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Abstract: Nowadays, the use of public transportation is reducing and people prefer to use private
transport because of its low cost, comfortable ride, and personal preferences. However, personal
transport causes numerous real-world road accidents due to the conditions of the drivers’ state such
as drowsiness, stress, tiredness, and age during driving. In such cases, driver fatigue detection is
mandatory to avoid road accidents and ensure a comfortable journey. To date, several complex
systems have been proposed that have problems due to practicing hand feature engineering tools,
causing lower performance and high computation. To tackle these issues, we propose an efficient
deep learning-assisted intelligent fatigue and age detection system (FADS) to detect and identify
different states of the driver. For this purpose, we investigated several neural computing-based
methods and selected the most appropriate model considering its feasibility over edge devices for
smart surveillance. Next, we developed a custom convolutional neural network-based system that is
efficient for drowsiness detection where the drowsiness information is fused with age information to
reach the desired output. The conducted experiments on the custom and publicly available datasets
confirm the superiority of the proposed system over state-of-the-art techniques.

Keywords: artificial intelligence; age prediction; deep learning (DL); drowsiness detection; neural
computing; smart surveillance

MSC: 68T07

1. Introduction

Modern cities are linked with crossroads and mass communication channels for rapid
transportation that facilitate the daily commutes of millions of people [1]. Despite this,
road accidents happen, which is one of the highest causes of people’s injuries and deaths.
The victims of road accidents often have a permanent disability that stays throughout their
life. Accidents are roadside injuries that cause an average of 3242 deaths on a daily basis,
which is higher than any other single source in the world [2]. Road crashes are very generic
worldwide and are annually estimated by the Association for Safe International Road
Travel, 2013, showing that the ratio of deaths in road accidents each year is approximately
1.3 million, where 20–50 million people are injured or permanently disabled. Unless urgent
actions are taken, roadside injuries are anticipated to become the fifth leading reason for
death by 2030 [3]. Every year, around 328,000 crashes occur in the U.S., which has an annual
cost to society of millions of dollars [4]. One of the main reasons for road-related accidents
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is the inability of drivers due to age. In most of these accidents, the driver is either under-
or overage to drive the vehicle. Another reason is that the drivers risk their own life or
the lives of the others around them either due to stress, sleepiness, fatigue, drowsiness, or
under the influence of alcohol.

Among the above-mentioned reasons, drowsiness is the most common factor. Driver
fatigue or drowsiness is a human state where the victim is unaware of its surroundings.
Due to the sleep-deprived state, the driver does not know what may be happening in their
surroundings, which reduces their attentiveness and leads to road accidents. Millions of
people are killed and injured every year due to the driver’s state such as sleeping while
driving [5,6]. Drowsiness decreases the attentiveness, head, and gaze of the drivers due
to which the ratio of road accidents is also increasing. Some studies have revealed that
driver drowsiness causes 20% of road accidents, resulting in 50% of serious injuries or
death [7–10]. Drivers are usually aware of their drowsiness and can decide to continue or
stop driving to rest as most fatal accidents are caused by tired drivers. According to the
National Highway Traffic Safety Administration [7], 56,000 crashes occur every year where
drowsiness or fatigue was cited by the police as a causal factor that leads to 1550 fatalities
and 40,000 nonfatal injuries on an average basis. Similarly, 15% to 44% of crashes take
place in the U.S. and Australia [8–10], where 18.6%–30% of heavy vehicle crashes involve
fatigue [11,12]. About 30,000 vehicle crashes have caused injuries that were also due to
fatigue [13]. Moreover, fatigued or sleepy commercial vehicle drivers have a 21 times
greater risk of causing fatal accidents, and safety-related drivers had higher drowsiness
levels than other drivers [7]. Along with other issues such as fatigue and drowsiness, most
of the accidents involved either underage or overage drivers. According to the report, it is
estimated that over 2000 drivers between the ages of 13–19 died in the U.S in 2009 [14].

Several approaches have been suggested by the research community to overcome
road accidents. Most of them are working on scalar sensors to detect the driver’s heartbeat
and temperature while several rely on vision sensors. Most of the existing studies have
used complex networks that are costly and difficult to deploy over edge devices. Similarly,
the existing methods are limited to detecting the different states of the drivers including
age. Thus, to tackle the problems and challenges, we proposed “FADS: An Intelligent
Fatigue and Age Detection System” by using several realistic approaches for drowsiness
detection and age classification based on facial feature analysis to keep underage and
overage people from driving when an alarm is generated when the driver’s state is detected
as drowsy, angry, or sad. We used a lightweight CNN that is easily deployable over an
edge device (e.g., Jetson Nano) to perform real-time processing [7], making it suitable for
smart surveillance and the Internet of vehicles. The major contributions of the proposed
FADS are summarized as follows:

• We developed a DL-assisted FADS for driver mood detection from an easy-to-deploy
resource-constrained vision sensor. Addressing this issue of complex systems, it
can overcome high computational costs and ensure the real-time detection of the
driver’s mood.

• Age is an important factor in avoiding most of the accidents, and for this purpose, the
proposed FADS extracts facial features to classify the driver’s age. If the classified age
is beyond the defined threshold (age <18 and age >60), then an alert is generated to
notify the nearby vehicles and the authorized department. Another influencing factor
that causes road accidents is drowsiness or driver moods such as anger or sadness.
Therefore, their prediction is also performed by the facial features using a lightweight
CNN. These factors can avoid most accidents and ensure safe vehicle driving.

• Due to data unavailability, we created a new dataset for FADS as a step toward the
smart system, which includes five classes (i.e., active, angry, sad, sleepy, and yawning).
Furthermore, a UTKFace dataset was categorized into three classes (i.e., underage
(age <18), middle-age (age ≥18 or ≤60), and overage (>60)) for detailed analysis. This
categorization further enhances FADS by fusing dual features to reach an optimum
outcome, which is needed for smart surveillance.
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• Extensive experiments were conducted from different aspects and the results over
the baseline CNNs confirm that the proposed FADS achieved state-of-the-art per-
formance on the standard and the new dataset in terms of lower model complexity
and good accuracy.

The remainder of the paper is structured as follows. A compact literature review is
presented in Section 2. We cover the proposed FADS in Section 3. The experimental results
of FADS and its comparisons are given in Section 4. Section 5 concludes our work with
some future research directions.

2. Literature Review

Facial images can be used for the analysis of a driver’s behavior based on drowsi-
ness or driver mood detection (i.e., anger or sadness). For instance, the technique named
“DriCare” [15] used face landmarks and their key points to detect faces and track them
for driver fatigue detection. This includes eye blinking, eye closure, or yawning. Next,
Verma et al. [16] enhanced the strategy using two VGG16 CNN parallels to detect the driver
expressions. First, the region of interest was detected, which was fed to the VGG16 model
as the input while the face landmarks and key points were used as the input in the sec-
ond VGG16 model. Their combined results were used for fatigue detection. In another
approach [17], a dataset called DROZY (ULG Multi-modality Drowsiness dataset) was
developed for drowsiness detection. Tsaur et al. [18] proposed a real-time system for driver
abnormality detection using edge-fog computing and achieved a promising performance.
Furthermore, Xing et al. [19] attempted to detect seven different tasks performed by the
drivers such as normal driving, using a mobile phone, checking left and right mirrors, and
setting up video devices in a vehicle. They extracted 42 different features using a Kinect cam-
era and used random forests for classification. Yu et al. [20] employed a condition-adaptive
representation method for driver drowsiness detection. Their system was evaluated on the
NTHU driver drowsiness detection video dataset, which outperformed the state-of-the-art
methods based on visual analysis. In the next approach, Dua et al. [21] used four different
DL models such as ResNet, FlowImageNet, VGG-FaceNet, and AlextNet for drowsiness
detection. However, the time complexity and limited accuracy restricted their system from
real-world deployment. Abdelmalik et al. [22] proposed a four-tier approach for driver
drowsiness detection consisting of face detection and alignment, pyramid multi-level face
representation, face description using multi-level features extraction, and features subset
selection. Likewise, in [23], the authors used a DL approach for eye state classification
in static facial images, where they fused two deep neural networks for a better decision.
Recurrent convolutional neural networks (R-CNN) have also played an important role in
detecting the driver’s state such as normal blinking or a falling asleep situation from the
sequences of the frames [15,24]. Ghoddoosian et al. [25] presented a technique for eye blink
detection based on hierarchical multi-scale long short-term memory.

Aside from drowsiness detection, age classification based on facial feature analysis is
a trending area due to its wide range of applications such as human–computer interaction,
security, and age-oriented commercial advertisement. Several traditional methods [26,27]
and DL methods [28–31] have been presented for age classification. For instance, [32]
presented a technique in which they used VGG16 CNN architecture for age classification
by creating the dataset “IMDB-WIKI”. Similarly, Shen et al. [33] presented deep regression
forests for end-to-end feature learning for age estimation. The authors in [34] predicted age
using a directed acyclic graph CNN. Furthermore, Lou et al. [35] presented an expression
invariant age classification method by concurrently learning the age and expression. They
studied the correlation between age and expression by deploying a graphical model that
adopted a hidden layer. In [36], the researchers presented an ordinal DL mechanism by
learning features for both age estimation and face representation.

In the aforementioned techniques, several researchers have individually contributed
to the area of driver fatigue detection and age classification. However, none of them could
detect the different driver states along with their age. Therefore, we proposed FADS for
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both driver fatigue detection and age classification, restricting underage and overage people
from driving, and generating an alarm in the case of detecting drivers in a fatigued state.

3. Fatigue and Age Detection System

In this section, the proposed system is explained in detail. First, the face was detected
using an improved Faster R-CNN algorithm. Next, different CNN models were used to
examine various facial features for age classification and the driver mood or state detection.
Finally, we fused both the driver’s age and mood information to provide an effective
solution. Furthermore, the proposed system was deployable over edge devices where a
vision sensor captures the live stream images/videos, and an edge device was mounted
on top of the dashboard in a car. The video stream is processed, and the age and overall
state of the driver are predicted in real-time. The proposed system was divided into the
following steps: face detection, drowsiness detection, age classification, and fusion strategy,
as demonstrated in Figure 1.
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Figure 1. The proposed FADS consists of four different stages: (1) receives an input frame from the
edge device, (2) input frames are received where face detection is performed via an efficient algorithm.
(3) Two CNN networks are employed for feature extraction and classification purposes and (4) an
output label is obtained from the fusion information, which is further sent to the nearest vehicle and
authorized authorities for safety concerns.
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3.1. Face Detection

Face detection is the most imperative problem that has been intensively surveyed
in the last few decades. Early researchers were mainly concerned with hand-crafted
feature extraction methods [37,38]. However, there are some limitations in these techniques.
They often require experts in the field of image processing to extract effective and useful
features where each component is optimized individually, making the entire pipeline of
the detection process often sub-optimal. Therefore, Sun et al. [39] proposed a technique
to extend the state-of-the-art Faster R-CNN method [40]. Their approach increased the
existing Faster R-CNN approach by fusing multiple important schemes, consisting of
feature fusion, multi-scale training, and hard negative mining. We employed a similar
strategy to Sun et al. [39] to capture the face images. This strategy contained two main
steps: a region proposal network to capture the regions of interest and a Fast R-CNN
network to classify the region into its corresponding category. Sun et al. [39] trained a
Faster R-CNN with the WIDER Face dataset [31]. Furthermore, the targeted dataset was
used to test the model to generate hard negatives, which were then fed into the network
during training as a second step. By training these hard negative samples, the trained
model was capable of generating a lower false positive rate. Moreover, their model was
fine-tuned on the FDDB dataset. In the final phase, they employed the multi-scale training
process and adopted a feature-fusing strategy to improve the model performance. For the
entire training procedure, an end-to-end model training strategy such as Faster R-CNN
was used due to its effective performance. Finally, the resulting detection bounding boxes
were converted into ellipses as the regions of human faces. Therefore, we employed an
improved Faster R-CNN approach for efficient and accurate face detection in the FADS,
whose sample results are visualized in Figure 2.
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3.2. Driver Drowsiness Detection

Inspired by the performance of the MobileNet [41–43], GoogleNet [44], SqueezeNet
with deep autoencoder [45], Inception [46,47], Darknet [48,49], and ConvLSTM [50] models,
we implemented a new custom network consisting of three convolution layers, where
a max-pooling layer was used after each convolutional layer and two dense layers, as
demonstrated in Figure 3. In the first convolutional layer, the input image size was
128 × 128 × 3 with 32 different kernels. Each kernel’s size was 3 × 3 with a one-pixel
stride, on which the pooling operation was applied. The output of the first convolutional
layer is the input of the second convolutional layer, and there was a total of 64 kernels
having a size of 3 × 3. The third convolution layer had 128 kernels with the size of 3 × 3
connected to the output of the previous layer. The fully connected layer had 64 neurons,
which fed the output to the softmax classifier to classify the input source image into their
corresponding classes. The custom architecture learns 2.2 million parameters compared to
all of the above-the mentioned models such as the AlexNet [51], Vgg16 [52], MobileNet [41],
GoogleNet [44], Inception [46], and MobileNet [41] models. Custom architecture computes
an extremely smaller number of parameters due to the size of the input image and several
filters selected during the convolution.
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3.3. Driver Age Classification

For driver age classification in the FADS, we used a fine-tuned lightweight model for
prominent facial feature extraction and classification. In the proposed system, we employed
MobileNet, a depth-wise separable convolutional neural network, which is a lightweight
DCNN and provides an efficient system for embedded vision applications. In this model,
the depth-wise separable convolutions are composed of point convolution filters (PCF)
and depth-wise convolution filters (DCF). The DCF performs a single convolution on each
channel, and PCF combines the output of the DCF linearly with 1 × 1 convolutions, as
shown in Figure 4. The output of the depth-wise separable convolution using RGB images
with a 3 × 3 kernel size and a movement interval of 1 is given in Equations (1) and (2) [53].
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(PCF) and depth-wise convolution filters (DCF). The DCF performs a single convolution 
on each channel, and PCF combines the output of the DCF linearly with 1 × 1 convolutions, 
as shown in Figure 4. The output of the depth-wise separable convolution using RGB im-
ages with a 3 × 3 kernel size and a movement interval of 1 is given in Equations (1) and (2) 
[53]. 
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the input. In Equation (2), O represents the output of the pointwise convolution and Ǩ is 
the kernel of the 1 × 1 convolution. We employed the above-mentioned strategy of PCF 
and DCF and modified the MobileNet architecture consisting of 28 convolution layers in-
cluding deep convolutional layers (point convolution layer) 1 × 1, batch-normalization, 
ReLu activation, average pooling, and a softmax layer. In this architecture, the ReLU acti-
vation is employed in each convolutional layer to perform a thresholding operation, 
where each input value less than 0 is set to 0, and positive values remain the same. Mo-
bileNet consists of a pooling layer strategy, which summarizes the outputs of neighboring 
groups of neurons. The pooling layer is used for dimensionality reduction, which influ-
ences the duration of the network training, and the output neurons are equal to the num-
ber of classes in the dataset recognized by the network. Finally, softmax is used for prob-
abilities to classify a driver’s age. This probability is the basis for making the final decision 
about the classification result. In summary, we employed an efficient MobileNet model 
for driver age classification into three different categories such as underage, middle age, 
and overage.  
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is the
kernel of the 1 × 1 convolution. We employed the above-mentioned strategy of PCF and
DCF and modified the MobileNet architecture consisting of 28 convolution layers including
deep convolutional layers (point convolution layer) 1 × 1, batch-normalization, ReLu
activation, average pooling, and a softmax layer. In this architecture, the ReLU activation
is employed in each convolutional layer to perform a thresholding operation, where each
input value less than 0 is set to 0, and positive values remain the same. MobileNet consists
of a pooling layer strategy, which summarizes the outputs of neighboring groups of neurons.
The pooling layer is used for dimensionality reduction, which influences the duration of the
network training, and the output neurons are equal to the number of classes in the dataset
recognized by the network. Finally, softmax is used for probabilities to classify a driver’s
age. This probability is the basis for making the final decision about the classification result.
In summary, we employed an efficient MobileNet model for driver age classification into
three different categories such as underage, middle age, and overage.

3.4. Fusion Strategy in FADS

This subsection explains the fusion strategy of the proposed system to achieve the
desired output. The CNN-based architecture was used for face detection, drowsiness
detection, and driver age classification. Our system consisted of three steps. (1) The input
frames were acquired from the vision sensor mounted with Jetson Nano, where the face
is detected through an improved Faster R-CNN. The detected face was cropped from the
entire image and fed into CNN for drowsiness detection and driver age classification.
(2) The detected face was processed by our new custom CNN architecture that performed
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the drowsiness detection of the individual driver present in the entire frame. (3) The driver
age was computed and classified using a customized version of the MobileNet architecture.
Finally, we fused these models during the inference time to achieve the desired output, as
shown in Figure 1.
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4. Results and Discussion

This section provides a detailed explanation of the hardware configurations, the
datasets used for the driver age classification and drowsiness detection, and the training and
testing process in the evaluation. Furthermore, quantitative, and qualitative assessments
were performed with the state-of-the-art for both driver age and drowsiness detection.
For the training process, we categorized both datasets into three subclasses (i.e., training,
testing, and validation) with the proportion of 70%, 10%, and 20%, respectively.

4.1. System Configuration and Evaluation

The proposed system was trained using NVidia GPU GTX 1070 GPU, which has 8 GB
of RAM and a 2.9 GHz processor. The operating system, programming language, and
libraries used in our work are listed in Table 1.

Table 1. Software specification and libraries used for the proposed system.

Name Configuration

OS Window 10

Programming language and IDE Jupyter Notebook, Python 3.7.2

Libraries TensorFlow, PyLab, Numpy, Keras, Matplotlib

Imaging libraries OpenCV 4.0, Scikit-Image, Scikit-Learn

In the computer vision domain, the trained CNN is mostly assessed by conducting
quantitative analysis via commonly used different evaluation parameters including ac-
curacy, F1-measure, precision, and recall (sensitivity). These evaluation metrics can be
easily calculated from the confusion matrix by forwarding the predicted and actual labels.
The mathematical expression of accuracy, precision, recall, and F1-measure are given in
Equations (3)–(6), respectively. The accuracy is considered on the major evaluation matrix
to evaluate the overall performance of the system.

Accuracy =

(
TPV + TNV

TPV + TNV + FPV + FNV

)
(3)

Precision =

(
TPV

TPV + FPV

)
(4)

Recall =
(

TPV
TPV + FNV

)
(5)
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F1 − measure = 2 ∗
(

P ∗ R
P + R

)
(6)

4.2. Dataset Explanation

In the proposed system, we used two datasets: a custom dataset for drowsiness
detection and a UTKFace [55] dataset for age classification. The custom dataset had images
that were collected from different sources. We used UTKFace [55] for he acaquisition of
better results. Each dataset was properly cleaned and labeled. These datasets are described
as follows.

The UTKFace is a large-scale publicly available dataset for facial feature analysis to
predict age, ranging from 0 to 116 years. It consists of 23,708 RGB facial images, having a
resolution of 200 × 200 pixels with .jpg extensions, and annotations of age, ethnicity, and
gender. The images cover large variations in pose, occlusion, illumination, facial expression,
and resolution. This dataset can be used in a variety of vision-related tasks such as age
regression, age estimation, face detection, and landmark localization. In this research, we
converted all images to one standard JPG format and made three classes from the dataset,
as demonstrated in Figure 5. Their corresponding age factors are given in Table 2 such as
underaged (6–18), middle-aged (18–60), and overaged (60+).
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Table 2. The information about the ages (in years) of different people.

Class Age Group

Underage 6–16

Middle age 18–60

Overage 60+

Furthermore, we collected a custom dataset for drowsiness detection. It contains
three classes (i.e., active, sleeping, and yawning). Each class had two thousand images,
having a resolution of 124 * 124 with three channels Red (G), Green (G), and Blue (B). In
the creation of this dataset, a total of 40 university students participated, whose ages were
in the range of 16–35 years. Furthermore, the angry and sad classes were taken from the
publicly available KDEF [56] dataset. Figure 6 shows sample images of our dataset.
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4.3. Performance Comparison of Different Edge Devices

A single-board-computer or System-on-Chip (SoC) is becoming popular among the
research community because of its versatility in different video streaming and machine
learning-based applications [57,58]. SoC consists of input and output ports along with
enough memory and disk space to run certain applications smoothly. However, the major
issue with these devices is that they are usually incapable of using DL models as they do
not have enough neural computation capabilities needed for DL model implementation
in real-time. For this purpose, we conducted a survey and came up with several different
options, among which we selected Nvidia’s Jetson Nano as a prime candidate for this
application. A list of available options is given in Table 3.

Table 3. Comparison of the different prototyping platforms along with their specifications.

Board Chip RAM OS

Udoo [59] ARM Cortex A9 1 GB Debian, Android

Phidgets [60] SBC 64 MB Linux

Beagle Bone [61] ARM AM335 @ 1 Ghz 512 MB Linux Angstrom

Raspberry Pi 4 [62,63] Broadcom BCM2711 Processor 2 GB, 4 GB, 8 GB Raspbian

Jetson Nano [64] 1.43 Ghz Quad Core Cortex A57 4 GB All Linux Distro

The Jetson Nano has most of the required capabilities compared to other platforms.
It is a small-size high-performance computer that can run modern AI applications at low
cost and low power. Recently, the AI community is leaning more toward using Jetson
Nano as a computational platform for real-time applications because it can run different
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AI-based systems for applications (i.e., image segmentation, object detection, and image
classification). The Jetson Nano can be powered by micro-USB and it comes with wide-
ranging I/O interfaces including general purpose input/output (GPIO) pins that provide
an ease of implementation for different sensors to provide an easy-to-use interface for
different sensors, as explained in [64].

4.4. Results of Drowsiness Detection

In this subsection, we discuss the experimental results of the drowsiness detection
in terms of the confusion matrix, accuracy, and loss graphs, as shown in Figures 7 and 8.
During testing, the proposed system was evaluated for each class, and we found that the
accuracy of active, sad, and yawning was far better than the angry and sleeping classes,
which was 97% and 98%, respectively. We performed various experiments with the help of
the above-mentioned dataset. The experiments were performed with different parameters
such as a different number of training epochs for the purpose of achieving high accuracy.
In Figure 8, we can see that the training accuracy started from 62% and the validation
accuracy started from 55% in the first epoch. After each epoch, the accuracy of training
and validation improved. In the third epoch, the training accuracy intercepts the line of
validation accuracy. Finally, after 30 epochs, the level of training accuracy reached 98% and
the validation accuracy reached 97%, as shown in Figure 8.
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a loss of drowsiness detection.

We used different evaluation metrics (i.e., recall, precision, and F1-measure) for the
performance validation. The results obtained by the proposed system using the drowsiness
dataset are given in Table 4. The comparative analysis of the proposed system is given in
Table 5, where it was compared with four state-of-the-art systems. The proposed system
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reached an accuracy of 98%, where the accuracy of AlexNet, VGG16, ResNet50, and
MobileNet was 94.0%, 98.3%, 88.0%, and 93.5%, respectively.

Table 4. Results of the drowsiness detection in terms of the precision, recall, and F1-score.

Driver State Precision Recall F1-Measure

Active 0.98 1 0.99

Angry 1 0.97 0.98

Sad 0.97 1 0.98

Sleeping 1 0.98 0.99

Yawning 0.99 1 0.99

Table 5. Comparison of different DL architectures on the custom drowsiness detection dataset in
terms of model size, parameters, and accuracy.

Technique Model Size (MB) Parameters (Million) Accuracy (%)

AlexNet [51] 233 60 94.0

VGG16 [52] 528 138 98.3

ResNet50 [65] 98 20 88.0

MobileNet [41] 13 4.2 93.5

The proposed system 15 2.2 98.0

4.5. Results of Age Classification

A detailed explanation of age classification using different DL architectures is given
in this section. In Figure 9, we demonstrated the accuracy of MobileNet, which had the
highest accuracy in our experiments. Figure 9 represents the training accuracy, which
started from 64% in the first epoch, whereas the validation accuracy started from 56%. After
each epoch, the accuracy of training and validation showed a certain fluctuation.
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Finally, after the 25th epoch, the level of training accuracy reached 91%, the validation
accuracy reached 89%, and the loss of training and validation was nearly 0%, as shown
in Figure 9.

The reports generated in Table 6 demonstrate the result of the age estimation using
metrics such as the F1-measure, recall, and precision. The experimental evaluation based
on accuracy is given in Table 7, where the proposed system obtained an average accuracy
of 90%, which surpassed AlexNet, VGG16, and ResNet50 by achieving the higher value of
13%, 9%, and 6%, respectively.
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Table 6. Performance of the proposed system over the modified UTKFace dataset in terms of the
precision, recall, and f1-score.

Age Classes Precision Recall F1-Measure

Middle age 0.88 0.84 0.86

Overage 0.90 0.97 0.93

Underage 0.92 0.88 0.90

Table 7. Comparison of different DL architectures on the modified UTKFace dataset.

Technique Accuracy (%)

AlexNet [51] 77.0

VGG16 [52] 81.0

ResNet50 [65] 84.0

The proposed system 90.0

4.6. Time Complexity Analysis

In this section, we discuss the time complexity analysis of the proposed system and
compare it with various versions of deep CNNs as given in Table 8. We show the frame per
second (FPS) of four different fused methods such as (AlexNet and MobileNet), (VGG16
and MobileNet), (ResNet50 and MobileNet), and the proposed (MobileNet and custom
CNN) over CPU, GPU, and Jetson Nano. The CPU system used for running time analysis
was an Intel(R) Core (TM) i3-4010u CPU @ 1.70 GHz with 4 GB RAM. To validate the system
performance, we calculated the FPS using Equation (7). We verified that the proposed
system was significantly faster than other CNN architectures over CPU, GPU, and Jetson
Nano. In Table 8, it can be seen that a lower FPS is associated with VGG16 + MobileNet
(i.e., 5.73 FPS on CPU and 33.07 FPS on GPU). The FPS of AlexNet + MobileNet using CPU,
GPU, and Jetson Nano was 6.37, 39.87, and 8.01, respectively. The ResNet50 + MobileNet
achieved a higher FPS compared with AlexNet + MobileNet and VGG16 + MobileNet.
However, our model outperformed the ResNet50 + MobileNet by achieving a higher FPS of
4.98, 12.53, and 5.31, respectively. The better FPS shows that our system is easily deployable
over resource-constrained devices.

Table 8. Comparison of different DL architectures on the custom drowsiness detection dataset.

Method Fusion CPU GPU Jetson Nano

AlexNet + MobileNet 6.37 39.87 8.01

VGG16 + MobileNet 5.73 33.07 6.78

ResNet50 + MobileNet 8.90 42.50 13.12

The proposed system 13.88 55.03 18.43

4.7. Qualitative Analysis of the Proposed System

In this section, we demonstrate the visual results of the proposed system, as shown in
Figure 10. First, the proposed system was able to accurately detect the face in the entire
image. Next, the system could classify the age and state of the driver. In Figure 10a, a
set of sample images are shown from the Internet and Figure 10b shows a few sample
images taken from a real-time scenario of a camera. In the last row of Figure 10a,b, there
was a wrong classification due to the visual similarity of each class. These results show
the efficiency and effectiveness of the proposed model and can be deployed for age and
various states of driver detection, as evidenced by the quantitative and qualitative analysis.
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5. Conclusions and Future Work

In this study, an intelligent fatigue and age detection system (FADS) was proposed
for the safety of drivers, helping to prevent plenty of human losses and increasing the
intelligence level of vehicles for smart surveillance. The proposed FADS was tested on
different platforms for comparison and real-time applicability. A custom CNN model was
suitable for low-power hardware, which was deployable over Nvidia’s Jetson Nano to
achieve portability and a relatively good inference time. After extensive experimentation,
we chose two different CNN architectures for driver drowsiness detection and driver age
classification based on face feature analysis. The driver’s drowsiness detection was achieved
using a custom dataset and for age classification, we modified the UTKFace dataset. For
experimental evaluation, we evaluated different DL architectures such as AlexNet, VGG16,
ResNet50, MobileNetV2, and a 3-layer custom CNN for driver drowsiness detection. The
Custom CNN model provided better results and reached an accuracy of 98% for drowsiness
detection, whereas MobileNetV2 provided good results in terms of 90% accuracy using the
UTKFace dataset. Finally, the results of both models were fused during inference time to
ease the deployment for real-time assistance. The developed system is helpful for aged
people to prevent them from vehicle accidents. In addition, the results shown in Section 4.6
exhibit the deployability of the proposed method over resource-constrained devices to
reduce heavy computation and consumption.

Future work of this study can consider different scenarios such as optimizing a single
end-to-end network for its usage in an embedded system to reduce the computational and
financial costs without affecting the performance. Next, a federated learning mechanism
can be designed for the development of an online model to improve the edge learning
capability of FADS. The current dataset can be extended by adding the fatigue levels of
people of different ages.
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