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Abstract

This thesis presents a detailed study of the e�ectiveness and limitations of Electroen-
cephalography (EEG)-based mental stress detection in humans using an interpersonal
model. Three classi�cation algorithms, AdaBoost, Random Forest and EEGNet, were
explored and evaluated. The EEGNet classi�er, when used with an 80:20 train-test
split, provided the highest accuracy of 71% but achieved only 50% sensitivity. Con-
versely, the AdaBoost classi�er yielded the best sensitivity of 67%, with an accuracy of
63%, under the same split conditions. However, evaluation using Leave-One-Subject-
Out (LOSO) cross-validation suggests that the EEGNet classi�er is struggling to gener-
alise to new data. Furthermore, the e�ectiveness of the various EEG frequency bands
was evaluated. The delta, theta, alpha, and beta frequency bands have been iden-
ti�ed as the most e�ective for mental stress detection, while the gamma frequency
band exhibited less e�ectiveness. The study also explored the signi�cance of elec-
trode placement and the selection and rejection of channels. The �ndings suggest
that the right-side frontal, central, and temporal regions of the brain have the great-
est change in activity during mental stress. Channel selection, performed in a sim-
ple way by removing less signi�cant channels, was found to increase sensitivity for
the Random Forest classi�er while reducing sensitivity for the AdaBoost classi�er.
These �ndings suggest that future research should employ more channels and more
advanced channel selection techniques. Despite the achievements in the study, the
results were limited by the size, balance and quality of the collected dataset. Future
studies should focus on collecting high-quality, balanced and comprehensive datasets
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for further advancements in the �eld of EEG-based mental stress detection.
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Sammendrag

Denne avhandlingen presenterer en detaljert studie av e�ektiviteten og begrensnin-
gene av Elektroencefalogra� (EEG)-basert psykisk stressdeteksjon hosmennesker ved
bruk av en interpersonlig modell. Tre klassi�seringsalgoritmer, AdaBoost, Random
Forest og EEGNet, ble utforsket og evaluert. EEGNet-modellen, kombinert med 80:20
trening/test-splitt, ga den høyeste nøyaktigheten på 71%, men oppnådde en sensi-
tivitet på kun 50%. Til forskjell oppnådde AdaBoost-modellen den beste sensitiviteten
på 67%, med en nøyaktighet på 63%, ved de samme splitt-betingelsene. Derimot
viste en evaluering ved bruk av Leave-One-Subject-Out (LOSO) kryssvalidering at
EEGNet-modellen sliter med å generalisere til ny data. Videre ble e�ektiviteten til de
ulike EEG-frekvensbåndene evaluert. Delta-, theta-, alfa- og beta-frekvensbåndene
ble identi�sert som de mest e�ektive for psykisk stressdeteksjon, mens
gamma-frekvensbåndet viste seg å væremindre e�ektivt. Studien undersøkte også be-
tydningen av elektrodeplassering og e�ekten av å fjerne kanaler. Resultatene viser at
den frontale, sentrale og temporale regionen på høyre side av hjernen har den største
endringen i aktivitet under psykisk stress. Valg av kanaler, som ble utført på en enkel
måte ved å fjerne de minst betydningsfulle kanelene, viste at sensitiviteten økte for
Random Forest men gikk ned for AdaBoost. Disse resultatene tyder på at fremtidig
forskning bør benytte �ere kanaler og utforske mer avanserte teknikker for valg av
kanaler. Til tross for prestasjonene i denne studien, har resultatene vært begrenset
av størrelsen, balansen og kvaliteten til det innsamlede datasettet. Fremtidige studier
bør fokusere på innsamling av større, mer balanserte datasett av høyere kvalitet for å
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oppnå fremskritt innenfor EEG-basert psykisk stressdeteksjon.
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Chapter 1

Introduction

1.1 Problem Description

The aim of this thesis is twofold. The �rst aim is to collect a multimodal dataset con-
sisting of Electroencephalography (EEG) and Phonocardiography (PCG) data from
participants in a non-stressed and stressed state. Collecting a balanced dataset con-
sisting of recordings from a substantial number of participants while minimising en-
vironmental noise are key targets for this stage of the project. Data collection in this
project has been carried out in cooperation with Anne Joo Yun Marthinsen, Ida Marie
Andreassen, Ivar Tesdal Galtung and Øystein Stavnes Sletta, fellow students at the
Norwegian University of Science and Technology (NTNU).

The second aim is to create an automated stress detection system using EEG sig-
nals. Even though the PCG data is collected, it will serve the purpose of future re-
search where multimodal stress detection can be explored. This single-modal system
aims to set a groundwork for comparison with such future multimodal systems. The
proposed stress detection system will consist of several stages, including preprocess-
ing of the raw EEG data, feature extraction using speci�c frequency bands from the
Power Spectral Density (PSD) of EEG data and training and tuning of multiple clas-
si�cation models that can accurately distinguish between non-stressed and stressed
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states in participants.

1.2 Motivation

In themodern age, technology, while o�ering numerous bene�ts, has become a double-
edged sword. Technology has given us the ability to e�ortlessly connect with people
around the world from the comfort of our smartphones. On the other hand, the smart-
phone has tethered us to an ever-growing heap of work emails and a constant stream
of social media interactions. This constant connection to the outside world means
that many do not get the chance to disconnect and unwind, which is vital to main-
tain a healthy mental well-being. Technology is one of the contributing factors to the
fast-paced and stressful life many now take for granted.

Although stress in the short term can be bene�cial in enhancing focus and pro-
ductivity, chronic stress can produce severe health consequences. The study by Co-
hen et al. (2007) outlines the correlations between chronic mental stress and diseases
and disorders such as depression, cardiovascular disease, HIV/AIDS and cancer. This
is only the tip of the iceberg, as other studies have found chronic stress to trigger
anxiety disorders, contribute to obesity, and lead to sleep disturbances (Selye (1965);
Dohrenwend and Dohrenwend (1974); Brown and Harris (1978)).

The impact of chronic stress on mental and physical health highlights the impor-
tance of early detection and monitoring of stress. Although, methods for measuring
stress exist, such as self-reported measures or questionnaires, they are vulnerable to
personal biases and inaccuracies. Creating a system that can objectively measure
stress would therefore have a signi�cant impact on preventing and managing chronic
stress.

To further this goal, this study explores the utilisation of EEG signals, a non-
invasive method for measuring electrical potentials on the scalp, as a tool for stress
detection. EEG-based stress detection remains an open research problem, despite sig-
ni�cant advances in machine learning and neural network models. With the devel-
opment of more accurate algorithms and a deeper understanding of the correlation
between EEG signals and stress, we hope to unlock the potential of EEG-based stress
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detection, paving the way towards more e�ective stress management strategies, and
ultimately, better health outcomes.

1.3 Literature Review

Recent research has demonstrated the capacity of EEG to detect and quantify stress
levels. Hosseini et al. (2010) illustrated that stress-induced changes in the brain can
be re�ected in the EEG signals. Particularly, changes in EEG frequency bands, es-
pecially the theta, alpha, and beta bands, are often indicative of stress response. For
example, an increase in beta band activity is often associated with a heightened stress
level (Seo et al. (2010)). A comprehensive literature review by Katmah et al. (2021)
corroborated this �nding, identifying these bands as the most e�ective across various
studies. Hence, these frequency bands are valuable features that can be utilised by
machine learning algorithms for stress detection models.

The role of machine learning in EEG data analysis has led to remarkable progress
in the research �eld, as evidenced by the successful implementation of algorithms
such as AdaBoost, Random Forest, and EEGNet.

AdaBoost, for instance, has been applied successfully in a variety of EEG-based
applications, including detecting driver fatigue, diagnosing epilepsy and stress detec-
tion (Hu (2017); Prabhakar and Rajaguru (2018); Liu et al. (2022)).

Likewise, the Random Forest classi�er has proven e�ective in EEG data analysis,
helping in the classi�cation of sleep stages, early detection of seizures and identi�-
cation of driving-induced stress (Fraiwan et al. (2012); Donos et al. (2015); Halim and
Rehan (2020)).

EEGNet, a deep learning convolutional neural network (CNN) architecture specif-
ically designed for EEG data, has shown promising potential. According to Lawhern
et al. (2018), EEGNet outperformed traditional machine learning algorithms in sev-
eral EEG classi�cation tasks, including epilepsy diagnosis and event-related potential
identi�cation. Recently, Bhatnagar et al. (2023) successfully employed EEGNet to de-
tect stress in patients exposed to music.

While promising results have been reported, several challenges remain. The in-
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dividual variability in stress response makes it challenging to create an interpersonal
stress detectionmodel. Additionally, the EEG frequencies that have the largest change
in response during mental stress is still an open research problem. Lastly, the lack of
interpretability of deep learning models such as EEGNet complicates the physical un-
derstanding of the stress response in the brain.

However, several challenges persist in this area of research. One notable challenge
is the individual variability in stress response, which complicates the development of
universal stress detection models. This variability could stem from personal factors
such as the perception of stressors. Additionally, determining the EEG frequencies
that have the largest change in response during mental stress remains an open re-
search problem. This challenge highlights the need for more research to discover the
precise neurophysiological markers of stress. Lastly, the lack of interpretability of
deep learning models like EEGNet inhibits the physical understanding of the stress
response in the brain, making the explanation and validation of these models chal-
lenging.

In conclusion, the use of machine learning algorithms, particularly Random For-
est, AdaBoost, and EEGNet, for EEG-based stress detection represents a promising yet
challenging research area. Addressing these challenges may potentially lead to more
accurate and reliable stress detection models in the future.

1.4 Outline

The thesis is structured as follows:

• Chapter 2: Presents the theoretical background of the study, including an expla-
nation and overview of EEG, the association between EEG and mental stress,
preprocessing methods, feature extraction techniques and classi�cation algo-
rithms.

• Chapter 3: Details the materials and methods used in the study, including data
collection, preprocessingmethods, feature extraction and classi�cation approaches.

• Chapter 4: Presents the �ndings of the study.
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• Chapter 5: Provides an analysis of the results and a discussion of their implica-
tions.

• Chapter 6: Provides a summary of the main �ndings of the study and sugges-
tions for future work in the �eld.
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Chapter 2

Theory

2.1 Electroencephalography

Electroencephalography (EEG) is a widely used technique for non-invasive measure-
ment of the electrical activity of the brain. EEG is commonly used in the �eld of
neuroscience to study brain function and diagnose a range of neurological diseases
(Niedermeyer and da Silva (2005)). One such application is stress detection (Sanei and
Chambers (2007)).

EEG is based on the principle that activity in the brain’s neurons generates small
changes in electrical potential that can be measured using electrodes on the scalp
(Sanei and Chambers (2007)).

Noise and artefact reduction is a critical aspect of EEG analysis, as it enables a
more precise understanding of brain activity. Common sources of noise include mus-
cle movements, electrical interference and electrode-related issues (Lai et al. (2018)).
Through the application of preprocessing techniques, it becomes possible to remove
or minimise these noise sources, leading to a more accurate representation of the
brain’s activity.

Note: Portions of this section are borrowed or adapted from Sletten (2022). For
more in-depth information on EEG, please refer to Sletten (2022).

7
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2.2 Electroencephalography and Mental Stress

The Power Spectral Density (PSD) of an EEG signal o�ers valuable insights into brain
activity, particularly during stress. Research by Hosseini et al. (2010), Khosrowabadi
et al. (2011) and Lim and Chia (2015) found a strong correlation between the PSD of
EEG signals and stress. This relationship suggests the potential of EEG as a reliable
tool for detecting changes in stress levels.

An EEG signal can be decomposed into several frequency bands, namely delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-100 Hz).
Each band represents a particular range of frequencies thought to re�ect di�erent
types of brain activity. The cognitive and physiological functions associated with
these frequency bands will be further detailed in Section 2.4.

The alpha band has been reported to show decreased activity during periods of
stress, according to a variety of studies explored by Katmah et al. (2021). The review
of these studies also found that the accuracy achieved when classifying stress based
on the alpha band was found to be the highest among the frequency bands. This
suggests that alpha oscillations might have a key role in stress detection since they
likely re�ect the individual’s active engagement with the stressor and a disruption in
their relaxed mental state.

The beta band, which is generally associated with active, busy or anxious thinking
and active concentration, has also shown a signi�cant correlation with stress. Specif-
ically, Seo et al. (2010) found that stress is positively correlated with beta EEG power.
This is backed up by the studies explored by Katmah et al. (2021), where the beta fre-
quency band was found to result in the second-best accuracy when used for stress
classi�cation, following the alpha band.

Gamma activity has demonstrated varied results, based on a variety of studies
explored by Katmah et al. (2021). The review found that decreased gamma activity can
be related to both relaxed and stressful situations, suggesting that gamma oscillations
may not be particularly sensitive to variations in stress levels. This is consistent with
the results presented by Katmah et al. (2021), where the gamma frequency band has
a notably worse performance compared with the alpha and beta frequency bands.
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Theta band activity showed the lowest accuracy among the EEG frequency bands
according to the studies reviewed by Katmah et al. (2021). However, the literature re-
view showed that the frequency band has an accuracy that varies signi�cantly across
studies

Lastly, the delta band demonstrated high classi�cation accuracy, as reported by the
studies explored by Katmah et al. (2021). However, only one of these studies used the
delta band alone for stress classi�cation, meaning that the result should be interpreted
carefully.

In conclusion, each frequency band contributes uniquely to the understanding and
detection of stress via EEG signals. While some bands, such as alpha and beta, demon-
strated superior performance in the reviewed studies, the results across all bands
showed considerable variability. This variability, combined with the unique �ndings
related to each band, motivates a comprehensive investigation of all frequency bands
in this study’s dataset.

2.3 Preprocessing

EEG signals often contain noise and artefacts from various sources, such as power
sources, eye blinks, heartbeats and muscle movements (Lai et al. (2018)). Although
ideally, one would prevent artefacts from occurring, some noise sources are challeng-
ing to eliminate or simply unavoidable (Urigüen and Garcia-Zapirain (2015)). There-
fore, preprocessing plays a signi�cant role in enhancing the quality of the acquired
EEG signals.

Notch �ltering and bandpass �ltering are essential preprocessing techniques for
improving the quality of EEG signals (Sanei and Chambers (2007)). In this section, we
will explore the principles behind these �lters and discuss how they are commonly
used to preprocess EEG signals.

Notch �ltering is a technique that attenuates speci�c, narrow frequency bands
from a signal. A notch �lter has a high-pass and a low-pass �lter connected in paral-
lel, which results in a frequency response with a dip at the targeted frequency. The
idea behind notch �ltering is to suppress a particular frequency without a�ecting the
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neighbouring frequencies signi�cantly. The design of the notch �lter can be adjusted
by controlling the quality factor and the bandwidth of the �lter to achieve a more
selective or broader attenuation (Oppenheim (1999)). In the context of EEG signal
processing, notch �lters are primarily used to remove power line interference (50 Hz
or 60 Hz, depending on the region) and their harmonics, which can corrupt the EEG
signal (Sanei and Chambers (2007)).

Bandpass �ltering, on the other hand, is designed to allow only a speci�c range
of frequencies to pass through while attenuating frequencies outside this range. A
bandpass �lter is essentially a combination of a high-pass �lter and a low-pass �lter
connected in series. The high-pass �lter removes low-frequency components, while
the low-pass�lter eliminates high-frequency components. The resulting output signal
contains only the frequencies within the speci�ed range (Oppenheim (1999)). When
�ltering EEG signals, the frequency range is commonly chosen so that the desired
frequency bands, such as delta, theta, alpha, beta and gamma are isolated. This helps
eliminate noise from external or physiological sources that lie outside the speci�ed
range (Sanei and Chambers (2007)).

2.4 Feature Extraction

Feature extraction is an important part of EEG signal classi�cation since the extracted
features have a signi�cant impact on the performance of the classi�er and the com-
putational cost. It is essential to choose features that maximise class separability to
help ensure that the classi�er correctly separates each class. A good feature is one
that minimises the intraclass distance and maximises the interclass distance (Rajoub
(2020)).

In this study, I have chosen to focus on frequency bands as the features of choice.
Frequency bands are useful in EEG signal analysis due to the rich information they
provide about the underlying processes in the brain. The frequency bands of an EEG
signal can be categorised into various groups, each associated with speci�c cognitive
and physiological functions. The main frequency bands include delta (0.5-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-100 Hz) (Sanei and Chambers
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(2007)). It is worth mentioning that the literature presents several de�nitions of the
frequency ranges associated with each band.

To compute the power frequency band features, it is necessary to obtain the PSD
of the EEG signal. The PSD can be calculated by computing the discrete Fourier trans-
form (DFT) of the signal. There are several methods for computing the DFT of a signal,
with the Fast Fourier Transform and Welch’s method among the most common tech-
niques.

The PSD is an importantmeasure as it reveals the distribution of the signal’s power
across di�erent frequency bands. By calculating the PSD of each frequency band, we
can extract features that represent the power distribution within each band (Welch
(1967)).

2.4.1 Delta Band (0.5-4 Hz)

The delta band resides within the frequency range of 0.5 to 4 Hz. The band is associ-
ated with deep sleep and unconscious cognitive activity. It is the slowest brainwave
frequency and is predominantly observed during non-rapid eye movement sleep, in-
fancy and in individuals who have su�ered brain injuries (Sanei and Chambers (2007)).

2.4.2 Theta Band (4-8 Hz)

The theta band, operating within the range of 4 to 8 Hz, is associated with states of
drowsiness, relaxation and the early phases of sleep. The band is most prominently
active during cognitive tasks that require creative thinking, meditation and working
memory. Furthermore, theta oscillations are believed to play a vital role in memory
formation, spatial navigation, and emotional regulation (Sanei and Chambers (2007)).

2.4.3 Alpha Band (8-13 Hz)

The alpha band, spanning from 8 to 13 Hz, is associated with relaxation, mental calm-
ness and alertness. It is often observed in restful states such as when individuals
have their eyes closed. Alpha waves are thought to be involved in cognitive processes
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such as attention, memory and information processing and are the most prominent
rhythms in the brain (Sanei and Chambers (2007)).

2.4.4 Beta Band (13-30 Hz)

The beta band, which ranges from 13 to 30 Hz, is associated with active thinking, fo-
cus, problem-solving and decision-making. The presence of beta oscillations is more
prominent during tasks that require concentration and cognitive processing. Ad-
ditionally, beta waves have been linked to motor functions and sensory processing
(Sanei and Chambers (2007)).

2.4.5 Gamma Band (30-100 Hz)

The gamma band, ranging from 30 to 100 Hz, is the frequency band containing the
highest frequencies. The band is connected to complex cognitive processes, such as
perception, attention and learning. Gamma oscillations are believed to play a role in
combining information from di�erent brain regions and enabling rapid neural com-
munication (Sanei and Chambers (2007)).

In addition to frequency bands, other feature extraction methods have been ex-
plored in the literature for EEG signal classi�cation. These methods can be broadly
categorised into time-domain, frequency-domain, time-frequency domain and non-
linear methods. Time-domain methods focus on extracting features directly from
the EEG signal and include features such as mean, variance, skewness and kurto-
sis. Frequency-domain methods, like the one used in this study, involve transforming
the EEG signal into the frequency domain and extracting features from the PSD of the
signal. Time-frequency domain methods combine both time and frequency informa-
tion to provide a more comprehensive representation of the signal, using techniques
such as the Wavelet Transform. Non-linear methods extract features that describe
the complexity and irregularity of EEG signals, with fractal features being a common
choice (Stancin et al. (2021)).

The choice of frequency bands as the primary features for this study was moti-
vated by the desire to use features that enable clear visualisation of di�erences be-
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tween the two classes. By comparing the PSD of recordings from stressed and non-
stressed samples it is possible to e�ectively determine the di�erences between these
classes in the frequency domain. Another advantage of using frequency bands as
features are their strong connection to neurophysiological processes, as established
through extensive prior research (Katmah et al. (2021)). Each frequency band is as-
sociated with speci�c cognitive and physiological functions, which allows for a more
comprehensive understanding of brain activity during stress.

2.5 Classi�cation Algorithms

Classi�cation is the process of separating entities into distinct classes. When the clas-
si�cation is guided by known class assignments, it is referred to as supervised classi�-
cation. In contrast, unsupervised classi�cation takes place when class assignments are
unknown. Classi�cation tasks can be binary, where data is divided into two classes,
or multi-class, where data is divided into multiple classes (Nisbet et al. (2018)).

In this project, the goal is to develop a reliable pipeline for classifying samples
as stressed or non-stressed, which constitutes a binary classi�cation task. Since the
dataset contains ground truth information in the form of State-Trait Anxiety Inven-
tory Y (STAI-Y) scores and Subjective Stress Assessment (SSA) scores, the classi�ca-
tion is supervised.

The classi�cation algorithms that have been chosen for this study are AdaBoost,
Random Forest and EEGNet. In this section, we will discuss the fundamental theory
behind each algorithm and how they relate to the objective of the study.

2.5.1 AdaBoost

AdaBoost (Adaptive Boosting) is a supervised learning method for classi�cation and
regression analysis, which employs an ensemble learning approach. Ensemble learn-
ing methods use multiple classi�ers to improve generalisation and overall prediction
accuracy, and AdaBoost is a prominent example in this category (Polikar (2012)). The
method was �rst introduced by Freund and Schapire in 1996 (Freund et al. (1996)).
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As the name of the method implies, AdaBoost is a learning method that makes
use of boosting to improve the performance of the model. Boosting works by re-
peatedly using weak classi�ers (e.g., decision trees) that perform slightly better than
random guessing to classify di�erent subsets of the data. For each iteration, misclas-
si�ed samples are weighted more heavily, which ensures that the classi�er focuses on
these instances. This iterative re�nement improves the accuracy of the classi�er over
time (Freund et al. (1996)).

The weak classi�ers are combined using a weighted sum, where the accuracy of
each classi�er determines its weight. The �nal prediction is determined by a weighted
vote of the individual classi�er predictions (Freund et al. (1996)).

Figure 2.1 shows a �owchart of the main steps of the AdaBoost algorithm, show-
casing how weak classi�ers are trained using a subset of the data and combined using
weighted sums of their outputs.

AdaBoost has been used successfully for a variety of EEG-based applications. Re-
cent studies have demonstrated its e�ectiveness in detecting fatigue in drivers, diag-
nosing epilepsy and stress detection (Hu (2017); Prabhakar and Rajaguru (2018); Liu
et al. (2022)). Based on these promising results, AdaBoost was identi�ed as a suitable
classi�er for this study.

AdaBoost has several desirable properties that makes it well-suited for EEG anal-
ysis. One of these properties is the ability to reduce over�tting, which is particularly
important when working with small and imbalanced datasets, which is often the case
with many EEG datasets. The resampling method increases the diversity of the classi-
�ers by using di�erent subsets of the training data for each weak classi�er. This helps
prevent the model from over�tting to any speci�c subset of the data. Additionally,
the increased weighting of misclassi�ed samples ensures that the classi�ers in the en-
semble focus more on the samples that are harder to classify, preventing the model
from relying too heavily on easily learned samples (Freund et al. (1996)).

Another advantage of AdaBoost is its ability to handle high-dimensional feature
spaces, which is relevant for EEG analysis wheremultiple features are often computed
across a large number of channels. This can result in high-dimensional data, which
can be challenging to analyse with other machine learning algorithms. AdaBoost can
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e�ectively handle high-dimensional feature spaces by using an ensemble of classi�ers
that each only focus on a subset of the features (Freund et al. (1996)).

2.5.2 Random Forest

Random Forest is a supervised learning method for classi�cation and regression anal-
ysis, which employs an ensemble learning approach. The model combines multiple
decision trees to improve the accuracy and generalisation of the classi�cation and
regression. The model was �rst introduced by Breiman and Cutler in 2001 as an ex-
tension to the decision tree algorithm (Breiman (2001)). The key principles of Random
Forest are bagging and feature randomness, which combine to create a diverse ensem-
ble of decision trees (Breiman (2001)).

Bagging, an abbreviation of bootstrap aggregation, involves generating several
random subsets of the training data with replacement. Each of the training sets are
used to build an individual decision tree. The �nal prediction of the Random For-
est model is obtained by aggregating predictions from each decision tree through a
majority vote (Breiman (1996)).

The Random Forest algorithm extends upon the bagging technique by using a
technique known as feature randomness. In addition to sampling a random subset
of the training data, each decision tree uses a random subset of the features at each
split of the tree. The combination of randomness at the data level and feature level
increases the diversity of the decision trees, aiming to improve accuracy and gener-
alisation performance (Breiman (2001)).

Random Forest has several properties that make it highly suitable for EEG anal-
ysis. One of these properties is its ability to prevent over�tting. As mentioned in
Subsection 2.5.1, preventing over�tting is vital for small and imbalanced datasets, a
common characteristic of EEG datasets. Random Forest prevents over�tting by em-
ploying randomness at both the data and feature level, preventing the model from
relying too heavily on speci�c features or subsets of the data (Breiman (2001)).

Another key property of Random Forest is its ability to handle high-dimensional
data, a trait it shares with AdaBoost, as described in Subsection 2.5.1. This capability
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is important for EEG data, where high-dimensional feature spaces are often encoun-
tered. The algorithm’s feature selection process contributes to the algorithm’s ability
to tackle high-dimensional data. The feature selection process uses a random subset
of the features at each split of the decision trees, instead of the complete feature set,
which helps manage the complexity of high-dimensional data in an e�ective manner
(Breiman (2001)).

The Random Forest classi�er has been demonstrated as a successful approach for
analysing EEG data in various applications, as shown in several previous studies. For
instance, Random Forest has achieved good results in applications such as classify-
ing sleep stages, early-stage seizure detection and driving-induced stress detection
(Fraiwan et al. (2012); Donos et al. (2015); Halim and Rehan (2020)). These results,
combined with the properties mentioned previously, suggest that Random Forest can
be an e�ective tool for analysing EEG data.

Figure 2.2 shows a �owchart of the main steps of the Random Forest algorithm,
showcasing how decision trees are trained on a subset of the data and their predictions
aggregated to generate the �nal output.

2.5.3 EEGNet

In recent years, the use of convolutional neural networks (CNNs) has become an in-
creasingly common choice for classifying EEG signals. CNNs have gained popularity
partly due to their ability to automatically extract features, eliminating the need for
manual feature extraction.

EEGNet, a CNN speci�cally engineered for use with EEG data, has shown re-
markable performance across a variety of EEG classi�cation tasks, including stress
detection, epilepsy diagnosis and event-related potential identi�cation as shown in
recent studies (Bhatnagar et al. (2023); Shoji et al. (2021); Lawhern et al. (2018)). The
versatility of EEGNet combined with the accuracy the model has achieved constitute
some of the main reasons for choosing this model in the study.

In Figure 2.3, the model architecture of EEGNet is depicted, while Table 2.1 pro-
vides a detailed description of the architecture.
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The �rst block in the model makes use of two convolutional steps in sequence,
a 2D convolutional layer and a depthwise convolutional layer. The 2D convolutional
layer is designed to capture frequency information from the EEG data, with the kernel
size chosen to be half of the sampling frequency of the EEG recording. This kernel
size ensures the capture of frequency information at 2 Hz and above. The number of
temporal �lters is denoted �1. The depthwise convolutional layer aims to learn spatial
�lters for each of the �1 feature maps generated by the 2D convolutional layer. The
depth parameter, D, determines the number of spatial �lters learned from each feature
map (Lawhern et al. (2018)).

The second block in the model contains a separable convolutional layer, which is
a depthwise convolution followed by a pointwise convolution (Chollet (2017)). This
design reduces the number of trainable parameters while also learning temporal fea-
tures speci�c to each feature map and then combining them optimally. The number
of pointwise �lters is determined by the parameter �2 (Lawhern et al. (2018)).

The �nal block of the EEGNet model is responsible for classifying the input data.
Since this study focuses on solving a binary classi�cation problem, the sigmoid acti-
vation function is used instead of the softmax function, as was originally proposed by
the authors in Lawhern et al. (2018).

For further information regarding EEGNet, readers are encouraged to consult the
original paper by Lawhern et al. (2018).
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Block Layer Size # Params Output Activation Options
1 Input - - (C, T) -

Reshape - - (C, T, 1) -
Conv2D (1, 125) 125 · �1 (C, T, �1) Linear mode=same

BatchNorm - 4 · �1 (C, T, �1) - -
DepthwiseConv2D (C, 1) ⇠ · ⇡ · �1 (1, T, ⇡ · �1) Linear mode=valid,

depth=D,
max norm=1

BatchNorm - 4 (1, T, ⇡ · �1 ) - -
Activation - - (1, T, ⇡ · �1) eLU -

AveragePool2D (1, 8) - (1, ) //8, ⇡ · �1) - -
Dropout - - (1, ) //8, ⇡ · �1) - p=0.25

2 SeparableConv2D (1, 32) 32 ·⇡ ·�1+
�2 · ⇡ · �1

(1, ) //8, �2) Linear mode=same

BatchNorm - 2 · ⇡ (1, ) //8, �2) - -
Activation - - (1, ) //8, �2) eLU -

AveragePool2D (1, 16) - (1, ) //128, �2) - -
Dropout - - (1, ) //128, �2) - p=0.25
Flatten - - (�2 ·) //128) - -

3 Dense - �2·
) //128 +
1

(N) Sigmoid max norm=
0.25

Table 2.1: EEGNet architecture, where C is the number of channels, T is the length of
the time series for each sample, D is the depth multiplier, �1 is the number of temporal
�lters, �2 is the number of pointwise �lters and N is the number of classes.
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Figure 2.1: Flowchart depicting the AdaBoost algorithm, highlighting the most impor-
tant stages in training and prediction. The top rectangle, coloured orange, represents
the input data. The subsequent layer consists of diamond-shaped blue elements, rep-
resenting theweak classi�ers. Theweak classi�ers connect to the combined classi�ers
in the layer below, depicted as diamond-shaped green elements. The combined clas-
si�ers are then linked to the output prediction layer in the �nal step. Arrows between
the boxes illustrate the �ow of data and decisions, with varying arrow colour inten-
sities indicating the weights assigned to each classi�er. Darker arrow colours corre-
spond to heavier weights, while lighter arrow colours correspond to lighter weights.
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Figure 2.2: Flowchart depicting the Random Forest algorithm, highlighting the most
important stages in training and prediction. The key stages shown in the �gure in-
clude data bootstrapping, decision trees with random features at each split and aggre-
gation of individual tree predictions to produce the �nal prediction. The �gure shown
uses an ensemble of 3 decision trees.
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Figure 2.3: The layered diagram showcases the EEGNet architecture, with each layer
colour-coded for clarity: reshape layers in light grey, 2D convolutional layers in or-
ange, batch normalisation layers in light blue, depthwise convolutional layers in red,
activation layers in light green, average pooling layers in pink, dropout layers in light
purple, separable convolutional layers in dark blue, �atten layers in dark green and
dense layers in light brown. The division into distinct blocks is visually highlighted
using increased padding between layers. The �rst block employs a temporal convolu-
tion to learn temporal �lters and a depthwise convolution to learn frequency-speci�c
spatial �lters. The second block uses a separable convolution, combining depthwise
and pointwise convolution, to capture the spatial relationship between di�erent fre-
quency bands (Lawhern et al. (2018)).
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Chapter 3

Materials and Methods

3.1 Data Collection

3.1.1 Experiment Overview

The aim of the data collection is to collect data that can be used to investigate the
potential of using EEG and Phonocardiography (PCG) signals as modalities for stress
detection, both independently and in combination. The overarching goal is to develop
more accurate and e�ective stress detection systems.

The data was collected from a sample of 28 healthy participants aged between 20
and 28 years, with an average age of 23.1 years. There were two sessions in which
PCG and EEG signals were collected. The initial session was conducted before the
participants’ exam, while the second session took place after their return fromholiday.
The purpose of the two sessions is to capture a baseline condition and exam-related
stress for each participant.

During each session, two runs were performed. The �rst run was designed to
induce a relaxed state in the participants, while the second was designed to induce
a stressed state by subjecting the participant to an arithmetic test. Markers were
recorded automatically each time the participant responded to an arithmetic question.

23
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In addition to collecting EEG and PCG signals, participantswere asked to complete
the STAI-Y form and to rate their stress levels on a scale from 1 to 10 to gauge their
level of mental stress. The 1-10 self-assessment scale, with 1 being the least stressed
and 10 being the most stressed, will be referred to as the SSA. Both STAI-Y and SSA
are widely used to assess mental stress levels and have been shown to have good
reliability and validity in previous studies (Bergua et al. (2012); Silverstein and Kritz-
Silverstein (2010)). The STAI-Y form is presented in Section A.2.

To gain a thorough understanding of the participants’ stress levels, the STAI-Y
form was completed at the beginning and the end of each session. In addition, partic-
ipants were asked to rate their mental stress level after each run using the SSA scale.
Combining two measures of mental stress can help provide a more complete picture
of the participants’ stress levels.

The collected dataset provides a foundation formeasuring the e�ectiveness of EEG
and PCG signals for stress detection and assists in advancing our understanding of
the multimodal approach to stress detection. Investigating the use of these modalities
both independently and in combination could contribute to the development of more
accurate and e�ective stress detection systems.

3.1.2 Participants

A cohort of 28 participants aged between 20 and 28 years, with an average age of 23.1
years was recruited for the experiment. The sample was comprised of 16 males and 12
females, resulting in a roughly equal gender distribution. All participants were stu-
dents enrolled at the Norwegian University of Science and Technology (NTNU). Be-
fore being included in the study, the participants completed a screening questionnaire
to con�rm that they were in good health and did not have any known cardiac, neuro-
logical, or mental health disorders that could impact the study results. Additionally,
the participants were screened to ensure that they were not taking any medications
that could potentially a�ect brainwaves or interfere with the study. The questionnaire
used to screen the participants is presented in Section A.3.
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3.1.3 Equipment and Software

Data collection for this study was conducted using the Mentalab Explore EEG device
from Mentalab and the Eko DUO ECG + Digital Stethoscope from Eko. The Mentalab
Explore EEG device features 8 channels and support for wet and dry electrodes. The
EEG signals were sampled at a frequency of 250 Hz and dry electrodes were used due
to their ease of use and reduced preparation time. The Eko DUO ECG +Digital Stetho-
scope from Eko was used to record PCG signals, which were sampled at a frequency
of 22050 Hz. To optimise EEG signal quality, we used a range of tools to prepare the
scalp and electrodes. Speci�cally, we cleaned the scalp with isopropyl alcohol and
applied an electrical conducting gel using Q-tips. We also secured the reference node
on the ear lobe with tape and a clothespin. Additionally, to ensure high-quality PCG
recordings, a tie-down strap was used to keep the stethoscope securely in place.

For the purpose of streaming EEG data, PCG data and generating markers, three
computers were used. The ExplorePy software from Mentalab (ExplorePy (2019))
was utilised to stream the EEG data, while AudioCapture (AudioCapture (2018)) was
employed to stream the PCG data. The markers were generated using PsychoPy
(PsychoPy (2015)). To ensure synchronisation of the data streams, we employed Lab
Streaming Layer (Lab Streaming Layer (2011)).

A photo taken during one of the recording sessions, providing a visual represen-
tation of the experiment setup, is shown in Figure 3.1.

3.1.4 Data Collection Protocol

After screening out participants based on the exclusion criteria, eligible participants
were informed via email and given the option to select a convenient time slot for the
data collection. The participants were also instructed to avoid hair products and wear
a t-shirt on the day of the measurements to prevent interference with the recordings.

Upon arrival, participants were provided with detailed information about the data
collection protocol and o�ered the opportunity to review and sign an informed con-
sent form. The informed consent form is presented in Section A.1. After signing the
informed consent form, participants were asked to complete the STAI-Y form, which
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Figure 3.1: A photograph taken during a recording session. The participant is seen
wearing the Mentalab Explore EEG device, identi�able by the blue cap. The Eko DUO
PCGdevice is securely fastened to the participant’s chest using the buckle strap shown
on the participant’s back. The monitor placed in front of the participant is used to
display the arithmetic questions.
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will be used to label the recorded data.
Next, the participants were �tted with the Mentalab Explore EEG device. To en-

sure optimal conductivity, the electrodes were carefully cleaned using isopropyl al-
cohol prior to placement. Afterwards, an electrical conductivity gel was applied to
each electrode to further improve signal quality. During the setup process, the elec-
trical impedance of each electrode was continuously monitored with help from the
ExplorePy software (ExplorePy (2019)). The impedance command was used to visu-
alise the electrical impedance in a browser dashboard.

The placement of the EEG channels was determined based on previous analysis
conducted by Marthinsen (2022). In the study, a genetic algorithm was utilised to
select the optimal combination of 8 EEG channels which demonstrated the highest
accuracy based on a dataset consisting of 32-channel EEG signals. A detailed descrip-
tion of the process used to determine the optimal set of EEG channels can be found
on page 30 of the publication by Marthinsen (2022). The electrode placements used in
this study, as found to be the best in the dataset used by Marthinsen (2022), are shown
in Figure 3.2, used with permission from the author of Marthinsen (2022). The chosen
positions are highlighted with bold outlines.

The PCG device was placed on the participant’s chest, above the location of the
heart and on top of their t-shirt. To minimise motion artefacts, a tie-down strap was
used to securely fasten the PCG device in place. The mobile application Eko: Digi-
tal Stethoscope, ECG, which connects to the PCG device via Bluetooth, was used to
ensure that the signal strength from the PCG device was satisfactory (Eko: Digital
Stethoscope, ECG (2019)).

To verify that data from both the EEG device and the PCG device were being ac-
curately captured and synced, an initial test was performed where data was collected
for approximately 10 seconds and plotted for analysis. This veri�cation allowed for
quick identi�cation of potential issues that may have arisen during the setup process.

During the �rst run of data collection, participants were instructed to maintain
a relaxed state with their eyes open, minimise muscle movement and refrain from
speaking. The �rst run of data collection lasted for �ve minutes. After completing the
recording, the participants were asked to provide a self-assessment of their mental
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Figure 3.2: The best electrode placements when using 8 electrodes, as determined by
a genetic algorithm applied to a dataset analysed by Marthinsen (2022). The chosen
positions, F4, Fp2, C3, FC6, O1, Oz, FT9 and T8, are outlined in bold.
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stress level on a scale ranging from 1 to 10.

During the second run of data collection, participants were presented with arith-
metic problems designed to induce stress. The problems involved basic arithmetic
operations, such as addition, subtraction, multiplication and division, and used num-
bers smaller than 100. No decimal numbers were included in the problems. Although
there was no time pressure imposed on the participants, the nature of the arithmetic
test was still expected to create a stressed state.

Feedback on the participants’ performance was not provided during the test. After
completing the recording, participants were given feedback on their performance only
when requested. This approach ensured that the stress experienced during the test
was primarily induced by the arithmetic problems themselves and not by the feedback
or time constraints.

The participants were instructed to minimise any muscle movements while using
the keyboard placed in front of them to con�rm the validity of the arithmetic equality
presented on the computer monitor. An example of an arithmetic problem used for
stress induction is shown in Equation 3.1. During the arithmetic test, markers were
recorded for each keystroke made by the participant in response to an arithmetic
question. The second run of data collection also lasted �ve minutes per participant.

6 ⇥ 7 � 8 ⇥ 9 = �32 (3.1)

After completing the second recording, the participants were again asked to pro-
vide a self-assessment of their mental stress level on a scale ranging from 1 to 10.
Following the completion of both data collection runs, the participants were asked to
complete the STAI-Y form again. After completing the STAI-Y form, the EEG and PCG
equipment was gently removed from the participants. Any excess conductive gel was
removed from the hair of the participants by using damp paper towels. After complet-
ing the study protocol, the participants were asked to con�rm their well-being and
were thanked for their participation in the study. As a token of appreciation for their
participation, participants were compensated with a gift card worth 250 NOK after
the completion of the second session.
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The data collection protocol is illustrated in Figure 3.3 through a �owchart.

3.1.5 Data Storage and File Structure

The collected data was stored in a speci�c �le structure to facilitate easy organisation
and retrieval. The data �les were organised as follows:

• A root folder named multimodal_datawas created to store all data �les related
to the study.

• Inside the multimodal_data folder, separate folders were created for each type
of data: raw EEG data, �ltered EEG data, raw PCG data, marker data and labels.
These folders were named eeg_raw, eeg_filtered, pcg, markers and labels,
respectively.

• The �le names in the eeg_raw, eeg_filtered, pcg and markers folders follow
the format P0XX_S00X_00X.npy, where P0XX represents the participant num-
ber, S00X indicates the session number and 00X corresponds to the run number.

• The labels folder contains a single �le named labels.pkl.

The data was stored in the following �le formats:

• EEG data: stored in the .npy format

• PCG data: stored in the .npy format

• marker data: stored in the .npy format

• STAI-Y and SSA scores: stored as a Pandas DataFrame in the .pkl format

The EEG data, PCG data and markers were stored in the .xdf �le format during
the experiment. To improve read performance and lower memory usage the EEG and
PCG data were converted from the .xdf format to the more e�cient .npy format.
Similarly, the markers were converted from the .xdf format to the more e�cient and
less memory intensive .pkl format. The conversion was performed using the pyxdf
package in Python (pyXDF (2019)).
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Participant Screening

Recruitment

Time Slot Selection

Subject Arrives

Informed Consent

STAI-Y Form

Setup

Run 1 (Without Stressor)
Duration: 5 minutes

Run 2 (Arithmetic Stressor)
Duration: 5 minutes

STAI-Y Form

Debriefing

Subject Arrives
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STAI-Y Form
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Run 1 (Without Stressor)
Duration: 5 minutes

Run 2 (Arithmetic Stressor)
Duration: 5 minutes
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Session 1
Natural stressor
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Figure 3.3: Flowchart of the experimental protocol for data collection using EEG and
PCG signals. The preliminary steps, participant screening, recruitment and time slot
selection are shown in light grey. Sessions 1 and 2 are represented in light blue and
light red, respectively, each incorporating: signing of informed consent, STAI-Y com-
pletion, setup, two recording stages (without and with a stressor), another STAI-Y
completion and debrie�ng. The recording stages, Run 1 and Run 2, are emphasised
with darker shades of blue and red. The arrows indicate the sequence of steps, and
the blocks represent each step in the protocol.
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3.1.6 Data Exclusions and Multimodal Dataset

Since the dataset is multimodal, both EEG and PCG is required for each. During the
data collection process, certain PCG samples were lost due to recording issues. To
maintain consistency within the multimodal data, the corresponding EEG data has
also been excluded. Additionally, two participants were absent from the second ses-
sion, leading to missing data for those speci�c runs.

Out of the initially planned 112 runs, 25 runs were excluded due to PCG recording
issues and 4 runs were lost due to participant absence, resulting in a total of 29 ex-
cluded runs. It is important to note that the dataset only consists of runs which have
both EEG and PCG data. This ensures that the dataset is consistent for further re-
search and analysis. The participants with missing data due to absence have not been
excluded from the dataset as a whole, and their data from the other session remains
part of the analysis.

Only the EEG data from the multimodal dataset will be used in this study. This
means that certain EEG recordings will not be used, which will potentially lead to
reduced classi�cation performance since the models have less data to train on. The
primary objective of using themultimodal dataset is to establish a baseline for a single-
modal system, which can be compared to future multimodal systems. This will allow
future research to focus on potential performance improvements of amultimodal clas-
si�cation system that incorporate both EEG and PCG data.

Lastly, a number of recordings were impacted by considerable background noise,
primarily caused by ongoing nearby construction activities during the data collection
process. Unfortunately, we did not catalogue which speci�c recordings were exposed
to the increased level of background noise. While noise reduction techniques have
been employed to counteract these e�ects, it is vital to recognise that these strategies
may not completely remove all noise-induced artefacts. As a result, this could intro-
duce some degree of variability in the analysis results that should be accounted for
during data interpretation.
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3.1.7 Ethical Considerations

Several ethical considerations were taken to ensure the comfort, safety and privacy
of the participants. These considerations were based on the principles of the Helsinki
Declaration (Association. (2001)), an established set of ethical principles for studies in-
volving human subjects. The principles include obtaining informed consent, ensuring
the well-being of participants and protecting their privacy and con�dentiality.

All participants were provided with informed consent forms to sign and were
informed about the purpose and procedures of the study, as well as any bene�ts or
risks. Participants were assured that their participation was voluntary and that they
could withdraw from the study at any time without penalty.

Throughout the study, the comfort and well-being of the participants was priori-
tised. Great care was taken to avoid discomfort when applying the EEG electrodes,
and the participants were given the opportunity to request adjustments to the elec-
trodes or other elements of the setup during the study.

Proper data management was a top priority throughout the data collection period
and after the completion of the study. While the data collection was ongoing the data
was stored locally on one of the computers used for the experiment. After the study
was completed, the data was transferred to an access-controlled Microsoft Sharepoint
folder to allow for simpler collaboration, while also preventing unauthorised access.
At all times, the data was stored in an anonymised way by assigning each participant
a unique identi�cation number.

For the purpose of data analysis, a spreadsheet mapping the identi�cation num-
bers to the participants’ names and contact details was temporarily stored in the same
access-controlled SharePoint folder. A decision on how the data will be stored and
managed is being actively evaluated to ensure compliance with ethical guidelines.

3.2 Preprocessing

The main objective of preprocessing the raw EEG data is to enhance the quality and
reliability of the signals by removing noise and artefacts. This is achieved by using a
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Notch filter Bandpass filter
Raw EEG Data Filtered EEG Data

Figure 3.4: Flowchart of the preprocessing pipeline. Raw EEG data is �rst subjected to
notch �ltering, which is employed to remove the commonmode noise, while bandpass
�ltering retains frequency information within a speci�ed range.

combination of notch �ltering and bandpass �ltering. The code for the �ltering can
be found in the project’s GitHub repository, as referenced by Sletten (2023).

Notch �ltering was applied to attenuate speci�c frequencies from the original sig-
nal. In this study, the frequency of the power grid, which is 50 Hz in Norway, is
attenuated by the notch �lter. The signal interference from the power grid is known
as common mode noise. The notch �lter was implemented using the mne.io.Raw.-
notch_filter function from the mne package (MNE-Python (2011)).

Bandpass �ltering of the raw EEG data aimed to isolate speci�c frequency ranges
of interest while attenuating frequencies outside the �lter’s frequency band. In this
study, the frequency range between 0.5 Hz and 70 Hz was selected for bandpass �l-
tering. The choice of this range was based on several considerations. First, the range
includes the frequencies most vital for EEG analysis, which typically ranges from 0.5
Hz to 100 Hz, as explained in Section 2.4. Second, the range was chosen to optimise
the performance of the classi�ers in this study, namely AdaBoost, Random Forest and
EEGNet. It was observed that the models’ performance improved when the bandpass
�lter was applied within the range of 0.5 Hz to 70 Hz, as opposed to 0.5 Hz to 100
Hz. Bandpass �ltering was employed using the mne.io.Raw.filter function from
the mne package.

Figure 3.4 provides an overview of the �ltering pipeline, which includes the ap-
plication of notch �ltering followed by bandpass �ltering.

A time-domain comparison of the EEG signals before and after �ltering is shown
in Figure 3.5 for participant P024 during session 2, run 1. The plot represents the aver-
age of the 8 collected channels throughout the recording period. Examining the raw
data plot reveals that the EEG signal appears to be a�ected by drift, as indicated by its
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gradual change across the duration of the recording. Several factors could potentially
contribute to the drift observed in Figure 3.5, including unstable contact between the
electrode and the scalp, or a drift in the recording equipment (Sanei and Chambers
(2007)). However, the �ltered data in Figure 3.5 displays a signi�cant reduction in the
signal drift, implying that the drift could be caused by frequency components outside
the bandpass �lter’s frequency range. Figure 3.5 demonstrates the e�ectiveness of the
preprocessing methods employed on the raw EEG signals in the time domain.

A comparison of the PSD of the EEG signals before and after �ltering is presented
in Figure 3.5 for participant P024 during session 2, run 1, focusing on a speci�c chan-
nel: channel F4. Only a single channel is shown to provide a clearer visual represen-
tation of the PSD. The raw EEG data shows three prominent peaks in the frequency
spectrum, located approximately at 0 Hz, 50 Hz and 100 Hz. The peak in the amplitude
of the raw EEG signal around 0 Hz could be attributed to DC o�set, a low-frequency
component present even in the absence of brain activity. Factors such as electrode po-
larisation, skin impedance or contact resistance between the electrode and the scalp
can cause this DC o�set. The peaks observed at 50 Hz and 100 Hz likely from the elec-
trical power supply and its harmonics. The harmonics of the electrical power supply
are multiples of its frequency, such as 100 Hz, 150 Hz and 200 Hz.

3.3 Feature Extraction

Feature extraction for this project is implemented using the Python package MNE-features
which contains a large set of functions designed for computing features from magne-
toencephalogram (MEG) and EEG data. The package documentation can be found at
the provided citation MNE-Features (2018).

The �rst stage of the feature extraction process was focused on �nding the fre-
quency bands that most e�ectively discriminated the data from the classes. In this
stage, the performance of the frequency bands detailed in Section 2.4, delta (0.5-4
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-70 Hz), was as-
sessed. Note that the range of the gamma frequency band has been limited to the
range 30 to 70 Hz, compared to the range 30 to 100 Hz presented in Section 2.4, be-



36 CHAPTER 3. MATERIALS AND METHODS

Figure 3.5: Comparison of the raw and �ltered EEG signals for participant P024, ses-
sion 2, run 1, averaged across all channels. The top plot shows the raw EEG data, and
the bottom plot shows the �ltered data.
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Figure 3.6: Comparison of the PSD of the raw and �ltered EEG signals for participant
P024, session 2, run 1, for channel F4. The top plot shows the PSD of the raw EEG
data, and the bottom plot shows the PSD of the �ltered data. The PSD plot is a way to
visualise the frequency content of the EEG signal, with higher power values indicating
greater signal activity at a given frequency.
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cause the EEG signals have been bandpass �ltered in the range 0.5 to 70 Hz and,
consequently, any information above 70 Hz has been removed from the signal. The
power frequency bandswere computed using the compute_pow_freq_bands function
from the MNE-features package. The computed power frequency bands were then
classi�ed using the AdaBoost and Random Forest classi�ers, with their implementa-
tions discussed in detail in Section 3.4. The same classi�cation pipeline described in
Subsection 3.4.2 was used, incorporating an 80-20 train-test split. Data segmentation
was performed using a 2-second epoch length.

Figure 3.7 presents a comparison of the AdaBoost and Random Forest classi�er
accuracies for the delta, theta, alpha, beta and gamma frequency bands. The classi�-
cation results suggest that the delta, theta, alpha and beta power frequency bands are
best at discriminating the stressed and non-stressed samples. Consequently, the �g-
ure shows a decline in the classi�cation accuracy when the gamma power frequency
band is used.

To further compare the discriminative ability of the frequency bands, Figure 3.8
displays the PSD of a stressed and non-stressed recording, with individual subplots
representing each channel. The recording channels used in this study were F4, Fp2,
C3, FC6, O1, Oz, FT9 and T8, and an illustration of the electrode positions is shown
in Figure 3.2. These recordings are from participant P024 during session 2; the non-
stressed recording is taken from run 1, while the stressed recording is from run 2. The
most pronounced di�erences between the PSDs of the non-stressed and stressed EEG
data can be observed in channels F4, Fp2, C3, FC6 and T8. The di�erences between the
non-stressed and stressed PSDs are most apparent within the 0.5 to 10 Hz frequency
range, which encompasses the delta (0.5-4 Hz), theta (4-8 Hz) and alpha (8-12 Hz)
frequency bands. This observation is largely consistent with the �ndings in Figure 3.7,
where lower-frequency bands yield superior classi�cation accuracy.

To gain a more comprehensive understanding of why certain channels have a bet-
ter discriminative e�ect for certain frequency ranges, Figure 3.9 plots a topographical
map of the PSD for the delta, theta, alpha, beta and gamma frequency bands, using
the same non-stressed and stressed recordings used in Figure 3.8.

In the delta frequency band’s topographic map, the stressed sample demonstrates
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increased activity near the Fp2 electrode compared to the non-stressed sample. This
observation aligns with previous �ndings for Figure 3.8, where the Fp2 channel ex-
hibits the most signi�cant di�erence between the PSDs of non-stressed and stressed
data. The increased neural activity close to the Fp2 electrode is also apparent for the
theta and alpha frequency bands. Similarly, the F4 electrode position shows increased
activity for the stressed sample in the delta, theta and alpha bands.

Channels FC6 and T8 display variations in electrical activity between non-stressed
and stressed recordings within the delta frequency band. This corresponds well to the
results presented in Figure 3.8, where these channels show their best discriminative
ability in the low-frequency range below 4 Hz. This �nding is in line with the results
shown in Figure 3.8, where these channels demonstrate their highest discriminative
capabilities in the low-frequency range below 4 Hz. Channel C3 reveals a marginal
increase in activity in the delta frequency band, corroborating the outcomes displayed
in Figure 3.8. For the remaining channels, discerning di�erences in electrical activity
between non-stressed and stressed topographic maps proves challenging.

To further improve the classi�cation accuracy, channel selection was performed
with the aim of removing redundant features. To explorewhich combinations of chan-
nels achieved the best classi�cation accuracy, a simple feature selection techniquewas
employed.

The channels that showed the least e�ective discriminative ability were system-
atically removed in a sequential manner. The ability of these channels to distinguish
between classes was determined by referring to 3.8 and 3.9, which provide detailed
information on the PSD and topographic maps, respectively. By examining these �g-
ures it was possible to identify and eliminate the channels that displayed minimal
di�erences in the PSD between stressed and non-stressed states across the frequency
spectrum.

The following list presents the order in which channels were removed during the
channel selection process:

1. Oz

2. O1
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3. FT9

4. C3

5. FC6

6. T8

7. F4

The performance of theAdaBoost classi�er and the RandomForest classi�er across
the channel combinations and feature bands are shown in Table 3.1 and Table 3.2, re-
spectively. The accuracy, sensitivity and speci�city of the models are measured.

Table 3.1, presenting the performance of the AdaBoost classi�er, shows that the
model has low speci�city for most of the combinations of channels and frequency
bands. In general, the table suggests that the speci�city increases and the sensitivity
decreases as the number of channels decreases. The chosen combination of channels
and frequency bands should be based on all the performance metrics shown in the
graph. As a result, the channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8 combined with
the alpha frequency bands appears to be the best combination of these performance
metrics, achieving an accuracy of 70%, sensitivity of 20% and speci�city of 90%.

Table 3.2, presenting the performance of the Random Forest classi�er, also shows
that the model has low speci�city for most of the combinations of channels and fre-
quency bands. The accuracy of the classi�er decreases on average as the number of
channels decreases. In contrast with the AdaBoost classi�er, the sensitivity increases
on average as the number of channels decreases. Based on the aim of achieving high
accuracy and a good sensitivity/speci�city trade-o�, the channels F4, Fp2 and T8 were
chosen together with the beta frequency band, achieving an accuracy of 68%, sensi-
tivity of 17% and speci�city of 89%.

Note that the method used for channel selection is very simple and has several
drawbacks compared to other, more sophisticated methods. This channel selection
method does not consider all possible channel combinations, and the evaluation of
which channels have the best discriminative ability is only based on PSD plots and
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Channels/Frequency Bands Delta Theta Alpha Beta Gamma

F4, Fp2, C3, FC6, O1, Oz, FT9, T8
Accuracy
Sensitivity
Speci�city

70%
8%
94%

70%
7%
95%

70%
20%
90%

66%
18%
85%

60%
47%
65%

F4, Fp2, C3, FC6, O1, FT9, T8
Accuracy
Sensitivity
Speci�city

69%
5%
94%

70%
7%
95%

69%
17%
90%

67%
16%
87%

58%
47%
62%

F4, Fp2, C3, FC6, FT9, T8
Accuracy
Sensitivity
Speci�city

70%
3%
96%

70%
6%
95%

68%
14%
90%

71%
11%
95%

64%
31%
78%

F4, Fp2, C3, FC6, T8
Accuracy
Sensitivity
Speci�city

70%
6%
96%

70%
2%
97%

69%
13%
92%

70%
11%
94%

64%
30%
78%

F4, Fp2, FC6, T8
Accuracy
Sensitivity
Speci�city

71%
2%
99%

70%
4%
96%

70%
12%
93%

72%
8%
97%

68%
13%
90%

F4, Fp2, T8
Accuracy
Sensitivity
Speci�city

71%
2%
99%

70%
3%
97%

71%
7%
97%

72%
11%
96%

67%
11%
90%

F4, Fp2
Accuracy
Sensitivity
Speci�city

71%
1%
100%

71%
1%
99%

70%
5%
95%

72%
9%
98%

69%
5%
95%

Fp2
Accuracy
Sensitivity
Speci�city

71%
0%
100%

71%
0%
100%

71%
1%
99%

71%
0%
100%

71%
0%
100%

Table 3.1: Channel selection performance for the AdaBoost classi�er. The table
demonstrates the classi�cation accuracy, sensitivity and speci�city achieved using dif-
ferent combinations of channels, which were systematically removed based on their
discriminative ability. The channels were removed according to the order presented
in the list in Section 3.3, with the goal of optimising classi�cation performance across
the delta, theta, alpha, beta and gamma frequency bands. The classi�cation was car-
ried out using �ltered data with an epoch length of 2 seconds.
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Channels/Frequency Bands Delta Theta Alpha Beta Gamma

F4, Fp2, C3, FC6, O1, Oz, FT9, T8
Accuracy
Sensitivity
Speci�city

63%
12%
84%

71%
0%
99%

71%
0%
100%

69%
2%
96%

35%
96%
11%

F4, Fp2, C3, FC6, O1, FT9, T8
Accuracy
Sensitivity
Speci�city

66%
11%
88%

71%
0%
100%

70%
1%
98%

70%
2%
98%

40%
96%
18%

F4, Fp2, C3, FC6, FT9, T8
Accuracy
Sensitivity
Speci�city

63%
14%
83%

71%
3%
99%

66%
8%
90%

71%
5%
97%

72%
3%
99%

F4, Fp2, C3, FC6, T8
Accuracy
Sensitivity
Speci�city

59%
23%
73%

67%
9%
90%

69%
7%
94%

70%
5%
95%

60%
30%
72%

F4, Fp2, FC6, T8
Accuracy
Sensitivity
Speci�city

62%
29%
75%

65%
16%
85%

67%
13%
88%

69%
5%
95%

59%
40%
67%

F4, Fp2, T8
Accuracy
Sensitivity
Speci�city

62%
18%
79%

63%
29%
77%

60%
15%
78%

68%
17%
89%

52%
52%
52%

F4, Fp2
Accuracy
Sensitivity
Speci�city

63%
27%
77%

58%
35%
67%

59%
33%
70%

61%
22%
76%

53%
46%
55%

Fp2
Accuracy
Sensitivity
Speci�city

57%
40%
64%

55%
32%
64%

57%
36%
65%

55%
38%
62%

55%
37%
62%

Table 3.2: Channel selection performance for the Random Forest classi�er. The table
demonstrates the classi�cation accuracy, sensitivity and speci�city achieved using
di�erent combinations of channels, whichwere systematically removed based on their
discriminative ability. The channels were removed according to the order presented in
the list in Section 3.3, with the goal of optimising classi�cation performance across the
delta, theta, alpha, beta and gamma frequency bands. The classi�cation was carried
out using �ltered data with an epoch length of 2 seconds.



3.4. CLASSIFICATION 43

topographical maps of two recordings. Additionally, the channel selectionmethod has
only been performed for an epoch length of 2 seconds. While the method may only
capture a limited e�ect of removing channels, it serves its purpose as a time-e�cient
channel selection technique.

3.4 Classi�cation

3.4.1 Choice of Classi�cation Algorithms

The selection process for the classi�ers used in this study was based on their intrinsic
characteristics, their success in previous EEG-related classi�cation research and their
performance in a preliminary evaluation of classi�ers in the scikit-learn (scikit-
learn (2007)) module using lazypredict (Lazy Predict (2019)).

In Section 2.5, it was explained how AdaBoost, Random Forest and EEGNet all
have desirable properties that make them suitable for this study. As discussed in Sec-
tion 2.5, previous research has demonstrated the e�ectiveness of AdaBoost, Random
Forest and EEGNet in various EEG-related classi�cation problems.

In addition to the intrinsic characteristics and previous research, a preliminary
evaluation of all classi�ers in the scikit-learnmodulewas carried out. The classi�er
LazyClassifier from themodule lazypredict.Supervisedwas used to quickly as-
sess the performance of a large number of classi�ers with minimal e�ort. This eval-
uation found that AdaBoost and Random Forest consistently ranked among the top-
performing classi�ers across di�erent segment lengths and feature extraction meth-
ods, further justifying their inclusion. EEGNet was selected independently of the
preliminary evaluation due to its speci�c design for EEG data classi�cation and its
success in the literature, even though it was not among the models tested by the
lazyclassifier

3.4.2 Classi�cation Pipeline

The classi�cation process begins with deciding whether to use raw or �ltered data.
Both raw data and �ltered data were used in this study to explore the potential e�ects
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of �ltering on classi�cation performance.
For the AdaBoost and Random Forest classi�ers, the feature extraction method

described in Section 3.3 was applied to the data to generate a feature vector. For EEG-
Net, no features were manually extracted as the CNN automatically captures features
from the data.

All the recordings in the dataset were trimmed to ensure that their length did not
exceed the intended duration of �ve minutes. Additionally, the recordings were seg-
mented into shorter lengths to increase the sample size, with various non-overlapping
epoch lengths explored in this study. The study focused on epoch lengths in the range
of 1 to 12 seconds. This range was chosen to strike a balance between capturing suf-
�cient temporal information from the data while maintaining an adequate number of
samples for e�ectively training the model.

The labels for this study were derived from the STAI-Y forms completed by the
participants. Given the study’s objective of measuring short-term stress, only Form
Y-1, which assesses the participant’s current state of anxiety, was utilised for calcu-
lating each participant’s STAI-Y score. This choice is in contrast to Form Y-2, which
measures trait anxiety. The STAI-Y score was calculated as a weighted sum of the par-
ticipants’ responses, following the method outlined in Section A.2. Each participant’s
STAI-Y score falls within the range of 20 to 80.

To enhance the distinction between the classes, recordings with moderate state
anxiety levels were excluded from the dataset. According to the paper Spielberger
et al. (1983), the creator of the STAI-Y assessment method de�nes the cuto� range
for moderate state anxiety levels to lie between 40 and 60. However, an analysis of
the dataset’s distribution showed that applying this range resulted in a ratio of 49:2
between non-stressed and stressed samples, which is heavily imbalanced. To address
the class imbalance, the cuto� range was adjusted to 37 to 45. The adjusted range
provided a ratio of 46:24 between non-stressed and stressed samples.

Initially, the dataset was divided into a training set (80% of the data) and a test set
(the remaining 20%). The data is split in a strati�ed manner to ensure a representative
sample while avoiding participant overlap. The 80:20 train-test split serves as a base-
line evaluation method for the classi�ers. However, to further explore the classi�ers’
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ability to generalise to unseen data, Leave-One-Subject-Out (LOSO) cross-validation
is employed as an alternative evaluation method. In the LOSO approach, each partic-
ipant’s data is used as a test set while the remaining participants’ data form the train-
ing set. This evaluation method is more akin to the real-world classi�cation scenario,
where a new participant is evaluated as being stressed or non-stressed by the existing
model. To maintain the independence of the training and test sets, avoiding partic-
ipant overlap is essential. This reduces the risk of over�tting and helps ensure that
the evaluation of the classi�ers is unbiased. The function StratifiedGroupKFold

from the sklearn.model_selection package is employed to implement the 80:20
train-test split.

To obtain a more accurate and reliable evaluation of the classi�ers’ performance,
�ve-fold cross-validation is used for all classi�ers. Similar to the train-test split, the
StratifiedGroupKFold function is employed for implementing the �ve-fold cross-
validation process. This approach helps maintain a balanced representation of the
classes and prevents participant overlap across the di�erent folds, consequently con-
tributing to a more accurate and reliable evaluation of the classi�ers’ performance.
The model that achieved the best performance across the �ve folds was chosen as the
best model.

The macro F1-score was used as the main performance measure for the AdaBoost
and Random Forest classi�ers, while Cohen’s Kappa was used for EEGNet. Both of
these performance measures were used instead of accuracy, which is generally con-
sidered to be unsuitable for imbalanced datasets. As previously described, the class
balance after removing moderate samples 46 non-stressed samples to 24 stressed sam-
ples. Using accuracy alone as the main performance metric can be misleading in this
case since the classi�er could achieve an accuracy of 46

46+24 = 65.7% simply by pre-
dicting the majority class. The macro F1-score, which takes precision and recall into
account, o�ers a more balanced perspective. Similarly, Cohen’s Kappa adjusts for the
chance agreement between observers, making it a robust measure for this scenario.

After training and validating the classi�ers, their performance was assessed us-
ing the sklearn.metrics module. The classification_report function from this
module was used to provide a comprehensive summary of the accuracy, precision, re-
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call and macro F1-score of the model, based on its performance against the test set. In
addition, the sklearn.metrics.confusion_matrix function was used to generate
the confusion matrix of the model, which is a valuable tool for further analysing the
performance of the model. Speci�cally, the confusion matrix e�ectively highlights
classi�cation errors as well as any potential imbalances in the model’s predictions.

The implementation of the AdaBoost, Random Forest and EEGNet classi�ers, as
well as other related code, can be found in the GitHub repository referenced as Sletten
(2023).

The following subsections will discuss the design and implementation of the clas-
si�ers used in this study.

3.4.3 AdaBoost

The AdaBoost classi�er was implemented using the sklearn.ensemble.AdaBoost-
Classifier class. Before applying the classi�er to the dataset, the data was prepro-
cessed to ensure that the features have a similar scale. Scaling is an important part
of the classi�cation process as it prevents large features from dominating the model.
The dataset was scaled using the sklearn.preprocessing.MinMaxScaler class.

In order to �nd the best hyperparameters for the AdaBoost classi�er, a grid search
with cross-validation was employed. Grid search is an exhaustive search technique
that tests all the possible combinations of the speci�ed hyperparameter values and
identi�es the combination that achieves the best performance based on an evaluation
metric. Cross-validation is integrated into the grid search process to ensure a more
accurate and reliable evaluation of the model performance. As previously stated, the
macro F1-score is the chosen evaluation metric when validating the model.

The sklearn.model_selection.GridSearchCV function was used to perform
the grid search and cross-validation. The grid search was conducted over a grid of
possible values for the number of estimators, the learning rate and the choice of al-
gorithm. The number of estimators refers to the number of base estimators in the en-
semble, the learning rate is the weight applied to each base estimator and the choice
of algorithm determines which boosting algorithm to use. In this study, the range of
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values for the number of estimators was [50, 100, 200], the learning rate range was
[0.1, 0.5, 1] and the algorithm choices were SAMME and SAMME.R. After selecting the
optimal hyperparameters, the model was �tted with the training data and the chosen
hyperparameters.

The implementation of the AdaBoost classi�er can be found in the GitHub repos-
itory referenced as Sletten (2023).

3.4.4 Random Forest

The RandomForest classi�erwas implemented using the sklearn.ensemble.Random-
ForestClassifier class. Before applying the classi�er to the dataset, the data was
preprocessed to ensure that the features have a similar scale. Scaling is an important
part of the classi�cation process as it prevents large features from dominating the
model. The dataset was scaled using the sklearn.preprocessing.RobustScaler

class.
In order to �nd the best hyperparameters for the Random Forest classi�er, a grid

search with cross-validation was employed. Grid search is an exhaustive search tech-
nique that tests all the possible combinations of the speci�ed hyperparameter values
and identi�es the combination that achieves the best performance based on an eval-
uation metric. Cross-validation is integrated into the grid search process to ensure a
more accurate and reliable evaluation of themodel performance. As previously stated,
the macro F1-score is the chosen evaluation metric when validating the model.

Class weighting was used to combat the class imbalance of the dataset. By weight-
ing samples corresponding to the underrepresented class more heavily during train-
ing, the model is encouraged to give equal importance to both classes. Class weight-
ing was implemented using the function compute_class_weight from the package
sklearn.utils.class_weight.

The sklearn.model_selection.GridSearchCV function was used to perform
the grid search and cross-validation. The grid search was conducted over a grid of
possible values for the number of estimators and the max depth. The number of es-
timators refers to the number of base estimators in the ensemble and the max depth
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refers to the maximum depth of the trees in the random forest. In this study, the range
of values for the number of estimators was [100, 200, 300] and the max depth range
was [5, 10, 20, None]. After selecting the optimal hyperparameters, the model was
�tted with the training data and the chosen hyperparameters.

The implementation of the Random Forest classi�er can be found in the GitHub
repository referenced as Sletten (2023).

3.4.5 EEGNet

The EEGNet model was implemented with the Keras (Keras (2015)) and Tensor�ow
(Tensor�ow (2015)) packages using a keras.Sequential object. The architecture
speci�ed in Table 2.1 was added as layers to the keras.-Sequential object. The
model was �t using the Adam optimiser, minimising the binary cross-entropy loss
function. This choice of optimiser and loss function aligns with the original creators’
recommendations in Lawhern et al. (2018), with the exception that the binary cross-
entropy loss function is employed instead of the categorical cross-entropy loss func-
tion, given the binary classi�cation problem addressed in this project. The learning
rate of the optimiser was chosen by performing a grid search, with the learning rate
range [0.001, 0.0001, 0.0001]. The default batch size of 32 is maintained while the
number of epochs is set to 100. Similar to the implementation of Random Forest, class
weightingwas used to combat class imbalance for the EEGNet classi�er. Class weight-
ing was implemented using the function compute_class_weight from the package
sklearn.utils.class_weight.

The original EEGNet model was speci�cally designed for EEG data sampled at
128 Hz. For this study, however, we’ve adapted the model to accommodate our data’s
sampling rate of 250 Hz, following the method recommended in the EEGNet GitHub
repository Lawhern (2018). This involved scaling the lengths of the temporal kernels
and the average pooling size in blocks 1 and 2 proportionately to the increase in sam-
pling rate. The model’s original creator cautions that the impacts of sampling rates
other than 128 Hz haven’t been fully explored. The speci�c implementation details,
including the scaled kernel sizes and average pooling blocks, are outlined in Table 2.1.



3.4. CLASSIFICATION 49

To improve the speed at which the model is trained and mitigate over�tting, early
stopping has been employed. Early stopping stops the training of the model when
the validation loss does not improve over a prede�ned number of epochs, a number
referred to as patience. In this project, patience has been set to 5. This value was
chosen to balance training time and model performance. This approach means that
if the validation loss fails to improve for 5 consecutive epochs, the training stops.
This prevents the model from learning noise and speci�c details of the training data,
mitigating over�tting.

Raw data was used for classi�cation, as opposed to �ltered data. The model’s
convolutional layers inherently perform bandpass �ltering, reducing the need for
preprocessed data. However, scaling of the dataset was performed to prevent large
features from dominating the model. The dataset was scaled using the sklearn.-

preprocessing.RobustScaler class.
The implementation of the EEGNet model can be found in the GitHub repository

referenced as Sletten (2023).
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Figure 3.7: Comparative performance of AdaBoost and Random Forest classi�ers
across distinct frequency bands. The accuracy of the classi�ers was evaluated us-
ing the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma
(30-70 Hz) power frequency bands. The AdaBoost classi�er accuracies are shown in
blue, while the Random Forest classi�er accuracies are illustrated in red. The classi�-
cation was carried out using �ltered data with an epoch length of 2 seconds.
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Figure 3.8: Comparison of PSDs for non-stressed (blue) and stressed (red) EEG signals
across the 8 channels (F4, Fp2, C3, FC6, O1, Oz, FT9 and T8). Both the stressed and
non-stressed recording belongs to participant P024 during session 2, however, the
non-stressed recording is from run 1 while the stressed recording is from run 2. The
PSDs were computed using �ltered data with an epoch length of 2 seconds.
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Figure 3.9: The �gure illustrates the topographic distribution of EEG power across
�ve distinct frequency bands (delta, theta, alpha, beta and gamma) for two subject
conditions (Non-Stressed and Stressed). Each row represents a separate frequency
band, while each column corresponds to a di�erent subject condition. In the topo-
graphical maps, the colour-coded activity levels at various electrode positions can be
observed, with darker red hues indicating higher activity. The electrode positions F4,
Fp2, C3, FC6, O1, Oz, FT9 and T8 are explicitly marked on the topographical maps for
reference. The maximum classi�cation accuracy attained using the power features
from each frequency band is displayed in the title of each subplot. The PSDs were
computed using �ltered data with an epoch length of 2 seconds.



Chapter 4

Results

In the previous chapter, the methods used to gather and analyse the EEG data were
presented. In this chapter, the results of the study will be presented. Section 4.1 ex-
plores the epoch length of the EEG data’s impact on the classi�cation performance.
In Section 4.2 and Section 4.3, the obtained results for all classi�ers using an 80:20
train-test split and LOSO cross-validation, respectively, will be presented. Lastly, Sec-
tion 4.4, will present the best-performing hyperparameters for the AdaBoost, Random
Forest and EEGNet classi�ers.

Themetrics used to evaluate the classi�cation performance include accuracy, macro
F1-score, sensitivity, speci�city and Cohen’s Kappa, and their respective equations are
shown in Equation 4.1, Equation 4.2, Equation 4.4, Equation 4.5 and Equation 4.6.

Accuracy =
Number of correct predictions

Number of predictions
(4.1)

Macro F1-score =
1
2
(F1-scoreclass1 + F1-scoreclass2) (4.2)

F1-score = 2 ·
True positives

True positives + False positives ·
True positives

True positives + False negatives
True positives

True positives + False positives +
True positives

True positives + False negatives

(4.3)

53
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Sensitivity =
True positives

True positives + False negatives
(4.4)

Speci�city =
True negatives

True negatives + False positives
(4.5)

^ =
%> � %4
1 � %4

(4.6)

Note: Portions of this section are borrowed or adapted from Sletten (2022).

4.1 Epoch Length Analysis

This section presents the performancemetrics accuracy, sensitivity, and speci�city for
the AdaBoost, Random Forest, and EEGNet classi�ers across varying epoch lengths,
ranging from 1 to 12 seconds. The results are shown in Figure 4.1, Figure 4.2 and
Figure 4.3, respectively. The choice of epoch length is important as the EEG data
needs to facilitate good classi�cation accuracy while maintaining a balance between
sensitivity and speci�city.

The performance of the AdaBoost classi�er was evaluated using the alpha fre-
quency band computed from the �ltered data and the EEG channels F4, Fp2, C3, FC6,
O1, Oz, FT9 and T8. This speci�c combination of frequency band and EEG channels
was established as themost e�ective for an epoch length of 2 seconds for the AdaBoost
classi�er, as detailed in Section 3.3.

When examining Figure 4.1, it is clear that as the epoch length increases from 1 to
8 seconds, the speci�city declines and the sensitivity improves. The balance between
sensitivity and speci�city is signi�cantly better for an epoch range of 8 seconds com-
pared to a 1-second epoch length. However, there appears to be a trade-o�, as longer
epoch lengths are associated with a downward trend in accuracy.

Despite the overall decrease in accuracy with increasing epoch lengths, the impact
is not drastic. For instance, with an epoch length of 8 seconds, an accuracy of 63% is
achieved, which is only 7 percentage points lower than the peak accuracy of 70%
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observed at a 2 and 3-second epoch length. Based on this reasoning, an 8-second
epoch length appears to be the best choice to obtain a balance between sensitivity
and speci�city while maintaining a satisfactory accuracy for the AdaBoost classi�er.

Figure 4.1: The �gure illustrates the variation in the performance metrics accuracy,
speci�city and sensitivity of the AdaBoost classi�er on all �ltered data, computed
from the alpha frequency band and EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and
T8, across epoch lengths ranging from 1 to 12 seconds. The plot shows the impact of
varying epoch lengths on the classi�er’s performance, particularly highlighting the
trade-o� between accuracy, speci�city and sensitivity.

For the Random Forest classi�er, performance evaluationwas carried out using the
beta frequency band computed from the�ltered data and the EEG channels F4, Fp2 and
T8. This speci�c combination of frequency band and EEG channels was established
as the most e�ective for an epoch length of 2 seconds for the Random Forest classi�er,
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as detailed in Section 3.3.
A close examination of Figure 4.2 reveals that the accuracy, sensitivity and speci-

�city of the Random Forest classi�er remain relatively stable for epoch lengths in the
range from 1 to 12 seconds. However, the ratio between the speci�city and sensitiv-
ity is unbalanced for the majority of the epoch length, with an average speci�city of
94% and an average sensitivity of 7%. The performance for the 2-second epoch length
appears to be the choice of epoch length that best balances speci�city and sensitivity
while maintaining a satisfactory accuracy. The accuracy for 2-second long epochs is
68%, which is only 2 percentage points lower than the best-achieved accuracy, which
was 70% using 10-second long epochs.

The EEGNet classi�er’s performance was evaluated using raw data and the EEG
channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8.

A close examination of Figure 4.3 reveals a noteworthy trend among the three
performance metrics: accuracy, speci�city, and sensitivity. The accuracy and speci-
�city seem to have a positive correlation, meaning they simultaneously increase or
decrease. However, sensitivity appears to be inversely related, decreasing when ac-
curacy and speci�city increase, and vice versa.

A prime example is the performance with 6-second epochs, which shows a spike
in accuracy and speci�city but a corresponding drop in sensitivity. Given the aim
to maintain satisfactory accuracy and a balanced sensitivity and speci�city, 3-second
epochs appear to be the best choice. This length yields an accuracy of 71%, only
marginally lower than the highest achieved accuracy of 74% using 6, 10 and 11-second
long epochs. Additionally, this choice of epoch length appears to produce the smallest
di�erence between sensitivity and speci�city.

4.2 80:20 Train-Test Split

This section presents the results of the AdaBoost, Random Forest, and EEGNet classi-
�ers in terms of accuracy, speci�city, sensitivity, and confusion matrices when using
an 80:20 train-test split. The performance of the classi�ers was evaluated using the
epoch lengths determined to yield the best performance, as discussed in Section 4.1.



4.2. 80:20 TRAIN-TEST SPLIT 57

Figure 4.2: The �gure illustrates the variation in the performance metrics accuracy,
speci�city and sensitivity of the Random Forest classi�er on all �ltered data, computed
from the beta frequency band and EEG channels F4, Fp2, and T8, across epoch lengths
ranging from 1 to 12 seconds. The plot shows the impact of varying epoch lengths on
the classi�er’s performance, particularly highlighting the trade-o� between accuracy,
speci�city and sensitivity.

Table 4.1 provides a comparison of classi�cation accuracy, speci�city and sensitiv-
ity for the classi�ers. The AdaBoost classi�er demonstrated an accuracy of 63%, with
a sensitivity of 67% and a speci�city of 61%. Random Forest performed moderately
better in terms of accuracy and speci�city, achieving values of 68% and 89% respec-
tively, but fell behind AdaBoost in sensitivity with a lower score of 17%. The EEGNet
classi�er surpassed both AdaBoost and Random Forest in accuracy, achieving a score
of 71%, and exhibited high speci�city at 88%. However, it showed a sensitivity rate of
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Figure 4.3: The �gure illustrates the variation in the performance metrics accuracy,
speci�city and sensitivity of the EEGNet classi�er on all raw data, using the EEG
channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8, across epoch lengths ranging from 1
to 12 seconds. The plot shows the impact of varying epoch lengths on the classi�er’s
performance, particularly highlighting the trade-o� between accuracy, speci�city and
sensitivity.

50%, which was considerably better than Random Forest but still behind AdaBoost.
Table 4.2 displays the confusion matrices for the classi�ers. The confusion ma-

trix for the AdaBoost classi�er shows 203 true negatives, 132 false positives, 49 false
negatives, and 99 true positives. The Random Forest classi�er achieved 1332 true
negatives, 173 false positives, 498 false negatives, and 103 true positives. The EEGNet
classi�er achieved 700 true negatives, 100 false positives, 301 false negatives, and 300
true positives.
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Classi�er Accuracy Sensitivity Speci�city
AdaBoost 63% 67% 61%
Random Forest 68% 17% 89%
EEGNet 71% 50% 88%

Table 4.1: The table shows the comparison of classi�cation accuracy, sensitivity and
speci�city for AdaBoost, Random Forest, and EEGNet classi�ers using an 80:20 train-
test split. The AdaBoost classi�er was evaluated on all �ltered data using 8-second
epochs, computed from the alpha frequency band and EEG channels F4, Fp2, C3, FC6,
O1, Oz, FT9 and T8. The Random Forest classi�er was evaluated on all �ltered data
using 2-second epochs, computed from the beta frequency band and EEG channels F4,
Fp2 and T8. The EEGNet classi�er was evaluated on all �ltered data using 3-second
epochs and the EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8.

Classi�er Confusion Matrix

AdaBoost

"
203 132
49 99

#

Random Forest

"
1332 173
498 103

#

EEGNet

"
700 100
301 300

#

Table 4.2: The table shows the comparison of confusion matrices for AdaBoost, Ran-
dom Forest, and EEGNet classi�ers using an 80:20 train-test split. Each matrix con-
tains four entries: true negatives (top left), false positives (top right), false negatives
(bottom left), and true positives (bottom right). The AdaBoost classi�er was evaluated
on all �ltered data using 8-second epochs, computed from the alpha frequency band
and EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8. The Random Forest classi�er
was evaluated on all �ltered data using 2-second epochs, computed from the beta fre-
quency band and EEG channels F4, Fp2 and T8. The EEGNet classi�er was evaluated
on all �ltered data using 3-second epochs and the EEG channels F4, Fp2, C3, FC6, O1,
Oz, FT9 and T8.

These results demonstrate the performance of the AdaBoost, Random Forest, and
EEGNet classi�ers using an 80:20 train-test split. The EEGNet classi�er achieved the
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highest accuracy and demonstrated improved performance compared to the other
classi�ers. The confusion matrices provide additional insights into the classi�cation
performance of each classi�er by showing the distribution of true and false predic-
tions.

4.3 Leave-One-Subject-Out Cross-Validation

In this section, we present the results obtained from applying the LOSO cross-validation
method to our three chosen classi�ers: AdaBoost, Random Forest, and EEGNet. This
method provides a robust evaluation of the classi�ers’ performance as it assesses their
ability to generalise to unseen data, simulating a realistic application of these algo-
rithms.

As seen in Table 4.3, the average accuracy across all participants for each classi�er
was similar, approximately 54%. An accuracy of 54% is only slightly above chance,
meaning that in general, the classi�ers are struggling to generalise to unseen data.
However, substantial variations were observed when considering individual partici-
pant data. The AdaBoost classi�er’s accuracy varied from 34% (participant P007) to
84% (participant P019). Similar variations were observed for the Random Forest clas-
si�er (32% to 84%) and the EEGNet classi�er (24% to 75%). The inter-subject variation
in accuracy could have multiple causes, including di�erences in the quality of the
collected data and imprecise labelling of the recordings.

Participant P014 displayed notable variation across classi�ers with an accuracy
of 77% for the AdaBoost classi�er, declining to 43% and 33% for the Random Forest
and EEGNet classi�ers, respectively. Furthermore, some participants, such as P007
and P019, showed consistent accuracies across all classi�ers. This pattern suggests
that certain participant data might have characteristic features that are consistently
interpreted by di�erent classi�ers.

Importantly, there were several participants (P001-P003, P005-P006, P010-P012,
P015, P018, P020, P022-P023, P025-P026) whose data did not include both non-stressed
and stressed samples, thus no meaningful accuracy could be computed.

Evaluating the performance of classi�ers with LOSO cross-validation becomes
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more insightful when confusion matrices are employed, as they reveal potential im-
balances in predictions.

Table 4.4 and Table 4.5 display the confusion matrices for three classi�ers - Ad-
aBoost, Random Forest, and EEGNet. In each matrix, four components are presented:
the true negatives (top left), false positives (top right), false negatives (bottom left), and
true positives (bottom right). If a participant’s data lacks samples from both stressed
and non-stressed classes, a ’-’ symbol is displayed, indicating that generating a con-
fusion matrix is not feasible.

Upon close inspection of Table 4.4 and Table 4.5, a concerning pattern emerges for
the EEGNet classi�er. For a majority of participants, 10 out of the 14 participants who
have samples from both classes, the EEGNet classi�er predicts only one class. This
result casts doubt on the LOSO accuracies for EEGNet discussed earlier in this sub-
section, because a classi�er that predominantly predicts one class, irrespective of the
actual class distribution, is not demonstrating good classi�cation performance. The
imbalance in predictions suggests that the model might be over�tting to the majority
class in the training data, thereby failing to generalise well to unseen participants.
This suggests that EEGNet might not be suitable for this type of classi�cation task
with this dataset.

The AdaBoost and Random Forest classi�ers, in contrast, do not exhibit this be-
haviour. They predict more than one class for all participants. However, a pattern of
a larger false negative rate over the false positive rate is observed for both classi�ers.
This imbalance is more pronounced with the Random Forest classi�er. Ideally, a stress
detection system should balance false positive and negative rates. In this context, a
larger false positive rate is preferable because incorrectly classifying a non-stressed
subject as stressed is less problematic than misclassifying a stressed subject. The ob-
served higher false negative rate might be attributed to class imbalance.

4.4 Hyperparameter Tuning

This section showcases the optimal hyperparameter combinations for the AdaBoost,
Random Forest, and EEGNet classi�ers, as determined by the hyperparameter tuning
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approach outlined in Section 3.4. The classi�ers were tuned using the same combi-
nation of features and channels mentioned in earlier sections, paired with the epoch
lengths that were proven to provide the best performance in Section 4.1.

For the AdaBoost classi�er, the SAMME.R algorithm was found to perform slightly
better than SAMME. Additionally, higher learning rates generally resulted in higher F1-
scores, while the number of estimators did not signi�cantly a�ect the performance.
This is evident in Figure 4.4, where the heatmaps represent macro F1-scores for dif-
ferent combinations of the number of estimators (n_estimators) and learning rate
(learning_rate). The highest macro F1-score was achieved using the SAMME.R algo-
rithm, a learning rate of 1, and 100 estimators.

The performance of the Random Forest classi�er was noticeably better with in-
creased maximum tree depth, as shown in Figure 4.5. The number of estimators
(n_estimators) did not signi�cantly impact the results, as a similar performance
was observed across various numbers of estimators. The highest macro F1-score was
achieved using a max depth of None and 200 estimators.

For the EEGNet classi�er, as shown in Figure 4.6, a lower learning rate resulted
in better performance. The heatmap in the �gure presents Kappa scores for di�erent
learning rates, with the highest Kappa score achieved at a learning rate of 1e-3. The
Kappa score is a statistical measure that ranges from -1 to 1. A score of 1 implies
perfect agreement between themodel’s predictions and the actual labels, while a score
of -1 implies complete disagreement. A score close to zero would imply a level of
agreement equivalent to random chance. Therefore, the highest Kappa score of 0.149
achieved by our classi�er, as seen in Figure 4.6, suggests that there is some level of
agreement between the predictions and the labels.

While the tuning results presented here suggest optimal hyperparameters for our
speci�c experiment setup, these results represent only a single combination of data,
features, channels and epoch length for each classi�er. Other combinations might
yield di�erent results. A more exhaustive evaluation across various combinations of
data, features, channels, and epoch lengths could potentially lead to di�erent optimal
hyperparameters.
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Participant AdaBoost Random Forest EEGNet
P001 - - -
P002 - - -
P003 - - -
P004 39% 55% 50%
P005 - - -
P006 - - -
P007 34% 32% 24%
P008 48% 58% 33%
P009 53% 70% 67%
P010 - - -
P011 - - -
P012 - - -
P013 61% 66% 67%
P014 77% 43% 33%
P015 - - -
P016 45% 39% 67%
P017 40% 32% 74%
P018 - - -
P019 84% 66% 75%
P020 - - -
P021 52% 51% 50%
P022 - - -
P023 - - -
P024 51% 61% 67%
P025 - - -
P026 - - -
P027 55% 57% 50%
P028 59% 54% 50%
AVERAGE 54% 53% 54%

Table 4.3: The table shows the comparison of classi�cation accuracy for AdaBoost,
Random Forest, and EEGNet classi�ers using the LOSO cross-validation method for
generating holdout sets. The entries ’-’ indicate that the corresponding participant’s
data did not include both non-stressed and stressed samples, meaning that no mean-
ingful accuracy could be computed. The �nal row of the �gure highlights the average
classi�cation accuracy across all participants for each classi�er. The AdaBoost classi-
�er was evaluated on all �ltered data using 8-second epochs, computed from the alpha
frequency band and EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8. The Random
Forest classi�er was evaluated on all �ltered data using 2-second epochs, computed
from the beta frequency band and EEG channels F4, Fp2 and T8. The EEGNet clas-
si�er was evaluated on all �ltered data using 3-second epochs and the EEG channels
F4, Fp2, C3, FC6, O1, Oz, FT9 and T8.
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Participant AdaBoost Random Forest EEGNet
P001 - - -
P002 - - -
P003 - - -

P004

"
22 15
31 7

# "
128 23
112 40

# "
0 100
0 101

#

P005 - - -
P006 - - -

P007

"
34 3
98 17

# "
142 8
412 54

# "
100 0
310 0

#

P008

"
45 29
29 8

# "
215 85
103 47

# "
100 100
100 0

#

P009

"
55 19
33 4

# "
263 38
96 55

# "
200 0
100 0

#

P010 - - -
P011 - - -
P012 - - -

P013

"
63 11
32 5

# "
246 53
100 49

# "
199 0
99 0

#

P014

"
32 5
23 51

# "
121 29
227 73

# "
100 0
200 0

#

Table 4.4: This table presents the �rst part of the comparison of the confusion matri-
ces for the AdaBoost, Random Forest, and EEGNet classi�ers, obtained via the LOSO
cross-validation method. The data for the remaining participants can be found in Ta-
ble 4.5. Each matrix contains four entries: true negatives (top left), false positives (top
right), false negatives (bottom left), and true positives (bottom right). The entries ’-’
indicate that the corresponding participant’s data did not include both non-stressed
and stressed samples, meaning that no confusion matrix could be calculated. The Ad-
aBoost classi�er was evaluated on all �ltered data using 8-second epochs, computed
from the alpha frequency band and EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and
T8. The Random Forest classi�er was evaluated on all �ltered data using 2-second
epochs, computed from the beta frequency band and EEG channels F4, Fp2 and T8.
The EEGNet classi�er was evaluated on all �ltered data using 3-second epochs and
the EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8.
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Participant AdaBoost Random Forest EEGNet
P015 - - -

P016

"
31 6
55 19

# "
122 28
245 55

# "
0 100
0 200

#

P017

"
32 2
87 24

# "
138 13
394 57

# "
0 100
4 297

#

P018 - - -

P019

"
105 6
18 19

# "
372 78
126 24

# "
300 0
100 0

#

P020 - - -

P021

"
70 4
67 7

# "
269 33
263 38

# "
0 201
0 200

#

P022 - - -
P023 - - -

P024

"
55 19
35 2

# "
263 37
137 13

# "
100 100
0 100

#

P025 - - -
P026 - - -

P027

"
69 5
62 12

# "
286 14
246 55

# "
0 200
0 200

#

P028

"
35 2
28 9

# "
121 29
109 41

# "
0 100
0 100

#

Table 4.5: This table is a continuation from Table 4.4, displaying the confusion matri-
ces of the �nal 14 participants for AdaBoost, Random Forest, and EEGNet classi�ers.
Each matrix, generated via the LOSO cross-validation method, contains four entries:
true negatives (top left), false positives (top right), false negatives (bottom left), and
true positives (bottom right). The entries ’-’ indicate that the corresponding partici-
pant’s data did not include both non-stressed and stressed samples, meaning that no
confusion matrix could be calculated. The AdaBoost classi�er was evaluated on all
�ltered data using 8-second epochs, computed from the alpha frequency band and
EEG channels F4, Fp2, C3, FC6, O1, Oz, FT9 and T8. The Random Forest classi�er
was evaluated on all �ltered data using 2-second epochs, computed from the beta fre-
quency band and EEG channels F4, Fp2 and T8. The EEGNet classi�er was evaluated
on all �ltered data using 3-second epochs and the EEG channels F4, Fp2, C3, FC6, O1,
Oz, FT9 and T8.
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Figure 4.4: The �gure presents the results of hyperparameter tuning for the AdaBoost
classi�er, with each heatmap re�ecting macro F1-scores for combinations of the num-
ber of estimators (n_estimators) and learning rate (learning_rate) hyperparam-
eters. Each subplot corresponds to a di�erent algorithm (SAMME or SAMME.R). The
colour gradient in the heatmap represents the highest F1-score obtained in the cross-
validation process, with darker colours indicating higher scores. The best macro F1-
score was achieved using the SAMME.R algorithm, using a learning rate of 1 and 100
estimators. These scores were obtained from the �ltered data using 8-second epochs.
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Figure 4.5: The �gure presents the results of hyperparameter tuning for the Ran-
dom Forest classi�er, with a heatmap re�ecting macro F1-scores for combinations
of the number of estimators (n_estimators) and maximum depth (max_depth) hy-
perparameters. The colour gradient in the heatmap represents the highest F1-score
obtained in the cross-validation process, with darker colours indicating higher scores.
The best macro F1-score was achieved using a max depth of None and 200 estimators.
These scores were obtained from the �ltered data using 2-second epochs.
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Figure 4.6: The �gure presents the results of hyperparameter tuning for the EEGNet
classi�er, with a heatmap re�ecting Kappa scores for di�erent learning rates. The
colour gradient in the heatmap represents the highest Kappa score obtained in the
cross-validation process, with darker colours indicating higher scores. The best Kappa
score was achieved using a learning rate of 1e-3. These scores were obtained from the
raw data using 3-second epochs.



Chapter 5

Discussion

5.1 Frequency Band and Channel Selection Evalua-
tion

Section 3.3 presented a performance evaluation of the delta, theta, alpha, beta and
gamma frequency bands. The �ndings, shown in Figure 3.7, revealed that delta, theta,
alpha, and beta bands demonstrated high accuracy in classifying stress. In contrast,
the gamma band showed signi�cantly lower accuracy, suggesting it might not be as
e�ective for EEG-based stress detection. These results align with the theory and lit-
erature referenced in Section 2.2 and the studies reviewed in Katmah et al. (2021).

However, an interesting discrepancy surfaced with the theta frequency band. De-
spite being presented as the least e�ective in Section 2.2, the �ndings in this study
place it among the highest performers. This di�erence could be attributed to the vari-
ability in the accuracy of the reviewed studies as indicated by Katmah et al. (2021),
suggesting that the e�ectiveness of the theta band may be more context-dependent
than previously assumed.

In Section 3.3 an evaluation of the performance of the delta, theta, alpha, beta
and gamma frequency bands was presented. Figure 3.7 presented the accuracy of the
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AdaBoost and Random Forest classi�ers across the chosen frequency bands using all
the available EEG channels. The �gure showed that the delta, theta, alpha and beta
frequency bands obtained the highest accuracy, while a signi�cantly lower accuracy
was obtained using the gamma frequency band.

Section 3.3 also presented a comparison of topographic maps of non-stressed and
stressed recordings for the delta, theta, alpha, beta and gamma frequency bands,
shown in Figure 3.9. It was determined that the Fp2, F4, T8, and FC6 channels, situ-
ated on the right side of the scalp within the frontal, central, and temporal regions,
showed the largest discriminative ability of the available channels. For reference, the
electrode positions are shown in Figure 3.2. These �ndings suggest that the changes
in brain activity during periods of mental stress are primarily located in these regions.

Given these observations, it is advisable for future EEG-based stress detection
studies to focus on increasing the number of electrodes in these areas. This could
potentially amplify the discriminative e�ect and enhance the accuracy of stress de-
tection.

However, these results should be considered with caution. The analysis using
topographic maps only compares a single non-stressed and stressed recording. The
�ndings for these recordings might not be applicable to other recordings. Therefore,
future research should compare topographic maps of the remaining pairs of record-
ings to gain a more comprehensive understanding of the discriminative e�ect of the
individual channels.

The �nal part of Section 3.3 evaluated the e�ect of reducing less signi�cant chan-
nels on the performance of classi�ers. The results indicated that the AdaBoost clas-
si�er did not improve upon removing these channels. Instead, as channels were re-
duced, sensitivity dropped to 0%, and speci�city rose to 100%. Essentially, this pattern
indicates that the model defaulted to predicting only one class, with accuracy re�ect-
ing the underlying class distribution. One plausible explanation for this behaviour is
that the already limited dataset was further compressed, leading to a lack of diversity
in the feature set that hindered the model’s learning ability.

On the other hand, the Random Forest classi�er demonstrated a di�erent trend.
The speci�city generally improvedwith fewer channels, although accuracy decreased.
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The divergence between AdaBoost and Random Forest when reducing channels is
likely explained by the underlying mechanisms of the classi�er, where Random Forest
appears to be better suited to model datasets with smaller feature sets.

It is however important to recognise the limitations of the channel selectionmethod
employed in this study. As explained in Section 3.3, the study employed a straight-
forward channel selection method that did not take all combinations of channels into
account. Also, the sequence of channel removal was solely based on the PSD compar-
ison of two recordings, which may not capture the dataset’s full diversity.

In addition, a larger number of recorded channels might have led to more suc-
cessful channel selection because it could provide a more exhaustive view of brain
activity patterns related to stress. Therefore, future investigations should aim to im-
plement a more comprehensive channel selection process using the dataset collected
in this study. This could potentially lead to a more re�ned understanding of EEG-
based stress detection and improved classi�er performance.

This study found that the best-performing frequency bands after performing chan-
nel selection were the alpha frequency band for the AdaBoost classi�er and the beta
frequency band for the Random Forest classi�er. These �ndings align with the theory
presented in Section 2.2, where the alpha frequency band was found to obtain the
best performance, followed by the beta frequency band. The reason why the best-
performing frequency band is di�erent for the AdaBoost and Random Forest classi-
�ers is likely the underlying mechanisms of the classi�ers.

5.2 Epoch Length Analysis

Section 4.1 presents the performance of the classi�ers when varying the epoch length
of the EEG samples. For the AdaBoost classi�er, a notable increase in sensitivity was
observed when the epoch length was extended from 1 second to 8 seconds. This sug-
gests that AdaBoostmay extractmoremeaningful features from longer data segments,
thereby providing a broader context for EEG signals and enhancing the distinction be-
tween stressed and non-stressed states. Interestingly, for the selected epoch length of
8 seconds, sensitivity was higher than speci�city. This might be preferable in a stress
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detection system because false positives (mistakenly classifying a non-stressed sub-
ject as stressed) are less harmful than false negatives (failing to identify a stressed
subject). False negatives could lead to missed opportunities for stress intervention
and management, which is why it is important to avoid them.

In contrast, the Random Forest classi�er displayed signi�cantly lower sensitivity
than speci�city across all tested epoch lengths. Given that high sensitivity is crucial
in a reliable stress detection system, this suggests that the Random Forest classi�er
may not be the most suitable choice.

As for the EEGNet classi�er, its performance demonstrated a signi�cant variabil-
ity across di�erent epoch lengths. However, at the chosen epoch length of 3 seconds,
a compromise was found between sensitivity and speci�city. As previously stated, a
desirable property of the model used for stress detection is that the sensitivity is larger
than the speci�city. The results showed that this could only be achieved while reduc-
ing the accuracy signi�cantly. These results suggest that additional tuning might be
necessary to create a reliable stress detection system using EEGNet.

5.3 80:20 Train-Test Split

The results of the study when using an 80:20 train-test split reveal that the EEGNet
classi�er surpassed both AdaBoost and Random Forest classi�ers in terms of accuracy
and speci�city, with an overall accuracy of 71%. The improved performance of the
EEGNet classi�er may be attributed to its ability to extract and process temporal and
spatial characteristics of the input EEG data e�ciently, which could have contributed
to its high accuracy and speci�city.

However, the AdaBoost classi�er outperformed the other two classi�ers in terms
of sensitivity, with a value of 67%. EEGNet and Random Forest, on the other hand,
achieved a sensitivity of 50% and 17%, respectively. Sensitivity is a key performance
measure in situations where it is critical to correctly identify positive instances. The
higher sensitivity of the AdaBoost classi�er implies that it was more capable of cor-
rectly detecting true positive cases. Even though it exhibited lower accuracy and
speci�city as compared to EEGNet and Random Forest, its superior sensitivity might
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make it the preferred choice for stress detection due to the aim of reducing false neg-
atives.

5.4 Leave-One-Subject-Out Cross-Validation

The study’s �ndings highlight several important aspects of applying the LOSO cross-
validation method to evaluate the performance of the AdaBoost, Random Forest, and
EEGNet classi�ers. Overall, the classi�ers demonstrated an average accuracy of ap-
proximately 54%. This accuracy is marginally higher than random choice and indi-
cates that the classi�ers are struggling to generalise to unseen data. However, the
accuracy substantially varied across individual participants, emphasising the com-
plex nature of EEG data and the number of individual di�erences between subjects.
The inter-subject variability may be attributed to multiple factors such as inconsistent
data quality, imprecise labelling, or inherent inter-subject variations. Therefore, fu-
ture studies should consider these individual di�erences when designing and training
classi�cation models.

An additional concern arose from the confusion matrices of the classi�ers. The
EEGNet classi�er predicted a single class for the majority of participants, which sug-
gests that the model is over�tting. Conversely, the AdaBoost and Random Forest
classi�ers displayed more balanced predictions. However, it was found that both clas-
si�ers had a higher false negative rate than false positive rate, which has negative
implications when creating a reliable stress detection system. These observations un-
derscore the importance of considering the confusion matrices in combination with
the accuracy measures. The �ndings underline the necessity of balancing false pos-
itive and negative rates in classi�er design, especially in stress detection scenarios
where misclassi�cation could have signi�cant repercussions. In summary, the results
indicate that the EEGNet may be unsuitable as it does not appear to generalise to un-
seen data. While the AdaBoost and Random Forest classi�ers demonstrated potential
for EEG-based stress detection, the �ndings also point to areas that need improvement
and the importance of considering individual variations in EEG data.

The level of over�tting observed for the EEGNet classi�er suggests that the tech-
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niques implemented to prevent over�tting have not been su�cient. Despite imple-
menting measures such as class weighting, strati�ed 5-fold cross-validation, early
stopping, and dropout, as described in Subsection 3.4.5, these strategies did not su�-
ciently mitigate over�tting. It is apparent that new techniques need to be explored to
prevent over�tting in future studies.

5.5 Factors In�uencing Classi�er Performance

A signi�cant di�erence in performance is observedwhen using LOSO cross-validation
as compared to an 80:20 train-test split for the EEGNet classi�er. One potential reason
for this discrepancy is that the speci�c holdout set selected in the 80:20 train-test
split might closely mirror the distribution of the training set. This could arti�cially
in�ate the estimated performance of the classi�er, as it might be overly tailored to the
characteristics of that speci�c split. It is important that future research acknowledges
this potential issue. As a result, the LOSO may in some cases o�er a more realistic
evaluation of the model’s performance in a real-world scenario.

An important factor in�uencing the analysis is that not all participants provided
samples from both stressed and non-stressed classes. Only half of the participants (14
out of 28) had samples from both classes. This implies that the LOSO cross-validation
performance evaluation was performed only for 14 of the participants, leading to
an incomplete view of the LOSO results. Future studies should aim to collect both
stressed and non-stressed samples from all participants, to ensure a more compre-
hensive evaluation of classi�er performance.

The drop in performance when moving from the 80:20 train-test split to LOSO
cross-validation is more drastic for the EEGNet classi�er compared to the AdaBoost
and Random Forest classi�ers. One potential reason is the lack of manual �ltering for
the EEGNet classi�er. As discussed in Subsection 3.4.5, the convolutional layers of
the EEGNet model perform bandpass �ltering, but the automatic �ltering might not
su�ciently suppress noise in the EEG data.

The performance drop is more noticeable for the EEGNet classi�er when shift-
ing from an 80:20 train-test split to LOSO cross-validation compared to AdaBoost
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and Random Forest classi�ers. This discrepancy may stem from the lack of manual
�ltering for the EEGNet classi�er, as the model was used with raw EEG data. The
rationale for this decision, previously explained in Subsection 3.4.5, is that the con-
volutional layers of the EEGNet model inherently perform bandpass �ltering. It is
possible that this automatic approach does not adequately suppress the noise in the
EEG data, leading to reduced performance.

The model’s suitability for sampling rates other than 128 Hz, without data down-
sampling, might also be an issue. As detailed in Subsection 3.4.5, the model’s adapt-
ability to other sampling rates has not been fully explored by its creators. In particular,
adjusting the model to support a 250 Hz sampling rate without downsampling could
impact both data preprocessing and feature extraction. Future studies should explore
the impact of downsampling the EEG data to 128 Hz and using the original EEGNet
model for classi�cation, to better understand these performance variations.

Despite using various models, our study did not achieve an accuracy above 71%,
signi�cantly lower than the average 90% accuracy reported in related studies that
used the alpha frequency band as a feature (Katmah et al. (2021)). Several factors
could contribute to this gap in accuracy.

The available amount of data for this study might have in�uenced the accuracy.
A su�ciently large and representative dataset is a critical component when creating
reliable stress detection systems that can accuratelymodel the large inter-subject vari-
ations found in EEG signals. However, the study used a relatively small dataset with
only 83 recordings. The exclusion of 29 EEG recordings to establish a single-modal
system baseline removed a signi�cant amount of the available data. This exclusion
aimed at preparing for future multimodal systems requiring each recording to con-
sist of both EEG and PCG modalities. Additionally, the removal of an additional 17
moderate samples meant that the �nal dataset only consisted of 70 recordings.

Class imbalance in the dataset is another signi�cant factor. Of the recordings, 46
represented non-stressed samples, and only 24 represented stressed ones. This 1.91:1
ratio creates a bias towards non-stressed samples, potentially a�ecting the classi�ers’
learning process. Classi�ers trained on imbalanced datasets often favour the majority
class, making it more challenging to achieve high sensitivity.
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The number of electrodes utilised for EEG recording in the study also likely in�u-
enced the accuracy. We limited the study to eight electrodes, which might not have
fully captured the diverse brain activity associated with stress. More electrodes could
provide a more comprehensive understanding of neural changes related to stress, cap-
turing subtle changes across di�erent brain regions and frequencies.

Lastly, substantial background noise during several recording sessions might have
a�ected the accuracy, even with the applied �ltering techniques. This noise could dis-
tort the original EEG signals, complicating feature extraction and stress classi�cation.

In future studies, addressing these factors can improve the accuracy of EEG-based
stress detection systems. Considerations include ensuring su�cient and balanced
data, using an optimal number of electrodes, and recording data in less noisy en-
vironments.

5.6 Hyperparameter Tuning

The results fromhyperparameter tuning suggested that the number of estimators used
by both the AdaBoost and Random Forest classi�ers had little e�ect on the classi�ers’
performance. In the case of the AdaBoost classi�er, under�tting may occur with too
few estimators, while too many estimators may lead to over�tting. The results in-
dicate that the explored range of estimators does not cause under�tting or over�t-
ting. For the Random Forest classi�er, the improvement in accuracy typically starts
to plateau after a certain number of trees. This suggests exploring a di�erent range
of the number of estimators that also includes a smaller number of estimators.

However, the AdaBoost classi�er’s learning rate and the Random Forest classi-
�er’s maximum depth had a signi�cant impact on performance. A larger learning
rate for AdaBoost means that each new estimator added to the model contributes
more substantially to the �nal decision, which potentially corrects prior errors more
e�ectively. A higher learning rate enables the AdaBoost model to reach optimal per-
formance more quickly.

For the Random Forest classi�er, a larger maximum depth allows each individual
decision tree within the forest to capture more complex patterns in the data, which
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potentially improves the model’s accuracy. However, increasing the maximum depth
should be approached with caution, as too high values can lead to over�tting.

For the EEGNet classi�er, a learning rate of 1e-3 was determined to be optimal.
The learning rate in�uences the speed at which the model adjusts its weights during
training, with lower values leading to slower learning and higher values leading to
quicker, but potentially less accurate, learning. A balance is needed, and in this case,
a learning rate of 1e-3 appears to achieve that balance.

It is important to note that the results of the hyperparameter tuning presented in
this study are based on one combination of data, features, and epoch length for each
classi�er. Consequently, these �ndings may not be representative of other combina-
tions. As a result, conclusions drawn from these results should be interpreted with
this consideration in mind.
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Chapter 6

Conclusions and Future Work

The analysis presented in this thesis yielded several important insights into the e�ec-
tiveness and the limitations of EEG-based stress detection. The study demonstrated
that the delta, theta, alpha and beta frequency bands are the most e�ective for de-
tecting stress. The gamma frequency band proved to be less e�ective for detecting
stress.

Electrode placement, particularly in the right side of the scalp within the frontal,
central, and temporal regions, was also observed to signi�cantly in�uence the dis-
criminative ability of the classi�ers. As a result, future research should focus on en-
hancing electrode coverage in these areas to improve the accuracy of stress detection
systems.

The study also indicated that removing less signi�cant channels had di�erent ef-
fects on the classi�ers. For the AdaBoost classi�er, this led to a drop in sensitivity and
a rise in speci�city. Conversely, the Random Forest classi�er demonstrated improved
sensitivity with reduced channels, although with decreased accuracy. Future studies
should consider additional electrodes and more advanced channel selection to further
explore performance improvements from channel selection.

In terms of epoch length, longer data segments appeared bene�cial for the Ad-
aBoost and EEGNet classi�er, but less so for the Random Forest classi�er.
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The best accuracy was obtained using the EEGNet classi�er and an 80:20 train-
test split. However, improved sensitivity was achieved using the AdaBoost classi�er.
The low sensitivity of the Random Forest classi�er suggests that the model may not
be suitable for stress detection with the existing dataset. When comparing the results
from an 80:20 train-test split with the LOSO cross-validationmethod, the LOSO results
reveal that the EEGNet classi�er is only predicting one class. This suggests that the
EEGNet classi�er is not generalising well, and that further hyperparameter tuning
may be needed.

Given the challenges of creating an EEGmodel with high accuracy and sensitivity,
the study points to several areas for improvement related to data collection. Future
studies should aim to obtain su�cient and balanced data from participants, use an op-
timal number of electrodes and work to reduce environmental noise during recording
sessions.

Lastly, hyperparameter tuning presented minimal impact on the performance of
both the AdaBoost and Random Forest classi�ers in terms of the number of estimators.
However, the learning rate of the AdaBoost classi�er and the maximum depth of the
Random Forest classi�er demonstrated a signi�cant in�uence on performance. For
EEGNet, a learning rate of 1e-3 appeared to strike a balance between learning speed
and accuracy.

In conclusion, while this study provides valuable insights into the importance of
various frequency bands for EEG-based stress detection, it also highlights the chal-
lenge of creating high-quality, balanced datasets. Moving forward, a concerted e�ort
to address these issues through methodological re�nement, comprehensive data col-
lection, and continuous �ne-tuning of models will be crucial in advancing the relia-
bility and e�ectiveness of EEG-based stress detection.
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Department of Engineering Cybernetics 

DATA ACQUISITION CONSENT FORM 

You are being invited to participate in a research study, which the Norwegian Center for Research 
Data (NSD) has reviewed and approved for conduction by the investigators named here. This form is 
designed to provide you - as a human subject - with information about this study. The investigator or 
his/her representative will describe this study to you and answer any of your questions. You are 
entitled to a copy of this form. If you have any questions or complaints about the informed consent 
process of this research study or your rights as a subject, please contact the PI or Co-PI 
(marta.molinas@ntnu.no, +47 94287670, andres.f.soler.guevara@ntnu.no).  

Project Title: FlexEEG in Mental Health 

Principal Investigators: Marta Molinas 

Co-investigator: Andres Soler & Mohit Kumar 

Thank you for agreeing to participate in this research project. This study involves research aimed at 
detecting the presence of psychological stress in the human body based on the analysis of EEG and 
PCG signals. You will participate in two separate data collection sessions.  The first session will take 
place in the exam period of nov-dec 2022, and the second will take place after the holidays, early 
2023. Before each session we will ask you to answer a self-evaluation questionnaire called ‘State-
Trait Anxiety Inventory’. This questionnaire will be used to determine whether you are stressed or 
not. During both sessions, you will be recorded twice: one five-minute period with no stressor, and 
one five-minute period with an Arithmetic stressor. You will be asked to rate your stress level on a 
scale from 1-10 after each recording. The Arithmetic stressor consists of different arithmetic 
statements presented on a screen. Your task will be to calculate each task in your head and click “T” 
on the keyboard if the statement is True, and “F” if it is False.  This task is supposed to induce stress 
so please keep this in mind. Each session will last about 30 minutes. 10 of these minutes are for 
recording of EEG and PCG signals using Mentalab EEG and EkoDuo stethoscope. We will clean the 
areas of the scalp where the electrodes are placed with isopropyl alcohol. Electrode cap gel will be 
applied to the areas, but it is easily washed out with water and shampoo.  

Participation in this study will take approximately 60 minutes of your time. We warn that the set-up 
of the EEG cap can lead to some discomfort, and the tasks you are given will (hopefully) induce some 
stress response. Your participation in this study is completely voluntary. Should you decide to 
discontinue participation or decline to answer any specific part of the study, you may do so without 
penalty.  

Your participation in this study may help you understand the manifestations of stress on EEG signals.  
We are not asking you to place your name anywhere on the experimental booklet, so your 
participation is anonymous. None of your answers can be directly traced back to you. Should you 
have any further questions, please feel free to contact the study’s principal investigator or co-PI, 
Marta Molinas and Andres Soler at the Department of Engineering Cybernetics. Her office is at 
Elektro D+B2 room D244, her phone number is +47 94287670, and her e-mail address is 
marta.molinas@ntnu.no.  

 

 



By signing below, I confirm that: 

o I give my consent to participate in the research study entitled “FlexEEG in Mental Health”. 

o I hereby confirm that I have read the above information and have been informed about the 

content and purpose of the research. 

o I fully understand that I may withdraw from this research project at any time without prejudice 

or effect on my standing with NTNU. 

o I also understand that I am free to ask questions about techniques or procedures that will be 

undertaken. 

o I give my consent for the collection and use of all data of the research “EEG and PCG in mental 

health” for use in research and teaching purposes.  

o I give my consent to use my data for scientific purposes, its documentation and publications 

(including any exhibitions and further publications) 

o I hereby declare that I am currently not diagnosed by a with any heart disease, or neurological 

disease  

o I am also not on any medications affecting heart rate and/or brain wave function 

o I hereby declare that I am not officially diagnosed with any mental illness 

 

Date and place:  ____________________________  and ____________________________ 

Participant’s signature: _______________________________________________________ 

First and last name: __________________________________________________________ 

Date of Birth and current Age: _____________________________and _________________ 

 

I hereby certify that I have given an explanation to the above individual of the contemplated study 
and its risks and potential complications.  

                  29/11/2022 

_______________________________        ________________  

Principal Investigator’s signature                                      Date 
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A.2 STAI-Y Form.pdf
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A.3 Participant Screening.pdf



29/03/2023, 12:57Participation form Mental health EEG and PCG data collection

Page 1 of 3https://forms.office.com/pages/designpagev2.aspx?token=2ed…5Muuc2g1BZR8FUMkxNM05PSFFROTNJUVo5VVNBRk40RVAxRyQlQCN0PWcu

* Required

* This form will record your name, please fill your name.

Participation form
Mental health EEG and PCG data 
collection
We need participants for collection of EEG and PCG data for stress detection. All 
participants will receive a Midtbyen gift card valued 200 NOK as a thanks. The data 
will be used in our master's thesis'. The data will of course be anonymized, and will not 
be traceable back to you.

The experiment will take about 30 minutes including set-up and recording. The recording 
will be done using non-invasive methods: an electrode-cap for EEG and a digital 
stethoscope for PCG. We will need two recordings of each participant: One during the 
exam period of nov-dec 2022 (stressed state), and one after the holidays (non-stressed 
state). 

Please sign up via the form if you're interested in participating.

Name * 1.

Enter your answer
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Page 2 of 3https://forms.office.com/pages/designpagev2.aspx?token=2ed…Muuc2g1BZR8FUMkxNM05PSFFROTNJUVo5VVNBRk40RVAxRyQlQCN0PWcu

Email * 2.

Enter your answer

Telephone number * 3.

Enter your answer

Female

Male

Other/prefer not to say

Gender * 4.

True

False

I am not diagnosed with any heart and/or neurological disease * 5.
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Page 3 of 3https://forms.office.com/pages/designpagev2.aspx?token=2ed…Muuc2g1BZR8FUMkxNM05PSFFROTNJUVo5VVNBRk40RVAxRyQlQCN0PWcu

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

True

False

I am not on any medications affecting heart rate and/or brain wave 
function * 

6.

True

False

I am not diagnosed with any mental illness * 7.

Yes

No

I consent to being contacted for participation in this study * 8.
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