
Citation: Hussain, S.A.; Hassan,

M.U.; Nasar, W.; Ghorashi, S.;

Jamjoom, M.M.; Abdel-Aty, A.-H.;

Parveen, A.; Hameed, I.A. Efficient

Trajectory Clustering with Road

Network Constraints Based on

Spatiotemporal Buffering. ISPRS Int.

J. Geo-Inf. 2023, 12, 117. https://

doi.org/10.3390/ijgi12030117

Academic Editors: Wolfgang Kainz

and Hartwig H. Hochmair

Received: 19 January 2023

Revised: 2 March 2023

Accepted: 4 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Efficient Trajectory Clustering with Road Network Constraints
Based on Spatiotemporal Buffering
Syed Adil Hussain 1, Muhammad Umair Hassan 2,*, Wajeeha Nasar 2, Sara Ghorashi 3 , Mona M. Jamjoom 3,
Abdel-Haleem Abdel-Aty 4 , Amna Parveen 5 and Ibrahim A. Hameed 2

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430072, China

2 Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU),
6009 Ålesund, Norway

3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4 Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia
5 College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu,

Incheon 21936, Republic of Korea
* Correspondence: muhammad.u.hassan@ntnu.no

Abstract: The analysis of individuals’ movement behaviors is an important area of research in
geographic information sciences, with broad applications in smart mobility and transportation
systems. Recent advances in information and communication technologies have enabled the collection
of vast amounts of mobility data for investigating movement behaviors using trajectory data mining
techniques. Trajectory clustering is one commonly used method, but most existing methods require
a complete similarity matrix to quantify the similarities among users’ trajectories in the dataset.
This creates a significant computational overhead for large datasets with many user trajectories. To
address this complexity, an efficient clustering-based method for network constraint trajectories
is proposed, which can help with transportation planning and reduce traffic congestion on roads.
The proposed algorithm is based on spatiotemporal buffering and overlapping operations and
involves the following steps: (i) Trajectory preprocessing, which uses an efficient map-matching
algorithm to match trajectory points to the road network. (ii) Trajectory segmentation, where a
Compressed Linear Reference (CLR) technique is used to convert the discrete 3D trajectories to 2D
CLR space. (iii) Spatiotemporal proximity analysis, which calculates a partial similarity matrix using
the Longest Common Subsequence similarity indicator in CLR space. (iv) Trajectory clustering, which
uses density-based and hierarchical clustering approaches to cluster the trajectories. To verify the
proposed clustering-based method, a case study is carried out using real trajectories from the GeoLife
project of Microsoft Research Asia. The case study results demonstrate the effectiveness and efficiency
of the proposed method compared with other state-of-the-art clustering-based methods.

Keywords: spatiotemporal proximity analysis; road network; longest common subsequence; movement
behavior analysis; geographic information sciences

1. Introduction

Recent technological advancements have made it possible to collect large amounts of
data on the movement patterns of people [1], vehicles [2], and animals. These data can be
collected through sensors such as the global system for mobile communications (GSM), the
global positioning system (GPS), and the Wi-Fi found in smartphones and cars, and it is
useful in transportation planning to understand travel behavior [3], which can be grouped
into patterns or clusters [4]. Data mining techniques, such as classification, clustering, and
association rule mining, are used to analyze data and find valuable patterns related to time
and space [5]. Clustering is used to group similar data points based on their characteristics.

ISPRS Int. J. Geo-Inf. 2023, 12, 117. https://doi.org/10.3390/ijgi12030117 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12030117
https://doi.org/10.3390/ijgi12030117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-5329-9163
https://orcid.org/0000-0002-6763-2569
https://orcid.org/0000-0003-1252-260X
https://doi.org/10.3390/ijgi12030117
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12030117?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2023, 12, 117 2 of 21

In the case of trajectory data, this means grouping together sets of spatiotemporal data
points (i.e., location and time) with similar movement patterns. For example, clustering
vehicle trajectory data can reveal patterns of rush hour traffic or common routes taken by
vehicles [6].

Trajectory clustering allows researchers to discover information about the movement
patterns of people, animals, and vehicles that would not be easily observable from individ-
ual data points [7]. By grouping similar data, researchers can identify patterns and trends
in the data that would otherwise be difficult to detect. Additionally, trajectory clustering
can also be used to extract meaning from the data. For example, by identifying movement
patterns, researchers can gain insights into how people, animals, or vehicles use a particular
area, such as which routes they prefer or which areas they avoid [8]. This information can
then be used to make informed decisions, such as in transportation planning, where it can
be used to optimize infrastructure and reduce traffic congestion.

However, calculating the similarity between trajectories is a challenging task, as
different trajectories have different lengths and sampling frequencies. Researchers often
use Longest Common Subsequence (LCSS) [9] and Dynamic Time Warping (DTW) [10] to
calculate the similarity between unequal-length trajectories, but this can be time-consuming.
In addition to that, the principle of minimum total curvature techniques is used for 2D
interpolation of geophysical data in order to generate maps using a computer, which
may not always be perfect but are generally sufficient to analyze a spatially distributed
data [11]. Ridge regression, proposed by [12], can be used to estimate the coefficients
for a linear model that predicts the similarity between two trajectories based on their
features or attributes. Moreover, the authors of a study on Polish urban areas, as cited
in [13], discussed the challenges involved in sustainable transport development and offered
potential solutions to mitigate short-term and long-term adverse impacts on urbanization.

In trajectory compression, the trajectory clustering method reduces the consumption of
computing and storage resources for trajectory data mining. Trajectory similarity measure-
ment is the central part of the trajectory clustering algorithms. Before trajectory clustering,
the similarity or distance of two distinguished trajectory data must be compared. Different
similarity measurement methods have been used in further research with their aspects.
Some of the methods are used for underlaying the road network space. The Euclidean
distance, the similarity measurement method, is no longer suitable for calculating the
distance between two points in road network space. Therefore, in the road network space,
we use the shortest path of two points to describe the distance between the two points in
the road network. Similarity measure methods using the Euclidean distance lead to bad re-
sults, mainly because trajectories have different lengths [14]. Different trajectory similarity
measurement methods with road network space are also introduced, such as Hausdorff and
Frechet distances. They are used for trajectories clustering similarity (distance) measures
but fail to compare them as a whole for their high computational cost. Spatial–temporal
trajectories are composed of spatial location points with time information. Different trajec-
tories have different lengths and sampling frequencies. Therefore, the method suitable for
calculating the similarity between trajectories of equal length, such as average of pair dis-
tance (APD), is no longer applicable. In previous articles, researchers often used LCSS and
DTW to calculate the similarity between unequal-length trajectories, because the distance
calculation of the road network is time-consuming, and most of the similarity calculations
of spacetime trajectories, such as LCSS, require calculating the shortest path between each
spacetime point to obtain the similarity between the spacetime trajectories. This needs to be
more efficient in the era of big data. Our main goal of this research is to provide an efficient
cluster of the trajectories in the network space, because this trajectory clustering in the road
network space in the traditional method could be more efficient. Here, we introduce a
novel method in which we construct similarity measures using spatiotemporal proximity
analysis with LCSS.

Map matching, a preprocessing step, is needed to map each point in a road network
route. Above all, concentrating just on the available vehicle trajectory data is tremendously

ISPRS Int. J. Geo-Inf. 2023, 12, 117 3 of 21

detrimental if the associated network structure is not prepared. In this study, we focus on
the clustering problem and its eventual resolution, which calls for an understanding of
the underlying road network. In developing a similarity measure, we take into account
that there exist road network limits for vehicle movements even if our goal is to map
trajectories to known road segments. We assume that trajectories on the same route overlap
due to the network constraint (at a macroscopic scale). This helps in locating the LCSS
between two portions when using the method. To assess the proximity, compatibility, and
amount of synchronization between two trajectories, we analyze how near they overlap.
This computation of similarity based on the LCSS is conceptually equivalent to the shortest
route for fully network-mapped items and the network distance for free-moving objects.
On the other side, to enhance over time computation to identify the similarity, we use the
spatiotemporal buffering approach. The cluster of comparable trajectories is then created
using two clustering techniques: hierarchical clustering and density-based clustering.

The main objective of this research is to provide efficient clustering-based trajectories in
the network space. Most existing methods require a complete similarity matrix to quantify
the similarities among users’ trajectories in the dataset [15]. The size of such a similarity
matrix increases exponentially with the number of users in the trajectory dataset, leading
to significant computational overhead.

The main challenge with trajectory clustering is the significant computational overhead
required to calculate the similarity matrix for a big dataset with many user trajectories. This
becomes even more severe for network constraint trajectories, which require additional
shortest-path calculations to calculate trajectory similarities in road networks. As a result,
most existing methods can perform the clustering analysis only for a tiny dataset of network
constraint trajectories. Therefore, efficiently performing clustering analysis for network
constraint trajectories is a critical problem that needs to be solved, given the explosive
growth of network constraint trajectory data in real-time applications.

The main contributions of this work are threefold:

1. We propose a method to speed up region queries in DBSCAN and reduce the time
complexity to generate the cluster.

2. Our proposed method uses a network-constrained spacetime path with a spacetime
buffer and network spacetime buffer in CLR space.

3. We describe the proposed density-based clustering algorithm to overcome the time
complexity and speed up the region query.

The remainder of the paper is structured as follows. Section 2 presents a litera-
ture review of existing clustering algorithms and similarity measures for moving objects.
Section 3 describes the problem that the research aims to address, which is the inefficiency
of existing methods for calculating the similarity between trajectories of different lengths
Section 4 introduces the density-based spatiotemporal proximal analysis method, which is
used to construct similarity measures for spatiotemporal data. The density-based clustering
algorithm, which utilizes the method from Section 4, is presented in Section 5. In Section 6,
the process of data preparation and preprocessing is discussed. The effectiveness of the
proposed methods is evaluated through experiments on trajectory data in Section 7. Finally,
in Section 8, we conclude the findings of this study.

2. Literature Review

There are three main domains of research in the field of movement data analysis that
involve trajectory clustering: time geography, moving object databases, and the quantitative
data analysis method for movement [16]. Many clustering methods have been proposed
throughout the years that can be used in trajectory clustering. The key elements in trajectory
clustering analysis are cluster algorithms and similarity measures [16]. Yuan et al. [17]
presented a review on the development and trends of moving objects clustering algorithms.
Yuan et al. [17] and Han et al. [18] presented clustering algorithms in five categories,
including partitioning methods, hierarchical methods (e.g., BIRCH), density-based methods
(e.g., DBSCAN), grid-based methods (e.g., STING), and model-based clustering algorithms.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 4 of 21

Partition-based methods divide the trajectory dataset into a predetermined number
of clusters and assign each trajectory to the cluster with the closest centroid, e.g., k-means
and k-medoids [19]. Hierarchical-based algorithms build a hierarchy of clusters, where
each cluster is formed by merging two or more smaller clusters [18]. They are simple, but
they can be difficult to use because it is not always clear whether to combine or split points.
These are further divided into three types [20]: bottom-up or condensation algorithms [21],
top-down or decomposition algorithms [22], and compound algorithms [23]. On the other
hand, density-based clustering algorithms group data points that are densely packed
together and separated from other points by a low-density region. These algorithms can
handle clusters of any shape, unlike distance-based clustering algorithms, which can only
handle spherical clusters [24]. Examples of density-based clustering algorithms include
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and OPTICS
(Ordering Points To Identify the Clustering Structure) [24].

Grid-based clustering techniques employ a multiresolution grid data structure to
quantize the data space into a grid structure. On the grid, clustering is done, and the
effectiveness of the clustering is based on how well the data is compressed there. These
algorithms execute quickly and only rely on the number of cells in each dimension of the
quantized space; processing time is independent of the quantity of data points. STING
(STatistical INformation Grid) and CLIQUE (CLustering In QUEst) are two examples of
grid-based clustering algorithms [25].

Model-based clustering algorithms use statistical models to describe the data and
cluster the data according to the model [26]. Examples of model-based clustering algorithms
include Gaussian mixture models and hidden Markov models.

Each of these algorithms have their own strengths and weaknesses. The use of them
depends on the problem statement and requirements of the users. Several similarity
measures have been proposed to determine the similarity between two trajectories and can
be used as the basis of clustering algorithms. Some of the common similarity measures are
Euclidean distance, DTW, Frechet distance, Hausdorff distance, and LCSS [17].

Euclidean distance calculates the straight-line distance between two points in space. It
can be used to calculate the distance between two trajectories by summing the distances
between corresponding points on the two trajectories [27]. However, DTW calculates the
similarity between two time series by aligning the time points of the series and minimizing
the accumulated distance between them. It is often used for trajectory clustering because
it is able to handle variations in speed and direction [28]. Frechet distance calculates the
minimum distance required to travel from one trajectory to another, taking into account
the path and order of the points on the trajectories. It is often used for trajectory clustering
because it is able to handle nonlinear movements [29].

Hausdorff distance calculates the maximum distance between two trajectories and is
often used for trajectory clustering because it is able to handle large variations in shape [30],
and LCSS calculates the similarity between two sequences by identifying the LCSS shared
by the two sequences. It is often used for trajectory clustering because it is able to handle
variations in the order of the points on the trajectories [31].

This study addresses trajectory clustering without road network information. Al-
though we do map trajectories to known road segments, while creating a similarity measure
we take into consideration the fact that vehicle movements are limited by the road network.
To be more specific, we gauge the degree of overlap between two trajectories to gauge how
similar they are to one another by assuming that trajectories on the same direction entirely
overlap at a macroscopic size. This method sits between between the shortest route for
completely network-mapped items and the network distance for freely moving objects. To
improve the efficiency of our similarity calculation over time, we utilize the spatiotemporal
buffering technique. After calculating the similarity between trajectories using LCSS, we
use hierarchical and density-based clustering to similarly group trajectories into clusters.
This approach does not require the nontrivial effort of map matching, which is the process
of mapping each point in a road network route to the corresponding network topology.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 5 of 21

3. Problem Statement

Figure 1 illustrates the research method proposed in this research to address the
clustering-based trajectories problem. The proposed method constructs similarity measures
using spatiotemporal proximity analysis (SP-Analysis) [16] with LCSS.

Figure 1. Overall framework of our proposed trajectory clustering method.

In spatially organized road networks e.g., (x, y, t) space, individuals cannot travel
freely in metropolitan regions. A directed graph, G = (N, A), may be used to model a road
network. mathrmN and mathrmA represent the nodes and connections, respectively. Each
link, au ∈ A, has a unique set of properties, such as the link identity, lu, travel time, tu, and
link length, du. A link, au, is made up of a beginning node nu

s , an ending node nu
e , and a

collection of intermediate vertices nu
i . According to a set of linked segments that join each

of the link’s two neighboring vertices, the geometry of the connection may be characterized
(See Figure 2).

As a collection of control points and route segments in a road network, a network-
constrained spacetime path Pq may be seen. For the road network to retain its route
topology, control points should offer both observations and network nodes. The individual
position at any tk ∈

[
ti, tj

]
using the linear interpolation is Pq(tk) can be computed as

Pq(tk) =
{
(lu, mk, tk) | mk = (1− λ)mi + λmj; λ = (tk − ti)/

(
tj − ti

)}
(1)

where mi ∈ (0, 1) is the location’s relative position on link au.
The similarity distance metric is one of the clustering algorithm’s most important

components. The similarity or distance between two different trajectory data must be
assessed before they can be grouped into clusters. According to their necessity for usage,
multiple similarity measure metrics exist; some are appropriate for varying durations of
trajectories.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 6 of 21

Figure 2. Spacetime route in (x, y, t) limited by the network.

With the constraint of the shortest path across the road network, several definitions
of the similarity of trajectories (such as destination-based, origin-based, route-based, etc.)
may be made in traffic analysis. While the movement of trajectories is restricted by the
road network, one method is to look at whether the two trajectories overlap or intersect; if
they traveled the same piece of the route, parts of trajectories would be fully overlapping
(at a macroscopic scale). We calculate the similarity distance between the trajectories
and the overlapping portions of the trajectories using the LCSS technique. The longest
possible subsequence of two trajectories may be found using the LCSS technique, which
was developed in the related string domain. Two strings of varying lengths are provided,
and the goal is to identify a collection of strings that appear in both strings from left to
right. By allowing two sequences to extend without changing the series of components yet
allowing certain elements to be mismatched, the LCSS model can match two sequences [32].
Many research have also used the LCSS technique in the context of trajectory clustering.
Typically, the LCSS is solved recursively. The shortest distance is defined as NTdist if it is
smaller than the provided distance threshold and the time threshold between two network
points of trajectories;

LCSS
(

pi
n, qj

m

)
= {0 if m = n = 0 LCSS(Rest(p), Rest(q)) + 1 NTdist ≤

ε max{LCSS(Rest(p), q)LCSS(p, Rest(q))} otherwise
(2)

The LCSS between two trajectory segments pi and qj, whose lengths are n and m, is
LCSS

(
pi

n, qj
m

)
. A pair of trajectory points are deemed similar and the LCSS value is raised

by 1 when the network distance between two trajectories mathrmA and mathrmB is smaller
than the specified threshold. LCSS

(
pi

n, qj
m

)
= 0 if the number of points of trajectories

equals mathrmn and mathrmm is 0. The highest common subsequence may be determined
iteratively if the points of both trajectories are not 0.

The two user-provided input parameters used in density-based clustering determine
the number of clusters. These two input parameters are ε and MinTras, where the former
specifies the neighborhood’s minimal similarity and the latter describes the minimum
number of neighbors that the trajectory must have in order to be considered as the core
object within the given range. All of the trajectories in the vicinity of the core object are
edge objects, while the other trajectories are noise objects. Using the LCSS, the distance

ISPRS Int. J. Geo-Inf. 2023, 12, 117 7 of 21

between trajectories is determined by comparing how similar they are. The LCSS operation
is used to assess the ε-neighbourhood of the trajectory Tri that is indicated by Nε(Tri) to
find the trajectory whose corresponding similarity value is higher than 0. Moreover, we
discover that a trajectory’s ε-neighbourhood is the trajectory whose similarity value is
bigger than ε. If Trj ∈ Nε(Tri) and |Nε(Tri)| ≥ MinTras, which is a fundamental need for a
trajectory, then Trj is directly density-reachable from Tri. If there is a chain of trajectories
Tri, . . . , Trn, Trn+1, . . . , Trj such that the Trn+1 is directly density-reachable from Trn, then
all trajectories in the chain must be core trajectories, with the potential exception of Trj. If
there is a trajectory Tri and both Trj and Trk are density-reachable from Tri in terms of ε and
MinTras, then a trajectory Trj and a trajectory Trk are density-connected to one another.

Most proposed methods require computing a complete similarity matrix to measure
the similarities between the trajectories of all users in the dataset. However, with the number
of users in the trajectory dataset, the size of such a similarity matrix increases exponentially.
This results in significant computational overhead when calculating the similarity matrix
for a large dataset with many user trajectories. This overhead computation is even more
severe for trajectories of network constraints, in which additional shortest-path calculations
are needed to measure trajectory similarities in road networks. Consequently, most current
approaches can only perform clustering analysis for a small dataset of trajectories of
network constraint. Therefore, efficiently implementing clustering analysis for trajectories
of network constraints becomes an urgent problem to solve, given the exponential growth
of network constraint trajectory data in real applications.

4. Density-Based Spatiotemporal Proximal Analysis

The proposed density-based clustering algorithm is developed based on spatiotempo-
ral buffering and overlapping operations. So, first, we need the spatiotemporal buffering
on the network constraint. The proximal spatiotemporal trajectories in network distance
can be effectively calculated to determine their similarities for a provided trajectory. In
contrast, the similarity calculation can neglect other trajectories with large spatiotemporal
distances.

4.1. Spatiotemporal Buffer on the Network Constraint

The process of continually building forward A f
k (ω) and backward Ab

k(ω) spatial
buffers for every Pq(tk) along the journey across the road network results in the network
spacetime buffer STBq(ω). Network locations produce a forward spatial buffer defined
by A f

k (ω) by meeting the starting condition. The shortest forward route search may be
used to determine this buffer using Pq(tk) as the node of origin. After satisfying the
latter requirement, network sites that constitute a backward spatial buffer are specified by
Ab

k(ω). This value may be determined by utilizing Pq(tk) as the node of destination in the
shortest forward route search, as illustrated in Figure 3. Creating the forward and backward
spacetime buffers, STB f

ij(ω) and STBb
ij(ω), only requires the forward and backward spatial

buffers for sq
ij at two control points, Pq(ti) and Pq(tj

)
. The network spacetime buffer can

be accurately generated after STB f
ij(ω) and STBb

ij(ω) are generated for any segment of

spacetime path ∀sq
ij ∈ Pq. The constructed STBq(ω) = STB f

ij(ω) ∪ STBb
ij(ω). A composed

set of polygons upon the link generated as STBq(ω) =< · · · , Oq
u, . . . >, where Oq

u shows
the spacetime polygon over the link au [16].

ISPRS Int. J. Geo-Inf. 2023, 12, 117 8 of 21

Figure 3. Network-constrained spacetime path with spacetime buffer in (x, y, t) space.

4.2. Spatiotemporal Analysis in CLR Space

We manage the shifting object indexes using the Compressed Linear Reference
(CLR) [33] approach and convert 3D road network-constrained time geographic entities
in (x, y, t) space to 2D entities in CLR space. The link identity li is the link identity, a
distinct positive integer number, integrated into a single real value zu

i = lu, mi. The linear
reference (lu, mi) is an analogous one-to-one representation of geographical position (xi, yi)
in the road network. The zu

i value may be readily converted to a location using dynamic
subdivision and is also identical to (xi, yi) in 2D. Every 3D point in the road network may
thus be represented as a singular 2D point c̃u

i = (zi, ti) in (z, t) space, also known as the
CLR space.

The spacetime path is transformed in CLR space as P̃q. It comprises a set of disjoint
elements of LineString that is polyline < · · · , R̃q

u, · · · >, each line string of a set of disjoint
elements corresponding to Rq

u in (x, y, t) in 3D space, representing the continuous move-
ment of an individual on a particular link. A set of segments < · · · , s̃ij, · · · > is a collection
of further LineString R̃q

u, where each segment sij in the set is a straight line in CLR space
that is connecting two sequential control points c̃u

i = (zi, ti) and c̃u
j =

(
zj, tj

)
on the same

link (See Figure 4).

Figure 4. Network spacetime buffer in CLR space (Adapted from [16]).

In CLR space, the network-constrained spacetime path is an equivalent representation
of P̃q in (x, y, z) space [34]. We transform the spacetime buffer by following previous

ISPRS Int. J. Geo-Inf. 2023, 12, 117 9 of 21

work [34]: STBq(ω) into CLR space by converting spacetime location cu
i = (xi, yi, ti) to

c̃u
i = (zi, ti). As shown in Figure 4, any STBq(ω) can be transformed by converting each

STBq
ij(ω) of sq

ij ∈ Sq into CLR space.

For the path segment sq
ij upon link au, STBq

ij(ω) is the union of STB f
ij(ω) and STBb

ij(ω)

similarity in the network spacetime path with buffer. Firstly, transform STB f
ij(ω) =<

O f
u,ij(ω), O f

v,ij(ω), . . . > into CLR space using different cases. O f
u,ij(ω) represent the unique

polygon. Thus, STB f
ij(ω) =< O f

u,ij(ω), O f
v,ij(ω), . . . > is transformed into unique

STB f
ij(ω) =< Õ f

u,ij(ω), O f
v,ij(ω), . . . > in CLR space.

Secondly, transform STBb
ij(ω) =< Ob

u,ij(ω), Ob
v,ij(ω), . . . > into CLR space using differ-

ent cases. Ob
u,ij(ω) represent the unique polygon. Thus, STBb

ij(ω) =< Ob
u,ij(ω), Ob

v,ij(ω), . . . >

is transformed into unique STBb
ij(ω) =< Õb

u,ij(ω), Õb
v,ij(ω), . . . > in CLR space.

Unique spacetime buffer in CLR STBq
ij(ω) = STB f

ij(ω) ∪ STBb
ij(ω) is transformed

by the STBq
ij(ω) = STB f

ij(ω) ∪ STBb
ij(ω). The network spacetime buffer STB q(ω) in CLR

space is an equal representation of STBq(ω) in (x, y, z) space.
In CLR space, it is simple to implement the spacetime buffering and overlapping

for SP-Analysis of movement data. In the current spatial database, all the spacetime
pathways are transformed into CLR space, stored, indexed, and searched as 2D polyline
entities (SQLServer). The 2mathrmD multipolygon that represents the spacetime route
tildePq in CLR space, ST̃B̃q(ω), is created and represented in CLR space. The complex 3D
spatiotemporal searches of buffer—path intersection are immediately implemented by the
2D spatial query, i.e., polygon—polyline intersection in the spatial database.

To efficiently calculate the similarity between spatiotemporal trajectory data and
moving object buffers, we use SP-Analysis and LCSS. First, we calculate the distance matrix
D between all trajectory data using SP-Analysis. To calculate LCSS for each trajectory,
we use the overlapping spacetime operation to reduce computation time. We convert
trajectory 3D space into 2D space using CLR and create a buffer with given spatial tolerance
along each trajectory. Then, we find the similarity measure between trajectories using
spatial–temporal buffer query. We compare the time duration of LCSS, not the number of
elements, as we perform similarity analysis on spatiotemporal trajectory data.

5. Proposed Density-Based Clustering Algorithm

The density-based clustering method can well handle the clustering of point sets.
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a more com-
monly used clustering method in many applications. The DBSCAN determines the number
of clusters according to the two input parameters provided by users. These two input
parameters are ε and MinTras, where the former specifies the minimum similarity of the
neighborhood. At the same time, the latter represents the minimum number of neighbors
of the trajectory as the core object (which means trajectory here) in the specified range. The
trajectories within the core object’s neighborhood are all edge objects, and the remaining
trajectories are noise objects. When the DBSCAN is applied to cluster a spatiotemporal
moving object, the objects that need to be clustered are converted from spatial point data
to spatiotemporal trajectory data. The similarity calculation between trajectories, such
as LCSS, replaces the distance calculation between trajectories. The corresponding input
parameters of DBSCAN are the minimum similarity threshold ε and the required number
of trajectories MinTras that meet the minimum similarity threshold.

Unlike calculating the distance between point pairs in Euclidean space, the similarity
calculation of trajectory data in network space is very time-consuming. In addition to the
effect of the trajectory sequence length on the similarity calculation, the calculation of the
road network distance, the shortest path, is also more time-consuming than the Euclidean
distance. In the original DBSCAN algorithm, the calculation of the similarity matrix

ISPRS Int. J. Geo-Inf. 2023, 12, 117 10 of 21

between trajectories is often completed by brute-force searching in advance, resulting in
inefficiency. Therefore, the SP-Analysis is applied to calculate the similarity.

Based on the above elucidation, the following definitions are given. It should be noted
that the following trajectory is a continuous spacetime path with the CLR technique, and
the trajectory similarity is calculated using LCSS:

Definition 1. ε-neighbourhood of a trajectory.

First, according to the spatiotemporal buffer of trajectory CLRi, perform LCSS oper-
ation to determine the trajectory whose corresponding similarity value is greater than 0,
and then further determine that the trajectory whose similarity value is greater than ε is the
ε-neighbourhood of a trajectory, denoted by Nε(CLRi).

Definition 2. directly density-reachable.

A trajectory CLRj is directly density-reachable from a trajectory CLRi with respect to
ε and MinClrs if

CLRi ∈ Nε(CLRi) (3)

|Nε(CLRi)| ≥ MinClrs (core object condition) (4)

Definition 3. density-reachable.

If there is a chain of trajectories CLRi, . . . , CLRn, CLRn+1, . . . , CLRj such that CLRn+l
is directly density-reachable from CLRµ, then all of the trajectories in the chain must be the
core object with the potential exception of CLRj.

Definition 4. density-connected.

A trajectory CLRj is density-connected to a trajectory CLR∫ with respect to ε and
MinClrs if there is a trajectory CLR such that both CLRi and CLRk are density reachable
from CLRi with respect to ε and MinClrs.

According to the above definitions, DBSCAN with SP-Analysis can efficiently generate
trajectory data clusters. The trajectory data cluster is the most significant density-connected
dataset. In the clustering process, the trajectory data are divided into three types: core object,
edge object, and noise object. Core objects are trajectories whose number of ε-neighborhood
of a trajectory is greater than a given threshold MinClrs. Edge objects are trajectories that
are directly connected to the core object but are not the core object. The types of trajectories
in the trajectory data cluster are either core objects or edge objects. When the core object
CLRi is found for the first time, determine whether all trajectory data in Nc(CLRi) have a
trajectory as the core object. If not, determine all trajectories in Ns(CLRi) as an edge object
and add it to the cluster with the core object. If there is, add the trajectory to the cluster
and expand the trajectory data cluster by adding its ε-neighborhood. The noise object
is a trajectory that is neither a core nor an edge object. The specific trajectory clustering
algorithm of DBSCAN based on LCSS with SP-Analysis is as follows. The distance matrix
D and ε and MinClrs are input parameters as the determination conditions of the core
object.

By using the previously proposed algorithm [16] and spatiotemporal buffer technique
in CLR space, the result optimality will increase. We do not need to calculate the similarity
between any pairs of trajectories for all trajectories in the dataset. We define that the size of
such a similarity matrix increases exponentially with the number of users in the trajectory
dataset when we use the conventional approach, and it takes a lot of time. Similarly, we are
just performing the overlapping operation in which we do not need to find the shortest
path over the whole network, which is the cause of the high computation cost. We only

ISPRS Int. J. Geo-Inf. 2023, 12, 117 11 of 21

find the trajectories within the buffer, a unique technique with CLR space, and generate the
cluster using DBSCAN. The implementation technique affecting the clustering performance
is a buffer along the CLR space, which helps to reduce the exponential increase with a
number of the trajectory dataset. Using this approach, the cluster provides the speed up
with region query.

Extension to the Hierarchy-Based Clustering Approach

Hierarchical clustering (also known as hierarchical cluster analysis or HCA) is a
cluster analysis method that can create a cluster hierarchy of point sets. The Agglomerative
(bottom-up) hierarchical clustering algorithm [17] is commonly used in many applications.
All datasets begin with their cluster, and as one moves up the hierarchy, pairs of clusters
are merged based on distance/similarity. A dendrogram usually represents the results of
hierarchical clustering.

Different numbers of input parameters depend on usage; currently, three input param-
eters are used, including the number of required clusters or minimum similarity threshold
Eps, linkage type (ward, maximum or complete, and average and single), and similarity ma-
trix. When the agglomerative hierarchical clustering algorithm is applied to the clustering
of a spatiotemporal moving object, the objects that need to be clustered are converted from
spatial point data to spatiotemporal trajectory data. The similarity calculation between
trajectories, such as LCSS, replaces the distance calculation between trajectories.

The linkage criterion calculates the distance between cluster values as a function of
the pairwise distances between values. To explain all these, suppose for all spatiotemporal
trajectory similarity points i, j in cluster u and cluster v, respectively.

Single linkage is used to find minimum distance and is known as the nearest point
algorithm.

d(u, v) = min(dist(u[i], v[j])) (5)

Complete linkage is used to find the maximum distance and is known as the farthest
point algorithm.

d(u, v) = max(dist(u[i], v[j])) (6)

Average linkage is used to find the average distance and is also known as the Un-
weighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm.

d(u, v) =
d

∑
ij

dist(u[i], v[j])
(|u| × |v|) (7)

where |u| and |v| are the cardinalities of clusters u and v, respectively.
Ward linkage is used in the Ward variance minimization algorithm.

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 +
|v|
T

d(s, t)2 (8)

where u is the newly joined cluster consisting of clusters S and t, v is an unused cluster in
the dataset, and T = |v|+ |s|+ |t| is the cardinality of its argument. This is also known as
the incremental algorithm.

6. Data Preparation and Preprocessing
6.1. Study Area and Datasets

For this work, we used Microsoft Research Asia’s GeoLife dataset of Beijing, a
metropolitan City and the Capital of China. In Figure 5, an overview of the road network
in Beijing is shown, which comprises 111,544 nodes and 152,217 directed links. Each link in
the network is identified by a unique integer between 1 and 152,217. This road network
serves as the reference framework for converting locations in (x, y, z) space to CLR space

ISPRS Int. J. Geo-Inf. 2023, 12, 117 12 of 21

and vice versa. The data used in this study were collected over a period of five years
(2007–2012) from 182 participants.

Figure 5. Beijing road network.

A GPS trajectory of this dataset is defined as a series of time-stamped points, each
containing the parameters information, including latitude, longitude, and altitude. This
total dataset consists of approximately 17,000 different transportation mode trajectories
for an average period of 50,000 h, from which more than 30,000 trajectory transportation
modes are car and taxi. Various GPS loggers and phones registered these trajectories and
have a range of sampling speeds. In this dataset, 91.5% of the trajectories are recorded in
a dense representation, for example, every one to five seconds or five to ten meters per
point. This dataset listed a wide range of outdoor activities of people. In other study areas,
these trajectory datasets are used, which show stability, correctness, and coherence, such
as accessibility pattern extraction, consumer behavior identification, location-based social
media platforms, information safety, and different position suggestions.

6.2. Trajectory Data Preprocessing
6.2.1. Map Matching

Due to GPS positioning and digital road network flaws, taxi GPS observations may
not exactly lay on road network connections, and a taxi may have traveled over many
network links. A cab may have passed over many network connections during subsequent
observations due to the very low sample level. Hence, by accurately tracking GPS observa-
tions on the road network and reconstructing trajectory paths, a dynamic programming
map-matching (MDP-MM) multicriteria approach is utilized to overcome this issue [35].
Using [35], this is built to enhance the technique of determining the missing road network
links. In this way, we avoid improperly initializing the tag/ label in the path-finding
process. The second strategy is establishing the candidate route by a single path-finding

ISPRS Int. J. Geo-Inf. 2023, 12, 117 13 of 21

procedure at a candidate location rather than continuously searching the shortest routes
from preceding candidate locations, as achieved in the standard Dijkstra algorithm.

6.2.2. Trajectory Segmentation

For a different method to find the similarity, trajectory segmentation splits a trajectory
into chunks/fragments by time interval. Two trajectory points with considerable time
intervals cannot be converted into CLR, and two discontinuous points will cause an error
in the result. The two trajectory points with short time intervals are on a road segment,
and the middle trajectory point can be interpolated by linear interpolation. If the time
interval is large, there will be significant errors in interpolation, especially if the two points
are on different roads. When the interval between the two trajectory points is more than
300 s, the trajectory points are not sampled continuously, because using this trajectory for
linear interpolation is inaccurate. When the time interval between two trajectory points
is less than 0.0000001, the sampling time of these two trajectories is too close, so they are
redundant points. That is why they are not used for interpolation.

6.2.3. Spatiotemporal Data Model

The CLR approach handles shifting object indexes and transforms 3D road network-
constrained time geographic entities in (x, y, t) space to 2D entities in CLR space. The
geographic point (xi, yi) in the road network is equivalently represented by the linear
reference (lu, mi). If zu

i = lu, mi and mi ∈ (0, 1) are integrated into a single real value. li is
the link identity, a distinct positive integer number. The zu

i value may be readily converted
to a location using dynamic subdivision and is also identical to (xi, yi) in 2mathrm. A
unique 2D point c̃u

i = (zi, ti) in (z, t) space, also known as the CLR space, may be used to
represent any 3D point cu

i = (xi, yi, ti) = (lu, mi, ti) in the road network.
The spacetime route is altered in CLR space, and P̃q consists of a number of discon-

nected LineString polyline components. Each line string set of discontinuous components in
the structure < · · · , R̂q

u, · · · > corresponds to Rq
u in (x, y, t) 3D space, denoting the ongoing

movement of a person along a specific connection. Each segment sij in the set is a straight
line in CLR space connecting two consecutive control points, c̃u

i = (zi, ti) and c̃u
j =

(
zj, tj

)
,

on the same link.

6.3. Prototype System Development

This research prototype is divided into two main parts: LCSS similarity and clustering.
We use the LCSS approaches to find similarity distance measured in two different ways.
One way is using the buffering technique, and the other is without the buffer. Before
creating the buffer, we convert the spacetime path (trajectory 3D) into CLR space, which
is 2D, so we generate the buffer over CLR and then apply LCSS on buffer-generated
CLR space. We find the similarity measure directly (LCSS without buffer) between two
spacetime paths with time and distance thresholds. The time threshold is used to find the
similarity on each 20 s and the distance threshold measures the outliers. For the clustering
of these similarities, we use two clustering approaches, including hierarchal-based and
density-based clustering, which is a more efficient way to present the spacetime trajectory
clustering.

The following describes the hardware and software configuration. In order to store,
index, and query spacetime pathways (trajectories) in CLR space, we developed ArcSDE
10.2 and SQLServer as the spatial database. The geo-computational algorithm Visual C# is
used to create network trajectory buffers along CLR. The ArcEngine 10.2 development kit is
used to implement the specified LCSS spacetime operations in Visual C#. Python is used to
create hierarchical-based clustering, whereas Visual C# is used to create the density-based
clustering method DBSCAN.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 14 of 21

7. Experimental Evaluation of Trajectory Data Clustering

Experiment 1: Impact of SP-Analysis on similarity
In this experiment, we calculate the LCSS similarity using two techniques, including

LCSS with buffer and LCSS without buffer, with two different length trajectories and with
two different numbers of trajectories, as shown in Table 1.

Table 1. Dataset metadata.

Datasets Number of Trajectory Average Length Average Duration

D1 17 40 km 1.2 h
D2 50 150.3 km 4.8 h

Firstly, for LCSS with buffer, we convert the given dataset of trajectories in Compress
Liner Reference (CLR). We generate the buffer in road network space alone and the tra-
jectory with a given buffer threshold of 200 m. Moreover, we also observe whether the
trajectory lies in the buffer or not. We calculate the time duration of the target trajectory
in the buffer. Secondly, we use traditional methods to calculate LCSS. This method uses
dynamic programming algorithms to solve LCSS. In solving the LCSS, the matched ele-
ments are obtained, and the time duration is represented by the LCSS of the two trajectories
obtained from the matched elements in the experiment. Among them, the time threshold
T1 and space threshold T2 for judging whether the elements match are 10 s and 200 m,
respectively. Table 2 describes the result of LCSS similarity-based time consumption with
buffer and without buffer.

Table 2. Time consumption of LCSS similarity calculation.

Dataset

LCSS with Buffer
(d = 200 m)

LCSS without Buffer
(T1 = 10 s, T2 = 200 m)

Buffer Create SP-Analysis Overall Overall

D1 14.361 s 19.328 s 33.689 s 9397.32 s

D2 37.424 s 422.584 s 460.008 s 253,049.97 s
(=2.93 days)

Based on the previous result, we analyze that when we give the dataset of 17 trajec-
tories, the buffer is created within approximately 14 s and, for 50 trajectories, within 37 s,
meaning it takes less than 1 s for each trajectory. Additionally, then, if we find the LCSS
similarity, it takes approximately 34 s and the overall time consumption for a total of 17
trajectories whose length is no more than 2 h. For the same dataset, the computation time
of LCSS without a buffer is too much compared with finding LCSS with a buffer, even
though the dataset is 2 h at maximum. This is because the traditional LCSS method needs
to calculate LCSS for each pair of trajectories. In contrast, the SP-Analysis-based method
does not need to do so. At the same time, the traditional LCSS method needs to calculate a
large number of road network distances, which can be avoided in the SP-Analysis-based
method. The same point shows in the dataset of 50 trajectories; we observe that the time
consumption of 460.008 s with buffer is much less than the time consumption of 253,049.97 s
without buffer. This is why we use the buffering technique to speed up LCSS similarity
analysis.
Experiment 2: Analysis of DBSCAN with Hierarchical Clustering

The parameter’s settings are reasonable and dramatically influence the clustering
quality in our work. The input parameters of the DBSCAN clustering method based on
LCSS ε and MinClrs were determined in the experiment according to the method provided
by the author of the original DBSCAN algorithm. First, MinClrs is determined according
to k = In|D|, where D represents the trajectory dataset and k = MinClrs. Second, calculate
the LCSS of each trajectory to its k-th nearest trajectory. When sorting the trajectories

ISPRS Int. J. Geo-Inf. 2023, 12, 117 15 of 21

in descending order of the k-th nearest similarity value, the sorted k-th similarity graph
will give us some directions about the density distribution in the database. As shown in
Figure 6, select the k-th similarity value corresponding to the first trajectory in the first
“valley” (red line in the graph) of the sorted k-th similarity graph as the input parameter ε.
The trajectory dataset D2 is used for analysis in Figure 6, where the k value is set to 4.

Figure 6. Sorted k-th similarity graph of D2 dataset.

After visual analysis of the sorted k-th similarity graph, the input parameter ε of the
trajectory Dataset 1 is set to 0; the input parameter MinClrs of the trajectory Dataset 1 is
set to 2. Furthermore, the ε of the trajectory Dataset 2 is set to 0.002; the MinClrs of the
trajectory Dataset 2 is set to 4.

Whether the parameter configuration becomes suitable or not has a significant impact
on the accuracy of the clustering result. There are three input parameters of the hierarchical
clustering method based on LCSS: the spatial threshold δ, linkage type (ward, maximum
or complete, and average and single), and similarity matrix. The similarity between
two trajectories between two points is calculated by LCSS using the buffer and with the
buffering technique along the road network space.

The main work during hierarchical clustering of linkage types is determining linkage
type. We use the ward linkage type, in which the algorithm updates the distance matrix at
every iteration to represent the distance of the newly formed cluster.

Figure 7 represents the hierarchical clustering of the 50 trajectories dataset by the
dendrogram. On the x-axis, the trajectory label is displayed, which combines with another
trajectory on each level. A similarity value between trajectories is displayed on the y-axis of
the dendrogram. Each level of the trajectory cluster depends on the similarity value, which
we calculate by LCSS and store in the distance matrix.

Table 3 shows the time consumption of clustering with LCSS similarity measure. Total
time consumption over creating clustering with computing the LCSS of the 17 trajectories
dataset and then DBSCAN and hierarchical clustering equals 33.690 s. For the over 50 tra-
jectories dataset with more than 4 h, the time consumption to find the LCSS with buffer
and then clustering is almost the same, which is approximately 460 s. We also show the
comparison of our work with Chen et al. [34] and Yuan et al. [16], and it can be seen that
our method takes less time when combined with DBSCAN and HCA.

Table 3. Time consumption of clustering.

Number of
Trajectory LCSS + DBSCAN LCSS + HCA Chen et al. [34] Yuan et al. [16]

17 33.690 s 33.690 s 36.330 s 39.253 s
50 460.009 s 460.010 s 471.52 s 480.32 s

ISPRS Int. J. Geo-Inf. 2023, 12, 117 16 of 21

Figure 7. Hierarchical clustering dendrogram of 50 trajectories. Blue dendrogram is the longest
trajectory in our work.

Visual Analysis of Trajectory Clustering

Here, we present a visualization of the results of trajectory clustering in 3D (x, y, t)
space. The x-axis represents the latitude, the y-axis represents the longitude, and the z-axis
represents the time. This 3D visualization of the clustering result is based on Figure 7.
The hierarchical clustering dendrogram of 50 trajectories at the y-axis shows the similarity
values. These three clusterings create 0.078 similarity values that contain different numbers
of trajectories in the cluster. These 3D representations are shown in the dendrogram (See
Figure 7).

Figure 8 shows cluster 1 of trajectory D1, which contains the set of 50 trajectories with
an average length of 150.3 km and an average duration of 4 h. This cluster is based on
the value of similarity we find using the LCSS. Figure 9 shows the cluster of remaining
trajectories from the D2 of 44 trajectories with different lengths, and Figures 10 and 11
show the single trajectory. Distinct colors represent unique trajectories from the data in
Figures 8–11.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 17 of 21

Figure 8. 1st Cluster with 4 trajectories.

Figure 9. 2nd Cluster with 44 trajectories.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 18 of 21

Figure 10. 3rd Cluster with single trajectory.

Figure 11. 4th Cluster with single trajectory.

ISPRS Int. J. Geo-Inf. 2023, 12, 117 19 of 21

8. Conclusions

This study proposes an efficient density-based clustering method for network con-
straint trajectories using Beijing’s GeoLife Project dataset. The approach enhances the
spatiotemporal cluster by using the buffering technique and CLR space, and we find
valid trajectories from raw input data using map matching to locate missing points. We
use minimum and maximum thresholds for segmentation, with interpolation providing
more accuracy after these thresholds. Our spatiotemporal data model transforms the road
network space into CLR space, and we create a buffer along CLR, finding the similarity
between trajectories within the buffer using the LCSS similarity metric. We apply different
clustering techniques, including DBSCAN and hierarchical clustering, based on LCSS
similarity, and the results show a significant reduction in time consumption using the
buffering technique.

Our proposed method has potential applications in transportation planning and smart
vehicle mobility, helping optimize traffic on roads and improving infrastructure in smart
planning. Future work could improve clustering efficiency by exploring different similarity
techniques or using F-heap data structures, indexing techniques, or non-SQL databases to
reduce computation costs. Overall, this study offers a promising approach for clustering
trajectory data with network constraints, paving the way for further research in this field.

Author Contributions: Conceptualization, Syed Adil Hussain and Muhammad Umair Hassan;
methodology, Syed Adil Hussain, Muhammad Umair Hassan and Wajeeha Nasar; software, Syed
Adil Hussain and Muhammad Umair Hassan; validation, Wajeeha Nasar, Sara Ghorashi and Abdel-
Haleem Abdel-Aty; formal analysis, Muhammad Umair Hassan, Wajeeha Nasar, Mona M. Jamjoom
and Ibrahim A. Hameed; investigation, Syed Adil Hussain and Muhammad Umair Hassan; resources,
Sara Ghorashi, Amna Parveen and Ibrahim A. Hameed; data curation, Syed Adil Hussain and
Muhammad Umair Hassan; writing—original draft preparation, Syed Adil Hussain and Muhammad
Umair Hassan; writing—review and editing, Muhammad Umair Hassan, Wajeeha Nasar, Amna
Parveen and Ibrahim A. Hameed; visualization, Syed Adil Hussain, Muhammad Umair Hassan and
Wajeeha Nasar; supervision, Muhammad Umair Hassan, Amna Parveen and Ibrahim A. Hameed;
project administration, Sara Ghorashi, Mona M. Jamjoom and Abdel-Haleem Abdel-Aty; funding
acquisition, Sara Ghorashi, Mona M. Jamjoom and Abdel-Haleem Abdel-Aty All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R104), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: This work was supported by Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R104), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia. We also thank the anonymous reviewers for their immense efforts
in reviewing our manuscript and for providing valuable feedback to improve the quality of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Daepp, M.I.; Binet, A.; Gavin, V.; Arcaya, M.C.; Consortium, H.N.R. The moving mapper: Participatory action research with big

data. J. Am. Plan. Assoc. 2022, 88, 179–191. [CrossRef]
2. Quy, V.K.; Nam, V.H.; Linh, D.M.; Ban, N.T.; Han, N.D. Communication solutions for vehicle ad-hoc network in smart cities

environment: A comprehensive survey. Wirel. Pers. Commun. 2022, 122, 2791–2815. [CrossRef]
3. Iliashenko, O.; Iliashenko, V.; Lukyanchenko, E. Big data in transport modelling and planning. Transp. Res. Procedia 2021,

54, 900–908. [CrossRef]
4. Shu, W.; Li, Y. A novel demand-responsive customized bus based on improved ant colony optimization and clustering algorithms.

IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]

http://doi.org/10.1080/01944363.2021.1957704
http://dx.doi.org/10.1007/s11277-021-09030-w
http://dx.doi.org/10.1016/j.trpro.2021.02.145
http://dx.doi.org/10.1109/TITS.2022.3145655

ISPRS Int. J. Geo-Inf. 2023, 12, 117 20 of 21

5. Hamdi, A.; Shaban, K.; Erradi, A.; Mohamed, A.; Rumi, S.K.; Salim, F.D. Spatiotemporal data mining: A survey on challenges
and open problems. Artif. Intell. Rev. 2022, 55, 1441–1488. [CrossRef] [PubMed]

6. Yu, W.; Huang, Q. A deep encoder-decoder network for anomaly detection in driving trajectory behavior under spatio-temporal
context. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103115. [CrossRef]

7. Toch, E.; Lerner, B.; Ben-Zion, E.; Ben-Gal, I. Analyzing large-scale human mobility data: A survey of machine learning methods
and applications. Knowl. Inf. Syst. 2019, 58, 501–523. [CrossRef]

8. Reyes, G.; Lanzarini, L.; Hasperué, W.; Bariviera, A.F. Proposal for a pivot-based vehicle trajectory clustering method. Transp. Res.
Rec. 2022, 2676, 281–295. [CrossRef]

9. Paterson, M.; Dančík, V. Longest common subsequences. In Proceedings of the International Symposium on Mathematical Foundations
of Computer Science; Springer: Berlin/Heidelberg, Germany, 1994; pp. 127–142.

10. Nakamura, T.; Taki, K.; Nomiya, H.; Seki, K.; Uehara, K. A shape-based similarity measure for time series data with ensemble
learning. Pattern Anal. Appl. 2013, 16, 535–548. [CrossRef]

11. Briggs, I.C. Machine contouring using minimum curvature. Geophysics 1974, 39, 39–48. [CrossRef]
12. Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67.

[CrossRef]
13. Wolny, A.; Ogryzek, M.; Źróbek, R. Challenges, opportunities and barriers to sustainable transport development in functional

urban areas. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering; ICEE Vilnius
Gediminas Technical University, Department of Construction Economics: Vilnius, Lithuania, 2017; Volume 10, pp. 1–9.

14. Besse, P.C.; Guillouet, B.; Loubes, J.M.; Royer, F. Review and perspective for distance-based clustering of vehicle trajectories.
IEEE Trans. Intell. Transp. Syst. 2016, 17, 3306–3317. [CrossRef]

15. Zheng, S.; Guan, D.; Yuan, W. Semantic-aware heterogeneous information network embedding with incompatible meta-paths.
World Wide Web 2022, 25, 1–21. [CrossRef]

16. Yuan, H.; Chen, B.Y.; Li, Q.; Shaw, S.L.; Lam, W.H. Toward spacetime buffering for spatiotemporal proximity analysis of
movement data. Int. J. Geogr. Inf. Sci. 2018, 32, 1211–1246. [CrossRef]

17. Yuan, G.; Sun, P.; Zhao, J.; Li, D.; Wang, C. A review of moving object trajectory clustering algorithms. Artif. Intell. Rev. 2017,
47, 123–144. [CrossRef]

18. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann: Waltham, MA, USA, 2011.
19. Ding, C.H.; He, X.; Zha, H.; Gu, M.; Simon, H.D. A min-max cut algorithm for graph partitioning and data clustering. In

Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001;
pp. 107–114.

20. Li, H.; Liu, J.; Wu, K.; Yang, Z.; Liu, R.W.; Xiong, N. Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and
Density. IEEE Access 2018, 6, 58939–58954. [CrossRef]

21. Cong, J.; Smith, M. A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design. In
Proceedings of the 30th International Design Automation Conference, Dallas, TX, USA, 14–18 June 1993; pp. 755–760.

22. Böhringer, C.; Rutherford, T.F. Integrated assessment of energy policies: Decomposing top-down and bottom-up. J. Econ. Dyn.
Control 2009, 33, 1648–1661. [CrossRef]

23. Guha, S.; Rastogi, R.; Shim, K. Cure: An efficient clustering algorithm for large databases. Inf. Syst. 2001, 26, 35–58. [CrossRef]
24. Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007, 60, 208–221. [CrossRef]
25. Parikh, M.; Varma, T. Survey on different grid based clustering algorithms. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2014,

2, 427–430.
26. Bouveyron, C.; Brunet-Saumard, C. Model-based clustering of high-dimensional data: A review. Comput. Stat. Data Anal. 2014,

71, 52–78. [CrossRef]
27. Zhang, Z.; Huang, K.; Tan, T. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In

Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006;
Volume 3, pp. 1135–1138.

28. Chen, L.; Özsu, M.T.; Oria, V. Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, Baltimore, MD, USA, 14–16 June 2005; pp. 491–502.

29. Eiter, T.; Mannila, H. Computing Discrete Fréchet Distance 1994. Available online: https://www.researchgate.net/publication/
228723178_Computing_Discrete_Frechet_Distance (accessed on 2 December 2022).

30. Chen, J.; Wang, R.; Liu, L.; Song, J. Clustering of trajectories based on Hausdorff distance. In Proceedings of the IEEE
2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011;
pp. 1940–1944.

31. Rick, C. Efficient computation of all longest common subsequences. In Proceedings of the Scandinavian Workshop on Algorithm
Theory, Bergen, Norway, 5–7 July 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 407–418.

32. Vlachos, M.; Kollios, G.; Gunopulos, D. Discovering similar multidimensional trajectories. In Proceedings of the IEEE 18th
International Conference on Data Engineering, San Jose, CA, USA, 26 February–1 March 2002; pp. 673–684.

33. Chen, B.Y.; Yuan, H.; Li, Q.; Shaw, S.L.; Lam, W.H.; Chen, X. Spatiotemporal data model for network time geographic analysis in
the era of big data. Int. J. Geogr. Inf. Sci. 2016, 30, 1041–1071. [CrossRef]

http://dx.doi.org/10.1007/s10462-021-09994-y
http://www.ncbi.nlm.nih.gov/pubmed/33879953
http://dx.doi.org/10.1016/j.jag.2022.103115
http://dx.doi.org/10.1007/s10115-018-1186-x
http://dx.doi.org/10.1177/03611981211058429
http://dx.doi.org/10.1007/s10044-011-0262-6
http://dx.doi.org/10.1190/1.1440410
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1109/TITS.2016.2547641
http://dx.doi.org/10.1007/s11280-021-00903-5
http://dx.doi.org/10.1080/13658816.2018.1432862
http://dx.doi.org/10.1007/s10462-016-9477-7
http://dx.doi.org/10.1109/ACCESS.2018.2866364
http://dx.doi.org/10.1016/j.jedc.2008.12.007
http://dx.doi.org/10.1016/S0306-4379(01)00008-4
http://dx.doi.org/10.1016/j.datak.2006.01.013
http://dx.doi.org/10.1016/j.csda.2012.12.008
https://www.researchgate.net/publication/228723178_Computing_Discrete_Frechet_Distance
https://www.researchgate.net/publication/228723178_Computing_Discrete_Frechet_Distance
http://dx.doi.org/10.1080/13658816.2015.1104317

ISPRS Int. J. Geo-Inf. 2023, 12, 117 21 of 21

34. Chen, B.Y.; Luo, Y.B.; Jia, T.; Chen, H.P.; Chen, X.Y.; Gong, J.; Li, Q. A spatiotemporal data model and an index structure for
computational time geography. Int. J. Geogr. Inf. Sci. 2023, 37, 550–583. [CrossRef]

35. Chen, B.Y.; Yuan, H.; Li, Q.; Lam, W.H.; Shaw, S.L.; Yan, K. Map-matching algorithm for large-scale low-frequency floating car
data. Int. J. Geogr. Inf. Sci. 2014, 28, 22–38. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/13658816.2022.2128192
http://dx.doi.org/10.1080/13658816.2013.816427

	Introduction
	Literature Review
	Problem Statement
	Density-Based Spatiotemporal Proximal Analysis
	Spatiotemporal Buffer on the Network Constraint
	Spatiotemporal Analysis in CLR Space

	Proposed Density-Based Clustering Algorithm
	Data Preparation and Preprocessing
	Study Area and Datasets
	Trajectory Data Preprocessing
	Map Matching
	Trajectory Segmentation
	Spatiotemporal Data Model

	Prototype System Development

	Experimental Evaluation of Trajectory Data Clustering
	Conclusions
	References

