
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Sindre Kummervold

Training of Reinforcement Learning
Agents for Autonomous Driving in
Simulated Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Morten Breivik
Co-supervisor: Frank Lindseth and Gabriel Kiss
June 2023

Sindre Kummervold

Training of Reinforcement Learning
Agents for Autonomous Driving in
Simulated Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Morten Breivik
Co-supervisor: Frank Lindseth and Gabriel Kiss
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

A system capable of autonomous driving needs to have several capabilities. Firstly, the vehicle

needs to be able to sense its environment, and secondly, it needs to use the information about

its surroundings to maneuver to its desired destination. This thesis is focused on the use of

Reinforcement Learning (RL) to maneuver the vehicle in its environment - the open-source

autonomous driving simulator CARLA. Previous RL systems in the CARLA simulator uses simple

vision encoders to sense their surroundings, possibly limiting their performance.

This thesis investigates the utilization of more complex pre-trained vision encoders in the con-

text of Reinforcement Learning (RL) for autonomous driving. Multiple agents were trained

in environments within the CARLA simulator, varying in complexity. The baseline training

using the Proximal Policy Optimization (PPO) algorithm with a complex transformer-based vi-

sion encoder produced suboptimal results, as the vehicle consistently veered off the road and

encountered crashes. Incorporating expert demonstrations through the General Reinforced

Imitation for Autonomous Driving (GRIAD) approach did not enhance performance, leaving

the vehicle stationary on the road. To overcome these limitations, a simplified environment

with reduced traffic complexity was created, resulting in notable advancements in subsequent

training runs.

In the simplified environment, both the complex encoder and a simple Convolutional Neural

Network (CNN) were employed. The CNN encoder demonstrated superior performance com-

pared to the TransFuser encoder. Nevertheless, both approaches encountered challenges in

avoiding collisions with other vehicles. It is important to note that the training duration only

was 1 million steps, necessitating further investigation to draw definitive conclusions.

iii

Future research should focus on assessing the impact of more complex vision encoders on the

training of RL agents. Extending the training time and gradually increasing traffic complexity

can lead to a more thorough understanding of the potential benefits and drawbacks associated

with sophisticated vision encoders in RL scenarios. By addressing these areas, advancements

can be made in the development of effective training methodologies for RL agents operating

in complex real-world environments.

iv

Sammendrag

Et system som er i stand til autonom kjøring, må ha flere funksjoner. For det første må kjøretøyet

kunne sanse omgivelsene sine, og for det andre må det bruke informasjonen om omgivelsene

for å manøvrere til ønsket destinasjon. Denne oppgaven er fokusert på bruken av Reinforce-

ment Learning (RL) for å manøvrere kjøretøyet i dets miljø - den autonome kjøresimulatoren

med åpen kildekode CARLA. Tidligere RL-systemer i CARLA-simulatoren bruker enkle syns-

enkodere for å registrere omgivelsene, noe som muligens begrenser ytelsen.

Denne oppgaven undersøker bruken av mer komplekse forhåndstrente syns-enkodere i sam-

menheng med Reinforcement Learning (RL). Flere agenter ble opplært i miljøer i CARLA-

simulatoren, med varierende kompleksitet og utfordringer. En ren RL agent ble trent for å gi ett

sammenligninigsgrtunnlag, ved bruk av Proximal Policy Optimization (PPO)-algoritmen med

Transfuser enkoderen og ga suboptimale resultater, ettersom kjøretøyet konsekvent svingte

av veien og kolliderte. Inntroduksjon av ekspertdemonstrasjoner gjennom General Reinforced

Imitation for Autonomous Driving (GRIAD)-tilnærmingen forbedret ikke ytelsen, og resulterte

i at kjøretøyet sto stille på veien. For å overvinne disse begrensningene ble det laget et foren-

klet miljø med redusert trafikkkompleksitet, noe som resulterte i store fremskritt i påfølgende

treninger.

I det forenklede miljøet ble både TransFuser-enkoderen og en enkel Convolutional Neural Net-

work (CNN) brukt. CNN-enkoderen demonstrerte bedre ytelse sammenlignet med TransFuser.

Likevel møtte begge tilnærmingene utfordringer med å unngå kollisjoner med andre kjøretøy.

Det er viktig å merke seg at opplæringsvarigheten var relativt kort, noe som nødvendiggjorde

ytterligere undersøkelser for å trekke definitive konklusjoner.

v

Fremtidig forskning bør fokusere på å vurdere virkningen av mer komplekse synskodere på

opplæringen av RL agenter. Å forlenge treningstiden kan føre til en mer grundig forståelse av

de potensielle fordelene og ulempene forbundet med sofistikerte syns-enkodere i RL-scenarier.

Ved å adressere disse områdene kan det gjøres fremskritt i utviklingen av effektive opplæringsme-

toder for RL-agenter som opererer i komplekse miljøer i den virkelige verden.

vi

Preface

The topic of autonomous driving has always fascinated me, and I am grateful for the opportu-

nity to delve deeper into this exciting and rapidly developing field as part of my studies. The

insights and knowledge I have gained during the course of this project have been invaluable,

and I am grateful to my supervisors for their guidance and support as I worked to complete

this report.

This report represents the culmination of months of hard work and dedication. I am grateful to

have had the support and guidance of my supervisors Morten Breivik, Frank Lindseth, Gabriel

Kiss, and Florian Wintel throughout the process.

I would also like to extend thanks to Jan Christan Meyer, who helped me a lot with the simu-

lator issues I encountered on Idun.

I hope that the information in this report will be useful to future students in the autonomous

driving field.

Sindre B. Kummervold

Trondheim, 12. June, 2023

vii

Table of Contents

Abstract . iii

Sammendrag . v

Preface . vii

List of Figures . xii

List of Tables . xvi

Acronyms . xviii

1 Introduction . 1

1.1 Motivation . 1

1.2 Background and Previous Work . 3

1.3 Problem Description . 4

1.4 Contributions . 5

1.5 Thesis Outline . 5

2 Background Theory . 7

2.1 Computer Vision . 7

2.2 Convolutional Neural Network (CNN) . 8

2.2.1 Inductive Biases . 9

2.3 Recurrent Neural Network (RNN) . 10

2.3.1 Long Short-Term Memory (LSTM) . 10

2.3.2 Gated Recurrent Unit (GRU) . 11

2.4 Transformers . 13

2.4.1 The Attention Mechanism . 13

2.4.2 Multi Headed Attention (MHA) . 14

2.4.3 Positional Encoding . 16

2.4.4 Encoder-Decoder Structure . 16

ix

TABLE OF CONTENTS

2.5 Imitation Learning (IL) . 17

2.6 Reinforcement Learning (RL) . 17

2.6.1 The State . 19

2.6.2 Actions . 20

2.6.3 Reward Function . 20

2.6.4 Policy Representations . 21

2.6.5 Policy Gradient Methods . 21

2.6.6 Temporal Difference Learning . 22

2.6.7 Off-policy vs On-policy . 23

2.6.8 Actor-Critic (AC) . 25

2.7 Information Theory and Statistics . 25

2.7.1 Shannon Entropy . 26

2.7.2 Kullback-Leibler (KL) Divergence . 26

2.7.3 Fraction of Explained Variance . 27

2.8 Transfuser . 27

2.8.1 Attention-Based Fusion . 28

2.8.2 Waypoint Prediction . 30

2.8.3 Auxiliary Tasks . 30

2.8.4 Control . 31

2.9 General Reinforced Imitation for Autonomous Driving (GRIAD) 32

3 Software and Algorithms . 35

3.1 Computational Resources . 35

3.1.1 Idun . 35

3.1.2 NAP02 . 36

3.1.3 VCXR12 . 36

3.2 Libraries and Tools . 37

3.2.1 CARLA Simulator . 37

3.2.2 Stable Baselines 3 (SB3) . 39

3.2.3 OpenAI Gym Interface . 40

3.3 Sensor Setup . 40

3.4 Choice of RL Algorithms . 41

3.4.1 Proximal Policy Optimization (PPO) . 42

3.4.2 Twin Delayed DDPG (TD3) . 43

3.5 Base Algorithm . 44

3.5.1 Vision Encooder . 45

3.5.2 Observation Space . 45

3.5.3 Action Space . 47

x

TABLE OF CONTENTS

3.5.4 Reward Function . 49

3.5.5 Network Architecture . 53

3.6 Parallel Training Environments . 53

3.7 Vision Pre-training . 54

3.7.1 New Dataset Generation . 55

3.7.2 Training of Encoder and Expert Agent . 55

3.8 Benchmarking . 56

4 Simulation and Results . 59

4.1 Issues With Training on Idun . 59

4.2 Vision Pre-training . 60

4.2.1 Graphical Differences Between CARLA 0.9.10 and 0.9.14 60

4.2.2 Training Results . 60

4.3 Experiment 1 - RL Baseline Using PPO . 63

4.3.1 Setup . 64

4.3.2 Results for Run 1 - Initial Setup . 65

4.3.3 Results for Run 2 - Reward Normalization and Learning Rate Scheduling 69

4.4 Experiment 2 - GRIAD Variation . 72

4.4.1 Setup . 72

4.4.2 Results . 72

4.5 Simplifying the Environment . 76

4.6 Experiment 3a - Transfuser in the Simplified Environment 76

4.6.1 Setup . 76

4.6.2 Results . 76

4.7 Experiment 3b - RL Training of CNN in the Simplified Environment 78

4.7.1 Setup . 78

4.7.2 Results for Run 1 . 79

4.7.3 Results for Run 2 . 79

4.8 Discussion . 80

4.8.1 Importance of Training Duration . 81

4.8.2 Simplified Environment and Encoder . 81

4.8.3 Impact of Expert Demonstrations . 83

4.8.4 Issues with the Transfuser Dataset Generation 83

5 Conclusions and Future Works . 87

5.1 Conclusions . 87

5.2 Reflections on the Project Execution . 88

5.3 Future Work . 89

5.3.1 Camera Calibration . 89

xi

TABLE OF CONTENTS

5.3.2 Explainable Reinforcement Learning (XRL) 89

5.3.3 Improvement of Dataset Generation . 90

Bibliography . 91

A Videos and Images From Simulator . 97

A.1 Videos From Training Runs . 97

B RL Training Graphs . 99

B.1 PPO . 100

B.1.1 Run 1 . 100

B.1.2 Run 2 . 101

B.2 General Reinforced Imitation for Autonomous Driving (GRIAD) 102

B.3 Simple environment Transfuser . 103

B.4 Simple environment CNN . 104

B.4.1 Run 1 . 104

B.4.2 Run 2 . 105

xii

List of Figures

1.1 San Francisco already allows real-world testing of autonomous vehicles for per-

sonal transport. This image shows Cruise´s autonomous taxi on the road. Cour-

tesy of Cruise [4]. 2

2.1 Visualization of the convolution operation. 9

2.2 Inductive biases. Courtesy of [11] . 9

2.3 The LSTM architecture. Courtesy of [15] under the CC BY-SA 4.0 License via

Wikimedia Commons. 12

2.4 GRU architecture. Courtesy of [16] under the CC BY-SA 4.0 License via Wiki-

media Commons. 13

2.5 Scaled dot-product attention (left) and Multi-headed self-attention (right). Cour-

tesy of [17]. 15

2.6 The encoder-decoder structure of the transformer. Courtesy of [17]. 18

2.7 Reinforcement learning consists of an agent that perceives the world, chooses

an action based on the observation, and then receives a reward based on the

outcome of the action. Courtesy of [25] under the CC0 1.0 Universal License

via Wikimedia Commons. 19

2.8 A visual representation of on-policy and off-policy algorithms 24

2.9 Actor-Critic architecture. 25

2.10 Image and LiDAR BEV from intersection. 28

2.11 Transfuser model. Courtesy of [8]. 29

2.12 Waypoint prediction network in Transfuser. 31

2.13 Griad architecture and training stages [7]. 32

3.1 The z-up left-handed coordinate system of the CARLA vehicles. 41

xiii

LIST OF FIGURES

3.2 Transfuser backbone with four transformer blocks. 46

3.3 Values used for computing rewards. 51

3.4 Visualisation of the desired velocity as a function of distance. 52

3.5 Vectorized environment. The policy takes as input a batch of observations. One

from each environment, and choose one action per observation. 54

3.6 Vision pre-training architecture. 56

4.1 Lighting differences during the day. 61

4.2 Lighting differences during the night. 62

4.3 Plot of total loss for the vision pertaining step. 63

4.4 Rollout statistics during training PPO run 1. 66

4.5 Clip fraction from training run 1 using PPO. 67

4.6 The expected variance of the value function. 68

4.7 Statistical information about the policy in run 1. 69

4.8 Losses for PPO training run 1. 69

4.9 Rollout statistics for PPO run 2. 71

4.10 Losses for PPO run 2. 71

4.11 Variation of GRIAD with the expert interfacing with the simulator. 73

4.12 Rollout statistics for GRIAD training. 74

4.13 Training losses for GRIAD. 74

4.14 Weight histogram of layer 1 of Q1 in the critic network. Here the depth axis is

the time step, and each line is the weight histogram for a given timestep. Earlier

steps are further back. 75

4.15 Rollout statistics during training in the simple environment using Transfuser

encoder. 77

4.16 Training losses in the simple environment using Transfuser encoder. 78

4.17 Rollout statistics during training run 1 in the simple environment using CNN

encoder. 80

4.18 Training losses for run 1 in the simple environment using CNN encoder. 81

4.19 Rollout statistics for run 2 in the simplified environment using CNN encoder. . . 82

4.20 Losses for run 2 in the simplified environment using CNN encoder. 83

4.21 Bad and good predictions of the HD-map depending on the vehicle’s location.

When the images are taken from a vehicle not in an optimal position, the HD

map (bottom right) prediction is way off, and the agent, therefore, has no idea

about the road layout. 85

B.1 Scalar values for run1 using PPO. 100

B.2 Scalar values for run2 using PPO. 101

xiv

LIST OF FIGURES

B.3 Scalar values for run1 using PPO. 102

B.4 Scalar values for the simple environment using Transfuser encoder. 103

B.5 Scalar values for run1 in the simple environment using CNN encoder. 104

B.6 Scalar values for run 2 in the simple environment using CNN encoder. 105

xv

List of Tables

2.1 Common tasks in computer vision. 8

2.2 Example of deterministic policy π(s). 21

2.3 Example of stochastic policy π(a|s). 21

3.1 Hardware specifications of all computing resources available during the project. 36

3.2 Position of exteroceptive sensors on the vehicle. 41

3.3 CARLA control parameters. 48

4.1 Hyperparameters used for PPO training. 65

4.2 Logged scalars from training PPO. 65

4.3 Hyperparameters for TD3. 72

xvii

Acronyms

AC Actor-Critic. x, xiii, 25, 42, 53

BEV Bird’s eye view. xiii, 28, 55, 80

CARLA Car Learning to Act. iii, v, x, xi, xiii, xvii, 1, 3–5, 17, 32, 35, 37, 38, 40, 41, 45, 47, 48,

53–57, 59, 60, 64, 67, 82, 87, 89

CNN Convolutional Neural Network. iii, v, ix, xi, xii, 8–10, 32, 45, 78, 79, 87, 104, 105

DDPG Deep Deterministic Policy Gradient. 43

FoV Field of View. 37

GNSS Global Navigation Satellite System. 38

GRIAD General Reinforced Imitation for Autonomous Driving. iii, v, x–xii, xiv, 3, 4, 32, 33,

45, 55, 64, 72–75, 81, 83, 87, 88, 102

GRU Gated Recurrent Unit. ix, 11, 12

HPC High Performance Computing. 35, 54, 72

xix

Acronyms

IL Imitation Learning. x, 4, 7, 17, 32

IMU Inertial Measurement Unit. 38

KL Kullback-Leibler. x, 26, 27

LiDAR Light detection and ranging. xiii, 27, 28, 31, 37, 45, 46

LSTM Long Short-Term Memory. ix, xiii, 10–12

MDP Markov Decision Process. 19

MHA Multi Headed Attention. ix, 14–16

NAPLab NTNU Autonomous Perception Labratory. 36, 89

PID Proportional Integral Derivative Controller. 4, 31

PPO Proximal Policy Optimization. iii, v, x, xiv, xvii, 20, 25, 42, 43, 64, 65, 67, 72, 78, 83, 87

RL Reinforcement Learning. iii–vi, x, xi, 2–5, 7, 17, 19–21, 23, 25, 26, 32, 35, 37, 40, 41, 43,

45, 49, 53, 54, 57, 63, 65, 67, 69, 71, 72, 78–81, 83, 87–89

RNN Recurrent Neural Network. ix, 10, 11

SB3 Stable Baselines 3. x, 37, 39, 40, 53, 64, 78

SotA State-of-the-Art. 4, 45

SSA Smallest Signed Angle. 50

TD Temporal Difference. x, 21–23, 25

TD3 Twin Delayed DDPG. x, 25, 43, 44, 72, 73, 83

xx

Acronyms

WoR World on Rails. 3

XRL Explainable Reinforcement Learning. xii, 89, 90

xxi

Chapter 1
Introduction

1.1 Motivation

In the whole world, 1.3 million people lose their lives due to traffic accidents each year, and

it is the leading cause of death of people between 5-30 years old, according to a study by the

world health organization [1]. While car safety has increased due to governmental regulations,

that does little to protect vulnerable road users, who account for more than half of the world’s

road deaths. According to the U.S. Department of Transportation, 94% of all traffic accidents

are caused by human error [2]. At the same time, another study shows that 55% of vehicle

fatalities are caused by alcohol and speeding [3]. The WHO also lists several leading human

causes of traffic accidents, such as driving under the influence and distracted drivers. Road

accidents also have a significant economic impact, resulting in an estimated 3% reduction in

GDP [1]. Autonomous vehicles and other advanced driving assistance tools have the potential

to aid in reducing these numbers by removing the option for human error.

However, developing autonomous driving systems that are safe, reliable, and efficient is a

challenging task. Real-world testing of these systems is expensive and risky and requires sig-

nificant amounts of time and resources. Simulated environments, such as the Car Learning

to Act (CARLA) simulator, have emerged as powerful tools for developing and testing au-

tonomous driving systems. Simulations provide a safe and controlled environment to test new

algorithms. They can be used to generate large amounts of training data that would be difficult

or impossible to obtain in the real world.

1

Chapter 1. Introduction

Figure 1.1: San Francisco already allows real-world testing of autonomous vehicles for personal
transport. This image shows Cruise´s autonomous taxi on the road. Courtesy of Cruise [4].

Reinforcement Learning (RL) is a promising approach for developing autonomous driving sys-

tems in simulated environments. RL algorithms learn to make decisions by interacting with the

environment and receiving feedback in the form of rewards. By repeatedly making decisions

and receiving feedback, an RL agent can learn to navigate complex environments and perform

complex tasks, such as driving a car. However, RL algorithms require large amounts of trial and

error to learn effectively, which can be very time-consuming and computationally expensive.

One approach to addressing the data efficiency challenge in RL is to use pretraining and expert

demonstrations. Pretraining involves training a neural network on a large, diverse dataset

before fine-tuning it on a specific task. This can help the network learn useful features that

generalize across different tasks and can reduce the amount of data needed for fine-tuning.

Expert demonstrations involve using data from human or expert drivers to teach an RL agent

how to perform a specific task. This can help the agent learn more quickly and effectively and

can also provide a benchmark for evaluating the agent’s performance.

By combining RL with pretraining and expert demonstrations, researchers can develop au-

tonomous driving systems that are more data-efficient, more robust, and more effective. The

use of these techniques can help accelerate the development and deployment of autonomous

driving systems and bring the benefits of this technology to more people around the world.

2

1.2 Background and Previous Work

1.2 Background and Previous Work

In recent years the open-source simulator CARLA has become popular for developing systems

for autonomous driving. CARLA has support for simulating camera and lidar data and several

other sensors. In addition, the simulator can run several predefined and custom scenarios and

routes across several maps and weather conditions. When run, the agent receives a score for

each scenario, allowing for comparisons between different systems. Researchers can submit

these scores to a public leaderboard.

In their 2019 paper [5], Toromanoff et al. presented MaRLn, a model-free end-to-end approach

to autonomous driving, marking the first successful RL entry on the leaderboard. MaRLn won

the Camera-only CARLA challenge that year. They use a custom pre-trained ResNet-18 encoder.

Pretraining is performed with segmentation and detection tasks. The detections are of traffic

lights, intersections, and lane positions. The encoder weights are frozen while training the RL

agent. Toromanoff also introduced implicit affordances, allowing training of replay memory-

based RL with a much larger network and input size than most of the networks used in previous

RL works.

Chen et al. introduced World on Rails (WoR) in [6], beating the previous top entry on the

leaderboard - using 40 times less data. The central assumption of WoR is that " the world

is on rails" - meaning that neither the agent nor its actions influence the environment. This

assumption allows for decoupling the world model into the ego and static environment models.

Firstly, a forward model of the agent is trained to simulate actions that the agent performs.

Next, Chen et al. compute a table of action-value pairs for each training trajectory using a

dynamic-programming evaluation of the Bellman equations. Finally, these tables are used to

supervise the training of the final vision-based policy.

The highest-ranked Reinforcement Learning entry on the CARLA leaderboard was introduced

by Chekorun et al. in 2021 [7]. GRIAD aims to combine expert demonstrations of IL with the

exploration of RL, allowing the agent to learn faster than a pure RL agent. This is done by using

an off-policy RL algorithm with a replay buffer. For each episode, a series of state-action pairs

are collected by letting the agent explore the environment or sampling from a prerecorded

dataset generated by an expert agent. The authors assume expert demonstrations can be seen

as perfect data following an optimal policy.

In Transfuser: Imitation with Transformer-Based Sensor Fusion for Autonomous Driving - pub-

lished in 2022 - Chitta et al. investigate how to combine information from different types of

sensors [8]. The resulting network fuses an RGB image with a pseudo-image generated from

3

Chapter 1. Introduction

a lidar scan using the self-attention mechanism, resulting in a 100% increase in driving score

over GRIAD. The features output from the fusion encoder are passed to a waypoint generating

network, and the control is performed via two PID controllers .

Interfuser is an end-to-end learning framework for autonomous driving developed by H. Shao

et al. in 2022 [9] and currently ranks 2nd on the CARLA leaderboard [10]. Interfuser also

utilizes transformer-based sensor fusion, but unlike Transfuser, it uses an encoder-decoder

structure. The authors focused on creating a model with increased safety and interpretability.

They do this by outputting the model’s intermediate features and putting constraints on the

actions to ensure they are safe.

In the previous two years, the introduction of transformers has revolutionized the CARLA

leaderboard. At the time of writing, three out of the top five entries utilize transformers in

their vision encoders, including the top two. A the same time, a shift has occurred from Rein-

forcement Learning (RL) towards Imitation Learning (IL), with the last RL entry being GRIAD

in 2021.

1.3 Problem Description

The goal of this thesis is to investigate whether the improvements the vision encoders have

gone through over the past two years have the possibility of improving previous state-of-the-art

methods based on simpler vision systems. The method investigated will be General Reinforced

Imitation for Autonomous Driving (GRIAD), which has an impressive performance despite hav-

ing one of the simplest vision encoder and sensor setups out of the current top 10. Specifically,

the following tasks will be performed:

• Perform a review of current State-of-the-Art (SotA) systems for the purpose of choosing

a suitable vision encoder.

• Train a vision encoder on data collected from CARLA

• Develop the necessary software to train RL agents in CARLA, specifically, a Python envi-

ronment based on the OpenAI interface.

• Train an agent in the same environment without expert demonstrations that can be used

as a baseline for comparison purposes.

• Train an agent using GRIAD, using the same environment setup as the baseline agent.

• Evaluate the performance of the trained agents to each other and to other SotAmethods.

4

1.4 Contributions

1.4 Contributions

The following are the contributions of this thesis to the research field of deep reinforcement

learning for autonomous driving:

• An in-depth review of some state-of-the-art performing reinforcement learning and im-

itation learning approaches to autonomous driving.

• Creation of a Python wrapper that allows for easy training of RL agents in the CARLA

simulator using the OpenAI gym interface.

• An investigation into how the performance of Reinforcement Learning agents are af-

fected by using a more complex vision encoder.

• A look into how the complexity of traffic scenarios affects early stage training of Rein-

forcement learning agents in the CARLA simulator.

• Some issues were discovered with Transfuser’s data generation pipeline if the encoder

is used for Reinforcement Learning.

1.5 Thesis Outline

The thesis opens up with Chapter 2, which presents a detailed walkthrough of relevant machine

learning theory. Chapter 3 present the used Reinforcement Learning algorithms, as well as the

observation space, action space, and reward function, which will be used when interacting with

the simulator. These will be used for training Reinforcement Learning agents in the simulator,

and the results and discussions will be presented in Chapter 4. Finally, Chapter 5 concludes

the thesis, along with some suggestions for future works.

5

Chapter 2
Background Theory

This chapter will cover the theoretical foundations and topics that are related to this thesis.

Some important machine learning architectures will be introduced before a thorough descrip-

tion of Reinforcement Learning - including the current state-of-the-art approaches - and Imita-

tion Learning. Finally, the previous work this thesis is based on will be covered in more detail

than in Section 1.2. There will also be a short introduction to some statistical concepts used

during the training evaluation.

2.1 Computer Vision

Computer vision tasks play a fundamental role in enabling machines to interpret and under-

stand visual data. Some of the most common tasks in computer vision are object detection,

classification, and segmentation. Each task has distinct objectives and real-world applications,

which are summarized in Table 2.1.

Classification is a fundamental task in computer vision and aims to assign a single label to

an image. It involves determining the class or category that best represents the content of the

image. Some classification algorithms leverage deep learning architectures to extract high-

level features from images and make predictions based on learned patterns. Object detection

involves identifying and localizing multiple objects within an image. It surpasses simple clas-

sification by not only assigning labels to objects but also providing spatial information using

bounding boxes. This task finds applications in autonomous driving, surveillance systems, and

object tracking, enabling machines to perceive and interact with their environment effectively.

7

Chapter 2. Background Theory

There are two main types of segmentation in modern computer vision - semantic and instance

segmentation. Semantic segmentation is a pixel-level labeling task where the goal is to assign

a label to each pixel in an image, indicating the category to which the pixel belongs. Instance

segmentation is a more advanced computer vision task that combines object detection and

pixel-level segmentation. It involves identifying and delineating each individual object instance

in an image by providing pixel-level masks. Unlike object detection, which provides bounding

boxes, instance segmentation provides detailed masks that precisely outline the boundaries of

each object. It also differs from sematic segmentation in that it distinguishes individual object

instances, while semantic segmentation focuses on labeling different areas or regions in an

image based on their semantic meaning.

Aspect Object Detection Classification
Instance
Segmentation

Semantic
Segmentation

Objective
Identify and
locate objects

Assign a label
to an input

Identify and
locate objects

Assign a label
to each pixel

Output
Bounding boxes
around objects

Class of object
Pixel-level masks
for each object

Pixel-level masks
for each class

Level of Detail Object-level Object-level Object-level Pixel-level
Number of Labels Multiple Single Multiple Multiple

Table 2.1: Common tasks in computer vision.

2.2 Convolutional Neural Network (CNN)

The CNN is the most common neural network used for vision tasks due to its ability to extract

useful features from images. The basis of the CNN is the convolution operation, which is used

to extract features from the input image. A visualization of the convolution operation is shown

in Figure 2.1. It involves sliding a small matrix, called a kernel, over the input image. At

each location, the filter is multiplied element-wise with the corresponding patch of the input

image, and the resulting values are summed to produce a single output value. This operation

is repeated for all possible locations in the image, producing a new output image - which is

called a feature map. The kernels are usually 3x3 or 5x5 matrices of learnable parameters.

By iteratively adjusting these parameters during training using gradient-based optimization

techniques, the network learns to recognize patterns and make accurate predictions without

requiring explicit feature engineering.

CNNs also typically include other layers, such as pooling and fully connected layers. Pooling

layers are used to reduce the dimensionality of the output from convolutional layers, to achieve

a more compressed representation and introduce translational invariance. The fully connected

8

2.2 Convolutional Neural Network (CNN)

Figure 2.1: Visualization of the convolution operation.

layers can be used after the convolutional layers to perform classification or bounding box

regression tasks.

2.2.1 Inductive Biases

The CNN architecture has some structural inductive biases. Introducing inductive biases into

models can help them learn and generalize, especially with small amounts of data. However,

with a large amount of data, it might be preferable to let the model be less constrained. In the

early days of deep learning, data was more limited. Therefore, CNNs were created with some

biases to aid learning.

Figure 2.2: Inductive biases. Courtesy of [11]

The convolution operation is local; therefore, a CNN is guided towards relating local areas in

images. This is reasonable for tasks involving finding what objects are in an image since the

context of the object is less important. However, for tasks such as autonomous driving, the

9

Chapter 2. Background Theory

context in which objects appear in an image is vital, so plain CNN’s might perform worse than

other architectures such as Transformers, as explained in Section 2.4.

Weight sharing across the entire spatial dimensions of the feature maps is the source of the

second inductive bias - translational invariance. This is a reasonable assumption in most appli-

cations since the appearance of an object usually will not change depending on where it is in

an image. The exception is in images with a large amount of distortion in parts of the image.

The appearance of objects may then vary depending on where in the image it is located.

2.3 Recurrent Neural Network (RNN)

Parts of this section are taken from the equivalent section in my project thesis [12].

RNNs are a particular type of neural network specially designed to be used on data that involve

an ordered series of data points. In this case, a data point depends on the previous data points.

RNNs are therefore adapted to incorporate this dependency. To do this, RNNs introduce the

concept of memory so the previous data points’ effect on the current can be modeled.

2.3.1 Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber proposed the LSTM architecture in 1997 [13]. One of the prob-

lems of previous architectures was that they overrode their memory at every time step, mean-

ing the network was only able to remember things from the previous input. The LSTM tries to

fix this by allowing the network to combine previous memory and the new information intro-

duced at a time step. This is done through the input, output, and forget gates [14]. Another

problem with traditional RNNs is that they suffer from the vanishing gradient problem - which

means that the gradient for the early layers of the network becomes so small that the network

is impossible to train. As a result of this problem, RNNs can be hard to train, especially for long

input sequences. LSTMs also address this by allowing the gradients to flow unchanged [14].
The equations of the LSTM are

10

2.3 Recurrent Neural Network (RNN)

ft = σ
�

W f x t +U f ht−1 + Voct−1

�

(2.1)

it = σ (Wi x t +Uiht−1 + Vict−1) (2.2)

ot = σ (Wox t +Uoht−1 + Voct) (2.3)

c̄t = tanh (Wc x t +Ucht−1) (2.4)

ct = ft ⊙ ct−1 + it ⊙ c̄t (2.5)

ht = ot ⊙ tanh (ct) (2.6)

where x t ∈ Rd is the input to the LSTM. The three vectors ft ∈ [0,1]h, it ∈ [0, 1]h, and ot ∈
[0,1]h are the forget, input, and output activation, respectively, where h is the dimension of

the cell state. ct ∈ Rh is the cell state vector, or the long-term memory of the cell, ht ∈ [−1,1]h

is the hidden state vector or the active memory of the cell and c̄t ∈Rh is the input activation -

which is the new information introduced. σ is the element-wise sigmoid function, while the ⊙
operation is the element-wise multiplication. From the equations, it can be seen that ft is the

weight for how much of the previous cell state should be carried over to the memory of the

new cell, while it is the weight for how much of the new information should be introduced into

the memory of the new cell. There are 11 learnable matrices in each LSTM cell, W ∈ Rh×d ,

U ∈ Rh×h and V ∈ Rh×h with their respective indices. The full architecture can be seen in

Figure 2.3.

2.3.2 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit was introduced by Cho et al. in 2014 [14] and has the same goal as

the LSTM - to combat the problem of short-term memory and the vanishing gradient - but in a

more simplified form. The GRU only has an update and reset gate and removes the concept of

the cell state. Because of this, it is now the hidden state that becomes the long-term memory

of the network [14]. The equations of the GRU are simplified compared to the LSTM and are

given by

11

Chapter 2. Background Theory

ht

ct

ht

xt

ct-1

Legend:
Layer Pointwize op Copy

Figure 2.3: The LSTM architecture. Courtesy of [15] under the CC BY-SA 4.0 License via Wiki-
media Commons.

zt = σ (Wz x t +Uzht−1) (2.7)

rt = σ (Wr x t +Ur ht−1) (2.8)

h̄t = tanh (Whx t +Uh(rt ⊙ ht−1)) (2.9)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̄t . (2.10)

The vectors x t ∈ Rd and ht ∈ Rh are the input and output vectors for a given GRU cell, while

zt ∈ [0, 1]h and rt ∈ [0, 1]d is the update and reset gate vectors. The reset gate vector chooses

what parts of the previous cells memory to bring into the new cell, and this is combined with

x t , both scaled my weight matrices to form the candidate activation vector h̄t ∈ [−1,1]h. The

GRU has fewer learnable parameters than the LSTM, with a total of 8 matrices, W ∈ Rh×d and

U ∈ Rh×h, with their respective indices. The full GRU architecture is shown in Figure 2.4.

Since the GRU has fewer numerical operations than the LSTM, it is faster to train but allows it

to model less complex dependencies. As a result, the LSTM tends to perform better on larger

datasets, while the GRU performs better on smaller datasets. However, this is not a given, and

12

2.4 Transformers

h[t-1] h[t]

×

×

×

x[t]

[t]

[t]z[t]

r[t]

tanh

1-

+

Figure 2.4: GRU architecture. Courtesy of [16] under the CC BY-SA 4.0 License via Wikimedia
Commons.

researchers tend to experiment and figure out what works best.

2.4 Transformers

Parts of this section are taken from the equivalent section in my project thesis [12].

Transformers are a neural network architecture that has revolutionized Natural Language Pro-

cessing and Computer Vision in the past couple of years. There are several key topics relating

to Transformers, the foremost of which are self-attention, multi-head self-attention, and po-

sitional encoding. Since its introduction in 2017 as a model for neural machine translation

[17], transformers have produced state-of-the-art performance in varying tasks such as lan-

guage modeling, object detection, semantic segmentation, and sequence modeling [18–20].
The main component of the transformer is the attention mechanism. It allows the network to

focus on different parts of the input sequence depending on the context of the sequence.

2.4.1 The Attention Mechanism

Since attention was first introduced in 2014, several score functions have been developed.

However, the most commonly used today is the scaled dot-product attention, introduced by

Vaswani et al. in 2017 [17]. In addition, they combined their new attention score with the self-

attention mechanism introduced by Cheng et al. as intra-attention in 2016 [21]. Self-attention

relates the different positions of the input sequence to each other. Self-attention has been

13

Chapter 2. Background Theory

shown to perform well in machine reading [21] and vision tasks [19]. The scaled dot-product

score is the dot product of two vectors s ∈ Rn and h ∈ Rn, scaled by the square root of their

length;

score(s , h) =
s · hT

p
n

. (2.11)

The scaled dot-product attention of Q ∈ Rn×dk , K ∈ Rm×dk , and V ∈ Rn×dv - also known as the

query, key, and value matrices - is the scaled dot-product score of the key and query matrices

passed through a softmax function, multiplied by the value matrix. Here dv is the dimension

of the value embeddings, while dk is the dimension of the key and query embeddings. The

scaled dot-product score between two matrices is a matrix containing the scores between all

pairs of m vectors in Q and n vectors in K . This can be expressed as

Attention(Q, K , V) = SoftMax

�

Q · K T

p

dk

�

· V . (2.12)

The attention mechanism between queries, keys, and values can be intuitively understood as

a process of focusing on relevant information in the values based on the similarity between

the queries and keys. Imagine a given query q , a set of keys K , and a corresponding set of

values V . Each key represents a piece of information, and its corresponding value contains the

content associated with that information. The attention mechanism calculates the similarity

between the query and each key. This similarity score determines the attention assigned to the

corresponding value v. The higher the similarity between the query and a particular key; the

more attention is placed on the corresponding value.

2.4.2 Multi Headed Attention (MHA)

Intuitively, multi-headed attention can be seen as having multiple heads, all looking at things

from a different perspective. Each head captures different aspects or patterns in the data,

allowing the model to gather a richer and more comprehensive understanding. For example,

one head might focus on capturing the syntactic structure, another on capturing semantic

relationships, and so on. By having multiple heads, the model can capture diverse patterns

and dependencies in the input sentence simultaneously. Each head attends to different parts

of the input sentence, learning different representations.

14

2.4 Transformers

Figure 2.5: Scaled dot-product attention (left) and Multi-headed self-attention (right). Cour-
tesy of [17].

Regular self-attention performs one computation with the query, key, and value vectors with

dimensions dm. Multi-headed attention projects the K , V , and Q matrices to lower dimensions,

with different weight matrices for each head. The attention is computed for each of these

projections in parallel. Finally, the output from each head is concatenated and transformed to

the output dimensions using a linear transformation [17]. A visual representation of MHA can

be seen in Figure 2.5, while the mathematical formulation is

MultiHeadAttention(Q, K , V) = Concat[head1, head2, · · ·]W O

headi = Attention(QWQ
i , KW K

i , VW V
i)

(2.13)

where Q and K are projected to a dimension of dk with the weight matrices WQ
i , W K

i ∈ R
dm×dk .

On the other hand, V is projected to a dimension dk using the weight matrix W V
i ∈ R

dm×dv .

WO ∈ Rh·dv×dm transforms the concatenated output from all the heads into the correct dimen-

sions, where h is the number of heads and dm is the size of the embedding input to the network

[17].

15

Chapter 2. Background Theory

2.4.3 Positional Encoding

Unlike some other machine learning methods, attention is invariant to the order of the input

tokens. This invariance is problematic since the order of the inputs is essential to the meaning

in many applications. For example, there is a difference between "I have to read this book"

and "I have this book to read." Therefore positional encoding is introduced to give the model a

sense of order in the input. The encoding has the same dimension as the embedding - dm. There

are several types of positional encoding, but one of the most common is a sinusoidal positional

encoding which uses sin, and cos functions with different frequencies. For embedding number

k ∈ {1, · · · , L} and the dimension of the embedding i ∈ {1, · · · , dm
2 } , the positional encoding is

PE(k, 2i) = sin

�

k

n
2i
dm

�

PE(k, 2i + 1) = cos

�

k

n
2i
dm

� (2.14)

where n is a user-defined scalar, set to 10, 000 by the authors of Atention is All You Need [17].

2.4.4 Encoder-Decoder Structure

The transformer uses an encoder-decoder architecture, which is designed for sequence-to-

sequence tasks such as machine translation or text generation but can also be used for image-

specific tasks. This structure is visualized in Figure 2.6.

The encoder takes an input sequence, represented as a sequence of tokens, and processes it

to create a contextualized representation. The encoder is composed of multiple layers, where

each layer contains two sub-layers: a multi-head self-attention mechanism and a fully con-

nected network. The multi-head self-attention mechanism within the encoder allows each

position in the input sequence to attend to all other positions, capturing the dependencies

and relationships within the sequence. After the self-attention mechanism, a fully connected

network is applied. This introduces non-linearity and further refines the representations.

The decoder takes the contextualized representation generated by the encoder and generates

the output sequence step by step. The decoder also consists of multiple layers, each containing

three sub-layers: a masked multi-head self-attention mechanism, a Multi Headed Attention

layer, and a fully connected network. The masked multi-head self-attention mechanism within

the decoder allows each position to attend to inputs that appear before it in the sequence

16

2.5 Imitation Learning (IL)

while masking out later inputs. This ensures that the model maintains auto-regressive behavior

during training, generating one output token at a time based on the previously generated

tokens.

To generate the output sequence, the decoder employs an autoregressive strategy. At each

decoding step, it takes into account the previously generated tokens using the masked multi-

headed self-attention. The decoder then attends to the encoder’s representations and uses the

context information along with the previous outputs to predict the next token in the sequence.

2.5 Imitation Learning (IL)

Imitation Learning is a deep learning approach where the agent is trained to imitate the actions

of an expert agent. The expert agent is often humans but can also be other neural networks

or rule-based approaches. The advantage of imitation over reinforcement learning is that it

can be trained offline. An RL agent needs an environment to interact with, while an imitation

learning agent is trained using a pre-recorded dataset. The goal of the training process is to

learn a mapping from observations to actions.

The downside of Imitation Learning originates from the expert data itself. Since the expert

agent rarely ends up in dangerous situations, the IL agent will be unable to learn how to recover

from them. The RL agents are likely to end up in these situations through trial and error and

therefore learn how to deal with them. Despite these issues, recent advances have shown that

IL agents can perform well in highly complex scenarios such as autonomous driving. The four

highest entries on the CARLA leaderboard are IL agents at the time of writing [8, 9, 22, 23].

2.6 Reinforcement Learning (RL)

Parts of this section are inspired by my project thesis [12]. Specifically State, Action, Reward

and Policy Representations.

Reinforcement Learning is a set of algorithms designed to reward desired behaviors and pun-

ish negative behaviors. These algorithms assign positive rewards to the desired actions and

negative rewards to undesired behaviors. The agent is encouraged to seek long-term gain and

maximize total discounted future rewards (called utility) to achieve an optimal policy [24]. The

agent’s policy - π(s , a) - decides the agent’s action during training and inference. Generally,

a reinforcement learning agent can perceive and interpret its environment, take actions, and

17

Chapter 2. Background Theory

Figure 2.6: The encoder-decoder structure of the transformer. Courtesy of [17].

18

2.6 Reinforcement Learning (RL)

Environment

Agent

A

Interpreter

Reward

State

Figure 2.7: Reinforcement learning consists of an agent that perceives the world, chooses an
action based on the observation, and then receives a reward based on the outcome of the action.
Courtesy of [25] under the CC0 1.0 Universal License via Wikimedia Commons.

learn through trial and error. Reinforcement Learning differs from imitation learning, where

the actor learns to act similarly to an expert agent. Imitation learning cannot perform better

than the expert it imitates, but reinforcement learning can, in theory, exceed an expert’s perfor-

mance level. The agent’s environment is often modeled as a Markov Decision Process (MDP)

[24]. A MDP is a discrete-time stochastic control process. At each time step, the agent has to

choose an action - a ∈ A - available in the current state - s ∈ S. The world will then transition

to a new state s
′

with a probability given by a state transition function P(s , s
′
). Finally, the

agent receives a reward given by the reward function R(s , a) [24].

2.6.1 The State

The state represents the world, and the agent uses the state to decide what action to perform.

The state can either be discrete or continuous and is represented by the variable s ∈ St where

St is the set of all possible states at time step t [24]. There are multiple ways to parameterize

the state, and the choice will impact the learning performance. For example, pong is a simple

game where the goal is to score as many points as possible by forcing the ball to go past

the opponent’s paddle. A possible state representation is the position of the paddles and the

velocity and position of the ball. Another representation for this game is to use all the pixel

values directly. This would more closely resemble the way humans interact with the game but

also create a much higher-dimensional and complex state space.

19

Chapter 2. Background Theory

2.6.2 Actions

Actions are possible ways the agent can affect the environment. Like states, the actions can

also be both discrete and continuous. The choice here depends on the chosen algorithm. For

example, traditional Deep Q-Learning only supports discrete action spaces [24], while methods

like PPO support continuous action spaces [26]. For the pong example, one choice of action

space is move left, move right, stand still. This example is a discrete set of actions. Another

option would be to have a continuous variable at ∈ [−1,1] = At representing how fast the

paddle moves to the left or right.

2.6.3 Reward Function

As the central element of Reinforcement learning is to maximize future rewards, the design

of a suitable reward function is an essential part of training a reinforcement learning agent.

For the pong example, a reward function could be +1 for getting the ball past the opponent’s

paddle and -1 for the ball passing our paddle. Another option is also to reward each time the

ball hits our paddle. Both of these reward functions are valid and would result in trainable

agents but might result in different performances. As stated previously, the goal of RL is to

maximize utility. The definition of utility is the estimated sum of discounted future rewards as

shown in (2.15). Here, the discount factor γ ∈ [0, 1] is introduced because of the uncertainty

of future rewards, while R(s) : S −→ R is the reward function. The utility is associated with a

policy - Uπ(s) - is the expected reward - R(s) - for the current state - s - given a policy π [24].
This can be expressed mathematically as

Uπ(s) = E

�∞
∑

t=0

γtR(St) | St = s

�

. (2.15)

Another important quantity here is the action-value function Q(s , a). It is similar to the utility

function but gives the expected sum of discounted returns for a given state action pair (s , a)
[24], which, similarly to the utility, is expressed as

Qπ(s , a) = E

�∞
∑

t=0

γtR(St) | St = s , At = a

�

(2.16)

where γ ∈ [0, 1] is the same discount factor as for the utility function.

20

2.6 Reinforcement Learning (RL)

2.6.4 Policy Representations

The policy is a mapping between states s and actions a. This mapping can either be determin-

istic or stochastic. Each state maps directly to action for a deterministic policy. In the wumpus

world example in [24], each square would have an associated action π(s) = a. This policy is

of the form π : S −→ A and is an example of a deterministic policy - there is a direct mapping

between states and actions. A stochastic policy - on the other hand - represents a probability

distribution describing the probability that a certain action is optimal given the current state.

The agent chooses an action by sampling this probability distribution. The policy function is

then on the form π : S × A −→ [0, 1]. Stochastic policies have some clear advantages over de-

terministic policies. When the environment is stochastic, a deterministic policy might fail since

it chooses the same action every time. For example, in rock, paper, and scissors, the optimal

policy is to choose randomly between the three actions. If someone always chooses rock, it is

easy to create a strategy to beat them. Stochastic environments are common, so deterministic

policies often fall flat. Another problem with stochastic policies appears when the world is

not fully observable. In this case, stochastic policies can consider the uncertainty of inferring

unknown states.

Table 2.2: Example of deterministic policy
π(s).

State Action
S1 A2
S2 A1
S3 A3

Table 2.3: Example of stochastic policy
π(a|s).

S\A A1 A2 A3
S1 0.15 0.8 0.05
S2 0.3 0.1 0.6
S3 0.1 0.0 0.9

For discrete action spaces, the policy can be represented as a table. This would be a table

with entries for each state for a deterministic policy. For a stochastic policy, it will be a table

with a probability for each state-action pair. With continuous state and action spaces, this is

not possible to do. The policy function is then approximated using a neural network - called a

policy network - which is trained using gradient-based optimization techniques [24]. Examples

of both stochastic and deterministic policy tables are shown in Table 2.3 and Table 2.2.

2.6.5 Policy Gradient Methods

There are many approaches to reinforcement learning. Most methods learn a state-action or

utility function, like Temporal Difference (e.g., Q-learning) and Monte Carlo methods. Policy-

Gradient methods differ from these by directly learning the policy using gradient-based opti-

mization. The policy is represented with trainable parameters - θ - and is depicted asπθ (a | s).

21

Chapter 2. Background Theory

The policy gradient is computed based on the collected trajectories, which are pairs of states -

st - the chosen action - at - the reward received - rt - and the state the agent ended up in - st+1.

The gradient represents the direction and magnitude of adjustment to the policy’s parameters

that would maximize the utility.

Using the gradient derived for a given policy gradient algorithm, the parameters can be up-

dated using any gradient-based optimization technique with a learning rate of α - which is a

weighting term determining how far along the gradient direction each step should be.

2.6.6 Temporal Difference Learning

Temporal Difference learning is a reinforcement learning technique used to estimate the value

function of a state or state-action pair, given the sequence of rewards and states. The basis of

Temporal Difference is the Bellman equation

Uπ(s) = R(s) + γ
∑

s′
P(s′|s,π(s))Uπ(s′) (2.17)

which describes the relationship between a function of a state and its neighboring states as

shown in (2.17). It states that the utility of a state - s ∈ St - is equal to the immediate reward

obtained in that state - R(s) - plus the discounted expected utility of the neighboring states -

γ ∗
∑

P(s′|s, a)U(s′) - weighted by the probability of ending up in that state given the chosen

action, where s′ ∈ St+1 is the neighboring states, which is the set of possible states for the next

time step.

The utility function obeys the Bellman equation, and when a transition happens from state s

to s′, Temporal Difference learning updates the utility function using

Uπ(s)←− Uπ(s) +α(R(s) + γUπ(s′)− Uπ(s)). (2.18)

TD learning works by calculating the Temporal Difference error, which is the difference be-

tween the actual utility of the current state - represented by R(s)+γUπ(s′) - and the estimated

value of the current state - Uπ(s). The TD error is the discrepancy between the predicted value

and the observed reward, and it quantifies how much the current estimate needs to be updated.

An example of a TD learning method is Q-learning, where instead of learning the utility func-

22

2.6 Reinforcement Learning (RL)

tion, the Q function is learned. Since the Q function also obeys the Bellman equation, (2.18)

can be updated to use the Q(s, a) instead of U(s) [24].

If a neural network represents the utility function, the weights of the network have to be

updated using a gradient-based optimizer. The equation

θ ←− θ +α
�

R(s) + γÛθ (s
′)− Ûθ (s)
� ∂ Ûθ (s)
∂ θ

(2.19)

shows this when using regular gradient descent, but the gradient can also be used in other

optimizers. The TD error is here used as a scaling factor for the gradient

2.6.7 Off-policy vs On-policy

There are two kinds of policies - behavior and target policies. The agent uses the behavior policy

to choose what action to perform, i.e., it is the policy it uses to interact with the environment.

The target policy is the policy the actor is learning, i.e., it is the policy that is continuously

updated during training. These two policies might be different, or they might be the same

[24].

Off-policy algorithms in RL have different target and behavior policies. This can be advanta-

geous when exploration is difficult or expensive, as the agent can learn from a pre-existing

dataset of expert demonstrations or a different exploration strategy. The difference between

the behavior policy and the target policy is often referred to as the off-policy nature of the algo-

rithm. One of the challenges of off-policy algorithms is the importance sampling problem. When

the behavior policy differs from the target policy, the data generated by the behavior policy

has a different distribution than the data the target policy is interested in. Importance sam-

pling is a technique used to adjust for this difference in distribution by weighting the updates

based on the probability of generating the data under the target policy. Off-policy algorithms

can be more sample-efficient than on-policy algorithms because they can learn from a wider

range of data. Still, they require careful handling of importance sampling to ensure the up-

dates are consistent with the target policy. Off-policy algorithms can also suffer from unstable

updates because they rely on estimating the value of a different policy, leading to instability

in the learning process [24]. A visual representation of off-policy algorithms can be found in

Figure 2.8a.

On-policy algorithms in RL, however, have the same target and behavior policy. This means

that the agent is actively exploring the environment while updating its policy, which can be

23

Chapter 2. Background Theory

(a) Off policy

On policy

State

Reward

Environment

Action

PolicyActor Loss

(b) On policy algorithm.

Figure 2.8: A visual representation of on-policy and off-policy algorithms

advantageous when the environment changes or the optimal policy is not well-defined. The

difference between the behavior and target policies is minimal in on-policy algorithms, making

them more stable but less sample-efficient than off-policy algorithms [24]. A visual represen-

tation of on-policy algorithms can be found in Figure 2.8b.

One of the challenges of on-policy algorithms is the "exploration-exploitation" trade-off. Since

the agent actively explores the environment, it may get stuck in suboptimal policies and fail

to converge to the optimal policy. On-policy algorithms often use exploration strategies such

as epsilon-greedy to address this.

24

2.7 Information Theory and Statistics

Agent

Critic loss

State

Reward

Environment

ActionActor

V(s) Critic

Actor Loss

Figure 2.9: Actor-Critic architecture.

2.6.8 Actor-Critic (AC)

Actor-Critic is a Reinforcement Learning approach that uses two different neural networks;

an actor and a critic network. It combines several traits and advantages of both policy-based

and value-based methods. The actor network takes in the state and predicts the best action.

This can either be a stochastic output as in PPO [26] or deterministic as in TD3 [27]. The critic

network takes in the state and the chosen action by the critic and predicts the value function of

the state-action pair - an estimate of the future discounted reward. During training, the actor

and critic networks are updated using a combination of policy gradient and TD learning. The

policy gradient is used to update the actor-network, while TD learning is used to update the

critic network. Actor-Critic can be used in both on- and off-policy algorithms, for example, PPO

and TD3, respectively. A visualization of the Actor-Critic architecture can be seen in Figure 2.9.

2.7 Information Theory and Statistics

Since the policy of an RL, algorithm can be stochastic, it can be useful to employ some statistical

tools to evaluate the training progression. This can be particularly useful when the stochastic

policy is used as a tool for managing Exploration-Exploitation. Statistics can also be useful

25

Chapter 2. Background Theory

when evaluating the quality of the policy or value network predictions. This thesis utilizes the

Shannon entropy, Kullback-Leibler (KL) divergence, and explained variance, and these will be

explained in more detail in this section.

2.7.1 Shannon Entropy

In information theory, the Shannon entropy is a measure of the amount of uncertainty or in-

formation in a probability distribution by taking into account the probabilities of all possible

outcomes [24]. A distribution with higher entropy is more random, and it requires more in-

formation to describe a sample from the distribution. The Shannon entropy of a distribution

- H(X) - is given as the expected value of the information content - I(X) - of a sample of

a random variable. In other words, it is how much information you expect to get about the

distribution given a random sample from it. The full expression is

H(X) = E[I(X)] = E[− log2 p(x)] = −
∑

x∈X

p(x) log2 p(x) (2.20)

for discrete random variables and for continuous distributions it is expressed as

H(X) = −
∫ ∞

−∞
p(x) log2 (p(x)) d x . (2.21)

In Reinforcement Learning algorithms, entropy is often used to encourage exploration and

prevent convergence to a suboptimal policy. In this case, entropy refers to the randomness

or unpredictability of the policy, which can be measured using the Shannon entropy formula

described earlier.

2.7.2 Kullback-Leibler (KL) Divergence

KL-divergence, also called relative entropy, is a measure of how different a probability distri-

bution P is from distribution Q. Its equation is similar to that of Shannon entropy. The KL-

divergence is the expected value of the logarithmic difference log
�

P(x)
Q(x)

�

:

DK L (P ∥Q) =

∫ ∞

−∞
P(x) log2

�

P(x)
Q(x)

�

d x . (2.22)

26

2.8 Transfuser

The KL divergence quantifies the extra information needed when using one distribution to

approximate another. A low KL divergence means a good approximation, while a high KL

divergence indicates a larger mismatch. It is commonly used in machine learning to optimize

models and compare distributions.

2.7.3 Fraction of Explained Variance

The fraction of explained variance - also known as the coefficient of determination or R-squared

- measures the proportion of the variance in some estimated values from a mathematical model

explained by the actual dataset.

For a dataset with n values ,y = [y1, · · · , yn], each with an estimate made by a mathematical

model , ŷ = [ŷ1, · · · , ŷn] , the fraction of explained variance is

R2 = 1−
Var [y − ŷ]

Var [y]
. (2.23)

The value of the numerator of (2.23) is the mean-squared error of the estimate, while the

denominator is the variance of the actual values. A value close to 1 means that the model

predictions are accurate, while a large negative value indicates that the model is worse than

just predicting zero.

2.8 Transfuser

This section is taken from the equivalent section in my project thesis [12].

Consider a scenario where the ego vehicle is about to enter an intersection. To safely navigate

the intersection, the ego vehicle needs to capture the global context of the 3d scene and model

the dependencies between the traffic lights on the right and the vehicles on the left. The ego

vehicle perceives the environment through different sensors, with cameras and lidar being

the most prevalent. A camera can provide dense semantic information about the scene, but it

lacks reliable 3d information and is highly sensitive to weather variations. On the other hand,

LiDAR consists of 3d information, but measurements are typically sparse and do not contain

important information such as traffic-light states; hence image-only and lidar-only methods

are likely to fail in complex scenarios.

One way to mitigate this is to use fusion-based approaches, which aim to combine the high-

density information from the cameras with the 3d information from the lidars. Prior literature

27

Chapter 2. Background Theory

Figure 2.10: Image and LiDAR BEV from intersection.

on multi-modal sensor fusion has primarily focused on using geometric feature projections

from 3d spaced to image space and vice versa. Chitta et al. observed that geometric fusion

underperforms in complex traffic scenarios [8]. They hypothesize that this happens due to the

lack of global context. Feature aggregation happens between local regions in the 2d-image

space and 3d-lidar space. However, to fully understand the context of a traffic scenario, it is

essential to look at the local features in the global setting of the scene. Chitta et al. exempli-

fies this with a scenario from an intersection. In the illustration shown here, geometric fusion

would aggregate features from the yellow and blue areas since the blue region in 3D space

projects to the yellow region in the image. It is essential to consider features from the vehi-

cles on the left side to navigate the intersection safely. The red area in the lidar data should

therefore be considered alongside the yellow and blue areas.

2.8.1 Attention-Based Fusion

Transfuser’s key idea is to use attention-based feature fusion to capture the global context

of the 3d scene. Transfuser uses transformers for this purpose. An RGB image and LiDAR

Bird’s eye view (BEV) projection are the inputs to the model. The inputs pass through two

branches of one convolutional backbone interconnected using transformers. After each stage

of the backbones, the features from each branch are downsampled. The resulting intermediate

features have dimensions 22× 5× C for the image branch and 8× 8× C for the BEV branch.

The intermediate features are divided into one C-dimensional token per spatial coordinate -

Fin -, and positional encoding is added. The output features of the model are computed as a

non-linear transformation

Fout =MLP(A) + Fin (2.24)

where A is the result of a series of L multiheaded-attention layers, as described in Section 2.4.

28

2.8 Transfuser

T
ra
n
sF
u
se
r

R
es
N
et
1
8

R
es
N
et
3
4

T
ra
n
sf
o
rm
er

6
4
x
6
4
x
6
4

3
2
x
3
2
x
1
2
8

1
6
x
1
6
x
2
5
6

8
x
8
x
5
1
2

T
ra
n
sf
o
rm
er

T
ra
n
sf
o
rm
er

T
ra
n
sf
o
rm
er

6
4
x
6
4
x
6
4

3
2
x
3
2
x
1
2
8

1
6
x
1
6
x
2
5
6

8
x
8
x
5
1
2

Figure 2.11: Transfuser model. Courtesy of [8].

29

Chapter 2. Background Theory

The fused output - Fout - is split into the image and lidar features and returned to the individual

branches. The resulting network gives a fusion of features at multiple scales throughout the

network. After the final fusion stage, the features from both branches are flattened and reduced

to a 512-dimensional feature vector via one fully connected layer. The resulting feature vec-

tors are combined via element-wise addition and are then passed to the waypoint prediction

network.

2.8.2 Waypoint Prediction

The waypoints are predicted using an autoregressive GRU network. The feature vector is first

reduced to a dimension of 64 using an MLP. Then, this reduced representation is used as the

initial hidden state of the GRU network. The inputs are the GPS position of the goal location as

well as the current position of the ego. Next, the output from each GRU block is passed through

a linear layer that predicts the differential waypoints. The absolute waypoints are then found

by cumulative summation. Finally, the output of one block is used as the new hidden state to

predict the next waypoint. In total, T=4 waypoints are predicted at each timestep. This gives

the waypoints

wt = wt−1 +δwt (2.25)

where wt is the t th waypoint and δwt is the t th waypoint differential from the GRU network.

The loss of the waypoints is computed as an L1 loss between the predicted waypoints and the

ground-truth waypoints -

Lw =
T
∑

t=1

∥wt − w g t
t ∥1. (2.26)

2.8.3 Auxiliary Tasks

In addition to the waypoint loss, the training process includes several additional tasks. These

include semantic segmentation, image depth estimation, and object detection in the LiDAR

BEV. This has been shown to give a more robust model in complex temporal and spacial scene

structures [8]. The auxiliary tasks add extra entries to the total loss function. For example, the

semantic segmentation task generates semantic masks with seven classes. It is supervised with

a cross-entropy loss function Lseg , while the depth estimation uses an L1 loss - Ld . The classes

30

2.8 Transfuser

Figure 2.12: Waypoint prediction network in Transfuser.

predicted by the segmentation decoder are 1) unlabeled, 2) vehicle, 3) road, 4) red light, 5)

pedestrian, 6) lane markings, and 7) sidewalk. The BEV semantic segmentation generates a

downsampled version of the HD map with three classes - road, lane markings, and other - and

uses a cross-entropy loss Lmap. Finally, object detection of other vehicles in the BEV features

is done with a CenterNet decoder. The network predicts a position map P̂ ∈ [0,1]64×64 and

an Orientation map Ô ∈ [0, 1]64×64×12. It also generates a regression map R̂ ∈ [0,1]64×64×5

with a vehicle size estimate, an orientation offset, and a position offset. They use a focal,

cross-entropy, and F1 loss, respectively.

2.8.4 Control

The predicted waypoints are fed to PID controllers that output steering, throttle, and brake

values. A reoccurring problem for imitation learning agents is the Inertia problem, where the

agents get stuck for prolonged periods. To combat this, the Transfuser implements a creeping

when no movement has happened for 55 seconds. However, creeping can lead to dangerous

situations. Therefore, a safety check overrides the creeping mechanism by checking if any

LiDAR detections are close to the front of the car.

31

Chapter 2. Background Theory

Figure 2.13: Griad architecture and training stages [7].

2.9 General Reinforced Imitation for Autonomous Driving (GRIAD)

Chekorun et al. introduced GRIAD in 2021, with top placement on the CARLA leaderboard

[10]. At the time of writing, it is still the highest-ranked entry utilizing RL on the leaderboard.

GRIAD has the aim of utilizing demonstrations from an expert dataset to improve the sample

efficiency of the system while maintaining the exploration element that separates RL from

IL. Another aim was to create a flexible method that can easily be used on other off-policy

algorithms. [7]

To accomplish this, Chekorun et al. make the assumption that the demonstrations are perfect

actions following an optimal policy. The transitions in the expert dataset can therefore be given

a constant high reward and can then be inserted directly into the replay buffer. This is done with

a probability of pdemo = 0.25, while the remaining entries are exploration transitions. Training

is performed in two stages. The first stage pre-trains two visual encoders on segmentation and

classification tasks. This encoder is then used in stage two to create a latent representation

of the agents’ surroundings, which is used as the world state for training the RL model. The

second phase of the GRIAD training process involved the use of 200,000 expert transitions and

was trained for approximately 60 million steps. The training comprised 45 million exploration

steps and 15 million samples taken from the expert transition dataset.

GRIAD is also notable for being the best-performing camera-only entry on the leaderboard and

for having a relatively simple encoder compared to later entries like Transfuser and Interfuser.

While Transfuser uses several transformers to fuse the information from separate CNNs, GRIAD

simply concatenates the output from each CNN.

32

2.9 General Reinforced Imitation for Autonomous Driving (GRIAD)

Algorithm 1 GRIAD training stage 2.

Require: rdemo demonstration reward value
Require: pdemo probability to use demonstration agent

Initialize empty buffer B
while not converged do

if len(B) > min_buffer then
Do a DRL network update

end if
if random.random() > pdemo then

Collect episode (sonline
t , at , rt , sonline

t+1) in buffer B with exploration agent
else

Add episode (so f f l ine
t , at , rt , so f f l ine

t+1) in buffer B with demonstration agent
end if

end while

33

Chapter 3
Software and Algorithms

This chapter presents the design of all components needed for training an RL agent, as well as

the setup required for interacting with the simulator. The design of the observation and action

spaces will be put forth, as well as the design of the reward function. Some focus will also be

put on the hardware and software tools that were used throughout the project.

3.1 Computational Resources

Both the CARLA simulator and training of the machine learning algorithms require heavy

computational resources, more specifically GPUs. Several computational resources have been

available during the completion of this project - Idun, NAP02, and VCXR12 - all of which are

described in this section. The focus is mainly on the hardware specifications, but some tools

for scheduling jobs are mentioned - specifically for Idun.

3.1.1 Idun

The Idun cluster is a High Performance Computing (HPC) platform designed to provide a high-

availability and professionally administrated computing platform for the Norwegian University

of Science and Technology (NTNU). The project was initiated as a collaboration between the IT

division and various faculties with the aim of combining the computing resources of individual

shareholders to create a cluster for rapid testing and prototyping of HPC software [28].

The cluster has a diverse range of compute nodes, including Intel Xeon CPUs with varying

35

Chapter 3. Software and Algorithms

numbers of cores and RAM, as well as NVIDIA P100, V100, or A100 GPUs. The high-speed

interconnect network with Mellanox passive FDR, EDR, and HDR switches for interconnect/s-
torage on different nodes ensures that data transfer is efficient and fast [28].

The Slurm Workload Manager is used to manage the provided resources and to schedule jobs

on the resources. Users can submit jobs to the cluster using Slurm job scripts, which specify

the resources required for the job, such as the number of compute nodes, CPUs, GPUs, and

memory. Users can also test their scripts and jobs on the “short” partition, which has servers

with P100 GPUs, before submitting their jobs to the main cluster. With a maximum wall time

of 7 days or 167 hours, the Idun cluster provides a reliable and flexible platform for machine

learning research and other HPC workloads [28].

Table 3.1: Hardware specifications of all computing resources available during the project.

Hardware CPU Cores GPU Memory VRAM
IDUN Up to 128 P100, V100 or A100 Up to 2 TB Up to 80 GB
NAP02 96 2 x A100 512 GB 2 x 89 GB
VCXR12 32 RTX 4090 32 GB 24 GB

3.1.2 NAP02

NAP02 is a compute server primarily used by the NAPLab for large-scale machine learning

training. It has two A100 data center GPUs, each boasting 84 GB of VRAM. One of its main

benefits over the IDUN cluster is that it is exclusively available to NAPLabresearchers, so jobs

rarely experience significant queueing times. Its powerful hardware and ample memory make

it an excellent resource for handling large datasets and complex computations. Despite this,

the A100 GPU is designed for machine learning and is, therefore, not optimal for rendering

graphics. The simulator will therefore run significantly slower on NAP02 compared to a PC

with an RTX-class GPU.

3.1.3 VCXR12

VCXR12 is a computer owned by NAPLab equipped with an NVIDIA RTX4090 GPU. Although

this GPU is slower than the dataset GPUs of NAP02 and Idun for machine learning computa-

tions and has less VRAM, it is specifically designed for rendering video games. As a result, it

offers faster rendering performance and can potentially lead to faster training times. The rea-

son for this is that rendering is often the largest bottleneck in the training pipeline. Training

on the RTX4090 can be faster than an A100, depending on the number of environments run

in parallel. It is important to note, however, that the efficacy of using an RTX4090 for training

will depend on the specific use case and the particular requirements of the task at hand. While

36

3.2 Libraries and Tools

the A100 has a higher theoretical peak performance than the RTX4090, it may not always be

the best choice for training. This highlights the importance of selecting hardware based on the

specific needs of the task rather than relying solely on peak performance metrics.

3.2 Libraries and Tools

The choice of RL framework and driving simulator is the first thing that should be established

since the choice will impact all future decisions. There are several good options for RL frame-

work, but one, in particular, stands out - Stable Baselines 3 (SB3). NAP Lab does not have

access to NVIDIA drive sim, so there is really one main choice for the simulator - CARLA.

3.2.1 CARLA Simulator

The CARLA simulator is an open-source urban driving simulator with the primary goal of de-

mocratizing research into autonomous driving. CARLA provides a flexible and easily customiz-

able platform that users can adapt to their needs. It consists of a client-server architecture,

where the server performs the rendering and runs the simulation while the client is respon-

sible for the agent logic. An accompanying Python API performs the communication between

the client and the server. [29]

Agents in the simulator observe the world through the use of sensors. The sensors can be

divided into two groups - exteroceptive sensors and interoceptive sensors - which again can

be divided into raw and ground truth sensors.

Exteroceptive sensors:

• LiDAR: Provides a distance measurement to points surrounding the sensor. The number

of channels and rotational frequency are customizable.

• RGB camera: Provides an RGB image of the surroundings. The user can customize most

camera parameters, most importantly, the FoV and the image dimensions.

• Radar: Provides information about objects’ positions and movement.

• Semantic LiDAR: Classifies each point in the pointcloud into one of 23 classes.

• Semantic Camera: Classifies each pixel of the image into one of 23 classes.

• Depth camera: Provide an image where each pixel represents the depth of the scene.

Interoceptive sensors:

37

Chapter 3. Software and Algorithms

• Lane invasion detector: Signals if the agent has crossed line markings, and what mark-

ings were crossed.

• GNSS: Most commonly known as GPS. Provides positional measurements such as lati-

tude, longitude, and height measurements.

• Collision sensor: Signals if the agent has collided with an object, and what type of object

it is.

• IMU: A combination of an accelerometer, a gyroscope, and a compass. Gives accelera-

tions, rotational rates, and heading.

Benchmarking and the CARLA Leaderboard The CARLA leaderboard is a collaboration

between the CARLA team and alpha drive - a cloud-based testing and validation platform for

autonomous driving - that provides standardized and reproducible benchmarking for agents

in the simulator. The CARLA scenario-runner provides the ability to define routes the agent

should follow and scenarios it will be exposed to on the route. A route consists of waypoints

with corresponding high-level commands. High-level commands include what path to take in

an intersection and when to change lanes on the highway. Scenarios are events the agent has

no control over, like a pedestrian crossing the road or a car driving at a red light. During the

evaluation, the agent will be subjected to multiple instances of 10 scenarios on multiple routes.

Teams who submit their agents for evaluation on the leaderboard will not have access to the

routes and scenarios to eliminate bias. Finally, the team receives a driving score based on the

agent’s performance. The score breaks down into an infraction score and a route completion

score.

Route completion (RC) The route completion is a percentage of the route distance com-

pleted - Ri - averaged across N driven routes;

RC =
1
N

N
∑

i

Ri . (3.1)

If the agent drives across the lanes for parts of the route, the score is reduced by a multiplier.

The infraction score (IS) is a geometric series of infraction penalty coefficients - p j - for

every instance of infraction j. Agents start with an ideal score of 1.0. A penalty coefficient

reduces the score for every infraction. This is given as

IS =
Ped, Veh, Stat, Red , stop
∏

j

(p j)# infraction j
(3.2)

38

3.2 Libraries and Tools

where the penalty conefficients are:

• Collision with static layout = 0.65

• Collision with pedestrian = 0.5

• Collision with vehicle = 0.6

• Red light violation = 0.7

• Stop sign violation = 0.8

The driving score (DS) is the average route completion - Ri - weighted by the infraction

score ISi across all the routes. The score is computed by

DS =
1
N

N
∑

i

Ri ISi (3.3)

where Ri and ISI is the route completion and infraction score for route i.

3.2.2 Stable Baselines 3 (SB3)

Stable Baselines 3 is an open-source library for reinforcement learning that provides a col-

lection of state-of-the-art RL algorithms that are efficient and easy to use. The library is im-

plemented in PyTorch, a popular deep learning framework, and is designed to be compatible

with other popular machine learning frameworks like TensorFlow. Stable Baselines 3 provides

a straightforward and easy-to-use API, which makes it easy to implement, train, and evalu-

ate RL algorithms. The library is a fork of OpenAIs Baselines, aiming to be more flexible and

user-friendly while keeping high performance [30].

One of the main advantages of using Stable Baselines 3 is its efficiency. The library provides

a set of tools to speed up the training process, such as parallelized environments, which can

lead to significant time savings. The library also supports GPU acceleration, further speeding up

the training process for larger and more complex models. This can be particularly important

for RL applications in domains such as robotics and autonomous driving, where real-time

performance is critical. Additionally, Stable Baselines 3 provides a set of advanced features

that can be particularly useful for complex RL applications, such as support for distributed

training [30].

Another advantage of using Stable Baselines 3 is its flexibility. The library is designed to be

modular and extendable, which makes it easy to customize the learning process to the specific

39

Chapter 3. Software and Algorithms

application requirements. Stable Baselines 3 provides a set of advanced features that can be

used to tailor the learning process, such as custom observation and action spaces and support

for multiple agents and environments [30].

3.2.3 OpenAI Gym Interface

Like most other RL libraries, SB3 uses the OpenAI Gym interface for their environments [30].
Carla does not natively support this. However, some environment wrappers have been created

that are open-source. The issue with these is that they do not support the use of CARLAs

scenario runner, which allows the user to expose the vehicle to several traffic scenarios. To

address this issue, an extension to scenario runner was created that utilizes the OpenAI gym

interface.

The issue with scenario runner is the order in which steps are performed. It runs a loop, where

it sends new observations to a carla Agent class - which computes the next action - and then

performs a step of the simulation. This looping prevents an external policy from giving com-

mands to the agent. The OpenAI gym interface requires that the environment takes in an

action, performs a step, and then returns the next observation, along with the rewards.

The created extension allows for the stepwise execution of a scenario by decoupling the steps

performed in the loop. It also allows for external actions to be passed to the runner by rear-

ranging the order of steps the scenario runner performs. This makes it compatible with the

majority of Reinforcement Learning libraries.

3.3 Sensor Setup

The CARLA simulator is built upon Unreal Engine 4, which uses a left-handed coordinate

system with the z-axis pointing upwards, as shown in Figure 3.1.

The sensors used are the same as in Transfuser [8]. To make the comparison to Transfuser

as close as possible, the location of the sensors is also the same. Three cameras are used,

oriented with a yaw of -60, 0, and 60 degrees in relation to the car. They are placed on the

front windscreen at a height of 2.3m above the ground and 1.3m ahead of the center of the

vehicle. The lidar is placed directly above the cameras at a height of 2.5m. The lidar is also

rotated with a yaw of -90 degrees to align its coordinate system with the car.

40

3.4 Choice of RL Algorithms

X

Y

Z

Figure 3.1: The z-up left-handed coordinate system of the CARLA vehicles.

Sensor x [m] y [m] z [m] yaw [deg]
Lidar 1.3 0 2.5 -90
Camera 1 1.3 0 2.3 60
Camera 2 1.3 0 2.3 0
Camera 3 1.3 0 2.3 -60

Table 3.2: Position of exteroceptive sensors on the vehicle.

3.4 Choice of RL Algorithms

To conduct a valid comparison between different setups, it is useful that they are all evalu-

ated using the same RL algorithm. This avoids any potential biases that may arise from using

different algorithms and enables a clear and meaningful assessment of the relative strengths

and weaknesses of each setup. However, some expert demonstration approaches require the

use of off-policy algorithms. This is because off-policy algorithms can learn from trajectories

generated by a different policy than the one being evaluated, which is often necessary when

using expert demonstrations. On the other hand, on-policy algorithms can be more stable and

easier to train in complex environments, making them a good choice for autonomous driving.

To balance these considerations, one off-policy and one on-policy algorithm have been chosen

41

Chapter 3. Software and Algorithms

for the experiments in this thesis. This approach will enable comparison of the performance

of different methods consistently and fairly while also considering the specific requirements

of expert demonstration techniques and the complexity of the environments being studied.

3.4.1 Proximal Policy Optimization (PPO)

Algorithm 2 PPO

Initialize policy network πθ with random weights θ
Initialize value network Vφ with random weights φ
for each iteration k do

Collect trajectories Dk = {si , ai , ri , si+t} using policy πθk

Compute the reward-to-go R̂t
Compute the advantage estimates Ât using the current value function Vφk

Compute the policy loss using the PPO-Clip objective Lπθ
Compute the value loss LVθ
update θ and φ using total loss L= LVθ +Lπθ

end for

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that aims to op-

timize the policy of an agent in a way that balances exploration and exploitation. PPO is a

model-free, on-policy AC algorithm that can handle continuous and discrete action spaces. It

utilizes a clipped surrogate objective function that prevents the new policy from deviating too

far from the old policy during each update. This makes PPO more stable than other policy

gradient methods [26]. This objective function is

Lπθ =
1
N

N
∑

i=0

min(r(π)Ai , clip(r(π), 1− ε, 1+ ε)Ai) (3.4)

where

r(π) =
πθ (a|s)
πθk
(a|s)

(3.5)

is the policy ratio, Ai is the advantage estimate, and ε is the clipping parameter. The policy

ratio is the ratio of the probability of selecting an action under the new policy to the probability

of selecting the same action under the old policy.

42

3.4 Choice of RL Algorithms

PPO also includes a value function that estimates the expected return of the agent, which is

used to compute the advantage function and further improve the policy update [31]. This is

updated using an MSE loss between the predicted and actual value:

LVφ = MSE(Vφ(st), R̂t) (3.6)

where Vφ is the value-networkm st is the state, and Rt is the reward received.

PPO has gained popularity due to its simplicity, effectiveness, and ability to scale to large-

scale problems. PPO has achieved state-of-the-art results in various challenging environments,

such as Atari games, robotic control tasks, and continuous control tasks. Moreover, PPO has

been extended and modified in various ways, such as incorporating parallelism, importance

sampling, and adaptive learning rates, to improve its performance and stability further [31].

PPO is a practical choice of on-policy algorithm for this thesis, given its simplicity, stable pol-

icy updates, and ease of use. OpenAI has also chosen PPO as their method for solving many

challenging RL problems, highlighting the practical relevance of PPO [31]. Therefore, PPO is

a robust and versatile choice and a well-established and widely used approach.

3.4.2 Twin Delayed DDPG (TD3)

Twin Delayed DDPG (TD3) is a state-of-the-art algorithm for Reinforcement Learning that ad-

dresses some of the limitations of the Deep Deterministic Policy Gradient (DDPG) method. TD3

builds on the actor-critic architecture, where two deep neural networks are used to represent

the policy and the value function. The policy network, also known as the actor, maps the state

of the environment to an action. The value network, or the critic, estimates the value of the

current state-action pair.

TD3 introduces several innovations that improve the performance and stability of the learn-

ing process. One of the key contributions is the use of twin critics, which estimate the value

function independently and reduce the overestimation bias. In addition, TD3 employs delayed

policy updates, which improve the stability of the learning process by updating the policy

network less frequently than the value network.

TD3 is a great choice for an off-policy algorithm, primarily due to its stability compared to other

off-policy algorithms. It addresses the problem of overestimation of action values, resulting in

more reliable and accurate learning. The twin network structure reduces the variance in value

43

Chapter 3. Software and Algorithms

estimates, leading to more consistent training. Moreover, the delayed updates for the actor and

critic networks help to reduce the variance of the value estimates, which leads to a smoother

gradient and faster learning speed. This enhanced stability ensures that TD3 can consistently

learn optimal policies even in complex and challenging RL environments.

Algorithm 3 TD3

Initialize actor network πθ and critic networks Qφ1
, Qφ2

Initialize target networks πθ ′ , Qφ′1 , Qφ′2
Initialize replay buffer B with capacity N
for episode = 1 to M do

Reset environment to initial state s1
for j = 1 to T do

Sample action at = πθ (st) + εt , where εt ∼N (0,σ)
Store transition (st , at , rt , st+1) in replay buffer B
if time to update then

for i = 1 to Nupdates do
Sample transitions (s , a, r, s ′)∼ B
Compute target actions a′ = πθ ′(s′) + ε′, where ε′ ∼N (0,σ′)
Compute target values y = r + γmini=1,2 Qφ′i (s

′, a′)
Update critic networks using mean squared Bellman error
if j mod poilc y_dela y = 0 then

Update actor network using policy gradient:
θ ← θ +αθ∇θ J(fθ), where
J(πθ) = −

1
|B|
∑

s∈B Qφ1
(s,πθ (s))

Update target networks:
θ ′← ρθ + (1−ρ)θ ′

φ′i ← ρφi + (1−ρ)φ′i
end if

end for
end if
st ← st+1

end for
end for

3.5 Base Algorithm

The main components of a reinforcement learning system are the observation space, action

space, and reward function. These are some of the most important choices for the performance

of the agent. The architecture of the actor and critic networks is also important. To make

comparisons between different methods viable, these should preferably be the same across all

experiments. This section presents the choices that went into designing these components.

44

3.5 Base Algorithm

3.5.1 Vision Encooder

In autonomous driving, the perception of the surrounding environment is vital. This is obtained

through visual inputs, such as camera images and LiDAR. RL algorithms do not easily interpret

raw image data. The sample inefficiency of RL training would make training an RL algorithm

directly on the visual input a bad choice. A low-dimensional representation, therefore, needs

to be extracted from the raw sensor data, which can then be used in the observation for the

RL policy. To address this issue, a vision encoder can convert the raw image data into a lower-

dimensional representation that is more easily interpretable by the RL algorithm. Additionally,

the lower-dimensional representation obtained from the vision encoder can help reduce noise

and irrelevant input information, making the learning process more effective.

Several factors need to be considered when choosing a visual encoder. Sensor choice is one

of the most significant factors. The simplest choice for a vision encoder would be a classic

CNN architecture, which was the choice in GRIAD [7]. A simple architecture would result in

a low runtime for the system, which would be important when deployed in the real world.

The disadvantage of a plain CNN is that there are few good ways to introduce lidar data into

the mix. The resulting latent representation would therefore contain more uncertain depth

information. CNNs has also been used before in RL approaches like GRIAD [7].

One alternative approach is to leverage encoders from SotA systems on the CARLA leader-

board. Specifically, two encoders stand out: Transfuser and Interfuser. Both utilize transform-

ers to fuse lidar and camera data. Transfuser employs multiple transformer blocks to fuse data

at multiple scales, whereas Interfuser fuses the outputs of separate CNN encoders for each

image and LiDAR scan. While Interfuser delivers better performance on the CARLA leader-

board and has a lower runtime - having almost a third of the runtime compared to Transfuser.

Despite this, the latter was published earlier, and I have greater familiarity with its codebase.

Consequently, I opted for Transfuser despite its lower performance. The encoder can then be

seen in Figure 3.2, giving an output vector of size 512.

3.5.2 Observation Space

Choosing the appropriate observation space is crucial in RL as it directly impacts the agent’s

ability to learn and generalize its behavior. The observation space determines what information

the agent can perceive about the environment and make decisions based on. If the observa-

tion space is too narrow, the agent may fail to capture important features of the environment,

resulting in suboptimal performance. On the other hand, if the observation space is too broad,

the agent may struggle to identify relevant information and become overwhelmed with irrel-

45

Chapter 3. Software and Algorithms

Figure 3.2: Transfuser backbone with four transformer blocks.

evant details, leading to slow learning and poor performance. Therefore, carefully selecting

the observation space is critical to ensure the agent can effectively perceive and learn from the

environment.

The 512-dimensional vector from the vision encoder forms the basis of the observation vector.

This gives the policy the necessary information to maneuver without colliding with objects in

the environment. This vector can be expressed as

Xv i s ion = ENCODE(XRGB, XLidar) ∈ R512 (3.7)

where XRGB and XLidar is the Image and LiDAR inputs respectively. The image has dimensions

160× 704× 3, while the LiDAR pseudo-image has dimensions 256× 256× 3.

Another important point to add to the observation is the goal locations. These are points related

to the overarching goal and are given along with a high-level command (i.e., take a right turn,

lane shift left). These points are transformed into the local coordinate frame of the ego vehicle

using the transformation

XT,local =

�

cosθego − sinθego

sinθego cosθego

�

· (XT,GPS − Xego) (3.8)

to make them more interpretable. With this, the agent gets the required information to maneu-

ver around the world to complete its global objectives correctly. The goal location - XT,local ∈ R2

46

3.5 Base Algorithm

- is given as 2D coordinates transformed into the coordinate frame of the ego vehicle using its

heading angle θego and global position Xego. The command values in CARLA are given as a

number from 0 to 5. Using this directly would make it difficult for the policy to interpret. A bet-

ter option is to one-hot-encode the command value, giving a vector CH LC ∈ {0,1}6 : ∥CH LC∥=
1. This gives the target’s contribution to the observation space

Xt arget =

�

XT,local

CHLC

�

∈ R8. (3.9)

Finally, we want to add information about the vehicle’s velocity to the observation vector. This

is essential information to include in the observation. Since the encoded vector only is based

on sensor data from one timestep, there is no other way to get information about the vehicle’s

movement. The velocity is given as a scalar value given by the speedometer, resulting in:

X vel = V ∈ R+. (3.10)

There are several different ways to combine these elements together to form the final obser-

vation. The simplest is to concatenate them into a single vector;

Xobs =







Xv i s ion

Xt arget

Xvel






∈ St ⊂ R516. (3.11)

3.5.3 Action Space

There are three main ways to formulate the action space. The policy can predict waypoints just

like Transfuser [8] and Interfuser [9] does, or it can predict the control outputs directly. It can

also predict the steering control directly and predict the desired velocity and let the throttle

and brake be determined using a normal controller.

Waypoint prediction This method predicts the waypoints the vehicle wants to follow and

then uses these in a regular controller to get control inputs in the same manner as Trans-

fuser. Doing this is much more explainable than directly predicting the controls. Having the

waypoints makes it possible to visualize the decision the vehicle is making in real-time. It also

makes it easier to implement safety checks for the agent similar to Transfuser [8] and Interfuser

47

Chapter 3. Software and Algorithms

[9].

Direct control prediction This is the simplest of the two options, as there is no need for a

separate controller. There are a total of seven controllable values for the vehicles in CARLA,

all shown in Table 3.3.

Table 3.3: CARLA control parameters.

Control Values
throttle [0.0,1.0]
steer [−1.0, 1.0]
brake [0.0,1.0]
hand_brake boolean
reverse boolean
manual_gear_shift boolean
gear N

The vehicle will use an automatic transmission and will never reverse. To make control easier,

we also assume there will be no need for the hand brake. The only outputs from the policy,

therefore, are the throttle, steering, and braking. In addition, since the vehicle never will brake

and accelerate at the same time, the throttle and brake can be combined into one action value

- a1 - with negative values indicating braking and positive indicating acceleration. The steering

is then controled by a second action value - a2.

The action space is, therefore, two output variables a1, a2 ∈ [−1,1]. The individual control

inputs are computed as follows:

throttle= cl ip(a1, 0, 1) (3.12)

brake= cl ip(−a1, 0, 1) (3.13)

steer= a2. (3.14)

where cl ip limits the value of the first parameter to a range determined by the second and

third parameters. If the value of a1 is negative, the brake value will be given a positive value,

while the throttle will be clipped to 0.

48

3.5 Base Algorithm

Discrete Action Space One disadvantage of the direct control prediction action space de-

scribed above is that randomly selecting a value gives an equal probability for braking and

accelerating. This might make training an agent without expert demonstrations very slow in

the beginning since the agent will have difficulty building up speed due to the inertia of the

vehicle and will, therefore, rarely receive a positive reward signal for driving closer to the

desired speed.

Let’s consider an example where the agent needs to drive a car at a specific speed. In the

direct control prediction action space, the agent outputs the throttle value, which could be any

real number between -1 and 1, with -1 indicating full braking, 0 indicating no acceleration or

braking, and 1 indicating full acceleration. However, since the agent chooses a value randomly,

it has an equal chance of choosing any value between -1 and 1, including negative values that

result in braking. As a result, the agent may not accelerate fast enough to reach the desired

speed, and it may even slow down by randomly choosing a negative throttle value.

One solution to this problem is for the policy to use a discrete action space, where one action

is the predicted desired speed of the vehicle, while the other is discretized steering angles. For

example, a1 = 0⇒ vd,p = 0km/h, a1 = 0.5⇒ vd,p = 30km/h and a1 = 1⇒ vd,p = 60km/h.

By comparing the predicted desired velocity vd,p to the one computed from (3.20), a positive

reward signal can be given every time the agent predicts the correct velocity, bypassing the

need to build up speed. The control inputs can then be computed using

[throttle, brake]T = LongditudinalController(vd,p, vego). (3.15)

3.5.4 Reward Function

The reward function is probably the most important design feature for a RL system. It decides

what’s good and bad for the agent to do in the environment and, therefore, directly guides the

training of the networks. Several elements could be included in a reward function for driving.

The most basic thing the autonomous vehicle needs to do is follow the road and drive close to

the center of the lane. It, therefore, makes sense to add a term to the reward function punishing

driving away from the center of the lane and another term punishing being misaligned with

the direction of the road. These terms are called Rdist and Rθ in:

Rlane = Rdist + Rθ ∈ R. (3.16)

49

Chapter 3. Software and Algorithms

Driving perfectly in the center of the road is a too strict requirement. For small deviations from

the centerline, the negative reward should be negligible, allowing for some deviations without

conferring large negative rewards. Taking the square of the distance could have this effect but

also greatly increase the punishment for larger deviations. Dividing the current deviation by

Dmax - the maximum centerline deviation allowed before a terminal state - would reduce the

scaled distance to the interval [-1, 0]. This results in

Rdist = −
�

∥x lane − xego∥
Dmax

�2

, (3.17)

where xego is the position of the ego vehicle and x lane is the closest point in the center of the

lane.

Simply taking the difference between the heading angle of the ego vehicle and the road is not a

good solution for Rθ . The largest possible angle error is π since a yaw rotation of more than π

is equivalent to a yaw rotation of less than π but in the opposite direction. The Smallest Signed

Angle (SSA) of the heading difference is used here - as described in Fossen [32] - giving an

output angle in the range [−π,π]. For the same reason as Rdist , the SSA is scaled by π and

squared, giving a reward in the range [−1, 0]. This gives

Rθ = −
�

SSA(θego − θlane)

π

�2

, (3.18)

where θego is the heading angle of the ego vehicle and θlane is the heading direction of the

lane.

Another important factor in driving is speed, where there are three cases to consider. Firstly,

the ego vehicle might be in a scenario where it has to stand still, for example, if it is stuck in

traffic or at a red light. In these scenarios, there should be no negative reward for the vehicle

to stand still. The second case is when the ego vehicle drives faster than the desired speed.

A negative reward should be given - increasing the higher the breach is - with a minimum

reward of -1. This is achieved by using the ratio of vego - the speed of the ego vehicle - and vd

- the current desired speed. This ratio is scaled, subtracted from 1, and capped using a max

function. The final case is if the agent drives slower than the desired speed but is not in traffic.

The reward should max out on vego = vd with a value of 1. Formulating this mathematically

gives the equation

50

3.5 Base Algorithm

Angle deviation

Latteral displacement

Waypoint

Longditudinal...

Figure 3.3: Values used for computing rewards.

Rvel =















max(−1, 1− cv
vego
vd
) vego > vd

vego
vd

vego ≤ vd

0 vd < 1m/s

. (3.19)

The desired speed of the ego vehicle depends on the current situation. If it is at a red light

or has another vehicle standing still directly in front of it, the desired speed should be zero.

If there are no obstructions, the ego vehicle should drive at the speed limit. In this thesis, it

is set to 40km/h for all parts of the map since the setup has no memory elements. This is

done to simplify the environment and increase the likelihood of successful training runs. An

abrupt change in vd is not desired, and it should gradually be decreased to zero after a certain

threshold. This is shown in

vd =















0km/h if closest ≤ 5m

40km/h · (closest
10 − 1

2) if 15m < closest < 5m

40km/h otherwise

, (3.20)

where closest is the closest vehicle, pedestrian, or red light ahead of the ego vehicle. This is

51

Chapter 3. Software and Algorithms

40 km/h vd

5m15m
ObstacleAgent

Figure 3.4: Visualisation of the desired velocity as a function of distance.

also visualized in Figure 3.4.

To be able to perform meaningful progress throughout the map, the agent also needs to be able

to follow its given waypoints. The observation specified in (3.8) contains the target points as

coordinates in the agent’s local coordinate system. The norm of this vector will be a measure

of how far away from the waypoint the agent is. Since the waypoints can be quite far away

from the agent, this value has to be scaled if it is to be used in the reward function. The agent

should also be rewarded positively if it gets close to the target position. The final waypoint

reward looks like

Rwpt =







− ∥XT,local∥
DT,max

∥XT,local∥> 2

10 otherwise
. (3.21)

Finally, punishment needs to be given for collisions with vehicles and pedestrians. This can be

given as a singular negative value if there have been any collisions and a zero if no collisions

have occurred,

Rcol =







−1 collision occured

0 otherwise
. (3.22)

52

3.6 Parallel Training Environments

All these possible reward components can be combined to form the final reward function

R= clane · Rlane + cvel · Rvel + cwpt · Rwpt + ccol · Rcol , (3.23)

where each element is scaled by a constant to signify the importance of each element.

3.5.5 Network Architecture

Stable Baselines 3 allows the user to customize the architecture of the policy and/or value

networks for all its algorithms. Parts of the network can also be shared between the policy

and value nets in an Actor-Critic algorithm like PPO. This can be useful since it allows the

early shared layers to pick up on patterns in the observation while the policy and value heads

convert this into an action and value estimate, respectively. The shared layers also prevent the

representations in the policy and value nets to diverge too far from one another.

According to a study by M. Andrychowicz, it is recommended to use policy and value nets

with no shared layers in less complex environments [33]. The vision encoder does reduce the

complexity of the CARLA environment substantially; however, the observation is still quite

complex compared to the environments used in the study. Because of this, using shared layers

was chosen over the alternative.

A network architecture with two shared layers is chosen, with a width of 1024 and 512, re-

spectively. The policy and value networks then have a head, each with one hidden layer of 256

nodes.

3.6 Parallel Training Environments

A big issue with doing RL in the CARLA simulator is the runtime of the simulator itself. Render-

ing one scene and computing the latent representation of the scene takes a lot of GPU power.

Collecting trajectories can therefore take a long time. To combat this, several environments

can be run in parallel. By doing this, experiences can be collected from different instances

simultaneously, accelerating the training process. This can be especially beneficial in complex

environments like CARLA.

One way of doing this is to run a vectorized environment. In a vectorized environment, several

environments are run as separate processes, and the same agent instance controls all environ-

ments. The state of each environment instance is stored in a tensor, with the batch size being

53

Chapter 3. Software and Algorithms

the number of environments, allowing multiple instances to be processed simultaneously. The

agent receives a batch of states as input and outputs a batch of actions, one for each state. The

actions are then sent to the corresponding environment instances, which perform an update

and return a reward, and the updated state [34].

Environment

Environment

... ... Policy

Figure 3.5: Vectorized environment. The policy takes as input a batch of observations. One
from each environment, and choose one action per observation.

However, there are also challenges associated with using vectorized environments. One chal-

lenge is coordinating the interactions between the different instances of the environment. This

requires careful synchronization and communication between the different instances, which

can be complex to implement. Additionally, using a vectorized environment can require more

computational resources, which may not be feasible on all systems.

After weighing the pros and cons of using vectorized environments in training RL agents in the

CARLA simulator, it seems beneficial to use vectorization in this context. The benefits of vec-

torized environments are numerous, including faster training times. Furthermore, with access

to a High Performance Computing (HPC) cluster in IDUN, the computational burden of using

vectorization can be easily managed. Therefore, using vectorized environments can lead to sig-

nificant improvements in training efficiency and agent performance, making it a worthwhile

time investment when training RL agents in the CARLA simulator.

3.7 Vision Pre-training

Training a large neural network purely from reward signals might be infeasible and would

definitely dramatically increase the training time due to the large increase in parameter count

and the low sample efficiency of RL. This is why most RL approaches utilize a multi-stage

training approach, where a vision encoder is pre-trained on regular computer vision tasks

such as segmentation and object detection. The weights of the encoder are frozen in the second

stage, where the agent interacts with the environment. This also makes the entire system more

54

3.7 Vision Pre-training

explainable since the output from the encoder can be decoded and visualized to the user.

3.7.1 New Dataset Generation

The newest version of the CARLA simulator - 0.9.14 - has some graphical changes from 0.9.10,

which is used in Transfuser, so a new dataset needs to be generated on the new version. There

have also been some changes to the available spawn points for vehicles. Luckily Chitta et al.

have included code for route and dataset generation in their GitHub repository 1. Since the

data for each route are independent, the generation can easily be parallelized on Idun by

creating one job per route.

3.7.2 Training of Encoder and Expert Agent

The vision pretraining step is performed similarly to the Transfuser. Five loss functions are

used in training - one for semantic segmentation, depth estimation, HD map, and BEV object

detection - and the waypoint prediction loss as described in Section 2.8.3. The waypoint loss

is included since the waypoint prediction network will be used in the expert agent for GRIAD.

The depth and semantic segmentation are inferred from the output features from the image

encoder using the same decoder as Transfuser [8]. The depth prediction uses an L1 loss,

Ldepth = L1(X , Y) =
H
∑

i

W
∑

j

∥ ŷi, j − yi, j∥, (3.24)

where yi, j and ŷi, j are the real and predicted depth for pixel (i,j). On the other hand, semantic

segmentation uses a cross-entropy loss,

Lseg = −
1

H ·W

H
∑

i=1

W
∑

j=1

C
∑

k=1

yi, j,k log(ŷi, j,k). (3.25)

where (H, W, C) is the dimensions of the image, ŷi, j,k is the output prediction for pixel (i,j) for

class k, while yi, j,k is a value which is 1 if the class of pixel (i,j) is k, and 0 otherwise.

The HD map and BEV bounding boxes are predicted from the output from the lidar encoder.

The HD-map loss Lmap uses the same cross-entropy loss function as the segmentation loss,

1https://github.com/autonomousvision/transfuser

55

https://github.com/autonomousvision/transfuser

Chapter 3. Software and Algorithms

Figure 3.6: Vision pre-training architecture.

while the bounding box loss is a combination of losses for the position map P̂ ∈ [0,1]64,64,

orientation map Ô ∈ [0,1]64,64,12 and regression map R̂ ∈ [0,1]64,64,5 which are focal, cross-

entropy and L1 losses respectively.

3.8 Benchmarking

The official evaluation leaderboard in the CARLA simulator has 100 secret routes, but teams

are limited to only 200 hours of evaluation time per month. Due to the time required for a

single evaluation (over 100 hours), the official leaderboard is unsuitable for ablation studies

or obtaining detailed statistics involving multiple evaluations of each model. To address this

issue, Chitta et al. propose the Longest6 Benchmark, which is similar to the official leaderboard

but can be used to evaluate locally [8].

The CARLA leaderboard repository provides a set of 76 routes for training and evaluating

agents, but there is a significant imbalance in the number of routes per town. To balance

the Longest6 driving benchmark across all available towns, the six longest routes per town

from the 76 routes were chosen, resulting in 36 routes. To ensure a high density of dynamic

agents during evaluation, vehicles are spawned at every possible spawn point allowed by the

simulator. Each route also has a unique environmental condition obtained by combining one

of 6 weather conditions with one of 6 daylight conditions. CARLA’s adversarial scenarios are

56

3.8 Benchmarking

included in the evaluation, spawned at predefined positions along the route. The Longest6

benchmark also includes CARLA’s scenarios 1, 3-4, and 7-10 [8].

To obtain a representative benchmark for each experiment, the agent is evaluated on the

Longest6 benchmark three times to get a representative benchmark for each experiment, and

the results are averaged. This helps to smooth out any randomness in the evaluation procedure

and provides a more reliable estimate of the agent’s performance. Using the Longest6 Bench-

mark, more detailed statistics on the performance of the RL agents under a broader range of

driving scenarios and environmental conditions can be obtained without the time constraints

of the official evaluation leaderboard.

57

Chapter 4
Simulation and Results

In this chapter, all the performed training runs will be introduced with a short description

of their purpose, along with hyperparameter choices for the given run and a discussion of

the results. The chapter will be concluded with a closing discussion in the context of all the

previous results.

For all the runs, videos were created at intervals throughout the training process. These are

stored on OneDrive; a link can be found in Chapter A. The videos are stored in folders according

to the experiments and training run number, with the video file names indicating during which

steps of training the videos were recorded.

There were also lots of data plotted during training. Some of these plot are included in this

chapter. The ones not discussed here can be found in Chapter B.

4.1 Issues With Training on Idun

Whether A100 or RTX4090 GPUs provide the fastest training depends on the number of en-

vironments that can be run in parallel. Each CARLA server requires around 4GB of VRAM to

run, while the CARLA Python client with a Transfuser backbone requires 3.5 GB. Since the

A100s have 80GB of VRAM, a maximum of 11 environments can be run at the same time. It

is, therefore, likely beneficial to train using A100s over RTX 4090s.

When training on Idun, some issues were quickly encountered. When running with one envi-

59

Chapter 4. Simulation and Results

ronment, everything worked as normal, but introducing a second caused the Python client to

exit with a CUDA_INTERNAL_ERROR. After a thorough investigation, it was discovered that

the root of the issue was something on the Idun nodes having A100 GPUs. Using the nodes

with P100 or V100 GPUs did not result in this issue.

Since the V100 and P100 only have 16 and 12 GB, respectively, there is no longer any advan-

tage of training on Idun. The choice, therefore, fell on VCXR12 since it was less competition

for computing resources compared to NAP02.

4.2 Vision Pre-training

4.2.1 Graphical Differences Between CARLA 0.9.10 and 0.9.14

The newest version of the CARLA simulator has some graphical and lighting changes compared

to the version Transfuser was trained on. These changes are especially noticeable when it

comes to lighting. An example is shown in Figure 4.1 and Figure 4.2. The images from the two

versions are taken using different resolution cameras, but the differences in lighting quality

are still evident. These changes cause the performance of the Transfuser agent trained on the

0.9.10 dataset to drop on the new version.

The Transfuser repository contains all the scripts for generating the original dataset, so regen-

erating a dataset on the newer version should be simple. Since the data from different routes

are independent, this process can easily be parallelized on Idun, running multiple jobs. Despite

this, there were some parts of the dataset from the original authors that were not recreated

while using their scripts. It is unknown where this data comes from, but as a result, the new

dataset is smaller compared to the original.

4.2.2 Training Results

The training script in the Transfuser repository uses a learning rate of 10−4 for the entire

training process by default. In the first training run, the loss started to increase again after

around 7 epochs, this can be seen in Figure 4.3. This is caused by too high of a learning rate.

To flatten out this curve, the learning rate can be reduced at different points of the training.

This can lead to better training results.

In the second training run, the learning rate was reduced by a factor of 10 after 10 and 15

timesteps. This resulted in significant improvements compared to the run with a constant learn-

ing rate, completely flattening the bump in the loss around epoch 10-15.

60

4.2 Vision Pre-training

(a) Version 0.9.10.

(b) Version 0.9.14

Figure 4.1: Lighting differences during the day.

61

Chapter 4. Simulation and Results

(a) Version 0.9.10.

(b) Version 0.9.14.

Figure 4.2: Lighting differences during the night.

62

4.3 Experiment 1 - RL Baseline Using PPO

Figure 4.3: Plot of total loss for the vision pertaining step.

4.3 Experiment 1 - RL Baseline Using PPO

Before introducing any external factors or techniques to influence the training process of an

agent, it is essential to establish a baseline performance level. One of the primary benefits of

training a baseline agent is that it enables a comparison of the performance of future agent

models to this starting point. By comparing the performance of these models to the baseline,

the effectiveness of any additional techniques or external factors introduced during the train-

ing process can be established. This comparison also helps to measure the overall change in

performance due to additional techniques.

In addition to providing a benchmark for evaluating future agent models, training a baseline

agent also helps identify potential issues that may arise during the training process. Since

the baseline agent learns only from the environment without any external assistance, it may

highlight any challenges in the problem domain that might require additional attention or

adjustments. Furthermore, the knowledge gained from training a baseline agent using RL can

be used to improve the overall training process. Understanding how the agent interacts with

the environment, the challenges it faces, and the decisions it makes during training can inform

the design of future training strategies, leading to more efficient and effective training of the

agent.

63

Chapter 4. Simulation and Results

4.3.1 Setup

The reward function is chosen to be as in (3.23), with clane = cvel = cwpt = 1, and ccol = 200.

The observation space described in Section 3.5.2 is used, along with the direct control action

space in Section 3.5.3. The training was done on vcxr12, running 3 exploration environments

in parallel. To better understand the performance progression, a video recorder wrapper is

used around the standard environment, which records a video of the agent during training at

a given interval and video length. For all the runs, an interval of 10,000 steps is used, with a

video length of 1000 steps.

Due to crashes of the CARLA server, checkpoints have to be stored frequently. This allows train-

ing to be resumed automatically when a crash is detected. All the code is run in docker con-

tainers. For the CARLA server, the premade CARLA 0.9.14 image 1 is used while the client runs

in a custom container. Communication between containers is handled using docker-compose.

This also allows for the use of Docker composes restart on failure setting, which restarts the

containers if the program running inside crashes. If the server crashes, the client will time out,

causing both containers to restart.

Considering the time and computational resources available, the training goal has been set at

1, 000,000 steps. Although this is considerably less than what was done in the GRIAD paper

[7], it is hoped that this should be sufficient to demonstrate the potential of the approach

within reasonable limits and yield valuable insights into the system’s performance.

The PPO implementation in SB3 allows for several hyperparameters to be set. The default

optimizer in SB3 is Adam. The most common learning rates used for this optimizer are in

the range [10−3, 10−5], but the default parameter set in sb3 is 4 · 10−4. The number of steps

performed in the simulator before each policy update was set to 128. During each update,

10 epochs are run with the collected data, with a batch size of 64. For the discount factor

γ and clip range ε, the values used in the original paper were chosen [26]. All the chosen

hyperparameters are shown in Table 4.1.

To gain more insights into the training of the PPO algorithm, a custom callback was created

to log the weight and bias histograms of the action and value networks. These distributions

can provide insights into how the parameters are changing and whether there are any issues.

By logging these histograms at regular intervals, it is possible to monitor the progress of the

training process and detect any abnormalities or inefficiencies. In addition to the histograms,

several other parameters were logged. These are explained in Table 4.2.

1https://hub.docker.com/r/carlasim/carla

64

https://hub.docker.com/r/carlasim/carla

4.3 Experiment 1 - RL Baseline Using PPO

Parameter Value Description
Learning rate 0.003 Scale factor for gradient update
gamma 0.99 Discount factor for future rewards
clip range (ε) 0.2 Probability ratio for importance sampling clipped to [1− ε, 1+ ε]
n steps 128 Number of steps performed before gradient update
batch size 64 Batch size for gradient update
n epochs 10 Number of epochs to perform for each n steps

Table 4.1: Hyperparameters used for PPO training.

Value Description

Entropy loss
The negative of the entropy. A measure of how spread out the distribution is.
A low value indicates more randomness, while a higher value
results from a more deterministic policy

KL_divergence An approximation of the KL-divergence of the polity between each update
clip fraction The fraction of the policy loss contributions being clipped
standard deviation The standard deviation of the policy
Value loss The loss of the value function given in (3.6)
Policy loss The loss value for the policy network given in (3.4)

Table 4.2: Logged scalars from training PPO.

4.3.2 Results for Run 1 - Initial Setup

Looking at the mean episode reward and length, it is clear that the training stagnates quite

quickly. After about 40, 000 steps, there is little change in the average reward received. Looking

at the video recordings - which can be found in Chapter A - clearly show the cause of this. The

agent has learned to accelerate forward and turn to the right. This causes the vehicle to quickly

move further away from the centerline than Dmax , causing the episode to terminate early. This

is likely the case since the punishment for crashing is a lot higher than the punishment for

deviating too far. The action of driving off the right side of the road is the simplest way to

drive forward, thus keeping the desired speed but also not colliding with something.

Another thing to notice about this training run is the clip fractions in Figure 4.5. This represents

the fraction of updates where the surrogate objective function was clipped, which indicates that

the policy update was constrained to a certain range to prevent too-large policy changes. The

clip fraction should ideally be small, indicating that the policy updates are mostly within the

desired range. In this run, the clip fraction often exceeds 0.8. This suggests that the policy was

changing too rapidly, and that can make it difficult to converge on a good solution. The slow

increase in the clip fraction could be counteracted by using a learning rate scheduler to slowly

decrease the clip fraction throughout training. This might not be enough, though, and it might

65

Chapter 4. Simulation and Results

(a) Mean episode length. (b) Mean episode reward.

Figure 4.4: Rollout statistics during training PPO run 1.

be necessary to reduce the initial learning rate as well.

The explained variance plot also shows parts of the problem. The explained variance will be

close to one if the value network accurately predicts the advantages, while a negative explained

variance shows that it is making poor predictions. Figure 4.6 shows a negative explained vari-

ance for most of the training period, with occasional massive negative spikes. It also seems

to get worse as the training progress. The value network was, therefore, not accurately pre-

dicting the advantages, which made it difficult for the policy to learn effective behavior. This,

in combination with the fast-changing policy, explain why the training quickly diverged to a

suboptimal policy.

The plots of entropy and standard deviation can provide valuable insight into the training pro-

gression of the PPO algorithm. As shown in Figure 4.7, the entropy and standard deviation

decrease sharply at the beginning of training. This leads to the policy becoming more deter-

ministic, and hence less exploration is performed by the actor, which might be the result of the

stagnation seen in Figure 4.4. Since the starting state of every episode is quite similar, with

the ego vehicle centered on the road. A more deterministic policy might therefore cause every

episode to follow similar trajectories, limiting the exposure to different parts of the observation

space and hence impeding learning.

One way to counteract this is to perform entropy regularisation. This is done by adding another

component to the loss function being minimized - called the entropy loss. This is simply just

the negative of the total entropy and is shown in

66

4.3 Experiment 1 - RL Baseline Using PPO

Figure 4.5: Clip fraction from training run 1 using PPO.

Lent rop y = −cent rop y H(X), (4.1)

where H(X) is given in (2.21) and cent rop y is a scaling coefficient.

By incorporating the entropy loss term into the loss function, the algorithm is also incentivized

to maximize entropy. This encourages exploration and can help to prevent the actor from

getting stuck in local optima.

Choosing a good value for the entropy coefficient for the loss function is a hyperparameter

tuning problem that can be solved using hyperparameter tuning. Due to the long training

times in CARLA, this is not a viable choice. Values between 0 and 0.01 are shown to work well

[26], so 0.005 was chosen - right in the middle of this range.

The final graphs to mention are the policy and value losses. In Figure 4.8, it is difficult to

67

Chapter 4. Simulation and Results

Figure 4.6: The expected variance of the value function.

make out the trajectory of the losses because of very noisy plots. The high noise level of the

loss might partially be because of the previously discussed high learning rate. However, the

biggest contributor is likely that the parameter n steps is low. With a small number of steps

performed per update, the collection of transitions is unlikely to be very representative of the

environment or consistent with one another. As a result, significant noise is introduced into

the loss values. By increasing the number of steps per update, a more representative sample

of transitions is obtained each time the network weights are updated.

Despite the noisy loss, it is clear that the value loss has a much higher magnitude than the

policy loss. This can be an issue since the networks share some weights, making the value loss

dominate the weight update in the shared layers. The reason for the high loss value is that the

rewards can be quite large in magnitude. A way to mitigate this is to perform normalization

and clipping of the rewards. In the study by M. Andrychowicz, it is recommended to test out

reward normalization to see if it improves performance [33].

68

4.3 Experiment 1 - RL Baseline Using PPO

(a) Entropy loss. (b) Standard deviation.

Figure 4.7: Statistical information about the policy in run 1.

(a) Value loss. (b) Policy loss.

Figure 4.8: Losses for PPO training run 1.

4.3.3 Results for Run 2 - Reward Normalization and Learning Rate Scheduling

Normalizing the rewards can be done by estimating the moving mean and variance of the

discounted rewards using an estimator for the mean,

µ̄k = µ̄k−1 +
xk − µ̄k−1

k
, (4.2)

where µ̄k−1 is the estimate for the mean of the k-1 first samples, xk is the kth sample, and µ̄k

is the updated estimate using the new sample. The variance can be estimated using Welford’s

online algorithm [35] for the variance,

69

Chapter 4. Simulation and Results

s2
k =

k− 2
k− 1

s2
k−1 +

(xk − µ̄k−1)2

k
, (4.3)

where s2
k is the updated estimate for the variance, while s2

k−1 is the old estimate. The xk is

the new sample, while µ̄k is an estimate of the mean computed using (4.2). The normalized

rewards can then be computed with

Rk,norm =
Rk − µ̄k

sk
, (4.4)

where the mean of all received rewards up until timestep k - µk - is subtracted from the reward

and the difference is divided by the standard deviation of the received rewards - σk [33].

The initial learning rate in run 1 was probably too high at 3·10−4. Reducing the initial learning

rate slightly and then reducing it again throughout training should improve performance. For

run 2, the learning rate schedule

learning rate=















10−4 step < 100, 000

5 · 10−5 step < 300, 000

10−5 step > 300,000

(4.5)

was used. Using a higher learning rate in the beginning, allows the agent to explore and learn

quickly. As training progresses and the agent becomes more knowledgeable about the environ-

ment, reducing the learning rate helps fine-tune the policy with more precision.

The number of steps before each update was also increased to 2048, while the number of

epochs trained for each update remained at 10. This should help reduce the high noise levels

observed in the losses during run 1, which again should increase learning speed, as noisy

gradients for the policy update are known to reduce learning speed [27]. An entropy loss was

also added with a scaling coefficient cent rop y = 0.005.

These changes resulted in way smoother loss curves, shown in Figure 4.10. However, the per-

formance of the agent did not improve significantly. The mean reward again flattens out just

below zero, and again the result of this is quick termination with the agent turning to the right.

Looking at the losses in Figure 4.10, there are clear signs of improvement over Figure 4.8. The

70

4.3 Experiment 1 - RL Baseline Using PPO

(a) Mean episode length. (b) Mean episode reward.

Figure 4.9: Rollout statistics for PPO run 2.

(a) Value loss. (b) Policy loss.

Figure 4.10: Losses for PPO run 2.

value and policy losses are now much closer in scale, giving a better potential for learning. The

losses do not decrease much, but there is a small downward trend on the policy loss. Since

this run had to be cut short at 250k steps, this is to be expected.

Despite these apparent improvements, the results did not change much from run 1. After 125k

steps, the agent again started to terminate by veering off the road. The policy is, however,

more random at the end of this run, with an entropy loss still in the negative at 250k steps -

seen in Figure B.2e, as opposed to over 2 in Figure 4.7, giving a possibility of improvements

with further training. However, this is unlikely as it so quickly converged to the same policy as

in run 1.

71

Chapter 4. Simulation and Results

4.4 Experiment 2 - GRIAD Variation

GRIAD is a method introduced by Chekorun et al. to introduce expert data from a demon-

stration dataset into the training process of any off-policy RL algorithm. Since it require an

off-policy algorithm TD3 is used here instead of PPO.

4.4.1 Setup

The implementation used here differs slightly from the original paper. Instead of using pre-

recorded data, the expert agent interacts with the simulator in the loop. This should reduce

the preparation needed before training, at the cost of slightly more computation at training

time. Using a HPC, this computation can be performed in parallel with the exploration agents,

making the payoff worth it. The overall setup is shown in Figure 4.11

Again, the reward function is chosen to be (3.23), with clane = cvel = cwpt = 1, and ccol = 200.

The training goal is also set to 1,000,000 steps, and the same setup for observation space,

action space, docker, and video recording is used as in Section 4.3.

The chosen off-policy algorithm - TD3 - has several hyperparameters that need to be set. For

most of these, the ones chosen in the original paper are used [27]. The exception is the train

frequency, which is set to 1000 steps instead of at the end of every episode. The rest of the

hyperparameters are shown in Table 4.3.

Hyperparameter Value Description
Learning rate 10−3 gradient scaling factor
Discount factor γ 0.99 Discount for future reward
Replay buffer size 106 Capacity of the replay buffer
Train frequency 1000 steps After how many environment steps the networks are trained
Policy delay 2 Policy network is updated every policy delay training steps
Action noise N (0,0.1) Noise applied to the actions from the policy

Table 4.3: Hyperparameters for TD3.

4.4.2 Results

The training videos for GRIAD can be found in Chapter A and have two components. On the top

is a video of the expert agent driving, while on the bottom, there is a video of one agent driving

using the learned policy. It does not take a long time before the agent just starts standing still.

The cause of this might again be the size of the negative rewards for collisions. The policy

might first try to imitate the expert agent, but since there are 3 agents running on the trained

policy, the constant big negative rewards for colliding might lead the agent just to stand still.

72

4.4 Experiment 2 - GRIAD Variation

Replay Buffer

Exploration...

Exploration...

Exploration...

ActionsTD3

Expert...

Figure 4.11: Variation of GRIAD with the expert interfacing with the simulator.

The rewards in Figure 4.12 are not comparable to that of Figure 4.4 because of the constant

positive rewards received from the expert agent. These rewards will help smoothen t. What

can be seen is that the mean episode length flattens out at about 1800 steps. This is close to

the termination criteria at 2000 steps, which was the most common cause for termination of

episodes. The rewards also quickly flatten out.

The TD3 actor and critic losses for GRIAD is shown in Figure 4.13. There is no real progress

being made, with both losses being higher at the end of training than at the start. Learning

rate issues might be the cause of this. Since TD3 does not perform clipping of losses, a lower

learning rate might have to be used to stabilize the training.

73

Chapter 4. Simulation and Results

(a) Mean episode length. (b) Mean episode reward.

Figure 4.12: Rollout statistics for GRIAD training.

(a) Mean episode length. (b) Mean episode reward.

Figure 4.13: Training losses for GRIAD.

The weight histogram from one of the Q functions in the TD3 critic network shows that there

are some serious issues with the training. Most of the weights remain around zero, while some

of the weights grow extremely large. It is difficult to see, but in Figure 4.14, some weights

have grown to be larger than -25. This again indicates that the learning rate might be part of

the problem.

An important factor to take into account here is the frequent crashes of the simulator. When

this happens, the training is restarted from the latest checkpoint. The checkpoints do, however,

not contain the contents of the replay buffer. Clearing the replay buffer entirely can result in

the loss of valuable past experiences, leading to a loss of learned knowledge and potentially

slower convergence. The replay buffer serves as a valuable source of diverse training data,

allowing the agent to learn from a variety of past experiences. Cleaning up in the replay buffer

can be beneficial, but this should be done in a structured way. Removing all the experiences at

74

4.4 Experiment 2 - GRIAD Variation

Figure 4.14: Weight histogram of layer 1 of Q1 in the critic network. Here the depth axis is the
time step, and each line is the weight histogram for a given timestep. Earlier steps are further
back.

75

Chapter 4. Simulation and Results

once eliminates this valuable data source, which might hinder the agent’s ability to generalize

and learn robust policies.

4.5 Simplifying the Environment

Due to the poor performance of the agent in Section 4.3 and Section 4.4, a simplified envi-

ronment was created. Simplifying the environment can make it easier for the agent to learn.

Since the scenarios trained previously have dense traffic, giving a high probability that the

agent will collide during exploration and receive big negative rewards. This might lead the

agent towards just avoiding collisions instead of trying to maximize the other rewards.

The simplified environment only has waypoints for the agent to follow, with no scenarios.

There are also significantly fewer cars, with only a couple of other cars spread around the

map. In addition, only Town 3, with the time set to noon, is used during training. This is to

make all the episodes as like one another as possible. This will also hopefully aid the learning

process.

4.6 Experiment 3a - Transfuser in the Simplified Environment

4.6.1 Setup

To give the closest comparison to Experiment 1, the first run in the simplified environment is

performed with the Transfuser backbone. The setup is the same as in Section 4.3, both with

observation and action space. Learning rate scheduling was performed using (4.5), alongside

reward normalization and an added entropy loss, with a scaling coefficient cent rop y = 0.01.

Every other hyperparameter is the same as in Section 4.3.3.

4.6.2 Results

Even with the simplified environment, the agent is incapable of learning some parts of the

environment while using the Transfuser encoder. Just like previously, the mean reward quickly

rises to around zero while the episode length falls. There are, however, some big improvements

over the more complex environment. The mean episode length does slowly increase, along

with the mean reward. Learning is happening, but 1 million steps seem to be insufficient to

get reasonable performance.

The agent is able to follow the road, although with large amounts of swerving. It does also

drive a lot faster than the desired speed. This is likely in an attempt to receive the positive

76

4.6 Experiment 3a - Transfuser in the Simplified Environment

rewards for getting to a checkpoint as fast as possible. In addition, to follow the road lines

on a straight road, it is also able to do so while the road is turning. This is important, as it

shows the policy does not just choose random turning angles, causing the agent to drive in a

somewhat straight line.

Looking at the rollout statistics in Figure 4.15, there is clearly still progress being made, and

the bump in rewards and episode length at around 800k steps tells us that the policy and value

function is still changing. The reward per timestep does seem to flatten out, but it also has a

slump at around the same time. The fact that the reward goes down, but the episode length

goes up is a good sign. It shows that it wasn’t a series of bad events that caused the drop in

rewards, as that would have terminated the episode and also reduced the episode length.

(a) Mean episode length. (b) Mean episode reward.

(c) Reward per step.

Figure 4.15: Rollout statistics during training in the simple environment using Transfuser en-
coder.

The losses in Figure 4.16 all end up higher than when they started. The value loss seems to

have a consistent rise until it flattens out. This is not necessarily a bad thing since a high

loss indicates that the agent encounters parts of the observation space where it is unable to

correctly predict the value function. This in combination with the entropy loss flattening out -

77

Chapter 4. Simulation and Results

as seen in Figure B.4e - shows that there is still a lot of exploration going on.

(a) Policy loss.

(b) Value loss. (c) Learning rate

Figure 4.16: Training losses in the simple environment using Transfuser encoder.

4.7 Experiment 3b - RL Training of CNN in the Simplified Environ-

ment

4.7.1 Setup

SB3 allow images to be used as observations directly. The observation will then be passed

through a feature extractor before being passed to the value and policy networks. If the ob-

servation space is specified as a dictionary, both images and vector values can be used in the

same observation. Images are passed through a CNN before all the values in the dictionary

are concatenated together. This allows the CNN to be trained alongside the action and value

networks.

PPO was also used for this. Since this is very different from the previous experiments, this

78

4.7 Experiment 3b - RL Training of CNN in the Simplified Environment

approach is tried both with and without learning rate scheduling. It is also attempted without

reward normalization, as suggested in [33].

The CNN architecture used in the paper Human-level control through deep reinforcement learn-

ing by V. Mnih et al. was chosen [36]. The architecture consists of 3 Convolutional layers, with

32, 64, and 64 kernels, respectively, each followed by a ReLU activation function. This archi-

tecture is quite simple and will likely have problems capturing complex visual inputs. It will,

however, be faster to train because of fewer parameters. It has also been shown to work in RL

applications. Since the main goal of this experiment is to get the vehicle to follow the road

correctly, the issue with complex visual inputs hopefully won’t be an issue since road markings

are geometrically quite simple.

4.7.2 Results for Run 1

There is clear evidence of learning after training for 600,000 steps. The mean episodic reward

quickly becomes positive, while the mean episodic length increases to around 300 steps, as

seen in Figure 4.17. At this point, both of them start to oscillate, which might be caused by a

learning rate being too high.

Looking at the videos in Chapter A, the agent learns to follow the lane markings, although with

significant oscillatory motion. It is, however, not yet able to detect when there are other vehicles

in front, and almost every episode terminates with a collision. With the heavily reduced number

of vehicles in the simplified environment, learning to detect them by training an encoder in

the loop alongside the policies probably would take a lot more time than detecting the lanes.

Cars are complex shapes, while lane lines are very simple. This is probably also affected by the

use of a very simple feature extractor for the images, as discussed in Section 4.7.

4.7.3 Results for Run 2

Introducing the same learning rate schedule as in (4.5) results in a smoother convergence

compared to run 1. After 800k steps, the mean reward is still increasing, along with the episode

length. The reward per timestep, which can be seen in Figure 4.19c, has flattened out after

about 200k steps. Most of the gains are, therefore, from the agent lasting longer and not the

agent performing better for each step. Despite this, the performance is slightly higher than

that achieved without the learning rate schedule, and there is still progress being made after

800k steps.

The Policy loss in Figure 4.19 seems to start increasing again fairly quickly before starting

79

Chapter 4. Simulation and Results

(a) Mean episode length. (b) Mean episode reward.

Figure 4.17: Rollout statistics during training run 1 in the simple environment using CNN
encoder.

to decrease after the final learning rate reduction at 300k steps. This coincides well with the

increase in episode length and the moment the agent starts driving forwards. It’s common

for the policy loss to increase during certain stages of training, especially when the agent

encounters complex or challenging situations. It is, therefore, likely that the increase in policy

loss comes as a result of the agent encountering unexplored areas of the observation space.

Looking at the videos, there is still a large amount of swerving, and the agent is still unable

to avoid crashing into cars, just like in run 1, but the performance is significantly better than

with the Transfuser encoder. The convergence is also significantly faster, likely due to the lower

complexity of the encoder and the fact that the encoder parameters are trained, allowing the

agent to quickly pick up on simple patterns in the image data. It is uncertain if this simple

encoder could capture enough information - given enough training - to avoid colliding with

other vehicles. A more complex CNN would likely be able to do this, but it is uncertain if

training it with RL is feasible, and it would likely take much more time.

4.8 Discussion

In all the experiments where the Transfuser encoder was used, the agent failed to learn suf-

ficient information about the environment. One possible contributing factor is the data used

to train the encoder. The Transfuser training pipeline performs some data augmentation to

simulate different car placements on the road. This does not seem to be sufficient, as the BEV

estimate deteriorates when the vehicle position is slightly off the optimal line. Because of this,

the RL agent may not be able to learn how to recover from mistakes and adjust its behav-

80

4.8 Discussion

(a) Policy loss. (b) Value loss.

Figure 4.18: Training losses for run 1 in the simple environment using CNN encoder.

ior accordingly. This can severely impact the agent’s performance, as it may not be able to

learn properly in the early stages of training. Furthermore, the lack of diverse examples in the

pretraining data can also limit the ability of the network to generalize.

4.8.1 Importance of Training Duration

The relatively short training duration of one million steps might have also contributed to the

suboptimal performance observed in the experiments. GRIAD was trained for 70 million steps,

and this highlights the potential benefits of longer training durations in capturing the com-

plexity of the Transfuser encoding and for learning complex behaviors. The training might not

have been long enough for the policy to capture the complexities in the encoded vector. What

has to be noted is the tendency of all the training runs to stagnate fairly quickly, which is aided

by the needed reduction of the learning rate. It is uncertain if the continuation of the training

while using the same setup would result in improved performance. Further investigation with

extended training periods and different hyperparameters could provide valuable insights into

the performance of RL agents using the Transfuser encoder.

4.8.2 Simplified Environment and Encoder

The most successful training runs were performed in a simplified environment, even when

using the same setup and reward function as in the other runs. The biggest difference in com-

plexity is the traffic density, which might indicate that the reward function is to punishing for

collisions. In the simple environment, the agent is capable of gaining enough positive rewards,

from getting to checkpoints, to prevent convergence to a suboptimal policy. Based on this, it

81

Chapter 4. Simulation and Results

(a) Mean episode length. (b) Mean episode reward.

(c) Reward per step.

Figure 4.19: Rollout statistics for run 2 in the simplified environment using CNN encoder.

might be necessary to perform training in the early stages using simpler traffic scenarios than

the ones on the CARLA leaderboard. Complexity could then be introduced gradually, with more

complex traffic patterns and scenarios, until the agent is able to handle the full complexity of

the CARLA leaderboard. This might help the agent learn the simple parts of the environment

before being exposed to scenarios with very dense traffic. Other forms of agent pretraining

might also be deployed, such as curiosity-based exploration, as discussed in [37].

Furthermore, given the relative success of the simpler encoder trained alongside the policy

and value networks in the simplified environment, it raises the possibility of training a more

complex encoder in a similar manner. By allowing the encoder to learn relevant features and

representations directly from the environment, it may be able to capture more nuanced infor-

mation and improve the agent’s ability to detect and interact with other vehicles effectively.

This would, however, decrease the interpretability of the entire system, as there would be no

way to visualize what the encoder sees. This is a massive drawback, as interpretability for au-

tonomous vehicles is essential for them to gain the trust of the general public. It also makes it

82

4.8 Discussion

(a) Value loss. (b) Policy loss.

Figure 4.20: Losses for run 2 in the simplified environment using CNN encoder.

easier to run diagnostics to determine what goes wrong when something happens.

4.8.3 Impact of Expert Demonstrations

The results from training were insufficient to draw any conclusions regarding expert demon-

strations. Standing still on the road is a better policy than intentionally driving off the road

and shows more promise for improvement with more training if it had not been for the diverg-

ing weights in Figure 4.14. There was unfortunately not enough time to train GRIAD in the

simplified environment, which might have given valuable insight. The time constraint again

prevented further exploration of hyperparameters, which might have given better results, as

the lessons learned from PPO might not be directly transferable to TD3.

4.8.4 Issues with the Transfuser Dataset Generation

Looking at the HD-map prediction from the Transfuser encoder, it is evident that the current

method for generating data for pretraining the encoder has some issues for use in RL. In Sec-

tion 4.8.4, the network is incapable of predicting a reasonable HD map when the agent is

off-center and misaligned with the lane. Since all the data in Transfuser is generated using

an expert agent, there are no example images where the vehicle is not perfectly positioned in

the lane. The encoder network is therefore not exposed to images where the vehicle is angled

weirdly in the lane, causing inconsistencies when the RL agent drifts off course. The training

pipeline of Transfuser does perform some augmentation of the training images to try to miti-

gate this, but it is apparently not enough for the larger deviations seen during RL training. The

issue becomes especially apparent during the early stages of training when the agent is still

exploring the environment and has not yet learned how to navigate it properly. There might

83

Chapter 4. Simulation and Results

therefore be necessary to perform improvements to the Transfuser data generation pipeline if

future experiments are performed using the Transfuser encoder.

84

4.8 Discussion

(a) Good HD map predictions.

(b) Poor HD map predictions.

Figure 4.21: Bad and good predictions of the HD-map depending on the vehicle’s location.
When the images are taken from a vehicle not in an optimal position, the HD map (bottom
right) prediction is way off, and the agent, therefore, has no idea about the road layout.

85

Chapter 5
Conclusions and Future Works

5.1 Conclusions

The focus of this thesis has been on the use of Reinforcement Learning (RL) in autonomous

driving in the CARLA simulator, an open-source simulator for autonomous driving research.

Other Reinforcement Learning systems in CARLA have used simple vision encoders. This the-

sis has investigated if introducing more complex vision encoders and sensor suites has the

possibility of improving the performance of agents trained using Reinforcement Learning.

Several training setups for Reinforcement Learning have been tested using a transformer-based

vision encoder as a basis for observations. The baseline training using Proximal Policy Opti-

mization (PPO) gave unsatisfactory results, with the vehicle driving off the road and crash-

ing straight away. At the same time, training showed signs of stagnation, showing no further

progress was being made. Introducing expert demonstrations using General Reinforced Imita-

tion for Autonomous Driving (GRIAD) did not show any significant improvements in perfor-

mance. Instead, the vehicle ended up remaining stationary on the road without making any

substantial progress.

Because of training stagnation and insufficient results, a hypothesis was made that complex

scenarios caused the training to stagnate. A simplified environment was created to address

these issues, with fewer cars and pedestrians to increase the performance potential of the

agents. Two training runs were performed in this environment - one using Transfuser and one

a simple Convolutional Neural Network (CNN) - both of which performed significantly better

87

Chapter 5. Conclusions and Future Works

than previously. Using the Transfuser encoder, the vehicle was able to drive and follow the road.

Neither agent was, however, able to avoid collisions with other vehicles. The improvement

confirmed the hypothesis that the complexity of the other environment hindered the training

process. Reducing the complexity of scenarios in early training could help improve training

convergence.

While the simple encoder provided better results than the Transfuser encoder in the simple

environment, there is not enough information to conclude if a more complex vision encoder

could significantly impact the performance of a trained Reinforcement Learning (RL) agent

with only one million training steps. Both agents are improving at 1 million steps, and using

a more complex encoder would likely result in longer convergence times for the policy. This

is also the case for GRIAD, where the performance difference from the baseline agent is too

small.

Based on the results gathered from training, a definitive conclusion can not be drawn on the

hypothesis that improving the vision encoder would improve the performance of autonomous

driving agents trained using RL since one million training steps was not enough to show the po-

tential of any of the methods attempted. Therefore, longer training runs need to be performed

for any definitive conclusions to be drawn. However, there were discovered some issues with

the current training setup that has to be addressed in future training runs.

5.2 Reflections on the Project Execution

Looking back at the project, it is clear that the complexity of the problem was underestimated.

If the simplified environment had been used from the start, there would have been a higher

probability of getting good results. In this case, longer training runs could have been per-

formed, which would have given valuable insight. It would also have saved a lot of time by

not implementing and testing the OpenAI gym interface for the scenario runner, which could

have been used more productively. Generally speaking, it is useful to test things out in a sim-

plified setting first. It is unfortunate that the realization that the high traffic density would

negatively impact training to such a degree did not come earlier.

The original scope of the thesis was also too wide. Introducing GRIAD was just a distraction,

taking away time that could have been spent elsewhere. More time should have been spent at

the beginning of the project, discussing with supervisors and setting a more reasonable scope.

The biggest area of learning during this project was how quickly the difficulty of training Re-

88

5.3 Future Work

inforcement Learning algorithms increased with environment complexity. The difficulty seems

to increase faster than for other machine learning tasks such as computer vision. Because of

this. a better understanding of how training Reinforcement Learning algorithms should be

performed and what factors have the biggest impact on the performance has been acquired.

5.3 Future Work

Future work of other students should be focussed on furthering the final goals of NAPLab,

deploying their algorithms on a physical car. Some effort should also be invested into adressing

issues presented in this thesis. Based on this, the following areas should be focused on:

• Start utilizing sensor calibration in the simulator

• Focus on explainability

• Improve synthetic data generation

These points are elaborated upon below.

5.3.1 Camera Calibration

The overall goal of NAPLab is to apply the algorithms to a real vehicle. Domain adaptation can

be a challenging problem, and camera calibration in a simulator plays a crucial role in achiev-

ing domain adaptation to the real world. Simulators are widely used for training and testing

autonomous systems before deploying them in real-world environments. However, there is

often a significant domain gap between simulated and real-world data, leading to poor perfor-

mance when deploying models trained solely in simulation. Camera calibration, in this context,

refers to the process of aligning virtual camera properties in the simulator with the character-

istics of the physical cameras used in the real world. This calibration step is important for

achieving accurate perception and reliable decision-making in real-world scenarios. Camera

calibration is unfortunately not supported natively in CARLA, and the way the simulator dis-

torts the images have no easy translation to regular distortion models. In July 2022, Soliman et

al. [38] released an extension to CARLA to support camera calibration. This should be explored

by NAPLab and integrated into future systems.

5.3.2 Explainable Reinforcement Learning (XRL)

Reinforcement Learning (RL) systems are by nature not very explainable. With the goal of

deploying the system on NAPLab’s own vehicle, some work should be put into explainabil-

ity, especially if an RL approach is used. It provides transparency and interpretability, allow-

89

Chapter 5. Conclusions and Future Works

ing humans to understand the system’s decision-making process [39]. This transparency en-

hances safety, accountability, and collaboration between humans and autonomous vehicles.

XRL enables effective intervention, investigation of accidents, compliance with regulations,

and smooth coordination on the road, making autonomous driving more reliable and trust-

worthy. Several surveys of XRL methods have been performed [39, 40], which can be used as

a starting point for an investigation.

5.3.3 Improvement of Dataset Generation

As discussed in Section 4.8.3, some improvements should be made to the Transfuser data

generation pipeline. Perturbations should be introduced to the position and orientation which

the sensor data is captured from.

A simple solution would be to randomly sample a transformation consisting of a lateral transla-

tion and yaw rotation applied to the camera and lidar. Since the lidar and cameras in Transfuser

have the same coordinate along the length of the car, this transformation applied to both sen-

sors is equivalent to a transformation being applied to the vehicle, except that the vehicle can

now be positioned normally, making control easier.

If recovery trajectories are desired, this is not sufficient. There would, in this case, need to be

perturbations of the vehicle’s position - both laterally on the road and in the vehicle’s yaw. It

is uncertain if the current expert agent would be able to recover from these kinds of perturba-

tions, so a study would first have to be done into this, and improvements made if necessary.

90

Bibliography

[1] T. Pietrasik, Road traffic injuries, Jun. 2022. [Online]. Available: https://www.who.

int/news-room/fact-sheets/detail/road-traffic-injuries.

[2] National Traffic and Safety Administration, Critical reasons for crashes investigated in

the national motor vehicle crash causation survey, Feb. 2015. [Online]. Available: https:

//crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115.

[3] National Traffic and Safety Administration, 2016 fatal motor vehicle crashes: Overview,

Oct. 2017. [Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/

ViewPublication/812456.

[4] [Online]. Available: https://getcruise.com/.

[5] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-end model-free reinforcement learn-

ing for urban driving using implicit affordances,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.

[6] D. Chen, V. Koltun, and P. Krähenbühl, “Learning to drive from a world on rails,” in

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Oct.

2021, pp. 15 590–15 599.

[7] R. Chekroun, M. Toromanoff, S. Hornauer, and F. Moutarde, Gri: General reinforced

imitation and its application to vision-based autonomous driving, 2021. DOI: 10.48550/

ARXIV.2111.08575. [Online]. Available: https://arxiv.org/abs/2111.08575.

[8] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “Transfuser: Imitation

with transformer-based sensor fusion for autonomous driving,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 1–18, 2022. DOI: 10.1109/TPAMI.2022.

3200245.

91

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456
https://getcruise.com/
https://doi.org/10.48550/ARXIV.2111.08575
https://doi.org/10.48550/ARXIV.2111.08575
https://arxiv.org/abs/2111.08575
https://doi.org/10.1109/TPAMI.2022.3200245
https://doi.org/10.1109/TPAMI.2022.3200245

Chapter 5. Conclusions and Future Works

[9] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced autonomous driving us-

ing interpretable sensor fusion transformer,” in 6th Annual Conference on Robot Learn-

ing, 2022. [Online]. Available: https://openreview.net/forum?id=qzMY915hCYX.

[10] Carla leaderboard. [Online]. Available: https://leaderboard.carla.org/leaderboard/.

[11] G. Kumichev, The inductive bias of ml models, and why you should care about it. [Online].
Available: https://towardsdatascience.com/the-inductive-bias-of-ml-models-

and-why-you-should-care-about-it-979fe02a1a56.

[12] S. Kummervold, Training of autonomous driving agents in simulated environments, 2022.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, pp. 1735–80, Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735.

[14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neu-

ral networks on sequence modeling, 2014. DOI: 10.48550/ARXIV.1412.3555. [Online].
Available: https://arxiv.org/abs/1412.3555.

[15] Jeblad. “The lstm cell.” (2018), [Online]. Available: https://commons.wikimedia.

org/wiki/File:The_LSTM_Cell.svg.

[16] G. Chevalier. “Gated recurrent unit.” (2018), [Online]. Available: https://commons.

wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing

Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017. [Online]. Available: https://

proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

[18] W. Wang, H. Bao, L. Dong, J. Bjorck, Z. Peng, Q. Liu, K. Aggarwal, O. K. Mohammed, S.

Singhal, S. Som, and F. Wei, Image as a foreign language: Beit pretraining for all vision and

vision-language tasks, 2022. DOI: 10.48550/ARXIV.2208.10442. [Online]. Available:

https://arxiv.org/abs/2208.10442.

[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is

worth 16x16 words: Transformers for image recognition at scale,” in International Con-

ference on Learning Representations, 2021. [Online]. Available: https://openreview.

net/forum?id=YicbFdNTTy.

92

https://openreview.net/forum?id=qzMY915hCYX
https://leaderboard.carla.org/leaderboard/
https://towardsdatascience.com/the-inductive-bias-of-ml-models-and-why-you-should-care-about-it-979fe02a1a56
https://towardsdatascience.com/the-inductive-bias-of-ml-models-and-why-you-should-care-about-it-979fe02a1a56
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.1412.3555
https://arxiv.org/abs/1412.3555
https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/ARXIV.2208.10442
https://arxiv.org/abs/2208.10442
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

5.3 Future Work

[20] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R.

Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,

S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D.

Amodei, “Language models are few-shot learners,” in Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,

vol. 33, Curran Associates, Inc., 2020, pp. 1877–1901. [Online]. Available: https://

proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-

Paper.pdf.

[21] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine

reading,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-

guage Processing, Austin, Texas: Association for Computational Linguistics, Nov. 2016,

pp. 551–561. DOI: 10.18653/v1/D16-1053. [Online]. Available: https://aclanthology.

org/D16-1053.

[22] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 17 222–

17 231.

[23] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, Trajectory-guided control prediction

for end-to-end autonomous driving: A simple yet strong baseline, 2022. DOI: 10.48550/

ARXIV.2206.08129. [Online]. Available: https://arxiv.org/abs/2206.08129.

[24] S. J. Russell and P. Norvig, Artificial Intelligence: A modern approach. Pearson Education

Limited, 2022.

[25] Megajuice. “Gated recurrent unit.” (2017), [Online]. Available: https://commons.

wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy opti-

mization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

[27] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in

actor-critic methods,” in Proceedings of the 35th International Conference on Machine

Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Research,

vol. 80, PMLR, Oct. 2018, pp. 1587–1596. [Online]. Available: https://proceedings.

mlr.press/v80/fujimoto18a.html.

[28] Idun documentation. [Online]. Available: https://www.hpc.ntnu.no/idun/.

[29] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban

driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, 2017,

pp. 1–16.

93

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/D16-1053
https://aclanthology.org/D16-1053
https://aclanthology.org/D16-1053
https://doi.org/10.48550/ARXIV.2206.08129
https://doi.org/10.48550/ARXIV.2206.08129
https://arxiv.org/abs/2206.08129
https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg
https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg
https://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://www.hpc.ntnu.no/idun/

Chapter 5. Conclusions and Future Works

[30] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-

baselines3: Reliable reinforcement learning implementations,” Journal of Machine Learn-

ing Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/

papers/v22/20-1364.html.

[31] J. Schulman, O. Klimov, F. Wolski, P. Dhariwal, and A. Radford, Proximal policy opti-

mization, Jul. 2017. [Online]. Available: https://openai.com/research/openai-

baselines-ppo.

[32] T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, 2021,

ISBN: 9781119575030. [Online]. Available: https://books.google.no/books?id=

tCQqEAAAQBAJ.

[33] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot,

M. Geist, O. Pietquin, M. Michalski, S. Gelly, and O. Bachem, “What matters for on-

policy deep actor-critic methods? a large-scale study,” in International Conference on

Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?

id=nIAxjsniDzg.

[34] Vectorized environments¶, 2022. [Online]. Available: https://stable- baselines3.

readthedocs.io/en/master/guide/vec_envs.html.

[35] D. E. Knuth, The Art of Computer Programming Volume 2: Seminumerical Algorithms.

Addison-Wesley, 1998.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and et al., “Human-level control through

deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015. DOI: 10.

1038/nature14236.

[37] Z. Xie, Z. Lin, J. Li, S. Li, and D. Ye, Pretraining in deep reinforcement learning: A survey,

2022. arXiv: 2211.03959 [cs.LG].

[38] A. Soliman, F. Bonardi, D. Sidibé, and S. Bouchafa, “IBISCape: A simulated benchmark

for multi-modal SLAM systems evaluation in large-scale dynamic environments,” Jour-

nal of Intelligent & Robotic Systems, vol. 106, no. 3, p. 53, Oct. 2022, ISSN: 1573-0409.

DOI: 10.1007/s10846-022-01753-7. [Online]. Available: https://doi.org/10.1007/

s10846-022-01753-7.

[39] E. Puiutta and E. M. S. P. Veith, “Explainable reinforcement learning: A survey,” in Ma-

chine Learning and Knowledge Extraction, A. Holzinger, P. Kieseberg, A. M. Tjoa, and E.

Weippl, Eds., Cham: Springer International Publishing, 2020, pp. 77–95, ISBN: 978-3-

030-57321-8. [Online]. Available: https://arxiv.org/abs/2005.06247.

94

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://openai.com/research/openai-baselines-ppo
https://openai.com/research/openai-baselines-ppo
https://books.google.no/books?id=tCQqEAAAQBAJ
https://books.google.no/books?id=tCQqEAAAQBAJ
https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=nIAxjsniDzg
https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html
https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2211.03959
https://doi.org/10.1007/s10846-022-01753-7
https://doi.org/10.1007/s10846-022-01753-7
https://doi.org/10.1007/s10846-022-01753-7
https://arxiv.org/abs/2005.06247

5.3 Future Work

[40] S. Milani, N. Topin, M. Veloso, and F. Fang, A survey of explainable reinforcement learning,

2022. arXiv: 2202.08434 [cs.LG].

95

https://arxiv.org/abs/2202.08434

Appendix A
Videos and Images From Simulator

A.1 Videos From Training Runs

Videos from training can be found here:

https://drive.google.com/drive/folders/1KCh2P4Hs9xtiPO6PZnE78eVqTWNLY4s_?usp=sharing

97

https://drive.google.com/drive/folders/1KCh2P4Hs9xtiPO6PZnE78eVqTWNLY4s_?usp=sharing

Appendix B
RL Training Graphs

This section contains the training plots for all the reinforcement learning runs performed,

even the ones not mentioned in the report. This is for readers who want to look at the plots

not discussed earlier

99

Chapter B. RL Training Graphs

B.1 PPO

B.1.1 Run 1

(a) Episode length. (b) Episode rewards.

(c) KL divergence. (d) Clip fraction.

(e) Entropy loss. (f) Explained variance.

Figure B.1: Scalar values for run1 using PPO.

100

B.1 PPO

B.1.2 Run 2

(a) Episode length. (b) Episode rewards.

(c) KL divergence. (d) Clip fraction.

(e) Entropy loss. (f) Explained variance.

Figure B.2: Scalar values for run2 using PPO.

101

Chapter B. RL Training Graphs

B.2 General Reinforced Imitation for Autonomous Driving (GRIAD)

(a) Episode length. (b) Episode rewards.

(c) Actor loss. (d) Critic loss.

Figure B.3: Scalar values for run1 using PPO.

102

B.3 Simple environment Transfuser

B.3 Simple environment Transfuser

(a) Episode length (b) Episode rewards

(c) KL divergence. (d) Clip fraction.

(e) Entropy loss. (f) Explained variance.

Figure B.4: Scalar values for the simple environment using Transfuser encoder.

103

Chapter B. RL Training Graphs

B.4 Simple environment CNN

B.4.1 Run 1

(a) Episode length. (b) Episode rewards.

(c) KL divergence. (d) Clip fraction.

(e) Entropy loss. (f) Explained variance.

Figure B.5: Scalar values for run1 in the simple environment using CNN encoder.

104

B.4 Simple environment CNN

B.4.2 Run 2

(a) Episode length. (b) Episode rewards.

(c) KL divergence. (d) Clip fraction.

(e) Entropy loss. (f) Explained variance.

Figure B.6: Scalar values for run 2 in the simple environment using CNN encoder.

105

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Background and Previous Work
	Problem Description
	Contributions
	Thesis Outline
	Background Theory
	Computer Vision
	cnn
	Inductive Biases

	rnn
	lstm
	gru

	Transformers
	The Attention Mechanism
	mha
	Positional Encoding
	Encoder-Decoder Structure
	il
	rl
	The State
	Actions
	Reward Function
	Policy Representations
	Policy Gradient Methods
	td Learning
	Off-policy vs On-policy
	ac

	Information Theory and Statistics
	Shannon Entropy
	kl Divergence
	Fraction of Explained Variance

	Transfuser
	Attention-Based Fusion
	Waypoint Prediction
	Auxiliary Tasks
	Control

	griad
	Software and Algorithms
	Computational Resources
	Idun
	NAP02
	VCXR12

	Libraries and Tools
	carla Simulator
	sb3
	OpenAI Gym Interface

	Sensor Setup
	Choice of rl Algorithms
	ppo
	td3

	Base Algorithm
	Vision Encooder
	Observation Space
	Action Space
	Reward Function
	Network Architecture

	Parallel Training Environments
	Vision Pre-training
	New Dataset Generation
	Training of Encoder and Expert Agent

	Benchmarking

	Simulation and Results
	Issues With Training on Idun
	Vision Pre-training
	Graphical Differences Between carla 0.9.10 and 0.9.14
	Training Results

	Experiment 1 - rl Baseline Using PPO
	Setup
	Results for Run 1 - Initial Setup
	Results for Run 2 - Reward Normalization and Learning Rate Scheduling

	Experiment 2 - griad Variation
	Setup
	Results

	Simplifying the Environment
	Experiment 3a - Transfuser in the Simplified Environment
	Setup
	Results

	Experiment 3b - rl Training of cnn in the Simplified Environment
	Setup
	Results for Run 1
	Results for Run 2

	Discussion
	Importance of Training Duration
	Simplified Environment and Encoder
	Impact of Expert Demonstrations
	Issues with the Transfuser Dataset Generation

	Conclusions and Future Works
	Conclusions
	Reflections on the Project Execution
	Future Work
	Camera Calibration
	xrl
	Improvement of Dataset Generation

	Bibliography
	Videos and Images From Simulator
	Videos From Training Runs
	RL Training Graphs
	PPO
	Run 1
	Run 2

	griad
	Simple environment Transfuser
	Simple environment cnn
	Run 1
	Run 2

