
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Hannah Hansen

CNN-based Remaining Useful Life
Prediction of Lithium Ion Batteries
Using Fast-Rate Incremental Capacity

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Sebastien Gros
Co-supervisor: Dr. Eibar Flores & Dr. Michael Gerhardt
June 2023

Hannah Hansen

CNN-based Remaining Useful Life
Prediction of Lithium Ion Batteries
Using Fast-Rate Incremental Capacity

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Sebastien Gros
Co-supervisor: Dr. Eibar Flores & Dr. Michael Gerhardt
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Lithium-ion batteries (LIBs) are essential in transitioning to clean and renewable en-

ergy, serving as energy storage and power sources in transportation. However, battery

degradation poses a significant challenge to their durability and performance. Due to

the inherent complexity of the degradation process, machine learning methods have

emerged as a promising modeling approach for SOH estimation and lifetime prediction

due to their ability to model complex processes solely from data. Accurate estimation of

the state of health (SOH) is essential to ensuring safe and effective operation, potentially

revealing new insights into the underlying degradation process.

In this work, we propose a shallow 1D convolutional neural network (CNN) architecture

to leverage information in fast-rate incremental capacity (IC) curves for predicting the

remaining useful life (RUL) of LIBs, both in units of cycles and normalized to the

total lifetime. Additionally, we look into the decision-making process of the CNN by

identifying voltage regions and input patterns that correlate with reduced RUL.

The CNN demonstrates a root mean squared error (RMSE) and a mean absolute de-

viation (MAD) of 171 cycles and 131 cycles, respectively, when predicting RUL. For

normalized RUL, the predictive performance improves, achieving an RMSE and MAD

of 0.075 and 0.057, respectively. Despite the shallow architecture and limited input fea-

tures, the CNN demonstrates the ability to connect features in the IC curves to remaining

life. Furthermore, The CNN identifies consistent patterns indicating cell degradation,

particularly related to IC peak reductions in voltage regions associated with graphite

staging. The patterns can be attributed to reduced accessible capacity in this voltage

window. Furthermore, the appearance of peaks at lower voltages may also indicate

decreased RUL.

Overall, this work demonstrates the effectiveness of CNN-processed fast-rate IC differ-

ence curves for lifetime predictions of LIBs. The findings contribute to a better under-

standing of the CNN’s decision-making process and provide insights into degradation

patterns in LIBs.

i

Sammendrag

Lithium-ione-batterier spiller en sentral rolle i det grønne skiftet gjennom bruk i energi-

lagring og elektrifisering av transportsektoren. Det er midlertidig utfordringer knyttet til

forringelse av lithium-ione-batterier, noe som medfører redusert ytelse og levetid. Dette

er en høyst kompleks prosess, noe som gjør maskinlæringsmodeller spesielt egnet for

å estimere helsetilstand og levetid til batterier. Nøyaktig estimering og modellering av

batteriets helsetilstand er avgjørende for sikker og effektiv drift, samtidig som det åpner

for økt innsikt i underliggende årsaker til batteriforringelse.

Dette arbeidet presenterer et enkelt 1D konvolusjonelt nevralt nettverk (CNN) for pre-

diksjon av gjenværende levetid, b̊ade i antall ladesykler og normalisert mot total levetid,

basert p̊a informasjon fra inkrementell kapasitet (IC) under hurtigladning. Gjennom

analyse av beslutningsprosessen til CNN-et undersøkes hvilke spenningsomr̊ader og inn-

gangssignaler som modellen relaterer til redusert gjenværende levetid.

CNN-et oppn̊ar en RMSE og MAD p̊a henholdsvis 171 og 130 sykler. Ved prediksjon

av normalisert gjenværende levetid, er RMSE og MAD p̊a henholdsvis 0,075 og 0,057.

Til tross for en enkel arkitektur og begrenset inngangssignal, demonstrerer modellen

tydelig evnen til å identifisere relevante sammenhenger mellom IC kurver og levetid.

Videre undersøkelse tyder p̊a at CNN-et assosierer redusert levetid med IC-reduksjon i

spenningsregionen forbundet med interkalering av anoden. Mønstrene kan dermed til-

skrives redusert tilgjengelig kapasitet i dette spenningsvinduet. I tillegg ser ogs̊a signal

ved lavere spenninger ut til indikere redusert RUL.

Samlet sett demonstrere arbeidet hvordan CNN-prosesserte IC kurver fra hurtiglading

kan benyttes for levetidsestimering. Funnene bidrar til en bedre forst̊aelse av beslut-

ningsprosessen og gir innsikt i forringelsesprosessen.

ii

Preface

This thesis concludes my Master’s degree in Cybernetics and Robotics at the Norwegian

University of Science and Technology (NTNU).

I would like to thank my supervisor Professor Sebastien Gros from the Department of

Engineering Cybernetics at NTNU for helpful discussions and constructive feedback. I

am also deeply grateful for the guidance and support provided by my supervisors at

SINTEF, Dr.Eibar Flores and Dr. Michael Gerhardt, throughout the work with this

thesis. Their expertise has been invaluable in introducing me to the field of battery

technology and helped me shape the course of my thesis. Working alongside such com-

petent individuals has been a privilege. I would like to extend a special appreciation to

Eibar for his encouragement and unwavering support at every step of this process.

I would also like to thank my significant other, Alexander, for being a constant source of

strength and motivation, and my dear friend Kristine, whose steadfast companionship

has enriched my time in Trondheim with joy, laughter, and countless engaging discus-

sions. Thank you to Kjersti, for all her help and for keeping my stomach full. And, of

course, Mamma og Pappa, for their love and support, and for inspiring me to choose

this path.

Trondheim, June 2023

Hannah Hansen

iii

Contents

Abstract i

Sammendrag ii

Preface iii

List of Figures vii

List of Tables ix

Nomenclature vi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contribution and Research Objectives . 3

1.2.1 Contribution . 3

1.2.2 Objectives . 3

1.3 Structure of the Thesis . 4

2 Theory 5

2.1 Batteries . 5

2.1.1 Battery Working Principles . 5

2.1.2 Degradation Modes . 6

2.1.3 Incremental Capacity Analysis . 7

2.2 Deep Neural Networks . 8

2.2.1 Artificial Neurons . 8

2.2.2 Neural Networks as Universal Approximators 9

2.2.3 Backpropagation and Gradient Descent 9

2.2.4 Convolutional Neural Networks . 11

2.2.5 Other Types of DNNs . 14

2.2.6 Model Validation . 14

3 Method 17

3.1 Dataset . 17

3.1.1 Data Preparation . 19

3.1.2 Train-Test Split . 19

3.2 Feature Engineering . 20

3.3 Regression Problem Formulation . 22

v

Contents

3.4 Model Architecture and Hyperparameters 23

3.4.1 Composition of Layers and Activation Function 24

3.4.2 Layer-Specific Parameters . 25

3.4.3 Training Configuration . 26

3.5 Training and Validation . 26

3.5.1 Evaluation Metrics . 27

3.5.2 Model Selection with Stratified k-fold Cross-Validation 27

3.5.3 Model Optimization . 28

3.6 Implementation . 28

4 Results and Discussions 29

4.1 Model Architecture . 29

4.2 Predictive Performance . 31

4.2.1 RUL Prediction . 31

4.2.2 Normalized RUL Prediction . 36

4.2.3 Error Analysis . 39

4.3 Looking Into the Black Box . 40

4.3.1 Which Voltage Regions Are Important? 41

4.3.2 Which Patterns Are Important? 43

4.4 Lessons Learned . 47

5 Conclusion and Further Work 49

5.1 Conclusion . 49

5.2 Further Work . 50

vi

List of Figures

2.1 Voltage curve and IC curve of a graphite||LFP cell at cycled at C/25. . . 6

2.2 Illustration of artificial neural networks 9

2.3 Illustration of receptive fields . 13

3.1 Example a cycling protocol from the dataset 18

3.2 Distribution of cycle lives in the dataset 20

3.3 Two examples of ∆dQdV curves . 21

3.4 Illustration of the key components of mapping ∆dQdV to RUL using a

CNN. 23

4.1 Illustration of the final CNN model architecture 30

4.2 5-fold cross-validation loss for the CNN trained on the whole training set

and short- and medium-lived cells . 31

4.3 CNN predictions of RUL for four cells in the test set 33

4.4 CNN performance for RUL prediction on the complete test set 34

4.5 CNN predictions of RUL for two cells alongside the average cell temperature 35

4.6 CNN performance for normalized RUL prediction on the complete test set 37

4.7 CNN predictions of normalized RUL for four cells in the test set 38

4.8 Distribution of prediction errors . 39

4.9 Visualization of the negative weights in the linear layer alongside the

receptive fields of most negative weights 42

4.10 Toy plots visualizing how shifts and intensity reductions manifest when

subtracting two curves . 43

4.11 Maximum activating inputs of three nodes at channel 3 45

4.12 Maximum activating inputs of two nodes at channel 2 46

vii

List of Tables

4.1 Architecture of the final CNN . 29

4.2 Performance metrics for the proposed CNN for RUL prediction on the

test set, together with performance of related models 32

4.3 Performance metrics for the proposed CNN for normalized RUL predic-

tion, together with performance of related models 36

ix

Nomenclature

Abbreviations

BMS Battery management system

CNN Convolution neural network

DNN Deep neural network

EOL End of life

GAN Generative adversarial networks

GHG Greenhouse gasses

IC Incremental capacity

LAM Loss of active material

LLI Loss of lithium inventory

LIB Lithium-ion battery

LTSM Long short-term memory

MAD Mean absolute divitation

ML Machine learning

MLP Multilayer perceptron

MSE Mean squared error

ReLU Rectified linear unit

RMSE Root mean squared urror

SOH State of health

vi

1 Introduction

1.1 Background and Motivation

The ongoing climate change is one of the greatest challenges facing humanity. Global

warming has been indisputably caused by human activities, primarily due to the release

of greenhouse gases (GHG) [1]. Failing to implement substantial measures to reverse

these trends might have catastrophic consequences. For example, the rising temperatures

threaten life on land and in the sea [2]. Ice melting contributes to rising sea levels,

posing a direct threat to coastal and island communities. As temperatures continue to

rise, we can expect an increase in extreme weather events, resulting in more frequent

and intense storms, extended droughts, and more wildfires. These climate changes not

only endanger human lives and livelihoods but also threaten ecosystems and biodiversity.

Additionally, climate change is our most significant health threat [3]. Air pollution has

a direct and adverse effect on our health, and extreme weather, forced displacement,

and increased hunger resulting from climate change also pose severe health challenges.

Environmental factors are estimated to contribute to the loss of 13 million lives every

year [2]. Fossil fuels contribute to approximately 75% of the global GHG emission, of

which the transport sector accounts for one-third [2]. Mitigating climate change requires

a substantial reduction in GHG emissions.

Batteries play an essential role in enabling the transition away from fossil-based energy

sources. Renewable energy sources such as wind and solar power are inherently time-

varying and intermittent and rely on batteries for efficient energy storage. A battery

converts chemical energy to electric energy with high efficiency and without GHG emis-

sions [4]. The portable nature of batteries makes them suitable as the power source

for electric vehicles. Lithium-ion batteries (LIBs) are the most prominent choice for

portable energy sources due to their high energy density and long cycle life [5].

However, the widespread adoption of LIBs faces challenges in terms of performance, cost-

effectiveness, and durability. Over time and with usage, the battery degrades, reducing

its ability to store energy and meet power demands. Eventually, this degradation results

in the battery reaching its end of life (EOL) [6]. Enhancing the durability of LIBs

contributes to maximizing their utilization and improves their competitiveness against

the combustion engine. Most batteries get thrown away after they have reached the

EOL. However, there is a growing interest in exploring second-life applications for battery

reuse, such as using retired batteries from electric vehicles for energy storage purposes [7].

Enabling second-life applications contributes to lower costs and meeting the increasing

battery demand. By extending the useful life of batteries we can address sustainability

concerns associated with the extraction of raw materials, manufacturing of LIBs, and

1

1 Introduction

disposal of LIB waste.

In this context, the state of health (SOH) estimation and EOL estimation of the battery

is essential. SOH is commonly determined by measuring the loss of charge capacity

over time, while EOL is defined when the capacity decreases below a specific threshold.

Monitoring SOH and estimating the remaining useful life (RUL) enables safe and efficient

control and facilitates proper maintenance of the battery, and is of particular importance

in battery management systems (BMSs) [8]. Accurate lifetime predictions in the early

stages of battery life may also accelerate the development of battery technology by

simplifying the validation processes [9]. Additionally, EOL estimation is important for

ensuring usefulness in a potential second-life application [10]. Lifetime predictions and

SOH estimations facilitate optimal operation, second-life applications, and more efficient

development of batteries.

SOH and EOL can be estimated with models describing the life of a battery cell. Model-

ing of cell lifetime can broadly be divided into two approached. Physics-based modeling

aim to simulate the system using physical principles and equations. In the context of

battery degradation, this requires understanding the underlying electrochemical phe-

nomena, degradation mechanisms, and system parameters. Physics-based models often

consider the effect of the growth of solid electrolyte interphase (SEI) [11, 12, 13], and

particle cracking [12, 14], as these mechanisms are among the most dominant in degra-

dation of LIBs [6]. Because such models rely on physical phenomena, they also provide

valuable insight into the process. Due to their descriptive nature, physics-based models

have the advantage of being generalizable. However, as degradation is a complicated and

highly intercorrelated process, developing accurate physics-based models is challenging

and even impossible when the physics and chemistry of such degradation processes are

unknown.

Data-driven modeling, on the other hand, does not require explicit knowledge about the

underlying system. Instead, the approach relies on statistical techniques and compu-

tational algorithms to learn the relationship from available data. This system-agnostic

property makes data-driven modeling versatile and particularly powerful when dealing

with complex and non-linear systems. Machine learning (ML) techniques have been

widely adapted for lifetime predictions of batteries, including algorithms such as Gaus-

sian processes [15, 16], state vector machines [17, 18] and neural networks [19, 20, 21, 22].

ML models often require extensive datasets and can be computationally heavy. While

such models have demonstrated excellent predictive performance, their interpretability

may be limited, making it challenging to extract meaningful insights about the internal

degradation processes.

One way to improve interpretability is to learn from explainable battery signals. In-

cremental capacity (IC) analysis, which involves analyzing the slope of the voltage vs.

capacity curve during standard cycling procedures, offers valuable insights into the un-

derlying electrochemical processes at the electrode level. The IC curves, which represent

the capacity change as a function of voltage, serve as an indicator of the battery state.

IC analysis can also be used for degradation diagnostics [23]. Furthermore, implemen-

tation of IC analysis is feasible in BMSs, enabling in situ monitoring and diagnostics

2

1.2 Contribution and Research Objectives

[24]. However, IC analysis typically involves slow diagnostics cycling for obtaining the IC

curve [25, 26], which is inconvenient for onboard BMS applications. The use of fast-rate

IC curves mitigates the need for time-consuming diagnostic cycling. This study aims to

leverage the electrochemical data in fast-rate IC curves for lifetime predictions.

The IC signal resembles electrochemical spectra by exhibiting features like peaks and

valleys. The convolutional neural network (CNN) is a promising approach for processing

this kind of spatial data, as evident by their application in spectroscopy analysis [27,

28, 29]. CNNs have also demonstrated excellent performance on tasks such as image

classification and object detection due to their ability to extract features in spatially

structured data [30].

CNN is often referred to as a ”black-box” model due to the lack of interpretability of the

inner workings of the model. Understanding the model’s decision-making process may

be challenging, limiting what we can learn about the underlying system being modeled

and introducing skepticism to ML predictions. Understanding how a model arrives at its

conclusions is crucial for justifying the use of such models, and ensuring their safety and

reliability. Explainability is essential for reducing human bias in models and meeting

legal and ethical requirements. Incorporating explainability into ML models enhances

transparency and accountability and allows us to learn from the models. An inter-

pretable model learning from explainable electrochemical signals would render accurate

and understandable predictions.

1.2 Contribution and Research Objectives

1.2.1 Contribution

Data-driven modeling of lithium-ion batteries is a widely used strategy for battery life-

time prediction and SOH monitoring [25, 26]. Although these areas have been extensively

researched in the literature, the focus tends to be on predictive performance. Conse-

quently, this often results in deep and complex machine-learning models with intricate

input features. While such models might exhibit high accuracy, they are usually black-

box approaches providing limited insight into the underlying processes. Improving the

understanding of degradation and the decision-making process of the model is crucial for

advancing the knowledge in this field and justifying the use of machine learning models.

This work proposes a strategy for utilizing a simple CNN for processing electrochemi-

cal data in the form of fast-rate IC curves for lifetime predictions and further aims to

establish a link between CNN behavior and degradation observables.

1.2.2 Objectives

To guide this study, a set of research objectives are formulated. In addition, research

questions leading to the research objective are presented.

Primary Objective: The primary objective of this work is to design a simple CNN for

processing electrochemical data for lifetime predictions and establishing a link between

3

1 Introduction

CNN behavior and degradation observables.

Secondary Objectives:

• Leverage information embedded in fast-charging incremental capacity curves for

predicting remaining useful life

• Design a CNN architecture that balances prediction accuracy and interpretability

• Identify regions and patterns in the input that are important for RUL predictions

• Explore the connections between the identified regions and patterns in the IC

curves and known degradation processes in lithium-ion batteries

Based on the objectives, we formulate the following research questions:

• What is the utility of using IC curves for RUL predictions?

• How does the proposed strategy compare in terms of predictive performance to

deep and complex machine learning models?

• What regions and patterns in the input do the CNN correlate with low RUL?

• What insights into the underlying processes and degradation observables can be

gained through the analysis of the CNN?

1.3 Structure of the Thesis

The thesis is organized into five chapters. Chapter 1 is the introduction, where the

background for carrying out this study is motivated. Objectives and related research

questions are also stated. Relevant theory is presented in Chapter 2. Section 2.1 contains

a brief introduction to the working principles of batteries, degradation, and IC analysis,

and Section 2.2 covers theoretical and practical aspects of deep neural networks and

CNNs in particular. Next, the method is presented in Chapter 3. This chapter includes

the preparation of data and input features, architecture design, and the training and

validation process. The results are presented and discussed in Chapter 4. Lastly, the

conclusion and suggestions for future work follow in Chapter 5.

4

2 Theory

This chapter provides an introduction to the relevant theory. We begin by discussing the

basics of batteries, including working principles, degradation mechanisms, and IC anal-

ysis. We then proceed to the principles of deep neural networks and CNNs. Section 2.2

is partly based on the theory from a prior self-written report Risk-based Convolutional

Perception Models for Collision Avoidance in Autonomous Marine Surface Vessels using

Deep Reinforcement Learning.

2.1 Batteries

2.1.1 Battery Working Principles

A rechargeable Li-ion battery consists of one or more electrochemical cells converting

chemical energy into electrical energy through the reversible process of (de)intercalation

of Li+ into the electrodes [4, 31]. The cell comprises two electrodes, namely the anode

and the cathode, which are separated by an electrolyte. During charge, the anode is

lithiated by cations released from the cathode. The intercalation of Li+ into the anode

is a non-spontaneous reaction and is driven by an external voltage. The electrolyte

transfers the ions while the electrons are forced outside the cell through an electric circuit.

This process stores energy in the cell. Discharge is the reverse process of spontaneous

intercalation of Li+ back into the cathode. The electrons flow back through the external

circuit, allowing the stored energy in the battery to be converted into useful work or

power.

Graphite is the dominating choice of active anode material for commercial LIBs [32].

Graphite consists of graphene layers arranged in a stacked structure. The intercala-

tion of ions into the graphite host lattice takes place in a layer-wise fashion, known

as the graphite staging mechanism. This mechanism results in a periodic repetition of

intercalated layers, with each stage denoting the number of graphene layers between in-

tercalated layers, such that stage n has n layers of graphene separating each intercalated

layer [32]. In LIBs, graphite intercalation follows stages 1L, 4, 3, 2L, 2, and 1, where

stage 1 is the maximum lithiated structure. The letter L refers to an intermediate stage

where the lithium ions are not perfectly ordered in the layers [32].

Lithium iron phosphate (LFP), LiFePO4, is a common cathode active material in a wide

range of applications, as it has excellent cycle life, high safety, low cost, and fast charging

times [5]. While (de-)intercalation of graphite occurs at multiple stages at different

voltages, the FePO4–LiFePO4 phase transformation of the LFP occurs around 3.5V vs.

Li and appears as a single, broad plateau in the voltage discharge curve [31]. Figure 2.1a

5

2 Theory

(a) Voltage curves (b) IC curves

Figure 2.1: Voltage curve and IC curve of a graphite||LFP cell at cycled at C/25. The
numbers indicate the lithium staging phenomena on the graphite anode.
Reprinted from [24]

[24] displays the voltage curve for the charge and discharge cycle for a graphite||LFP
cell. The staging phenomena are observable as intermediate changes in the slope and

are labeled from 1-5, where 1 corresponds to the transition between stages 1 and 2.

2.1.2 Degradation Modes

The degradation of LIBs is observable through a decrease in their ability to store en-

ergy and meet power demands [6]. The degradation of the Li-ion cell results of one or

more degradation modes being present. The degradation modes are caused by various

degradation mechanisms, which refer to undesirable physical and chemical phenomena

occurring within the cell.

There are three commonly reported degradation modes [6]: Loss of lithium Inventory

(LLI), loss of active material of the negative electrode (LAMNE), and loss of active ma-

terial of the positive electrode (LAMPE). LLI refers to the reduction in the available

amount of active lithium in a cell. Lithium ions can be consumed by parasitic reac-

tions, such as SEI growth, lithium plating, and electrolyte decomposition, or trapped

inside the active material. As the amount of available lithium decrease, the capacity

of the cell gradually fades over time. LAM involves a reduction in the active material

on the electrodes that are available for electrochemical activity. This can be caused by

electrode particle cracking from operational stress and loss of electric contact. Addition-

ally, lithium plating can block the active sites in the negative electrode, and structural

disordering of the positive electrode contributes to LAMPE.

The degradation mechanisms, eventually leading to an observable effect on cell per-

formance, are highly interconnected. For instance, lithium plating not only consumes

lithium ions, leading to LLI, but also contributes to LAMNE by blocking active sites.

Particle cracking leads to LAM for both electrodes but also triggers lithium-consuming

side reactions by exposing electrode material to the electrolyte. The degradation pro-

cess is intricate and complex, involving multiple interrelated mechanisms. Therefore,

ML methods have emerged as a promising approach for degradation modeling.

6

2.1 Batteries

2.1.3 Incremental Capacity Analysis

The incremental capacity (IC), also known as differential capacity, provides a useful

representation of the charge and discharge processes in a cell. The incremental capacity

describes the change in capacity, ∆Q, over a fixed voltage step ∆V , ∆Q
∆V . Peaks in the

IC curves indicate regions where the capacity changes rapidly with respect to voltage.

Each peak is characterized by its position, intensity, and shape, and is a result of the

electrochemical reactions occurring in the positive and negative electrodes [33].

Figure 2.1b depicts the IC curves for an LPF cell for charge (blue) and discharge (red)

at a C-rate of C/25. The C-rate represents the current at which the cell is charged or

discharged relative to its nominal capacity, such that charging at 1C means that the

battery is charged from 0% to 100% in one hour. The staging plateaus in the voltage

curve in fig. 2.1a lead to an increased change in capacity per unit of voltage, resulting

in the appearance of peaks when the capacity curve is differentiated. These peaks can

be attributed to the graphite staging mechanism in the anode, as the intercalation into

the LFP cathode occurs as a single broad plateau around 3.5V vs. Li [23]. Each peak is

labeled based on the associated staging phenomenon.

IC analysis is recognized as a powerful technique for battery monitoring and battery

diagnostics, as the peaks of the IC curve provide information about the electrochemical

processes occurring within the electrodes [24]. Changes in the electrochemical reactions

affect the position, shape, and intensity of the IC peaks, and the evolution of these peaks

gives insight into the degradation of the cell.

The degradation modes have specific signatures in the IC curves, enabling diagnostics

of degradation modes from IC analysis [23]. For instance, LLI primarily affects peaks

1 and 5 as numbered in fig. 2.1b. LLI manifests in the discharge IC curve as intensity

reduction of peak 1 and shift of peak 5 to higher voltages. A thorough analysis of how

other degradation modes manifest in the IC curves can be found in [23].

In addition to being considered an advanced technique to identify degradation modes in

battery cells, IC analysis also has the advantage of being an in-situ technique [24]. The

IC curves can be obtained and analyzed without removing the battery from its original

place or disrupting the battery’s normal operation too much. This makes this technique

feasible in on-board battery management systems (BMSs). Battery prognosis facilitates

effective decision-making, maintenance planning, and performance optimization, making

such implementations valuable.

One of the main limitations of IC analysis is that it requires IC curves obtained from

low current rates. The link between the IC peaks and degradation modes in LFP cells

is documented for low-rate cycling [23, 24, 33]. IC analysis presents a more challenging

task under higher cycling rates because the peaks merge together due to the convolu-

tion of kinetics and open-circuit behavior [9]. This effect makes it more challenging to

relate IC peaks to specific processes, making identifying degradation modes difficult. As

demonstrated in [33], the peaks that are clearly visible in fig. 2.1b combine into a single

broad peak when cycled at 1C. The shape and position of the curve change consider-

ably, and assigning peaks to specific processes is not trivial. However, the IC curve is

7

2 Theory

still a product of the underlying electrochemical processes on the electrodes. Although

diagnostics may not be straightforward, the IC curve might still provide useful insight

into the state of the cell under fast cycling as well.

2.2 Deep Neural Networks

Deep neural networks (DNNs) have shown excellent performance in applications like

computer vision, speech recognition and natural language processing, in some cases

exceeding human performance [34]. The key to the usefulness of DNNs is their ability

to extract features from high dimensional data, identifying patterns and underlying

structures.

DNNs are a type of machine learning approach that generally falls under the category

of supervised learning. In supervised learning, the model learns to make predictions

based on a set of labeled target values, that is, the desired model behavior is known by

the designer. This characteristic distinguishes supervised learning from the two other

paradigms of ML methods, namely unsupervised learning and reinforcement learning.

Unsupervised learning involves learning underlying structures and patterns in an un-

labeled dataset. In reinforcement learning, the model interacts with an environment.

The desired behavior is not explicitly defined, and the model learns from trial and error

based on feedback from an overarching objective.

2.2.1 Artificial Neurons

The basic unit of a neural network is the artificial neuron. The artificial neuron is

designed to mimic the behavior of a biological neuron. Each neuron receives input

from a number of other neurons and produces a single output. The neuron calculates

the weighted sum of its inputs and passes it through a non-linear activation function

to produce the output. This is analogous to the activation of a biological neuron. A

biological neuron may also get inputs from several neighboring neurons, and passes the

signal forward on the network of neurons only if the combined input signals are strong

enough. In mathematical terms, the output ak of the kth neuron is

ak = σ(z) = σ

(n∑
i=0

wkixi + bk

)
, (2.2.1)

given inputs xi with associated weights wki, bias term bk, and activation function σ.

The current standard activation function σ is the rectified linear unit (ReLU) activation

function,

σ(z) =

{
z, z > 0

0, otherwise,
(2.2.2)

or variations of this function [35]. The neurons are structured in layers connecting the

input layer to the output layer. A neural network consisting of multiple such hidden

layers is called a deep neural network. This concept is illustrated in fig. 2.2, displaying

8

2.2 Deep Neural Networks

Hidden layerInput layer Output layer

Figure 2.2: Illustration of an artificial neural network with one hidden layer (left) and a
deep neural network with multiple hidden layers (right).

examples of fully connected feed-forward neural networks.The neurons are connected in

a feed-forward fashion, propagating the information forward through the network.

2.2.2 Neural Networks as Universal Approximators

The DNN can be formulated as a mapping F

ŷ = F(X; θ), (2.2.3)

transforming the input X to some output ŷ, given parameters θ consisting of the weights

and the biases. In fact, neural networks are universal approximators. A feed-forward

neural network can approximate any measurable function to the desired accuracy given

a sufficient number of hidden units [36]. This property makes DNNs well-suited for

modeling complex, non-linear systems. However, there is no guarantee of successfully

training them. Inadequate data, insufficient numbers of hidden units, poor learning

algorithms, or the lack of a deterministic relationship between input and output can

limit the performance of the DNN [36].

2.2.3 Backpropagation and Gradient Descent

Training of a neural network is done by minimizing the error between the labeled target

y and the predictions ŷ of the DNN. The predictions are performed by doing a forward

pass, that is, propagating the input through the network. The performance is then

evaluated with a loss function that compares the predictions with the target. The choice

of loss function depends on the problem at hand. A typical loss function in regression

9

2 Theory

problems is the mean squared error (MSE)

L(y, ŷ) = 1

2N

N∑
i=1

(yi − ŷi)
2, (2.2.4)

where N is the number of samples. yi is the true value and ŷi is the corresponding

predicted value.

The process of updating the model parameters is called backpropagation. By differenti-

ating the loss with respect to the learnable parameters, we can determine how to modify

the weights and biases to reduce the loss and thus improve performance. For the sake of

simplicity, let us consider a neuron in layer k with output ak = σ(zk) where z = wkak−1,

omitting the bias term and assuming a single input ak−1. Differentiating the loss with

respect to the weights wk gives

∂L
∂wk

=
∂L
∂ak

∂ak
∂zk

∂zk
∂wk

≜ δk
∂zk
∂wk

, (2.2.5)

such that δk is the derivative of the loss with respect to zk. Assuming that k is the last

layer and considering a single prediction, we can find the derivative of ∂L
∂ak

directly from

(2.2.4). With the definitions of ak and zk, we can rewrite (2.2.5) as

∂L
∂wk

= (y − ak)σ
′(zk)ak−1. (2.2.6)

This is straightforward to calculate, as ak−1, ak, and zk are given by the forward pass,

and y is the labeled target. If we now consider the neuron to be in a hidden layer, ak
will be the input of neuron k + 1. Following the same notation and logic as in equation

(2.2.5) and (2.2.6), the derivative becomes

∂L
∂wk

=
∂L
∂ak

∂ak
∂zk

∂zk
∂wk

=
∂L

∂ak+1

∂ak+1

∂zk+1

∂zk+1

∂ak

∂ak
∂zk

∂zk
∂wk

(2.2.7)

= δk+1wk+1σ
′(zk)ak−1

= δkak−1

Thus, the weight update is dependent on the local gradient ∂zk
∂wk

= ak−1, which is given

from the forward pass, and the upstream gradient ∂L
∂zk

= δk, which is calculated in

a recursive manner from the previous step of the backpropagation. The weights are

updated sequentially, where the gradients flow from output to input, passing information

backward in the structure.

A neural network usually consists of multiple hidden layers with multiple neurons per

layer. However, the notation is only slightly more complicated than in the simple toy

example above. Let l index one of a total of L layers. wl
jk is the weight from neuron

k in layer l − 1 to neuron j in layer l, and blj is the corresponding bias term. The

10

2.2 Deep Neural Networks

backpropagation can be summed up by the following equations

δL = ∇aLL ⊙ σ′(zL) (2.2.8a)

δl = ((wl+1)⊤δl+1 ⊙ σ′(z1) (2.2.8b)

∂L
∂blj

= δlj (2.2.8c)

∂L
∂wl

jk

= δlja
l−1
k (2.2.8d)

where ∇ is the del operator and ⊙ is the elementwise multiplication operator. The

reader is referred to [37] for the complete derivation of the equations. Similarly to the

toy example, the full model utilizes the local and upstream gradients. The upstream

gradients propagate backward in the network, providing a simple and elegant procedure

to calculate the individual gradients at every neuron.

Using gradient descent with learning rate λ, the updated parameters θ become

θ ← θ − λ∇θL, (2.2.9)

there ∇θL is the gradient of the loss function with respect to all parameters.

There are three main approaches when performing gradient descent. The first is batch

gradient descent, or simply gradient descent, where the entire dataset is considered

to calculate the gradient. This can be computationally expensive, especially for large

datasets. However, because the algorithm uses the entire dataset, it is often more ac-

curate than the other gradient descent algorithms. The stochastic gradient descent, on

the other hand, uses only a single sample at each iteration. This makes the algorithm

more effective but might be less accurate and noisier. The standard approach in DNN

training is the mini-batch gradient descent. With this approach, a subset of the training

data is used at each iteration. This creates a middle ground between the two extremes,

balancing computationally efficiency and accuracy. There are several extensions of the

gradient descent algorithm. The Adaptive Moment Estimation (Adam) optimizer [38]

is a widely used optimizer for training DNNs and has demonstrated good performance

in a variety of DNN tasks. The regularization strategy of the Adam algorithm has been

further improved in the AdamW optimizer [39]. For additional examples, the reader is

referred to [40].

2.2.4 Convolutional Neural Networks

The composition of the hidden layers and how they are connected give rise to different

types of DNNs. Convolutional neural networks (CNN) are considered the most important

DNN architecture for tasks such as image recognition, object detection, and classification

due to their ability to extract features from spatially structured data [30].

The CNN is a feed-forward network, where the main component of a CNN is the convo-

lutional layer. CNNs have sparse connectivity, unlike the fully connected layers, where

11

2 Theory

each node is connected to every node in the neighboring layers with individual weights.

The nodes in a convolutional layer are organized in small kernels or filters. The kernel is

slid over the input, the output being the convolution between the kernel and the input

at each location. The kernel weights are shared over the input, meaning that the weights

of a kernel are the same at every location. This characteristic makes the convolution a

local operation. The kernel learns to encode spatial structures in the input data. As a

kernel is slid along the input, it will look for a specific feature at different locations of the

input. This can be low-level features such as edges or corners. With multiple kernels at

each layer, several patterns might be identified. As the input is passed through multiple

layers of such filters, the abstraction level of the features increases. This enables the

model to identify complex objects and structures.

The kernel size, stride, padding, and number of channels define a convolutional layer.

The kernel size determines the area of the input participating in each convolutional

operation. The stride is the number of elements by which the filter moves over the input

at a time. A stride of size n > 1 reduces the output size, as the convolutional operation

is performed at every n-th input element. Padding is a technique that adds additional

elements, typically zeros, at the borders of the input before performing the convolution

operation. Using a padding of size (K − 1)/2, where K is the kernel size, a stride of 1

implies that the output size equals the input size. When a convolutional layer consists

of multiple kernels, these are commonly referred to as channels.

Pooling layers are typically used in between convolutional layers in a CNN. They are used

to downsample the input, and make the network more invariant to small translations or

deformations in the input [40]. One common type of pooling operation is max pooling,

which takes the maximum value within a neighborhood of the input and passes it to

the next layer. If the value is shifted due to small translations but still within the

neighborhood, the output might be left unchanged. The max pooling operation allows

the network to retain only the most important information from each region of the input

while discarding less important details.

Another common component in a CNN and other types of DNNs is batch normalization

[41]. The batch normalization standardizes the activations within each mini-batch using

the transformation

x̄i =
xi − µB√
σ2
B + ϵ

, (2.2.10)

where ϵ is a small number introduced for numerical stability and µB and σB are the

mean and standard deviation of the batch, respectively. This normalization reduces the

internal covariance shift, which refers to the change in the distribution of activations

as the model parameters update during training. Reducing this covariance shift leads

to more stable parameter growth, more generalizable models, and faster convergence

during training [41].

A CNN typically consists of repeating blocks of convolutional layers, pooling layers, and

batch normalization in various combinations. This part of a CNN is referred to as the

feature extractor as it transforms the input into a feature-based representation. This

12

2.2 Deep Neural Networks

Input

Figure 2.3: Illustration of receptive fields in the example of a CNN with two 1D convo-
lutional layers with kernels of size 3, strides of 2, and no padding. Note how
the receptive field widens as information propagates through the network.

representation is called an embedding and encapsulates the learned features and encodes

the essential characteristics of the input. Each of the output channels of the feature

extractor produces a feature vector, that together composes the embedding vector. In

addition to the feature extractor, the CNN typically has a module that transforms the

embedding vector into the final output through a set of fully connected layers. In the

case of regression, this module is commonly known as the regression head.

Receptive Fields

The receptive field is the part of the input space visible for a particular node in a

layer. Only the input within the receptive field influences the activation of a node.

Consequently, the node is oblivious to the rest of the input. In the first layer, each node

perceives the local region covered by the first kernel. As we move to deeper layers, each

node incorporates the receptive fields of the previous layer’s nodes. As the information

propagates through the network, the receptive field of each neuron expands, allowing it

to capture increasingly larger spatial features in the input data. Thus, the receptive field

is crucial in understanding the network’s ability to capture and process information.

Figure 2.3 illustrate this through a simple example of a CNN with two 1D convolutional

layers with kernel size 3, stride 2, and no padding. While each node in the first layer

only observes three input elements as indicated by the light blue color, a node in the

second layer perceives all the seven input elements marked in blue.

The receptive fields at layer l can be characterized by the width rl, the center position

cl of the first left receptive field, and the spacing jl between the center positions of two

adjacent receptive fields. The receptive field at each layer can be calculated iteratively

13

2 Theory

from the first to the last layer using the equations [42]

jl+1 = sjl (2.2.11a)

rl+1 = rl + (k − 1)jl (2.2.11b)

cl+1 = cl + jl
(
k − 1

2
− p

)
, (2.2.11c)

where s, k and p are the stride, kernel size and padding at layer l + 1. For the initial

layer we have j0 = 1, r0 = k and c0 = k−1
2 − p. Note that these equations apply to both

convolutional layers and max pooling layers.

2.2.5 Other Types of DNNs

The repeating layers give the DNNs a modular and flexible structure, enabling various

configurations. In addition to the CNN, there exist a variety of types of DNNs.

A network consisting of fully connected feed-forward layers is also known as a multilayer

perceptron (MLP). As illustrated in fig. 2.2, each neuron in a layer is connected to each

neuron in the neighboring layers. This quickly grows to a huge number of parameters,

making them computationally expensive. However, it is common to apply MLPs in

combination with other types of networks, like the regression head in a CNN.

Recurrent neural networks are suitable for sequential data with temporal behaviors. Re-

current neural networks are characterized by their ability to store information about past

states and integrate this knowledge into future predictions. Long short-term memory

(LSTM) is one the most common kind of recurrent structure [34]

Autoencoders [43] is a type of feed-forward network that is tailored to compress and

reconstruct data. An autoencoder is composed of an encoder that transforms the input

to a lower-dimensional representation, and a decoder that uses this representation to

reproduce the original input. Unlike the rest of the methods described, this is an un-

supervised learning approach as there is no labeled data. By minimizing the difference

between the reconstructed input and the actual input, the model learns how to most

effectively encode the relevant information of the original input.

Generative Adversarial Networks [44] (GAN) generate synthetic data samples resem-

bling the samples in the training data. A GAN consists of a generator network, which

generates synthetic samples from random noise, and a discriminator network, which clas-

sifies whether a given sample is from the training data or generated by the generator.

As the GAN is trained, the generator aims to deceive the discriminator by generating

increasingly realistic samples that resemble the training data. GANs are used for image

generators and text generators, exhibiting remarkable realism.

2.2.6 Model Validation

To assess the performance and generalization capability of a trained model, it is essential

to validate the model using reliable techniques. Cross-validation [45] is a popular strategy

14

2.2 Deep Neural Networks

for model validation in machine learning. The main idea behind cross-validation is to

divide the data into subsets, where one subset, often referred to as the validation set, is

used to evaluate the model while the remaining data is used for training. This procedure

is repeated several times using different validation sets, and the performance is averaged

over the models. By training and validate over different combinations of the dataset,

the method gives a more accurate description of the robustness and ability to generalize

to unseen data. This approach is particularly useful for model selection, as it provides

a reliable reference point for a fair comparison between different model architectures.

The k-fold cross-validation is one of the most common variants [46]. The data is divided

into k equal-sized groups called folds. The model is trained using k− 1 folds as training

data, and evaluated on the remaining fold. This procedure is repeated k times with

a new fold as the validation set, such that the model is evaluated once on each fold

in the dataset. The model is re-initialized and trained from scratch each time. The

performance is the average performance on the k validation sets.

The stratified k-fold cross-validation is a closely related variant. Each fold is chosen such

that the distribution within each fold is similar to the distribution of the whole dataset.

This variant is especially valuable when dealing with unevenly distributed categorical

data. By applying stratified k-fold cross-validation, we can mitigate the risk of biased

model performance and ensure that the model’s training encompasses a representative

range of categorical data instances during each cross-validation iteration.

The choice of k is a trade-off between bias, variance, and computational cost. Using a

small k−value introduces more bias to the error estimate [47, 48]. For large datasets,

however, the benefit from increasing the number of folds reduces, while the additional

computational cost increases significantly. Values of k = 5 and k = 10 are commonly

applied in the literature to strike a balance between these factors [47, 48].

Overfitting

Overfitting is a common problem in machine learning and refers to the case where the

model is trained too well on the training data, such that the model memorize noise and

randomness in the data. Rather than learning the underlying patterns that represent the

complete data distribution, it becomes tailored for the specific samples in the training

set. This might result in excellent performance on the training set but poor performance

on new, unseen data. Several factors can contribute to overfitting, such as an overly

complex model, excessive training duration, or a validation set that does not adequately

represent the data distribution on which the model was trained. Cross-validation is a

valuable tool to prevent overfitting. By comparing the model’s performance on both the

training data and the validation data, we can identify indications of overfitting and take

appropriate measures to address this issue.

15

3 Method

3.1 Dataset

Developing accurate ML models generally requires large datasets. However, collecting

cycling data from experimental or real-life operations is both time-consuming and ex-

pensive. Fortunately, several publicly available datasets related to Lithium-Ion Batteries

(LIB) have been published. Some examples include datasets from NASA [49], Toyota

Research Institute [9, 50] and CALCHE [51], which have been used in several studies on

data-driven battery degradation modeling. Access to high-quality data across a range of

chemistries, charging profiles, and conditions support the development of more accurate

and sophisticated models.

When choosing a dataset, it is important to consider the problem at hand. The task

of modeling how a specific battery behaves under different protocols requires different

data than investigating how different batteries behave under the same protocol. The

processes we want the ML model to learn must be observable in the dataset. This work

aims to train a CNN for remaining useful life (RUL) prediction and explore the decision-

making process of the model relates to degradation observables. To avoid the ML model

learning “obvious” differences, we will use as similar cells as possible, both in terms of

cycling protocols and chemistry. The reason for this can be illustrated with an example

of two batteries of different chemistries with very different expected lifetimes. If the type

of battery can be identified from the input, we might get a model that learns how to

distinguish the chemistries from each other instead of identifying signs of degradation.

Using data from the same chemistry leaves the variations between chemistries out of

the equation and encourages the model to look for other features to decide the RUL.

The choice of using similar charging profiles follows the same line of reasoning. By

keeping the external conditions similar, the model must look for the changes caused by

degradation mechanisms.

The dataset used in this work was generated by Severson et al. [9] and includes fast-

charging cycle data from 135 commercial LFP/graphite cells with a nominal capacity

of 1.1Ah. The cells are cycled under comparable cycling protocols in a temperature-

controlled environment of 30◦C until reaching the EOL. The lifetimes in the dataset

range from 150 to 2300 cycles and includes almost 97000 cycles.

The charging policies utilize different C-rates applied during various intervals of the

charging. All cells are charged from 80% to 100% SOC at 1C. Between 0% and 80%

SOC, the cells are charged using a one-step or two-step policy. For the one-step policies,

the cell is charged at a constant C-rate over the whole 0% to 80% SOC interval. In the

17

3 Method

0 10 20 30 40 50
4

0

4
C

ur
re

nt
 (A

)

0 10 20 30 40 50
2.0

2.5

3.0

3.5

Vo
tla

ge
 (V

)

0 10 20 30 40 50
Time (min)

0.0

0.5

1.0

C
ap

ac
ity

 (A
h)

50%
SOC

80%
SOC

100%
SOC

Figure 3.1: Example a cycling protocol from the dataset.

case of a two-step policy, the cell is charged with a constant C-rate to a certain SOC and

then charged with a different C-rate until reaching 80% SOC. The values of the C-rates

range from 3.6C to 8C, and the SOC at which the new C-rate is applied varies between

2% and 71%. An example of a two-step policy is displayed in fig. 3.1. A cut-off current

of C/50 is also applied at the end of the charge and discharge cycle, and the cell rests

at 80% SOC and after discharge. The cells are cycled in three different batches with

slightly different conditions. For more details, the reader is referred to [9]. There are 72

different cycling protocols in total.

Several features relating to the state and performance of a battery are measured through-

out the life of the cells. These features include current, voltage, internal resistance,

temperature, and capacities, which are monitored during each cycle. In addition, the

incremental capacity (IC) for the discharge cycle is also included in the dataset. The

capacity vs. voltage curves and the corresponding IC curves are represented as functions

of voltage and are evaluated at 1000 equally separated points in the voltage window from

2.0V to 3.5V.

18

3.1 Dataset

3.1.1 Data Preparation

The initial pre-processing of the data follows the same procedure as in the original study

[9]. The pre-processing includes removing cells with unexpectedly high measurement

noise, along with cells that do not reach 80% of nominal capacity. One cell deviates

notably from the rest of the cells and is removed from the dataset. Note that this cell

was not removed in the original study, but was identified as a potential defect and later

excluded from parts of the study. Their supplementary GitHub repository [52] provides

the code for loading and pre-processing of the dataset that was also used in this work.

After these adjustments, the dataset contains cycling data from 124 cells.

Standardization of the input data is a common practice as it accelerates the training [41].

However, in this work, no standardization or normalization of the input is performed.

The reason behind this decision lies in the intention of preserving the inherent physical

representation of the input. Introducing an additional transformation would complicate

the interpretation of the data.

The original dataset includes much information, including metadata for each experiment,

measurements per cycle, and time-series data for each cycle. The whole dataset is struc-

tured as a multi-level nested dictionary. Although this is a very efficient structure for

such a complex dataset, it is inconvenient when we only use a small part of the complete

dataset. Therefore, the relevant parts of the dataset were extracted and reorganized to

a more suitable structure. Originally, the time series measurement from a cycle is stored

as individual 1D time series in a dictionary. Instead, the cycle time series of a particular

property are stacked on top of each other to form a 2D matrix of size ni ×m, where ni

is the total number of cycles of cell i and m is the number of measurements per cycle for

this property. With this representation, row j represents the time series measurements

during cycle j, and the full matrix holds the time-series data over the whole cycle life.

This 2D array is easier to manipulate and pass to the CNN model.

Measurement noise affects some of the IC curves. The possibility of applying smoothing

algorithms was initially considered but ultimately not pursued due to time constraints

and the potential complexity they could introduce to the model and the physical in-

terpretation of the input. Instead, the level of noise in each curve was quantified by

calculating the average absolute difference between adjacent points, drawing inspiration

from [53]. We checked the sensitivity of our model on removing data above various

noisiness thresholds and found no clear advantage. Therefore, we decided to proceed

without removing any additional samples

3.1.2 Train-Test Split

The dataset is divided into a training set and a test set. To ensure that both the

training and test sets are representative of the overall distribution of the data, the cells

were shuffled before the splitting. Using a 70-30 split ratio, the training set and test set

consist of 86 and 37 cells, respectively.

Figure 3.2 shows the distribution of cycle lives in the training set as blue bars, and the

19

3 Method

300 750 1500 2230
End of life (cycles)

0

10

20

30

40

50

#
ce

lls

Short

Medium

Long

Figure 3.2: Distribution of cycle lives in the dataset. The dark blue bars indicate cells
in the training set, and the light blue histogram divides the training set into
groups of short, medium, and long-lived cells. The white bars represent cells
in the test set.

distribution of cycle lives in the test set in white. The training set is also divided into

groups of short, medium, and long-lived cells. This categorization of cycle lives is done

as a part of the model selection process, which will be further explained in section 3.5.2.

The training set is used to decide the model structure and determine the parameters of

the model, while the test set is used to evaluate the performance of the model. Note

that the test set, including the distribution of lifetimes within the test set, has not been

seen throughout the design and training process. The test set was introduced only for

the final performance reporting. In this way, we limit potential bias from the designer

and ensure that the model is evaluated on completely unseen data.

3.2 Feature Engineering

For the purpose of predicting the RUL, we want to utilize electrochemical signals that

hold information about the state of health of a battery. The IC curves are recognized for

this purpose, as they provide insight into the electrochemical processes and degradation

modes of the cell.

Furthermore, the IC curves also enable easier interpretation of the CNN model. The

IC curve is expressed in terms of voltage and can be represented as a 1D vector where

each element corresponds to the capacity change at a specific voltage. Consequently,

the receptive field of the CNN model can be assigned to a region in the voltage window.

The signal within this region can be related to the electrochemical process happening at

20

3.2 Feature Engineering

2.00 2.25 2.50 2.75 3.00 3.25 3.50
Voltage (V)

6

4

2

0

2

4
dQ

dV
 (A

h/
V)

dQdV10
dQdV10
dQdV1

(a) ∆dQdV at cycle 10.

2.00 2.25 2.50 2.75 3.00 3.25 3.50
Voltage (V)

6

4

2

0

2

4

dQ
dV

 (A
h/

V)

dQdV700
dQdV700
dQdV1

(b) ∆dQdV at cycle 700.

Figure 3.3: Two examples of ∆dQdV curves for a cell in the test set, together with the
corresponding IC curves. The dashed light blue line is the initial IC curve,
and the dark dashed line is the IC curve at the indicated subsequent cycle.
The solid line is the difference ∆dQdV between the two IC curves.

this voltage.

As described in section 2.1.3, the degradation mainly manifests as changes in the IC

peaks. Therefore, it is logical to consider the difference between the IC curve dQdVn

at cycle n, and the initial IC curve, dQdV1, at the first cycle. Then we obtain the IC

difference curve

∆dQdVn = dQdVn − dQdV1. (3.2.1)

The dataset contains the IC curve for the discharge cycles evaluated at 1000 linearly

separated points, which makes the subtraction between cycles straightforward. The

∆dQdVn for every cycle n > 1 is calculated by eq. (3.2.1). The resulting ∆dQdVn

is a 1D vector of length 1000 and serves as the input of the CNN model. Figure 3.3

shows two examples of ∆dQdV curves. The dashed lines are the dQdV curves, and the

difference ∆dQdV is shown as a solid line. Figure 3.3a displays ∆dQdV at cycle number

10. The small shift of dQdV10 is represented by an oscillation in ∆dQdV10. ∆dQdV700

for the same cell is shown in fig. 3.3b. After 700 cycles, the difference between the two

IC discharge curves is more evident.

Another advantage of using the ∆dQdVn as input feature is the potential to adapt the

method to other scenarios. By training on the differences, the CNN should learn to

recognize changes in the IC curves rather than the form of the IC curve itself. While

the shape of the IC curve may differ for other chemistries or conditions compared to the

LFP cells in these experiments, degradation should still manifest as shifts and intensity

reduction in the IC curve. The features learned from the differences might provide a

more general representation of degradation that might also be relevant for IC curves with

other cathode materials. Utilizing learned features from one model for a related task is

known as transfer learning [40]. Evaluating the benefit of a transfer learning approach

21

3 Method

is considered outside the scope of this work; however, the use of ∆dQdVn curves aims

to facilitate a more robust and versatile approach.

The target value is the RUL, which is the number of cycles until reaching EOL. EOL is

conventionally defined as the cycle at which the cell reaches 80% of nominal capacity.

Then, the remaining useful life RULn at the cycle number n is defined as

RULn = EOL− n. (3.2.2)

The RUL at every cycle throughout the life of each cell is calculated according to this

formula. RULn is in the unit of cycles.

The RUL can also be represented as a normalized value between 1 and 0 as

RULn =
RULn

EOL
(3.2.3)

=
EOL− n

EOL
. (3.2.4)

The normalized RUL has a value of 1 at the first cycle and decreases linearly until

reaching EOL at value 0.

The state of health (SOH) of the battery expresses the current condition of a battery in

the form of a percentage [26]. It is typically measured by comparing the actual charge

capacity with the initial charge capacity, with 100% representing the state at the start

of the battery cycle life. The normalized RUL can be considered an alternative metric

expressing the SOH, as it also provides a relative measure of degradation. Unlike the

SOH, which can be defined in multiple ways, RUL has a straightforward and interpretable

definition.

3.3 Regression Problem Formulation

This work aims to use a CNN to predict RUL given the IC difference at any cycle. This

regression problem can be formulated as the mapping

y = F(X; θ), (3.3.1)

from the input X to the output y, where the mapping F is a CNN parameterized by

a set of parameters θ. The input X is the IC difference curve ∆dQdVn ∈ R1×1000

during discharge at cycle n, and the output y is the corresponding remaining useful life

RULn ∈ R. In addition to the initial cycle, the CNN uses information from a single

discharge cycle to do lifetime predictions at an arbitrary point in the cycle life.

We may rewrite the regression problem as

RULn = CNN(∆dQdVn; θ), (3.3.2)

The regression problem is solved by finding the parameterization θ that best approxi-

22

3.4 Model Architecture and Hyperparameters

Feature extractor Regression head

CNNInput data Output data

MSE

Predicted
RUL

True RULEmbedding

Update weights

Figure 3.4: Diagram illustrating the key components of the proposed method. The CNN
learns the mapping from the input, ∆dQdV, to the output, RUL, by itera-
tively updating its parameters such that the errors between the model out-
puts and the true values are minimized.

mates the mapping in eq. (3.3.2). This is obtained by minimizing the MSE (eq. (2.2.4))

between the outputs of the CNN and the true values.

The strategy is illustrated in fig. 3.4. The feature extractor utilizes a sequence of con-

volutional operations to extract features from the input curves and converts the input

into an intermediate embedding representation. The regression head then predicts the

RUL based on the embedding. By learning a mapping from ∆dQdV to RUL, the CNN

learns patterns in the ∆dQdV curves that relate to cell degradation.

3.4 Model Architecture and Hyperparameters

Designing the model architecture and choosing hyperparameters are important elements

in developing an accurate and efficient model. This includes multiple design choices, such

as the depth of the model, the learning rate, and the size of each convolutional filter.

Given the immense number of possible configurations, we need some guiding principles

to limit the scope of the hyperparameter search.

Interpretability and simplicity: Part of the objective is to explore what the model

has learned, implying that interpretability is a desired quality. Consequently, a simple

model with a limited number of parameters is preferred. This means that the number

of layers and the number of filters at each layer should be kept to a minimum. However,

bigger models generally tend to perform better. The balance between accuracy and

simplicity is an important aspect to consider.

23

3 Method

Utilizing existing architectures and principles: Other successful CNN architec-

tures and training principles is a natural starting point. CNNs have traditionally been

used for 2D image processing, but their applications extended to other problems as well.

A closely related application is CNNs for the classification of electrochemical spectra.

The 1D spectra have similarities with the IC curves, making such CNN architectures a

useful source of inspiration.

The final architecture is determined through a hyperparameter search. To limit the

number of candidate architectures, certain parameters are fixed and others are chosen

from the hyperparameter search. The reasoning behind the architecture design and

parameter choices is described, setting up the parameter space used in the search.

3.4.1 Composition of Layers and Activation Function

The first thing to consider is the overall architecture, including the types of layers and

the depth of the model. The main building block is the 1D convolutional layer. The

authors of [54] compare 20 studies using DNNs for spectroscopy analysis. The CNN

models described in the review have between 1 and 4 convolutional layers. With in-

terpretability in mind, we consider 2 or 3 convolutional layers an appropriate network

depth for this work. After conducting some initial experiments, we decided to use 3

convolutional layers. Models of this depth tended to perform better, aligning with the

intuition that deeper models generally perform better. The number of layers also influ-

ences the receptive field of the embedding vector, and 3 layers tend to give a suitable

width of the receptive field overall. Additionally, we apply batch normalization after

each convolutional layer.

In addition to the convolutional layers, it is common practice to include a pooling layer.

The pooling operation reduces the dimension of the feature map without introducing

any learnable parameters and makes the intermediate representation approximately in-

variant to small local translations [40]. Degradation can be observed from shifts in the

peaks of the IC curves, suggesting that the location of peaks might represent meaningful

information. Thus, it is natural to consider the option of not including max pooling

layers. This configuration is explored during the hyperparameter search, allowing for

removing max pooling layers as one of the options.

We will use a simple regression head with one fully connected linear layer. With a single

linear layer, the embedding vector is transformed to the scalar output through a single

dot product with the linear weights and adding of the bias term. Having one layer

facilitates for interpretability of the CNN, as this makes it straightforward to relate a

weight in the linear layer to a specific region of the original input. The fully connected

layer is a global operation where each node is connected to all input nodes. With a single

output node, each weight is associated with one element in the embedding vector and

the corresponding receptive field. By adding several linear layers, on the other hand, the

complete embedding will influence the subsequent linear neurons. This regression head

configuration is fixed during the hyperparameter search.

We use the ReLU function defined in (2.2.2) as the activation function. In recent years,

24

3.4 Model Architecture and Hyperparameters

this has been the standard activation function in neural network architectures [35]. The

activation function is applied after the batch normalization and as the final activation

before the output layer. The output of the ReLU is non-negative and unbounded for

positive values like the RUL, making it well-suited as the final activation.

With this setup, the feature extractor consists of three repeating blocks of convolution,

batch normalization, max pool, and ReLU. In the case of not including max pool, the

block consists of convolution, batch normalization, and ReLU. The regression head trans-

forms the embedding vector to the final prediction using a single fully connected linear

layer. Apart from the use of max pooling, the overall network structure is relatively

constant over the hyperparameter search.

3.4.2 Layer-Specific Parameters

The next step is to define the kernel size, stride, padding, and the number of channels

for the convolutional layers.

First, we determine suitable values for the kernel sizes. For CNN-based spectroscopy

analysis, [29, 55] uses kernel sizes between 3 and 7, while [27, 28] also apply wider kernels

of sizes 19 and 21. The CNN designed by [27] has a structure with reduced kernel size

for deeper layers. In this work, we let the hyperparameter search determine the kernel

size of the three layers. The first kernel size is assigned possible values of 7, 15, or 25.

From visual inspection of the IC curves, it can be seen that the width of the peaks is

roughly 25 points. The maximum kernel was chosen to reflect this signal. Following

existing literature, the kernel sizes for the two last layers are selected as 5 or 7 during

the search.

We then proceed to define the stride. The stride also broadens the receptive field. With

only 3 convolutional layers in the model, using strides larger than one is an option to

reduce the dimensionality faster and expand the receptive field. However, important

information may be lost if the stride is too large. We choose the stride of the first kernel

to be a hyperparameter taking values of approximately 1/3 or 1/5 of the kernel size.

This corresponds to possible strides of {2, 3}, {3, 5}, or {5, 8} for kernels of size 7, 15,

and 25, respectively. For the kernels of size 5 or 7, the stride is 1 when max pooling is

included and 2 if not. For simplicity, zero padding of size (K − 1)/2, where K is the

kernel size, is used for all convolutional layers.

Each convolutional layer can have one or more channels. The number of channels re-

flects the maximum number of features each layer can identify. While more channels

provide the ability to detect more features, it also implies a more complex and less in-

terpretable model. As interpretability is considered an essential quality of the proposed

model, a maximum number of 8 channels was initially selected. This number was later

reduced to 4 channels due to the observed overfitting. To reduce the number of possible

configurations, the number of channels is 2, 3, or 4 and is the same for all three layers.

25

3 Method

The standard configuration of the max pooling operation is a kernel of size 2, stride

of 2, and padding of 0. This means that the maximum value of each pair of adjacent

input elements is passed through the max pooling layer, reducing the output size by half

compared to the input size. This design will also be applied in this work whenever a

max pooling layer is used.

The feature extractor’s composition and parameters determine the size of the embedding.

We will have one feature-based representation for each channel in the last convolutional

layer, making the embedding space a 2D vector whose height is the number of output

channels and the width is the length of the embedding vector. Generally, larger strides,

more layers, and max pooling decrease the length of the embedding vector. When the

embedding vector shrinks, the receptive field of each element broadens. Increasing kernel

size also increases the receptive field. For easier interpretability, having a receptive field

narrow enough to highlight signals in the input is convenient. However, many factors

determine the size of the embedding vector and the corresponding receptive field of each

element, making it impractical to impose the size of the receptive field or embedding

vector directly. Instead, this is determined indirectly by the other design choices. The

size of the embedding vector and receptive field has been considered when choosing

other hyperparameters. No additional constraints are introduced to affect the size of the

embedding vector.

3.4.3 Training Configuration

The MSE loss function will be applied in this work. The loss function quantifies the

error between the target values and the model outputs. By minimizing the loss function,

the parameters are adjusted to decrease the error. To solve this optimization problem,

we will use the AdamW optimizer [39].

Another crucial training hyperparameter is the learning rate, which determines the step

of each parameter update according to eq. (2.2.9). A very small learning rate can cause

the algorithm to get stuck in local minima, while a large learning rate can lead to

unstable training. The AdamW default learning rate of 0.001 serves as the starting

point. The learning rate was initially defined in the range of [1e−3, 1e−1] and left as

a hyperparameter to tune. However, the learning rate turned out to be too large. The

loss curves did not decrease over time, making it unclear if the model was learning over

the epochs. Thus, the learning rate was reduced and later fixed at 1e−4.

3.5 Training and Validation

Developing the model can be divided into two phases: Model selection where the final

model architecture and hyperparameters are decided, and model optimization where the

trainable parameters of the model are determined. Note that the training set is used

for both model selection and model optimization. The test set is used for performance

evaluation only after the final model is optimized.

26

3.5 Training and Validation

3.5.1 Evaluation Metrics

The root-mean-squared error (RMSE) is used to evaluate the predictive performance.

This is a standard evaluation metric for battery lifetime prediction, as well as regression

problems in general. The RMSE of N samples is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (3.5.1)

where yi and ŷi are the target and predicted values, respectively. The lifetime is measured

in number of cycles, giving the RMSE in units of cycles.

Because the residuals are squared in the RMSE, the RMSE puts more weight on large

residuals. The mean absolute deviation (MAD), on the other hand, emphasizes all

residuals equally. This might be seen as a more intuitive metric and is often included in

addition to the RMSE. The MAD is defined as

MAD =
1

N

N∑
i=1

|yi − ŷi|, (3.5.2)

and represents the average absolute prediction error.

3.5.2 Model Selection with Stratified k-fold Cross-Validation

To evaluate the performance of the models generated through the hyperparameter search

and determine the best model, we employed the cross-validation strategy. Ordinary k-

fold was initially applied but was later substituted with the stratified k-fold algorithm.

This change was motivated by the observation of significantly higher validation loss

compared to the training loss, indicating overfitting. The degree of overfitting also

varied between the individual folds, indicating a poorer ability to generalize on parts of

the training data. Therefore, it was speculated that uneven distribution of the long-lived

cells might lead to poor validation losses in some folds. As evident from fig. 3.2, few cells

have cycle life over 1500 cycles. If a fold ends up with a large proportion of long-lived

cells, the model might have trouble generalizing when trained on the remaining data.

The cells were categorized as short-, medium-, and long-lived cells according to fig. 3.2.

During the stratified cross-validation, the distribution between these three categories in

each fold are roughly the same as in the complete training set.

The training set at hand includes close to 70 000 samples, making the computational cost

a factor to consider. Thus, we consider k = 5 to be a reasonable trade-off between the

bias and the computational cost of the procedure, in accordance with common practice

[47, 48].

The CNN takes the IC curve from an arbitrary cycle as input and predicts the corre-

sponding RUL. The CNN does not consider the time dependencies between the cycles,

meaning the inputs can be presented in random order. However, we need to be careful

with how the folds are chosen. IC curves from the same cell close in time are strongly

27

3 Method

correlated. If IC curves from the same cell end up in two different folds, samples in the

validation set will be correlated with samples in the training set. Then the validation

set is not completely unseen for the model, giving an overly optimistic evaluation of the

model’s ability to generalize to new data. Consequently, it is necessary to include all

samples from a cell within the same fold, which is why the folds were distributed based

on cell life, and not the RUL values of individual samples.

Each architecture proposed by the hyperparameter search algorithm has to undergo a

complete stratified 5-fold cross-validation scheme, where each model is trained for 35

epochs. To ensure consistency, the reported metric at each fold is the average of the

five epochs with the lowest RMSE. This ensures that the metric reflects consistently low

RMSE and not just a single ”lucky” epoch.

3.5.3 Model Optimization

After the best model architecture has been identified from the cross-validation hyper-

parameter search, the final model can be trained. The final model is trained using the

complete training set. The number of epochs is determined by a qualitative analysis of

the cross-validation loss where the aspects of minimum loss and minimal risk of overfit-

ting are balanced.

3.6 Implementation

The task described in this chapter was implemented using Python 3.9 and various open-

source Python libraries.

For processing and computations on the dataset, we utilized the NumPy library [56].

NumPy is a widely used library for numerical computations in Python, providing efficient

data structures and functions for array manipulation.

For the deep learning aspect of the implementation, we employed PyTorch [57], a pop-

ular machine learning framework specifically designed for deep learning tasks. PyTorch

serves as the underlying framework for building and training our CNN, providing a

comprehensive set of tools and functions for neural networks.

Scikit-learn [58] is another useful Python library for machine learning tasks. The library

provides tools for cross-validation and model evaluation used in this implementation.

The hyperparameter search was implemented using Optuna [59], which is a hyperparam-

eter optimization tool for machine learning frameworks. Optuna was integrated on top

of the Pytorch training pipeline, enabling an efficient procedure for proposing, training,

and comparing model architectures.

Plotting of the data was done using Matplotlib [60], a popular data visualization library

in Python.

28

4 Results and Discussions

4.1 Model Architecture

The hyperparameter search using stratified 5-fold cross-validation was performed for 30

different configurations to find the most suitable model architecture in the hyperpa-

rameter space. The most successful model architecture is presented in table 4.1. The

CNN has a repeating structure of a convolutional layer, batch normalization, ReLU, and

a max pooling layer. This is repeated three times. The regression head of the CNN

consists of a single fully connected linear layer. With repeating blocks of convolution,

activation, and max pooling, the overall model structure is similar to the traditional

2D-CNN architecture [30].

The first convolutional layer has a kernel of size 7 and a stride of 2, and the two remaining

layers have kernels of size 5 and strides of 1. All convolutional layers have 3 channels.

This results in an embedding vector of size 62×3, or 186×1 when reshaped to the column

vector that is passed to the linear layer. The architecture is illustrated in fig. 4.1. The

model has a total of 325 trainable parameters. Even though the CNN technically qualifies

as a deep neural network, this architecture is comparatively shallow when compared to

other state-of-the-art models. For instance, the auto-CNN-LSTM model by Ren et al.

[61] consists of a CNN module, an LSTM module, an autoencoder, and a seven-layer

regression head. The CNN alone has around 54 000 parameters. The CNN model by

Strange & Reis [62] has over 200 000 parameters, and the dilated CNN by Hong et al.

[63] includes 2M parameters.

Table 4.1: Architecture of the final CNN. BN+ReLU+MP denotes the sequential layers
of batch normalization (BN), ReLU and max pooling (MP). The kernel size
and stride for these entries refer to the max pooling layer.

Module Layer Kernel size/
#weights

Stride Channels Output
size

Feature extractor Conv1D 7 2 3 500× 3
BN+ReLU+MP 2 2 - 250× 3
Conv1D 5 1 3 250× 3
BN+ReLU+MP 2 2 - 125× 3
Conv1D 5 1 3 125× 3
BN+ReLU+MP 2 2 - 62× 3

Embedding vector Flatten - - - 186
Regression head Linear Layer 186 - - 1

ReLU - - - 1

29

4 Results and Discussions

1000

Kernel size: 7
Stride : 2
Padding : 3

Kernel size: 5
Stride : 1
Padding : 2

Input/output

Convolutional layer
Kernel

Linear layer

1

Maxpool layer

Kernel size: 5
Stride : 1
Padding : 2

186

Figure 4.1: Illustration of the final CNN model architecture.

Given the architecture in table 4.1, the receptive field of each element in the embedding

vector can be calculated according to eq. (2.2.11c). This results in a receptive field of

size r = 69 with a spacing of j = 16 between two adjacent receptive fields.

The cross-validation loss over 70 epochs of the CNN is shown in fig. 4.2a. The solid

dark-blue line is the validation loss averaged over all folds, and the dashed blue line is

the average training loss. The light blue curves show the validation loss for the individual

folds. The gray line marks the minimum average validation loss achieved during the 70

epochs. The loss curves exhibit the desired behavior: The loss reduces at the beginning

and stabilizes at later epochs, indicating that the model is progressively learning relevant

patterns for RUL prediction.

The cross-validation loss can also serve as a guide for selecting a suitable number of

epochs for training the final model. When choosing the epoch number, we want to mini-

mize both the RMSE and the risk of overfitting, which are often conflicting. Figure 4.2a

shows that the average validation loss stabilizes around 40 epochs and reaches its mini-

mum at epoch 54. The training loss, on the other hand, continues to decrease at a steady

rate after 40 epochs. The training and validation losses are roughly the same up to epoch

25, where the model starts to overfit slightly. Nonetheless, we gain accuracy by training

for more epochs. The RMSE does not reduce notably after 40 epochs. Thus, epoch

number 40 appears to be a suitable balance between minimizing RMSE and reducing

overfitting.

The CNN appears to be sensitive to the input data. As observed from fig. 4.2a, the

minimum RMSE for the individual folds varies from 175 to 310 cycles. This variation

indicates that some cells are deviating from the overall data distribution, making the

30

4.2 Predictive Performance

0 20 40 60
epoch

200

300

400

500

600

700

R
M

SE
Validation Loss
Training loss
Minimum validation loss

(a) Complete training set.

0 20 40 60
epoch

100

150

200

250

300

350

400

450

500

R
M

SE

Validation Loss
Training loss
Minimum validation loss

(b) Short and medium-lived cells.

Figure 4.2: 5-fold cross-validation loss for the CNN trained on (a) the whole training
set and (b) short- and medium-lived cells in the training set, i. e with EOL
below 1500 cycles. The solid dark line is the validation loss averaged over
the folds, while the lighter solid lines are the validation loss of the individual
folds. The dashed line is the average training loss.

RUL of such cells challenging to predict if they appear in the validation set. This

demonstrates the importance of performing cross-validation instead of a single training-

validation split. By evaluating on all parts of the training data, we remove the chance

of just being “lucky” in how the training data is split. The cross-validation loss reflects

the performance over the complete distribution of data.

The cross-validation loss excluding cells with cycle lives above 1500 cycles is displayed

in fig. 4.2b, displaying a notable reduction in RMSE and improved generalizability. This

result further suggests that the cells with longer cycle lives contribute significantly to

the RMSE and large variation between the folds.

4.2 Predictive Performance

4.2.1 RUL Prediction

With the model architecture and training parameters decided, the final model is trained

on the complete training set for 40 epochs. The CNN is then evaluated on the unseen

test set.

The RMSE and MAD of the test set are presented in table 4.2. Despite the shallow model

architecture, the CNN achieves an RMSE of 171 cycles and MAD of 131 cycles. It is

worth noting that the model relies solely on the information derived from the difference

31

4 Results and Discussions

Table 4.2: Performance metrics for the proposed CNN for RUL prediction on the test
set, together with the performance of a linear regression model. The models
below the dashed line are references to other work on the same dataset. The
inputs include incremental capacity (IC), time series of voltage (V), current
(I) and temperature (T), and state of health indicator (SOH) in the form of
per cycle capacity.

RMSE MAD Input Cycles used

CNN (this work) 171 131 IC 2 discharge cycles
Linear regression 502 225 IC 2 discharge cycles

Dilated CNN [63] 76 - V, I, T 3-4 cycles
CNN [62] 99 59 V, I 1 cycle
LSTM [22] 106 - SOH 100 cycles

between the IC curve of two discharge cycles to make predictions at any location in the

life cycle.

As a baseline, a linear regression model was trained using the same training data. This

model yields an RMSE of 502 cycles and a MAD of 225 cycles, which is significantly

higher than our CNN. The reduction in performance indicates that the input-output

relationship is indeed non-linear and justifies the use of a non-linear approach like a

CNN. Furthermore, the linear regression model generated several predictions consider-

ably outside the range of reasonable target values. Such outliers were not seen among

the predictions of the CNN. The CNN clearly outperforms the linear regression model

in terms of accuracy and robustness.

The performance of other CNN-based models using the same dataset is also displayed in

table 4.2. These models have significantly better predictive performance, as expected,

given their significantly larger number of parameters. However, it is worth noting that

the performance gains of the larger models do not scale proportionally with their number

of parameters. Going from 325 parameters in our model to a dilated CNN with 2 million

parameters reduces the RMSE by only 100 cycles. Hence, it is possible that the RUL

prediction problem can be addressed with smaller neural networks, like the one we

propose. In addition, with our small architecture, we can also explore the mechanism

guiding the predictions. It should also be noted that the problem at hand poses a difficult

task. Our CNN is presented with data from the discharging only, which happens at 4C

for every cell. The lifetime is strongly correlated with the cycling protocol [64]. Hence,

some authors include the time series during both charge and discharge [62, 63]. In

contrast, our network does not get input from the charge cycle, but we expect it to learn

the influence that the protocols have on the IC curves. Indeed, despite the simplistic

architecture and limited input features, the CNN exhibits the ability to identify patterns

relating IC curves to the remaining useful life and demonstrates reasonable accuracy.

Interestingly, the test RMSE is better than the RMSE from the cross-validation. The

distribution of the test set can explain this. The splitting into training and test set was

done randomly, without any specifications to influence the outcome. This was done to

remove potential bias from knowledge of the test set. By chance, the test set contains

32

4.2 Predictive Performance

few long-lived cells. As discussed, samples with high RUL are associated with more

challenging predictions and larger error terms. This is exemplified by fig. 4.2b, where

removing long-lived cells significantly improves the performance. The average validation

loss here is about 140 cycles. This modified training set better reflects the distribution

of the test set, and we see that these two results are more aligned. When excluding

long-lived cells, the training and test RMSE are very similar.

0 200 400 600 800 1000
Cycle

0

200

400

600

800

1000

1200

R
U

L
(c

yc
le

s)

Predicted
Measured

(a) Predictions for cell b3c4.

0 500 1000 1500
Cycle

0

200

400

600

800

1000

1200

1400

1600

R
U

L
(c

yc
le

s)

Predicted
Measured

(b) Predictions for cell b3c16.

0 200 400 600 800
Cycle

0

200

400

600

800

1000

1200

R
U

L
(c

yc
le

s)

Predicted
Measured

(c) Predictions for cell b3c8.

0 100 200 300 400
Cycle

0

200

400

600

800

1000

1200

R
U

L
(c

yc
le

s)

Predicted
Measured

(d) Predictions for cell b2c27.

Figure 4.3: CNN predictions of RUL for four cells in the test set.

33

4 Results and Discussions

The predicted RUL for a selection of cells is shown in fig. 4.3. The dark blue lines

represent the true cycle life, which decreases linearly until reaching the EOL. The light

blue points indicate the predictions by the CNN. Particularly for the cell in fig. 4.3a, the

predictions coincide well with the true values. For the cell in fig. 4.3c, the predictions

exhibit an offset from the true values, but decrease linearly over the cycle life with

approximately the same rate as the true RUL. Figure 4.3d depicts a short-lived cell. In

this case, the predictions display a decreasing, but more non-linear behavior, which is

also observed in other cells with short lives. Figure 4.3b shows the predictions for the

cell with the highest EOL in the test set. The predictions also show a declining trend

over the lifetime, although with significant errors observed at both the early and late

stages of the cell’s life. Overall, the predicted RUL clearly exhibits a decreasing trend

throughout the cycle life. The CNN does seem to capture features in the IC difference

associated with degradation and leverage this information to estimate RUL.

As can be observed in fig. 4.3, the deviations seem to be larger at the beginning of the cell

life. This behavior is consistent for the other cells in the test set. During the early stages

of the cycle life, signs of degradation may be limited, and the changes in dQdVn curves

compared to the initial dQdV1 smaller. The input data at the initial cycles is expected to

contain less information and therefore be more challenging to predict accurately. From

fig. 4.3, it is evident that the CNN predicts roughly the same value for the early cycles

across all four cells. This suggests that the patterns indicating the specific lifespan of

500 cycles or 2000 cycles at early cycles are not distinctly captured by the model, and it

instead predicts some intermediate value. However, the results indicate that the model

recognizes the early stage of the cycle life and incorporates this information into its

predictions.

0 250 500 750 1000 1250 1500
Actual RUL (cycles)

0

200

400

600

800

1000

1200

1400

1600

Pr
ed

ic
te

d
R

U
L

(c
yc

le
s)

(a) Predicted versus actual RUL for the com-
plete test set.

0 250 500 750 1000 1250 1500
RUL

100

200

300

400

500

|y
i

y i
| (

cy
cl

es
)

(b) The mean average deviation as a function
of the target value.

Figure 4.4: CNN performance for RUL prediction on the complete test set.

The predicted values vs. the actual values for the whole test set are displayed in fig. 4.4a.

The model tends to overestimate the remaining life for target values below 1000 cycles

and consistently underestimates the RUL when the target value is above 1150 cycles.

34

4.2 Predictive Performance

The early cycles of the long-lived cells are more challenging to predict, as indicated by

fig. 4.4b, showing that larger errors are associated with higher target values. In addition

to limited signals in early cycles, this might be a consequence of the uneven distribution

of data. With training samples spanning the region from 0 to 2230 cycles, there is a

wide range of possible target values. However, there are considerably fewer samples of

high target values (see fig. 3.2). Specifically, only eleven out of 86 cells have an EOL

over 1150 cycles, meaning that a small subset contributes with samples above this value.

As the target value decreases, the number of samples accumulates. More precisely, there

are 62 000 training samples with RUL below 1150 and 5900 above this level. Given

the distribution of the data, we can expect to observe diminishing performance for high

target values.

Figure 4.5 displays the RUL predictions for two cells in the test set, together with the

average cell temperature at each cycle. The predictions in the left plot align well with

the true values, except for the interval from cycle 350 to cycle number 520. Notably, this

region coincides with a rise in the average cell temperature. A similar pattern can be

observed in the right plot of fig. 4.5. The results indicate a positive correlation between

cell temperature and predicted RUL, where increased temperature leads to increased

RUL predictions. This implies that the cell temperature influences the shape of the IC

curve in a way that the CNN associates with a longer remaining life. Given the observed

intercorrelation between IC curves and temperature, including additional features might

be necessary to enable the CNN to account for dependencies with correlated factors.

0

200

400

600

800

1000

1200

R
U

L
(c

yc
le

s)

Predicted
Measured

0 200 400 600 800
Cycle

25

30

35

40

Te
m

p.
 (

C)

0

200

400

600

800

1000

1200

R
U

L
(c

yc
le

s)

Predicted
Measured

0 200 400 600 800 1000
Cycle

25

30

35

40

Te
m

p.
 (

C)

Figure 4.5: Predictions by the CNN for two of the cells in the test set together with the
average cell temperature. The predicted RUL seems to correlate positively
with the cell temperature.

35

4 Results and Discussions

4.2.2 Normalized RUL Prediction

Considering the discussion in section 4.2.1, it is evident that the model has the ability

to qualitatively distinguish between dQdV curves from early, middle, or late stages

of the cycle life. This observation suggests that the ∆dQdV curves are well-suited for

predicting a normalized version of the RUL within this framework. Therefore, the model

was retrained to predict the normalized RUL as defined in eq. (3.2.4).

A new hyperparameter search was conducted using the RUL normalized to the EOL as

the target, and over the same parameter space as described in section 3.4. The resulting

model architecture did give a small advantage over the model presented in table 4.1

in terms of RMSE, but ended up being less interpretable due to wide receptive fields.

As interpretability was considered more important than the modest improvement in

accuracy, we decided to continue using the original CNN architecture in table 4.1.

Table 4.3: Performance metrics for the proposed CNN for normalized RUL prediction
along with the performance of a linear regression model. Note that the Auto-
CNN-LSTM uses the NASA dataset [49].

RMSE MAD Input Cycles used

CNN 0.075 0.057 IC 2 discharge cycles
Linear regression 0.27 0.093 IC 2 discharge cycles

Auto-CNN-LSTM[61] 0.051 - 21 features 14 cycles

The RMSE and MAD of the CNN trained for normalized RUL prediction are 0.075 and

0.057, respectively. The corresponding metrics for the baseline linear regression model

are 0.27 and 0.093, which again demonstrate that a non-linear model is suitable. The

numbers are presented in table 4.3, together with the Auto-CNN-LSTM model by Ren

et al. [61]. Ren et al. use 21 manually extracted features from charge and discharge

voltage and current curves. The feature vectors for 14 adjacent cycles are stacked to

an input feature map of size 14 × 21. Note that they use data from the NASA PcoE

dataset [49]. Our model performs slightly worse but uses considerably fewer parameters

and simpler input features.

Figure 4.6a displays the predicted normalized RUL against the actual normalized RUL,

where a value of 1 corresponds to the first cycle of a cell, and a value of 0 corresponds

to the EOL. The predictions are more evenly distributed around the line indicating the

true value as compared to fig. 4.4a. The point cloud also exhibits a wave-like shape. At

the point right before the degradation starts to accelerate, the model may not anticipate

the subsequent rapid decline, which could explain the observed overestimation between

0.1 and 0.4.

Figure 4.7 shows the predictions for four cells in the test set, which correspond to the

cells presented in fig. 4.3. The predictions are considerably more consistent with the

true values and exhibit greater similarity across the four cells. The CNN does not have

the ability to incorporate information about previous cycles into the prediction of the

current cycle, so the predictions are only based on information embedded in IC curve

from the current discharge cycle.

36

4.2 Predictive Performance

0.0 0.2 0.4 0.6 0.8 1.0
Actual normalized RUL

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d
no

rm
al

iz
ed

 R
U

L

(a) Predicted versus actual normalized RUL for
the complete test set.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized RUL

0.04

0.05

0.06

0.07

0.08

0.09

0.10

|y
i

y i
|

(b) The mean average deviation as a function
of the target value.

Figure 4.6: CNN performance for normalized RUL prediction on the complete test set.

Using normalized RUL significantly improves the predictions, particularly for the long-

lived cell and in the beginning of cycle lives. This can be attributed to the characteristics

of the normalization process. In the case of RUL given in cycles, early IC curves map to

very different values depending on the EOL. When the RUL is normalized, on the other

hand, the first cycle consistently maps to 1 independent of the EOL. This also reduces

the effect of large errors at long cycle lives overly influencing the model. Additionally, the

normalization appears to incentivize the model to put more emphasis on small values.

While only one of the cells in fig. 4.3 have predictions of zero, all of the cells in fig. 4.7

now generate predictions of zero. In addition, normalizing RUL gives a more uniform

distribution of target values, further contributing to the improved consistency of the

model performance.

The results presented in fig. 4.6 support the hypothesis that the ∆dQdV curves contain

sufficient information to be utilized for the prediction of normalized RUL. The CNN

exhibits the ability to identify and relate patterns in the input to the relative location

within the cycle life. However, when it comes to RUL predictions in units of cycles,

the results suggest that additional augmentations such as additional features or a more

sophisticated model might be necessary to improve performance.

37

4 Results and Discussions

0 200 400 600 800 1000
Cycle

0.0

0.2

0.4

0.6

0.8

1.0

R
U

L
(c

yc
le

s)

Predicted
Measured

(a) Predictions for cell b3c4.

0 500 1000 1500
Cycle

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
U

L

Predicted
Measured

(b) Predictions for cell b3c16.

0 200 400 600 800
Cycle

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
U

L

Predicted
Measured

(c) Predictions for cell b3c8.

0 100 200 300 400
Cycle

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
U

L

Predicted
Measured

(d) Predictions for cell b2c27.

Figure 4.7: CNN predictions of normalized RUL for four cells in the test set.

38

4.2 Predictive Performance

4.2.3 Error Analysis

The task of mapping ∆dQdV to RUL utilizing a CNN is a supervised learning approach.

By minimizing the MSE, we obtain a parameterization of the CNN that best fit the

observed data. Essentially, this is maximum likelihood estimation under the assumption

that the error is Gaussian and independently distributed [65].

Figure 4.8a shows the distribution of the error yi − ŷi between true value yi and corre-

sponding predicted value ŷi in the test set for RUL predictions in units of cycles. The

mean error is −66.7 cycles and the standard deviation σe is 157 cycles. For comparison,

the Gaussian distribution with zero mean and standard deviation σe is included in the

figure. The error distribution is close to symmetric about its mean value and resembles

the bell shape of the Gaussian distribution. The distribution is slightly more clustered

around zero and shifted towards negative values, which is consistent with the observed

tendency to overestimate. However, the shape is very similar to the Gaussian distri-

bution. The corresponding distribution in the case of normalized RUL predictions is

displayed in fig. 4.8b. The distribution has a mean of -0.03 and standard deviation σe
of 0.069 and exhibits an even better approximation of the Gaussian. The distribution is

also narrower, indicating reduced variance.

In both cases, the model error can be considered close to Gaussian. Previous results

have shown that the error is not independently distributed, but dependent on the target

value. However, this is expected and can be considered acceptable behavior. From a

statistical perspective, the results in fig. 4.8 provide justification for using the MSE loss

function. The previous discussion also points to potential improvements by exploring

alternative loss functions for optimizing the CNN.

750 500 250 0 250 500 750
yi yi (cycles)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030 (0, e)

(a) Normalized error distribution for RUL pre-
dictions.

0.75 0.50 0.25 0.00 0.25 0.50 0.75
yi yi

0

1

2

3

4

5

6 (0, e)

(b) Normalized error distribution for normal-
ized RUL predictions.

Figure 4.8: Normalized histograms showing the distribution of prediction errors yi − ŷi
for every pair of target and predicted value {y, ŷi} in the test set. The dashed
line is the zero-mean Gaussian with standard deviation σe, where σe is the
standard deviation of the error distribution. The error distributions are bell-
shaped and close to symmetric around the mean.

39

4 Results and Discussions

The MSE loss function uses the squared error term, implying that larger errors are

emphasized more. As the errors are generally larger at high RUL values, i. e. early in

long-lived cell lives, these samples might disproportionally influence the weight update.

If the model is 1% off in predicting a RUL of 2000, the MSE is 202. If the model is 1%

off in predicting a RUL of 200, the MSE is 4. This means that the model might focus

on improving the performance on very high RULs at the cost of performance closer to

the EOL.

Few samples for high RULs can be a reason why the CNN consistently predicts lower

RULs for targets above 1000 cycles. There might be too few samples to give accurate

predictions in high regions. The fact at the large RUL are considerably fewer in number

downweighs the accumulated contribution from these large errors, but the error terms

might be large enough to nudge the model toward higher predictions overall. This could

explain some of the reasons why the model tends to overestimate RULs below 1000

cycles. With such a wide spread of values, the model might be more incentivized to give

up accuracy for very low RULs to gain some accuracy for higher RULs. We can observe

from fig. 4.4a that the model seems reluctant to predict low values.

There exist other loss functions that weigh errors differently. The MAD loss function uses

the absolute error and will emphasize all errors equally. More advanced loss functions as

the Huber loss uses MSE loss for small errors and MAD loss for larger errors. The loss

function can also be customized to meet more specific objectives. If accuracy toward

the end of life is more important than in the beginning, this could be incorporated by

penalizing errors toward the end of life more.

For this work, the MSE is considered a suitable option. The goal in terms of accuracy

is to obtain a model good enough to make reasonable statements about the connection

between CNN predictions and degradation observables. The focus has been on overall

good performance. Without any additional constraints on what part of the predictions

is most important, MSE is a reasonable choice. However, a different loss function might

be more suitable in a more practical application, particularly for the prediction of RUL

in units of cycles. Some additional objectives should be formulated to guide the design

and evaluate if one loss function is better than another. This is considered outside of

the scope of this work but is encouraged in a more practical application.

4.3 Looking Into the Black Box

The CNN, like many ML models, is a black-box approach. The processes and mech-

anisms governing the decision-making process within the model are not visible to the

outside world. The inner workings of the model do not need to be understood for

utilizing such models. This is one of the strengths of black-box approaches; however,

it also poses challenges regarding transparency. Explainability analysis can help build

trustworthy and accountable models and reveal potential errors and biases. Improving

the understanding of the models might also uncover new and valuable insights into the

underlying process being modeled, contributing to the knowledge of the field.

40

4.3 Looking Into the Black Box

To get a better understanding of the aspects guiding the predictions of the model, we

utilize the embedding vector (see fig. 3.4) and the weight of the linear layer. Given the

consistent and improved performance of the CNN for normalized RUL predictions, we

continue with this model for the following analysis.

4.3.1 Which Voltage Regions Are Important?

Exploring the weights of the linear layer is a natural starting point to identify which

parts of the input contribute to decreasing the predicted RUL. Each of the three output

channels of the feature extractor produces a feature vector, that together composes

the embedding vector. The output of the CNN is the dot product of the linear layer

weights and the embedding vector. Since the ReLU function is applied at every layer,

all elements of the embedding vector will be positive. Consequently, a negative weight

in the linear layer will contribute to decreasing the predicted normalized RUL. This

correlation suggests that the receptive field of high negative weights contains signals

indicating degradation.

First, we identify the negative weights in the linear layer. The negative weights are

visualized in fig. 4.9a. A darker blue color indicates more negative weight. All non-

negative weights are shown in white. The weights are stacked by channel, and the

horizontal axis corresponds to the positions in the feature vector. Most of the negative

weights are associated with channel 3. Furthermore, the weights are summed over the

channels to get a better picture of the most negative regions overall. The sum of the

weights is displayed in fig. 4.9b, using the same color bar. Most of the negative weights

are located between nodes 19 and 51, with a higher density observed at the ends of this

range. The hatched areas in the figure indicate the five positions along the embedding

vector with the most negative weights combined. The corresponding receptive fields are

displayed in fig. 4.9c. Two examples of ∆dQdV input curves are shown for reference.

Negative weights assigned to these receptive fields indicate that the CNN has learned to

associate certain features at these locations with reduced remaining life.

As described in section 2.1.3, the shape of the IC curves results from the electrochemical

processes on the electrodes. Specifically, the peaks correspond to the graphite staging.

At low currents, the peaks can be assigned to specific staging phases, but at high currents,

the peaks broaden and merge together. Additionally, the IC peaks shift to lower voltages

at higher currents due to increased over-potential in the cell. These effects are clearly

visible in the IC curves for the graphite||LFP cell in this dataset. As depicted by fig. 3.3,

the IC curve appears as a single broad peak from 2.85V to 3.25V, with a small shoulder

appearing at around 3.09V. Considering the discussion in section 2.1.3, graphite staging

is expected to occur in this region; however, it is infeasible to distinguish the individual

stages.

Receptive fields A, B, and E cover the region of the IC curve that can be assigned to

graphite staging. As the cell approaches the end of life, we expect to observe changes

in intensity, location, and width of the peak. Such changes will appear in the ∆dQdV

curves. The negative weights perceiving these areas suggest that the CNN identifies

41

4 Results and Discussions

0 10 20 30 40 50 60
Embedding space

C
ha

nn
el

 1
C

ha
nn

el
 2

C
ha

nn
el

 3
0.25 0.20 0.15 0.10 0.05 0.00

(a)

0 10 20 30 40 50 60
Embedding space

su
m

N
on

e

(b)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
Voltage (V)

0

1

2

3

dQ
dV

 (A
h/

V)

ABC D E

(c)

Figure 4.9: Visualization of the weights in the linear layer. (a) Heatmap of the negative
weights of the linear layer. Darker blue indicates more negative weights and
all non-negative weights are shown in white. (b) Weights summed over the
three channels, with the same color bar. The hatched area indicates the five
positions with the most negative weights combined. (c) The receptive field
corresponding to the nodes with the most negative weights combined. They
are labeled as A to E from most negative to least negative associated weights.
Two examples of ∆dQdVs are included for reference.

42

4.3 Looking Into the Black Box

signals relating to the staging mechanisms and interprets these as signs of degradation.

High negative weights are also associated with the receptive fields C and D, covering

the area from 2.43V to 2.53V. This voltage region is associated with SEI-formation and

electrolyte reduction [66], suggesting that the network has identified patterns related to

SEI stability that influence the EOL.

4.3.2 Which Patterns Are Important?

The receptive fields of the negative nodes indicate where the CNN picks up signs of an

aging cell. However, it does not say anything about which patterns the CNN recognized.

To understand this, we need to look at the embedding vector activations. For a negative

linear node to reduce the output value, the corresponding activation must be non-zero.

The higher the activation, the more the output decreases.

To find this, the embeddings for the training set were obtained by passing all training

samples through the CNN and extracting the intermediate embedding representation.

Then, the 20 curves yielding the maximum activations at the nodes of interest were

identified. These input curves represent the patterns that give the maximum activation

at the most negative nodes.

Curve 1
Curve 2
Difference

(a) Peak disappearing

Curve 1
Curve 2
Difference

(b) Left shift

Curve 1
Curve 2
Difference

(c) Right shift of left tail

Figure 4.10: Toy plots visualizing how shifts and intensity reductions manifest when
subtracting two curves.

Before exploring the patterns appearing, let us take a step back and clarify how the shape

of the ∆dQdV curves relates to changes in the IC curves. A decrease in the magnitude of

a peak in a specific IC curve will appear as a positive peak in our ∆dQdV, as displayed

in fig. 4.10a. The width and intensity reflect the original shape of the peak. As evident

from the toy example in fig. 4.10c, a shift may also appear as a peak in the difference

curve. A slight shift in a steep curve results in a high-intensity peak, as illustrated in

fig. 4.10b. A shift in the gentle slope results in a broad and low peak. Figure 4.10c

exemplifies how a reduction of the most prominent peak locally appears as a shift of the

43

4 Results and Discussions

gentle slope, resulting in the same plateau-like shape. Because the slope is shifted to

higher voltages as opposed to the example in fig. 4.10b, the ∆dQdV peak is positive. A

combination of these patterns may simultaneously be present in the ∆dQdV curves.

The 20 inputs yielding maximum activations in receptive field B at channel 3 are visu-

alized as dark blue lines in fig. 4.11a. The light blue are examples of input curves that

give zero activation. These are included to help distinguish which input patterns are

triggering the activation. The gray area represents the input outside of the receptive

field. This is not visible for the node but is included for easier interpretation. The re-

ceptive field of the node covers the interval from 2.84V to 2.94V. The activating inputs

clearly differ from the non-activation examples and are characterized by being positive,

relatively flat, and increasing toward higher voltages. In accordance with fig. 4.10c, this

shape of the ∆dQdV originates from a shift of the gentle IC slope to higher voltages. The

IC peak generally tends to shift towards lower voltages, as illustrated in fig. 3.3b. Thus,

the shape in the activating patterns can be attributed to the narrowing of the IC peak.

A narrower peak means less capacity available in this voltage window. Considering that

the peaks in this voltage region can be assigned to graphite staging, the signal that the

CNN picks up seems to correspond with the anode’s reduced ability to accept lithium

ions at this voltage.

Figure 4.11b shows the most activating inputs in receptive field E at channel 3, covering

3.01V to 3.11V. The activating inputs exhibit the same characteristics as described

above. This receptive field also includes the region where the shoulder peak of the

initial IC curve typically appears. Looking at the maximum activations, a small bump

is visible around 3.09V. This can be interpreted as a peak reduction. This pattern does

not appear in the zero-activation examples. The CNN does not necessarily recognize the

shape of the bump itself, but rather the increased value of the ∆dQdV. The CNN seems

to identify the positive plateau in the ∆dQdV originating from the change in slope, in

addition to the intensity reduction or disappearance of the shoulder peak, indicating

that the capacity is less accessible at the corresponding staging phase, at least at that

particular voltage.

Receptive field A from 3.20V to 3.30V corresponds to the most negative linear weights

combined, and the weight at channel 3 is the most negative individual weight overall. The

20 inputs giving maximum activation at this node are displayed in fig. 4.11c. While the

two previous activation plots have shown a clear difference between maximum activating

patterns and non-activating patterns, the distinction is not as obvious in this case. The

dark blue curves have a flat shape close to zero and partially overlap with the non-

activating patterns. The receptive field covers the region just at the beginning of the

∆dQdV peak corresponding to the shift of the IC peak (see fig. 4.10b). However, some

of the curves with zero activation also include this shift. The activating patterns seem

to have slightly higher values at the beginning of the peak, and in the right half of the

window, the non-activating patterns are more tightly centered on zero. The fact that

the maximum and minimum activation inputs appear very similar could indicate the

variations between ∆dQdVs in this region are small. The high weight assigned to this

node can be a way to put more emphasis on a weak signal.

44

4.3 Looking Into the Black Box

2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975
Voltage (V)

1

0

1

2

dQ
dV

 (A
h/

V)

(a) Node 36

2.975 3.000 3.025 3.050 3.075 3.100 3.125 3.150
Voltage (V)

2

0

2

4

6

dQ
dV

 (A
h/

V)

(b) Node 43

3.175 3.200 3.225 3.250 3.275 3.300 3.325
Voltage (V)

1

0

1

2

dQ
dV

 (A
h/

V)

(c) Node 51

Figure 4.11: Maximum activating inputs of three nodes at channel 3. The light blue
lines are examples of non-activation inputs.

45

4 Results and Discussions

2.400 2.425 2.450 2.475 2.500 2.525 2.550 2.575
Voltage (V)

0.4

0.2

0.0

dQ
dV

 (A
h/

V)

(a) Node 19

2.450 2.475 2.500 2.525 2.550 2.575 2.600 2.625
Voltage (V)

0.4

0.2

0.0

dQ
dV

 (A
h/

V)

(b) Node 21

Figure 4.12: Maximum activating inputs of two nodes at channel 2. The light blue lines
are examples of non-activation inputs.

46

4.4 Lessons Learned

For receptive fields C and D, the inputs giving maximum activation at channel 2 are

displayed in fig. 4.12a and fig. 4.12b, respectively. The receptive fields of these two

nodes are overlapping and cover voltages between 2.43V to 3.30V. In both plots, the

activations seem to be related to negative peaks. A negative peak in the ∆dQdV curve

corresponds to increased intensity or appearance of a new peak relative to the initial IC

curve.

As evident in both fig. 4.12a and fig. 4.12b, the position and shape of the peak within

the receptive field seem to influence the activation. fig. 4.12a, displays peaks appearing

around 2.45V, however, these pattern results in zero activation. The same is observable

in fig. 4.12b, where the non-activating peaks also have a significantly higher intensity

than the activating patterns. This could imply that a negative peak must be located in

the middle or right part of the receptive field to be observable for a node at channel 2.

The activation patterns also exhibit a more oscillating behavior than the non-activating

peaks, suggesting that this might also be a feature that the CNN identifies.

The CNN exhibits the ability to find consistent patterns to distinguish between cycles

early and late in life. The regions that seem most important for the CNN to predict

low RUL are those associated with graphite staging. Input from 2.43V to 3.30V also

seem to contribute toward lower RUL. We can observe degradation from IC curves

under fast cycling, demonstrating the potential to also use fast-charging IC curves for

RUL prediction and SOH monitoring, representing more realistic operation conditions

compared to conventional slow-charging IC curves.

4.4 Lessons Learned

Looking back at the project, it is important to reflect on alternative approaches that

could have been taken and acknowledge the limitations of the results.

Given more time, a more sophisticated approach to noise handling could have been

pursued. The dataset contains some IC curves significantly influenced by measurement

noise. The strategy for handling noisy curves involved a naive approach where samples

with some noise above a threshold were removed. As no improvement was observed

when removing outliers at various thresholds, it was decided not to remove any addi-

tional samples than those deemed noisy by [9]. However, this decision was made using a

preliminary model before the final model was obtained. It is possible that the strategy

could have given a different outcome using the final model and other adjustments in-

troduced during the process. Employing a smoothing algorithm such as bin smoothing,

simple moving average, or local weighted regression as a part of the pre-processing or

integrated with the ML model could have been beneficial.

We also decided not to normalize or standardize the input data in order to do minimal

alternations to the data. Such a transformation adds a layer of processing that would

make it more challenging to relate the patterns observed by the CNN to the correspond-

ing physical observations.

47

4 Results and Discussions

These strategies related to pre-processing of input data could have been explored more

in-depth. The main reasons for not doing this were the time constraints and the intention

of preserving the physical meaning of the input. However, this might have limited the

performance in terms of accuracy. These design choices could be reconsidered for future

applications where accuracy is of higher priority.

A limitation of the model is the high RMSE compared to the current state-of-the-art,

particularly when predicting RUL in cycles. This should be considered when leveraging

the CNN’s behavior to establish connections between IC curves and battery degrada-

tion. Acknowledging that less accurate predictions can introduce uncertainty into the

arguments presented in section 4.3 is important.

A related limitation is an implicit assumption that non-linear features are presented

within a region of 69 input elements. The model’s output is a linear transformation

of the embedding vector (with ReLU activation), implying that the model assumes a

close-to-linear mapping between the embedding and the RUL. Non-linear relationships

are primarily captured by the feature extractor. The feature extractor can identify non-

linear patterns within its receptive fields, which cover an area of 69 consecutive input

elements. A deeper model with a broader receptive field could be employed to capture

non-linear relationships across a wider portion of the input. This might improve accuracy

but compromise interpretability. Again, the objective of simplicity has guided the design

of the CNN, but it is an aspect to be aware of.

We utilized the IC curves from the dataset directly. Computing an IC curve involves

a numerical differentiation of the voltage profile. The specific method used for differ-

entiating the discharge capacity curve is unknown, which introduces the possibility of

numerical or interpolation effects influencing the IC curves and subsequently being inter-

preted by the CNN. We cannot completely discard the possibility that the differentiation

algorithm introduces certain artifacts and that these are what we observed in fig. 4.12

considering their smooth behavior. However, the patterns in the specific voltage region

still correlate strongly with decreasing RUL. We expect differentiation artifacts to in-

troduce random noise in the inputs and drive accuracy down, but it is unlikely such

patterns would be as correlated to RUL as it is observed in our results. Even if certain

patterns result from the differentiation algorithm, an underlying factor still drives these

patterns to change as the cell ages. If some patterns that the CNN associates with de-

creased RUL result from the differentiation, it suggests that degradation plays a role in

the emergence of these artifacts.

48

5 Conclusion and Further Work

5.1 Conclusion

In this work, we have exploited ML models for lifetime predictions of LIB. Specifically,

we have proposed a shallow 1D-CNN model utilizing IC difference curves between any

discharge cycle and the initial discharge cycle to predict RUL, both normalized and in

units of cycles. Then, we analyzed the inner workings of the model to gain insight into

underlying processes guiding the decisions of the model. The proposed CNN architecture

has a shallow structure, aiming to balance accuracy and interpretability. Despite the

simplistic structure and limited input features, the CNN achieves accuracy comparable

to related models.

The proposed CNN achieves good accuracy when predicting normalized RUL and ex-

hibits the ability to connect spatial features of the ∆dQdV curves to the relative location

within the cycle life. This suggests that the IC curves encapsulate sufficient information

about the state of the cell to enable accurate predictions of normalized RUL predictions.

The CNN demonstrates reasonable accuracy when predicting RUL in units of cycles, but

falls short of state-of-the-art performance, particularly for long-lived cells. This can be

attributed to the wide range of target values and uneven distribution of training data,

in combination with the simple modeling approach. However, the model clearly demon-

strates the ability to identify and establish patterns in ∆dQdV curves related to RUL.

The results emphasize the usefulness of CNN-processed ∆dQdV curves for lifetime pre-

dictions. While the performance in normalized RUL predictions is promising, the results

indicate that relying solely on ∆dQdV discharge curves may not be sufficient for accu-

rate RUL predictions. Further enhancements to the model or the inclusion of additional

features should be considered to improve prediction accuracy and robustness. It is

worth highlighting that the model was not designed to achieve the highest predictive

performance possible but also to enable interpretation of the decision-making process of

the CNN. This emphasis resulted in a simpler model compared to other deep learning

approaches. Nevertheless, the CNN demonstrates satisfactory performance.

Furthermore, we have explored which part of the input the CNN correlates with low RUL.

The voltage window corresponding to graphite staging emerges as one of the important

regions. The CNN identifies patterns related to reduced accessible capacity in this volt-

age window. The CNN also correlates low remaining life with the presence of peaks in

the IC curves at voltages between 2.43V and 2.53V. While the origin of these peaks is not

certain, the findings suggest that they may be related to some underlying degradation

process. Overall, the CNN identifies consistent patterns indicating degradation.

49

5 Conclusion and Further Work

5.2 Further Work

The scope of this work can be further expanded to address some remaining challenges

that have been identified, and also to better tailor it for both online battery monitoring

and degradation diagnostics. To start with, conducting a sensitivity analysis can provide

insight into the reliability of the model and further examine the validity of the findings,

particularly the consistency of the identified patterns and regions. This would involve

systematically training and evaluating the CNN with various initialization or small model

adjustments. If the patterns and input regions that correlate with low RUL remain

consistent across different initializations or model adjustments, it would strengthen the

validity of our conclusions. Performing a sensitivity analysis might be useful for assessing

the robustness of the CNN performance and the credibility of the insights derived from

the model.

There are several avenues to explore in order to enhance the explainability of the CNN.

While this work has used the weights of the linear layer as a starting point for investi-

gating the predictions of the CNN, focusing on the activations within the CNN could

be an alternative approach. By exploring the activations at different layers, it may be

possible to gain further insight into the decision-making process of the model, and also

get a more comprehensive picture of the mechanisms influencing the predictions. Addi-

tionally, there exist other explainability techniques such as LIME, SHAP, and layerwise

relevance propagation that could provide complementary information. Improving the

understanding of the ML models for lifetime predictions and SOH estimation is cru-

cial for ensuring reliable and transparent models and may also reveal new and valuable

insight into the underlying degradation processes.

One of the main limitations of onboard IC analysis for SOH estimation in BMS is the

requirement of IC curves from low current rates [25, 26], typically C/25. Diagnostics

involves stopping the normal operation of the battery system to perform check-up cycles

at low rates, which is undesirable due to the outage. Instead, this work demonstrates

the potential of utilizing IC curves obtained from fast discharging at 4C for RUL predic-

tion. While the proposed strategy may not be directly applicable in a BMS, this work

demonstrates the potential of fast-rate IC curves for battery monitoring. Adjustments

are necessary to make the approach sufficiently accurate to be feasible in a practical

application. Such adjustments could include employing a deeper model, incorporating

more complex ML components, and using additional input features. For instance, we

have seen that the predictions correlate with the internal cell temperature, and adding

this feature might help the model account for this effect. Additional measurements

could enable the model to better capture the relationship between correlating factors

and further improve accuracy. The proposed model has quite a simple architecture,

and it is reasonable to assume that a more complex model fed with richer input data

will achieve better predictive performance. Enhancements such as adding layers to in-

crease the receptive field or incorporating recurrent layers to capture time dependencies

between cycles can further improve the model’s performance.

Although the strategy uses fast-rate IC curves, the cycling protocols are not represen-

tative of the real-life operation of an electric vehicle. To further assess the utility of

50

5.2 Further Work

this kind of fast-rate IC for lifetime predictions, the approach should be evaluated on

more realistic driving cycles. There are also challenges related to measurement noise

and performing the online numerical differentiation for obtaining the IC curves [25, 26]

that need to be addressed. Further research efforts focused on how degradation modes

manifest in IC curves under high current rates have the potential to uncover new insights

and enhance the utility of fast-rate IC curves.

Another interesting path to explore is to extend this strategy to other cathode materials

using a transfer learning approach. In transfer learning, knowledge gained from a model

trained on one task is applied to a different but related task. Transfer learning might

accelerate the training on a new chemistry by initializing the model with parameters

from a model pre-trained on another chemistry. This CNN might be suited to generalize

to other chemistries, for instance, by freezing the parameters of the feature extractor

and only updating the linear layer. Successful transfer learning assumes that features

learned by the original model are general for both the original dataset and the new

task [40]. Our CNN is trained on the difference between IC curves, potentially giving

the CNN the ability to extract more general features relating to peak reductions and

shifts in the IC curve. Even if the shape of the IC curve might vary between different

chemistries and conditions, changes in the IC curves are still expected to occur as the cell

degrades. Furthermore, less data is needed to adapt the technique to other chemistries.

If a transfer learning approach can be applied successfully, the new dataset can be

significantly smaller than the original dataset [67]. This is particularly advantageous

considering the time-consuming and costly nature of obtaining battery cycling aging

data.

In conclusion, there are several directions for further investigation and improvement.

By pursuing these research areas, we can advance the understanding and application of

CNN-processed fast-rate IC curves in the context of battery degradation and lifetime

predictions.

51

Bibliography

[1] IPCC. Summary for policymakers. In: Climate Change 2023: Synthesis Report. A

Report of the Intergovernmental Panel on Climate Change. Contribution of Working

Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)], 2023. (in

press).

[2] UN. Causes and Effects of Climate Change. https://www.un.org/en/climatec

hange/science/causes-effects-climate-change, 2023. Accessed: 2023-05-27.

[3] World Health Organization. COP24 Special Report: Health and Climate Change,

2018. Licence: CC BY-NC-SA 3.0 IGO.

[4] John B. Goodenough and Youngsik Kim. Challenges for Rechargeable Li Batteries.

Chemistry of Materials, 22(3):587–603, 2010.

[5] Beth E. Murdock, Kathryn E. Toghill, and Nuria Tapia-Ruiz. A Perspective on

the Sustainability of Cathode Materials Used in Lithium-Ion Batteries. Advanced

Energy Materials, 11(39), 2021.

[6] Christoph R. Birkl, Matthew R. Roberts, Euan McTurk, Peter G. Bruce, and

David A. Howey. Degradation diagnostics for lithium ion cells. Journal of Power

Sources, 341:373–386, 2017.

[7] Mohammad Shahjalal, Probir Kumar Roy, Tamanna Shams, Ashley Fly, Jahedul Is-

lam Chowdhury, Md. Rishad Ahmed, and Kailong Liu. A review on second-life of

li-ion batteries: Prospects, challenges, and issues. Energy, 241:122881, 2022.

[8] Wladislaw Waag, Christian Fleischer, and Dirk Uwe Sauer. Critical Review of the

Methods for Monitoring of Lithium-ion Batteries in Electric and Hybrid Vehicles.

Journal of Power Sources, 258:321–339, 2014.

[9] Kristen A. Severson, Peter M. Attia, Norman Jin, Nicholas Perkins, Benben

Jiang, Zi Yang, Michael H. Chen, Muratahan Aykol, Patrick K. Herring, Dim-

itrios Fraggedakis, Martin Z. Bazant, Stephen J. Harris, William C. Chueh, and

Richard D. Braatz. Data-driven prediction of battery cycle life before capacity

degradation. Nature Energy, 4(5):383–391, May 2019.

[10] Gavin Harper, Roberto Sommerville, Emma Kendrick, Laura Driscoll, Peter Slater,

Rustam Stolkin, Allan Walton, Paul Christensen, Oliver Heidrich, Simon Lambert,

Andrew Abbott, Karl Ryder, Linda Gaines, and Paul Anderson. Recycling Lithium-

Ion Batteries From Electric Vehicles. Nature, 575(7781):75–86, 11 2019.

53

https://www.un.org/en/climatechange/science/causes-effects-climate-change
https://www.un.org/en/climatechange/science/causes-effects-climate-change

Bibliography

[11] E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, and F. Huet. A

Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion

Batteries: Power and Capacity Fade Simulations. Journal of The Electrochemical

Society, 160(4):A616, feb 2013.

[12] J. Li, K. Adewuyi, N. Lotfi, R.G. Landers, and J. Park. A Single Particle Model

With Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of

Health (SOH) Estimation. Applied Energy, 212:1178–1190, 2018.

[13] Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu.

Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue

Mechanics. Journal of The Electrochemical Society, 159(10):A1730, aug 2012.

[14] Kenji Takahashi and Venkat Srinivasan. Examination of Graphite Particle Cracking

as a Failure Mode in Lithium-Ion Batteries: A Model-Experimental Study. Journal

of The Electrochemical Society, 162(4):A635, jan 2015.

[15] Samuel Greenbank and David Howey. Automated Feature Extraction and Selection

for Data-Driven Models of Rapid Battery Capacity Fade and End of Life. IEEE

Transactions on Industrial Informatics, 18(5):2965–2973, 2022.

[16] Robert R. Richardson, Michael A. Osborne, and David A. Howey. Battery health

prediction under generalized conditions using a Gaussian process transition model.

Journal of Energy Storage, 23:320–328, 2019.

[17] Meru A. Patil, Piyush Tagade, Krishnan S. Hariharan, Subramanya M. Kolake,

Taewon Song, Taejung Yeo, and Seokgwang Doo. A novel multistage support vector

machine based approach for Li ion battery remaining useful life estimation. Applied

Energy, 159:285–297, 2015.

[18] Jingwen Wei, Guangzhong Dong, and Zonghai Chen. Remaining Useful Life Pre-

diction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Fil-

ter and Support Vector Regression. IEEE Transactions on Industrial Electronics,

65(7):5634–5643, 2018.

[19] Datong Liu, Wei Xie, Haitao Liao, and Yu Peng. An Integrated Probabilistic Ap-

proach to Lithium-Ion Battery Remaining Useful Life Estimation. IEEE Transac-

tions on Instrumentation and Measurement, 64(3):660–670, 2015.

[20] Xiaoyu Li, Lei Zhang, Zhenpo Wang, and Peng Dong. Remaining useful life predic-

tion for lithium-ion batteries based on a hybrid model combining the long short-term

memory and elman neural networks. Journal of Energy Storage, 21:510–518, 2019.

[21] Jiantao Qu, Feng Liu, Yuxiang Ma, and Jiaming Fan. A Neural-Network-Based

Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery. IEEE

Access, 7:87178–87191, 2019.

[22] Laura Hannemose Rieger, Eibar Flores, Kristian Frellesen Nielsen, Poul Norby,

Elixabete Ayerbe, Ole Winther, Tejs Vegge, and Arghya Bhowmik. Uncertainty-

aware and explainable machine learning for early prediction of battery degradation

trajectory. Digital Discovery, 2:112–122, 2023.

54

Bibliography

[23] Matthieu Dubarry, Cyril Truchot, and Bor Yann Liaw. Synthesize battery degra-

dation modes via a diagnostic and prognostic model. Journal of Power Sources,

219:204–216, 2012.

[24] David Anseán, Vı́ctor Manuel Garćıa, Manuela González, Cecilio Blanco-Viejo,

Juan Carlos Viera, Yoana Fernández Pulido, and Luciano Sánchez. Lithium-Ion

Battery Degradation Indicators Via Incremental Capacity Analysis. IEEE Trans-

actions on Industry Applications, 55(3):2992–3002, 2019.

[25] Rui Xiong, Linlin Li, and Jinpeng Tian. Towards a Smarter Battery Management

System: A Critical Review on Battery State of Health Monitoring Methods. Journal

of Power Sources, 405:18–29, 2018.

[26] Sunil K. Pradhan and Basab Chakraborty. Battery Management Strategies: An

Essential Review for Battery State of Health Monitoring Techniques. Journal of

Energy Storage, 51:104427, 2022.

[27] Jinchao Liu, Margarita Osadchy, Lorna Ashton, Michael Foster, Christopher J.

Solomon, and Stuart J. Gibson. Deep convolutional neural networks for Raman

spectrum recognition: a unified solution. Analyst, 142:4067–4074, 2017.

[28] Salim Malek, Farid Melgani, and Yakoub Bazi. One-dimensional convolutional

neural networks for spectroscopic signal regression. Journal of Chemometrics, 32(5),

2018.

[29] Xiaolei Zhang, Tao Lin, Jinfan Xu, Xuan Luo, and Yibin Ying. DeepSpectra: An

end-to-end deep learning approach for quantitative spectral analysis. Analytica

Chimica Acta, 1058:48–57, 2019.

[30] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey

of the Recent Architectures of Deep Convolutional Neural Networks. Artificial

Intelligence Review, 53(8):5455–5516, Dec 2020.

[31] John B. Goodenough and Kyu-Sung Park. The Li-Ion Rechargeable Battery: A

Perspective. Journal of the American Chemical Society, 135(4):1167–1176, 2013.

[32] Jakob Asenbauer, Tobias Eisenmann, Matthias Kuenzel, Arefeh Kazzazi, Zhen

Chen, and Dominic Bresser. The success story of graphite as a lithium-ion anode

material – fundamentals, remaining challenges, and recent developments including

silicon (oxide) composites. Sustainable Energy Fuels, 4:5387–5416, 2020.

[33] Matthieu Dubarry and Bor Yann Liaw. Identify capacity fading mechanism in a

commercial LiFePO4 cell. Journal of Power Sources, 194(1):541–549, 2009.

[34] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient Process-

ing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE,

105(12):2295–2329, 2017.

[35] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete.

A survey on modern trainable activation functions. Neural Networks, 138:14–32,

2021.

55

Bibliography

[36] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedforward

Networks are Universal Approximators. Neural Networks, 2(5):359–366, 1989.

[37] Michael A. Nielsen. Neural Networks and Deep Learning. http://neuralnetwor

ksanddeeplearning.com/index.html, 2015. Accessed: 2022-13-12.

[38] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017. arXiv:1412.6980.

[39] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, 2019.

arXiv:1711.05101.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

Cambridge, MA, USA, 2017.

[41] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift. CoRR, abs/1502.03167, 2015.

[42] Dang Ha The Hien. A guide to receptive field arithmetic for Convolutional Neural

Networks. https://blog.mlreview.com/a-guide-to-receptive-field-arith

metic-for-convolutional-neural-networks-e0f514068807, 2017. Accessed:

2023-05-21.

[43] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 2020.

arXiv:2003.05991.

[44] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial

Networks, 2014. arXiv:1406.2661.

[45] M. Stone. Cross-Validatory Choice and Assessment of Statistical Predictions. Jour-

nal of the Royal Statistical Society: Series B (Methodological), 36(2):111–133, 1974.

[46] Tadayoshi Fushiki. Estimation of prediction error by using K-fold cross-validation.

Statistics and Computing, 21(2):137–146, 2011.

[47] Juan D. Rodriguez, Aritz Perez, and Jose A. Lozano. Sensitivity analysis of k-

fold cross validation in prediction error estimation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32(3):569–575, 2010.

[48] Bruce G. Marcot and Anca M. Hanea. What is an optimal value of k in k-fold

cross-validation in discrete bayesian network analysis? Computational Statistics,

36:2009–2031, 2020.

[49] Bhaskar Saha and Kai Goebel. Battery Data Set. NASA Prognostics Data Repos-

itory, 2007.

[50] Peter M. Attia, Aditya Grover, Norman Jin, Kristen A. Severson, Todor M. Markov,

Yang-Hung Liao, Michael H. Chen, Bryan Cheong, Nicholas Perkins, Zi Yang,

Patrick K. Herring, Muratahan Aykol, Stephen J. Harris, Richard D. Braatz, Ste-

fano Ermon, and William C. Chueh. Closed-loop optimization of fast-charging pro-

tocols for batteries with machine learning. Nature, 578(7795):397–402, Feb 2020.

56

http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
https://blog.mlreview.com/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
https://blog.mlreview.com/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

Bibliography

[51] CALCHE. Battery Data. https://calce.umd.edu/battery-data, 2016. Ac-

cessed: 2023-05-21.

[52] Kristen A. Severson, Peter M. Attia, Patrick K. Herring, Richard D. Braatz, and

Martin Hwasser. Data-Driven Prediction of Battery Cycle Life before Capacity

Degradation, 2019. Accessed: 2023-04-07.

[53] Paul H. C. Eilers. A perfect smoother. Analytical Chemistry, 75(14):3631–3636,

2003.

[54] Jie Yang, Jinfan Xu, Xiaolei Zhang, Chiyu Wu, Tao Lin, and Yibin Ying. Deep

learning for vibrational spectral analysis: Recent progress and a practical guide.

Analytica Chimica Acta, 1081:6–17, 2019.

[55] Lanfa Liu, Min Ji, and Manfred Buchroithner. Transfer Learning for Soil Spec-

troscopy Based on Convolutional Neural Networks and Its Application in Soil Clay

Content Mapping Using Hyperspectral Imagery. Sensors, 18(9):3169, 2018.

[56] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe,

Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren

Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-

gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

PyTorch: An Imperative Style, High-Performance Deep Learning Library, 2019.

arXiv:1912.01703.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[59] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization framework,

2019. arXiv:1907.10902.

[60] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering, 9(3):90–95, 2007.

[61] Lei Ren, Jiabao Dong, XiaokangWang, Zihao Meng, Li Zhao, and M. Jamal Deen. A

Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remain-

ing Useful Life. IEEE Transactions on Industrial Informatics, 17(5):3478–3487,

2021.

57

https://calce.umd.edu/battery-data

Bibliography

[62] Calum Strange and Gonçalo dos Reis. Prediction of future capacity and internal

resistance of li-ion cells from one cycle of input data. Energy and AI, 5:100097,

2021.

[63] Joonki Hong, Dongheon Lee, Eui-Rim Jeong, and Yung Yi. Towards the swift

prediction of the remaining useful life of lithium-ion batteries with end-to-end deep

learning. Applied Energy, 278:115646, 2020.

[64] Soo Seok Choi and Hong S Lim. Factors that affect cycle-life and possible degra-

dation mechanisms of a li-ion cell based on licoo2. Journal of Power Sources,

111(1):130–136, 2002.

[65] Li Chai, Jun Du, Qing-Feng Liu, and Chin-Hui Lee. Using Generalized Gaus-

sian Distributions to Improve Regression Error Modeling for Deep Learning-Based

Speech Enhancement. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 27(12):1919–1931, 2019.

[66] Seong Jin An, Jianlin Li, Claus Daniel, Debasish Mohanty, Shrikant Nagpure, and

David L. Wood. The state of understanding of the lithium-ion-battery graphite

solid electrolyte interphase (sei) and its relationship to formation cycling. Carbon,

105:52–76, 2016.

[67] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks?, 2014. arXiv:1411.1792 [cs.LG].

58

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background and Motivation
	Contribution and Research Objectives
	Contribution
	Objectives

	Structure of the Thesis

	Theory
	Batteries
	Battery Working Principles
	Degradation Modes
	Incremental Capacity Analysis

	Deep Neural Networks
	Artificial Neurons
	Neural Networks as Universal Approximators
	Backpropagation and Gradient Descent
	Convolutional Neural Networks
	Other Types of DNNs
	Model Validation

	Method
	Dataset
	Data Preparation
	Train-Test Split

	Feature Engineering
	Regression Problem Formulation
	Model Architecture and Hyperparameters
	Composition of Layers and Activation Function
	Layer-Specific Parameters
	Training Configuration

	Training and Validation
	Evaluation Metrics
	Model Selection with Stratified k-fold Cross-Validation
	Model Optimization

	Implementation

	Results and Discussions
	Model Architecture
	Predictive Performance
	RUL Prediction
	Normalized RUL Prediction
	Error Analysis

	Looking Into the Black Box
	Which Voltage Regions Are Important?
	Which Patterns Are Important?

	Lessons Learned

	Conclusion and Further Work
	Conclusion
	Further Work

