neural network. Denote by uθ the inclusion ℓ1(J ) ↪→
L1(R+×R) of {Ûn

i }ni defined by Ûn
i 7→

∑
i,n Û

n
i 1[tn,tn+1)×Ci

, where 1 is the indicator function. For
i ∈ X let ui(t) = u(t, xi) and si be a stencil centered in xi, for instance si = {ui−1, ui, ui+1}. The
training process leads to a sequence {uθk}, where k denotes the training iteration, that converges
to u in Lp. In the semidiscretized form, we can view (4.15) as an ODE

dui

dt
= G(si) + q(t, x, ui), (4.24)

where G discretizes the spatial derivatives. We ignore truncation errors for the sake of argument,
but they are easily handled using the triangle inequality. Then the function ui,θ is defined by

dui,θ

dt
= G(si) + q̂Hθ (t, x, ui). (4.25)

Notice that the scheme G takes a stencil of the true semidiscretized solution ui, as this leads to
timestepping from a stencil of measurements in the fully discretized case. Now, notice that

q̂Hθ − q =
dui,θ

dt
− dui

dt
,

so the approximation error is the same as the difference of the time derivatives of the true and pre-
dicted solution. Even though our training process provides uθ → u in Lp, we cannot automatically
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assume that this leads to
dui,θ

dt → dui

dt in Lp, since Lp convergence between two functions does not
guarantee Lp convergence between their derivatives. Thus, in the limit ∆t → 0 when

ui(t+∆t)− ui(t)

∆t
→ dui

dt
,

we cannot expect q̂Hθ → q. This is reflected in (4.23), as for smaller ∆t we need to train to a lower
training error to achieve the same source approximation accuracy.

4.5 Differentiable simulators

Note that (4.14) use the neural network to generate a prediction of the solution at the next
timestep. It is vital that this solution prediction is differentiable, as we would otherwise not be
able to train the network. In implementation, this requires procedures for simulating a PDE in a
fully differentiable manner. We call such procedures differentiable simulators, and we present two
different approaches.

The numerical schemes presented in Chapter 3 use previous timesteps to iteratively fill out the
solution space. This allows us to construct a differentiable simulator in two different ways, namely
pointwise and sweeping training. In short, the pointwise simulator works well in cases where the
dataset consists of measurements of all quantities of interest at each gridpoint, while the sweeping
simulator allows us to handle cases where only some components of the system are practically
measurable, leading to so-called incomplete measurements.

Consider the hyperbolic PDE

Qt + f(Q)x = B, x ∈ Ω ⊂ R, 0 ≤ t ≤ T

where Q : R+ × R → Rm and B : R+ × R× Rm → Rm is the source function. This setup mimics
the shallow-water equations, where cases of incomplete measurements can arise in practice. We
will discuss the shallow-water equations in Chapter 8. Let the index sets X , T ,J be defined as
in (4.13). Define a mesh {(tn, xi)}(n,i)∈J on [0, T ] × Ω and imagine we have the dataset S =

{(tn, xi, s
n
i , Q

n+1
i )}J as described in Section 4.3 on this mesh. Recall that S consists entirely of

known values. We wish to approximate B using a NINN B̂ with a numerical scheme G.

Let Qn
i [k], k ∈ K, denote the kth component of the solution Q at the point (tn, xi), where K =

{1, . . . ,m} is an index set. First, we assume that we have complete measurements of Q, meaning
each measurement of Q consists of a measurement of Q[k] for all k ∈ K. We define the pointwise
differentiable simulator by shuffling the dataset and picking out random elements of S, before
applying the loss LH

θ defined in eq. (4.14). This corresponds to performing a single network
evaluation for each training point in S, which in a batched setting with batch size d means we
are performing d network evaluations for every weight update. The procedure is illustrated in
Figure 4.2. In experiments, we will see that this constant relationship between network evaluations
and weight updates makes the pointwise procedure converge in a fast and stable manner.

However, it is not always possible to design the training algorithm this way. Specifically, in cases
of incomplete datasets, we do not have enough information in the stencils {sni }J to generate a step
with the scheme G. We are forced to change our training procedure to account for this. Assume
now that we have access to complete measurements of Q0

i for all i, that is, the initial condition is
completely described. However, for n > 0 we only have access to a subset Qn

i [k], k ∈ K̃ ⊂ K, of
the components of Q.

If we want to train against a measurement Qn+1
i [k], k ∈ K̃, we need to fill the missing data in

all preceding timepoints with approximations provided by our NINN in a differentiable manner.
That is, starting with our initial conditions on the entire spatial grid, we need to perform n + 1
timesteps for all xi on the grid in order to obtain a solution prediction that we can match against
our data at tn+1, and we need to perform this in a way that allows us to compute the network
gradients at loss evaluation. This way, we generate the stencil itself using the network. In fact,
as we need to generate a solution prediction in all gridpoints before tn+1, we can treat the targets
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{Qn+1
i }i∈X as a batch and evaluate loss on all of them to determine the weight update. We call

this the sweeping differentiable simulator, see Figure 4.3.

Notice that as we only have access to measurements of components k ∈ K̃, we can only evaluate
loss for these components. The modified loss function becomes

LH
θ (tn, xi, s

n
i , Q

n+1
i ) =

∑
k∈K̃

∣∣∣Qn+1
i [k]−G(ŝni )[k]−∆tB̂H

θ (tn, xi, Q̂
n
i [k])

∣∣∣2, (4.26)

where the stencil sni and the previous solution value Qn
i has been marked with a caret to emphasize

that they depend upon previous network predictions, and therefore on the network parameters.
Clearly the dependence of the loss function on the network parameters is a lot more complicated in
sweeping compared to pointwise training, but as long as all operations performed on the network
realizations are differentiable, a software package implementing automatic differentiation, such as
PyTorch, will have no problem tracking these dependencies and computing the gradients when
required.

It is important to notice that for large n, we need to perform many timesteps in order to perform
a single parameter update. For longer time horizons T , this leads to much longer training times.
However, all experiments conducted in this work ran in under a minute on a 2020 MacBook Air
with an M1 chip and 8GB of RAM. Thus training times will largely be considered negligible in the
following chapters, even though they can come to matter in an operational setting.
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(a) (b)

Figure 4.2: Pointwise training for a complete dataset. The filled in dots mark gridpoints where
we have access to complete measurements of Q, and the red ring marks the point we wish to train
against in this iteration. The right figure shows that we can use the stencil at the previous timepoint
to obtain an approximation of the target point, denoted by blue filling, using the scheme G and the
network B̂.

(a) (b)

Figure 4.3: Sweeping training for an incomplete dataset. The black filled dots mark gridpoints
where we have access to complete measurements of Q, and the gray dots mark points where we only
have access to Q[k] for k in some subset K̃. The red ring marks the points we wish to train against
in this iteration. The right figure shows that we must timestep the entire initial condition to obtain
approximations to Q, denoted by blue filling, for all timepoints before our target.
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Chapter 5

Learning source terms in scalar
ODEs

As a motivating example, we show that a neural network can be used to approximate the source
term in an ordinary differential equation (ODE) given measurements of the path of the solution.
ODEs are special cases of PDEs where the unknown solution u does not depend on spatial deriv-
atives of the solution. If we only apply a spatial discretization to the balance law (2.2), we obtain
a semidiscretized system of ODEs, motivating an analysis of NINNs performance on scalar ODEs
first. Consider the ODE {

du
dt = F (t, u)

u(t0) = u0

(5.1)

Assume we want to approximate the path of u numerically on some time grid consisting of
equidistant points t0, t1, . . . , tN . We can generate such an approximation using the forward Euler
method

Un+1 = Un +∆tF (tn, Un), (5.2)

where ∆t is the distance between time points. Recall that producing such a simulation solves the
forward problem for this ODE. In other words, given an ODE, we produce predictions Un for the
solution.

Assume now that F is not known, but we are instead given measurements U0, U1, . . . , UN of the
solution u at time points t0, . . . , tN . We would like to find an approximation F̂ to the function F .
This is an inverse problem for this ODE, and it is a problem of regression. Recall from Section 4.1.2
that as neural networks are universal approximators, they can, under certain constraints, be used
to approximate any given measurable function on a compact domain. Recall also that we are not
guaranteed to be able to find such an approximating network. We have to rely on heuristics, and
hope that the procedures outlined in Chapter 4 lead to an accurate approximation.

As in Section 4.3 we do not have direct access to F , so we cannot simply measure the error∑
n

(
F (tn, Un)− F̂ (tn, Un)

)2

,

which is normally used for regression tasks. Instead, we use a numerical scheme such as (5.2) with
F̂ acting in place of the real source F to generate Ûn+1 ≈ u(tn+1) = Un+1 given a data point Un.
Using the forward Euler method, we would first generate

Ûn+1 = Un +∆tF̂ (tn, Un), (5.3)

for every n, and then use ∑
n

(Un+1 − Ûn+1)
2 (5.4)

to evaluate the performance of the network. Since all operations used in (5.3) and (5.4) are
differentiable, we can safely use automatic differentiation to train the network F̂ .
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Figure 5.1: The left plot shows the paths generated using the Euler method with the exact F as
well as the network F̂ . The right plot shows the loss function of the network as a function of the
training iterations.

5.1 Experiments

5.1.1 Quadratic source

As a test problem, we used the forward Euler method to generate observations of the function u
solving (5.1) with

F (t, u) = u2 (5.5)

and u0 = 0.25. The time grid was an equidistant partition of the interval [0, 3] with ∆t = 0.01.
This resulted in a dataset U0, . . . , UN with N = 298. We used a neural network F̂ consisting of
3 hidden layers and an output layer to approximate F . The hidden layers each had 30 units and
used the ReLU function as activation. The weights were initialized according to the He uniform
scheme. The output layer had a single unit with no activation. We used the Adam optimizer with
a learning rate of 0.005 and a batch size of 10.

After training for 150 epochs, we used F̂ in combination with the Euler method to generate a
simulation of the solution of (5.1). The L2 error was 1.92 · 10−4. The results are presented in
Figure 5.1.

The initial experiment demonstrates that given enough data, a NINN is able to accurately predict
a source function using a relatively small neural network. Although the experiment represents a
straightforward scenario, it shows that the NINN training procedure is at least feasible.

5.1.2 Scaled datasets

When training neural networks it can often be beneficial to appropriately scale the training set.
Since we are training not against direct measurements of F , but rather mapping the outputs of
F to our solution space using the numerical scheme, scaling is somewhat more complicated here
than for usual regression tasks. It is still possible however, and to demonstrate this we scaled the
measurements in our test problem down to the range [0, 1] prior to training. That is, prior to
training we applied the transformation

Ũn =
Un − Umin

Umax − Umin
=: T (Un), (5.6)
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Figure 5.2: The figure shows that the network satisfies (5.8) after training. The L2 error was
2.43 · 10−5.

to our training set, where Umin = minn Un and Umax = maxn Un. Notice that T is invertible, so
we can scale the data back when we use the network to generate the actual path. Importantly, this
means the network is not actually approximating F . To see this, note that the network is trained
to satisfy

Ũn+1 ≈ Ũn +∆tF̂ (Ũn). (5.7)

We used the forward Euler method to generate the training data, so

Un+1 = Un +∆tF (Un)

⇒ Ũn+1 = T (Un +∆tF (Un))

=
Un +∆tF (Un)− Umin

Umax − Umin

= Ũn +∆t
F (Un)

Umax − Umin
.

Thus, we are really training the network to satisfy

F̂ (Ũn) ≈
F (T−1(Ũn))

Umax − Umin
. (5.8)

These functions are plotted in Figure 5.2, showing that the relation holds. These relations become
more difficult to compute when we switch to more complex numerical schemes in the following
chapters, and for the test cases explored in this thesis we can achieve high quality approximations
without scaling. Thus, in the following chapters, we will not apply scaling to our tranining set.
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Figure 5.3: The results of the refinement experiment. The left plot shows the L2 error between the
network and (5.8), and the right shows the error in the path produced using forward Euler with F̂
instead of (5.5).

5.1.3 Time refinement

The time refinement also plays a role in how well the network performs, as it decides the size
of the training set. In general, we expect better performance when more data is seen during the
training phase, that is when ∆t is small. To quantify this, we measured the L2 error of the network
prediction as well as the path it generated through the forward Euler process while varying ∆t. The
network was compared to the function in (5.8), and the path it generated was compared against
the path generated by (5.5). We used the same network structure as before, and picked the best
performing weights seen after 140 epochs. The network weights were reset after each ∆t change.
The results can be seen in Figure 5.3.

Unsurprisingly, the network performs better when it has access to more training data. It is however
worth noting that the path error does not decrease monotonously with ∆t. This is a phenomenon
we will see in the following chapters as well. Nevertheless, the finest discretizations yield errors
close to 10−6, which is very low. The network is implemented using single precision (32 bit) floating
point numbers, meaning the machine precision is roughly 10−8.
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Chapter 6

Learning source terms in the
linear transport equation

In this section we will consider the case of linear flux, giving rise to the linear transport equation{
ut + aux = q

u(0, x) = u0(x)
(6.1)

with periodic boundary conditions. Recall from the discussion in Section 2.2 that the characteristics
of (6.1) are straight lines defined by the wave speed a, and thus any smooth initial data will result in
smooth solutions. Recall also that the solution was simply the initial data u0 translated according
to the wave speed a added to the compounded contributions of q along the characteristics.

Let Ω = [−1, 1], and define a mesh on [0, T ]×Ω by the gridpoints xi = −1+ i∆x, i = 0, . . . ,M −1,
and tn = n∆t, n = 0, . . . , N − 1. We are interested in learning q from a dataset {Un

i }ni containing
observations of the solution at each gridpoint. Instead of the forward Euler scheme used in Section
5, we will now use the Lax-Wendroff scheme introduced in Section 3.

In the following we separate between the terms source prediction and solution prediction. A source
prediction is the output of our neural network for some given input, interpreted as an approximation
to the hidden source function q. A solution prediction is an approximation to the solution u of a
hyperbolic equation obtained using a numerical technique on observations of the solution and the
source prediction. We will denote solution predictions by Û .

Recall from Section 5 that the loss function matched Un+1 against a solution prediction gener-
ated by the forward Euler method using the current solution value Un and the source prediction
F̂ (tn, Un). Now we will use the Lax-Wendroff scheme to generate the solution prediction, which
depends on three local stencil points Un

i−1, U
n
i , U

n
i+1 as well as a source prediction q̂(tn, xi, U

n
i ).

As (6.1) is linear, the solution will not develop shocks for smooth initial conditions and source
functions. Thus we can avoid the issue of oscillations in the solution generated by Lax-Wendroff,
still recieving the benefits of its high order.

As measurements {Un
i }ni we will use values generated by the scheme using the true source func-

tion. A training step consists of evaluating the network in a point (tn, xi, U
n
i ) to obtain a source

prediction q̂ni , and then matching Un+1
i against

Ûn+1
i = LW(Un

i−1, U
n
i , U

n
i+1) + ∆tq̂ni ,

where LW(Un
i−1, U

n
i , U

n
i+1) denotes a Lax-Wendroff step from the stencil {Un

i−1, U
n
i , U

n
i+1}. Thus,

our training set consists of rows containing the coordinates (tn, xi) as well as the entire stencil
{Un

i−1, U
n
i , U

n
i+1, U

n+1
i }. In practice, each training step will be performed in a vectorized fashion

over a batch of such rows, and the loss for each row in the batch will be accumulated before
backpropagating.
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Figure 6.1: Setup for the learning problem in Section 6.1.1.

6.1 Experiments

6.1.1 Sinusoidal source

Let T = 1, a = 1,
q(t, x, u) = sin(2πt) sin(2πx), (6.2)

and
u0(x) = sin(2πx). (6.3)

See Figure 6.1 for a visualization. Notice that these functions all take values on [−1, 1]. We will
not scale the values before training as we did in the previous section. We will use a spatial grid
with M = 100 cells. In order to satisfy the CFL condition, we set a threshold γ and calculate

N =

⌈
aTM

|Ω|γ

⌉
, (6.4)

ensuring a∆t/∆x < γ. With γ = 0.7 we obtain N = 72.

We used a neural network with a similar configuration as in Section 5, that is 3 hidden layers each
containing 30 units. Here the hidden layers were activated by a leaky ReLU function with a slope
of 0.01, and the weights were initialized according to the He uniform scheme, see table 6.1. We
used the Adam optimizer with a learning rate of 0.005, and the batch size was 32. We ran the
training loop 5 independent times, each time resetting the model weights, and trained for 8 epochs
each run.

Figure 6.2 shows predictions of the model averaged over the 5 independent runs. Figure 6.3 shows
the training loss history. Figure 6.4 shows plots of the squared error in the source prediction and
solution prediction. The L2 error of the source prediction and solution prediction were 2.03 · 10−3

and 2.62 · 10−4 respectively.

The performance of the algorithm was evaluated for several values of M . Specifically, we computed
both the source error and solution error of the averaged predictions over 5 independent training
runs for each M = 2k, k = 3 . . . , 9. The results are plotted in Figure 6.5.

Figures 6.1 and 6.2 indicate that we are able to learn sinusoidal source functions well, especially
when the frequency is not too high. However, in this case we provided the network with a large
amount of training data. With M = 100, N = 72, the network had access to M(N − 1) = 7100
data points during training. Looking at Figure 6.5 we see that even when coarsening the grid down
to M = 8, giving the network only 40 training points in the domain, we still perform quite well.
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(a) Predicted source q̂

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Corresponding solution prediction Û

Figure 6.2: Network predictions for the problem in Section 6.1.1. Plotted is the averaged results
from 5 independently trained models.
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Figure 6.3: Averaged training loss history for Section 6.1.1.
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Figure 6.4: Plots of the squared error in the network prediction of the source function, and the error
in the path generated from this prediction for Section 6.1.1.
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Figure 6.5: The L2 error for increasing values of M in Section 6.1.1, still forcing a CFL threshold
of 0.7.
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Layer Input dimension Output dimension Activation

1 2 30 Leaky ReLU
2 30 30 Leaky ReLU
3 30 30 Leaky ReLU
4 30 1 Linear

Table 6.1: Neural network structure used in Section 6.1.1. The slope of the leaky ReLU was 0.01,
and the optimizer was Adam with learning rate 0.005.

Looking at Figure 6.4, there does not seem to be a pattern in the source error. Interestingly,
however, it seems like errors made during the solution prediction are propagated along characteristic
lines until t = T . This makes sense as the solution values themselves propagate along these lines,
and because of the time stepping procedure used in the numerical scheme, errors are compounded
as they pass through time. However, some characteristics propagate a much higher error than
others. Notice also that as the boundary conditions are periodic, errors are propagated through
the right side of the domain only to reappear on the left.
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Chapter 7

Learning source terms in Burgers’
equation

We now move on to Burgers’ equation{
ut +

(
1
2u

2
)
x
= q

u(0, x) = u0(x).
(7.1)

As discussed in Section 2.3, the solution will now develop shocks and/or rarefaction waves for any
nontrivial initial condition.

Let again Ω = [−1, 1], and define a mesh on [0, T ] × Ω by the gridpoints xi = −1 + i∆x, i =
0, . . . ,M − 1, and tn = n∆t, n = 0, . . . , N − 1. As the Lax-Wendroff scheme is known to produce
oscillations close to shocks, we now switch to the Godunov scheme. As Godunov uses the same
stencil as Lax-Wendroff, the training set will have the exact same structure as in Chapter 6, it will
just be generated in a different way. This means that we can use the same training procedure,
allowing us to reuse much of our training code.

7.1 Experiments

7.1.1 Sinusoidal source

Let T = 1,
q(t, x, u) = sin(2πt) sin(2πx), (7.2)

and
u0(x) = − sin(πx). (7.3)

See Figure 7.1 for a visualization.

We will again use a spatial grid with M = 100 cells and a CFL threshold of γ = 0.7. As the wave
speed is now unknown, we assume a bound u ≤ 1.5 on [0, T ]×Ω and use (6.4) to obtain N = 107,
satisfying the CFL condition as long as u does not breach the assumed bound. Looking at Figure
7.1, this is not an unreasonable assumption. We keep ∆t constant to simplify implementation.

We used an ensemble model consisting of 5 independently trained networks, each with the structure
described in Table 6.1, where the model prediction is the average prediction of each network. Each
network was trained for 8 epochs, and was optimized using the Adam algorithm with learning rate
0.005 and batch size 32. Figure 7.2 shows predictions of the model. Figure 7.3 shows the averaged
training loss history for each network. Figure 7.4 shows plots of the squared error in the source
prediction and solution prediction. The relative L2 error of the source and solution predictions
were 1.89 · 10−3 and 1.62 · 10−3.
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Figure 7.1: Setup for the learning problem in Section 7.1.1.
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Figure 7.2: Network predictions for the learning problem in Section 7.1.1.

0 500 1000 1500 2000 2500

10 7

10 6

10 5

Figure 7.3: Averaged training loss history for Section 7.1.1.
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Figure 7.4: Plots of the squared error in the model prediction of the source function, and the error
in the path generated from this prediction for Section 7.1.1.
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Figure 7.5: The source predictions of the neural network when M = 8, with corresponding L2 error.
The red marks shows the location of the centroids of the finite volume cells in the training set.

We repeat the experiment with a rougher grid, setting M = 8. As the dataset now consists of much
fewer points, we train for 200 epochs to reach convergence. The number of epochs was increased
to account for the fact that a smaller training set will lead to fewer weight updates per epoch when
the batch size is kept constant. In this case, the network achieved a relative L2 error of 8.60 · 10−2

in the source prediction. The results, which can be seen in Figure 7.5, shows that the method
produce reasonable predictions even in cases with a very limitied number of observations.

Notice that there is an area at the top of the plots in Figure 7.5 that completely lacks training
points. That is because in order to use a point (t, x) in the training set, we need access to the
solution values u(t +∆t, x). As we only have access to observations of the solution in [0, T ] × Ω,
we cannot use training points with t = T .

Figure 7.6 shows the L2 source and solution errors of the model for different values of M , allowing
the algorithm to reach convergence. We see that the performance gain in source prediction from
increasing M starts to disappear after about M = 100. This is to be expected, as the convergence
rate of the source is proportional to the loss (see Section 4.4), and with a network implemented
with single precision floating point parameters there is a limit to how low we can push the loss
value.

Unlike in Section 6, we now have a discontinuity that emerges after some time as a result of two
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Figure 7.6: The relative L2 error for increasing values of M in Section 7.1.1, still enforcing a CFL
threshold of 0.7.

wavefronts colliding. However, we are still able to learn the source quite well. Figure 7.4 shows
that the solution error is dominated by the error at the shock, but it seems the predicted source is
not affected by this at all. The reason we are able to learn the source function even in the shock
region, is that the shock is not captured in the backpropagation when producing the gradient of
a networks prediction with respect to its parameters. To reiterate the argument from Section 4.4,
letting G(Un

i ) denote a step with our numerical scheme centered at Un
i , we can write

Un+1
i = G(Un

i ) + ∆tq(tn, xi), (7.4)

Ûn+1
i = G(Un

i ) + ∆tq̂(tn, xi). (7.5)

Then the loss function becomes

(Un+1
i − Ûn+1

i )2 = ∆t2(q(tn, xi)− q̂(tn, xi))
2, (7.6)

which is independent on U . Thus, when we calculate the gradient of (7.6) with respect to the
network parameters in order to apply our optimization routine, we never need to use the derivative
with respect to U in the chain rule expansion, meaning the training algorithm never notices the
discontinuity. One might then imagine that this only works when q is a function of t and x only,
and that the backpropagation becomes more difficult when q also depends on the solution. This
is in fact not a problem. Imagine adding a dependence on Un

i to q and q̂ in (7.6). As Un
i is

independent on the network parameters θ, when we differentiate (7.6) with respect to θ during
training, all differentials of Un

i vanish. Thus the training process is unaffected by the additional
dependence on Un

i , even when the solution develops discontinuities. This will be illustrated in the
following section.

7.1.2 Non-smooth solution dependent source

We will still operate with T = 1 and

u0(x) = − sin(πx). (7.7)

However, we now let
q(t, x, u) =

√
|u|. (7.8)

This case is illustrated in Figure 7.7. We will use the ensemble model described in the previous
section, but we change the first input dimension of each network from 2 to 3.

There are now in particular two potential problems for the model. First of all, we are now dealing
with a source that is not differentiable in points (t, x, 0). Secondly, we have a problem related
to extrapolation. In the previous cases we only needed the values (t, x) from the training set to
evaluate the network, and as we chose the grid in advance, we were free to pick these training
points freely as long as we made sure to generate observations of u at these points. We are still
able to pick (t, x) freely, but we must now use the generated observations of u that corresponds
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Figure 7.7: Setup for the learning problem in Section 7.1.2. The source takes values from R3, but
it only varies with the last dimension.
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Figure 7.8: Source predictions for a range of different values of t and x in Section 7.1.2.

to this point in our training set. This means we can make sure that during training, the networks
see training points with a varied selection of values for t and x, but we do not necessarily have any
control of the selection of u values in the training set. For instance, we can see from Figure 7.7(b)
that in Section 7.1.2 the networks will only ever have access to u values roughly inside [−1, 1.5],
an interval that is skewed as a result of the nonnegativity of the source. Another difficulty is that
a fixed point (t̃, x̃) is only ever paired with a single value ũ in the training set, meaning that the
networks must first learn independence from t and x in order to use information on u from other
spatiotemporal points. Thus, the model will have to extrapolate between the missing values.

Figure 7.8 shows the model predictions for u varying in [−2, 2] at several different fixed points
(t, x). Clearly, even when the model only has access to very limited information on u, it is able to
learn the source function well. We see that the prediction error is slightly higher for u < −1, which
is reasonable given that we had no training points in this regime. However, even in areas where
we had few to none training points, the model provides a decent approximation to the source. We
notice in particular that it has learned independence from t and x, and that the position of the
non-differentiable point in the source function is only off by a small amount only for x values of
−1.

Figure 7.9 shows the solution generated by the model. We notice in particular that the model
generates a solution with a correctly positioned shock.
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Figure 7.9: The solution generated using the trained model from Section 7.1.2. The black line shows
the shock position in the reference solution.
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Figure 7.10: Model predictions for Section 7.1.2 when M = 8.
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Figure 7.11: The solution generated using the trained model from Section 7.1.2 when M = 8. The
black line shows the shock position in the reference solution.
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Figure 7.12: Source predictions for Section 7.1.2 with M = 8 and enforcement of periodicity.

Like in Section 7.1.1, we repeat this experiment for a rough grid. Setting M = 8 we train for
200 epochs and visualize the results in Figure 7.10. The predictions are now considerably worse
than in the high resolution case, but the network is still able to predict the general shape of the
source function. Notice how the predictions for x = 0 and x = 1 are better than for x = −1 at all
timepoints. For times t = 0 and t = 0.5 it is slightly easier for the network to predict the source
when x = 0 than when x = 1, but this difference disappears when t = 1. This is connected to the
positions of the training points, shown in Figure 7.11.

It is very important for the network to correctly predict the source function at x = 0, as this is
close to the position of the shock. Differences in the shock position between the true and predicted
solution corresponds to a big difference in the true and predicted solution value, which is penalized
heavily by the loss function. As the shock moves towards x = 1, it is reasonable to think that
the network also needs to be accurate at the right side of the domain, and therefore prioritizes
accuracy at x > 0 as well. By the same argument the network is somewhat less incentivised to
correctly learn the source at x = −1, as the solution values predicted here will not propagate to
the shock in time.

This is problematic as Ω is considered periodic, and thus the network should predict the same
function at x = −1 and x = 1. The true source is of course periodic, but it seems this property
is not prioritized by the network. Periodicity can be enforced by adding an additional penalty
in the loss function. Adding such a penalty produce the results shown in Figure 7.12. We now
achieve much better approximations, and all we did was enforcing a property we had a priori
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Figure 7.13: The solution generated using the trained model from Section 7.1.2 with M = 8 and
enforcement of periodicity. The black line shows the shock position in the reference solution.

knowledge about. This is invaluable in practice, as we can incorporate expert knowledge of the
source function by either pretraining or forcing certain properties of the network during training.
Figure 7.13 shows that the network still generates a solution with a correct shock position.
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Chapter 8

Learning bathymetry through the
shallow water equations

As a final test setting, we consider the shallow water equations (SWE) in 1D. This is a hyperbolic
system modelling the flow of fluid with a free surface when the characteristic height of the surface
is small compared to the characteristic length scale in the spatial dimension. Let B = B(x)
describe the bottom topography, which for instance in oceanography corresponds to the height of
the seafloor relative to some baseline. In this context we call B the bathymetry. Let h = h(t, x) be
the height of the free surface relative to B and u = u(t, x) the depth-averaged velocity of the fluid
in the x direction at time t and position x. See Figure 8.1 for a visualization.

Using the conservation of mass and momentum we can derive the shallow water equations[
h
hu

]
t

+

[
hu

hu2 + 1
2gh

2

]
x

=

[
0

−ghBx

]
, (8.1)

where g = 9.81m/s2 is the gravitational acceleration on the earth’s surface. See for instance [27]
for details on the derivation of (8.1). The flux function is

F (h, u) =

[
hu

hu2 + 1
2gh

2

]
, (8.2)

and its Jacobian has eigenvalues λ1,2 = hu±
√
gh. We will use the notation

Qn
i =

[
hn
i

hn
i u

n
i

]
for the vector of observations of the conserved quantities at position xi and time tn, and Qn

i [k],
k = 1, 2, will denote the kth component of this vector.

The goal is to learn the bathymetry through observations of h and u. An added complication with
the SWE compared to the previous examples is that the source term depends on Bx and not B
directly. As neural networks are differentiable with respect to their input, we can train a network
B̂ by forcing B̂x to generate solution predictions through some numerical scheme that matches our
observations of h and u. The difference from the previous examples is that we will not be able to
learn the reference level of the bathymetry. As we are only training B̂x to approximate Bx, our
network predictions will at best satisfy B̂ = B + C for some C ∈ R. We will therefore assume
there is one x for which we have access to an accurate measurement of B(x). Initially we will also
assume we have access to accurate measurements of both h and u on our entire spatiotemporal
grid. We will use the CUW method from Section 3.4 for all examples involving the SWE.
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Figure 8.1: Diagram for the shallow water equations.

8.1 Experiments

8.1.1 Predicting bathymetry gradients directly

Consider the domain [0, T ]× Ω for T = 1 and Ω = [−1, 1]. We will equip equation (8.1) with zero
Neumann conditions, that is

hx(t,−1) = hx(t, 1) = 0 (8.3)

ux(t,−1) = ux(t, 1) = 0. (8.4)

Let µ = 1/4, σ = 1/10, and define the bathymetry as

B(x) = exp

(
− (x− µ)2

σ2

)
+

1

2
exp

(
− (x− µ+ 1/4)2

σ2

)
(8.5)

and the initial conditions as

h0(x) = exp

(
− (x+ 1/2)2

σ2

)
+

3

2
−B(x) (8.6)

u0(x) = 0. (8.7)

Our grid will consist of M = 100 spatial cells and N = 526 timepoints.

In order to check if our method is still feasible in this case, we first try to let the network represent
Bx(x) in the training process. That is, an unbatched training step will consist of producing a
approximation B̂x(xi) to Bx(xi) using our network, and then matching Qn

i [2] against

CUW(Qn
i−1, Q

n
i , Q

n
i+1)[2]−∆tgB̂x(xi)Q

n
i [1],

where CUW denotes the stepping function of the central upwind scheme.

We independently train 5 networks with structure according to table 6.1, except for an input
dimension of 1 instead of 2, and pick the one with the lowest training loss after 4 epochs. We used
the Adam optimizer with learning rate 0.0005 and batch size 32.

Figure 8.2 shows the free surface of the solution generated by the central upwind scheme when
using the true and predicted bathymetry derivatives. The surfaces are very similar to each other,
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Figure 8.2: Solution predictions at different timepoints for Section 8.1.1 when using the network as
an approximator to the derivative Bx of the bathymetry. The brown region is the true bathymetry.
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Figure 8.3: Network predictions for Section 8.1.1 when using the network as an approximator to
Bx.
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Figure 8.4: Network training history for Section 8.1.1 when using the network as an approximator
to Bx.

indicating that the network was able to provide an approximation that performs similarly to Bx

when applied to a numerical scheme. In figure 8.3 we see that the network was in fact able to
approximate Bx with high accuracy. Figure 8.4 shows the training history of the best performing
network after 4 epochs, where we can see that the performance didn’t start to improve until the
end of the third epoch.

8.1.2 Predicting the bathymetry itself

We now try to let the network approximate B, and modify the training procedure to compute
B̂x using automatic differentiation. That is, we compute the network output B̂(xi) and apply
automatic differentiation to obtain B̂x(xi) before proceeding as before with the numerical scheme.
We also use the assumption that we have access to one accurate measurement of the bathymetry
to remove the constant error in the prediction B̂ described earlier.

Figure 8.5 shows the solution generated by the true and predicted bathymetry. Notice that letting
the network predict B directly lowered the accuracy of the generated solution. Figure 8.6 shows
that the network is able to correctly predict the general shape of the bathymetry, but it struggles
in areas where the derivative change rapidly. The training history in Figure 8.8 shows that we are
not able to push the loss value much lower than 10−4, roughly an order of magnitude higher after
the same number of training steps when using the network as an approximator to B̂x. We can
get a clue as to why this is happening by comparing Bx to B̂x. Notice from Figure 8.6 that the
predictions of the network resemble a piecewise linear function, meaning the derivatives will look
piecewise constant. Figure 8.7, which shows the derivatives of the network compared to the true
values, confirms this.

One possible reason why this might be happening is that we are using a leaky ReLU activation
function in our network, which is piecewise linear resulting in piecewise constant derivatives. This
explains why the network was able to perform well when used as an approximator to Bx, since
we at no point were forced to differentiate the network with respect to its input. Recall from the
discussion in Section 4.1.2 that Theorem 1, which allows the use of leaky ReLU, does not cover the
case of simultaneous function and derivative approximations. In other words, it does not guarantee
that arbitrary good approximations ΦH

θ∗ ≈ B and ∂xΦ
H
θ∗ ≈ Bx can be achieved by a network at the

same time. Theorem 2 provides the desired guarantee, but it only allows for sigmoid or hyperbolic
tangent activation functions. In light of this, we repeat this experiment with a network with the
smooth hyperbolic tangent as activation in order to check whether the results improve. The new
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Figure 8.5: Solution predictions at different timepoints for Section 8.1.2 when using the network as
an approximator to B.
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Figure 8.6: Network predictions for Section 8.1.2 when using the network as an approximator to B.
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Figure 8.7: Network derivatives for Section 8.1.2 when using the network as an approximator to B.
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Figure 8.8: Network training history for Section 8.1.2 when using the network as an approximator
to B.

Layer Input dimension Output dimension Activation

1 1 30 Tanh
2 30 30 Tanh
3 30 30 Tanh
4 30 1 Linear

Table 8.1: Structure of the hyperbolic tangent activated network used in Section 8.1.2.

structure is outlined in table 8.1.

We see a clear improvement when switching to hyperbolic tangent activation. Figure 8.9 shows
that the solution prediction is much better than before, and the training history in Figure 8.12
shows that the performance on the training set increased by roughly three orders of magnitude.
Figures 8.10 and 8.11, plotting respectively the network predictions and their derivatives compared
to the true values, show that we are now able to compute a completely smooth approximation to
the bathymetry, meaning we can achieve a much higher accuracy on the derivatives.

The fact that we are able to improve the results this much by simply changing activation, illus-
trates a generally very important part of using neural networks as approximators: hyperparameter
tuning. The focus of this thesis have been on achieving reasonable predictions through an indirect
training approach, and not much weight has been put on tuning the hyperparameters of the net-
works in order to squeeze out the last bit of performance available. In this case, we made small
changes to the structure based on a visual inspection of the predictions, and it turned out to work.
However, repeating this experiment with for instance sigmoid activation gives approximations that
are smooth, but their accuracy is in fact lower than with leaky ReLU. In addition, ReLU activation
is generally considered to perform best for the majority of learning problems with neural networks
[39], and is the most used activation function in practice. In [39], Sharma et. al. recognize that
the choice of activation function is an important hyperparameter in neural networks, and suggest
starting with ReLU and switch to others if the results are not satisfactory, just as we have done
here. In an industrial setting, it would be beneficial to perform some kind of proper parameter
search in order to achieve the best possible results for the specific usecase, but this is not the focus
of this thesis. In addition, most experiments conducted throughout this work has been done with
very similar networks, differing only in activation and input dimension, indicating that NINNs are
able to perform well without a careful and time consuming hyperparameter search.

The case in Section 8.1.2 was chosen in order to show the potential of neural networks as approxim-
ators to unknown parts of systems of hyperbolic equations. The case itself, however, is somewhat

51



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

t = 0.00 s

True
Predicted

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

t = 0.10 s

True
Predicted

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

2.5

t = 0.20 s

True
Predicted

Figure 8.9: Solution predictions at different timepoints for Section 8.1.2 when using the hyperbolic
tangent network as an approximator to B.
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Figure 8.10: Predictions for Section 8.1.2 when using the tanh network as an approximator to B.
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Figure 8.11: Network derivatives for Section 8.1.2 when using the tanh network as an approximator
to B.
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Figure 8.12: Network training history for Section 8.1.2 when using the tanh network as an approx-
imator to B.

unrealistic. We are assuming we have access to accurate measurements of both h and u on a refined
grid across our entire domain. In reality, it would be more reasonable to for instance only have
access to measurements of u, or some sparse measurements of h spread across the domain in addi-
tion to measurements of u on a more refined grid. In order to use our technique, we will however
need access to at least some complete measurements of the vector Q at t = 0. This motivates the
following case.

8.1.3 Incomplete measurements

Consider the domain [0, T ]×Ω with Ω = [−1, 1]. We again equip (8.1) with the boundary conditions
(8.3) and (8.4), and use the bathymetry (8.5). The initial conditions are (8.6) and (8.7). The
difference to Section 8.1.2 lies in the measurements we have available. We will now assume we
have access to measurements of the entire vector Q only at t = 0, and for the following timepoints
we only have access to u.

This is a good candidate for the sweeping training procedure described in Section 4.5, as we now
only have access to a subset K̃ = {2} of the components of Q at each gridpoint. Notice that
for later timesteps we need to perform multiple prediction steps before we can evaluate the loss
and update the network weights. This means that training for later timesteps will be more time
consuming than for early timesteps. As the bathymetry is time independent, we can account for
this by performing fewer iterations at later timesteps. This can be interpreted as treating the first
timesteps as a sort of pretraining of the network, as we are performing several weight updates on
the early, inexpensive timesteps in order to learn the general shape of the bathymetry before fine
tuning on the more computationally demanding timesteps. This way we do not need to iterate a
bad network all the way to the last timesteps just for a single weight update. For this reason we
do not shuffle the dataset, but rather train on each timestep sequentially from n = 1 to n = N .

Figures 8.13 to 8.16 show results generated by the sweeping training procedure applied to the sys-
tem in Section 8.1.1, changing the time horizon to T = 0.2 with N = 105 for performance reasons.
We trained a single network with structure according to table 8.1 for three epochs. In each epoch,
the training procedure involved a different number of iterations for different subsets of timesteps.
Specifically, we began by training the first 20% of timesteps for 15 iterations. Subsequently, we
performed 5 iterations on the remaining timesteps until reaching the last 40% of the dataset, where
each timestep was trained for a single iteration.

Figures 8.13 to 8.15 show that the network is able to perform very well even when it lacks ac-
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Figure 8.13: Solution predictions at different timepoints for Section 8.1.3 when using the sweeping
training procedure.
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Figure 8.14: Predictions for Section 8.1.3 when using the sweeping training procedure.
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Figure 8.15: Network derivatives for Section 8.1.3 when using the sweeping training procedure.
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Figure 8.16: Network training history for Section 8.1.3 when using the sweeping training procedure.
The stipled black lines mark the end of each epoch.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5
True
M = 100 (pw)
M = 100 (vec)
M = 20 (pw)
M = 20 (vec)

Figure 8.17: Comparison of the solution predictions at t = 0.2 in Section 8.1.3 for different M under
both the pointwise (pw) and sweeping (vec) training procedure. The abbreviation ”vec” comes from
an implementation detail, but it refers to the sweeping algorithm.

cess to the complete dataset. Notice that even though the network never had access to explicit
measurements of h for t > 0, the solution prediction still has the correct relative surface height.
The network misses by a small margin in Figure 8.14 for x = 0.25 and x > 0.5, but the network
derivatives provide a very good approximation of Bx. The training history in Figure 8.16 shows
that most of the error is eliminated in the first timesteps of each epoch.

To demonstrate the versatility of NINNs in predicting bathymetry, we conducted a set of experi-
ments to assess the network’s performance under varying training set qualities. In particular, we
evaluated the performance of networks trained using high (M = 100) and low (M = 20) data
amounts, considering both complete and incomplete Q measurements for comparison. A realistic
scenario entails limits on the number of measurement instruments positioned along the spatial
dimension due to cost, but we can generally assume that it is inexpensive to keep each instru-
ment’s measurement frequency high. Thus we kept N = 105 constant throughout the experiment.
Figure 8.17 show the solution predictions of each network. Figures 8.18 and 8.19 shows the pre-
dictions for B and Bx respectively. The ground truth line is hidden behind the M = 100 (pw/vec)
predictions for both B and Bx.

In Figures 8.20 and 8.21 we have plotted the relative L2 errors for the B, Bx, and Q predictions for
each M and training procedure in the experiment. When M = 100, the pointwise procedure clearly
outperforms the sweeping procedure in the source predictions, even though they admit similarly
accurate solution predictions. This is remarkable, as the sweeping procedure essentially starts with
only half the information available in the pointwise case, and must recreate this information based
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Figure 8.18: Comparison of bathymetry predictions in Section 8.1.3 under different M and training
procedures.
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Figure 8.19: Comparison of bathymetry derivatives in Section 8.1.3 under different M and training
procedures.

on its own source predictions. Even though we are able to perform this recreation accurately, the
sweeping procedure still suffers from a lower source prediction accuracy. In the low data regime
(M = 20), we see that the pointwise procedure suffers considerably as a result of the decreased
data amount, whereas the sweeping procedure is able to perform at roughly the same level as for
M = 100. Even though the sweeping source prediction is considerably worse for M = 20 than for
M = 100, the source predictions have approximately the same accuracy. Meanwhile, the pointwise
solution predictions become about 10 times worse, while the B and Bx predictions become about
100 times worse. It is also worth noting that in all cases, the pointwise procedure was roughly 10
times faster than the sweeping procedure.
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Figure 8.20: Comparison of relative prediction errors in Section 8.1.3 for M = 100 sorted by training
procedure. The label ”Vectorized” comes from an implementation detail, but it refers to the sweeping
algorithm.
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Figure 8.21: Comparison of relative prediction errors in Section 8.1.3 for M = 20 sorted by training
procedure.
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Chapter 9

Discussion

9.1 Summary

Experiments with ODEs, linear and nonlinear scalar hyperbolic equations, as well as the shallow-
water hyperbolic system conducted throughout the course of this work suggest that numerics-
informed neural networks are able to handle general inverse problems in a wide array of cases.
NINNs are shown to provide very accurate approximations when they have access to a large amount
of data, and they they are flexible in that their loss function can be adapted in low data regimes to
enforce a priori qualitative properties such as periodicity, providing accurate predictions even here.
As opposed to PINNs, the adoptation of numerical schemes allow NINNs to simultaneously provide
a source and solution prediction to the PDE without an explicit neural network representation of
the solution. In the case of hyperbolic systems, this means the training procedure of NINNs can be
adapted to handle datasets where only partial information of the solution is available. Experiments
with the shallow-water equations indicate that this sweeping training procedure adaptation is
performant, but considerably slower than its pointwise counterpart available in the case of complete
datasets.

The incorporation of numerical methods designed to deal with discontinuous solutions into the
training procedure make NINNs highly robust with respect to hyperbolic effects such as shock
formations. In fact, as the specific choice of numerical method can be decoupled nicely from the
training code, NINNs can employ domain specific schemes to handle any type of PDE for which
we have efficient numerical methods. In particular, this means that NINNs can easily be integ-
rated with existing simulation codebases that support automatic differentiation. However, this
makes NINNs dependent on a mesh over the domain. Meshes can be difficult to generate and
computationally expensive in higher dimensional spaces, especially in usecases involving complex
geometries. Fortunately, most conservation laws of interest in engineering and physics are formu-
lated in relatively low dimensional spaces, and there exist sophisticated software packages for mesh
generation in nontrivial geometries. NINNs are not designed to solve the problems of conventional
mesh based methods in higher dimensions, but rather to use these methods to provide accurate
solutions to inverse problems in common usecases.

Experiments with Burgers’ equation show that NINNs are able to accurately predict non-smooth
source functions with a solution dependence. Even though the performance drops in the low data
regime, we showed that accurate results could again be obtained by including a priori knowledge
about the periodicity of the source into the loss function. Even when the source function depends
only indirectly on the function we are interested in learning, specifically on the gradient of the
bathymetry in the shallow-water case, the smoothness of neural networks allow us to approximate
the bathymetry directly by incorporating network gradients in the loss function.

Even though ReLU activation performs well when only using network outputs directly in the
loss function, NINNs perform considerably better with hyperbolic tangent activation when it is
necessary to include network gradients in the loss. Otherwise, little to no hyperparameter tuning
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is needed to obtain good performance. All experiments were conducted with essentially the same
network, differing only in activation and input dimension, indicating that the method is generally
robust with respect to network architecture. Even so, in cases where optimal performance is vital,
the loss function can be used to tune hyperparameters as it gives a relatively direct measure of
the performance of the network when we account for the (generally known) truncation error of the
numerical method.

9.2 Future work

Even though NINNs show promise when applied to hyperbolic equations, it is important to properly
investigate their performance both on more complicated multidimensional hyperbolic systems, and
on more general differential operators. In Chapter 8, for instance, more realistic bathymetries
could be generated using Perlin noise in order to get a more accurate picture of their performance
in real use cases. As all datasets used in this work was generated using the same numerical schemes
employed in the NINNs, it is also interesting to see how they perform when applied to either real,
noisy data, or to data generated using different schemes.

A proper comparison of NINNs and PINNs is also needed. Specifically, a comparison between the
performance of NINNs and the specialized wPINNs and cPINNs. As wPINNs and cPINNs are
designed using the same principles as PINNs, but specialized to handle hyperbolic PDEs, they
represent interesting challengers to NINNs for inverse problems with such equations.

This work provides a general exploration of the capabilities and limitations of NINNs, and it
would be interesting to see how they perform in an operational setting. A possible direction for
future work is to provide a reformulation of the training procedure to work in an online setting.
This adaptation is essential to handle scenarios involving real time observations. By enabling the
network to provide precise and continuously updated approximations of shifting source functions,
it would significantly improve the practical utility of NINNs in dynamic environments. Another
interesting avenue is to generalize the loss function (4.14) to use more accurate quadrature rules
in order to assess the impact of scheme’s truncation error on the convergence and performance of
NINNs, as discussed in Section 4.4.

Finally, the success of the sweeping training procedure indicates that a NINN could be trained
using only auxiliary data. That is, a NINN could be trained without actual observations of the
solution as long as we have data on some property of the system obtainable from the solution in
a differentiable manner. For instance, it is possible to locate the wavefront of a moving shockwave
using only differentiable operations on the solution. Thus, it is theoretically possible to train a
NINN using only these location measurements, as we can use the full procedure to generate a
solution prediction, and then obtain a prediction of the measured property. An obstacle with this
approach is the strong non-uniqueness of solutions possessing these properties, especially in high
dimensional systems. To mediate this, it could for instance be paired with an approximate Bayesian
analysis of the network parameters using a Monte Carlo approach to obtain a maximum likelihood
estimate of the network parameters, and by extension the source function itself. Exploring how
this affects the performance of NINNs in practice is an exciting possibility for future research.
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Chapter 10

Conclusion

Numerics-informed neural networks are able to perform inverse tasks in hyperbolic PDEs with high
precision, even when supplied with limited data quantities. The incorporation of numerical schemes
into the network training procedure makes the method robust with respect to shock formation in the
solution, and it can even handle non-smooth, solution dependent source functions. It also performs
well on hyperbolic systems where the dataset is incomplete. In cases where the gradient of the
network with respect to the input is needed in the training process, hyperbolic tangent activation
was found to outperform ReLU. Otherwise, the method requires remarkably little hyperparameter
tuning in order to produce high quality results.

The fact that the network and training can be decoupled from the numerical simulation in the code
means that NINNs can easily be integrated into existing simulator code. The Python/PyTorch
stack allows NINNs to interact nicely with preexisting code based on the NumPy interface. This
flexibility can allow researchers to use deep learning in underdetermined hyperbolic systems with
few implementational difficulties.

60



Bibliography

[1] Arora, S et al. ‘A convergence analysis of gradient descent for deep linear neural networks’.
In: arXiv preprint arXiv:1810.02281 (2018).

[2] benwaad. benwaad/ninn: Thesis release. Version v1.0. June 2023. doi: 10 . 5281 / zenodo .
8066384. url: https://doi.org/10.5281/zenodo.8066384.

[3] Cai, S et al. ‘Physics-informed neural networks (PINNs) for fluid mechanics: A review’. In:
Acta Mechanica Sinica 37.12 (2021), pp. 1727–1738.

[4] Colton, DL, Ewing, RE, Rundell, W et al. Inverse problems in partial differential equations.
Vol. 42. Siam, 1990.

[5] Cuomo, S et al. ‘Scientific machine learning through physics–informed neural networks: where
we are and what’s next’. In: Journal of Scientific Computing 92.3 (2022), p. 88.

[6] De Ryck, T, Mishra, S and Molinaro, R. ‘wPINNs: Weak Physics informed neural networks
for approximating entropy solutions of hyperbolic conservation laws’. In: arXiv preprint
arXiv:2207.08483 (2022).

[7] Eidnes, S and Lye, KO. ‘Pseudo-Hamiltonian neural networks for learning partial differential
equations’. In: arXiv preprint arXiv:2304.14374 (2023).

[8] Fjordholm, US and Lye, KO. ‘Convergence rates of monotone schemes for conservation laws
for data with unbounded total variation’. In: Journal of Scientific Computing 91.2 (2022),
p. 32.

[9] Funahashi, KI. ‘On the approximate realization of continuous mappings by neural networks’.
In: Neural networks 2.3 (1989), pp. 183–192.

[10] Godunov, SK. ‘A difference method for the numerical computation of discontinuous solutions
of hydrodynamic equations’. In: Math. Sbornik (1959). url: https : / / cir . nii . ac . jp / crid /
1573668924626753536.

[11] Goodfellow, I, Bengio, Y and Courville, A. Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016.

[12] Gu, J et al. ‘Recent advances in convolutional neural networks’. In: Pattern recognition 77
(2018), pp. 354–377.

[13] Hagen, TR et al. ‘How to solve systems of conservation laws numerically using the graphics
processor as a high-performance computational engine’. In: Geometric Modelling, Numerical
Simulation, and Optimization: Applied Mathematics at SINTEF (2007), pp. 211–264.

[14] Harris, CR et al. ‘Array programming with NumPy’. In: Nature 585.7825 (Sept. 2020),
pp. 357–362. doi: 10 .1038/s41586 - 020 - 2649 - 2. url: https ://doi . org/10 .1038/s41586 -
020-2649-2.

[15] Holden, H and Risebro, NH. Front tracking for hyperbolic conservation laws. 2nd ed. Springer,
2015.

[16] Hornik, K. ‘Approximation capabilities of multilayer feedforward networks’. In: Neural net-
works 4.2 (1991), pp. 251–257.

[17] Hornik, K, Stinchcombe, M and White, H. ‘Multilayer feedforward networks are universal
approximators’. In: Neural networks 2.5 (1989), pp. 359–366.

61



[18] Hornik, K, Stinchcombe, M and White, H. ‘Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks’. In: Neural networks 3.5 (1990),
pp. 551–560.

[19] Isakov, V. Inverse problems for partial differential equations. Vol. 127. Springer, 2006.

[20] Jagtap, AD, Kharazmi, E and Karniadakis, GE. ‘Conservative physics-informed neural net-
works on discrete domains for conservation laws: Applications to forward and inverse prob-
lems’. In: Computer Methods in Applied Mechanics and Engineering 365 (2020), p. 113028.

[21] Kac, M. ‘Can one hear the shape of a drum?’ In: The american mathematical monthly 73.4P2
(1966), pp. 1–23.

[22] Kingma, DP and Ba, J. ‘Adam: A method for stochastic optimization’. In: arXiv preprint
arXiv:1412.6980 (2014).
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