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Abstract

This work research the possibility of using Vision Transformers for prostate cancer
detection and tumor segmentation on MRI scans. In the first part we created an
architecture, which outperformed state-of-the-art models implemented in MONAI
library. We opted for own implementation to have more freedom in doing ar-
chitecture changes. It has "U" shape symmetrical structure with shifted window
self-attention computation approach and skip connection between appropriate
encoder-decoder blocks for better recovering of spatial information. In the next
stage we were dealing with image registration techniques, their applicability on
mpMRI channels and overall score of the model. We found out, that even though
rigid and affine registration look the most natural to human eye observer, b-spline
registration model achieved the best results despite that the details in the scans
looks disturbed or even damaged. In the last part of the project, we investigated
the multi-objective loss optimization technique, which promises to improve the
generalizability of the model and avoid overfitting. A model utilizing this method
achieved exceptionally good results with great potential for future work.
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Sammendrag

Dette arbeidet undersøker muligheten for å bruke Vision Transformers for å de-
tektere prostatakreft og segmentere kreft i MR bilder. Vi har laget en tilpasset
arkitektur som ga bedre resultater enn toppmoderne modeller implementerte i
MONAI-biblioteket. Vi valgte egen implementering for å ha større frihet til å gjøre
arkitekturendringer. Den har et "U"-form og en symmetrisk struktur med forskjøvet
vindu, selvoppmerksomhet beregning og tilkobling mellom passende koder-dekoder
blokker for bedre gjenoppretting av romlig informasjon. I neste steg testet vi flere
bilderegistreringsteknikker, deres anvendelighet til forskjellige MRI-kanaler og
virkingen av å bruke registrering på sluttresultatet for modellen. Vi fant ut at selv
om rigid og affin transformasjon ser mest naturlig ut for en menneskelig obser-
vatør, oppnådde B-spline -registreringsmodellen de beste resultatene til tross for
at detaljene i skanningene ser forstyrret ut eller til og med skadet. I den siste delen
av prosjektet undersøkte vi den multi-objektive optimeringsteknikker, som har et
potensiale til å forbedre generaliserbarheten til modellen og unngå overfitting. En
arkitektur med denne metoden oppnådde eksepsjonelt gode resultater med stort
potensial for fremtidig arbeid.
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Chapter 1

Introduction

Cancer is generally a very serious disease that can affect almost anyone. It is char-
acterized by the uncontrolled growth of abnormal cells which can start anywhere
in the human body. Under normal circumstances, healthy cells grow and multiply,
creating new cells to replace old or damaged ones. But sometimes this process
breaks down and the damaged cells begin to spread and form potentially cancer-
ous tumors.

In order to have the best possible chance of a complete cure, it is very import-
ant to diagnose cancer at its earliest stage. There is usually no single test that can
confirm cancer, but rather a series of tests and evaluations of the patient’s med-
ical history. One of the most common tests is a physical exam, where the doctor
may feel lumps, see spots on the skin, or encounter enlargement of a particular
organ that may indicate cancer. Urine or blood tests are also very helpful indic-
ators, because in many cases of cancer are specific substances in the blood either
increased or decreased. These methods cannot definitively confirm or refute the
final diagnosis and serve only as preliminary tests that further lead to more seri-
ous procedures such as biopsies. During a biopsy, the doctor inserts a needle into
the infected area and takes tissue samples for further analysis.

1.1 Motivation

Precise detection of prostate cancer is usually done by an invasive biopsy, which
is not completely safe and can be accompanied with a life-threatening complica-
tion called sepsis. Simsir et al.[1] made study on 2023 patients which underwent
prostate biopsy and 62 (3.06%) of them developed sepsis within 5 days after the
biopsy. Shahait et al.[2] also researched the prevalence of the sepsis after the
prostate biopsy and found even more severe incidence, where 9.4% out of 265
patients suffered with this complication.

One possible solution to overcome this undesirable complication while main-
taining high reliability of the cancer diagnosis can be tumor detection on scans
of various medical imaging procedures like computed tomography (CT), multi-
parametric magnetic resonance imaging (mpMRI) or positron emission tomo-

1
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graphy (PET) scan. We are in this work focusing particularly on mpMRI which
is a non-invasive method that uses strong magnetic fields and radio waves to pro-
duce detailed images of the inside of the human body. Extensive research has
been carried out whether these magnetic fields and radio waves used during MRI
scan could pose a risk to the human body, but no evidence has been found[3][4],
making MRI one of the safest medical procedures available.

All MRI scans are processed and evaluated by radiologist experts, who can spot
cancerous area. This is very responsible task that demands focus and time. Since
the artificial intelligence (AI) has in the last decade leaped a giant step forward
and computers are nowadays able to recognize particular objects in the images,
we want to fully exploit these great capabilities and utilize then as a support for
prostate cancer detection on mpMRI scans.

1.2 Goals and research questions

Artificial intelligence and image processing methods have an enormous potential
to support PCa detection. It exploits quantitative properties of data that are dif-
ficult to understand for humans, but computers are able to learn these complex
patterns to make predictions. For a long time has been Convolutional Neural Net-
works (CNNs) state-of-the-art methods that started new era in computer vision by
enabling multi-channel input processing. The novelty was to convolve data by a
series of filters which slide over the input to extract specific features. The output
was pooled and flattened, and then passed to the fully connected layers for the
final classification or segmentation.

However, the field of AI evolves quickly and recently has been proposed new
approach for computer vision called Vision Transformer (ViT)[5]with self-attention
(SA) mechanism that matched or outperformed state-of-the-art models in image
classification and object detection. Since then ViTs become new standard for im-
age processing with many architectures emerging particularly in medical image
processing[6][7][8][9][10][11].

The main interest of this work is to use Vision Transformers for prostate tumor
segmentation and create a tool that can support the work of radiologists in prac-
tice. Based on aforementioned models we speculate that ViTs can effectively detect
tumors on MRI images and help to overcome possible threats of the biopsies. Our
first research question therefore is:

Can be Vision Transformers used as a support for prostate cancer detection?

We will use publicly available dataset of prostate MRI scans with segmentation
labels originally proposed for PI-CAI challenge1, which are fully anonymized, so
there is no danger of any information leak. Each scan consists of three channels
from axial (top-down) view, which unfortunately do not depict the same region.
They can have for example different zoom, they can be shifted or rotated. These

1see https://pi-cai.grand-challenge.org/

https://pi-cai.grand-challenge.org/
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variations can have misleading effect for the neural network, as the label is always
created according to only one specific channel. In order to unify all channels to
depict the same region that correspond with label we need to register each scan
to its main channel. There are several types of image registration and we will
explore their effect on the performance of our model with second raised research
question:

What is the impact of image registration on the overall performance?

In 1990s Caruana[12] proposed paper, suggesting that it may be easier for
machine learning model to learn several tasks at once than learning individual
tasks separately. He introduced multi-task learning (MTL) as an effective domain-
specific inductive bias for training neural networks and demonstrated, that MTL
can improve generalization performance even if the correlation between tasks is
not so obvious.

Similarly Baxter[13] made research where the model was trained with mul-
tiple related tasks, so it was able to predict solution to several problems in given
environment and the tasks acted as an inductive bias one for another. He demon-
strated, that learning multiple related tasks can potentially result in much better
generalization performance than learning single task.

In our dataset are also provided prostate delineation segmentations for each
scan and therefore we will research the possibility of inclusion MTL approach into
our model. The general idea is to create a model that will simultaneously predict
tumor segmentation as well as prostate delineation. The network will have two
objectives which will share some parts of the architecture and serve as an inductive
bias one for another. We hypothesise that parallel optimization of these two tasks
can improve predictability performance of our model and will help to prevent
overfitting. In this part of the project we will take a closer look into MTL and our
third research question is:

Can simultaneous optimization of multiple objectives and sharing some parts of the
architecture between them improve the prediction accuracy?

Nonetheless, the main goal of this master thesis is to begin a research of using
artificial intelligence models, in particular Vision Transformers, for prostate cancer
detection on MRI scans with vision to create an effective and reliable tool that can
reduce the workload of medical personnel and contribute to higher standard of
the patient’s healthcare.

1.3 Contributions

A system that is able to accurately detect and highlight prostate cancer would have
massive usage in medical area. The overall aim of this project is to improve the
diagnosis of prostate cancer by introducing novel and upcoming AI technologies,
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which are generally better than current state-of-the-art AI tools. Our hypothesis
is that Vision Transformers will lead to an AI system that significantly improves
the accuracy and generalizability of prostate cancer detection on MRI scans. The
envisioned system will help radiologists to make more accurate decisions and at
the same time make their work easier.

The specific contributions of this project are:

1. Create an effective and accurate ViT based architecture for prostate cancer
detection and tumor segmentation.

2. Examine different image registration methods and find out which one best
suits our machine learning model.

3. Design multi-task learning model for simultaneous multi-objective optimiz-
ation where tasks share some parts of the network and experiment, whether
this model can achieve better results.



Chapter 2

Background

Artificial intelligence is a hot topic nowadays as it allows computers to build and
memorize relations in the input data. This work is based on a concept of supervised
learning paradigm where we have mpMRI prostate scans with segmented lesions
by human expert radiologists and our goal is to create a computer program that
will be able to detect cancer lesion on a new, previously unseen scan. We will
establish a training process utilizing existing scans to learn relationships between
mpMRI channels and segmented labels - whether the scans contain cancer, where
is it located and what is its shape. The model stores its "knowledge" as a gigantic
matrices and therefore it is still a great mystery to a human observer which parts
of the input scan are actually important for the machine learning model.

This chapter is structured as follows. We will firstly focus on a brief descrip-
tion of the prostate, and prostate cancer diagnosis methods, their advantages and
disadvantages. We will focus on mpMRI procedure and very basic magnetic res-
onance image acquisition principles. Later we will introduce not so long ago pro-
posed machine learning architectures called Vision Transformers, their core com-
ponents and base principles, as we think that model based on ViT architecture
is suitable for our task. We will present some of the features from existing ViT
models, their asset for image processing and usability in our project. Finally we
will outline more advanced machine learning methods like image registration or
multi-objective optimization and discuss their possible impact on ViT perform-
ance.

2.1 Prostate and prostate cancer

The prostate is a small, walnut-shaped gland found in men that sits below the
bladder and surrounds the urethra. (see Figure 2.1). It is considered as a one of
the male reproductive organs producing fluid that carry sperm during ejaculation.
It produces also prostate specific antigen (PSA), which is a protein produced by a
normal as well as malignant prostate cells.

When human cells contain all necessary information for their function and
reproduction, they are considered healthy and work properly. In rare cases, how-

5
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Figure 2.1: The anatomy of male genitalia
Source: [14]

ever, the cells begin to multiply uncontrollably and form a group of abnormal cells.
This uncontrolled growth and forming abnormal structures, which after a while
form detectable lesion is in general considered as cancer. It can affect any organ,
tissue or even blood and lymphatic system. Over time can these cells invade other
organs and spread across body, which is known as metastasis and typically have
lethal consequences. The cancer can be slow-growing, aggressive or in most cases
somewhere in between with average development. Once the cancer has been dia-
gnosed, it is hard to estimate the growth speed and researchers are still trying to
find suitable evaluation methods[14].

Saad et al.[14] further presented, that only 14% of men (in Canada) have
diagnosed prostate cancer, while the results of autopsy studies revealed another
30% having latent form with passive cancer cells located exclusively in prostate.
According to current data, prostate cancer is one of the few types that can remain
latent for a long time before developing into a clinically significant type. The exact
cause is still unknown and is the subject of further research[14].
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2.1.1 Diagnosis of significant types

Diagnosis of prostate cancer can be tricky task as it often develops without symp-
toms and patients are feeling healthy. If the tumor stay small enough to cause no-
ticeable health problems, it can even spread to the pelvic lymph nodes or bones
without any pain[14]. Vast majority of cases is therefore detected by the routine
checks, when subjects feel perfectly healthy and don’t observe any symptoms. In
not so trivial cases can a tumor for example continue to grow and press again
urethra making it difficult to urinate. In the most advanced cases cancer meta-
stasizes across the whole body and becomes generalized.

Digital rectal exam (DRE)

The back of the prostate touches the rectum and therefore doctors can perform
digital rectal exam (DRE). DRE is the most common prostate cancer screening
method, since it is easy to perform and most tumors are located in this area. It is
not painful, but some patients may consider it unpleasant, as it involves sticking
doctor’s finger into patient’s rectum and palpate prostate gland. Doctor checks for
any irregularities or hardening, because under the normal circumstances is back
of the prostate smooth and rubbery. These signs don’t guarantee the cancer and it
can be calcification or stone located in the prostate. It is not a proper diagnostic
method as it doesn’t allow examine whole gland, but it is a good indicator for
more advanced procedures like TRUS biopsy (see below).

Prostate specific antigen (PSA) test

Prostate specific antigen (PSA) is considered as the most useful marker for pro-
state cancer[15]. PSA is a protein produced by prostate that helps liquefy semen
and certain amount can be also find in blood. Prostate cancer causes increased
levels of PSA, because the cells are more messy and more PSA will get into the
blood. On the one hand higher level of PSA can be an indication of cancer, but
unfortunately it can also indicate other conditions like benign prostatitis or as
presented in [16], it is not rare among men with PSA levels of 4.0 (ng/ml) or less
(which is considered as normal) to detect high-grade cancer with biopsy. There-
fore it is, similarly like DRE, insufficient method to make final statement about
diagnosis, but rather relevant sign for biopsy[17].

Transrectal ultrasound (TRUS) biopsy

Even though DRE and PSA test are useful, their results are questionable and in-
sufficient to make final statement about the diagnosis.

TRUS biopsy is in many articles considered as a standard procedure to con-
firm prostate cancer[17][2][18]. It involves a doctor inserting an ultrasound in-
strument equipped with biopsy needle to the patient’s rectum (similarly to the
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DRE). This instrument transmits ultrawaves directed to the prostate, which en-
ables to visualize prostate and help to guide needle when it pierces the rectum
wall and moves toward the different areas of the prostate to collect several tissue
samples[14]. Doctors usually collect up to 12 samples to minimize probability of
missing the tumor[18].

One of the major issues with this procedure is the possibility of spreading post-
biopsy sepsis or bacterial infection. Sometimes can be bacteria transferred on a
biopsy needle directly from the rectum to the prostate causing infection. Saad
et al. [14] state, that 1% − 4% of patients who undergo biopsy experience also
bacteria infection which can cause general indisposition or fever. Shahait et al.
[2]made study with 265 patients, where the prevalence of post-biopsy sepsis was
found to be 9.4%.

Multiparametric magnetic resonance imaging (mpMRI)

There is approximately 15% − 46% cases in TRUS biopsy when doctors doesn’t
detect existing tumor (false positives) because of uncertain needle positioning
or lesion could be small and located outside the region detectable by DRE and
TRUS[17]. Also in 38% of cases is underestimated severity of the lesion, when
compared with the Gleason score at prostatectomy1[19].

Multiparametric magnetic resonance imaging (mpMRI) is a radiological ima-
ging method to make detailed 3D images of the inside of the human body. It uses
strong magnetic field, radio waves, and special computer software, which can be
programmed for several different pulse sequences or parameters that highlight
specific differences between tissues(see Section 2.2). In the article by Penzkofer
et al.[20] is mpMRI considered as the most useful and accurate modality to de-
tect, characterize and stage prostate cancer. Also Yakar et al.[21] conclude, that
mpMRI is very promising technique for detecting and classifying PCa, but further
studies need to be done to achieve standardized imaging protocols.

In general, the main goal of mpMRI is to minimize the necessity of potentially
harmful biopsies, as it is considered as one of the most accurate and safest pro-
cedures. The aim of this master thesis is to step up even higher and introduce
novel techniques in artificial intelligence (AI) for automated prostate cancer de-
tection on mpMRI scans. As the AI is nowadays reaching human-like performance
in many areas (for example see [22]), we hope that our system could into a large
extent simplify and support work of radiologists.

2.2 Magnetic Resonance Imaging

magnetic resonance imaging (MRI) is nowadays very common procedure which
uses strong magnetic fields and radio waves to provide comprehensive view of the
inside of the human body without any ionizing radiation. There has been research

1prostatectomy is a surgical procedure for the partial or complete removal of the prostate
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carried out whether MRI procedure could pose a threat to human health but no
evidence has been found, classifying it as one of the safest medical procedures
[3][4]. It is not, however, recommended in situations when a metal implant is
fitted inside the body such as a pacemaker, bone screw or artificial joint. Someone
may also feel claustrophobic in the tunnel, but most people are able to manage it
with the support from radiologist.

How does MRI works

Hydrogen is a most common atom in human body and hydrogen protons with
positive electric charge can act as tiny magnets responsive to outer magnetic field.
MRI is a procedure by which strong magnetic fields are engaged to align these
randomly oriented protons in the nuclei of the examined tissue. This alignment,
however, doesn’t ensure that protons will spin synchronously and a radio pulse
with specific frequency must be used to make all protons spin simultaneously - in-
phase. This state is also called excitation. The nuclei subsequently return to their
original states through various relaxation processes during which they emit radio
frequency pulses. The time and frequency of the pulses is measured and converted
to particular pixel intensity by Fourier transformation. By changing the sequence
of the radio pulses it is possible to create different types of MRI images[23].

In general, MRI recognizes tissues and the tissues can be recognized by two
relaxation times:

• T1 - longitudinal relaxation time - It is the time in which excited protons re-
turn to balanced state and are ready for next excitation. A T1 weighted im-
age is obtained using short repetition time between radio frequency pulses
and a short signal recovery time. A tissue with short T1 time creates strong
magnetic resonance signal which is depicted as white and a tissue with long
T1 recovery time creates a low intensity signal depicted as dark. For ex-
ample, hydrogen atoms contained in fat has shortest T1 relaxation time, so
they return to the balanced time with fastest T1 time and in the final picture
will be illustrated as white[24].
• T2 - transverse relaxation time - It determines the rate of magnetization loss

after excitation. A T2 weighted image is obtained using long repetition time
between radio frequency pulses and a long signal recovery time. A tissue
with a long T2 recovery time creates a high intensity signal depicted as
bright and short T2 recovery time produces low intensity signal depicted as
dark. For example, energy transfer between hydrogen atoms in fat is more
effective than in fluid, so they loses magnetization with quicker T2 time,
producing low intensity signal illustrated as dark[24].

Diffusion-weighted imaging

In the MR image acquisition, diffusion-weighted imaging (DWI) is a technique for
creating contrast in images based on different diffusion times of water molecules
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in different fluids and tissues. The DWI signal decreases with increasing speed of
water molecules travelling in direction of the magnetic field generated by MR ma-
chine. In the human body structures is the movement of water molecules usually
limited or restricted in different directions - anisotropic[23].

In general, the idea behind DWI is adding two extra magnetic gradient pulses
before and after radio frequency pulse. These two pulses cause that molecules
moving along the field gradient direction will get phase shift, which results in MR
signal loss and thus weaker MR signal. The signal attenuation depends on the
degree of diffusion motion and on the strength and duration of magnetic gradient
pulses. The higher motion, the higher signal loss[25].

Figure 2.2: Diffusion-weighted imaging scheme
Source: [23]

The amount of diffusion weighting can be regularized with b-value, which
represents amplitude, duration and time between successive magnetic gradient
pulses. Higher b value produce stronger diffusion effects, but the optimal choice
is not exactly specified. In practise it is possible to determine diffusion constants
of unknown tissues by repeated scanning with unchanged MRI parameters, but
different b values[23]. These constants are also called apparent diffusion coeffi-
cients (ADC) and represents the degree of water diffusion in particular tissues. We
can also measure amount of diffusion by changing the direction of the magnetic
gradient field, providing information about local geometry in more detail. Images
depicting mean ADC values of particular area are called ADC maps. A bright area
with reduced mobility on a diffusion-weighted image will be dark on the corres-
ponding ADC map because of smaller diffusion constant[23]. For closer look see
Figure 2.3.

2.3 Vision Transformers

Since the proposal of Imagenet[26] were all major successes in image processing
based mostly on the Convolutional Neural Networks (CNNs), which became state-
of-the-art models for image classification and object detection. In short, CNNs are
machine learning models, which employ convolution operation to determine the
content of an image. They use various filters to firstly detect low level features
like vertical and horizontal edges and then in the deeper layers, they stack these
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Figure 2.3: In the figure is an example of input scan. Specifically, it is one slice
from an axial view of all available channels.

features into more abstract shapes, often understandable only by CNN model,
which is able to learn connections between them and classify them using fully-
connected layers.

Vision Transformers (ViTs) were introduced in 2021 by Dosovitskiy et al.[5]
and quickly established new standard in the image processing. The authors demon-
strated, that ViTs are capable of similar or even better performance as CNNs.
The architecture of ViTs is based on the original Transformer model proposed by
Vaswani et al.[27], which replaced recurrent neural networks (RNN) in natural
language processing. The recurrence was substituted with brand new approach
called self-attention (SA), which is an effective mechanism to determine relation-
ships between input and output - it eliminates sequential input processing and
allow parallelization (see Section 2.3.1). For comparison, if the input is a sen-
tence, RNN would process it word by word, whereas Transformers would handle
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it as a whole, optionally with positional encodings.
So there is a question, what is the difference between ViTs and CNNs in terms

of input representation and input processing. Raghu et al.[28] analyzed these two
groups of machine learning models and found quite interesting differences:

1. ViTs have more uniform representations between lower and higher layers -
input in these layers is more similar

2. ViTs include more global information in the lower layers, but local inform-
ation is also substantial

3. Skip connection in ViTs are even more important
4. ViTs can develop significantly stronger intermediate representations with

larger pretraining datasets

2.3.1 ViT architecture

In order to begin training process, we need to provide a Transformer input data.
Standard Transformer[27] is designed to process 1D vector of input embeddings.
ViTs are an extension of Transformer models and therefore we need to reshape
2D, or in our case 3D MRI scans to a sequence of flattened patches. This array is
successively fed into main main Transformer block, which consist of alternating
blocks of multi-head self-attention (MHSA) and multi-layer perceptron (MLP).
Before each MHSA and MLP is applied layer normalization[29] and after is added
skip connection (for closer insight see Figure 2.4)[5].

Figure 2.4: In the image is an architecture of ViT block. Image is first split into
patches, which are linearly embedded to 1D vectors and fed into main Trans-
former block with multi-layer perceptron (MLP) head to perform classification. It
is common to include into Transformer architecture design several main blocks
with one final classification head.

Source: [5]
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Patch Embeddings

Similarly as in many different domains, computer vision is dealing with multi-
dimensional input in the form of 2D or 3D, usually multichannel, images. To pro-
cess them in the Transformer it is needed to transform them and reduce dimen-
sions to 1D multi-channel vector. Input volume is first split into non-overlapping
patches of predefined shape, which can be understood as groups of neighboring
pixels/voxels with all their channels.

Image(D× H× W× C)→ Image(N× (PD.PH.PW.C)) (2.1)

From the Equation 2.2 we can see that each of the N groups is subsequently em-
bedded into single vector with D number of channels (length of the vector), which
is usually noticeably higher to compensate for spacial reduction.

Image(N× (PD.PH.PW.C))→ Image(N× D) (2.2)

Creating patch embeddings can be summarized as a process of reducing spa-
cial resolution of the input, when the spatial information is embedded into 1D
multi-channel vectors. It uses set of trainable weights, so each patch is encoded
in a way that best fits the model.

Self-Attention

Attention is in the original paper[27] described as a mapping of queries and key-
value pairs to an output.

Self-attention block of the Transformer takes three input representations: Query
(Q), Key (K), and Value (V). In this context Q can be understood as a set of em-
beddings to calculate similarity for and K can be understood as a set of embed-
dings to calculate similarity against. Final attention context vector is computed
as a weighted sum of V and weight matrix calculated by "softmaxed" similarity
function between Q and K (see Equation 2.6).

A step-by-step procedure for computing self-attention (SA) runs as follows:

1. Compute similarity scores between queries encoded in matrix Q and keys
encoded in matrix K.

Q · KT =









s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
. . .

...
sm1 sm2 · · · smn









(2.3)

2. Scale similarity scores to avoid problem of small gradients. Authors in the
original paper[27] used scaling factor 1p

d
, where d is the length (number of
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channels) of each data in the input vector X.

Q · KT

p
d
=











s11p
d

s12p
d
· · · s1np

ds21p
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s22p
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· · · s2np

d
...
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. . .

...
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sm2p
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· · · smnp

d











(2.4)

3. Apply softmax function to put values of similarity matrix between 0 and 1
with sum equal 1.

so f tmax(
Q · KT

p
d
) = so f tmax
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(2.5)

At this point we have matrix which expresses which data in Q are most sim-
ilar to data in K.

4. Multiply V with similarity scores from previous step. This will produce final
output representation for every entry in V.

At tention(Q, K , V ) = so f tmax(
Q · K T

p
d
) · V (2.6)

Source: [27]

Unlike RNNs or LSTMs which have available only one or several previous data
points, self-attention processes all inputs at once in parallel, which gives it huge
benefit.

Multi-head self-attention

In addition to standard self-attention, Vaswani et al.[27] found it beneficial to
linearly project Q, K and V several times with different learned linear projections.
On each of these projections they subsequently execute standard self-attention
function obtaining multidimensional output, which is subsequently and projected
to yield final values (see Figure 2.5 right).

Mul tihead(Q,K,V) = concat(head1, . . . , headh) ·W O

where headi = At tention(X ·W Q
i , X ·W K

i , X ·W V
i )

(2.7)

Source: [27]
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Figure 2.5: Self-attention
Source: [27]

The idea behind multi-headed self-attention is to extract multiple features
from the input that would be impossible to get only with one head. Or in other
words each head can specialize to extract specific feature. Multi-headed self-attention
procedure runs as follows:

1. Compute linearly projected version of Q, K, V input vectors

Q= X ·W Q (2.8)

K= X ·W K (2.9)

V= X ·W V (2.10)

2. Perform standard self-attention function for each head
3. Concatenate outputs from each head
4. Multiply concatenated outputs with weight matrix W O to get final output

2.3.2 Encoder-Decoder structure

Similarly to most of the advanced machine learning models, original Transformer[27]
has also encoder-decoder architecture. The role of the Encoder is to extract fea-
tures from the input sequence which are processed by the Decoder to produce
desired output.

Encoder

One Encoder block consists of N layers and each of them is composed from the
following components:
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Figure 2.6: In the figure is shown Encoder-Decoder structure of the original
Transformer[27]

Source: [27]

1. Multi-head self-attention (MHSA) mechanism with h heads. Each head re-
ceives differently projected input X in the form of Q, K, V matrices and pro-
duce output specialized on a specific task.

2. Multi-layer perceptron (MLP) that is applied independently to each posi-
tion and contain two linear layers with ReLU activation in between. Linear
transformations are the same for all input points i.e. the number of input
neurons is equal to the number of channels, but they differ from layer to
layer.

MLP(X) = ReLU(W1 · X+ b1) ·W2 + b2 (2.11)

Source: [27]
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3. Around two previously mentioned blocks are employed residual skip con-
nections[30]. He et al.[30] claim, that residual skip connections could con-
tribute to easier optimization of the network and network can achieve better
final accuracy.

4. Each block is further followed with layer normalization[29]. Layer normal-
ization was designed to overcome shortcomings of batch normalization, in
particular the problem with mini-batch size or its hard applicability in RNNs.
Unlike in batch normalization, in layer normalization all hidden units of a
layer share normalization terms, but different training cases have differ-
ent normalization terms. In addition, layer normalization does not have
any restriction on the mini-batch size and therefore it can be used with
batch size 1, which is beneficial especially for transformers as they demand
large space for training and reducing the batch size can help to save the
memory[31][29].

A quite important thing to notice is that since Encoder process all inputs in
parallel, it is unaware of the relative positions of the data in the sequence. Posi-
tional information has to be manually injected in the form of positional encodings,
or in our case images have to be sliced to the embedding vectors everytime in the
same way i.e. patches of the image has to be sorted in one specific manner.

Decoder

Decoder has very similar architecture as the Encoder:

1. First block in the decoder is masked multi-head self-attention. While the
encoder is designed to access all inputs in parallel regardless their position,
masking operation ensures, that output on the position i can depend only
on the known outputs up to position i and not further. This is achieved by
applying mask on the similarity scores produced by matrix multiplication Q
and K.

masked(Q · KT ) =









s11 −∞ ·· · −∞
s21 s22 · · · −∞
...

...
. . .

...
sm1 sm2 · · · smn









(2.12)

2. Second block is the standard MHSA, similar to the one in the encoder. It
receives Query (Q) from the previous block, while Key (K) and Value (V) is
received from the encoder block on the same level (see Figure 2.6).

3. Third block is the multi-layer perceptron (MLP) similar to the one in the
encoder.

4. Each of the three aforementioned blocks is surrounded with residual skip
connection and followed with layer normalization.
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2.3.3 Shifted windows

Similarly to original Transformer[27] designed for natural language processing,
Vision Transformer[5] developed for image processing also incorporates global
self-attention (SA) mechanism, where the similarity scores are computed each-to-
each between all inputs. This nature leads to quadratic complexity with respect to
the length of the input sequence (number of input entries), making it unfeasible
for images with higher resolution. Liu et al.[32] proposed effective approach to
deal with this problem, which brings self-attention (SA) computation into local,
non-overlapping regions - windows, which are arranged to evenly partition the
image.

The main idea behind this approach is undeniably to reduce SA computational
complexity, while at the same time the fact that there is probably very little con-
nection between the pixels in one corner and the pixels in the opposite corner.
Since each window contains predefined number of patches M×M (in 2D image),
this method can reduce complexity of the general self-attention with quadratic
complexity of:

Ω(MSA) = 4hwC2 + 2(hw)2C (2.13)

Source: [32]

to

Ω(W −MSA) = 4hwC2 + 2M2hwC (2.14)

Source: [32]

where h × w is the number of patches. From the Equation 2.14 we can see
that window based SA has linear complexity when the window size M is fixed,
making Transformer model variations usable for images with high resolution or
for 3D image volumes, where complexity grows with spatial resolution even more
aggressive.

However, this approach in the form described so far is not complete because it
doesn’t include inter-window information which is important for the full model-
ling power. To deal with this issue authors introduced shifted window partitioning
system which involves two partitioning configurations in a consecutive manner. As
illustrated in Figure 2.7, the first configuration uses standard window partition-
ing strategy starting from top-left, whereas the second configuration uses window
configuration that is shifted from the original placement by [M

2 , M
2 ].

The whole procedure with shifting windows runs as follow[32]:

1. outputi =W-MSA(norm(outputi−1)) + outputi−1

2. outputi = M LP(norm(outputi)) + outputi
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Figure 2.7: Shifted window approach for computing self-attention. Image patches
are first divided into windows, attention scores are computed individually in each
window, windows are than shifted and whole procedure is repeated.

Source: [32]

3. outputi+1 = SW-MSA(norm(outputi)) + outputi

4. outputi+1 = M LP(norm(outputi+1)) + outputi+1

where W-MSA is window based multi-head self-attention and SW-MSA is shif-
ted window based multi-head self-attention.

Authors proved, that this approach is very effective in image classification,
object detection and semantic segmentation and their model called Swin Trans-
former[32] achieved state-of-the-art performance on COCO object detection and
ADE20K semantic segmentation.

2.3.4 "U" shape structure

Inspired by success of CNN based U-Net[33] network which achieved good res-
ults in various medical segmentation tasks, there has been several ViT architec-
tures[6][7][8][9] adopting its "U" shape structure. The main idea of the U-Net is
to supplement classic contracting path consisting of alternating layers of convo-
lutions, activation functions and pooling operations with symmetrical expanding
path, where pooling operation is replaced with up-sampling.

The role of the contacting path which is also known as an encoder branch, is to
reduce spatial resolution and expand feature information usually represented as a
number of channels. During each pooling operation is spatial resolution lowered
to one half and number of channels is doubled. In the expansive path, known as a
decoder branch, is low-resolution, high-dimensional output subsequently expan-
ded with up-sampling operation and combined it with high-resolution features
from the encoder block on the same level to yield more precise segmentations.
Up-sampling operation, symmetrically to pooling, doubles spatial resolution and
shrinks number of channel to half. Ronneberger et al.[33] highlight the benefit
of combining low resolution features with rich contextual information and high
dimensional features from the encoder, where the spatial information is better
encoded.
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Figure 2.8: U-Net architecture
Source: [33]

In case of Vision Transformers (ViTs) it is possible to to utilize this principle by
replacing convolution operation with self-attention (SA) mechanism. The encoder
branch than likewise consists from several encoder blocks, which have a task to
extract deep feature representations. These representations are further feed into
decoder branch, up-sampled and similarly merged with features from the encoder
via skip connections to restore spatial information[6]. Some models also include
bottleneck block in the most bottom layer which has same purpose as an encoder
block, but without any skip connection emerging to a decoder.

Vision Transformers with U-Net structure[6][7][9] achieved excellent to state-
of-the-art performance in medical image segmentation tasks and therefore we also
acquire this structure to our model for prostate tumor segmentation.

2.4 Image registration

Our dataset was acquired from multiple patients at different times and with dif-
ferent MRI machines. Image registration is a fundamental technique of unifying
multiple image data to the same coordinate system[34][35] i.e. it is used to align
images or image channels taken from possibly different sensors at different time
points[36]with some kind of object deformation or translation. For instance heart
or lungs with the cardiac or respiratory cycles results in the change of organ posi-
tion and deformation[37]. Prostate is a static organ anchored in pelvis and there-
fore the scans are not as much deformed, however, every patient is positioned
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slightly differently and it is also likely that patients could during MRI procedure
move. This subject movement cannot be completely eliminated in the scanner and
therefore consecutive correction is needed as a pre-processing step[38]. Registra-
tion process includes alignment of these distinctions into a common coordinate
system, so every pixel in every scan represents matching biological prostate point
in the same relative location.

There has been conducted extensive research for medical image registration
and its benefits. For example in[39] authors did registration of MRI and PET brain
images with tumor and this alignment found as an important factor in interpreting
high-resolution PET images. Eberl et al.[40] measured accuracy in the Hoffman
brain phantom studies with conclusion that registration simplifies comparison of
the data acquired from different machines at different time frames. Mäkelä et
al.[41] consider registration as a preliminary and necessary step to compare ana-
tomical cardiac information and that aligning these images into common refer-
ence frame allows more comprehensive analysis of cardiac functions. As it is com-
mon that prostate MRI scans have various shift according to the exact position of
the patient, we hypothesize that registration would be beneficial in order to integ-
rate this dissimilar data and our model will be able to detect lesions with higher
accuracy.

2.4.1 Definition

In the image registration we have one fixed image IF which is used as a template
and a moving image IM which needs to be registered i.e. aligned to the IF in terms
of space and voxel intensity. The formal definition of 3D image registration then
could be defined as a mapping between IF and IM in the following way[34]:

IM (x , y, z) = g(IF ( f (x , y, z))) (2.15)

where f is a voxel-wise 3D spacial mapping transformation and g is a voxel-wise
1D intensity transformation, which is mostly needed only in case of for example
sensor type change, or in a case of view angle change when light hits the surface
with different glare[34].

Klein et al.[36] have defined it as an optimization problem, where cost func-
tion is optimized with respect to the spatial transformation f (x , y, z). In general,
it is a process of finding appropriate transformations by deforming and aligning
moving image IM to match fixed image IF . To measure relationship between these
two images the similarity metric is used i.e. loss objective - a quantitative criterion
to be optimized, which tells how well is moving image IM matching fixed image
IF . Its derivative indicates in which direction we should move IM for better align-
ment. We can define this metric for anything we want to optimize, for example
spacial location, pixel intensities or any other feature[42].

An example of such simple linear image registration can be seen in the Figure
2.9.
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2.4.2 Registration types

Registration type is an essential element for determining the class of transforma-
tions and mappings between images.

1. Rigid - This is the most fundamental type of registration, where objects
retains their relative shape and size as it consist only from rotation, trans-
lation and zoom operations and except for addition of translation vector it
preserve linear properties of the object[34]. It is a subset of a more general
affine transformations described below. It doesn’t change the essence of spe-
cific MRI image and preserve internal structure of the scan. It doesn’t take
into account internal prostate deformations and differences. An example of
this registration type can be seen in the Figure 2.9.

Figure 2.9: In the figure can be seen rigid registration, where moving image is
aligned to the fixed image with rigid registration type.

2. Affine - This group, in addition to rigid type, include also shearing and scal-
ing along given axis. It is able to complement for more advanced deform-
ations, while keeping affine mathematical properties - it projects parallel
straight lines into parallel straight lines.

Figure 2.10: In the figure is presented comparison between rigid and affine re-
gistration results of the same fixed and moving image from the Figure 2.9.
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3. Non-rigid - This type of registration is need when comparability between
two images can not be achieved without any local deformation for example
because of some biological differences or image acquisition technique[43].
This naturally results in many degrees of freedom and parameter space has
likewise more dimensions. These algorithms are usually based on splines2

and many of them either include rigid/affine transformations or are run
after them[37]. The examples of non-rigid registration (affine followed with
b-spline) can be seen in Figure 2.11 and Figure 2.12.

Figure 2.11: In the figure is presented non-rigid registration example between
two different images, where internal biological structures of the prostate were
significantly warped. The algorithm was able to perfectly align upper part where
the contours were clearly outlined, however, in the middle part with a lot more
noise it created unwanted deformations.

Figure 2.12: This is a non-rigid registration example of the hbv channel (moving
image) to the t2w channel (fixed image) both belonging to the same scan. The al-
gorithm again made unwanted deformations in the center area and considerably
damaged internal information.

4. Groupwise - This is a single optimization procedure across many images
stacked in the image vector usually based on the concept of mutual informa-
tion[45]. It is designed to account for dissimilarities spread across the whole
dataset eliminating bias towards chosen fixed image.

2spline - piecewise polynomial function[44]
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2.5 Multi-Task learning

The general approach in machine learning is to improve one model for one task
to perform as good as possible. A big problem with this technique, however, is
the selection of inductive bias. This means, how to make model super-robust to
produce generalized and accurate predictions and at the same time how to prevent
it from being over-fitted to the limited number of training samples[13].

Human beings are able to train and improve in several tasks at once. Exper-
ience or knowledge from one task may help to improve the other. For example
weight lifting may improve endurance performance in cycling. Machine learning
draws inspiration from this approach in multi-task learning (MTL) mechanism,
which has potential to improve generalization performance of the model and can
act as an inductive bias. It uses simultaneous optimization of multiple domain-
specific tasks which share some parts of the architecture, so the signals from one
task works as an inductive bias for the other i.e. what is learned by one task could
help the other task to train better[46], thus improving generalization performance
of all tasks at the same time. MTL is formally defined as follows

Given m learning tasks τm
i=0 where all the tasks or a subset of them are related

but not identical, multi-task learning aims to help improve the learning of a
model for τi by using the knowledge contained in the m tasks[47][48].

Zhang et al.[47] further pointed on two factors that emerge from this definition,
specifically task relatedness and the definition of the task, which should be con-
sidered during the design of a MTL model.

The main concern and the main task of this master thesis which we aim to
improve is prostate tumor segmentation. It is single, very difficult task of recog-
nizing complex patterns in the 3D input MRI scan. To fully exploit MTL approach
we will propose second Decoder branch for prostate zonal segmentation. Both of
these task are problems from supervised learning paradigm, where model is trying
to find mapping between input scans and segmentation labels. Formally, we have
2 supervised learning tasks τi , where each is associated with our dataset, which
consists of 3-channel 3D input scans X , and two sets of 1-channel 3D labels yi . In
supervised MTL learning we then aim to improve two functions fi(x) such that
fi(x) is a good approximation of yi[47].

Although there are several categories of MTL[47][48], we will only focus on
deep-learning feature-based MTL approach which is the scope for this work. It
is based on an assumption, that given tasks have similar feature representation
encoded in the shared hidden layers of the network[47]. This part of the network
is also called feature extractor and its purpose is to extract features from the input
data. It is followed by task-specific heads, which further process these features to
make predictions. We will further present our idea and architecture in Section 4.5.
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2.5.1 Hard and Soft parameter sharing

Within the area of deep-learning is commonly used either hard or soft type of MTL
parameter sharing.

1. Hard parameter sharing is a most common technique proposed by Caruana
[12], where all tasks share some fixed, usually bottom part of the network,
followed by separate task-specific output layers.

2. Soft parameter sharing is a technique at which tasks doesn’t share any
layers and each task has a single model with corresponding parameters,
but the parameters in some specified layers are regularized between tasks -
stimulated to be similar[49].

Figure 2.13: Hard parameter shar-
ing principle

Figure 2.14: Soft parameter sharing
principle

2.6 Related work

This thesis has the same objective as the PI-CAI challenge3 and therefore the most
relevant related works to this master thesis are just the ones proposed for it. PI-
CAI (Prostate Imaging: Cancer AI) is a competition that aims to validate different
machine learning algorithms and evaluate their performance in PCa detection
against labels produced by radiologists. In this section we provide an overview
of distinguishing features from the 5 most successful works which share some
pre-processing and post-processing routines provided by event organizers.

Z-SSMNet: A Zonal-aware Self-Supervised Mesh Network for Prostate Cancer
Detection and Diagnosis in bpMRI[50]

In the first work[50] authors made quite broad model showed in Figure 2.15. They
based it on the MNet[51] which was designed to balance various spacing inform-
ation through alternating 2D convolutions in different axes and 3D convolutions.

3see https://pi-cai.grand-challenge.org/

https://pi-cai.grand-challenge.org/
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The importance of each convolution is further encoded with other learnable para-
meters so the model can decide, which axis of the volume is important in given
processing step to convolve. Authors of MNet claim that this approach can make
it easier for machine learning model to learn from image with various spacing
between axes.

Figure 2.15: In the figure is an overview of Z-SSMNet model that consists of
zonal mask generation part, self-supervised pre-training part and mesh network
part for PCa detection.

Source: [50]

The first interesting feature of Z-SSMNet is the zonal mask generation. Authors
trained standard 3D nnU-Net[52] to predict prostate zonal segmentations to guide
the network for learning region-specific information and to more precisely crop
the region of interest (prostate). They subsequently used this region with added
2.5cm for region-of-interest cropping of scans on the contrary to basic centre crop.
For this task they used 3 external publicly available datasets with prostate zonal
segmentation labels.

The second thing worth mentioning that authors used to tune their model
is self-supervised pre-traing routine described in [53]. This method incorporates
various data augmentations techniques of the input where the networks is train
to recover original channels to specialize weights of the model for given task be-
fore actual training. It was demonstrated that it significantly outperforms learning
from scratch with random weights.

Due to heterogeneous nature between scans from multiple facilities authors
integrated pre-trained network into the nnU-Net framework to form the Z-nnMNet
that can pre-process data in an adaptive way.

Their ranking score achieved on the validation set was 0.800 points.
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Deep learning for detection and diagnosis of prostate cancer from bpMRI
and PSA: Guerbet’s contribution to the PI-CAI 2022 Grand Challenge

Authors of the second work[54] described their progress in several steps:

1. They used provided prostate delineations made by AI and trained nnU-
Net[52] to predict prostate segmentation and cropped scans along the area
of interest in the pre-processing phase.

2. In the second step they used modified version of the nnU-Net[52] to predict
prostate delineation and also tumor segmentation.

3. Additional pre-trained Retina model[55] was used to detect tumor lesions.

Final tumor segmentation was done by the nnU-Net from step 2, but corres-
ponding probabilities were computed by ensembling output probabilities from
step 2 with detection score from step 3 as well as PSA value provided as addi-
tional information.

They claim that their model achieved on the validation set AUROC of 0.854
and AP of 0.489 which results in final score of 0.672 points.

Prostate Lesion Estimation using Prostate Masks from Biparametric MRI

In the third work[56] authors experimented with nnU-Net[52]. They for example
used prostate delineations as a fourth input channel for more accurate tumor loc-
alization or in another experiment they made an ensemble model from five nnU-
Nets. They also experimented with using clinical markers such as PSA value and
ADC intensity values for more precise benign/malignant tumor classification and
false positives elimination.

Authors made many experiments with various pre-processing routines and
achieved ranking scores from 0.734 to 0.770 with single model and scores from
0.712 to 0.810 with ensemble models. Their best model was ensembled nnU-Net
semi with prostate gland delineations as an additional input, cropped images,
evaluated PSA values and evaluated ADC maps.

The Prostate Imaging: Cancer AI (PI-CAI) 2022 Grand Challenge (PIMed Team)

The model that finished fourth[57] uses SPCNet[58] - a convolutional neural net-
work proposed to detect aggressive cancer, indolent cancer, and normal tissue on
MRI scan. As the authors weren’t satisfied with high number of false positives,
they added custom decision head which simply outputs yes/no decision making
from it multi-task learning model. This new model called SPCNet-Decision with
two objectives clearly outperforms original SPCNet.

One interesting thing is that authors trained ProGNet[59] on prostate gland
segmentations and during backpropagation computed gradients only within the
prostate gland boundaries. For the final prediction they ensembled outputs from
the standard 3D UNet with residual connections[33] and SPCNet-decision models.

The aforementioned ensembling model achieved ranking score 0.773 points.



Chapter 2: Background 28

Figure 2.16: In the figure is an overview of SPCNet-Decision model that consists
of tumor segmentation part and decision head.

Source: [57]

Implementation method of the PI-CAI challenge (Swangeese Team)

In the fifth work[60] authors used preprocessing tools provided by event organ-
izers and trained segmentation and classification networks. For the semantic seg-
mentation they used ITUnet[61] that was originally a network structure designed
for organ segmentation tasks of clinical medical images and changed it from 3D to
2D. For the image classification they use EfficientNet-b5[62] without any further
specification how they did the predictions.

Their model achieved ranking score 0.784 on the validation dataset.
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Methods

This chapter provides detailed insight into our working procedures and aims to
give basic understanding of our intentions. Firstly we will present techniques used
for data pre-processing and result evaluation which were necessary to unify ob-
tained data and quantify the performance of researched models. Later in this
chapter we will introduce the baseline model originally developed in the preparat-
ory project for this master thesis[31], against which we will compare quantitative
results from our experiments.

3.1 Dataset

For this work we are using public dataset[63][64] originally proposed for PI-CAI
challenge (Prostate Imaging: Cancer AI)1. This dataset consist from 1500 anonym-
ized MRI scans obtained between 2012-2021 at Radboud University Medical Cen-
ter, University Medical Center Groningen and Ziekenhuis Groep Twente.

1294 out of 1500 samples have assigned tumor segmentation labels made
by human experts and 1499 scans have tumor segmentation labels generated by
artificial intelligence. AI generated labels are, however, not verified by human
experts and their validity is therefore questionable.

Every scan in the dataset have 5 channels:

1. t2w - Axial - top-down T2 weighted image
2. sag - Sagittal - left-right T2 weighted image
3. cor - Coronal - front-back T2 weighted image
4. hbv - Axial high b-value (≥ 1400 s/mm2) diffusion-weighted image
5. adc - Axial apparent diffusion coefficients map

We will for our purposes use t2w, hbv and adc channels, dropping sagittal and
coronal T2 weighted images due to their different resolution.

1See https://pi-cai.grand-challenge.org/

29
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3.2 Data pre-processing

Data pre-processing is an essential step in creating a machine learning model.
It is generally known, that neural networks could achieve better performance if
the raw input data are transformed to united format, so each part of the net-
work can better specialize to detect specific feature. As described in the section
above, our dataset comes from different places and different MRI machines, so it
is not surprising that provided scans have various resolution, zoom or exposure.
It depends on their origin as well as on the capabilities of radiologists that gen-
erated them. We will use several basic pre-processing techniques implemented in
picai_prep[65] package to transform scans to similar appearance:

Resampling

First thing to notice is that different scans have different resolution caused by
various amount of zoom. On top of that, hbv and adc axial view channels within
one scan have also different resolution than the main t2w channel. To deal with
these issues we first need to resample - upsample or downsample resolution of
hbv and adc channels to match the resolution of t2w image.

The implementation in picai_prep[65] package uses ResampleImageFilter()
class from SimpleITK[66][67][68] toolkit with b-spline interpolator for hbv and
adc channels and nearest neighbor interpolator for the label (see Code listing 3.1).
We also provide example of input channels resampling in the Figure 3.1.

Code listing 3.1: Scan resampling function

def resample_to_first_scan(self):
"""Resample scans and label to the first scan"""
# set up resampler to resolution, field of view, etc. of first scan
resampler = sitk.ResampleImageFilter() # default linear
resampler.SetReferenceImage(self.scans[0])
resampler.SetInterpolator(sitk.sitkBSpline)

# resample other images
self.scans[1:] = [resampler.Execute(scan) for scan in self.scans[1:]]

# resample annotation
resampler.SetInterpolator(sitk.sitkNearestNeighbor)
if self.lbl is not None:

self.lbl = resampler.Execute(self.lbl)

Source: picai_prep[65] package

Interpolation is a process of estimating new data based on the existing informa-
tion. For example if we know that the value at point "A" is 3 and the value at point
"C" is 9, we can estimate the value at point "B" by linear interpolation to 6. In the
image processing area if is often related to reconstructing analogous or continues
image signal from existing digital or point-based image. It can be used for image
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enlargement, when we try to estimate best color or intensity for the new voxels
based on their surrounding[69].

The nearest neighbor is a basic interpolation method, whose principle is to
take closest value to desired voxel. It is the simplest approach and require shortest
processing time. Its advantage is preserving original voxel intensities, but the res-
ulting image have pixelated appearance - each point appear to be bigger[38].
These properties are ideal for label resampling, when we want to preserve binary
intensity character in cost of not perfectly round edges.

The exact explanation of B-spline interpolation method is, however, beyond
the scope of this work. In short, the image is first transformed to the image of
basis coefficients and then is at each new voxel computed linear combination of
these basis functions[38] to best fit the template. It is especially useful when the
image is likely to require multiple rotations, translations or distortions in several
specific steps. For the exact definition please read Briand and Monasse[69].

Figure 3.1: In the top row is displayed one example slice from unprocessed input
scan. We can see that several things do not fit: t2w channel is shifted from the
center, adc and hbv channel depict different slice as t2w, they have different zoom
and also different resolution. In the bottom row is depicted the same slice, but
after resampling. Specifically, after executing function in Code listing 3.1: t2w
channel served as a template and therefore remained unchanged, but we can see,
that adc and hbv now visually fit t2w and, in addition, also label fit darker area
on adc as well as lighter area on hbv. Label remained also unchanged, because it
already had the same resolution as t2w.

Center crop/pad

Next step is to adjust spatial resolution across the scans with center crop or pad
to our predefined size (32, 256, 256). Resampling and center crop should ensure
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that all samples in the dataset will depict at least similar region of the prostate
with the same amount of details.

High intensities clipping

This step is done to remove very high intensities, which could be denoted as out-
liers. In general, outliers could cause very high gradients during back-propagation
and could distract neural network training.

Zero-mean normalization

Next issue is different exposure among the scans - different range of voxel intensit-
ies. Some samples are for example overexposed or underexposed, which is caused
by large variety of input sources. It is good for neural to have input samples with
similar range of values, so the network weights can better specialize during back-
propagation. Therefore we are doing normalization individually to each channel
according to the formula

Xout =
X in −µ
σ

(3.1)

where µ is the mean andσ is the standard deviation. This is also known as Z-Score
or zero-mean normalization and it transform input data in way, that its mean is
zero and standard deviation is 1.

Data augmentations

Data augmentation is a technique to artificially introduce variations into the data-
set via various operations on the original data such as rotating or warping. It is
one of the regularization techniques to increase variability of the data and thus
potentially also improve robustness of the model and decrease over-fitting. We
used same data augmentation techniques as in preparatory project[31] listed in
Table 3.1.

3.3 Evaluation

In order to compare performance of the models in several experiments we need
to introduce quantitative evaluation methods, which are described in this section.

3.3.1 Training routine

Five fold cross-validation

For the training we are using five fold cross-validation method to train five separ-
ate models in each experiment. The idea is to split the dataset into five equivalent
parts and each time use four parts as a training dataset and the remaining part
use as a validation set to evaluate model on an unseen data (see Figure 3.2). At
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Augmentation values
Range Probability

Scaling [0.7 - 1.4] 0.2
Rotation [−30◦ - 30◦] 0.2

Gaussian Noise 0.1
Gaussian Blur 0.2

Brightness Multiplicative 0.15
Contrast Augmentation 0.15

Simulate Low Resolution [0.5 - 1.0] 0.25
Inverted Gamma [0.7 - 1.5] 0.1

Gamma [0.7 - 1.5] 0.3
Mirror 0.25

Table 3.1: Data augmentations used in training process

the end we take the mean of all five models and this value is considered as a final
rating of given experiment.

Figure 3.2: Example of five fold cross-validation partitioning. In most cases are
samples in the dataset ordered according some characteristic, so the dataset is
firstly shuffled or the samples are partitioned randomly, ensuring various types of
data in each split.

Source: [31]

3.3.2 Quantitative evaluation

The main task of this work is to classify each pixel into two classes - tumor or
not tumor. This is a binary classification problem, whose result verification can be
summarized in confusion matrix with four categories[31]:

1. true positive (TP) - expected tumor and predicted tumor
2. false positive (FP) - doesn’t expected tumor, but predicted tumor
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3. true negative (TN) - doesn’t expected tumor and doesn’t predicted tumor
4. false negative (FN) - expected tumor, but doesn’t predicted tumor

Precision and Recall

As described in [70] or [71], a naive or dummy approach for evaluation is using
precision and recall, because these metrics are biased towards their objective and
don’t handle negative examples correctly.

Precision expresses the ratio between detected true positive and all detected
positives - how many of the detected positives are actually positives. Its exact
definition is

Precision=
T P

T P + F P
(3.2)

Precision is used, when we want our prediction to be as precise as possible in
exchange for not detecting all objects.

Recall expresses the ratio between detected true positive and all positives that
should have been detected - have many objects (true positive) were actually de-
tected from total number of objects from given class i.e. how good is the model
in detecting given class. It is defined as follows

Recal l =
T P

T P + FN
(3.3)

Recall is used, when we want detect as much object from given class as possible
in exchange for detecting unknown, but usually very high number of false positive.

In an ideal case are both, Precision and Recall equal 1:

• all detected objects have predicted correct class - Precision = 1
• all objects from all classes were detected - Recall = 1

Average precision

In our binary classification problem the model assign to every pixel/voxel a prob-
ability value of belonging to desired class. All voxels with probability higher than
some pre-defined threshold can be classified as given class (in our case tumor) and
all the others as not from class (background or unimportant). If the threshold is
too low, more voxels are assigned as a tumor - the model will make more positive
predictions, most likely also FP predictions, but the chance that some detection
will be missed is lower. In term of precision and recall we can say that recall is high
and precision is low. On the other hand with high threshold the model can miss
some valid positives, but the chance that detected TP voxels are correctly labeled
is higher - recall is low and precision is high. If we plot precision against recall
along all possible thresholds we get so called precision-recall curve (see Figure
3.3). Based on this curve we can select threshold that fits our requirements the
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most, but this is in general not so straightforward task, since we need to choose
optimal trade-off between precision and recall[31].

One a solution to the issue of selecting most suitable threshold could be av-
erage precision (AP) score. AP summarize precision and recall values across all
possible thresholds into one scalar value. It can be understood as the area under
precision-recall curve and it is defined as follows:

AP =

∫ 1

r=0

p(r)dr (3.4)

From the Figure 3.3 we can see, that AP is high when recall as well as precision
are high at the same time. It expresses how good is the model in detecting all pos-
itive examples, without the emphasis on correctly classifying negative examples -
it is high when model can correctly handle positives.

Figure 3.3: In the figure is an example of ROC curve and PR curve. In the ideal
case we want AUROC equal 1 - across all probabilities that some negative example
will be classified as positive (fallout), to detect all objects from given class (recall
equal 1) i.e. even with zero fallout (this means no FP) we want to detect all
objects.
And also we want AP to be equal 1 - across all probability levels of how many
objects from given class were detected (recall) we want that all objects will be
from given class (precision equal 1) i.e. even with recall equal 1 (this means all
objects from given class were detected) we want all detections to belong to given
class - no FP.

Source: [31]

Area under receiver operating characteristic curve

In a wast majority of research papers about result evaluation, for example [70]
[71], is promoted the opinion that using only precision and recall can be insuf-
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ficient and misleading. They suggest using also receiver operating characteristic
curve, which expresses how the number of true positives (TP) varies with the
number of false positives (FP). Ideally it is desired to increase only the number of
TP, while the number of FP keep as low as possible. ROC curve is a graph showing
dependency between the Fallout (Eq. 3.5) and Recall (Eq. 3.3) across all possible
thresholds.

Fallout is the ratio between the number of negative samples wrongly categor-
ized as positive and the total number of actual negative samples i.e. probability
that negative sample will be classified as positive.

Fallout =
F P

F P + T N
(3.5)

area under receiver operating characteristic curve (AUROC) is a metric ex-
pressing how good is the model in distinguishing between classes - how likely
will model correctly classify given sample. Likewise AP, it represents the area un-
der ROC curve across all possible classification thresholds in a single scalar value.
Ideal model has AUROC equal 1, which means that it always make correct predic-
tion. On the other hand model with AUROC equal 0 will always make incorrect
prediction and model with AUROC 0.5 makes predictions that seems random.

In this work we are using exactly same evaluating approach as in preparatory
project[31] to be able compare results with both metrics - average precision (AP)
and area under receiver operating characteristic curve (AUROC). To get these
scores we are still using picai_eval[65] package2, which provides also merged
score as a final rating.

3.4 Baseline model

This work is based on a preparatory project[31] for this master thesis, where we
did comparison between CNN-based and ViT-based models for PCa detection and
tumor segmentation. We opted also for our own implementation of ViT-based
transformer with sliding window and U-Net like structure to have more flexibility
in term of architecture customization. We wanted to utilize following modifica-
tions:

1. Variable patch size - we speculated that fixed patch size (2, 2, 2) is too
small and we wanted to use larger sizes. Note that original ViT model for
image processing[27] uses patches of size 16 × 16. Larger patch size means
that more neighbouring pixels are converted into one embedding vector and
therefore the output vector is more generalized.

2. Variable window size - in the patch embedding process with image size
[32, 256, 256] and patch size for example (2, 4, 4) or (4, 4, 4), it can be

2see https://github.com/DIAGNijmegen/picai_eval

https://github.com/DIAGNijmegen/picai_eval
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convenient to use SA window size (8, 8, 8) or smaller (4, 8, 8) to avoid any
padding.

3. Variable network depth - larger patch size results in smaller image dimen-
sions right in the beginning and we can take away one layer from the net-
work saving some memory.

4. Linear transformation in the up-sample blocks - replace computationally
intensive transposed convolutions in Patch Expanding blocks with classic
Linear layers followed by reshaping of the outputs.

This solution outperformed CNN-based Unet[33] and ViT-based Swin UN-
ETR[7] (see Table 3.2), whose implementations were acquired from MONAI[72]
- open-source framework for medical imaging research3.

Results comparison from [31]

Model Mean Training time #Parameters Total
Best Score per epoch mult-adds (G)

U-Net 0.618348 184sec 31 643 850 15.98
Swin UNETR 0.638168 685sec 15 704 732 189.87

Proposed
0.659823 653sec 80 899 778 15.97

model version1

Table 3.2: Comparison of the results obtained by models tested in [31]
Source: [31]

3.4.1 Best model from the Preparatory project

All experiments in this work are based on our best model from the preparatory
project[31], whose architecture is described in this section and can be seen in the
Figure 3.4.

Patch Embedding Block

Given a 3D image with three channels as an input, the first step is to split this
volume into 3D patches. For this step we used standard 3D convolution layer
followed by GELU activation function to add some non-linearity and Linear layer
for further processing (see Code listing 3.2).

The output of this block are embedding vectors - each patch is represented by
1D vector of length channels[0]. Note that we are not using positional encodings,
because we always keep the same order of the patches.

3see https://monai.io/

https://monai.io/
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Figure 3.4: In the figure is outlined the architecture of the best model from pre-
paratory project[31]

Source: [31]

Code listing 3.2: Patch Embedding Block code example

self.patch_embeddings = nn.Conv3d(in_channels=3,
out_channels=channels[0],
kernel_size=patch_size,
stride=patch_size)

self.activation = nn.GELU()
self.linear = nn.Linear(in_features=channels[0], out_features=channels[0])

Encoder block series

Patch Embedding block is followed by three Encoder blocks. The overall architec-
ture of the Encoder block and how input passes through with all skip connections
can be seen in the Figure 3.5.

One Encoder block consists from window based self-attention block and shif-
ted window based self-attention block (for closer description of these blocks see
Section 2.3.3), each followed by MLP. MLP block consists from two linear layers
with GELU activation in between and Dropout layer at the end. Number of out-
put neurons is the same as an input size and number of hidden neurons is twice
as much (see Code listing 3.3). Internal skip connections are implemented as a
standard addition.

Code listing 3.3: MLP Block code example
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Figure 3.5: Proposed Encoder-Decoder architecture

self.linear1 = nn.Linear(in_features=channels, out_features=2*channels)
self.activation = nn.GELU()
self.linear2 = nn.Linear(in_features=2*channels, out_features=channels)
self.drop = nn.Dropout(0.05)

The last step of the Encoder is the Patch merging operation that downsample
spatial resolution by joining adjacent non-overlapping 2×2 2D patches and doubles
number of channels. (see Code listing 3.4).

Code listing 3.4: Patch Merging Block code example

self.patch_mergings = nn.Conv3d(in_channels=channels,
out_channels=2*channels,
kernel_size=(1, 2, 2),
stride=(1, 2, 2))

self.activation = nn.GELU()
self.linear = nn.Linear(in_features=2*channels, out_features=2*channels)

Bottleneck block

Bottleneck has almost the same architecture as the Decoder block, except that
there is no skip connection before input.

Decoder block series

In the overall architecture are also included three Decoders which have same self-
attention/MLP scheme as encoder, but Patch merging operation is replaced with
Patch expanding operation. It is the exact opposite that symmetrically up-sample
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spatial resolution and reduce number of channels to half. We implemented it using
Linear layer with 4× times bigger output size followed by reshaping.

The input to the Decoder is enriched with skip connection from the Encoder
block on the same level in the network. This skip connection is implemented as
concatenation along channel dimension and followed by Linear layer that halves
the number of channels.

Note, that last Decoder block doesn’t include Patch expanding operation to
maintain appropriate output size. Complete insight on the input and output sizes
during forward pass through our proposed model can be seen in table 3.3.

Proposed architecture version1
Image size per layer

Layer Input size Output size Number of
[D, H, W, C] [D, H, W, C] Parameters

Patch embedding [32, 256, 256, 3] [16, 64, 64, 192] 55 680

Encoder1 [16, 64, 64, 192] [16, 32, 32, 384] 1 037 184

Encoder2 [16, 32, 32, 384] [16, 16, 16, 768] 4 138 752

Encoder3 [16, 16, 16, 768] [16, 8, 8, 1536] 16 535 040

Bottleneck [16, 8, 8, 1536] [16, 16, 16, 768] 42 504 192

Decoder1 [16, 16, 16, 768] [16, 32, 32, 384] 11 815 680

Decoder2 [16, 32, 32, 384] [16, 64, 64, 192] 2 958 720

Decoder3 [16, 64, 64, 192] [16, 64, 64, 192] 667 968

Patch Transpose [16, 64, 64, 192] [32, 256, 256, 192] 1 186 176

Classification [32, 256, 256, 192] [32, 256, 256, 2] 386

Total: 80 899 778

Table 3.3: Image size and number of parameters per layer

Source: [31]

Patch Transpose

After last decoder block is the shape of the partial output same as shape of the
partial output after Patch embedding block. It is needed to up-sample it to the
original size (32, 256, 256). We are doing so in the block by linear projection and
reshaping.
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Output classification

Partial output from Patch transpose block has the same spatial resolution as an
original scan, but 192 channels need to be reduced to the number of output chan-
nels.
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Experiments and Results

The core of this work is to perform experiments with our ViT model to test pro-
posed hypothesis and more advanced machine learning approaches like image
registration or multi objective optimization. Our limitation is 24GB of graphical
memory, so all hyper-parameters were chosen with respect to it. If doesn’t stated
otherwise, all experiments were performed with hyper-parameters listed in Table
4.1.

Training hyper-parameters

Number of input channels 3
Number of output channels 2
Spatial dimensions : [32, 256, 256]
Loss function: Binary Cross Entropy
Optimizer: AdamW
Learning rate: 0.00005
Weight decay 0.0001
Number of epochs: 70
Batch size: 1

Table 4.1: Hyper-parameters used for training process

4.1 Experiment 1 - More robust architecture

4.1.1 Description

In the first experiment we wanted to do some minor changes to the architecture
of the model emerging from our best model (see Section 3.4.1) and preparatory
project[31] future work:

42
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1. Firstly we decreased learning rate from 0.0001 to 0.00005 for smaller learn-
ing steps. This change don’t have significant effect as we are using AdamW
optimizer with adaptive momentum.

2. Increase number of epoch from 60 to 70.
3. Shrink patch size from (2, 4, 4) to (1, 4, 4). As the first dimension of the

input shape (32, 256, 256) is compared to others considerably smaller, we
wanted to preserve the number of these slices and the amount of 3D inform-
ation after Patch embedding process. The output shape after Patch embed-
ding has therefore changed from (16, 64, 64) to (32, 64, 64).

4. Expand Patch merging and Patch expand kernel size from (1, 2, 2) to (2, 2,
2) to shrink and recover input features across all three dimensions.

5. Add more self-attention (SA) blocks in each Encoder/Bottleneck/Decoder,
because SA is the main mechanism of Transformers for evaluating import-
ance of the voxels for the final classification (see Section 2.3.1). An overview
of one extended Encoder-Decoder block used in Experiment 1 can be seen
in Figure 4.1. As can be noticed, there is no need to shift windows in the

Figure 4.1: In the figure is outlined one Encoder-Decoder block with extended
self-attention scheme used in Experiment 1.

Bottleneck block, because with (2, 2, 2) Patch merging kernel size is input
already of size (4, 8, 8) and it can be comprehensively processed in one 3D
window without any shift. However, we are still using four self-attention
blocks to maximize computational power on the low resolution input with
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dense features. For better overview of the Bottleneck architecture see Figure
4.2.

Figure 4.2: In the figure is the new architecture of the Bottleneck, where shif-
ted window based self-attention (SW-SA) block was replaced with classic self-
attention (SA) block and two new SA blocks were added. Since the input has the
same resolution as the window (4, 8, 8), there is no need for "windowed" ap-
proach in the Bottleneck.

6. Reduce number of channels from [192, 384, 768, 1536, 768, 384, 192] to
[120, 240, 480, 960, 480, 240, 120] in consecutive layers to compensate
for deeper architecture since our computational resources are limited.

7. Added more intense data augmentation for better generalizability of the
model (see Section 3.2).

4.1.2 Results

Fold number
Best Score Best AP Best AUROC

Baseline Exp 1 Baseline Exp 1 Baseline Exp 1

1 0.652 0.690 0.461 0.503 0.844 0.877
2 0.741 0.725 0.596 0.565 0.887 0.885
3 0.626 0.719 0.410 0.529 0.841 0.909
4 0.615 0.622 0.394 0.403 0.836 0.842
5 0.665 0.693 0.479 0.497 0.851 0.890

mean 0.660 0.690 0.468 0.499 0.852 0.881

Baseline Experiment 1
Training time per epoch (aprox.): 653sec 814sec
Total number of parameters: 80 899 778 60 635 426
Total mult-adds (G): 15.97 8.02

Table 4.2: Experiment 1 results
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4.1.3 Discussion

Parameters of the model could be in the context of Vision Transformers under-
stood as some variables which store learned relationships between inputs. Each
self-attention (SA) block has predefined number of these parameters - higher lay-
ers in the model have lower number of parameters, because the input has big
spacial resolution i.e. there is more voxels to store information into. Vice versa
input in lower layers has small spatial resolution so we need to encode necessary
information into higher number of channels.

In this experiment we lowered number of SA channels by 37, 5%, what natur-
ally lowered number of parameters in MLP and SA layers. This change resulted in
significant decrease of overall memory demands of the model and we were able to
use twice as much self-attention layers and take an advantage from more robust
ViT architecture that resulted in better performance.

Experiment summary

+ Higher AP and AUROC
+ Reduced total number of parameters
+ Lower total number of mult-add operations
− Longer training time

4.2 Experiment 2 - Wider 2D self-attention windows

4.2.1 Description

In the Experiment 1 we were using self-attention windows with size (4, 8, 8) to
include 3D spatial information into SA computation. It means that these windows
take into consideration 4 stacked areas from 8×8 2D region. We hypothesize, that
using larger windows across main 2D dimension - (1, 16, 16) - in combination with
3D (4, 8, 8) windows to include spatial information may help to acquire broader
relationships between patches and allow model to make more robust predictions.

In this experiment we reuse model and all hyper-parameters from Experiment
1, but we change window size in newly added Encoder/Decoder SA blocks to (1,
16, 16) (see Figure 4.3). As described above, there is no need to change window
size in the Bottleneck and we are using the same one as in Experiment 1, depicted
in the Figure 4.2.
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Figure 4.3: In the figure is showed an inclusion of the wider 2D self-attention
windows in the Experiment 2.

4.2.2 Results

Fold number
Best Score Best AP Best AUROC

Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2

1 0.690 0.698 0.503 0.514 0.877 0.882
2 0.725 0.749 0.565 0.589 0.885 0.909
3 0.719 0.662 0.529 0.454 0.909 0.869
4 0.622 0.592 0.403 0.360 0.842 0.825
5 0.693 0.667 0.497 0.476 0.890 0.858

mean 0.690 0.674 0.499 0.479 0.881 0.867

Experiment 1 Experiment 2
Training time per epoch (aprox.): 814sec 814sec
Total number of parameters: 60 635 426 60 635 426
Total mult-adds (G): 8.02 8.02

Table 4.3: Experiment 2 results
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4.2.3 Discussion

In this experiment we wanted to include more voxels into self-attention (SA) com-
putation along main 2D dimension. We transformed SA windows in specific blocks
from 3D (4, 8, 8) windows to 2D (1, 16, 16) windows with same computational
cost

4× 8× 8∼ 1× 16× 16 (4.1)

The main idea was to include more distant patches into self-attention (SA) com-
putation in exchange for the potential loss of 3D information.

Experiment showed, that relationships between more distant patches are not
as much important as 3D spatial information and we can therefore further hy-
pothesise that the information necessary for the final inference is encoded in the
input structures locally. Due to lower AP and lower AUROC we will base further
experiments on the model from Experiment 1.

Experiment summary

+ The same training time, number of parameters and number of mult-add
operations

− Lower AP and AUROC

4.3 Experiment 3 - Artificially annotated data

4.3.1 Description

As described in Section 3.1, we have 1294 out of 1500 images annotated by human
experts which we have been using in our experiments so far. However, we have
tumor segmentation labels generated by artificial intelligence for every scan and
in this simple experiment we want to research the effect of extending our dataset
by artificially labeled input scans.

It should be generally better for the machine learning model to have greater
variability of the input data, because it allows to adapt and specialize for larger
number of more specific examples. Although these images account only for about
≈ 14% and the accuracy of their labels is not verified, we hope that addition
of new data will be beneficial for more accurate predictions. We will use newly
extended dataset with training setup from Experiment 1, because it achieved best
overall score.
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4.3.2 Results

Fold number
Best Score Best AP Best AUROC

Exp 1 Exp 3 Exp 1 Exp 3 Exp 1 Exp 3

1 0.690 0.637 0.503 0.483 0.877 0.792
2 0.725 0.711 0.565 0.584 0.885 0.838
3 0.719 0.682 0.529 0.553 0.909 0.811
4 0.622 0.561 0.403 0.336 0.842 0.786
5 0.693 0.657 0.497 0.503 0.890 0.813

mean 0.690 0.650 0.499 0.492 0.881 0.808

Experiment 1 Experiment 3
Training time per epoch (aprox.): 814sec 950sec
Total number of parameters: 60 635 426 60 635 426
Total mult-adds (G): 8.02 8.02

Table 4.4: Experiment 3 results

4.3.3 Discussion

This experiment showed, that artificially labeled data doesn’t help improve per-
formance of the model. From the results in Table 4.4 we can see that this model
achieved comparable average precision (AP), but significantly lower area under
receiver operating characteristic curve (AUROC). This means that model wasn’t
so good in distinguishing between classes and had lower confidence in detecting
true negative voxels that typically results in higher number of false positive.

Experiment summary

− Lower AP and AUROC
− Longer training time

4.4 Experiment 4 - Image registration

4.4.1 Description

In the Figure 4.4 is showed one slice example of raw data scan. We can see that
channels are not aligned in 3D space, they depict different region and have differ-
ent resolution. On the top of that, segmentation label doesn’t correspond with adc
and hbv channels. In this experiment we look at three image registration types -
rigid, affine and b-spline - to fix aforementioned issues and compare their effect
on the final score of the model. Image registration is not a new topic and as de-
scribed in Section 2.4, there has been extensive research going on especially in
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medical image processing. We want to make the most out of this technique and
include it in our model for data pre-processing.

Figure 4.4: In the figure is showed an unprocessed example of provided scans.

We use our best model from Experiment 1 and do three full training cycles with
five fold cross-validation. Each training cycle consists from all methods mentioned
in section 3.2, but resampling is substituted by a specific registration type.

To register our prostate MRI scans we use SimpleElastix[42] multi-lingual
library, an extension of SimpleITK[66][67][68], designed to simplify access to
C++ Elastix[36][73] toolbox for rigid and nonrigid image registration.

Raw data rigid registration

Firstly, we want to know how does raw input scan look like after simple rigid re-
gistration. We used function in Code listing 4.1 with default rigid parameter map,
but with lower number of resolutions as default value 4. Resolutions in this case
doesn’t characterize spatial resolution, but epochs in multi-resolution registration
strategy. The overview and explanation of multi-resolution registration strategy is
provided in detail in [74], but generally in each resolution is image downsampled,
smoothed or both, which reduce complexity and considerably saves time.

Code listing 4.1: Rigid registration function

def register_img(fixed, moving):
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.LogToConsoleOff()
elastixImageFilter.SetFixedImage(fixed)
elastixImageFilter.SetMovingImage(moving)

parameterMap = sitk.GetDefaultParameterMap(’rigid’)
elastixImageFilter.SetParameterMap(parameterMap)
elastixImageFilter.SetParameter(’NumberOfResolutions’, ’3’)

elastixImageFilter.Execute()
resultImage = elastixImageFilter.GetResultImage()
return resultImage

In the Elastix manual1 is recommended as a good starting point number of
resolutions equal 3. Using higher numbers like 5 or 6 is suitable for images with
high spatial resolution with details further away, as they are more blurred and

1see https://usermanual.wiki/Document/elastix490manual.1389615963/help

https://usermanual.wiki/Document/elastix490manual.1389615963/help
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more attention could be paid to main guiding shapes. In our case, using default
number of resulutions 4 or higher led to significant displacement of moving image
and therefore we had to change it to 3. For a visual example of registered image
see Figure 4.5.

Raw data affine registration

The next step after rigid registration is little more advanced affine registration,
which includes also shearing and scaling along one axis. Algorithm with default
affine parameters and number of resolutions 3, however, didn’t performed as ex-
pected. Adc channel looked at the first sight good, but hbv channel was overex-
posed and dislocated. We had to further reduce number of resolutions to 2. The
best result is displayed in Figure 4.5.

Raw data b-spline registration

The most advance registration type researched in this work is the b-spline. As de-
scribed in Section 2.4, it has tendency to quite disturb information about internal
structures in the scan and therefore we have to choose parameters more carefully.
We use number of resolution 3, but with very low number of steps 10, in com-
parison to the default value 256 (see Code listing 4.2). The example scan after
b-spline registration is depicted in Figure 4.5 together with all other types.

Code listing 4.2: Paramter setting for b-spline registration

parameterMap = sitk.GetDefaultParameterMap(’bspline’)
elastixImageFilter.SetParameterMap(parameterMap)
elastixImageFilter.SetParameter(’NumberOfResolutions’, ’3’)
elastixImageFilter.SetParameter(’GridSpacingSchedule’, [’1.9’,’1.41’, ’1’])
elastixImageFilter.SetParameter(’MaximumNumberOfIterations’, ’10’)

Experiment process:

1. Convert raw .mha scans to .nii.gz format and save
2. Iterate over .nii.gz scans and:

a. Unify spacing of all scans to (3.0, 0.5, 0.5) with appropriate change of
resolution

b. Register adc and hbv channels of each scan to its t2w channel with
rigid (see Code listing 4.1), affine and b-spline transformation

c. Resample label to the dimension of t2w channel
d. Center crop/pad each new scan and also label
e. Save rigid, affine and b-spline samples with label and their three chan-

nels - original t2w and registered adc and hbv

3. Continue as in Experiment 1
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Figure 4.5: In the figure is presented a comparison between resampling method
from Section 3.2 and all researched registration types after center crop/pad op-
eration to predefined size (32, 256, 256). At the first sight all methods produced
very similar results with slightly different intensity adjustments and feature delin-
eations. We can for example see that hbv channel after affine registration is little
bit stretched and the white area indicating tumor is not as clearly outlined as in
rigid type, or for example b-spline registration produced some expected warping
of the structures.
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4.4.2 Results

Rigid registration

Fold number
Best Score Best AP Best AUROC

Exp 1 Rigid Exp 1 Rigid Exp 1 Rigid

1 0.690 0.619 0.503 0.394 0.877 0.845
2 0.725 0.713 0.565 0.552 0.885 0.874
3 0.719 0.630 0.529 0.426 0.909 0.834
4 0.622 0.551 0.403 0.264 0.842 0.838
5 0.693 0.641 0.497 0.431 0.890 0.851

mean 0.690 0.631 0.499 0.413 0.881 0.848

Experiment 1 Experiment 4 - Rigid
Training time per epoch (aprox.): 814sec 814sec
Total number of parameters: 60 635 426 60 635 426
Total mult-adds (G): 8.02 8.02

Table 4.5: Experiment 4 - rigid registration results

Affine registration

Fold number
Best Score Best AP Best AUROC

Exp 1 Affine Exp 1 Affine Exp 1 Affine

1 0.690 0.634 0.503 0.418 0.877 0.849
2 0.725 0.708 0.565 0.549 0.885 0.868
3 0.719 0.677 0.529 0.461 0.909 0.894
4 0.622 0.545 0.403 0.306 0.842 0.783
5 0.693 0.635 0.497 0.396 0.890 0.875

mean 0.690 0.640 0.499 0.426 0.881 0.854

Experiment 1 Experiment 4 - Affine
Training time per epoch (aprox.): 814sec 814sec
Total number of parameters: 60 635 426 60 635 426
Total mult-adds (G): 8.02 8.02

Table 4.6: Experiment 4 - affine registration results
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B-spline registration

Fold number
Best Score Best AP Best AUROC

Exp 1 B-spline Exp 1 B-spline Exp 1 B-spline

1 0.690 0.697 0.503 0.520 0.877 0.874
2 0.725 0.719 0.565 0.552 0.885 0.886
3 0.719 0.708 0.529 0.529 0.909 0.887
4 0.622 0.612 0.403 0.397 0.842 0.827
5 0.693 0.719 0.497 0.544 0.890 0.895

mean 0.690 0.691 0.499 0.508 0.881 0.874

Experiment 1 Experiment 4 - B-spline
Training time per epoch (aprox.): 814sec 814sec
Total number of parameters: 60 635 426 60 635 426
Total mult-adds (G): 8.02 8.02

Table 4.7: Experiment 4 - b-spline registration results

4.4.3 Discussion

In this experiment we compared three main image registration types - rigid, affine
and b-spline - on prostate MRI scans for Vision Transformer prediction capability.
Our hypothesis was that registration of three channels of each scans together with
label can help in the training process to determine more exact relationships and
improve accuracy of the predictions. We expected rigid or affine registration to
produce best results, as the scans seem to best fit by human eye assessment (see
Figure 4.5).

Fold number Exp 1 Rigid Affine B-spline

1 0.690 0.619 0.634 0.697
2 0.725 0.713 0.708 0.719
3 0.719 0.630 0.677 0.708
4 0.622 0.551 0.545 0.612
5 0.693 0.641 0.635 0.719

mean 0.690 0.631 0.640 0.691

Table 4.8: Experiment 4 - Result comparison

Results showed that these two types didn’t performed as good as baseline
model with b-spline resampling and achieved significantly lower overall score. B-
spline registration surprisingly achieved best overall score, even though the detail
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in these scans can seem visually violated and skewed. Table 4.8 provide brief
outlook on the overall score from all registration types and compare them with
the model from Experiment 1.

Experiment summary

+ Research of which registration type has the highest benefit for our task
− Lower or identical overall score

4.5 Experiment 5 - Multi-Task learning model

4.5.1 Description

In addition to the tumor segmentation labels, we have also available prostate
delineation labels generated by AI that we want to utilize in this experiment. Al-
though their accuracy is not verified by human experts, we decided to conduct
experiment with multi-task learning (MTL) optimization and fully exploit this
technique. Our objective is to extend the model by second Decoder branch for
prostate delineation prediction.

As pointed out in [46], parallel task optimization process and inter-task know-
ledge sharing is a promising solution for recognizing more complex objects in real
world scenarios and therefore we hope that simultaneous learning to predict tu-
mor segmentations as well as prostate delineations will contribute to better gen-
eralizability and the model will improve overall score.

Figure 4.6: In the figure is showed the architecture with two decoder branches
used in Experiment 5.
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In this experiment we added second decoder branch as showed in the Figure
4.6 that is designed to predict prostate region segmentation. The network has
therefore two objectives that share encoder branch and the Bottleneck, but each
has own decoder branch specialized for specific task.

Each encoder/decoder block has the same architecture as in Experiment 1,
but we had to reduce the complexity by reducing the number of channels and
the number of self-attention heads, because the second branch adds new memory
demands to our limited processing space:

1. Reduce number of channels from [120, 240, 480, 960, 480, 240, 120] to
[81, 162, 324, 648, (324, 324), (162, 162), (81, 81)] in consecutive layers.

2. Reduce number of self-attention heads from [4, 8, 16, 32, 16, 8, 4] to [3, 6,
12, 24, (12, 12), (6, 6), (3, 3)] in consecutive layers.

3. Two previous points results in reduction of channels per attention head from
30 to 27

As long as we have two objectives, we must have also two loss functions defin-
ing individual deviations from the target. We use partial loss objectives to calculate
final loss as shown in Code listing 4.3.

Code listing 4.3: Calculating final loss objective from two partial ones.

x_tumor, x_prostate = model(inputs)

seg_label = torch.unsqueeze(labels[:,0,:,:,:], 1)
deli_label = torch.unsqueeze(labels[:,1,:,:,:], 1)

loss1 = loss_func(x_tumor, seg_label)
loss2 = loss_func(x_prostate, deli_label)
loss = loss1+loss2

optimizer.zero_grad()
loss.backward()
optimizer.step()

For the validation and final score calculation we use only tumor segmentation
outputs, as it is our main objective.



Chapter 4: Experiments and Results 56

4.5.2 Results

Fold number
Best Score Best AP Best AUROC

Exp 1 Exp 5 Exp 1 Exp 5 Exp 1 Exp 5

1 0.690 0.705 0.503 0.541 0.877 0.869
2 0.725 0.749 0.565 0.590 0.885 0.908
3 0.719 0.753 0.529 0.584 0.909 0.923
4 0.622 0.632 0.403 0.404 0.842 0.860
5 0.693 0.723 0.497 0.540 0.890 0.909

mean 0.690 0.712 0.499 0.532 0.881 0.894

Experiment 1 Experiment 5
Training time per epoch (aprox.): 814sec 990sec
Total number of parameters: 60 635 426 33 051 499
Total mult-adds (G): 8.02 4.33

Table 4.9: Experiment 5 results

4.5.3 Discussion

This experiment exceeded our expectations and we created model with best over-
all score with considerably lower number of parameters. We used prostate delin-
eations to act as an effective inductive bias for the tumor segmentation task that
influenced whole encoder branch for better prediction performance.

It could be also interesting to evaluate the accuracy of prostate delineation
segmentation in the second branch, but since we were limited in time and it was
not the goal of this work, we did not measure this objective.

Experiment summary

+ Better overall score, AP and AUROC
+ Lower number of parameters
− Longer training time

4.6 Experiment 6 - Multi-class output

4.6.1 Description

Based on the improvement in the Experiment 5 (see Table 4.9) we designed brand
new experiment for comparison with with multi-class output. We based it on an
assumption that better overall score in the Experiment 5 was achieved thanks to
the prostate delineation labels assigned to every scan and therefore allowed bet-
ter weights specialization of the encoder branch. On the contrary, not every scan
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contains segmented tumor, which makes its tumor segmentation label empty -
made out of zeros - and we speculate that these empty labels could have dis-
turbed model’s weights in the previous Experiments 1-4, where prostate delin-
eations were not used.

In this experiment we used model and all configurations from the Experiment
1, but we have created new labels by adding prostate delineations and tumor
segmentations (see Figure 4.7). These new labels contains three possible classes
which are during optimization one-hot encoded:

• 0 - Background
• 1 - Prostate delineation
• 2 - Tumor Segmentation

Therefore we had to modify also the number of output channels to 3, so the
model is capable to predict probability for each class.

Figure 4.7: In the figure is an example of the scan and the label with prostate
delineation and tumor segmentation.

For the training and optimization we use all three classes, but in order to be
able to compare model with previous experiments, we do validation only on tumor
segmentation. We hypothesize that prostate delineations included with every scan
will help to bias weights and the model will achieve better score.
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4.6.2 Results

Fold number
Best Score Best AP Best AUROC

Exp 5 Exp 6 Exp 5 Exp 6 Exp 5 Exp 6

1 0.705 0.688 0.541 0.498 0.869 0.879
2 0.749 0.753 0.590 0.585 0.908 0.921
3 0.753 0.693 0.584 0.500 0.923 0.886
4 0.632 0.603 0.404 0.360 0.860 0.848
5 0.723 0.648 0.540 0.426 0.909 0.869

mean 0.712 0.677 0.532 0.474 0.894 0.881

Experiment 5 Experiment 6
Training time per epoch (aprox.): 990sec 822sec
Total number of parameters: 33 051 499 60,635,499
Total mult-adds (G): 4.33 8.02

Table 4.10: Experiment 6 results

4.6.3 Discussion

We hoped that inclusion of prostate delineation in every label would help to in-
fluence weights and the model will achieve significantly better overall score, but
our hypothesis in this experiment wasn’t confirmed. One possible cause could be
that output with more output channels may need more training epochs for precise
adjustment, but it is only our speculation.

Experiment summary

− All validation metrics are lower
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Discussion

5.1 General Discussion

The main objective of this master thesis was to develop a comprehensive machine
learning model for prostate cancer detection on MRI scans that can serve as an
effective workflow support for radiologists. We based our implementation on the
not so long ago proposed approach called Vision Transformer (ViT)[5] with self-
attention mechanism and we included in it more advanced concepts like shifted
windows, skip connections or U-Net like structure. It achieved satisfying results as
it outperformed state-of-the-art models implemented in MONAI framework and
achieved comparable performace with PI-CAI challenge top competitors.

If we compare our best model from the Experiment 5 with ranking score 0.712 and
top PI-CAI challenge competitors (see Section 2.6) with validation scores between
0.750-0.800 we draw a conclusion that together with future improvements our

model can serve as a brilliant starting point for introducing AI into practical testing.

However, as long as the goal of this work wasn’t to join the competition and we
also used different validation method as challenge competitors that had submitted
their models directly for evaluation, our score can be slightly inaccurate when
comparing to others.

For the training we used public dataset originally proposed for PI-CAI chal-
lenge which consist of 1500 prostate multi-parametric MRI scans. Each scan con-
tain t2w, adc and hbv channels from axial view (top-down), which unfortunately
do not show the same area. One channel can have for example different zoom as
the other two and therefore it doesn’t match the label. This can lead to a serious
inaccuracy of the model and therefore channels of each scan needs to be synchron-
ized with each other as well as with label. After visually inspecting several scans,
we assumed that t2w was the main channel by which the labels were created and
registered the remaining two channels and labels to match this channel. In some
scans, however, the label could have been created according to other channel and
by registering it to t2w we introduced error to the dataset. This source of error
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can be avoided only by manual inspection of each scan and determining which
channel match the label. This in many cases requires professional expert for as-
sessment, as for common observer is hard to recognize what is tumor in the MRI
scan.

Another labeling issue is that only 1294 out of aforementioned 1500 scans
are annotated by radiologist experts. Remaining scans have provided label only
created by artificial intelligence, which is not verified and can be inaccurate. We
experimented using these AI annotated scans in the Experiment 3, but it doesn’t
produced better results.

Technical limitation of our work is 24GB of graphical memory, as ViT based
architectures have very high memory demands and even this space is not enough.
Extending this space would allow to use architecture with more self-attention
blocks, more self-attention heads and more channels to encode inter-voxel rela-
tionships. One interesting experiment on better hardware would be to use larger
3D self-attention windows. We tried to use larger 2D windows in exchange for not
including 3D information in the Experiment 2, but it turned out that 3D inform-
ation is more important than larger 2D windows as the Experiment didn’t yield
better results.

Image registration

To align channels of each scan we researched three image registration types -
rigid, affine and b-spline. We wanted to determine which type suits our domain
the best. On the contrary to [75] where authors found no differences between
rigid and elastic (b-spline could be understood as elastic) registration, our model
trained on the b-spline registered scans produced significantly better results.

However, image registration methods researched in Experiment 4 did not provide
better overall scores than preprocessing method with b-spline resampling

implemented in PI-CAI baseline[65] package.

In the work [43] are authors in favor for rigid registration as for non-rigid (b-
spline). They justify their claim with higher computational cost of non-rigid regis-
tration and that non-rigid registration is hard to validate. We also claim that scans
after rigid or affine registration looks more natural to human observer, because
b-spline registered scans seems to have disturbed or damaged internal details, but
Experiment 4 showed that machine learning model is able to produce best results
specifically on b-spline registered scans.

One thing regarding image registration worth to mention is that with every
image registration type was whole dataset modified. Train/validation partitioning
remained the same, but separate scans look different and thus we don’t use same
looking validation sets.

Another interesting thing to notice is that model with b-spline image res-
ampling (Experiment 1) and model with b-spline image registration (Experiment
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Figure 5.1: In the figure is a visual example of successful tumor detection with
our best model from Experiment 5. Green is the tumor segmentation label and
red is the prediction with threshold 0.25 .

4) produced almost identical scores, which can mean that these two operations
have similar implementation.

Multi-task learning

Although we couldn’t find any similar works with multi-task learning optimiza-
tion and we were unsure how to design overall architecture, our first experiment
with MTL model (Experiment 5) yielded surprisingly good results. In [76] is poin-
ted out, that multi-domain models where tasks share earlier layers could achieve
better performance than the ones sharing deeper layers and therefore we added
second decoder branch for prostate delineation segmentation, sharing encoder
branch and Bottleneck between both tasks.

We can declare that simultaneous optimization of two objectives as implemented in
the Experiment 5, more specifically tumor segmentation and prostate delineation
segmentation that share lower parts of the network helps improve the prediction

accuracy and model’s overall performance.

Better results even with significantly lower number of model parameters were
achieved thanks to the second decoder branch and we hypothesize, that major
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part plays the fact that every input sample contains label with prostate delin-
eation which significantly helps to bias whole encoder branch in a positive way
and allows better specialization of the model. On the contrary, tumor segmenta-
tion is not presented in every scan which results in totally blank label made only
from zeros. As long as majority of labels (≈ 4 : 1) is blank - scan doesn’t contain
tumor - we speculate, that these samples could have negative effect on the overall
training process and can confuse model’s weights.

On the other hand, results of the Experiment 6 (see Table 4.10) aren’t as good
as expected. The main idea of this experiment was that new output channel i.e.
prostate delineation segmentation, may help to affect weights of the whole model
and help to locate tumor inside prostate zone more precisely. This assumption is
not based on any previous work and it is only our hypothesis that needs further
research and tuning that may be relevant for the future work.

5.2 Related work

5.2.1 PI-CAI challenge works

Works from PI-CAI challenge presented in Section 2.6 that are most related to
our task were proposed in late November 2022 when this thesis was already in
progress. They utilize various advanced techniques thanks to which they have
achieved top-notch performance.

We particularly like the idea on which is based MNet[51] model used in first
work[50], which alternates 2D convolutions along various axes and joins then
with 3D convolutions. The amount of each convolution is further encoded using
learnable parameters so that the model can automatically determine which plane
in 3D space is the most important. We think that it could be interesting to exper-
iment with this approach by alternating larger 2D self-attention windows along
different axes and join them with 3D SA windows.

Another interesting idea is to do region-of-interest cropping instead of simple
center crop. After the center crop can be prostate area shifted from the middle or it
can be even partially cut out from the image making it harder for machine learning
model to adjust. It is possible to train separate model using prostate delineations
to predict prostate area and based on the bounding box of this area do region-of-
interest cropping of the whole prostate.

Since all these models achieved better validation score we suggest to further
research their characteristic features and try to use them in the future work.

5.2.2 Other research

Most of the ongoing research related to using ViTs for medical image segmentation
is focused on the delineation of the whole organs or its parts[8][9][10][77]. This
is into some extent easier task as a tumor segmentation, because whole organs
are depicted in every sample and thus network doesn’t have to evaluate their
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presence. Tumors, on the other hand, may not show up on a scan i.e. tumor is
more likely not presented in the scan that makes the whole training process and
network specialization harder.

One of the works regarding tumor segmentation is [11], where Peiris et al.
proposed robust volumetric transformer for accurate tumor segmentation but it is
hard to compare to our work, because they made experiments on a brain tumor
segmentation and in addition they used different evaluation metrics. Similarly in
[7], Hatamizadeh et al. proposed their model for brain tumor segmentation using
Dice score as an evaluation metrics, which is hard to compare.

In [78] authors compared Transformer based U-Net to CNN based U-Nets spe-
cifically on prostate tumor segmentation task. They unfortunately don’t provide
comprehensive quantitative results in the form of tables, but they mention that
Transformer based model achieved the best Dice score among tested models.

Other than that, we weren’t able to find any other ongoing research related
to using Vision Transformers for prostate tumor segmentation which makes our
work even more breakthrough in this area.
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Conclusion and Future work

6.1 Conclusion

In this work we studied Vision Transformers and their utilization for automatic
prostate cancer detection on MRI scans. We conducted research whose aim was
to introduce artificial intelligence into practice as an effective support for radiolo-
gist workflow. We designed our own ViT-based architecture with shifted windows
approach and U-Net like structure that outperformed other implementations. We
further examined various image registration types and their effect on the machine
learning model’s performance. In contrast with our speculation, b-spline registra-
tion provided best results, even though details in the image seems to be damaged
when inspecting the image by human eye. In the last stage we were looking into
multi-task learning technique where we simultaneously predicted tumor segment-
ations as well as prostate delineations. These two tasks shared lower parts of the
network where prostate delineations acted as an inductive bias for tumor detec-
tion and even with half as much number of parameters model achieved the best
overall score of 0.712, which is not small, but can be further improved.

In the Appendix A are provided example scans with tumors and it can be
seen that predictions match the labels into large extent. However, as presented in
section 2.6, it is possible to achieve even more superior performance and therefore
we would like to recommend our work for the future research and improvements.
Afterwards it could be considered for testing in practical use as a support for
prostate cancer diagnosis which may contribute to higher standards of the patient
healthcare.

6.2 Future work

The main objective for the future work is to develop robust and accurate model for
prostate tumor segmentation that can be put into testing for practical use. This is
very extensive task that demands a lot of trying and testing and we have following
suggestions that may help to achieve better score:

64



Chapter 6: Conclusion and Future work 65

1. Use prostate delineations as a fourth input channel: every scan contains
segmented prostate delineation and we assume that using it as a fourth
input channel during training may help to indicate more accurate tumor
location.

2. Use Focal loss: Focal loss focuses training on hardly classifiable examples
(parameter gamma) and also on poorly represented classes (parameter al-
pha) which may be beneficial for our problem, since tumor pixels are poorly
represented in comparison to background pixels.

3. Overlapping patches: SegFormer[79]model uses so called Overlapped Patch
Embedding process and Overlapped Patch Merging process and the authors
claim, that using overlapping helps to incorporate an inter-patch informa-
tion and preserve continuity between patches.

4. Region-of-interest crop: Center crop may depict prostate shifted from the
middle of the image and therefore it isn’t located in the same place of the
scans. This has potential to make the learning process more difficult and
therefore we suggest to use region-of-interest crop. Use attached prostate
delineations to train separate model, predict prostate region and crop the
scan around this region.

5. Self-supervised pre-training: As presented in [50] and more specifically in
[53], self-supervised pre-training helps to specialize weights already before
training and model can achieve significantly better performance.
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Appendix A

Prediction examples

In this section we provide an overview of tumor segmentation predictions (red
color) of our best model from Experiment 5 and compare them to the label (green
color). For the purpose of this view we used prediction threshold 0.25 - all pixels
above value 0.25 are considered as tumor and enclosed with red line.

Figure A.1: Example 1
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Figure A.2: Example 2

Figure A.3: Example 3
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Figure A.4: Example 4

Figure A.5: Example 5
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Figure A.6: Example 6

Figure A.7: Example 7
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