
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Kristian Ødegård

Self Optimizing Control of
Recirculated Gas-Lift Problem

Master’s thesis in Industrial Chemistry and Biotechnology
Supervisor: Sigurd Skogestad
Co-supervisor: Risvan Driza
June 2023

Kristian Ødegård

Self Optimizing Control of Recirculated
Gas-Lift Problem

Master’s thesis in Industrial Chemistry and Biotechnology
Supervisor: Sigurd Skogestad
Co-supervisor: Risvan Driza
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

ABSTRACT

Abstract

The oil and gas industry is characterized by complex and dynamic production systems involving
multiple wells, riser systems, separators, compressors, and other interconnected components. These
systems are subject to various uncertainties, including fluctuating reservoir conditions and changing
well dynamics. Developing control strategies tailored to such systems are essential to optimize the
production processes, reduce operational costs, and ensure safe and stable operations.

The objective of this study is to use plantwide control design to further develop the oil and gas pro-
duction system initiated in the author’s specialization project [1]. This production system consists of
six wells, a riser system, a separator, and a recycled gas lift compressor system. The study focuses
on developing control structures that enhance safety and stabilization in the design of the regulatory
control layer and self-optimizing control (SOC) structures in the design of the supervisory layer. In
1980, Morari et al. [2] suggested a new approach to optimizing systems by moving the problem to
the control layer. Following their idea, we seek to identify controlled variables that, when set to a
constant value, will ensure near-optimal performance when the system is disturbed. By doing so,
we can remove the need for advanced optimization tools, which are computationally expensive and
prone to model error. Various methods were employed to obtain self-optimizing controlled variables
using local strategies. These methods were assessed through a Brute force approach and the uti-
lization of a Branch and Bound algorithm across changing active constraint regions. Furthermore,
decentralized PI control was utilized to assess the losses from implementing the potential controlled
variables. The model developed in this study has integrated a recycled-gas lift system, making it
more complex than previous studies of SOC implementation in oil production systems [3] [4] [5]. The
complexity increases due to supply pressure being dependent on the performance of the compressor
and the pressure of the separator rather than being constant.

The results of this study reveal the challenges of applying local methods to highly non-linear
systems. The complexity of the system makes it difficult to accurately determine the optimal
measurement combinations. Additionally, trying to control the multiple gas lift chokes proved
difficult using decentralized control, which limited the number of unconstrained degrees of freedom
evaluated in this study. However, despite these challenges, the study demonstrates that simple
approaches often generate adequate results in regions with relatively stable process conditions.

II

SAMMENDRAG

Sammendrag

Olje- og gassindustrien kjennetegnes av komplekse og dynamiske produksjonssystemer som in-
volverer flere brønner, stigerørssystemer, separatorer, kompressorer og andre sammenkoblede kom-
ponenter. Disse systemene er underlagt ulike usikkerheter, inkludert variabel reservoarforhold og
endringer i brønnenes dynamikk. Utvikling av styringsstrategier skreddersydd for slike systemer
er avgjørende for å optimalisere produksjonsprosessen, redusere driftskostnader og sikre trygg og
stabil drift.

Målet med denne studien er å bruke anleggsbasert kontroll utforming for å videreutvikle olje-
og gassproduksjonssystemet som ble initiert i forfatterens spesialiseringprosjekt [1]. Dette produk-
sjonssystemet består av seks brønner, et stigerørssystem, en separator og et resirkulert gassløft
kompressorsystem. Studien fokuserer på å utvikle kontrolsystemer som forbedrer sikkerhet og sta-
bilisering i utformingen av reguleringssjiktet og selvoptimerende kontrollstrukturer i utformingen
av overordnet styringssjikt. I 1980 foreslo Morari et al. [2] en ny tilnærming til optimalisering av
systemer ved å flytte problemet til kontrollsystemet. I tråd med deres ide, søker vi å identifisere
kontrollerte variabler som, når de er satt til en konstant verdi, vil sikre nær-optimal ytelse når
systemet forstyrres. Ved å gjøre dette kan vi unngå behovet for avanserte optimaliseringsverk-
tøy som er beregningsmessig dyre og utsatt for modellfeil. Forskjellige metoder ble benyttet for
å oppnå selvoptimerende kontrollerte variabler ved hjelp av lokale strategier. Disse metodene ble
vurdert gjennom en bruteforce-tilnærming og bruken av en Branch and Bound-algoritme i en-
drende aktive begrensningssoner. Videre ble desentralisert PI-styring brukt for å vurdere tapene
ved implementering av de potensielle kontrollerte variablene. Modellen utviklet i denne studien
har integrert et resirkulert gassløftsystem, noe som gjør den mer kompleks enn tidligere studier
av selvoptimaliserende kontroll i oljeproduksjonssystemer [3] [4] [5]. Kompleksiteten øker på grunn av
at leveringstrykket avhenger av kompressorens ytelse og separatortrykket, i motsetning til å være
konstant.

Resultatene av denne studien avdekker utfordringene ved å bruke lokale metoder på sterkt ikke-
lineære systemer. Kompleksiteten i systemet gjør det vanskelig å nøyaktig bestemme optimale
målekombinasjoner. I tillegg viste det seg vanskelig å kontrollere de flere gassløft-chokeventilene
ved hjelp av desentralisert styring, noe som begrenset antallet ubegrensede frihetsgrader som ble
evaluert i denne studien. Til tross for disse utfordringene viser studien at enkle tilnærminger ofte
gir tilstrekkelige resultater i områder med relativt stabile prosessforhold.

III

PREFACE

Preface

I would like to express my gratitude to my supervisor Sigurd Skogestad and co-supervisor Risvan
Dirza for their invaluable guidance throughout my specialization project and master’s thesis. I am
especially grateful to Risvan for his constant support and assistance, even during late hours of the
night.

IV

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Thesis structure . 2

2 Theory 3

2.1 Hierarchical control . 3
2.2 Real time optimization . 3
2.3 Plantwide control . 4
2.4 Self optimizing control . 5
2.5 Nullspace method . 6
2.6 Brute Force method . 7
2.7 Valve position control . 8
2.8 Selectors . 9
2.9 Split Range control with baton strategy . 9
2.10 PID tuning . 11
2.11 SIMC method . 12
2.12 Approximation of loss . 13
2.13 Exact local method . 14
2.14 Local loss for normally distributed noise and disturbance 15
2.15 Method for minimum loss . 16
2.16 Branch and Bound . 17
2.17 Active constraint region . 18
2.18 Anti-windup . 18
2.19 Finite difference . 19
2.20 Oil and gas operation/GOR effect . 20
2.21 Surge control in compressors . 21
2.22 Casadi - numerical solver . 22

3 Modelling and control 23

3.1 Model . 23
3.1.1 Objective . 23
3.1.2 Nominal point . 24
3.1.3 Well system with gas lift . 24
3.1.4 Riser and manifold system . 25
3.1.5 Separator system . 25
3.1.6 Compressor system . 26

3.2 Control Implementations . 26
3.2.1 Implementation of surge control . 26
3.2.2 Implementation of total produced gas control 28
3.2.3 Implementation of changing active constraint control 30
3.2.4 Implementation of level control . 31
3.2.5 Implementation of valve position control . 32

4 Method 33

4.1 Method Implementation . 33
4.1.1 Top-down analysis . 33
4.1.2 Case 1 . 36
4.1.3 Case 2 . 44

5 Results 51

5.1 Objective function change with GOR . 51
5.2 Regulatory control results . 52

V

CONTENTS CONTENTS

5.2.1 Surge control . 52
5.2.2 Produced gas control . 54
5.2.3 Level Control . 56
5.2.4 Valve position control . 58
5.2.5 Changing constraint regions . 60

5.3 Results of Case 1 . 62
5.3.1 Single controlled variable . 62
5.3.2 Null space method . 65
5.3.3 Exact local method . 67

5.4 Results of Case 2 . 70
5.4.1 Proposed overall control structure Branch and Bounds average loss 71
5.4.2 Case 2 linear approach . 71

6 Discussion 75

6.1 Model assumptions and limitations . 75
6.2 General observations about the results . 75

6.2.1 Case 1 . 76
6.2.2 Case 2 . 77

7 Conclusion 78

8 Further work 79

A Appendix A 4

A.1 Mearument combinations with related loss, proposed by Branch and Bounds. . . . 4
A.2 One manipulated variable, single controlled variable simulation results. 5
A.3 Nullspace method simulations results. 7
A.4 Exact local method simulations results. 9

B Appendix B 11

B.1 GyuImplemetation.py . 11
B.2 GydImplementation.py . 14
B.3 JuuImplementation.py . 17
B.4 JudImplementation.py . 19
B.5 Wd.py . 21
B.6 Wn.py . 22
B.7 FiniteDiffJuu.py . 25
B.8 FiniteDiffJud.py . 28
B.9 H from linearized model . 31
B.10 SimulatorSOCN.py . 34
B.11 ParameterSOCN.py . 42
B.12 Controlimplementations.py . 45
B.13 Calculations.py . 85

VI

LIST OF TABLES LIST OF FIGURES

List of Figures

2.1 Typical control hierarchy [6]. 3
2.2 Classical RTO-structure. Figure retrieved from [7]. 4
2.3 Control structure [6]. 6
2.4 Feedback structure with optimizer [3]. 8
2.5 Valve position control, figure retrieved from [8]. 9
2.6 Selector block logic, figure retrieved from [9]. 10
2.7 Split range control, figure retrieved from [10]. 10
2.8 Split range control with baton strategy, figure retrieved from [10]. 10
2.9 Step response of first-order plus time delay process [11]. 13
2.10 Figure depicting upwards and downwards pruning in BAB, figure retrieved from [12]. 17
2.11 Figure depicting binary branching in upwards and downwards BAB, figure retrieved

from [12]. 17
2.12 Figure depicting bidirectional branching, figure retrieved from [12]. 18
2.13 Figure depicting how change in disturbance changes cost function(J) and avtive

constraint [13]. 19
2.14 Compressor curve, pressure ratio vs massflow [14]. 21
3.1 Total case model. 23
3.2 Compressor train with surge control. 28
3.3 Proposed total produced gas control. 29
3.4 Proposed active constraint shifting. 31
3.5 Constant control of separator level. 31
3.6 Boundary control of separator level. 32
4.1 Case where the GOR of well 2 can change with ±3%. 37
4.2 Case where the GOR of well 2 can change with ±3% and the GOR of well 6 can

change with ±2%. 46
5.1 Objective function vs GOR change well 2. 52
5.2 Results of surge implementation. 53
5.3 Results of produced gas control. 55
5.4 Control of the active constraint on total produced gas. 57
5.5 Constant control of separator pressure. 58
5.6 Result of implementing VPC to control the discharge pressure of compressor 3. . . 59
5.7 Result of only using GLC 2 in the control of the discharge pressure of compressor 3. 60
5.8 Control of changing active constraint regions. 61
5.9 Control of the productionsystem with one MV used for SOC. 65
5.10 Resulting overall control structure from the results of the nullspace method. 68
5.11 Resulting overall control structure from the results of the exact local method. . . . 70
5.12 Resulting overall control structure from the results of Branch and Bound implemen-

tation. 72
A.1 Simulation results for one manipulated variable controlling single measurement . . 6
A.2 Simulation results for nullspace implementation . 8
A.3 Simulation results for exact local method implementation 10

List of Tables

3.1 Surge constraint decision variables. 27
3.2 Controller parameters recycle valves. 28
3.3 Valve opening. 29
3.4 Oil production. 29
3.5 Controller parameters total produced gas control. 30
3.6 Controller parameters constant control. 32

VII

LIST OF TABLES LIST OF TABLES

3.7 Controller parameters HH and LL control. 32
4.1 Valve openings in percent[%] . 33
4.2 Controller parameters single measurement control. 38
4.3 Controller parameters VPC using GLC3. 38
4.4 Measurement combinations for Nullspace method 39
4.5 Sensitivity matrices for Nullspace method regions 40
4.6 Measurement combinations for Nullspace method constrained case 40
4.7 Measurement combinations for Nullspace method unconstrained case 41
4.8 Controller parameters for Nullspace method constrained region. 41
4.9 Controller parameters for Nullspace method uconstrained region. 41
4.10 Combinations evaluated with the exact local method 41
4.11 Measurement errors related to the implementation of the exact local method. . . . 42
4.12 Sensitivity matrices for the exact local method . 43
4.13 Gain from gas lift choke 2 on the controlled variables 43
4.14 Optimal combination for the exact local method positive GOR 44
4.15 Optimal combination for the exact local method negative GOR 44
4.16 Controller parameters for Exact local method constrained case. 45
4.17 Controller parameters for Exact local method unconstrained case. 45
4.18 Measurement combinations proposed by Branch and Bounds 49
4.19 Sensitivity matrices found from linearized model. 49
4.20 Measurement combinations proposed by Branch and Bounds with related setpoints 50
4.21 Controller parameters Branch and Bound . 50
5.1 Table of related loss to controlling the active constraint and not in the unconstrained

region. 62
5.2 The results of controlling the proposed CVs to their optimal nominal value facing a

disturbance of +3% in the GOR of well 2. Variables with(*) are assisted with VPC.
L denotes the loss compared to optimal operating points. 63

5.3 The optimal values of the CVs at the nominal operating point and at the new oper-
ating point (GOR W2(+3%)). 63

5.4 The results of controlling the proposed CVs to their optimal nominal value facing a
disturbance of -3% in the GOR of well 2. Variables with(*) are assisted with VPC.
L denotes the loss compared to optimal operating points. 64

5.5 The CVs optimal values at the nominal operating point and at the new operating
point. 64

5.6 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of +3% in the GOR of well 2. L denotes the loss compared
to optimal operating points. 66

5.7 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of -3% in the GOR of well 2. L denotes the loss compared
to optimal operating points. 67

5.8 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of +3% in the GOR of well 2. L denotes the loss compared
to optimal operating points. 68

5.9 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of -3% in the GOR of well 2. L denotes the loss compared
to optimal operating points. 69

5.10 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of +3% in the GOR of well 2 and +2% in the GOR of
well 6. Combinations marked (NC) were not controllable. 71

5.11 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of -3% in the GOR of well 2 and -2% in the GOR of well
6. Combinations marked (NC) where not able to be controlled. 73

VIII

LIST OF TABLES LIST OF TABLES

5.12 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of +3% in the GOR of well 2 and +2% in the GOR of
well 6. Combinations marked (NC) where not able to be controlled. 74

5.13 The results of controlling the measurement combinations to their optimal nominal
value facing a disturbance of -3% in the GOR of well 2 and -2% in the GOR of well
6. Combinations marked (NC) where not able to be controlled. 74

A.1 The proposed measurement sets proposed by the different bracket and bounds methods. 4

IX

ABBREVIATIONS

Abbreviations

AD Algorithmic differentiation

CAS Computer-algebra system

CV Controlled variable

DAE Differential-algebraic equation

GOR Gas-oil ratio

IPOPT Interior point optimizer

MV Measured variable

MPC Model-predictive control

MPFM Multiphase Flow Meters

PI proportional-integral

PID proportional-integralderivative

RTO Real-time optimization

SIMC Simple Internal Method Control

SOC Self-optimizing control

VPC Valve Position Control

X

1 INTRODUCTION

1 Introduction

Production systems in the oil and gas industry are complex and dynamic, involving numerous
interconnected components and processes. The development of effective control strategies is crucial
for optimizing system performance, maximizing profit, and ensuring stability and safe operation.
In recent years, self-optimizing control (SOC) strategies have experienced increasing attention as a
viable alternative to advanced optimization tools such as real-time optimization (RTO) or Dynamic
RTO [15].

Previous research [3] [4] [5] has explored the application of SOC strategies in oil and gas produc-
tion systems, demonstrating their potential to improve system performance and economic viability.
However, the majority of studies have focused on relatively simplified models that neglect certain
aspects of real production systems. Consequently, the efficacy of SOC strategies in more complex
production systems remains largely unexplored. This master thesis seeks to address these unex-
plored aspects by implementing and testing SOC strategies in a more complex model of an oil and
gas production system. The complexity of the model is increased by introducing a re-circulated gas
lift system as part of the total produced gas handling. This addition presents new challenges and
dynamics that need to be considered in the design and optimization of control strategies.

The motivation behind this research lies in the need to explore the effectiveness of SOC strategies in
handling the increased complexity of the production system. By incorporating the re-circulated gas
lift system, the model more accurately reflects real-world production scenarios, where such systems
are commonly employed to enhance production rates and optimize reservoir recovery. Due to the
challenges in sourcing gas lift from other fields during offshore operations, the use of recycled gas
lift is favored.

This thesis has three main objectives: (i) design a regulatory control structure that is able to ensure
the safety of the operation for the given range of disturbances, (ii) obtain self-optimizing controlled
variables (CVs) through plantwide control design and comparison with real production systems, and
evaluate the losses from the implementation of the CVs and combinations of these, found by local
methods, and (iii) increase the number of disturbances and unconstrained manipulated variables
(MVs) and use branch and bound algorithms to obtain the measurement combinations with least
average loss.

The work done in this thesis is Based on the idea of moving the optimization problem to the control
layer proposed by Morari et al.(1980) [2]. Skogestad et al.(1998) [16] introduced the concept of self-
optimizing control as a strategy of achieving near optimal operation by controlling CVs at constant
setpoints. Further on, in 2000 Skogestad [6] defined strategies and considerations for obtaining a
self-optimizing control structure. Halvorsen et al. (2003) [17] introduced the concept of the optimal
self-optimizing control variable as the cost function gradient. This idea was subsequently expanded
for large-scale systems Dirza et al. (2022) [18], but practical implementation poses challenges due
to limited measurement availability. The issue of finding the self-optimizing controlled variables
was initially solved by using brute force methods [6] [19]. The proposed procedure involved analyzing
the loss related to controlling the CV at a constant setpoint for all possible disturbances, proving
a tedious task for systems with a large amount of candidate CVs. Later, local methods based on
evaluating the loss around the nominal point where developed. The local methods are based on
the assumptions that the process generally operates around this point, and the methods can thus
be used to eliminate potential CVs which results in great loss in the early stages of the design
process. [17] [20]. To find the optimal measurement combination of CVs, the nullspace method was
proposed by Alstad & Skogestad(2007) [21]. The method propose to find the optimal measurement
combination by evaluating the left nullspace of the sensitivity matrix F, which is the gain from the
disturbance on each CV. The nullspace method assumes no measurement error, which limits the
use to CVs with small potential errors. This can however be overcome by using the exact local
method, which takes measurement error into account. [17] [20]. To further improve self-optimizing CV

1 of 85

1 INTRODUCTION 1.1 Thesis structure

selection, Branch and Bound methods have been developed Cao et al.(2008,2009,2009) [22] [23] [12].
The Branch and Bound algorithms based on the minimum singular value criterion, worst case loss
and miminum average loss obtains the CV combinations which results in the least amount loss based
on the criterion. For further information about self-optimizing control principals and development,
we refer to Jascke et al.(2017) [15]

The outcomes of this research will hopefully contribute to the understanding of SOC strategies
in complex oil and gas production systems and provide insights into their potential for enhancing
system performance and their limitations. The findings will be valuable for operators and engineers
seeking to optimize production processes, improve oil recovery, and achieve higher operational
efficiency in real-world oil and gas production systems.

1.1 Thesis structure

Moving forward, the structure of the thesis will be organized into the following sections.

Section 2 will contain the theoretical background used as a basis for the subsequent sections. The
section is initiated by introducing concepts of plantwide control and different advanced control
structures, followed by an explanation of self-optimizing control, as well as topics related to the
implementation of the different local methods.

Section 3 presents the model used and the development of the regulatory control structures.

Section 4 presents the case studies and the methods used.

Section 5 presents and discusses the results obtained from the simulations and the implementation
of methods.

Section 6 discusses the simplifications of the model and the general results.

Section 7 provides a summary of the main findings in the report and their implications.

Section 8 provides recommendations for further work related to the study.

Appendix A presents the results of the simulations of the controlled variables.

Appendix B presents the Python code developed and used in this thesis.

2 of 85

2 THEORY

2 Theory

2.1 Hierarchical control

The control structure in a chemical plant is organized into several different layers to accommodate
the complexity of real systems [19]. The layers operate on distinct timescales, independently of
each other, but they are connected through setpoints and CVs, as the higher-level optimization
layers determine the setpoints for the lower-level control layers. A more detailed description of the
different layers can be found in the list below.

• Scheduling(weeks): Economic models, normally offline and manual, manager.

• Site-wide optimization(day): Real-time optimization(RTO), steady stated models, can be
manual or fully automated, process engineer.

• Local optimization(hours): on-line, can be manual or automated, RTO/Operator.

• Supervisory control(minutes): Slow actions, operator/advanced control/MPC

• Regulatory(seconds): Stabilization and fast dynamics, PID controllers.

This hierarchical structure can be observed in Figure 2.1.

Figure 2.1: Typical control hierarchy [6].

2.2 Real time optimization

Real-time optimization(RTO) is a common method used for optimization of the process inputs.
RTO is in the local optimization layer as defined in Section 2.1, and is typically scheduled in the
hour range. The RTO based on steady-state detection and or parameter estimation either estimates
the different process varibales and disturbances or based on the steady state detection re-optimizes
the system to find the optimal inputs for the given process conditions. [24]. For this purpose the
RTO needs a steady state model to calculate the most optimal values of the inputs, which leads to

3 of 85

2 THEORY 2.3 Plantwide control

potential error due to imperfect models. There are several disadvantages with the method [25]. The
most common challenges of RTO are listed below.

1. Cost related to development and updates of the model

2. The process may not operate at steady state or the settling time is long.

3. Robustness issues, related to computational issues.

4. Frequent grade changes, resulting in steady-state optimization losing it’s relevance.

5. Dynamic limitations

6. Incorrect modelling

A flowchart describing tradition RTO-implementation can be observed below.

Figure 2.2: Classical RTO-structure. Figure retrieved from [7].

2.3 Plantwide control

Plantwide control handles the structural decisions related to the design of a control system for a
chemical plant [6]. Due to the assumption that the different hierarchical layers discussed in Section
2.1 operate on different time scales, we assume immediate implementation of the setpoints calculated
by the optimization layers in the control layers. An important question is thus which variable or
variables should be controlled? Selecting the CV and its related setpoints is the first step in the
procedure for the control structure design problem. [6]:

1. CV and setpoint.

2. MVs.

3. Measurements for control purposes.

4. Control configuration (how the measurements, setpoints, and MVs are connected).

5. Controller type (MPC, PID, decoupler, etc.).

Skogestad [26] proposed a top-down and bottom-up procedure for the control structure design of
chemical plants. The focus of the method is to find the best self-optimizing variables for near-
optimal operation, and control structure for satisfactory and stable operation.

Top-down analysis

1. Define operational objectives and constraints (scalar cost function for minimization).

2. Identify dynamic and steady-state degrees of freedom.

3. Identify CVs. This includes controlling active constraints and possible CVs for SOC.

4 of 85

2 THEORY 2.4 Self optimizing control

4. Define at which point the production rate should be set.

Bottom-up design

1. Regulatory control layer for stabilization and local disturbance rejection.

2. Supervisory control layer, keep variables at optimal setpoints for SOC.

3. Optimization layer, identify active constraints and compute optimal setpoints.

4. Validation with non-linear simulations.

2.4 Self optimizing control

SOC is used to automatically adjust the control parameters of a system to achieve optimal perfor-
mance in real-time, without needing constant re-optimization. The idea to translate the economic
objectives into the control layer was presented by Morari et al.(1980) [2]. The intent was to control
a combination of process variables to a constant value, to achieve an optimal adjustment of the
MVs, thus resulting in optimal operation. Morari proposed to use simple feedback controllers to
achieve this, however, the ideas were somewhat forgotten until Skogestad presented the concept of
"SOC" based on Moraris ideas [6]. Skogestad defined the goal of SOC as:

"The goal is to find a set of CVs which, when kept at constant setpoints, indirectly led to near-
optimal operating policy." [6]

SOC aims to achieve near-optimal operation by introducing constant setpoints for the CVs. The
method eliminates the need for re-optimizing the system when disturbances occur [6]. The problem
with different timescales in the control hierarchy can thus be disregarded since the optimization
happens in the fast time scale, and the disturbance is dealt with instantly. This differs from
RTO, where the time between updating setpoints of the MVs can be hours. Another difference
between SOC and RTO is how dependent they are on consistent updates of the model and the
re-optimization. While SOC only needs a model for the analysis of the system and implementation,
a RTO needs constant updates of the model and computationally costly re-optimizations for each
new setpoint calculation.

The implementation of a self-optimizing CV can be analyzed based on the loss compared to the
optimal value. This is done by solving the optimization problem for the new disturbance and
comparing it to the cost function obtained from controlling our variable to a constant value. The
loss function is given by:

L = J(u, d)� Jopt(d) (2.1)

Where L is the difference between the implementation of SOC and the optimal value at the new
disturbance, J(u, d) is the cost function value for the SOC case, and Jopt(d) is the optimal cost
function value at the process conditions. u is the MV and d is the disturbance.

Due to the nature of SOC we expect some loss. Another parameter that can affect the loss is the
measurement noise and error. This error will be present in all methods from RTO, MPC, or SOC.

A typical control structure with a measurement combination cm and measurement noise n can be
observed in the figure below.

According to Skogestad et. al (2005) [27], the requirements for good CVs are:

• The CV should be easy to control, that is, the inputs u should have a significant effect (gain)
on c.

• The optimal value of c should be insensitive to disturbances.

5 of 85

2 THEORY 2.5 Nullspace method

Figure 2.3: Control structure [6].

• The CV should be insensitive to noise.

• In the case of several CVs, the variables should not be closely correlated.

Larsson et al. [28] proposed eight steps to reduce the number of potential CVs for their implemen-
tation of SOC on the Tennessee Eastman Process:

Step 1. Eliminate variables with no effect on the economics.

Step 2. Variables directly associated with equality constraints should be controlled.

Step 3. Choose to control active constraints.

Step 4. Eliminate/group closely related variables.

Step 5. Use process insight to eliminate additional variables.

Step 6. Eliminate single variables that, if they had constant setpoints, would yield infeasibility or
large losses when disturbances occur.

Step 7. Eliminate combinations of variables that yield infeasibility or large losses.

Step 8. Use local analysis to eliminate variables or combinations that result in a small gain matrix.

After the procedure shown above, the subsequent step is to evaluate disturbance loss and potential
implementation loss.

2.5 Nullspace method

The nullspace method is a method developed for the selection of measurement combinations that
can be used as CVs for SOC [3]. The method is based on finding a linear combination of the
available variables that result in the smallest loss. Equation 2.2 shows how we can find the optimal
measurement combination:

6 of 85

2 THEORY 2.6 Brute Force method

c = Hy (2.2)

where y is a subset of the available measurements, H is a nuxny coefficient matrix and c is the
CV that we want to control. The setpoint for c is cs which corresponds to c at the optimal point.
The nullspace method assumes no measurement error, thus the choice of CVs needs to be evaluated
carefully. We achieve optimal operation if copt(d) is independent of the disturbance, which gives
Equation 2.3.

�copt(d) = 0 (2.3)

To use the Nullspace method we need at least as many measurements as the total number of
disturbances and degrees of freedom, as shown in Equation 2.4:

ny � nu + nd (2.4)

where ny is the number of measurements, nu is the number of unconstrained degrees of freedom,
and nd is the number of disturbances. We can estimate �yopt by using the sensitivity matrix F
and the disturbance:

�yopt = yopt(d)� yopt(d⇤) = F (d� d⇤) = F�d (2.5)

where F is the matrix:

F =

✓
dyopt

ddT

◆
=

2

6664

dy
opt
1

dd1
· · · dy

opt
1

ddnd...
dy

opt
ny

dd1
· · · dy

opt
ny

ddnd

3

7775
(2.6)

where ny is the number of CVs and nd is the number of disturbances. We can then combine
Equation 2.2, 2.3 and 2.5 to find a new expression for c, as shown in Equation 2.7.

�c = HF�d = 0 (2.7)

We know that �c should be zero for all disturbances and we thus end up with:

HF = 0 (2.8)

From Equation 2.8 we can find H by obtaining the left nullspace of F . Which corresponds to the
nullspace of F T .

Figure 2.4 shows a feedback structure related to the measurement combinations.

2.6 Brute Force method

The Brute force method uses continuous evaluations and trials on the total plant to find the best-
suited CVs for SOC. The first step of the method is to look at how the different CVs respond to
disturbances. Preferably we want a CV that is insensitive to the disturbance. Morari et al. argue
that an optimal CV should not be sensitive to any disturbances. Skogestad et al. however, argue
that it is necessary that the disturbance affect the CV to a small extent. We must thus evaluate
the change in all the CVs to investigate how they are affected by the disturbances.

7 of 85

2 THEORY 2.7 Valve position control

Figure 2.4: Feedback structure with optimizer [3].

The Brute force method is based on evaluating all the potential CVs for all potential disturbances
and measurement noise. Thus, the measurement combinations are evaluated by keeping them at
their setpoint. Furthermore, the evaluations may be based on either the average loss or worst case
loss.

The worst-case loss is calculated as:

Lcwc = max
d2D,ny2N

Lc (2.9)

where Lc,wc is the worst case loss, c denotes the particular CV, D ⇢ Rnd contain all disturbances
and N ⇢ Rny contain all noise.

Lcav = E
d2D,ny2N

[Lc] (2.10)

where Lc,av is the average loss and E is the expectation operator [15]. The brute force method can
also be used to find measurement combinations on the form c = Hy. However, the scope of this
problem can become huge due to the number of possible combinations that have to be evaluated.
The number of possible control structures for the selection of n variables out of m measurements
can be calculated from Equation 2.11.

Cn

m =
⇣m
n

⌘
=

m!

(m� n)!n!
(2.11)

From this equation, it is clear that when the number of potential CVs increases, the amount of
work will become nearly infeasible.

2.7 Valve position control

Valve position control (VPC), also called input resetting, is a technique for controlling one CV
with the use of two MVs [29]. The most common area of application of VPC is to improve dynamic

8 of 85

2 THEORY 2.8 Selectors

response. Where MV1 has a fast response with limited range, and MV2 is slow with a larger range.
The MVs are then configured in parallel where MV1 controls the CV and MV2 controls MV1 to a
desired setpoint value, as shown in Figure 2.5. Another use of VPC is to use one of the MVs to
extend the steady-state range of the other controller.

Figure 2.5: Valve position control, figure retrieved from [8].

As we can observed from Figure 2.5, both of the controllers affect the CV, but C2 will try to control
@u1 to a defined setpoint.

2.8 Selectors

Selectors or override control have been used in the process industry for decades. Selectors are typ-
ically used for CV-CV switching, where a number of MVs are used to control a greater number of
CVs. The selector typically min/max selectors opens the opportunity to control the most impor-
tant variable in different active constraint regions. Thus, if CV1 has an active constraint for one
disturbance, and CV2 has an active constraint for another disturbance. The selector can decide the
CV that should be controlled [30]. Krishnamoorthy et al.(2020) [30] proposed a systematic method
for the choice of maximum or minimum selector and the feasibility of implementing a selector. The
steps for the design of a selector with one MV and multiple CVs relevant to this thesis are given
below.

1. Group the constraints into two sets Y +(Reduced input favorable for constraint satisfaction)
and Y �(Increased input favorable for constraint satisfaction).

2. Design single input single output(SISO) controllers to compute the input for the CVs.

3. For Y + use minimum selector to chose u that satisfies the constraint in the set. For Y � use
maximum selector to choose u that satisfies the constraint in the set.

Where Y + and Y � can be found by analyzing the response in the CV with a negative and positive
change in the MV.

Figure 2.6 shows a typical selector implementation with one MV and two CVs. Based on feedback
and the setpoints, each controller calculates a new input to the process. Furthermore, the selector
decides, based on configuration, which of the inputs that get implemented. Thus, only one of the
inputs can be implemented.

2.9 Split Range control with baton strategy

Split range control can be used when the system has more MVs then CVs. The control method
is normally used when there is a need to extend the steady-state control range. For a potential
system with two MV’s and one CV. The system will switch to MV2 if MV1 saturates. [10] A figure
of a typical split range controller can be observed in the figure below.

The split range controller operates with a common controller for all the MVs. The controller
settings are found by obtaining the slope ↵ and design the controller parameters for the common

9 of 85

2 THEORY 2.9 Split Range control with baton strategy

Figure 2.6: Selector block logic, figure retrieved from [9].

Figure 2.7: Split range control, figure retrieved from [10].

controller. Thus the gain of each MV will be different due to the slope, but the other parameters
like the derivative and integral time will be equal. This results in issues relating to tuning of the
controllers.

Reyes-Lua et al.(2020) [8] proposed a generalized version of split range control, using the baton
strategy. The main difference between the traditional split range controller and the generalized
one is that each MV are connected to an individual controller. The resulting change is that each
controller can be tuned to match the dynamics of the individual MV. A figure of the baton strategy
can be observed below.

Figure 2.8: Split range control with baton strategy, figure retrieved from [10].

Before Implementing the baton strategy, the sequencing of inputs need to be defined. Reyes-Lua
et al.(2020) [8] propose the following steps for choosing the sequence: The first step is to define the
maximum and minimum limits for each MV. Furthermore, the inputs should be analyzed by the
following criteria:

10 of 85

2 THEORY 2.10 PID tuning

1. Define the desired operating value for each input.

2. Consider the effect of every input on the output. Then group into:

(a) Positive gain on output

(b) Negative gain on output

3. Decide which of the inputs in each group that should be used first based on economics.

4. Test the implementation

After the decision of which active constraints should be active first the baton logic can be imple-
mented. We define i as the the MV that is active(has the baton).

1. The controller of ui computes the new input ui
⇤

2. if ui
min < ui

⇤ < ui
max

(a) keep ui active, ui ui
⇤

(b) keep remaining MV’s inactive

3. if ui
⇤ or ui

⇤ � ui
max

(a) set ui to either it’s max or min value depending on limit reached. Furthermore, pass the
baton to the next MV j.

(b) set i = j and start over.

2.10 PID tuning

The proportional-integral-derivative (PID) controller is widely used in industrial applications as one
of the most common controller types. The proportional (P) component of the PID controller, known
as the P-controller, operates in a manner where the controller’s response is directly proportional to
the magnitude of the error between the desired and actual values. Equation 2.12 defines the output
of the proportional control component.

u(t) = Kpe(t), (2.12)

where Kp is the proportional gain and e(t) is the error, the difference between the measured CV
and the setpoint of the variable. To mitigate steady-state offset resulting from the simplistic nature
of the P-controller, the I-controller, which represents the integral (I) component of the controller, is
incorporated. By integrating the error signal, the I-controller aims to minimize and correct steady-
state deviations between the measured CV and its desired setpoint. This addition enhances the
controller’s ability to achieve precise and accurate control over time. In Equation 2.13 the integral
control output can be observed:

u(t) = KI

Z
t

0
e(⌧)d⌧, (2.13)

where KI is the integral gain. The D-controller, also known as the derivative (D) component of the
controller, utilizes the rate of change of past errors to anticipate and predict the future behavior
of the system. By analyzing the temporal variations in the error signal, the D-controller provides
valuable insights into the system’s dynamics, enabling proactive adjustments and fine-tuning of the
control action. This predictive capability enhances the controller’s ability to respond swiftly to
changing conditions and improves overall system stability and performance. In Equation 2.14 the
derivative control component can be observed.

11 of 85

2 THEORY 2.11 SIMC method

u(t) = KD

de

dt
, (2.14)

where KD is the derivative gain. The complete PID control output is determined by combining
the three individual control outputs: proportional control, integral control, and derivative control.
This combination takes into account the contributions of each component to generate the overall
control signal that influences the system’s behavior. By effectively integrating the proportional,
integral, and derivative control actions, the PID controller optimizes the response and stability
of the system in order to achieve desired control objectives. The complete PID controller can be
observed in Equation 2.15.

u(t) = Kpe(t) +KI

Z
t

0
e(⌧)d⌧ +KD

de

dt
(2.15)

However, the time constant form is the most commonly employed representation of the PID control
output equation, which can be observed in Equation 2.16

u(t) = Kp

✓
e(t) +

1

⌧I

Z
t

0
e(⌧)d⌧ + ⌧D

de

dt

◆
, (2.16)

where ⌧D is the integral time and ⌧I is the derivative time. From the equation we can observe that
the tuning parameters are Kp, ⌧I and ⌧D. [31]

For the implementation of PID controllers in computers, the controllers need to be discretized.
There are several methods of dicretize, however the discrete-time velocity controller eliminates
windup in the controllers due to summation of errors are not explicity calculated. The velocity
form also has the advantage of the next input being based on the previous, making it suitable
for implementation in programming. The discretized velocity form controller can be observed in
Equation 2.17

u(tk) = u(tk�1) +Kp [e(tk)� e(tk�1)] +
Kph

Ti

e(tk) +
KpTd

h
[e(tk)� 2e(tk�1) + e(tk�2)] (2.17)

2.11 SIMC method

The SIMC method for controller tuning is systematic approach for tuning PI and PID controllers.
As mentioned in the section above, the final controller only has 3 parameters that has to be tuned.
However, this can be a time consuming exercise without a proper systematic approach. [11]

The method focuses on obtaining model parameters from either open-loop step response, closed
loop setpoint response with P-controller or from detailed model. The first approach and most
common in practise is analyzing the CVs response to a step in the MV. A descriptive figure of the
approach can be observed in Figure 2.14

From the open-loop step response the dominant lag time constant(⌧1), the plant gain(k) and the
effective delay(✓) can be approximated. From this data we can find the initial slope which is given
by k’ = k/⌧1.

For first order plus delay process which can be approximated as:

g1(s) =
k

⌧1s+ 1
e�✓s, (2.18)

We get the following SIMC tuning rules:

12 of 85

2 THEORY 2.12 Approximation of loss

Figure 2.9: Step response of first-order plus time delay process [11].

Kc =
1

k

⌧1
⌧c + ✓

, (2.19)

⌧I = min{⌧1, 4(⌧c + ✓)}. (2.20)

For the second order model plus delay which can be approximated as:

g1(s) =
k

(⌧1s+ 1)(⌧2s+ 1)
e�✓s, (2.21)

We get the following SIMC tuning rules:

Kc =
1

k

⌧1
⌧c + ✓

, (2.22)

⌧I = min{⌧1, 4(⌧c + ✓)}. (2.23)

⌧D = ⌧2 (2.24)

2.12 Approximation of loss

The non-linear cost function J is locally approximated using a second-order Taylor expansion around
the moving optimal point (uopt, d). For a given disturbance d, this expansion gives J(u, d) as the
sum of the cost at the optimal point, the gradient of J at the optimal point dotted with the difference
between the current point and the optimal point, the quadratic term involving the Hessian matrix
H at the optimal point, and an error term of order O3.

J(u, d) = J(uopt, d) + JT

u (u� uopt) +
1

2
(u� uopt)

TJuu(u� uopt) +O3. (2.25)

In Equation 2.25 Juu is the Hessian matrix of the cost function and Ju is the Jacobian matrix of
the cost function. Due to the second order expansion around the optimum which results in Ju the

13 of 85

2 THEORY 2.13 Exact local method

Jacobian = 0, we can find the loss by simply deducting J(uopt, d) from each side of Equation 2.25,
resulting in,

L = J(u, d)� J(uopt, d)7 (2.26)

by defining e = u - uopt, the loss term in Equation 2.26 can be approximated as,

L ⇡ 1

2
eTJuue (2.27)

The loss variables is defined as z = J
1
2
uu(u� uopt) resulting in the equation.

L =
1

2
zT z (2.28)

2.13 Exact local method

The exact local method is a local method for evaluating the loss related to a control structure. [17] [20]

The exact local method is derived by using the linear approximation of the plant model. The model
is linearized around the optimal nominal operating point. For minor discrepancy from the nominal
point we have,

�y = Gy

u�u+Gy

d
�d+ n. (2.29)

Where �y is the deviation in the measurement y compared to the optimal nominal point, �u is
the deviation in the MV u compared to the optimal nominal value, �d is the deviation in the
disturbance d compared to the optimal nominal value, n is the sensor noise and Gy

u = �y

�u
and Gy

d

= �y

�d
are the gain from the input to the measurement and the gain from the disturbance to the

measurement.

From Equation 2.29 and the optimization matrix H, we can find linear combinations of the mea-
surements by evaluating,

�c = H�y (2.30)

where c is a measurement combination of the variables in y. From combining Equation 2.30 and
Equation 2.29 we get equation,

�c = HGy

u�u+HGy

d
�d+Hn. (2.31)

To use Equation 2.31 HGy
u needs to have full rank, corresponding to the number of MVs. [20]

From the assumption of perfect control, resulting in that the measurement combinations � c = 0,
an expression for �u can be derived from Equation 2.31 and the expression for the loss,

z = �J
1
2uuT (HGy)�1H

⇥
Gyd �GyuJ

�1
uu Jud�d+ n

⇤
(2.32)

z = �J
1
2uuT (HGy)�1H [F�d+ n] (2.33)

In the equation abowe, F is the sensitivity matrix,

14 of 85

2 THEORY 2.14 Local loss for normally distributed noise and disturbance

F = Gyd �GyuJ
�1
uu Jud, (2.34)

which either can be found from the linearization of the system or by evaluating the optimal change
in y by re-optimizing with small changes in the disturbance.

F =

✓
dyopt

ddT

◆
. (2.35)

The disturbance and noise are scaled by the use of the scaling matrices Wd and Wn. From the
previous equations, the scaling matrices are defined as.

�d = Wdd
0, (2.36)

n = Wnn
0, (2.37)

where n’ and d’ are scaled noise and disturbance vectors. When implementing the scaled terms
into Equation 2.33 and 2.28 the expression for the loss becomes,

L =
1

2

����J
1
2uuT (HGy)�1HF̃

d0

n0

�����
2

2

(2.38)

Where the term is calculated using the second matrix norm. For simplification of the loss term
found in Equation 2.38, matrix M can be introduced,

M = J
1
2uuT (HGy)�1HF̃ , (2.39)

resulting in the a new expression for the loss defined as,

L =
1

2

����M

d0

n0

�����
2

2

. (2.40)

In the expression in Equation 2.38,F̃ or Y as it may be defined is represented by.

F̃ ,
⇥
FWd Wn

⇤
(2.41)

2.14 Local loss for normally distributed noise and disturbance

There have been developed several average and worst-case loss methods for different assumptions.
In this paper we assume that the noise and disturbance are uniformly distributed over the set.
Halvorsen et al.(2003) [17] showed that when the noise and disturbance are uniformly distributed
over the set,

DN2 = {(d0, n0)| k
⇥
d0 n0⇤T k2 1}, (2.42)

the worst case loss can be calculated by,

15 of 85

2 THEORY 2.15 Method for minimum loss

Lwc = max������

2

4d
0

n0

3

5

������
2

1

= L =
1

2

����M

d0

n0

�����
2

2

= L =
1

2
kMk22 =

1

2
�2(M), (2.43)

where �2 is the largest singular value.

Kariwala et al.(2008) [32] showed that the average loss when the noise and disturbance are normally
distributed with no unit and mean variance,

DN2 = {d0 ⇠ N (0, I), n0 ⇠ N (0, I)} (2.44)

becomes,

Lavg = E
d0,n02DNN

=
1

2

M

d0

n0

��
=

1

2
kMk2

F
(2.45)

2.15 Method for minimum loss

For the implementation of the CV c = Hy, which is a optimal linear combination of the available
measurements y. The previous terms of loss in Section 2.14 can be used to find H by minimizing
the loss terms. In the case of normally distributed noise and disturbance, H can be found from
minimizing the average loss found in Equation 2.45.

H = argmin
H

1

2
kMk2

F
= argmin

H

1

2

����J
1
2
uu(HGy)�1HF̃

����
2

F

(2.46)

The resulting expression is a non-convex optimization problem often difficult to solve. However,
Kariwala et al.(2008) [32] proposed to exploit the non-unique properties in selecting H. Thus, re-
defining the problem from non-convex to a convex optimization problem. The formulation can be
found below.

min
H

kHF̃kF

s.t. HGyu = J
1
2
uu.

(2.47)

To redefine the problem from non-convex to convex, it is proposed to cancel the non-linearity in
M by using a non-singular Matrix Q resulting in HGyu = J

1
2
uu. Jascke et al.(2017) [15] stated that

the M matrix remains constant when multiplied by any non-singular matrix, and will thus not be
effected.

Yelchuru and Skogestad(2012) [33] proposed an analytical solution to the problem,

HT = Gyu(F̃ F̃ T)�1. (2.48)

For further reference to the analytical solution in this paper F̃ is changed to Y, the H matrix can
thus be found by.

HT = Gyu(Y Y T)�1. (2.49)

16 of 85

2 THEORY 2.16 Branch and Bound

2.16 Branch and Bound

The branch and bound method(BAB) is an algorithmic technique used to solve optimization prob-
lems. The typical use of the algorithm is when the problem involves searching through a large
number of possible solutions for combinatorial optimization problems. There have been developed
several BAB methods, with the most common being the upwards and downwards pruning methods
depicted in Figure 2.10

Figure 2.10: Figure depicting upwards and downwards pruning in BAB, figure retrieved from [12].

The figure depicts an example for the application of downwards and upwards BAB for the selection
of a subset of 2 elements out of 6 potential measurements. [12] The figure on the left depicts the
downwards BAB method. Here, the root consists of all the available measurements in this example
6. Starting from the top each node represents a subset obtained by removing a measurement
from the set of all the available measurements. In this example, the number related to each node
represents the measurement removed from the total set. The figure on the right depicts the upward
BAB method. Compared to the downward method, the set contains no measurements at the start
of the implementation. The number related to each node in this case represents the measurement
added to the total set. The BAB method work by evaluating the nodes, and pruning(dischard)
the branches related to measurement sets that do not lead to a lower optimal loss. The two BAB
methods can also be combined, resulting in a Bidirectional BAB method. In this method both
upward and downward branching and pruning are used for increased efficiency. In Figure 2.11 an
example of bidirectional branching can in the upwards and downward BAB methods.

Figure 2.11: Figure depicting binary branching in upwards and downwards BAB, figure retrieved from [12].

In Figure 2.12 an example of binary branching can be observed. In the right node starting from
the we can observe that the branches correspond to the right side of the binary tree in figure in the
downwards BAB method in 2.11 , while at the left initial node the branching corresponds with the
right strategy for the upwards BAB 2.11. This feature can be taken advantage of to increase the
efficiency of the method. The method can then choose either the right path or the left path based
on which is more efficient. [12].

17 of 85

2 THEORY 2.17 Active constraint region

Figure 2.12: Figure depicting bidirectional branching, figure retrieved from [12].

Cao et al.(2009) [22] developed an algorithm for the worst case loss in measurement selection based
on the Exact local method. Before further including the evaluation of average loss. [23] For more
information about the methods we reefer to these papers. The related matlab files for the methods,
which where used in this paper can be found in. [34] [35]

2.17 Active constraint region

Due to the nature of operation and possible disturbances and other effects on the process, different
constraints can become active or deactivate. Maarleveld et al.(1970) [36] proposed to control the
optimal active constraints. Which from a self optimizing view is logical since the active constraint
variable doesn’t change with the disturbance. However, when the operation leaves the region
where the constraint becomes inactive, a new control structure and a change in CVs needs to be
implemented. [13] In practise this means that a self optimizing strategy needs to be implemented
separately for the different constraint regions. The change in CVs and constraint control can be
implemented with selectors discussed in Section 2.8.

In Figure 2.13 the cost function is depicted for disturbance d1 and d2. It can be observed that for
disturbance d1 g is active and for disturbance d2 g is inactive.

2.18 Anti-windup

Windup in PID control refers to a phenomenon that occurs when the integral term of a PID
controller continues to accumulate error even when the system is saturated or unable to respond
to the controller’s output effectively. This can lead to overshoot, prolonged settling time, and
instability in the controlled system.

When a PID controller is unable to achieve the desired control action due to physical limitations,
such as a maximum or minimum output constraint, the integral term can keep integrating the
error, causing an excessive buildup of the integral term. This accumulated integral term, also
known as integrator windup, can result in a significant overshoot or prolonged settling time once
the constraints are lifted or the system becomes capable of responding to the controller output.

To mitigate windup, various anti-windup techniques are employed. These techniques aim to limit
or reset the integral term when the controller output saturates, preventing excessive integral ac-
cumulation. Some common anti-windup methods include back-calculation, clamping, conditional

18 of 85

2 THEORY 2.19 Finite difference

Figure 2.13: Figure depicting how change in disturbance changes cost function(J) and avtive constraint [13].

integration, and gain scheduling. [37]

2.19 Finite difference

Finite difference methods are applicable for estimating derivatives of functions at specific points.
Usually, when it comes to approximating analytical solutions to differential equations, either a
continuous function or a discrete function is employed. This function, defined within a designated
region of space and/or time, fulfills the boundary conditions specified for that particular region.
The method is used because analytical solutions to differential equations can be hard to obtain.
The method works by reformulating the derivative terms in the differential equation with finite
difference approximations. [38]

For the differentiation of one variable the derivative can be approximated as,

f 0(x) = lim
h!0

=
f(x+ h)� f(x)

h
(2.50)

Where f’(x) is the derivative of the function, f(x + h) is the function value at x plus a small h and
f(x) is the function value at the nominal point.

For first-order differentiation of one variable with multiple variables the differential equation can
be approximated as.

fx(x, y) ⇡
f(x+ h, y)� f(x� h, y)

2h
(2.51)

For second-order differentiation of one variable with multiple variables the differential equation can
be approximated as.

fxx(x, y) ⇡
f(x+ h, y)� 2f(x, y) + f(x� h, y)

h2
(2.52)

For second-order differentiation of two variables the differential equation can be approximated as.

19 of 85

2 THEORY 2.20 Oil and gas operation/GOR effect

fxy(x, y) ⇡
f(x+ h, y + k)� f(x+ h, y)� f(x, y + k) + 2f(x, y)� f(x� h, y)� f(x, y � k) + f(x� h, y � k)

2hk
(2.53)

Where h and k are small values added to each variable to perturb the nomainal point.

2.20 Oil and gas operation/GOR effect

The reservoir is the most critical component of an oil production system. Reservoirs are categorized
as water-drive, gas-cap drive, or dissolved gas drive reservoirs. In water-drive reservoirs, a decrease
in pressure causes the expansion and influx of groundwater into the reservoir, pushing oil and gas
to the reservoir’s upper portion. If the production rate is kept constant, this type of reservoir
maintains its pressure for a longer duration compared to other reservoir types.

In gas-cap drive reservoirs, the gas separates from the oil/gas mixture and accumulates at the top
of the reservoir. If the gas in the cap is extracted too quickly, the reservoir pressure experiences a
significant drop, thereby reducing the production potential.

In dissolved gas drive reservoirs, the gas remains in a dissolved state within the oil, forming a liquid
phase. Early pressure maintenance is often necessary in these reservoirs due to the possibility of
two-phase flow formation caused by pressure decline. [39]

In order to extract oil and gas from petroleum reservoirs, wells must be drilled to create pathways
for extraction. These production wells are comprised of several components including packers, a
production pipe (tubing), casings, and a wellhead equipped with multiple chokes. The packers serve
to isolate the annulus at the bottom of the tubing, directing the produced fluid to escape through
the perforations and into the lower part of the well. The tubing is responsible for transporting
the oil and gas to the surface. Casings are pipes that provide structural support to the well. The
wellhead incorporates various chokes, which are employed to regulate the flow from the well. The
primary choke used for flow control is referred to as the production choke, which can be adjusted to
modify the flow rate. By closing the production choke, the bottom-hole flowing pressure increases,
resulting in a reduced pressure difference between the reservoir and the bottom-hole of the well,
consequently leading to a decrease in production rate.

Wells can be classified based on their Gas-Oil Ratio (GOR), which quantifies the relationship
between oil and gas in the produced fluid. Another classification method involves examining their
productivity index, which establishes a relationship between the liquid flow within the well and
the pressure difference between the reservoir and the bottom-hole [39]. Wellheads can be positioned
either subsea or at topside production facilities. In the case of a subsea wellhead, a riser which is a
pipe section can be utilized for transporting the fluid to the topside production facilities. Once at
the topside, the production fluid is conveyed to the inlet separator.

Typically, the production fluid in oil wells comprises various compounds, primarily hydrocarbons
in both gas and liquid phases, along with water and solids. The flow of production fluid is often
turbulent, characterized by irregular movement of the liquid. To separate the different components
in the production fluid for further processing, separators are employed. The horizontal separator
is the most commonly used type due to its versatility and cost-effectiveness. It separates the
components based on their density differences and the force of gravity [39].

Artificial lift refers to methods employed to enhance oil production from wells. One widely used
artificial lift method is gas lift. This method involves injecting gas into the annulus of a well. The
injected gas travels to an injection valve located in the lower sections of the well and enters the
tubing. The gas affects the production fluid by reducing its density, consequently lowering the
hydrostatic pressure and increasing the flow rate. Additionally, the injected gas exerts an upward
force on the production fluid due to expansion effects [39]. The gas lift system utilizes produced

20 of 85

2 THEORY 2.21 Surge control in compressors

gas as the injection gas and relies on a compressor system to recompress the produced gas before
it can be used for injection. The gas lift system also requires a gas lift manifold with piping and
chokes connected to the relevant wells, as well as an injection valve at the bottom of the annulus.
According to Hu (2004) [40], gas lift increases the production of a well until the hydrostatic pressure
drop can no longer compensate for the increased friction caused by the higher gas mass in the
tubing. Injecting more gas beyond this point will actually decrease the oil production.

Gas lift often utilizes a portion of the produced gas. The pressure loss from the reservoir to the
production facilities necessitates recompression of the gas. Compressors are commonly employed
for this purpose in most production facilities. Various types of compressors are available for meeting
this requirement.

2.21 Surge control in compressors

In compressor operation there is an inherent risk of potential damage to the compressor. One
major risk factor is the surge phenomenon. Surge can be described as when the gasflow through
the compressor is to low relative to the size of the compressor. The pressure ratio will increase until
the discharge pressure exceeds the suction pressure.Thus, the compressor becomes unable to deliver
energy to the process fluid resulting in reversed flow through the compressor. [41] Due to the risk
and potential damage, different anti-surge measures are implemented in most compressor systems.
One of these measures is designing the compressors with recycle valves, that can counteract the
insufficient flow through the compressor. The valves are implemented with fast-acting controllers,
typically measuring the surge flow, that can react fast if the flow closes in on the surge limit. An
important observation is that the recycle valves should be closed during normal operation due to
economic reasons(cost of compression). Below a typical compressor curve with surge constraint can
be observed.

Figure 2.14: Compressor curve, pressure ratio vs massflow [14].

The red dashed lines shows the surge and choke lines, the black dashed lines shows the upper and
lower bounds on the speed, the grey dashed lines shows operating points for the implementation of
three constant speeds. While the red and blue lines shows operating points for parallel and serial
configuration of compressors. [14].

Milosavljevic et al.(2020) proposed to the following condition for modelling the surge in a compressor

21 of 85

2 THEORY 2.22 Casadi - numerical solver

model that the model in this work is based on.

G1,i =
1

s1,i
(s0,i +⇧i)�mc,i � s2,i 0 (2.54)

where s0,i, s1,i and s2,i are surge line coefficients for compressor i, which are decision variables. ⇧i

is the pressure ratio of compressor i and mc,i is the massflow through compressor i.

2.22 Casadi - numerical solver

CasADI, an open-source software framework, is designed for numerical optimization and was ini-
tially developed as a tool for algorithmic differentiation (AD) using a computer-algebra system
(CAS) syntax. The project was initiated by Joel Andersson and Joris Gillis in 2018.

Built on a symbolic framework, CasADI treats variables as symbolic values and represents them
as matrices. This framework enables the solution of various optimization problems associated with
optimal control. It provides users with a toolkit that facilitates the implementation of optimization
problems, minimizing both the required effort and any potential loss of performance.

CasADI supports a wide range of optimization algorithms, including gradient-based methods, non-
linear programming solvers, and mixed-integer programming solvers. It employs efficient auto-
matic differentiation techniques to compute derivatives, which are crucial for gradient-dependent
optimization algorithms.

By utilizing a symbolic approach, CasADI offers an intuitive and concise means of expressing op-
timization problems. It incorporates an extensive set of mathematical operations and functions,
enabling the modeling of complex systems and the formulation of sophisticated optimization ob-
jectives and constraints.

One notable feature of CasADI is its ability to generate highly efficient numerical code for op-
timization problems. It can produce code in multiple programming languages such as C, C++,
and Python, allowing seamless integration with existing codebases and leveraging the performance
advantages of compiled languages.

CasADI has gained significant popularity among researchers and practitioners in the field of nu-
merical optimization due to its user-friendly nature, efficiency, and extensibility. It has found
applications in various domains, including robotics, control systems, machine learning, and energy
optimization.

In summary, CasADI is a powerful open-source software framework that provides a comprehensive
toolkit for numerical optimization. It simplifies the implementation of optimization problems, offers
efficient algorithms, and supports code generation for high-performance computations. [42]

22 of 85

3 MODELLING AND CONTROL

3 Modelling and control

3.1 Model

The model used in this paper is based on previous work performed in the author’s specialization
project [1], with some additional modifications and new implementations. In this section, the model
basis from the specialization project will be described briefly, while the new modifications and
implementations will be described in more detail.

The model employed in this study comprises a system of 6 wells, each connected to a distinct reser-
voir. The wells are linked to a shared subsea production manifold through individual production
chokes, as depicted in Figure 3.1.

The fluids produced by the six wells are routed from the manifold to the production platform by
a vertical riser. Upon reaching the surface, the production fluid undergoes separation in an inlet
separator, which separates the oil from the gas. The oil and the gas depart the separator in the
bottom and top sections respectively. The oil is then routed downstream for further processing,
which is beyond the scope of this study. The gas is either routed to export for further processing
or to be used for gas lift. As with further processing of the oil, the processing of the export gas
is outside of the scope. The gas designated to be used for the gas lift is routed to a three-stage
compressor train designed in a serial configuration. The discharge gas from the compressor train
is transported from the surface facilities to the shared subsea gas lift manifold. In the gas lift
manifold, the gas is distributed to the wells based on demand.

For a more detailed description of the overall model, see "Modelling and optimization of recirculated
gas lift problem" (2022) [1]. The total production system and the scope of this work can be observed
in Figure 3.1.

Figure 3.1: Total case model.

3.1.1 Objective

Upon development of the complete model, the final non-linear optimization problem was formu-
lated. The objective function was designed to maximize the the total oil production, specifically

23 of 85

3 MODELLING AND CONTROL 3.1 Model

the oil routed to export(wos), while minimizing the cost related to power consumption in the
compressors(Pci). The variables within the objective function are multiplied by factors represent-
ing the price of oil ($/kg/s) and the price of power ($/kW).

The optimization problem is subject to several constraints, including the amount of produced gas
(10 kg/s), the total gas utilized for gas lift (8 kg/s), and the total power consumption (18 kW).
These constraints are linked to the capacity limitations of the system. Additionally, the model
equations and the upper and lower boundaries of the states and control variables serve as further
constraints. Equation 3.1 provides a representation of the objective function and the constraints.

min
✓

� 0.6wos + 0.03
3X

i=1

Pci

s.t. g(✓) = 0

f(✓) = 0

wgs � wmax

gs 0
6X

i=1

wgli � wmax

gl
 0

3X

i=1

PCi � Pmax

C 0

xL x xU

uL u uU

zL z zU

(3.1)

where ✓ represents the model states and controlled variables. g(✓) are the algebraic equations of
the model, f(✓) are the differential equations of the model, wmax

gs is the maximum produced gas,
wmax

gl
is the maximum gas lift, Pmax

C
is the maximum power consumption, xL and xU are the lower

and upper bounds of the differential states, zL and zU are the lower and upper bounds of the
algebraic states and uL and uU are the lower and upper bounds of the manipulated variables. For
information about the upper and lower bounds on the states, the reader is refereed to [1].

3.1.2 Nominal point

At the optimal nominal point we find from optimization that the value of wgs is 10 kg/s and is
thus and active constraint. However, the total power is found to be 13.0863 KW, thus not active
and the total gas lift flow 3.67915 kg/s, thus not active.

3.1.3 Well system with gas lift

As mentioned in 3.1 the well system comprises of 6 wells, with distinct reservoirs. Consequently, any
modifications to the parameters within a specific reservoir will solely effect the reservoir parameters
in the corresponding well.

The wells are produced due to the pressure differential between the reservoir and bottom section
of the well. To facilitate production flow from the reservoir, gas lift is introduced in the lower
sections of the well via and injection valve that connects the annular section to the tubing. The gas
lift severs to descrease the density of the production fluid, subsequently reducing the bottomhole
pressure increasing the flow from the reservoir.

The production fluid eventually reaches the wellhead at the seabed, where the overall flow is deter-
mined by the difference in pressure over the production choke and the corresponding choke opening.

24 of 85

3 MODELLING AND CONTROL 3.1 Model

The model equations employed are based on differential-algebraic equations (DAE), where the mass
within each compartment is calculated based on the differential flow of mass into and out of the
compartment. The remaining well variables are calculated algebraically.

A summary of the variables in the well system can be found below for well i, with their related
equations found in Appendix B.10 or in [1].

xwell = [mgai ,mgti ,moti]
T (3.2a)

zwell = [paii , pwhi , pwii , pbhi , ⇢aii , ⇢mi , wivi , wpci , wpgi , wpoi , wroi , wrgi]
T (3.2b)

pwell = [GORi, presi]
T (3.2c)

uwell = [upci , ugli]
T (3.2d)

Where x are differential states, z are algebraic states, p are constant parameters and u are manipu-
lated variables. Further on, mga is the mass rate of gas in the annulus, mgt is the mass rate of gas
in the tubing, mot is the mass rate of oil in the tubing, pai is the annulus pressure at the injection
point, pwh is the wellhead pressure, pwi is the tubing pressure at the gas lift injection point, pbh
is the bottomhole pressure, ⇢ai is the annulus density, ⇢m is the mixed oil and gas density in the
tubing, wiv is the flow through the injection valve, wpc is the flow through the production choke,
wpg is the flow of gas through the production choke, wpo is the flow of oil through the production
choke, wrg is the flow of gas from the reservoir, wro is the flow of oil from the reservoir, GOR is
the gas oil ratio, pres is the reservoir pressure, upc is the opening of the production choke and ugl

is the opening of the gas lift choke.

3.1.4 Riser and manifold system

Production fluid from the 6 wells meet at a common manifold and mix. . Subsequently, the oil
and gas are transported from the subsea facilities to the production facilities located above sea
level. The transportation process through the riser entails a pressure drop, primarily influenced by
friction within the pipes and variations in elevation.

A summary of the variables in the riser and manifold system can be found below, with their related
equations found in Appendix B.10 or in [1].

xriser = [mor,mgr]
T (3.3a)

zriser = [prh, ⇢r, pm, wpr, wto, wtg]
T (3.3b)

Where mor is the mass rate of oil in the riser, Where mgr is the mass rate of gas in the riser, Where
prh is the riserhead pressure, ⇢r is the riser density, Where pm is the manifold pressure, wpr is the
total flow in the riser, wto is the flow of oil in the riser and wtg is the flow of gas in the riser.

3.1.5 Separator system

The separator is responsible for efficiently separating the oil and gas components. When the
production fluid enters the separator, the liquid and gas phases are segregated based on the density
disparities of the hydrocarbons.

In typical oil and gas production scenarios, the production fluids often contain water. However, in
this project, the treatment cost associated with water is not considered. Additionally, an assumption
of perfect separation is made, implying that the inclusion of water would not affect the results unless
it reduces the oil content in specific wells.

25 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

A summary of the process variables related to the separator system can be found below, with their
related equations found in Appendix B.10 or in [1].

xsep = [pgs, hls]
T (3.4a)

zsep = [wos, wgs, ⇢gs, pos, Vos, Vgs]
T (3.4b)

psep = [poo, pgo]
T (3.4c)

usep = [uos]
T (3.4d)

Where pgs is the pressure of the gas in the separator, Where hls is the oil level, wos is the flow of
oil out of the separator, wgs is the flow of gas out of the separator, ⇢gs is the density of gas, pos is
the pressure of the oil, Vgs is the volume of gas, Vos is the volume of oil, poo is the pressure at the
oil export, pgo is the pressure at the gas export and uos is the opening of the oil choke.

3.1.6 Compressor system

In order to utilize the produced gas for gas lift purposes, it is necessary to recompress the gas. We
suggest implementing a compressor system consisting of three centrifugal compressors arranged in
series to handle the gas lift operation.

The series configuration is chosen due to the inherent limitations of each individual compressor.
Centrifugal compressors typically have a pressure ratio in the range of 2-2.5, which would not be
adequate for the intended implementation. The valves positioned between the compressors are
considered as pressure drop elements and are not regarded as manipulated variables. Additionally,
recycle valves are incorporated in the system to control the surge constraint.

A summary of the process variables in the compressor train for compressor i can be found below,
with their related equations found in Appendix B.10 or in [1].

xcomp = [psi , pdi ,mci]
T (3.5a)

zcomp = [wini , wouti , ⇢ini , ⇢di ,⇧i, Pci , ypi , ⌘pi , wrec]
T (3.5b)

ucomp = [ureci]
T (3.5c)

Where ps is the suction pressure of the compressor, pd is the discharge pressure of the compressor,
mc is the flow through the compressor, win is the flow of gas in to the compressor, wout is the flow
of gas out of the compressor, ⇢d is the density of gas at the discharge, ⇧ is the the pressure ratio
over the compressor, Pc is the power usage, ypi is the polytropic head, ⌘p is the efficiency, wrec is
the flow through the recycle line and urec is choke opening of the recycle valve.

3.2 Control Implementations

Several modifications on the previous model presented in Section 3.1 where implemented on the
new model. The main modifications was related to the unimplemented control structures and
modifications for the specific case study. The implementation of the regulatory control structures
proposed in this thesis are described in the upcoming sections.

3.2.1 Implementation of surge control

As explained in the theoretical Section 2.21, surge refers to a condition where the gas flow through
the compressor reaches a point where the compressor is unable to transfer sufficient energy to the

26 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

gas through its blades. Consequently, the flow can reverse, potentially causing damage to the
compressor.

One of the commonly employed techniques to prevent surge is the inclusion of recycle lines that
connect the discharge side to the suction side of the compressor. Additionally, a controller logic
that monitors the suction flow should be implemented. By opening the recycle valve, more flow
is directed through the compressor, effectively avoiding surge. In this particular case, the com-
pressors are assumed to be identical in design. However, in real-life scenarios, various factors may
contribute to deviations between two compressors in series. The following sections elaborate on
the incorporation of surge constraints into the model and the development of a control structure
to effectively manage surge.

3.2.1.1 Modelling of surge constraint

In this study, the surge limit, determined by the pressure ratio and the flow rate through the
compressor, was modeled based on the methodology presented in Section 2.21.

The surge line was subsequently obtained through model fitting, employing a trial and error ap-
proach. Using this information, the compressor curve for different radial speeds was derived and
incorporated as a constraint within the optimization process. From an optimization perspective,
this constraint has a practical impact, as it restricts the optimizer from further reducing the flow
when the demand for gas lift falls below the surge limit, unless gas recycling is employed.

The decision variables related to the surge constraint for the compressors, was implemented in the
model by the use of Equation 2.54. The related decision variables si are outlined in the Table 3.1.

Table 3.1: Surge constraint decision variables.

s0 0.2063
s1 0.001906
s2 1.3948

3.2.1.2 Controller design

In contrast to the optimizer, the solver lacks inherent constraint handling logic, except for handling
constant variables. However, if the constraint is kept constant, this can result in divergence or
the loss of process dynamics effects during disturbances. Therefore, it is essential to incorporate
controller logic to protect the compressor train from surge in the event of system disturbances. To
ensure that the controllers respond in a manner that prevents surge from occurring, a certain level
of back-off is assumed to be included in the calculation of the surge limit.

In addition to safety considerations, the economic implications of gas recycling are also noteworthy.
The compression process in the compressors consumes energy, which is sourced either from onshore
electricity or local gas/diesel turbines. Irrespective of the energy source, compressing already com-
pressed gas incurs costs, leading to financial implications. Consequently, the act of re-compressing
gas that has already undergone compression is essentially an inefficient use of energy and, conse-
quently, a waste of financial resources.

Taking this into consideration, it is crucial to incorporate a logic that automatically closes the
recycle valves when the surge flow exceeds the surge limit. To achieve this, we propose a control
structure based on straightforward feedback principles. The control structure effectively regulates
the gas flow to the surge limit when it is below the constraint. Additionally, it utilizes a simple
switching mechanism to close the valves when the gas flow through the compressor surpasses the
surge limit. The proposed feedback-based control structure is illustrated in Figure 3.2.

The subsequent aspect to be addressed is the selection of controller type and its tuning. Considering

27 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

Figure 3.2: Compressor train with surge control.

the aforementioned potential risks associated with surge, a controller with a fast response is desired.
Theoretical analysis suggests that either a Proportional-Integral (PI) controller or a pure Integral (I)
controller would be well-suited for this purpose (see Section 2.10). For the current implementation,
we propose utilizing a PI controller to achieve both rapid and reliable response. By employing the
Simple Internal Model Control (SIMC) tuning method described in Section 2.11, we obtain the
following tuning parameters for the three recycle valves.

Table 3.2: Controller parameters recycle valves.

Compressor Kc ⌧I ⌧C
C1 0.321 10 10
C2 0.161 10 10
C3 0.107 10 10

Where Ci denotes the three compressors, Kc is the controller gain, ⌧I is the integral time and ⌧C is
the controller time. The implementation of the controllers with the additional logic can be observed
in Appendix B.12.

3.2.2 Implementation of total produced gas control

The case under consideration examines a production system operating nominally within a region
where the constraint on the total produced gas is active. In this scenario, we assume that the
constraint on the produced gas is a soft constraint, implying that as long as it is satisfied at steady
state, the system can operate safely. This assumption allows us to omit the inclusion of back-off,
which would be necessary for constraints that must not be exceeded.

For the further implementation of self-optimizing local methods, it is recommended to always control
the active constraint when it is optimally active, as this promotes optimal operation as explained in
Section 2.17. However, it is important to note that the constraint is always controlled to prevent it
from exceeding the constraint value. Additionally, it should be noted that when measurement error
is incorporated into the Exact local method, any measurement error associated with the control of
produced gas is disregarded.

Based on simulations, it has been observed that a single gas lift choke is inadequate for effectively
controlling the produced gas during certain disturbances. Therefore, we suggest implementing split
range control with the baton strategy, as described in Section 2.9. To determine the most suitable
strategy, we will follow the proposed selection criteria.

1. In the subsequent cases discussed in this paper, the following gas lift chokes are available for
controlling the produced gas: GLC1, GLC3, GLC4, and GLC5. The optimal nominal opening
of each available input can be found in the table presented in Table 3.3.

2. Given the nature of the gas lift system, where all the gas lift chokes are interconnected through
a common manifold, each valve exhibits the same effect on the produced gas.

3. To determine the order in which the valves should be utilized, we can examine the oil pro-
duction of each well. In this context, it is understood that introducing additional gas into

28 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

Table 3.3: Valve opening.

Valve Opening[0-1]
GLC1 0.64
GLC3 0.55
GLC4 0.37
GLC5 0.61

the tubing enhances production, while the converse is also true. Based on this rationale, it
is apparent that the gas lift chokes will be adjusted to decrease the amount of produced gas.
Additionally, we suggest controlling the produced gas using the gas lift chokes associated with
the wells exhibiting the lowest oil production. the nominal oil production of each well can be
observed in table3.4. From the data production data we choose the following order of active

Table 3.4: Oil production.

Well Oil production[kg/s]
W1 11.1919
W3 13.1433
W4 14.2117
W5 12.2615

gas lift chokes: GLC1, GLC5, GLC3, GLC4.

4. The subsequent stage involves determining the controller tunings for the controllers and im-
plementing the algorithm described in Section 2.9. For safety purposes, the control structure
will also incorporate the production choke of well 1, in case the gas lift chokes are unable to
effectively manage the disturbance.

Based on the selection method, we propose the following control structure, utilizing feedback mea-
surements of the produced gas. It should be noted that the effective time delay in the simulator is
assumed to be zero, although in real-life scenarios, delays may occur due to the distances between
the inputs and the output. The control structure, incorporating split range baton logic, is shown
in Figure 3.3.

Figure 3.3: Proposed total produced gas control.

The total produced gas is measured, and based on the deviation between the setpoint and the
measured values, the controllers will suggest an input to the process. The implemented logic dictates
that GLC 1 will be utilized initially, and if it becomes saturated, control will be transferred to the
next controller (in this case, GLC 5), while maintaining GLC 1 at its saturated value. This process

29 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

will continue until all the valves have reached saturation or until one of the controllers successfully
controls the total produced gas. The baton logic, as implemented in this study, can be found in
Appendix B.12.

The PI controllers were tuned by analyzing the open-loop step response of the corresponding valve
and applying the SIMC tuning rules. The parameters of the controllers are presented in Table 3.5.

Table 3.5: Controller parameters total produced gas control.

Controller Kc ⌧I ⌧C
Cgl1 0.793 572 2000
Cgl3 0.777 559 2000
Cgl4 0.758 540 2000
Cgl5 0.742 523 2000

Where Cgli denotes the controller related to gas lift choke i.

3.2.3 Implementation of changing active constraint control

As mentioned earlier, the system operates within an active constraint region during nominal opera-
tion. However, certain disturbances can cause a shift in the active constraint region. Following the
principle discussed in Section 2.17 of always controlling the optimal nominal active constraint, we
need to introduce selector logic to determine whether or not to control the produced gas in different
regions.

To address the change in active constraints, we propose implementing a selector with CV-CV
switching. The intended logic controls the produced gas at its active constraint when it is deemed
optimal to do so, and switches to controlling the valves to their optimal nominal openings when
the constraint is violated due to a change in the system. To determine the appropriate type of
controller, we follow the procedure outlined in Section 2.8.

1. We begin by categorizing the constraints into two sets based on which input is most effective
in satisfying the constraint. In the case of the changing active constraint, which is the total
produced gas, we conducted a step change in the gas lift chokes and observed that constraint
satisfaction was achieved when the chokes were closed down. Referring to Section 2.8, this
set of constraints falls under the category Y+.

2. The controllers have already been incorporated in the control of the produced gas, and the
tuning parameters can be found in Table 3.5. When the constraint is not active, the valve
will assess the current valve position and the optimal nominal valve position to suggest a
modification in the valve position

3. From the procedure we propose a min selector to change between the constraint regions.

The proposed control structure is depicted in Figure 3.4. The feedback for the active constraint
control consists of the produced gas as the measured value and the active constraint as the setpoint.
On the other hand, the feedback for the controller comprises the valve position, while the setpoint
is the optimal nominal valve position. The controller’s setpoint is determined based on the active
valve in the baton logic. In scenarios where multiple valves have reached saturation, we suggest
implementing a logic where the previous valves are gradually controlled back to their nominal
openings once the active valve has been regulated to its nominal opening.

The min selector will always choose the lowest input value computed by the two controllers. As
previously discussed, when the total produced gas flow exceeds the active constraint, the split range
controller will suggest a smaller input than the previous value to address the constraint. In this
case, the split range controller will gradually decrease its input to regulate the gas production.

30 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

Figure 3.4: Proposed active constraint shifting.

On the other hand, when the total produced gas flow falls below the active constraint, the split
range controllers will begin increasing its input to augment gas production from the corresponding
well.

At nominal operation, Controller C remains unchanged and maintains its proposed input. Con-
sequently, when the total produced gas increases, Controller C will suggest a larger input than
the split range controller. However, when the total produced gas decreases, the split range con-
troller will have the smallest input until the valve reaches its optimal nominal value, at which point
Controller C will resume control.

The implementation of the min selector can be observed in Appendix B.12.

3.2.4 Implementation of level control

The control of the liquid level in a separator is essential for various reasons. One crucial aspect is the
prevention of flooding, which can result in production issues, equipment failure, and environmental
pollution. Additionally, controlling the separator pressure is important for maintaining stability.
In this study, we propose the implementation of a controller that ensures a relatively stable liquid
level during normal operation, allowing for some deviation.

We also introduce high-high (HH) and low-low (LL) limits that trigger a rapid response when
breached. In real-life operations, there are typically multiple alarm limits before reaching HH
and LL, alerting operators to take action and address the issue before critical limits are reached.
However, for the scope of this project, we focus on two specific limits

During normal operation, the liquid outlet valve is responsible for monitoring the level of the
separator using a simple feedback loop. The control scheme for maintaining a constant level in the
separator is depicted in Figure 3.5. To achieve this, we suggest implementing a PI (Proportional-
Integral) controller to regulate the liquid level.

Figure 3.5: Constant control of separator level.

Table 3.6 provides the controller tuning parameters for the constant level control of the separator.
The controller settings where obtained by open-loop step response and SIMC.

31 of 85

3 MODELLING AND CONTROL 3.2 Control Implementations

Table 3.6: Controller parameters constant control.

Valve Kc ⌧I ⌧C
Cos 0.4 2000 500

The control structure for allowing the level of the separator to fluctuate between the defined High-
High (HH) and Low-Low (LL) limits is depicted in Figure 3.6.

Figure 3.6: Boundary control of separator level.

Table 3.7 provides the controller tuning parameters for the boundary based level control of the
separator. The controller settings where obtained by open-loop step response and SIMC.

Table 3.7: Controller parameters HH and LL control.

Valve Kc ⌧I ⌧C
Cos 2 400 100

The related implementations of the control strategies can be observed in Appendix B.12.

3.2.5 Implementation of valve position control

During system operation, it is possible for certain controllers to reach their saturation limits, thereby
affecting the range of control action. To mitigate the issue of saturating valves, one potential
strategy is to employ valve position control, as detailed in Section 2.7. In our implementation, we
introduce an additional valve that controls a target valve either towards a specific setpoint or away
from a limiting value.

In our simulation, we incorporate an extra controller whenever the primary manipulated variable
saturates. This approach serves two purposes: first, it allows us to obtain steady-state results
for potential control structures, and second, it addresses the potential dangers associated with
saturated variables in practical applications. To illustrate the significance of this, let us consider an
example from the compressor train. If one of the recycle valves becomes fully open and the suction
flow decreases, the controller lacks the means to counteract surge.

In typical valve position control, a combination of a large, slow valve and a small, fast valve is
utilized. However, due to the constraints of our system model, the only available alternate valves
are other gas lift chokes. Therefore, for the mentioned cases, we implement controllers that use the
optimal setpoint of the other gas lift choke as the target setpoint. Based on this setpoint and the
measurement of the opening of the other chokes, the controllers strive to stabilize the valve position
around its nominal opening.

32 of 85

4 METHOD

4 Method

4.1 Method Implementation

This section focuses on the implementation of various methods to obtain self-optimizing control
structures. It begins by describing strategies for control structure design, which involve conducting
a degree of freedom analysis, defining objectives, and identifying controlled variables. Subsequently,
two different cases with varying numbers of manipulated variables and disturbances are considered
for the implementation of local methods. The resulting control structures are then designed based
on these implementations.

4.1.1 Top-down analysis

For the controlled variable selection, a the Top-down analysis for plant-wide control presented in
Section 2.3 where utilized. Where the focus in Section 3.2 where on the design of regulatory control
structures related to the safety of operation, in this section we focus on identifying potential self-
optimizing controlled variables. The Top-down analysis is primarily implemented to get an overview
over the problem.

4.1.1.1 Operational objectives and constraints

The operational objectives were previously defined in Section 3.1.1. The primary objective is to
maximize oil production while minimizing compression-related costs. Several constraints were con-
sidered, including those related to total produced gas, total gas lift, surge, and power consumption
in the compressor system. However, in the specific case studies discussed, the only constraint that
impacts the system is the total produced gas constraint. It should be noted that, optimally, some of
the manipulated variables are saturated at the nominal operation point, which imposes a constraint
on further decrease or increase of these variables.

4.1.1.2 Degree of freedom analysis

An important subsequent step involves investigating the manipulated variables associated with our
plant and analyzing their dynamic and steady-state effects on the plant. The goal is to identify
the manipulated variables that have a steady-state impact on the cost (Nopt). These manipulated
variables can be determined by subtracting the total number of manipulated variables from the
sum of the manipulated variables with no steady-state effect (i.e., no effect on cost), as well as the
number of controlled variables that need to be regulated but have no effect on the cost.

In Table 4.1 the optimal nominal valve openings can be observed.

Table 4.1: Valve openings in percent[%]

ugl1 ugl2 ugl3 ugl4 ugl5 ugl6 upc1 upc2

64.17 53.79 54.59 36.71 60.81 50.99 100 100
upc3 upc4 upc5 upc6 urec1 urec2 urec3 uos

100 100 100 100 0 0 0 30.84

Based on the evaluation of Table 4.1 and the corresponding valve openings, it is evident that the
production valves (upci) are saturated at the nominal optimum. Therefore, the production chokes
should be maintained at a constant position, in accordance with the principle of controlling the
active constraints. Thus, the production chokes do not represent degrees of freedom.

It is however important to assess the valve openings under different operating conditions, to de-
termine the optimal values in these scenarios and verify if this holds true for all cases. However,
based on the analysis of the objective function, we would anticipate the optimizer to keep the valves

33 of 85

4 METHOD 4.1 Method Implementation

fully open to maximize oil production. Nevertheless, there might be certain scenarios where the
production chokes need to be partially closed to ensure constraint control.

Another observation can be made regarding the recycle valves ureci . They are optimally saturated
fully closed at the optimal nominal operation point. This aligns with the evaluation of the objective
function, as recycled gas does not provide cost benefits and is typically only required for security
purposes. Therefore, the recycle valves should be utilized for constraint control, specifically related
to surge prevention as specified in Section 3.2.1, and should not be considered as a degree of freedom.

The valve at the liquid outlet of the separator, uos, is not saturated at the optimum. However, its
control is necessary for maintaining stability and safety by regulating the level in the separator.
Since the control of levels does not directly impact the steady-state cost, we can exclude this valve
from further evaluation as a degree of freedom.

Based on the reasoning provided above, we can calculate the number of steady-state degrees of
freedom with Equation 4.1.

Nss = 16� 10 = 6 (4.1)

Therefore, we have a total of six degrees of freedom at nominal operation, which correspond to the
six gas lift chokes.

4.1.1.3 Identification of controlled variables

In the previous section, we identified the steady-state degrees of freedom. However, in this section,
we will systematically explore all the potential controlled variables and manipulated variables.

The model includes a total of 179 potential controlled variables, which includes the positions of
manipulated variables. Among these, 16 are manipulated variables. By employing the concept of
combinations, Equation 4.2 reveals the vast number of possible combinations that exist.

179!

(179� 16)!16!
= 6.62 · 1019 (4.2)

Due to the impracticality of evaluating all of these combinations, it is evident that a reduction of
the set of potential controlled variables is necessary for further evaluation. Considering the model’s
inclusion of 6 identical wells and 3 identical compressors, we can significantly reduce the number of
potential controlled variables by initially assessing the system as if it comprised only one well and
one compressor. The resulting reduction in potential controlled variables from the simplification
can be observed in Equation 4.3.

179� 105 = 74. (4.3)

Based on the previous section’s discussion on degrees of freedom and the regulatory control design
described in Section 3.2.4, it is evident that the level of the separator and the valve at the oil outlet
of the separator will be controlled to ensure stability and safety. Consequently, we can exclude
these variables from the set, resulting in a reduced set of 72 potential controlled variables.

Building upon the principle of controlling active constraints outlined in Section 2.17, it is observed
that at the nominal operation point, the production chokes are fully open, the recycle valves are
fully closed, and the total produced gas is constrained to its active limit. Additionally, the recycle
flow has a direct correlation with the opening of the recycle valve. Therefore, we can exclude
the measurement of recycle flow as well. Consequently, the set of potential controlled variables is
further reduced by subtracting the number of production chokes (6), recycle valves (3), the total

34 of 85

4 METHOD 4.1 Method Implementation

produced gas (1), and the recycle flow (1) from the initial count, resulting in a reduced set of 57
variables. Where (i) denotes the number of variables related to the measurements we decide to
remove from the set.

Another selection method is to eliminate closely related variables, similar to what was done with
the recycle flow. Applying this principle, we can eliminate the oil out of the separator (1) since it
is closely related to the valve at the oil outlet of the separator.

Additionally, the volume of gas and oil in the separator (2) is closely related to the height of the
separator, which we already control for stability reasons.

The discharge pressure of the third compressor and the pressure in the gas lift line (1) are also
closely related, allowing us to choose to disregard one of these variables.

Furthermore, the flow in and out of the compressors can be controlled by managing the total gas
lift due to the serial configuration of the compressor train (2). The same logic applies to the valves
related to the common line which in this case is considered constant (4). Thus, reducing the set to
51.

The decision of which variable to retain or discard can be made arbitrarily since controlling either
of the two variables would affect the system in the same manner. Consequently, we remove the gas
lift flow (1) from each well variable.

Based on process insight and the model equations, it is evident that controlling the power of the
compressor (1) is equivalent to managing the total gas lift. Additionally, the pressure ratio (1) is
influenced by the flow through the compressor (1) and the assumed constant radial speed in this
scenario(3). Furthermore, the polytropic head (1) and polytropic efficiency (1) are both dependent
on the pressure ratio and the flow through the compressors. As a result, we can eliminate these
four variables from the set, reducing it to 41.

We can further eliminate variables that are exclusively used for modeling purposes, such as the
surge constraint (1) and maximum pressure ratio (1). This reduces the remaining set of variables
to 39.

To further narrow down the potential CVs, we compare the variables in the model with the available
measurements in the real production site. The real system primarily consists of temperature and
pressure transmitters. Additionally, a multi-phase meter (MPFM) is used in the well system to
calculate the flow of oil and gas. However, using density (7) as a potential CV is disregarded due
to potential measurement errors when calculating it based on other measurements. This reduces
the set of variables to 32.

Furthermore, the model includes mass variables(6) in different regions, which are calculated based
on mass flow in versus mass flow out. However, the approximation of mass in certain regions, such
as the riser, is prone to measurement error. This leads to a further reduction to 26 variables.

We also note that controlling the suction pressure of the compressor(1) will have the same effect
as controlling the pressure in the separator. Hence, we can eliminate these redundant variables,
resulting in a reduced set of 25 variables.

In the well system, we lack available measurements for specific variables. These variables include
the flow through the injection valve (which is equivalent to the flow through the gas lift choke at
steady state), reservoir oil (which corresponds to the produced oil), reservoir gas (which corresponds
to the produced gas of the well minus the gas lift of the well), and the injection point pressure of
the gas lift in the tubing. Considering these variables, we can reduce the initial set of 25 variables
to 21.

Considering that it would be more meaningful to control either the oil flow or the gas flow rather
than the total flow (1) from the valve, we further reduce the set to 20 variables.

35 of 85

4 METHOD 4.1 Method Implementation

The pressure in the separator is generally determined by the gas pressure rather than the liquid
pressure (1), as they are related. Hence, we can eliminate one of these variables, resulting in a
reduced set of 19 variables.

Additionally, there are no flowmeters in the riser system (3), leading to a further reduction to 16
variables.

The manifold pressure and riser head pressure (1) are related, so we can arbitrarily choose to control
one of them, resulting in a set of 15 variables.

By removing the degrees of freedom, the gas lift chokes (6) the set of variables is reduced 9 potential
controlled variables.

Therefore, the resulting list of potential controlled variables consists of the following 9 variables,
found in Equation 4.4.

y =
⇥
pwhi , pbhi , paii , pgs, pm, pd3, wpoi , wpgi , wgl

⇤
(4.4)

where pwhi is the wellhead pressure of well i, pbhi is the bottomhole pressure of well i, paii is the
annulus pressure at the injection point of well i, pgs is the separator pressure, pm is the manifold
pressure, pd3 is the discharge pressure of compressor 3, wpoi is the produced oil of well i, wpgi is the
produced gas of well i and wgl is the total gas lift.

4.1.2 Case 1

In Case 1, we examine the system’s response to a disturbance in the Gas-oil ratio (GOR) of well
2. The magnitude of the disturbance is assumed to range from -3% to +3% of the nominal GOR,
which is 0.13 kg/kg. To determine the best combination of variables for self-optimizing control, we
employ a brute force method with gas lift choke 2 as the MV. Initially, we assess the loss incurred by
controlling individual measurements to their optimal nominal values. Subsequently, we implement
local methods such as the nullspace method and exact local method to identify combinations of
measurements with minimal loss at the specified disturbances.

To simplify the control strategy, we suggest controlling either individual measurements or combi-
nations of these measurements with the manipulated variable associated with the well experiencing
the disturbance. In order to assess the loss, we will consider two scenarios for evaluation. The first
scenario involves utilizing all degrees of freedom for optimization, while the second scenario focuses
solely on the degrees of freedom that are actually modified during the simulations.

Figure 4.1 illustrates the behavior of well 2, demonstrating variations in the GOR above or below
its nominal value, which we define as 100%.

Through our observations of how the active constraint responds to disturbances, we have noted that
positive disturbances in the Gas-oil ratio (GOR) yield the same constraint region as the nominal
operating point, which is constrained by the total produced gas capacity.

However, since the nominal point lies on the boundary between these regions, we propose perturbing
the GOR of the system by a small amount to obtain a new operating point that is unconstrained.
This allows us to assess the system’s behavior in the unconstrained region. Therefore, we suggest
controlling the total produced gas within the active constraint region rather than the unconstrained
region as implemented in Section 3.2.3. (Note that the term "unconstrained" is used in this study
for simplicity of writing and to distinguish between the two regions. Despite the fact that the region
is not truly unconstrained.)

To ensure the validity of the local methods, it is crucial for the active constraints to remain un-
changed. As discussed in Section 2.17, separate control structures should be implemented for each
region to maintain control effectiveness.

36 of 85

4 METHOD 4.1 Method Implementation

Figure 4.1: Case where the GOR of well 2 can change with ±3%.

To enhance stability and expedite convergence in our simulations, we suggest employing constant
separator control, as described and implemented in Section 3.2.4. This approach ensures consistent
control of the separator level throughout the simulation process. Moreover, we have integrated surge
control, as described in Section 3.2.1, to address potential surge limit violations. Additionally, the
split range controller with baton strategy, as developed in Section 3.2.2, along with the associated
min selector for CV-CV switching, as described in Section 3.2.3, is implemented.

4.1.2.1 Single measurements for self optimizing control

In this section we will analyze the impact and loss associated with implementing simple feedback
controllers to control individual measurements at their nominal optimum for the mentioned distur-
bances. Due to the presence of two active constraint regions, we will assess the most effective control
strategy for when the constraint on total produced gas is active or inactive. This corresponds to
positive and negative changes in GOR.

Since we are only controlling a single measurement, there is no need to design different control
structures specifically for gas lift choke 2 in each case. This differentiation may however be necessary
when implementing the optimal measurement combination of multiple controlled variables.

In this scenario, we disregard any measurement noise or error and focus on evaluating potential
controlled variables that are less susceptible to such issues. Flow measurements, in general, are
more challenging and tend to have a greater margin of error compared to pressure transmitters. As
a result, we will assess the controlled variables related to pressure transmitters listed in Equation
4.4.

The measurements evaluated for self-optimizing control (SOC) properties in this case are shown in
Equation 4.5.

y =
⇥
pwh2 , pbh2 , pai2 , pgs, pm, pd3

⇤
(4.5)

37 of 85

4 METHOD 4.1 Method Implementation

The next step in the procedure involves performing open-loop step responses by opening gas lift
choke 2 by 10% and assessing the response for each variable. The response is evaluated using the
SIMC method, as described in Section 2.11. PI controllers are then designed using the velocity
form as described in Section 2.10, with the controller parameters obtained from the SIMC method.

To minimize the interaction with the gas lift choke responsible for controlling the total produced gas,
additional tuning was performed on the controllers to reduce inter-valve interaction and eliminate
or minimize oscillations.

Table 4.2 presents the controller parameters acquired for controlling the measurements mentioned
in Equation 4.5.

Table 4.2: Controller parameters single measurement control.

Controller Kc ⌧I [s] ⌧C [s]
Cwh2 0.05165 262 1500
Cbh2 -0.03930 690 1900
Cai2 0.005875 64 1300
Cgs 2.2150 550 2000
Cm 0.08914 293 2500
Cd3 0.01926 225 800

Where Ci is the controller related to measurement i, Kc is the controller gain, ⌧I is the integral
time and ⌧c is the controller time.

In order to address difficulties in controlling the variables to their nominal setpoints, valve position
control was implemented for managing the manifold pressure and discharge pressure.

Gas lift choke 3 was employed for this purpose and tuned using open-loop step response on the
closed-loop control of the relevant variables. This allowed us to assess the impact of gas lift choke
3 opening on the control of gas lift choke valve 2.

The SIMC method was subsequently employed to determine appropriate tuning parameters for the
valve position controllers. The resulting control parameters, where the nominal setpoint of gas lift
choke 2 serves as the reference, are presented in Table 4.3.

Table 4.3: Controller parameters VPC using GLC3.

Controller Kc ⌧I [s] ⌧C [s]
VPCm -0.3094 500 1500
VPCd3 -0.07737 500 2000

The system was simulated using the CasAdi integrator, specifically IDAS. The potential distur-
bances were applied during the simulations. Additionally, the loss was computed by comparing
the results of the cost function obtained from the CasAdi optimizer IPOPT, which represents RTO
(Real-Time Optimization), with the cost function calculated during the simulations. The controller
implementations can be observed in Appendix B.12.

4.1.2.2 Nullspace method Implementation

The next step in the evaluation process involves implementing the nullspace method to determine
the optimal combinations of measurements.

Similar to the previous case, the nullspace method does not take measurement noise into account.
We will thus consider combinations of measurements related to the same measurements evaluated in
Section 4.1.2.1. According to the theory discussed in Section 2.5, a condition for using the nullspace

38 of 85

4 METHOD 4.1 Method Implementation

method is the relationship between the number of controlled variables, manipulated variables, and
disturbances. In this case, this condition is satisfied when,

ny � nu + nd = 2. (4.6)

Where ny is the number of controlled variables, nu is the number of manipulated variables and nd

is the number of disturbances. From Equation 4.6, we know that we need at least a combination
of 2 measurements to implement the method.

Expanding on the findings in Section 4.1.2.1, we opt to form measurement combinations involving
the bottomhole pressure of well 2. This particular variable yielded the lowest loss across both
constraint regions which can be observed in Section 5.3. Another observation that was made, relates
to the unexpected behavior of the separator pressure in the constrained region. Consequently, the
separator pressure was excluded from further analysis and consideration within the constrained
section.

As we navigate through two distinct constraint regions for opposing disturbances, it is necessary to
establish separate control structures for each region. The nominal operating point lies precisely on
the border between these active constraints. Consequently, by applying a slight negative perturba-
tion to the GOR, we transition into the region where the constraint becomes inactive, leading to
distinct system behavior. To account for this, matrix F will be derived by introducing a negative
perturbation for the negative GOR change (inactive constraint) case, where the nominal operating
point is perturbed, and a positive perturbation for the positive GOR change (active constraint)
case.

The measurement combinations considered in the case can be observed in Table 4.4.

Table 4.4: Measurement combinations for Nullspace method

Combination
pbh2&pwh2

pbh2&pai2

pbh2&pgs

pbh2&pm

pbh2&pd3

No control

In order to find the optimal sensitivity matrix F, we perturb the system by a small amount,
specifically ±0.01% of the nominal GOR, in both constraint regions. Subsequently, we re-optimize
the variables and calculate the resulting change in each controlled variable using finite difference.
The F matrices for the constrained case, denoted (C) and the unconstrained case, denoted (U) are
presented in Table 4.5.

Once matrix F was obtained for the five cases, the subsequent step was to derive matrix H from
the equation HF = 0. To calculate H, we found the left nullspace of F, which corresponds to
null(FT). The calculation involved transposing the matrix F using the transpose() function from
the numpy library in Python, and then using the null_space() function from the scipy.linalg library
to determine the nullspace.

After obtaining matrix H, we further calculated the controlled variables c = Hy. The setpoints for
the controlled variables c, denoted as cns, were then determined using the optimal nominal values
of the variables in the combination. The matrices H for the constrained case can be observed in
Table 4.6. While for the unconstrained case, the H matrices can be observed in Table 4.7.

The controllers where then designed to control c = H[0]y1 + H[1]y2 to cns. The PI controllers where
designed using open-loop step response and tuned with the SIMC method. The related controller

39 of 85

4 METHOD 4.1 Method Implementation

Table 4.5: Sensitivity matrices for Nullspace method regions

Combination F = �y
opt

�d
(C) F = �y

opt

�d
(U)

pbh2&pwh2 [�21.177 �351.797]T [0.426 34.716]T

pbh2&pai2 [�21.177 �525.742]T [0.426 159.169]T

pbh2&pgs - [0.426 �3.782]T

pbh2&pm [�21.177 �332.475]T [0.426 32.329]T

pbh2&pd3 [�21.177 4106.803]T [0.426 906.223]T

No control - -

Table 4.6: Measurement combinations for Nullspace method constrained case

Combination H = null(FT) cns

pbh2&pwh2 [0.998 �0.0601] 132.139

pbh2&pai2 [0.999 �0.0403] 133.033

pbh2&pgs - -

pbh2&pm [0.998 �0.0636] 131.952

pbh2&pd3 [0.999 0.00516] 138.050

No control - -

tunings for the constrained case can be found in Table 4.8. While for the unconstrained case, the
controller tunings can be observed in Table 4.9.

4.1.2.3 Exact local Implementation

The previous methods do not account for the expected measurement errors that can arise from the
transmitters. To simulate these potential measurement errors, we have generalized the expected
errors for pressure transmitters to be ±0.0025%, and for flow transmitters to be ±1%. It is impor-
tant to note that these measurement errors are based on highly precise transmitters and the actual
errors in real-world transmitters may be larger. However, the primary objective of this case study
is to demonstrate the difference between measuring flow and pressure.

We will follow the strategy outlined in Section 2.13 to identify controlled variables, which will
be evaluated for loss under different disturbances. The combinations assessed in this section are
provided in Table 4.10.

In this case we only consider one disturbance, namely ±3% in the GOR of well 2. Consequently,
our Wd found in Equation 4.7 will be equal to the 3% of the nominal GOR,

40 of 85

4 METHOD 4.1 Method Implementation

Table 4.7: Measurement combinations for Nullspace method unconstrained case

Combination H = null(FT) cns

pbh2&pwh2 [0.999 �0.0123] 136.230

pbh2&pai2 [0.999 �0.00268] 136.959

pbh2&pgs [0.994 0.112] 138.819

pbh2&pm [0.999 �0.0132] 136.182

pbh2&pd3 [0.999 �0.000470] 137.156

No control - -

Table 4.8: Controller parameters for Nullspace method constrained region.

Controller Kc ⌧I [s] ⌧C [s]

pbh2&pwh2 -0.1034 621 1000

pbh2&pai2 -0.0649 591 1500

pbh2&pgs - - -

pbh2&pm -0.05303 620 2000

pbh2&pd3 -0.08808 621 1200

Table 4.9: Controller parameters for Nullspace method uconstrained region.

Controller Kc ⌧I [s] ⌧C [s]

pbh2&pwh2 -0.1062 621 1000

pbh2&pai2 -0.1065 621 1000

pbh2&pgs -0.1078 623 1000

pbh2&pm -0.1068 622 1000

pbh2&pd3 -0.1071 623 1000

Table 4.10: Combinations evaluated with the exact local method

Combination
pbh2&pd3

pbh2&pwh2

pbh2&wpo2

pbh2&wpg2

pbh2&wgl

wpo2&wgl

wpg2&wgl

41 of 85

4 METHOD 4.1 Method Implementation

Wd = 0.0039. (4.7)

In the subsequent phase of the process, we aim to determine the potential measurement noise for
each controlled variable. Given the minor perturbation in the GOR and the specific local conditions,
we opt to derive the measurement error associated with each variable from its nominal value and
the error associated with the transmitter type. The errors associated with the transmitters are
found in Table 4.11.

Table 4.11: Measurement errors related to the implementation of the exact local method.

Combination ± error
pbh2 0.00343
pd3 0.00398
wpo2 0.124
wpg2 0.0234
wgl 0.0433
pwh2 0.00254

In this case, considering the combinations of variables, which amount to two, Wn is constructed
as a diagonal matrix where the associated measurement errors are arranged in the same order as
the measurements in y. The specific implementation of Wn for the measurement combination pbh2
and wpo2 is provided in Equation 4.8.

Wnbh2&po2 =

0.00343 0

0 0.124

�
(4.8)

The subsequent step entails obtaining F, which can be accomplished through two approaches: linear
approximation around the nominal point or by finite difference involving perturbation of the system
with a small disturbance, followed by re-optimization. In this case, the latter method was employed,
similar to the nullspace method in Section 4.1.2.2.

The following F matrices for the constrained case, denoted (C) and for the unconstrained case,
denoted (U) can be observed in Table 4.12.

Our objective is to compare the combinations derived from the nullspace method that exhibit the
lowest loss in each region with the combinations associated with the introduced flow measurements.
As a result, the first two combinations are only assessed within a single constraint region. This
decision is driven by the underlying rationale of the study.

Once the sensitivity matrix was determined, the gain matrix was obtained through finite difference
analysis. This gain matrix illustrates the relationship between each variable and the corresponding
changes in the manipulated variable. In the absence of any disturbances being applied to the
system, a perturbation equal to the nominal opening times 10�5 was introduced to the gas lift
choke of well 2. Subsequently, the system was solved using the IDAS integrator.

The gains related to Gy = �y

�u
|d=0 can be observed in Table 4.13.

The subsequent stage involves determining Y in order to compute the H matrix. According to the
theory presented in Section 2.14, Y is a composition of the F matrix and Wn. Y was computed for
each combination. In Equation 4.9 an example illustrating the calculation of Y for the pbh2 and
wpo2 combination can be observed.

Y =

�21.177 0.00343 0
14.824 0 0.124

�
(4.9)

42 of 85

4 METHOD 4.1 Method Implementation

Table 4.12: Sensitivity matrices for the exact local method

Combination F = �y
opt

�d
(C) F = �y

opt

�d
(U)

pbh2&pd3 [�21.177 4106.800]T -

pbh2&pwh2 - [�537450 6791.001]T

pbh2&wpo2 [�21.177 14.824]T [�4.329 · 105 2.305 · 105]T

pbh2&wpg2 [�21.177 �39.155]T [�466615 17771]T

pbh2&wgl [�21.177 �291.551]T [�526464 5189]T

wpo2&wgl [14.824 �291.551]T [284.980 26.830]T

wpg2&wgl [�39.155 �291.551]T [3016.840 �270.090]T

No control - -

Table 4.13: Gain from gas lift choke 2 on the controlled variables

Combination Gy = �y

�u
|d=0

pbh2 -6.292

pd3 -12.232

wpo2 4.404

wpg2 1.778

wgl 0.665

pwh2 2.768

At this point, all the essential components required to compute H are readily available. Conse-
quently, we proceed to calculate H for the preceding case by the analytical solution described in
Section 2.14. In Equation 2.49, the calculation of H for the measurement combinations can be
observed.

HT = Gy(Y Y T)�1 (4.10)

In order to compute the expression, we utilize various functions from the numpy library. Specif-
ically, we employ the concatenate() function to obtain Y, the transpose() function to calculate
the transpose of matrices, matmul() function for matrix multiplication, and inv() function from
numpy.linalg to find the inverse of matrices.

The resulting H matrices for the measurement combinations in the constrained case are presented
in Table 4.14, while the H matrices for the unconstrained region are presented in Table 4.15.

The final phase entails obtaining the controller settings for the measurement combinations. Similar
to the previous implementations, we initiate by assessing the combinations through an open-loop

43 of 85

4 METHOD 4.1 Method Implementation

Table 4.14: Optimal combination for the exact local method positive GOR

Combination H cns

pbh2&pd3 [�539914.347 �2784.256] -7.45·107

pbh2&pwh2 [�5.348 · 105 �1.416] -7.34·107

pbh2&wpo2 [�920.434 0.491] -1.26·105

pbh2&wpg2 [�42892.005 22740.062] -5.83·106

pbh2&wgl [�293089.719 21259.285] -4.01·107

wpo2&wgl [286.779 15.074] 3.63·103

wpg2&wgl [2900.464 �388.455] 5.11·103

Table 4.15: Optimal combination for the exact local method negative GOR

Combination H cns

pbh2&pd3 [�539914.347 �2784.253] -7.45·107

pbh2&pwh2 [�5.346 · 105 �1.416] -7.34·107

pbh2&wpo2 [�4.329 · 105 230.539] -5.94·107

pbh2&wpg2 [�466615.861 17771.120] -6.39·107

pbh2&wgl [�526464.962 5189.135] -7.22·107

wpo2&wgl [284.981 26.839] 3.66·103

wpg2&wgl [3016.845 �270.098] 5.89·103

step response in gas lift choke 2. Subsequently, the SIMC method is employed to determine the
controller settings for our PI controllers. The controller tunings for the constrained case can be
observed in Table 4.16, while for the unconstrained case, the controller tunings can be observed in
4.17.

4.1.3 Case 2

In Case 2, similar to Case 1, we investigate the system’s response to a disturbance in the Gas-Oil
Ratio (GOR) of well 2. The magnitude of the disturbance is assumed to vary from -3% to +3% of
the nominal GOR, which is 0.13 kg/kg. Additionally, we introduce a disturbance in the GOR of
well 6. The magnitude of the GOR disturbance in well 6 is assumed to range from -2% to +2% of
the nominal GOR, which is 0.135 kg/kg.

44 of 85

4 METHOD 4.1 Method Implementation

Table 4.16: Controller parameters for Exact local method constrained case.

Controller Kc ⌧I [s] ⌧C [s]

pbh2&pd3 6.794·10�8 431 2000

pbh2&pwh2 1.397·10�7 434 1000

pbh2&wpo2 4.054·10�7 434 2000

pbh2&wpg2 7.012·10�7 404 2000

pbh2&wgl 2.515·10�7 432 1000

wpo2&wgl 0.000186 110 500

wpg2&wgl 8.615·10�5 202 500

Table 4.17: Controller parameters for Exact local method unconstrained case.

Controller Kc ⌧I [s] ⌧C [s]

pbh2&pd3 6.794·10�8 431 2000

pbh2&pwh2 1.397·10�7 434 1000

pbh2&wpo2 1.723·10�7 434 1000

pbh2&wpg2 1.574·10�7 432 1000

pbh2&wgl 1.416·10�7 434 1000

wpo2&wgl 0.000233 110 400

wpg2&wgl 8.058·10�5 200 500

To simplify the control strategy, we suggest controlling the measurement combinations with gas lift
choke 2 and 6. In order to assess the loss, we will consider two scenarios for evaluation. The first
scenario involves utilizing all degrees of freedom for optimization, while the second scenario focuses
solely on the degrees of freedom that are actually modified during the simulations.

Figure 4.2 illustrates the behaviour of well 2 and 6, demonstrating variations in the GOR above or
below its nominal value, which is defined as 100%.

To enhance stability and expedite convergence in our simulations, we suggest employing constant
separator control, as described and implemented in Section 3.2.4. This approach ensures consistent
control of the separator level throughout the simulation process. Moreover, we have integrated surge
control, as described in Section 3.2.1, to address potential surge limit violations. Additionally, the
split range controller with baton strategy, as developed in Section 3.2.2, along with the associated
min selector for CV-CV switching, as described in Section 3.2.3, is implemented.

4.1.3.1 Linear approximation of the system

To determine the optimal combination of measurements, the first step is to identify the potential
controlled variables. In accordance with the measurements outlined in Section 4.1.1.3, we select
the measurements as potential controlled variables. The list of potential controlled variables for
this case is provided in Equation 4.11.

y =
⇥
pwh2 , pbh2 , pai2 , pwh6 , pbh6 , pai6 , pm, pd3, wpo2 , wpg2 , wpo6 , wpg6 , wos, wgs, wgl

⇤
(4.11)

45 of 85

4 METHOD 4.1 Method Implementation

Figure 4.2: Case where the GOR of well 2 can change with ±3% and the GOR of well 6 can change with ±2%.

In this case, the manipulated variables under consideration are the gas lift choke valves of well 2
and well 6. In Equation 4.12, we define u as a list containing the manipulated variables.

u =
⇥
uglc2, uglc6

⇤
. (4.12)

Furthermore, the disturbances considered in this case are the GOR of well 2 and 6. In Equation
4.13, we define d as a list containing the disturbances.

d =
⇥
GOR2, GOR6

⇤
(4.13)

To implement the bracket and bounds algorithm for subset selection, the first step involves finding
a linearized version of the model around the nominal operating point. This process is described in
detail in Section 2.13. The linearized model can be observed in Equation 4.14.

y = Gy

uu+Gy

d
Wdd+Wne (4.14)

To obtain this linearized model we need to calculate Gy
u, Gy

d
, Wd and Wn for our system of

measurements.

To begin, we obtain Gy
u, which represents the Jacobian matrix evaluated at the nominal operating

point and signifies the gain from the inputs to the outputs. To calculate the gains from the two
manipulated variables to the outputs, we employ finite difference by simulating the system and
perturbing the manipulated variables with a small fraction (10�8) of their original values. The
resulting Gy

u matrix can be observed in Equation 4.15.

46 of 85

4 METHOD 4.1 Method Implementation

Gy

u =

2

64

�y1
�u1

�y1
�u2...
...

�y13
�u1

�y13
�u2

3

75 =

2

66666666666666666666666664

2.768 0.487
5.347 0.168
�6.292 1.249
0.436 2.938
0.181 5.165
1.156 �6.008
0.768 0.809
�12.232 �12.218
4.404 �0.874
1.778 �0.223
�0.867 4.506
�0.221 1.825
0.101 0.112
0.0106 0.0378
0.665 0.669

3

77777777777777777777777775

(4.15)

The procedure for obtaining Gy
u is outlined in Appendix B.1.

We proceed to determine Gy

d
, which is the Jacobian matrix evaluated at the nominal point, illustrat-

ing the influence of disturbances on the outputs. To calculate the gains from the two disturbances
on the outputs, we employ finite difference by simulating the system and introducing a perturbation
of 10�8 of the nominal value to the Gas-Oil Ratio (GOR) of well 1 and well 6. The resulting Gy

d

matrix can be observed in Equation 4.16.

Gy

d
=

2

64

�y1
�d1

�y1
�d2...
...

�y13
�d1

�y13
�d2

3

75 =

2

66666666666666666666666664

36.819 15.118
�54.128 13.694
�61.279 12.935
13.864 39.808
12.773 �53.501
12.159 �60.032
16.628 17.726
22.845 24.832
42.895 �9.054
18.555 �1.052
�9.119 45.024
�1.123 19.588
3.512 3.772
12.248 13.061
1.111 1.159

3

77777777777777777777777775

(4.16)

The procedure for obtaining Gy

d
is outlined in Appendix B.2.

The subsequent step involves determining Wn, which represents the potential error associated with
the variable measurements. The measurement errors considered for this analysis are ± 0.0025% for
the pressure transmitters and ± 1% for the flow transmitters. In Equation 4.17, the structure of
matrix Wn is provided.

Wn =

2

64
y1err 0 0

0
. . . 0

0 0 y15err

3

75 (4.17)

The procedure of obtaining Wn is outlined in Appendix B.6.

47 of 85

4 METHOD 4.1 Method Implementation

Further on, Wd represents the magnitude of each disturbance. In Equation 4.18 the structure of
Wd can be observed.

Wd =

d1 0
0 d2

�
(4.18)

The implementation of finding Wd can be observed in appendix B.5.

To obtain the sensitivity matrix F and calculate the loss, we need to determine Juu, which is
the Hessian matrix of the cost function with respect to the manipulated variables. Juu was com-
puted using finite difference by keeping all manipulated variables constant except for the perturbed
manipulated variables. The structure of Juu in this study can be observed in Equation 4.19.

Juu ⇡
"

�
2
J

�u
2
1

�
2
J

�u1�u2

�
2
J

�u2�u1

�
2
J

�u
2
2

#
(4.19)

The implementation of finding Juu can be observed in appendix B.3.

Additionally, we need to determine Jud for the evaluation. Jud is the Hessian matrix of the cost
function with respect to both the manipulated variables and disturbances. Jud was computed using
finite difference by perturbing the manipulated variables and disturbances shown in Equation 4.20.

Jud ⇡
"

�
2
J

�u1�d1

�
2
J

�u1�d2
�
2
J

�u2�d1

�
2
J

�u2�d2

#
(4.20)

The implementation of finding Jud can be observed in appendix B.4.

Using the derived matrices, we can compute the average loss and worst-case loss as discussed in
Section 2.14. To achieve this, we employed the Branch and Bound algorithm to determine the
measurement sets that yield the lowest average and worst-case loss. Subsequently, the calculated
variables were exported to CSV files before being utilized in the Matlab functions for minimizing
average loss Cao(2003) [34] and worst-case loss Cao(2003) [35].

The proposed measurement sets were then assessed using the simulator for the disturbances. How-
ever, due to the non-linearity of the model, perturbing the system did not yield satisfactory results
due to sensitivity to initial values. Consequently, the optimizer faced difficulties in finding solu-
tions when introducing a new nominal point in the unconstrained region. Therefore, the proposed
controlled variables of Case 2 were evaluated solely in the active constraint region and not in the
unconstrained region. Nevertheless, the proposed measurement combinations and their respective
weights were tested for both negative and positive GOR changes, despite the shift in constraint
regions. The optimal measurement set for different Branch and Bound (BAB) methods can be
found in Table 4.20.

For each measurement combination, the sensitivity matrix F was calculated using Equation 2.34.
The resulting sensitivities of each variable, as considered by the Branch and Bound algorithm, are
presented in Table 4.19.

When the sensitivity matrix was obtained the H matrices where found using Equation 2.49. The
H matrix of each measurement combination can be observed in table.

The procedure for obtaining H and F is outlined in Appendix B.9.

The controller tunings for GLC 2 and GLC 6 was found by open-loop step response and the SIMC
method. The related controller tunings can be observed in the Table 4.21.

48 of 85

4 METHOD 4.1 Method Implementation

Table 4.18: Measurement combinations proposed by Branch and Bounds

Combination BAB Method

pai2 & pbh2 Worst Case loss

pai2 & pai6 Average loss

pd3 & pai6 Worst Case partial

pd3 & pai6 & pbh6 Worst Case partial

pd3 & pai6 & pbh6 & pai2 Worst Case partial

pd3 & pai2 Average loss partial

pd3 & pai2 & pbh2 Average loss partial

pd3 & pwh6 & pbh6 & pai2 Average loss partial

Table 4.19: Sensitivity matrices found from linearized model.

Variables F(d1) F(d2)

pai2 -33.384 20.589

pbh2 -87.774 8.683

pai6 6.034 -39.497

pd3 -7.539 -22.520

pbh6 25.358 -74.672

pwh6 11.340 48.174

49 of 85

4 METHOD 4.1 Method Implementation

Table 4.20: Measurement combinations proposed by Branch and Bounds with related setpoints

Combination H cns1 cns2

pai2 & pbh2

2

4 3583 �1449

�146 67

3

5 1.65·105 -5.57·103

pai2 & pai6

2

4 413 326

305 663

3

5 7.51·104 9.83·104

pd3 & pai6

2

4 �6976 3401

�8339 4481

3

5 -7.66·105 -8.73·105

pd3 & pai6 & pbh6

2

4 �234922 476847 �181679

�549333 1128132 �431189

3

5 -1.41·107 -3.24·107

pd3 & pai6 & pbh6 & pai2

2

4 �805763 131567 291161 427066

�691151 1042352 �313718 106098

3

5 -3.15·107 -3.68·107

pd3 & pai2

2

4 �2704 327

�2675 68

3

5 -3.97·105 -4.19·105

pd3 & pai2 & pbh2

2

4 �41674 �52288 23376

�403800 �541499 240611

3

5 -8.74·106 -8.63·107

pd3 & pwh6 & pbh2 & pai2

2

4 �686015 �613181 �334371 825709

�659260 �243106 98775 �193401

3

5 -1.21·108 -1.31·108

Table 4.21: Controller parameters Branch and Bound

Combination KC(GLC1, GLC6) ⌧I(GLC1, GLC6) ⌧C(GLC1, GLC6)

pai2 & pbh2 (1.1·10�6,0.001) (101,185) (3000,3000)

pai2 & pai6 (8.4·10�5,5.2·10�5) (67,65) (300,300)

pd3 & pai6 (7.9·10�7,3.2·10�7) (264,163) (4000,4000)

pd3 & pai6 & pbh6 (2.6·10�8,4.2·10�9) (274,133) (4000,2000)

pd3 & pai6 & pbh6 & pai2 (6.7·10�9,5.5·10�9) (169,137) (2000,1500)

pd3 & pai2 (3.3·10�6,4.0·10�6) (226,258) (2000,2000)

pd3 & pai2 & pbh2 (3.1·10�5,1.4·10�8) (1553,251) (1553,3500)

pd3 & pwh6 & pbh6 & pai2 (9.3·10�9,5.5·10�8) (120,221) (1000,600)

50 of 85

5 RESULTS

5 Results

This section will present the results of the implementation of the control structure and the findings
from the case studies. The results will be discussed in this section, while the following section,
Section 6, will provide a more general discussion.

To ensure a structured presentation of the results, the results section will be divided into four
distinct parts. The first part will focus on examining and discussing the impact of the primary
disturbance, namely the GOR, on the cost function. The second part will present the results
obtained from the implementation of the regulatory control structures outlined in Section 3. The
third part will address the findings obtained from the implementation of Case 1 described in Section
4.1.2. Lastly, the fourth part will delve into the implementation of Case 2 as discussed in Section
4.1.3

5.1 Objective function change with GOR

In order to evaluate the potential economic losses associated with the implementation of the control
structures, it is important to visualize the variation of the objective function with respect to the
disturbance. In this particular scenario, the objective function is represented as the cost, while the
disturbance corresponds to the fluctuations in the GOR.

To investigate the response of the cost function to the disturbance, we utilized IPOPT to solve the
optimization problem. The disturbances considered ranged from -3.5% to +3.5% in the GOR of well
2, with a 0.1% interval, leading to a total of 70 iterations. It is assumed that any decrease or increase
in the GOR of any well will influence the direction of the cost function similarly. Specifically, a
decrease in GOR will result in a decrease in the cost function, while an increase in GOR will lead
to an increase in the cost function.

Figure 5.1 displays a plotted curve illustrating the relationship between the cost function and GOR.
The nominal GOR value is marked by a black X, nearly positioned at the boundary delineated by
the orange dotted line, separating two regions with significantly distinct GOR-cost relationships.
When the GOR value is smaller than the nominal point, a positive step generates a minor increase
in cost, indicating a relatively low condition number for the function. However, upon examining
the plot for GOR values larger than the nominal value, it becomes evident that a positive step
yields a substantially greater increase in cost. This observation emphasizes a significantly higher
condition number for the function within this particular region.

Figure 5.1 displays that the relationship between the cost function and the disturbance seems not
linear and not flat in the constrained region. Below the nominal GOR value of well 2, the GOR-cost
relationship exhibits close to linear behavior. When the GOR value reaches the constraint region
around 0.130 kg/kg this close-to-linear relationship ceases. Once the system becomes constrained,
meaning that the total produced gas is equal to 10 kg/s, the slope of the cost function decreases
for a slim interval of GOR values before it gradually starts to increase again with increasing values
of GOR. This behavior may be the result of the constraint affecting the feasible space. .

By analyzing how the cost function changes from left to right in Figure 5.1, we can observe that
the cost increases as the GOR of the well increases. From a minimization perspective, this means
that we are losing profit. This is expected from the definition of GOR, which is defined as the ratio
between the produced gas and oil. An increase in the GOR will result in a production ratio of more
gas and less oil, which results in a decrease in profit. Another effect of an increased GOR is the
resulting increased pressure in the manifold. Such an increase in the manifold pressure can lead to
reduced production of oil. However, we can observe that the relative change to the cost function is
small compared to the change in the constrained region.

In the constrained region of the plot, the cost function exhibits non-linear behavior. When the
produced gas constraint becomes active, and more gas is gradually introduced, the system will take

51 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.1: Objective function vs GOR change well 2.

measures to prevent the gas from being sent to export. In this model, the system will start by
closing down the gas lift chokes to reduce gas production from the wells, which in turn will reduce
oil production. The resulting production loss will have a great effect on the cost.

Another aspect, unrelated to the specific discussion on cost versus GOR, is the inherent non-
linear nature of the system, which presents challenges in implementing local methods such as
the nullspace method and the exact local method outlined in this paper. These local methods
either linearize the function around the nominal operating point or estimate its behavior using
analytical techniques. However, to ensure the validity of these methods, it is essential for the active
constraint to remain constant, which is not the case in the study under consideration. Consequently,
different measurements and combinations of measurements may be preferable in one region but not
in another. To address this issue, the implementation of logical switchers or CV-CV selectors is
recommended to ensure that the measurement combination yielding the least amount of loss is
utilized, even when the constraint region undergoes changes.

5.2 Regulatory control results

5.2.1 Surge control

The implementation of surge control is crucial for the construction of a realistic model. As described
in Section 2.21, the surge phenomena can damage the compressors, making it an undesired event.
However, if we look at this from a modeling and optimization point of view, excluding surge
constraints could potentially result in almost no flow through the compressor train, depending on
the weights assigned to the variables in the objective function. If this were to happen, it would
reduce the reality of the model and greatly limit the scope of work.

The implementation of the surge controllers for each of the three compressors is explained in Section
3.2.1. The system was simulated for 20000 iterations to test the proposed implementation using
the IDAS integrator with CasAdi. At t = 5000s the GOR was perturbed with a negative value,
while at t = 10000s, the GOR was perturbed with a positive value of the same magnitude. Figure
5.2 consists of two plots showing the surge control implementation. The upper plot shows how the
three PI controllers react to the disturbances, while the bottom plot shows how the flow through
the compressors reacts to the disturbances and the control action.

52 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.2: Results of surge implementation.

In the lower plot, the surge limit is depicted as a red dotted line. Based on the feedback received
from the suction flows, the controllers promptly respond by opening the recycle valves if the flow
through the compressors drops below the threshold determined by the relationship between the
pressure ratio and the flow. In a real plant setting, a back-off strategy would be employed to ensure
that the constraint is never violated, thereby mitigating the risk of compressor damage. However, for
simulation purposes, we implement fast-responding controllers that react swiftly before stabilizing
at the new steady-state, even though a slight violation of the constraint may occur within a small
time window as can be observed in Figure 5.2.

In the simulations, we assume that a slight back-off is incorporated in the calculations of the
surge limit. This is done to prevent the risk of surge in the event of a slight flow drop below the
limit. While implementing back-off may result in unnecessary loss of recycled gas prior to technical
necessity, it is crucial to prioritize safety by mitigating the potential risks and associated costs
associated with surge.

From the bottom plot in Figure 5.1 we can also observe that the response of the controllers is as
expected from the implementation described in Section 3.2.1. The first disturbance occurs at time
t = 5000s, and represents a decrease in GOR, meaning that the fraction of gas in the mixture
decreases. Consequently, the total amount of gas in the system will decrease, and since the gas lift
functions as a recycle of the produced gas, the gas flow into the compressor train will decrease.

When the gas flow through the compressor train falls below the surge limit, the controllers will react
instantly by opening the recycle valves, to avoid damage to the compressors. We can observe from
the plot that this control response is rapid, and the controllers manage to control the flow back to

53 of 85

5 RESULTS 5.2 Regulatory control results

the surge limit value. We can verify that the controls are effective by comparing the results of the
controlled functions with the grey dotted line, which shows how the flow would change without any
control. Since recycling compressed gas demands a great deal of energy, it is ideal to keep recycle
flow as small as possible, to minimize the use of energy and economic losses. For this reason, the
setpoints of the controllers will be the surge limit in this case.

At t = 10000s the system faces a new disturbance, which represents a positive change in GOR
with the same magnitude as the previous negative disturbance. The system will then experience
an increase in the total amount of gas in the system, which leads to increased flow through the
gas lift recycle system. Since the magnitude of the positive disturbance in this case is equal to the
previous negative experience, the increased level of gas through the compressor train is higher than
the surge limit. There is no longer a need for the recycle valves to be open, and to save economic
losses the valves are closed by the controllers. We can observe from the plots in Figure 5.1 that the
controllers close the recycle valves instantly after the compressor flow exceeds the surge limit. This
is achieved through the implementation of a logic block that utilizes information from the valve
position and measured flow to determine whether the valves should be closed down.

As we can observe from the bottom plot, at the time when the second disturbance is introduced
to the system the flow through the compressors will increase and decrease slightly before the flow
increases in a significant matter. This reverse effect is the result of the recycle valves closing down
and thus reducing the flow through the compressors, which for a short time period decreases the
gas flow through the compressors before the flow will gradually increases back to the starting point.

In the upper plot in Figure 5.1 we can observe that the different recycle valves open to different
extents. Recycle valve 1 opens approximately twice as much as recycle value 2, and recycle valve
2 opens approximately twice as much as recycle valve 3. This effect is explained by the fact that
each compressor and valve are designed equally. Since the compressors are arranged in a series, the
pressure and suction flow will vary for each compression stage due to the output of one compressor
becoming the input of the next compressor. The pressure ration of the compressors is approximately
2, meaning that the relationship between the suction pressure and the discharge pressure of one
compressor will be approximately 1:2. The density of a gas can be found from the ideal gas law.
From this equation we can observe that if the pressure increases by a factor of two, the density will
also change by the same magnitude, given constant temperature and mass flow.

Based on the results obtained from the implementation of surge control, we can conclude that
the controllers associated with the recycle valves effectively protect the compressor train from the
potential hazards of surge. Moreover, the controller logic ensures that there is no unnecessary
recompression of already compressed gas, ensuring no waste of energy.

5.2.2 Produced gas control

In the case study described in Section 3.1.1 the optimal nominal operating point is constrained by,
among others, the total amount of produced gas, at 10 kg/s. Based on both safety considerations
and the theory on active constraint regions presented in Section 2.17, it is considered necessary to
control the total amount of produced gas. This is because we do not want the flow to exceed the
capacity of the equipment in the "gas export" part of the production system, which is responsible
for further processing and exportation of the gas.

From a self-optimizing perspective, controlling the active constraint is beneficial if it is optimally
active for the new operating point. Section 2.4 explains that good self-optimizing variables should
not be sensitive to changes in the disturbance, and consequently, the active constraint will be a
good CV when the constraint region stays constant.

To show how the implementation of produced gas control works, a test was simulated with the use
of split-range control with the batton strategy. The system was simulated with the IDAS integrator

54 of 85

5 RESULTS 5.2 Regulatory control results

for t = 30000s, with a disturbance of increased GOR in well 2 at t = 5000s. The result of the
simulation is shown in Figure 5.3.

Figure 5.3: Results of produced gas control.

In the bottom plot in Figure 5.3 we can observe that produced gas starts to increase at t = 5000s.
From the upper plot, we can observe that the controllers react to the disturbance almost instantly
by acting on the gas lift chokes to counteract the increase in total produced gas. The chokes start to
close down one by one to reduce the amount of gas lift going into the wells, resulting in a decrease
in production.

The order in which the gas lift chokes are manipulated is according to the order defined by the
method in Section 3.2.2. This order ensures that the wells with the lowest oil production rate will
be manipulated first, to minimize the economic losses from the disturbance as much as possible.
We can observe from the upper plot in the figure that the first gas lift choke that reacts is the gas
lift choke of well 1 (GLC 1), which is the well with the lowest oil production rate. Since GLC 1
saturates and closes completely, the second gas lift choke in the predefined order, GLC 5, must
supplant the manipulation, while GLC 1 is kept closed.

In the bottom plot, we can observe that the total produced gas is at steady-state before the
disturbance occurs at t = 5000s. The disturbance makes the total amount of produced gas increase,
which triggers the control of GLC 1. GLC 1 is manipulated to counteract this disturbance and
manages to stop the increase in produced gas. However, GLC 1 saturates before the total amount of
produced gas reaches the constraint limit, which forces GLC 5 to take over further manipulation at
approximately t = 8000s. At this time, we can also observe a sudden increase in the total amount
of produced gas in the bottom plot. This inverse response occurs when GLC 1 saturates and GLC

55 of 85

5 RESULTS 5.2 Regulatory control results

5 becomes active, which is expected due to the recycle effect of the gas in the system. Moreover,
GLC 5 successfully controls the produced gas and brings it back to the constraint, demonstrating
the effectiveness of the implemented approach.

To ensure that the control structures are controllable the total amount of produced gas is considered
a soft constraint in the simulations. This is both due to the initial inverse response of the gas
lift chokes on the total produced gas, which will be discussed in the paragraph below, and to
reduce the interaction between the different controllers. The interaction between the controllers
that control the produced gas and the controllers that control measurement combinations poses
significant difficulties in implementing decentralized control. In order to prevent these difficulties
from affecting the control system, the controller time of the different controller types has been
manipulated to operate on different time scales.

Based on the results obtained from the produced gas control, it is evident that the implemented
split-range controller with the baton strategy successfully controls the total produced gas by trans-
ferring control from one manipulated variable to another. However, it is important to note that
for cases where the constraint is considered "hard", a more suitable choice would likely be to use a
production choke for controlling the active constraint.

5.2.3 Level Control

The implementation of level control was described in Section 3.2.4. In this work, we proposed two
methods for controlling the level in the separator, which is an inherit unstable system. We can
either control the level by controlling it at a constant setpoint or by defining boundaries where
the level is allowed to change. Despite which method of level control we choose, it is important to
ensure stable and safe operation. The results from each type of level control are presented below.

5.2.3.1 Level control - constant setpoint

To be able to control the level in the separator to a constant setpoint, a feedback control structure
measuring the level in the separator was implemented to manipulate the valve at the oil outlet. The
result of level control of the separator using a PI controller and a constant setpoint can be observed
in Figure 5.4. The upper plot shows the controller’s response to the disturbance, and the bottom
plot shows the flows in and out of the separator. The system was simulated for t = 50000s, using
the IDAS integrator with a positive change in the GOR of well 2 as a disturbance at t = 10000s.

In the upper plot, we can observe how the controller responds to the disturbance by manipulating
the valve at the oil outlet of the separator. Due to the valve being physically close to the separator,
the controller will be efficient in controlling the liquid level by adjusting the flow of oil going out of
the separator. We can observe from the upper plot that when the disturbance occurs, the controller
reacts by starting to close the valve.

The bottom plot shows the change in oil flow in and out of the separator, and the change in the
flow through the OSC. When the disturbance occurs at t = 10000s, we can observe that both the
oil flow in and out of the separator increases for a small time period, before they decrease, and
gradually settle at a steady-state value lower than the initial value. The inverse response that
occurs when the disturbance is introduced is a result of a change in the manifold pressure, which
in turn leads to changing effects on the production rates from the wells. However, after an initial
reverse response, the total oil flow will decrease, as expected. The controller will force the valve to
adjust so that the outlet flow of oil from the separator always matches the inlet flow of oil from the
riser.

The results of the implementation shows that the controller manages to efficiently control the level
at the provided setpoint.

56 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.4: Control of the active constraint on total produced gas.

5.2.3.2 Level control - Boundaries

The second proposed control structure only controls the level of the separator if the level approaches
defined high-high (HH) or low-low (LL) limits. The level in the separator is allowed to move
"freely" between these limits. The result of controlling the separator level to be inbetween two
defined boundaries using a PI controller is shown in Figure 5.5. The controller’s response to the
disturbance is shown in the upper plot, and the flow in and out of the separator is shown in the
bottom plot. The system was simulated for t = 50000s, using the IDAS integrator with a positive
change in the GOR of well 2 at t = 10000s and a negative change in the GOR of well 2 at t = 30000s.

We can observe from Figure 5.5 that the controller shown in the upper plot remains inactive until
the level of the separator reaches the defined LL at 0.8 meters. At the LL, the controller reacts by
decreasing the opening of the valve, so the level in the separator doesn’t decrease below the lower
permitted boundary. Both the valve opening and the level in the separator reach a new steady-state
quickly, where the oil in and out of the separator are equal. At t = 30000s a second disturbance
occurs. This disturbance has a negative change in the GOR of well 2 with a larger magnitude than
the first disturbance. The controller remains inactive until the level reaches the defined HH limit,
and proceeds to control the level to not exceed this constraint.

Based on the implementation of boundary-based control for the separator level, the results demon-
strate that the controller effectively maintains the level of the separator within the permissible
limits.

57 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.5: Constant control of separator pressure.

5.2.4 Valve position control

The implementation of valve position control (VPC) was proposed as a solution for controlling
measurement combinations, as discussed in Section 3.2.5. This approach was necessary because the
MV experienced saturation before reaching the desired setpoint when attempting to control certain
measurements and combinations. In this study, it was observed that the saturation of the MV
could be mitigated by introducing a secondary MV that would control the primary MV towards its
optimal nominal value. This resulted in either resetting the valve position or allowing the secondary
MV to saturate before reaching the optimal value, effectively preventing saturation of the primary
MV.

To illustrate the effectiveness of the VPC implementation in controlling the proposed measurements,
we conducted tests on the discharge pressure of compressor 3. The results of using VPC in the
control of the discharge pressure of compressor 3 are presented in Figure 5.6. The system was
simulated for a duration of t = 50000s, with a positive change in the gas-oil ratio (GOR) of well 2
occurring at t = 10000s

Figure 5.6 demonstrates the implementation of valve position control (VPC) by GLC 3 to prevent
the saturation of GLC 2. The resulting control of the discharge pressure in compressor 3 is depicted
in the bottom plot. At t = 10000s, a positive disturbance occurs in the GOR of well 2. As a
consequence, the discharge pressure increases due to the rise in system pressure caused by the
increased gas flow.

Upon examining the upper plot, it is evident that GLC 2 initiates an opening action to reduce the

58 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.6: Result of implementing VPC to control the discharge pressure of compressor 3.

discharge pressure. Simultaneously, GLC 3, which is designed with a controller time approximately
four times longer than GLC 2 to minimize interaction and oscillations, responds by countering the
opening of GLC 2 and attempting to regulate it back to the setpoint. Around t = 17000s, GLC 2
begins to return to its nominal setpoint.

The combined efforts of GLC 2 and GLC 3 result in a slight undershoot in the discharge pressure
before GLC 3 reaches saturation. Subsequently, GLC 2 takes over and successfully controls the
discharge pressure, guiding it towards the setpoint value. Ultimately, the system stabilizes at a new
steady-state with the discharge pressure of compressor 3 under the control of GLC 2.

To validate the implementation, it is necessary to examine the behavior of the discharge pressure
control using GLC 2 without the utilization of VPC. A new simulation was conducted, following
a similar setup as the one depicted in Figure 5.6, but excluding the implementation of VPC. The
comparative scenario is presented in Figure 5.7.

The comparative simulation shown in Figure 5.7 provides insight into the consequences of not
employing VPC in controlling the discharge pressure of compressor 3. It is evident from the figure
that GLC 2 reaches saturation at approximately t = 18000s, resulting in a loss of control over the
discharge pressure.

In this specific case, the utilization of VPC was necessary to effectively control the amount of
produced gas and maintain it at its initial value. Based on these findings, it can be concluded
that the implementation of VPC may be essential for controlling certain CVs when there is limited
control gain from the MV or conflicting control requirements between multiple controllers.

59 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.7: Result of only using GLC 2 in the control of the discharge pressure of compressor 3.

5.2.5 Changing constraint regions

Given that oil production is a dynamic process that is susceptible to various challenges and changes,
it is likely that the system will need to operate within different active constraint regions. The regions
relevant in this thesis are defined based on the activation and deactivation of the constraint on total
produced gas. The nominal operating point is located on the boundary between the regions where
the constraint is active.

When operating within an active constraint region, it is generally advisable to control the active
constraints. However, it is not desirable to do so if the constraint is not optimally active, as it can
result in significant losses. In Section 3.2.3, we propose a CV-CV switching mechanism utilizing a
minimum selector. This mechanism aims to address this issue and ensure optimal control of the
active constraints when necessary.

To show how the min selector and the change between constraint regions are implemented in the
model, a simulation of the system for t = 60000s is solved with the IDAS integrator. In the
simulation, a positive change in the GOR of well 2 occurs at t = 5000s, and a negative change of
the same magnitude is introduced at t = 30000s. The simulation results can be observed in Figure
5.8.

The result of the control with min selector logic can be observed in the upper plot of Figure 5.8.
From t = 0s to t = 30000s, the controller output will be identical to the produced gas control
discussed in Section 5.2.2. However, at t = 30000s, a negative GOR change affects the system.

60 of 85

5 RESULTS 5.2 Regulatory control results

Figure 5.8: Control of changing active constraint regions.

Based on the min selector logic described in Section 3.2.3, the controller with the smallest mag-
nitude output is chosen for implementation in the system. When the constraint is active, GLC
5 is responsible for controlling the total produced gas, and consequently, it will have the smallest
proposed input among the controllers.

At t = 30000s, when the negative disturbance in GOR affects the system, GLC 5 will initiate
control to bring the produced gas back to 10 kg/s by opening up and increasing gas production
from the well. This process continues until GLC 5 reaches its nominal point, at which point the
controller with the smallest proposed input will be the one with the nominal opening as its setpoint.
This leads to a reset of the valve opening to its optimal nominal value. Once this condition is met,
GLC 5 passes control back to GLC 1, which then aims to control the produced gas to its constraint.
The same logic is implemented, and GLC 1 returns to its optimal nominal value. We can observe
an inverse response behavior once again, where the controller of GLC 1 briefly moves the valve
opening in the wrong direction. However, it quickly corrects itself and brings the valve back to its
optimal nominal value.

If the overall amount of total gas produced falls below the active constraint value, the min selector
will thus release control of the total produced gas.

If gas production is not controlled optimally, it can lead to significant losses. The related loss of
controlling the bottom hole pressure to its nominal value in the unconstrained region, both with
and without control of the active constraint, can be observed in Table 5.1. The simulation was
run for t = 100000s to ensure that the system converged with a disturbance of -3% decrease in the
GOR of well 2. At the disturbance, the optimal nominal value of the total produced gas is not

61 of 85

5 RESULTS 5.3 Results of Case 1

constrained.

Table 5.1: Table of related loss to controlling the active constraint and not in the unconstrained region.

Active constraint control objective function loss[$/month] loss[%]
Yes -45.2386 42310 0.1544
No -45.3086 28 0.0001039

From Table 5.1 it is clear that giving up the control of the active constraint is not economically
beneficial. Another observation from the table is that the loss is small in the unconstrained region.
This can also be observed in Figure 5.1, where the objective function has a linear change of small
magnitude. Based on this small loss we can also conclude that controlling the valve openings back
to their optimal nominal setpoints is sufficient in this case. However, in other cases where the
change in the objective function in the unconstrained region has a larger magnitude, controlling
other potential CVs with new unconstrained MVs should be considered.

Based on the findings presented in this section, it can be inferred that the min selector effectively
controls the total produced gas within the active constraint region. In the unconstrained region,
it efficiently regulates the valve openings to their optimal nominal values. Furthermore, the imple-
mentation of this control logic has demonstrated significant economic advantages.

5.3 Results of Case 1

As described in Section 4.1.2 we have studied the effect of three different control methods and their
performance compared to the effect of using optimizing control. The first method is an initial study,
which evaluates only single variables. The two subsequent methods use the results from the single
controlled variable evaluation to achieve the most effective control structure.

We have considered two different scenarios to assess the losses we get from applying a control
structure instead of using an optimizer. The first scenario, where the optimizer considers all six
GLCs, will be denoted (1). The second scenario, where the optimizer only considers the GLCs
that are modified during the simulation, will be denoted (2). The cost-value used to evaluate the
losses is the value of the solution when the system has reached steady-state after experiencing
a disturbance. The negative terms of the cost function are because the problem considered is a
minimization problem.

5.3.1 Single controlled variable

To test the implementation of the controllers obtained in Section 4.5, the system was simulated for
t = 100000s. This was done to ensure convergence and that the system reached its new steady-state.
The level was controlled to a constant setpoint to ensure both stability in the system and quicker
convergence. The initial tuning parameters found from the SIMC method described in Section 2.11
were manipulated to achieve better control and less interaction. The result of the control of the
proposed CVs can be observed in Appendix A.2.

5.3.1.1 GOR increase in well 2

The results of the simulations for an increase in the GOR of well 2 with +3% can be found in Table
5.2. The optimal cost at this operating point was found to be:

(1) -45.2406 $/s

(2) -45.1587 $/s

Based on the simulation results presented in Table 5.2, it is evident that maintaining most variables
at their optimal nominal points leads to greater losses compared to keeping GLC 2 at its designated
setpoint. To elucidate these findings, we can assess the optimal adjustments of various variables

62 of 85

5 RESULTS 5.3 Results of Case 1

Table 5.2: The results of controlling the proposed CVs to their optimal nominal value facing a disturbance of +3%
in the GOR of well 2. Variables with(*) are assisted with VPC. L denotes the loss compared to optimal
operating points.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Tot. gas [kg/s]
pwh2 -44.9505 175414 0.6411 125627 0.46 10
pbh2 -45.0051 142413 0.5204 92692 0.34 10
pai2 -44.9619 168542 0.6159 118768 0.43 10
pgs* -44.9369 183657 0.6712 133851 0.49 10
pm* -44.8059 262882 0.9608 212913 0.78 10
pd3* -44.9582 170745 0.6240 120958 0.44 10
GLC2const -44.9709 163119 0.5961 113357 0.42 10

from the nominal operating point to the new operating point with a +3% GOR for well 2. Table
5.3 presents these results.

Table 5.3: The optimal values of the CVs at the nominal operating point and at the new operating point (GOR
W2(+3%)).

Variable Nominal op. point GOR W2(+3%) Gain from MV Unit
pwh2 80.6189 79.5110 2.7678 bar
pbh2 137.2310 137.5890 -6.2921 bar
pai2 101.5360 100.0610 5.3474 bar
pgs 21.8954 21.8954 0.0037 bar
pm 78.6830 77.7475 0.7678 bar
pd3 159.2200 167.4810 12.2317 bar

From the data in Table 5.3, it is evident that, apart from the separator pressure (pgs), the bottom-
hole pressure exhibits the smallest variation. The control of separator pressure proves challenging
due to its limited sensitivity to GLC 2, as well as its dependence on VPC, which may introduce
greater losses. Additionally, the oversized separator might obscure the results. The value of pgs
relies on the interplay between gas and oil flows into and out of the separator. Although we initially
anticipated a greater increase in pressure during optimization, the observed change remains minimal
in comparison to the simulation results within the active constraint region. This discrepancy may
be attributed to the fact that elevating the separator gas pressure reduces production, including
oil output, consequently resulting in a profit loss. Nonetheless, upon completing the simulations,
it became evident that the separator pressure does indeed exhibit a more substantial magnitude of
change. Therefore, due to these peculiar dynamics, we excluded the separator pressure from further
considerations.

Generally, variables that exhibit lower sensitivity to disturbances tend to yield better CVs. However,
the impact of MVs on the CV is also a crucial consideration. We observe a correlation between
variables requiring VCP and the gain from the MV. This implies that changes in the MV will
have less impact on these CVs and may necessitate additional assistance. Consistent with the pair-
close rule and the system model, the well parameters and discharge pressure exhibit the highest
gains. Conversely, the manifold and separator pressures, located differently from the gas lift choke,
pose greater control challenges. The previous section already discussed the case of the discharge
pressure, where GLC 2 demonstrates significant gain on the variable. The difficulty arises from all
gas lift chokes having the same gain on it, making it challenging to control when multiple controllers
manipulate the valves in different directions.

Based on the results, the bottomhole pressure is the most controllable variable. However, the overall
loss is significant due to constrained operating points when the GOR increases. To compare with
methods like Dynamic RTO and MPC, which utilize all gas lift valves, using only one manipulated

63 of 85

5 RESULTS 5.3 Results of Case 1

variable for SOC results in substantial losses during rapid system changes. Employing multiple
MVs for control and its limitations will be discussed later.

5.3.1.2 GOR decrease in well 2

The results of the simulations for a decrease in the GOR of well 2 with -3% can be found in Table
5.4. The optimal cost at this operating point was found to be:

(1) -45.30861 $/s

(2) -45.30857 $/s

Table 5.4: The results of controlling the proposed CVs to their optimal nominal value facing a disturbance of -3%
in the GOR of well 2. Variables with(*) are assisted with VPC. L denotes the loss compared to optimal
operating points.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Tot. gas [kg/s]
pwh2 -45.3085 58 0.00021 32 0.00012 9.9525
pbh2 -45.3085 28 0.00010 3 0.00001 9.9526
pai2 -45.3045 2371 0.00865 2344 0.00855 9.9524
pgs* - - - - - -
pm* -45.3037 2942.6 0.01074 2916 0.01100 9.9531
pd3 -45.3077 512 0.00187 487 0.00180 9.9526
GLC2const -45.3078 514 0.00187 488 0.00178 9.9527

From the results in Table 5.4, it is evident that the loss in the constrained region surpasses that
in the unconstrained region. Furthermore, certain implementations lead to larger losses compared
to having no control. Specifically, attempting to control the separator pressure using the GLC for
a negative disturbance proved infeasible in this case. Despite employing VPC, no significant effect
was observed. This failure can be attributed to the "pair-close rule" arising from the low gain of the
MVs on gas production, resulting in minimal influence of GLC 2 on the CVs. The challenge stems
from the requirement to increase separator pressure, which necessitates increased gas production to
compensate for the disturbance-induced decrease. Consequently, GLC 2 opens up to enhance well
production. However, this causes an increase in manifold pressure, thereby reducing production
from other wells. Introducing additional VPCs or placing an MV closer to the separator may resolve
this issue. However, controlling the separator pressure becomes infeasible when the GOR of well 2
decreases. The dimensions of the separator may also contribute to this limitation. From a practical
standpoint, attempting to control the separator pressure by increasing it for a negative GOR is not
economically viable, as it would potentially decrease overall production. This observation aligns
with simulations where increasing the separator pressure coincides with a decrease in GOR.

The optimal value of the variables at nominal operation and the new operation point(-3% GOR
well 2), can be observed in Table 5.5.

Table 5.5: The CVs optimal values at the nominal operating point and at the new operating point.

Variable Nominal GOR W2(-3%) Gain from MV Unit
pwh2 80.6189 80.6214 2.7678 bar
pbh2 137.2310 137.2220 -6.2921 bar
pai2 101.5360 102.0160 5.3474 bar
pgs 21.8954 21.8791 0.0037 bar
pm 78.6830 78.6827 0.7678 bar
pd3 159.2200 158.3930 12.2317 bar

From Table 5.5, it is evident that the variables least sensitive to the disturbance are the manifold
pressure (pm) and bottomhole pressure (pbh2). However, controlling the manifold pressure results

64 of 85

5 RESULTS 5.3 Results of Case 1

in the highest loss among all potential control structures. This can be attributed to the inherent
difficulty in controlling manifold pressure, which requires VPC. Notably, the loss associated with
not implementing any control is relatively low, and the MV values remain close to their original
openings. When two MVs experience significant changes, such as opening or closing, the intercon-
nection within the system, where gas lift is shared among multiple wells from the same manifold,
can lead to increased gas lift in other wells.

Based on the results, it can be concluded that controlling the bottomhole pressure at its optimal
nominal value is the most effective control strategy. However, the overall loss is relatively insignif-
icant. It is important to note that if only GLC1, GLC2, and the oil outlet valve are available as
MVs, the objective function value is -45.30858049.

5.3.1.3 Proposed overall control structure single CV

From the results of both negative and positive change in the GOR of well 2 around the optimal
nominal point we can conclude that controlling the bottomhole pressure is the best implementation
in both regions. To show how the proposed control structure for the whole plant in the case where
we propose controlling the single measurement with one MV can be observed in Figure 5.9.

Figure 5.9: Control of the productionsystem with one MV used for SOC.

5.3.2 Null space method

The next step in implementing a self-optimizing CV was to introduce combinations of measurements
between the potential CVs discussed in Section 4.1.2.2. Based on the results from controlling a single
measurement, as presented in Section 5.3, we proposed using the measurement with the least loss
to form combinations of two variables. This choice aligns with the conditions of the nullspace
method outlined in Section 2.5, which does not account for measurement errors. The measurement
combinations for the bottomhole pressure can be found in Table 4.4.

65 of 85

5 RESULTS 5.3 Results of Case 1

To test the controllers identified in Tables 4.8 and 4.9, along with the corresponding setpoints from
Tables 4.6 and 4.7, simulations of the system were conducted for a duration of t = 100000s. This
was done to ensure convergence and reach a new steady-state of the system. Similar to the previous
case, the separator level was controlled to a constant setpoint. The initial controller tunings were
adjusted to achieve improved performance. The results of controlling the proposed CVs can be
observed in Appendix A.3.

5.3.2.1 GOR increase in well 2

The results of the simulations for an increase in the GOR of well 2 with +3% can be found in Table
5.6. The optimal cost at this operating point was found to be:

(1) -45.2406 $/s

(2) -45.1587 $/s

Table 5.6: The results of controlling the measurement combinations to their optimal nominal value facing a distur-
bance of +3% in the GOR of well 2. L denotes the loss compared to optimal operating points.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Tot. gas [kg/s]
pbh2 & pwh2 -45.0034 143464 0.5243 93736 0.34 10
pbh2 & pai2 -45.0035 143417 0.5241 93681 0.34 10
pbh2 & pm -45.0034 143467 0.5243 93739 0.34 10
pbh2 & pd3 -45.0038 143255 0.5235 93517 0.34 10
No control -44.9709 0.59616 113357 113357 0.42 10

Table 5.6 shows that controlling all measurement combinations leads to lower losses compared to
having no control. This aligns with the H matrices obtained from the combinations presented in
Tables 4.6 and 4.7. The H matrix derived from the left nullspace of the sensitivity matrix determines
the weighting assigned to each individual measurement in the combination. Since the bottomhole
pressure exhibits lower sensitivity to disturbances than the other potential measurements, as evident
in Table 4.5, it dominates the expression.

Another observation is that all measurement combinations result in higher losses compared to
solely controlling the bottomhole pressure. This can be attributed to the local nature of the
nullspace method, as explained in Section 2.5. This method identifies the combination of available
measurements that minimizes the loss based on the local conditions around the nominal point.
However, this highly nonlinear model, as discussed in Section 5.1, may exhibit different behavior
as the operating point deviates further from the nominal point. This is the case for the system
evaluated in this paper.

The best combination proposed by the nullspace method is the bottomhole pressure-discharge
pressure of compressor 3 combination. However, the losses for each combination are nearly indis-
tinguishable due to the dominant influence of the bottomhole pressure.

5.3.2.2 GOR decrease in well 2

The results of the simulations for a decrease in the GOR of well 2 with -3% can be found in Table
5.7. The optimal cost at this operating point was found to be:

(1) -45.3086 $/s

(2) -45.30857 $/s

It is important to note that the nullspace method requires the active constraints to remain un-
changed. However, due to the nominal point being located exactly at the boundary, even a slight
decrease in the GOR can cause the operating point to move out of the constraint region. To address

66 of 85

5 RESULTS 5.3 Results of Case 1

this issue, we propose adjusting the nominal operating region through small parameter changes.
This allows us to start in the unconstrained region, making the method valid.

Additionally, the plot in Figure 5.1 demonstrates that in the unconstrained region, the change is
approximately linear up to the nominal point where the constraint becomes active. Therefore, we
suggest obtaining the sensitivity matrix F in this case by introducing a small negative disturbance
in the GOR. From a practical standpoint, the system should be analyzed in all different constraint
regions, and the most optimal measurement combination should be implemented for each region.
However, identifying all possible constraint regions is beyond the scope of this project.

Table 5.7: The results of controlling the measurement combinations to their optimal nominal value facing a distur-
bance of -3% in the GOR of well 2. L denotes the loss compared to optimal operating points.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Tot. gas [kg/s]
pbh2&pwh2 -45.308570 26.0000 0.000099 1.73 0.000006 9.95260
pbh2&pai2 -45.308570 28.8415 0.000105 3.40 0.000012 9.95262
pbh2&pgs -45.308570 29.0000 0.000106 3.70 0.000013 9.95260
pbh2&pm -45.308572 28.3554 0.000103 2.80 0.000010 9.95230
pbh2/pd3 -45.308572 28.4167 0.000104 3.00 0.000011 9.95260
No control -45.307760 514 0.0019 488 0.001780 9.95270

Table 5.7 demonstrates a continuation of the previous trend, where the dominance of the bottomhole
pressure in the H matrix is observed. The losses for most combinations are approximately equal,
except for the bottomhole pressure-wellhead pressure combination, which exhibits an even smaller
loss. Therefore, we propose controlling the bottomhole pressure-wellhead pressure combination in
this region.

5.3.2.3 Proposed overall control structure nullspace method

Based on the results obtained from both negative and positive changes in the GOR of well 2 around
the optimal nominal point, it can be concluded that controlling the bottomhole pressure-discharge
pressure combination is the best implementation in the active constraint region. Conversely, in
the unconstrained region, the optimal alternative is the bottomhole pressure-wellhead pressure
combination. The proposed control structure for the entire plant, where we suggest controlling the
measurement combination with a single MV, is depicted in Figure 5.10.

To switch between the unconstrained (u) and constrained (c) SOC controllers, we propose a 2-point
controller based on the total produced gas value. This switching mechanism is represented by the
"Logic" block in the figure.

5.3.3 Exact local method

The implementation of the exact local method, as described in Section 4.1.2.3, was further enhanced
by considering the measurement error associated with different variables. The measurement com-
bination with the lowest loss, obtained from the nullspace method for various active constraint
regions, was compared with newly introduced measurements that are more susceptible to measure-
ment error.

The controllers obtained in Section 4.1.2.3 were tested through system simulations for a duration of
t = 100000s to ensure convergence and the attainment of a new steady-state. Similar to the previous
case, the separator level was controlled to a constant setpoint. In line with the nullspace method,
the nominal point was perturbed to determine a new unconstrained nominal point for evaluating
the measurement combinations in the unconstrained region. The initial controller tunings were
adjusted to improve performance. The results of controlling the proposed controlled variables can
be found in Appendix A.4.

67 of 85

5 RESULTS 5.3 Results of Case 1

Figure 5.10: Resulting overall control structure from the results of the nullspace method.

5.3.3.1 GOR increase in well 2

The results of the simulations for an increase in the GOR of well 2 with +3% can be found in Table
5.8. The optimal cost at this operating point was found to be:

(1) -45.2406 $/s

(2) -45.1587 $/s

Table 5.8: The results of controlling the measurement combinations to their optimal nominal value facing a distur-
bance of +3% in the GOR of well 2. L denotes the loss compared to optimal operating points.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Tot. gas [kg/s]
pbh2 &pd3 -45.0037 143256 0.52356 93533 0.34 10
pbh2 & wpo2 -45.0051 142413 0.52048 92692 0.33 10
pbh2 & wpg2 -45.0035 143420 0.52416 93697 0.34 10
pbh2 & wgl -45.0040 143103 0.52300 93381 0.34 10
wpo2 & wgl -45.0039 143128 0.52300 93406 0.34 10
wpg2 & wgl -44.9993 187059 0.68263 136967 0.50 10

The dominance of bottomhole pressure in the optimal measurement matrix H is evident, as shown
in Table 4.14, similar to the findings of the nullspace method. However, if the bottomhole pressure
transmitter is unavailable, controlling the oil flow of well 2 and the total gas lift could be a viable
alternative. Since fixing the bottomhole pressure transmitter can present practical challenges, an
alternative control structure should be considered.

Furthermore, it is worth noting that controlling the gas flow of well 2 and the gas lift leads to greater
loss compared to other combinations. On the other hand, controlling the bottomhole pressure in

68 of 85

5 RESULTS 5.3 Results of Case 1

conjunction with the oil flow of well 2 yields the same loss as controlling only the bottomhole
pressure, making it the measurement combination with the lowest amount of loss.

5.3.3.2 GOR decrease in well 2

The results of the simulations for a decrerase in the GOR of well 2 with -3% can be found in Table
5.9. The optimal cost at this operating point was found to be:

(1) -45.3086 $/s

(2) -45.30857 $/s

Table 5.9: The results of controlling the measurement combinations to their optimal nominal value facing a distur-
bance of -3% in the GOR of well 2. L denotes the loss compared to optimal operating points.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Tot. gas [kg/s]
pbh2 &pwh2 -45.30857 28.4940 0.000104 3.10 0.000011 9.95
pbh2&wpo2 -45.30857 28.4941 0.0001040 3.10 0.000013 9.95
pbh2&wpg2 -45.30857 28.4403 0.0001038 3.00 0.000011 9.95
pbh2&wgl -45.30857 28.5560 0.0001040 3.10 0.000011 9.95
wpo2&wgl -45.30857 29.3740 0.0001072 4.00 0.000015 9.95
wpg2&wgl -45.30857 25.5046 0.0000931 0.11 0.000001 9.95

The results in Table 5.9 show that the proposed combination from the nullspace method results in
more loss when implemented with the exact local method. The H matrix in this case is strongly
dominated by the bottomhole pressure, unlike the nullspace method. Consequently, the loss is
nearly identical to controlling only the bottomhole pressure. The exact local method determines
the weights of the controlled variables using the gain from the MVs and Y, as explained in Section
4.1.2.3. The gain from the MV on the bottomhole pressure is more significant than on the wellhead
pressure, leading to an increased weight for the bottomhole pressure. Controlling the produced oil
of well 2 and the total gas lift results in slightly higher loss compared to other potential combina-
tions, while the combination with the least loss in this case is the produced gas and total gas lift
combination.

5.3.3.3 Proposed overall control structure exact local method

Based on the results of both negative and positive changes in the GOR of well 2 around the optimal
nominal point, we can conclude that controlling the bottomhole pressure and produced oil of well
2 is the best implementation in the active constraint region. In the unconstrained region, the best
alternative is to control the produced gas of well 2 and the total gas lift. Figure 5.11 illustrates
the proposed control structure for the entire plant, where we suggest controlling the measurement
combination with one MV for the unconstrained region (u) and the constrained region (c).

69 of 85

5 RESULTS 5.4 Results of Case 2

Figure 5.11: Resulting overall control structure from the results of the exact local method.

5.4 Results of Case 2

In case 2, we explored the use of 2 MVs to control measurement combinations in the presence
of disturbance in the GOR of well 2 and 6. To linearize the system around the nominal point,
we employed finite difference, as described in Section 4.1.3. However, due to the non-linearity
of the model, solver difficulties were encountered. Nonetheless, for extremely small perturbations
in the variables (of magnitude 10�8), the optimizer was able to handle the computations. Table
A.1 in Appendix A.1 presents the proposed top 4 controlled measurement sets, along with their
corresponding loss calculated by the algorithms.

Table A.1 in Appendix A.1 provides an overview of the measurement combinations associated with
either the worst-case loss or the minimal average loss suggested by the different bracket and bound
implementations. The results indicate that incorporating more CVs generally leads to lower loss.
However, when comparing the case of two disturbances and two MVs to previous cases with one
disturbance and one MV for SOC, there are noticeable differences. Although some similarities
in the selection of optimal measurement combinations exist, it is expected that the bottomhole
pressure would have a more dominant role, as indicated by the results from the more brute force
approach.

By examining the cost function in Figure 5.1, it becomes evident that the dynamics change at the
nominal operating point, which lies precisely at the constraint boundary. As the GOR increases,
the system behavior undergoes rapid changes due to the nonlinear nature of the model. Based on
observations and the obtained results, it is clear that perturbing the disturbance (d) in the brute
force approach of case 1 captures the dynamics of the region change more accurately. However,
since the methods are defined as local, their objective is to capture the behavior around the nominal
point. The issue arises from the non-linearity of the model and the placement of the nominal point
on the border. It becomes apparent that the system’s behavior is not comparable to how it changes

70 of 85

5 RESULTS 5.4 Results of Case 2

further into the region. The limitations of local approaches become evident when dealing with
systems exhibiting changing behavior.

It is expected that the behavior in the unconstrained region differs from that in the constrained
region. However, when faced with nonlinear behavior within the same constraint region, more
complex control structures should be considered. One possibility for further implementation is
to analyze the system’s behavior in all potential constraint regions and design control structures
tailored to the specific behaviors observed in each region. This could be achieved through CV-CV
switching or gain-scheduling. Alternatively, dynamic RTO could be introduced to adaptively adjust
the control strategy based on changing conditions.

The Branch and Bound method yielded measurement combinations with minimal loss, which were
further examined for evaluation. Two control structures were implemented to assess the difference
between obtaining the sensitivity matrix by re-optimizing the system and using the linearized
version obtained from the implementation.

In practice, a small perturbation was introduced to the disturbance to obtain the sensitivity matrices
in case 1. However, due to the nonlinearity of the system, the sensitivity of the measurements varies
depending on the magnitude of the perturbation. Although the perturbations should be small, in
this case even perturbations on the order of 10�6% compared to the nominal value cause changes
in the sensitivity values.

5.4.1 Proposed overall control structure Branch and Bounds average loss

The Branch and Bound method identified the combination of pai2&pwh6&pbh2&pd3 as the one with
the lowest average loss. However, due to the limitations of the solver, a solution in the unconstrained
region could not be obtained. The proposed total control structure for this case is depicted in Figure
5.12.

5.4.2 Case 2 linear approach

5.4.2.1 Positive GOR change

The results of the simulations for an increase in the GOR of well 2 with +3% and well 6 with +2%
can be found in Table 5.10. The optimal cost at this operating point was found to be:

(1) -45.1652 $/s

(2) -45.0984 $/s

Table 5.10: The results of controlling the measurement combinations to their optimal nominal value facing a
disturbance of +3% in the GOR of well 2 and +2% in the GOR of well 6. Combinations marked (NC)
were not controllable.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Method
pai2 &pbh2(NC) - - - - - WCBnB
pai2 &pai6 -44.7169 271131 0.9925 230404 0.84 AVBnB
pai6&pd3 -44.6773 295024 1.0800 254270 0.93 WCPBnB
pai6&pbh6&pd3 -44.6907 286925 1.0500 246087 0.90 WCPBnB
pai6&pbh6&pd3&pai2 -44.6923 285944 1.0468 245214 0.89 WCPBnB
pai2&pd3 (NC) - - - - - AVPBnB
pai2&pbh2&pd3 -44.7584 246019 0.9006 205338 0.75 AVPBnB
pwh6&pbh2&pd3&pai2 -44.7530 249247 0.9125 208573 0.76 AVPBnB
No control -44.7468 252999 0.9269 212266 0.78 -

Table 4.20 presents the loss associated with each measurement combination obtained from simulat-
ing the control structure with a positive GOR change in wells 2 and 6. It is evident that in two of

71 of 85

5 RESULTS 5.4 Results of Case 2

Figure 5.12: Resulting overall control structure from the results of Branch and Bound implementation.

the combinations, the controllers are unable to regulate their respective optimal combinations to
their setpoints (cns). This lack of control can be attributed to interactions between the controllers.
In the simulations, three gas lift chokes are responsible for controlling a variable or measurement
combination at all times, leading to changes in one choke affecting variables in other wells. For the
pai2 & pbh2 and pai2 & pd3 combinations, simulations have shown that only one of the controllers
is able to regulate the measurement combination to its setpoint. Introducing a VPC only assists
the valve it controls while hindering the others from achieving their objectives. As a result, the
controllers operate effectively only in certain operating regions where one controller successfully
controls the measurement combination, rendering them invalid. The interactions between the con-
trollers highlight the reason why this thesis limited the number of MVs to a few. Although utilizing
all the GLCs would minimize loss, it would require more complex control structures. While this
issue has been partially addressed by operating the controllers on different timescales in this thesis,
it remains insufficient for all combinations.

In general, most of the combinations exhibit higher loss compared to having no control implemented.
This outcome is anticipated based on the system’s behavior differing in regions other than around
the nominal point. However, a noticeable trend is observed wherein the inclusion of additional
measurements generally leads to reduced loss, as evident from Table 4.20 in Appendix A.1. In this
specific case, the optimal combination for control is found to be pai2 & pbh2& pd3.

5.4.2.2 Negative GOR change

The results of the simulations for a decrease in the GOR of well 2 with -3% and well 6 with -2%
can be found in Table 5.11. The optimal cost at this operating point was found to be:

(1) -45.3106 $/s

72 of 85

5 RESULTS 5.4 Results of Case 2

(2) -45.3105 $/s

Table 5.11: The results of controlling the measurement combinations to their optimal nominal value facing a
disturbance of -3% in the GOR of well 2 and -2% in the GOR of well 6. Combinations marked (NC)
where not able to be controlled.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Method
pai2&pbh2 -45.2715 23651 0.0863 23594 0.0861 WCBnB
pai2&pai6 -45.3067 2369 0.0086 2302 0.0084 AVBnB
pai6&pd3 -45.3087 1125 0.0041 1068 0.0039 WCPBnB
pai6&pbh6&pd3 -45.3087 1163 0.0042 1096 0.0040 WCPBnB
pai6&pbh6&pd3&pai2 -45.3084 1346 0.0049 1288 0.0047 WCPBnB
pai2&pd3 -45.3071 2112 0.0077 2055 0.0075 AVPBnB
pai2&pbh2&pd3 -45.3087 1121 0.0041 1064 0.0039 AVPBnB
pwh6&pbh2&pd3&pai2 (NC) - - - - AVPBnB
No control -45.3083 1383 0.0050 1315 0.0048 -

From the results presented in Table 5.11, it is evident that the measurement combinations which
were previously uncontrollable in the case of positive GOR change are now controllable. This can
be attributed to the gas lift choke controlling the produced gas not being active at this particular
operating point, thereby reducing the interaction between the controllers. However, it should be
noted that due to the active constraint change, the obtained solution may not be applicable in
the unconstrained region. Notably, the combination of four variables proposed by the average loss
BAB method could not be effectively controlled. This can be attributed to conflicting control
objectives, resulting in both controllers eventually saturating in different directions. Furthermore,
it is observed that the combination of pai2 & pbh2 exhibits significantly higher loss compared to
the other combinations. The remaining methods do not exhibit substantial variations, and the
combination yielding the least loss corresponds to the same combination as in the constrained
region.

5.4.2.3 Comparing with F found from model

To compare the solutions obtained from the linearized sensitivity matrix and the re-optimized
system, the H matrices were derived using both approaches. The linearized model was based
on perturbations of magnitude 10�8, while the analytical method used perturbations of 10�4 to
determine F, due to solver limitations. This discrepancy in perturbation values resulted in different
outcomes. This comparison was undertaken to satisfy curiosity, assess the differences between the
cases, and evaluate the challenges posed by the non-linear model.

The first set of results of controlling the measurement combinations where the H is found analytically
are presented in Table 5.12. The optimal cost at this operating point was found to be:

(1) -45.1652 $/s

(2) -45.0984 $/s

The second set of results of controlling the measurement combinations where the H is found an-
alytically are presented in Table 5.13. The optimal cost at this operating point was found to
be:

(1) -45.3106 $/s

(2) -45.3105 $/s

As anticipated, the utilization of F obtained through re-optimization of the system yielded lower loss
compared to F derived from the linearized model. This outcome can be attributed to the nonlinear

73 of 85

5 RESULTS 5.4 Results of Case 2

Table 5.12: The results of controlling the measurement combinations to their optimal nominal value facing a
disturbance of +3% in the GOR of well 2 and +2% in the GOR of well 6. Combinations marked (NC)
where not able to be controlled.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Method
pai2-pbh2 -44.7061 277628 1.0165 236912 0.87 WCBnB
pai2-pai6 -44.7169 271131 0.9925 230404 0.84 AVBnB
pai6-pd3 -44.7301 263095 0.9632 222398 0.82 WCPBnB
pai6-pbh6-pd3 -44.7881 228040 0.8348 187390 0.69 WCPBnB
pai6-pbh6-pd3-pai2 -44.7973 222462 0.8100 180626 0.66 WCPBnB
pai2-pd3 -44.7178 270578 0.99055 229872 0.8400 AVPBnB
pai2-pbh2-pd3 -44.7584 246019 0.9006 205338 0.75 AVPBnB
pwh6-pbh2-pd3-pai2 (NC) - - - - AVPBnB
No control -44.7468 252999 0.9260 212266 0.78 -

Table 5.13: The results of controlling the measurement combinations to their optimal nominal value facing a
disturbance of -3% in the GOR of well 2 and -2% in the GOR of well 6. Combinations marked (NC)
where not able to be controlled.

Variable Cost [$/s] L [$/w] (1) L [%] (1) L [$/w] (2) L [%] (2) Method
pai2-pbh2 -45.3017 5402 0.0197 5346 0.019 WCBnB
pai2-pai6 -45.3067 2369 0.0086 2302 0.0084 AVBnB
pai6-pd3 -45.3088 1096 0.0040 1041 0.0038 WCPBnB
pai6-pbh6-pd3 -45.3054 3173 0.0116 3118 0.0110 WCPBnB
pai6-pbh6-pd3-pai2 -45.3086 1197 0.0044 1142 0.0042 WCPBnB
pai2-pd3 -45.3071 2112 0.0077 2055 0.0075 AVPBnB
pai2-pbh2-pd3 (NC) - - - - - AVPBnB
pwh6-pbh2-pd3-pai2 -45.3084 1288 0.0049 1288 0.0047 AVPBnB
No control -45.3083 1383 0.0050 1315 0.0048 -

behavior exhibited by the system in the vicinity of the nominal operating point. Consequently,
even slight variations in step lengths can lead to significant alterations in system dynamics.

74 of 85

6 DISCUSSION

6 Discussion

The results have already been addressed and analyzed in the Results section. Therefore, this
section will focus on exploring more general observations and the underlying assumptions made in
the study.

6.1 Model assumptions and limitations

Several simplifications have been made to model the oil and gas production system. These simpli-
fications and assumptions are however necessary to be able to model the system practically. Given
that the purpose of this model is to look at several subsystems as a whole, the decision was made
to not delve to deeply into each systems specifics. To justify the decision, it should be noted that
the detailed modelling of any of these subsystems could be a thesis on it’s own.

We have made the assumption that the production fluid consists of only oil and gas to simplify the
system. In real oil and gas production systems there are generally always water in the production
fluids. However, in this model where the dynamics of the fluid are not modelled in detail, the intro-
duction of water in to the system would essentially only change the composition of the production
fluid. An implication of this would be that the density of the production fluid would increase, due
to oil being less dens than water. In the separator another outlet for the produced water would
need to be introduced. However, due to the assumption of perfect separation the water would
just be removed from the other fluids without any further processing. Due to the scope of this
project where we don’t consider further treatment of any of the produced fluids, the introduction
of water would not make a significant difference. It should be noted that for real systems where
the separation is far from perfect, considering the water would be important. This is due to the
related treatment and installation cost of removing oil from the water, removing water from the
gas and multiple separation stages to remove the water from the oil.

To limit the model and define the scope of the work, constant parameters at the battery limits
was introduced. This included the export gas pressure, export oil pressure, productivity index and
the reservoir pressure. These constant parameters may effect relationships between variables in
the simulations compared to the real scenarios. An example of this is the relationship between the
GOR and the reservoir pressure in the well. Typically, when a well is new the reservoir pressure is
high and the GOR is low. As the well is produced the reservoir pressure drops due to depletion of
fluid in the reservoir and the GOR increases. As the reservoir pressure is assumed constant in this
study, the relationship between the variables are not considered when the GOR changes and will
thus introduce a margin of error. However, since modelling is an approximation of the real system,
limits will need to be introduced to any model.

Another variable considered constant is the temperature in the different regions. The temperatures
have been modelled to mimic the temperature drop from the different regions. The lack of explicit
consideration of temperature in this case may result in the calculation of different system properties
in different systems being less realistic.

The modelling of the compressor train introduces another source of uncertainty. The compressor
curves were approximated through trial and error to replicate the behavior of an actual system.
In a real-world compressor system, these curves would typically be provided by the supplier or
obtained through data analysis and model fitting techniques.

6.2 General observations about the results

In the results in Section 5 the results of the control implementations was shown and discussed. The
main observations was that the different control structures for the purpose of regulatory control
worked as they should for the potential disturbances considered.

75 of 85

6 DISCUSSION 6.2 General observations about the results

For the results of implementing the different control structures for SOC, the uncertainty of not
completely converged models should be considered. Due to the share number of evaluations a
standard evaluation time of t = 100000s was implemented. Measures as evaluating the difference
between the two last values of the most relevant variables was implemented, but due to the share
number of evaluations and model variables this was not possible for the almost 200 process variables.

Another factor that makes the implementation of SOC strategies difficult in this case, is the location
of the nominal operating point at the border between the constraint regions. Due to limitations in
the solver and difficulties related to initial values, implementing the nominal point further into the
constrained region became tedious.

6.2.1 Case 1

The general findings from case 1 was that the best controlled variable essentially for all the methods
and the two constraint regions where controlling the bottomhole pressure with some exceptions.

In the constrained region all the potential controlled variables with the exception of the single con-
trolled variable resulted in less loss than not controlling anything. Based on this we can determine
that implementing a SOC strategy is a better alternative then doing nothing.

However, it is important to note that the overall loss within the constrained region is relatively
significant. This can be attributed to the impact of the total produced gas constraint on the system.
When the constraint is active, it restricts the total production, leading the system to gradually limit
production to counteract the increased gas within the system. Even in the base case where all the
MVs are available for optimization, as observed in Figure 5.1, there is a considerable loss, even when
compared to methods like RTO, which serves as a point of comparison for our implementation.

If we consider only the available MVs used in the case, the objective function value determined
by the optimizer would be -45.1587. While this results in less loss for the implementations, it
is still significant. The non-linear nature of the system presents challenges in obtaining accurate
magnitudes for each controlled variable in the optimal measurement combinations, primarily due
to the local methods employed in the implementation.

At the nominal operating point, it is evident that controlling bottomhole pressure is the most
favorable variable and dominates the measurement combinations. However, as dynamic changes
occur further within the constrained region, the weights of the measurements would undoubtedly
shift. Given the non-linear behavior within the constrained region, approaches such as feedback-
optimizing control, gain-scheduling or dynamic RTO should be considered.

In the unconstrained region, the bottomhole pressure was identified as the optimal controlled vari-
able for most combinations, except for the nullspace method where a combination of bottomhole
pressure and wellhead pressure exhibited lower loss. Additionally, controlling the produced gas of
well 2 and the total gas lift using the exact local method resulted in reduced loss. It is noteworthy
that in the unconstrained region, the rate of change is more linear compared to the constrained
region. This linear behavior contributes to lower loss and allows for more accurate estimation of
the magnitudes of variables in the optimal measurement combination, particularly further away
from the nominal operating point.

To ensure consistency with the implementation of local methods and in line with the theory propos-
ing different SOC control structures for different active constraint regions, the optimal nominal point
was moved into the unconstrained region during evaluation of the best strategies. The selection
of the active control structure was determined by measuring the total produced gas and deciding
based on the presence or absence of the constraint. The optimizer was employed to find the optimal
point in cases where only the MVs used in the simulations were available for control, resulting in an
objective function value of -45.3085, which is nearly equal to the case where all MVs are available
for control.

76 of 85

6 DISCUSSION 6.2 General observations about the results

Given the aim of this paper to identify simple control structures, it is concluded that solely control-
ling the manipulated variable of the well experiencing a disturbance would be beneficial in achieving
the desired outcomes.

6.2.2 Case 2

In case two, we applied linearization to the model and utilized the bi-directional branch and bound
algorithm to evaluate measurement combinations with the least worst-case loss and least average
loss. To achieve this, we perturbed the linearization with a significantly smaller value compared
to the brute force approach employed in case one. However, due to the non-linear nature of the
system, the local conditions were not the same, leading the branch and bound method to identify
measurement combinations that were not suitable for the specific system under consideration. This
outcome highlighted the vulnerabilities associated with utilizing local linear approximations when
dealing with highly non-linear systems.

Due to the solver’s difficulties, the method was solely evaluated around the nominal point within the
unconstrained region, which deviated from the condition related to constraint changes defined by
the local methods employed for SOC. However, it is important to note that the proposed methods
were tested for operation in both the constrained and unconstrained regions

During the implementation of the methods, a gradual increase in the number of manipulated
variables was proposed in an attempt to achieve control over all of them. However, due to the
substantial workload involved and the challenges associated with the coupling between the gas
lift chokes, achieving this goal using decentralized control proved difficult. The tuning process for
many controllers became time-consuming in order to minimize the interaction among them. It was
observed that even with the utilization of only two manipulated variables for SOC, some control
structures failed to work effectively.

For future investigations, more advanced and complex control strategies could be explored to ad-
dress these challenges and improve the system’s control performance.

The results obtained from both approaches, namely using the F matrix obtained by perturbing
it with a small disturbance and re-optimizing, as well as using the F matrix derived from the
linearized model, clearly demonstrated that the first option yielded better outcomes. Despite both
perturbations being relatively small, this highlights the challenges associated with the non-linearity
of the system.

One potential strategy to address these challenges in a non-linear system is to analyze the system
across the entire operating range and subsequently design different control structures corresponding
to similar regions. However, if the system’s behavior varies within the same constraint regions, it
may become challenging to devise reliable switching logic between the different implementations.

77 of 85

7 CONCLUSION

7 Conclusion

In conclusion, this master’s thesis has highlighted the potential benefits and challenges associ-
ated with designing self-optimizing control structures for an oil and gas production system with
recycled gas lift. The inherent non-linearity of the system and the dynamic changes in active con-
straints present significant difficulties during the implementation of control structures. To address
changes in operating conditions and disturbances, the use of CV-CV switching to control the op-
timal measurement combination and active constraints in each region is recommended. The thesis
has demonstrated that the careful selection of controlled variables using heuristics can yield compa-
rable or even better results than more complex methods. Local control methods generally perform
well in seemingly linear regions but may result in suboptimal performance in non-linear regions. In
highly non-linear regions, it is crucial to evaluate more sophisticated control structures based on
the trade-off between potential benefits and disadvantages associated with their implementation.
Additionally, the study has identified limitations in controlling multiple gas lift chokes connected
to the same feed source using decentralized control strategies.

Regarding the regulatory control layer, the implemented surge control structure effectively managed
flows below the surge limit, and the logic ensured the closure of valves when additional recycle flow
was unnecessary. Furthermore, the split range controller with the baton strategy demonstrated
its capability to control the active constraint on total produced gas, while the logic based on one
active manipulated variable at a time minimized interactions between the gas lift chokes. Both
implemented level control strategies proved effective in their respective control targets; however,
for operational stability and convergence of simulations, constant control of the separator level
was preferred. The addition of valve position control played a critical role in controlling multiple
controlled variables. The implementation of CV-CV switching demonstrated significant economic
advantages compared to controlling the active constraint in unconstrained regions.

In the first case study, it was found that using only one manipulated variable for control in the con-
strained region was insufficient. However, in the unconstrained region, controlling single variables
or combinations derived from the nullspace method or exact local method resulted in minimal loss.
The bottomhole pressure of well 2 emerged as the overall preferred controlled variable, showing
potential self-optimizing qualities compared to other variables investigated. In the unconstrained
region, controlling the total gas lift and the gas flow of well 2 resulted in the least amount of loss.

The results of the second case study suggested that the measurement combination of annulus
pressure of well 2, wellhead pressure of well 6, bottomhole pressure of well 2, and the discharge
pressure of compressor 3 yielded the least amount of average loss. However, simulations revealed the
vulnerabilities of the local method when disturbances moved far away from the nominal operating
point. This case study highlighted how even small perturbations, when obtaining the linearized
model, can lead to significant changes in the optimal combination matrices and related weights.

In summary, this research has shed light on the potential benefits and challenges associated with
designing self-optimizing control structures for oil and gas production systems with recycled gas
lift. It has emphasized the importance of carefully selecting controlled variables, considering the
non-linear nature of the system and active constraint changes. The implementation of CV-CV
switching has shown economic advantages, and the study has provided insights into the limitations
and performance of various control strategies.

78 of 85

8 FURTHER WORK

8 Further work

For further work we propose implementing more complex control structures in the active constraint
region, due to the highly non-linear nature of the system. The issue related to control of multiple gas
lift chokes should also be addressed with more complex control structures as feedback-optimizing
control or dynamic-RTO.

A natural next step in the modelling of the system is to use real life data from a production facility
and re-model it based on this. The model should then be evaluated based on the behaviour be
compared to the real life system. The model could also be extended with an export compressor
and a oil export pump to consider the cost of power in these components as well.

79 of 85

REFERENCES REFERENCES

References

[1] Kristian Ødegård. Modelling and optimization of recirculated gas lift problem,
2022. URL https://folk.ntnu.no/skoge/diplom/prosjekt22/odegard/Specialization_

Project_Kristian_Odegard.pdf.

[2] Manfred Morari, Yaman Arkun, and George Stephanopoulos. Studies in the synthesis of control
structures for chemical processes: Part i: Formulation of the problem. process decomposition
and the classification of the control tasks. analysis of the optimizing control structures. AIChE
Journal, 26(2):220–232, 1980.

[3] Vidar Alstad. Studies on selection of controlled variables. Norwegian University of Science
and Technology, 2005.

[4] Dinesh Krishnamoorthy, Kjetil Fjalestad, and Sigurd Skogestad. Optimal operation of oil and
gas production using simple feedback control structures. Control Engineering Practice, 91, 08
2019. doi: 10.1016/j.conengprac.2019.104107.

[5] Esmaeil Jahanshahi, Dinesh Krishnamoorthy, Andrés Codas, Bjarne Foss, and Sigurd Sko-
gestad. Plantwide control of an oil production network. Computers Chemical Engineering,
136:106765, 2020. ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2020.106765.
URL https://www.sciencedirect.com/science/article/pii/S0098135419306271.

[6] Sigurd Skogestad. Plantwide control: the search for the self-optimizing control structure.
Journal of Process Control, 10(5):487–507, 2000. ISSN 0959-1524. doi: https://doi.org/
10.1016/S0959-1524(00)00023-8. URL https://www.sciencedirect.com/science/article/

pii/S0959152400000238.

[7] Diego Fernando Mendoza, José Eduardo Alves Graciano, Fabio dos Santos Liporace, and
Galo Antonio Carrillo Le Roux. Assessing the reliability of different real-time optimization
methodologies. The Canadian Journal of Chemical Engineering, 94(3):485–497, 2016.

[8] Adriana Reyes-Lúa and Sigurd Skogestad. Multi-input single-output control for extending the
operating range: Generalized split range control using the baton strategy. Journal of Process
Control, 91:1–11, 2020.

[9] Adriana Reyes-Lua and Sigurd Skogestad. Systematic design of active constraint switching
using classical advanced control structures. Industrial & Engineering Chemistry Research, 59
(6):2229–2241, 2019.

[10] Adriana Reyes-Lúa, Cristina Zotică, Krister Forsman, and Sigurd Skogestad. Systematic design
of split range controllers. IFAC-PapersOnLine, 52(1):898–903, 2019.

[11] Sigurd Skogestad. Simple analytic rules for model reduction and pid controller tuning. Journal
of process control, 13(4):291–309, 2003.

[12] Yi Cao and Vinay Kariwala. Bidirectional branch and bound for controlled variable selection:
Part i. principles and minimum singular value criterion. Computers & Chemical Engineering,
32(10):2306–2319, 2008.

[13] Dinesh Krishnamoorthy and Sigurd Skogestad. Online process optimization with active con-
straint set changes using simple control structures. Industrial & Engineering Chemistry Re-
search, 58(30):13555–13567, 2019.

[14] Predrag Milosavljevic, Alejandro G. Marchetti, Andrea Cortinovis, Timm Faulwasser, Mehmet
Mercangöz, and Dominique Bonvin. Real-time optimization of load sharing for gas compres-
sors in the presence of uncertainty. Applied Energy, 272:114883, 2020. ISSN 0306-2619.
doi: https://doi.org/10.1016/j.apenergy.2020.114883. URL https://www.sciencedirect.

com/science/article/pii/S0306261920303950.

80 of 85

https://folk.ntnu.no/skoge/diplom/prosjekt22/odegard/Specialization_Project_Kristian_Odegard.pdf
https://folk.ntnu.no/skoge/diplom/prosjekt22/odegard/Specialization_Project_Kristian_Odegard.pdf
https://www.sciencedirect.com/science/article/pii/S0098135419306271
https://www.sciencedirect.com/science/article/pii/S0959152400000238
https://www.sciencedirect.com/science/article/pii/S0959152400000238
https://www.sciencedirect.com/science/article/pii/S0306261920303950
https://www.sciencedirect.com/science/article/pii/S0306261920303950

REFERENCES REFERENCES

[15] Johannes Jäschke, Yi Cao, and Vinay Kariwala. Self-optimizing control–a survey. Annual
Reviews in Control, 43:199–223, 2017.

[16] Sigurd Skogestad, Ivar J Halvorsen, and John C Morud. Self-optimizing control: The basic
idea and taylor series analysis. American Institute of Chemical Engineers, 1998.

[17] Ivar J Halvorsen, Sigurd Skogestad, John C Morud, and Vidar Alstad. Optimal selection of
controlled variables. Industrial & Engineering Chemistry Research, 42(14):3273–3284, 2003.

[18] Risvan Dirza, Jose Matias, Sigurd Skogestad, and Dinesh Krishnamoorthy. Experimental vali-
dation of distributed feedback-based real-time optimization in a gas-lifted oil well rig. Control
Engineering Practice, 126:105253, 2022.

[19] Truls Larsson and Sigurd Skogestad. Plantwide control-a review and a new design procedure.
2000.

[20] Vidar Alstad, Sigurd Skogestad, and Eduardo S Hori. Optimal measurement combinations as
controlled variables. Journal of Process Control, 19(1):138–148, 2009.

[21] Vidar Alstad and Sigurd Skogestad. Null space method for selecting optimal measurement
combinations as controlled variables. Industrial & engineering chemistry research, 46(3):846–
853, 2007.

[22] Vinay Kariwala and Yi Cao. Bidirectional branch and bound for controlled variable selection.
part ii: Exact local method for self-optimizing control. Computers & chemical engineering, 33
(8):1402–1412, 2009.

[23] Vinay Kariwala and Yi Cao. Bidirectional branch and bound for controlled variable selection
part iii: Local average loss minimization. IEEE Transactions on Industrial Informatics, 6(1):
54–61, 2010.

[24] Mark L Darby, Michael Nikolaou, James Jones, and Doug Nicholson. Rto: An overview and
assessment of current practice. Journal of Process control, 21(6):874–884, 2011.

[25] André D Quelhas, Normando José Castro de Jesus, and José Carlos Pinto. Common vulnera-
bilities of rto implementations in real chemical processes. The Canadian Journal of Chemical
Engineering, 91(4):652–668, 2013.

[26] Sigurd Skogestad. Control structure design for complete chemical plants. Computers Chem-
ical Engineering, 28(1):219–234, 2004. ISSN 0098-1354. doi: https://doi.org/10.1016/j.
compchemeng.2003.08.002. URL https://www.sciencedirect.com/science/article/pii/

S0098135403001984. Escape 12.

[27] Sigurd Skogestad and I Postlethwaite. Multivariable Feedback Control: Analysis and Design,
volume 2. 01 2005.

[28] Truls Larsson, Kristin Hestetun, Espen Hovland, and Sigurd Skogestad. Self-optimizing control
of a large-scale plant: The tennessee eastman process. Industrial & Engineering Chemistry
Research, 40(22):4889–4901, 2001. doi: 10.1021/ie000586y. URL https://doi.org/10.1021/

ie000586y.

[29] Adriana Reyes-Lúa, Cristina Zotică, and Sigurd Skogestad. Optimal operation with changing
active constraint regions using classical advanced control. IFAC-PapersOnLine, 51(18):440–
445, 2018.

[30] Dinesh Krishnamoorthy and Sigurd Skogestad. Systematic design of active constraint switch-
ing using selectors. Computers Chemical Engineering, 143:107106, 2020. ISSN 0098-1354. doi:
https://doi.org/10.1016/j.compchemeng.2020.107106. URL https://www.sciencedirect.

com/science/article/pii/S0098135420307274.

81 of 85

https://www.sciencedirect.com/science/article/pii/S0098135403001984
https://www.sciencedirect.com/science/article/pii/S0098135403001984
https://doi.org/10.1021/ie000586y
https://doi.org/10.1021/ie000586y
https://www.sciencedirect.com/science/article/pii/S0098135420307274
https://www.sciencedirect.com/science/article/pii/S0098135420307274

REFERENCES REFERENCES

[31] James Crowe, GR Chen, R Ferdous, DR Greenwood, MJ Grimble, HP Huang, JC Jeng,
Michael A Johnson, MR Katebi, S Kwong, et al. PID control: new identification and design
methods. Springer, 2005.

[32] Vinay Kariwala, Yi Cao, and S Janardhanan. Local self-optimizing control with average loss
minimization. Industrial & Engineering Chemistry Research, 47(4):1150–1158, 2008.

[33] Ramprasad Yelchuru and Sigurd Skogestad. Convex formulations for optimal selection of
controlled variables and measurements using mixed integer quadratic programming. Journal
of Process control, 22(6):995–1007, 2012.

[34] Yi Cao. Bidirectional branch and bound for average loss minimiza-
tion, 2023. URL https://www.mathworks.com/matlabcentral/fileexchange/

25870-bidirectional-branch-and-bound-for-average-loss-minimization.

[35] Yi Cao. Bidirectional branch and bound solvers for worst case loss min-
imization, 2023. URL https://www.mathworks.com/matlabcentral/fileexchange/

22632-bidirectional-branch-and-bound-solvers-for-worst-case-loss-minimization.

[36] A. Maarleveld and J.E. Rijnsdorp. Constraint control on distillation columns. Automatica, 6
(1):51–58, 1970. ISSN 0005-1098. doi: https://doi.org/10.1016/0005-1098(70)90074-9. URL
https://www.sciencedirect.com/science/article/pii/0005109870900749.

[37] Karl Johan Åström and Richard M Murray. Feedback systems: an introduction for scientists
and engineers. Princeton university press, 2021.

[38] Randall LeVeque. Finite difference methods for differential equations, 1998.

[39] Boyun Gou, William C Lyons, and Ali Ghalambor. Petroleum production engineering, 2007.

[40] Bin Hu. Characterizing gas-lift instabilities. Master of Science Thesis, NTNU, 2004.

[41] Jim Cahill and Mikhail Ilchenko. Controlling surge in centrifugal compressors, Nov
2020. URL https://www.emersonautomationexperts.com/2019/control-safety-systems/

controlling-surge-centrifugal-compressors/.

[42] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. CasADi –
A software framework for nonlinear optimization and optimal control. Mathematical Program-
ming Computation, 11(1):1–36, 2019. doi: 10.1007/s12532-018-0139-4.

82 of 85

https://www.mathworks.com/matlabcentral/fileexchange/25870-bidirectional-branch-and-bound-for-average-loss-minimization
https://www.mathworks.com/matlabcentral/fileexchange/25870-bidirectional-branch-and-bound-for-average-loss-minimization
https://www.mathworks.com/matlabcentral/fileexchange/22632-bidirectional-branch-and-bound-solvers-for-worst-case-loss-minimization
https://www.mathworks.com/matlabcentral/fileexchange/22632-bidirectional-branch-and-bound-solvers-for-worst-case-loss-minimization
https://www.sciencedirect.com/science/article/pii/0005109870900749
https://www.emersonautomationexperts.com/2019/control-safety-systems/controlling-surge-centrifugal-compressors/
https://www.emersonautomationexperts.com/2019/control-safety-systems/controlling-surge-centrifugal-compressors/

A APPENDIX A

A Appendix A

A.1 Mearument combinations with related loss, proposed by Branch and Bounds.

Table A.1: The proposed measurement sets proposed by the different bracket and bounds methods.

Worst case loss BAB Loss
pai2&pbh2 323.79
Average loss BAB Loss
pai2&pai6 2.5597
pai6&pd3 2.5603
pai2&pd3 3.3297
pbh6&pd3 3.9807
Worst case loss partial BAB 2 Loss
pai6&pd3 30.5995
pai2&pd3 39.5692
pbh6&pd3 47.5047
wpg2&pd3 59.0685
Worst case loss partial BAB 3 Loss
pai6&pbh6 &pd3 1.4000
pai6&pd3 &wpg6 1.6766
pai6&pd3 &pwh6 2.9605
pai6&pd3 &wpo6 24.3740
Worst case loss partial BAB 4 Loss
pai2&pai6&pbh6 &pd3 0.0050
pai2&pai6&pwh6 &pd3 0.0253
pai2&pai6&wpg6 &pd3 1.2274
pai2&pai6&wpo6 &pd3 4.3604
Average loss partial BAB 2 Loss
pai2&pd3 0.0061
pwh6&pd3 0.5523
pbh6&pd3 0.8757
pai2&pai6 2.5597
Average loss partial BAB 3 Loss
pai2&pbh2 &pd3 0.0585
pai2&pbh2 &pai6 0.7006
pai2&pai6 &pd3 1.6250
pai2&pd3 &pgs 1.9595
Average loss partial BAB 4 Loss
pai2&pwh6&pbh2 &pd3 0.0001
pai2&pwh6&pbh2 &pai6 0.0004
pai2&pwh6&pai6 &pgs 0.0008
pai2&pwh6&pbh2 &pgs 0.0178

A APPENDIX A A.2 One manipulated variable, single controlled variable simulation results.

A.2 One manipulated variable, single controlled variable simulation results.

A APPENDIX A A.2 One manipulated variable, single controlled variable simulation results.

Figure A.1: Simulation results for one manipulated variable controlling single measurement

A APPENDIX A A.3 Nullspace method simulations results.

A.3 Nullspace method simulations results.

A APPENDIX A A.3 Nullspace method simulations results.

Figure A.2: Simulation results for nullspace implementation

A APPENDIX A A.4 Exact local method simulations results.

A.4 Exact local method simulations results.

A APPENDIX A A.4 Exact local method simulations results.

Figure A.3: Simulation results for exact local method implementation

B APPENDIX B

B Appendix B

B.1 GyuImplemetation.py

This code calculates the Gy
u.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11 import xlsxwriter
12

13 # Call the parameters
14 import ParameterSOCN
15 import SimulatorSOCN
16 #par now represents the dictionary defined in parameter function
17 par = ParameterSOCN.Params_6wells ()
18

19

20

21

22 import pandas as pd
23

24

25 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

26 #controlled variables(u). Data listed in excel , comma separated files.
27 lbx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbx6Sep.csv’,header=None).values.

reshape (-1)
28 lbz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbz6Sep.csv’,header=None).values.

reshape (-1)
29 lbu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbu6Sep.csv’,header=None).values.

reshape (-1)
30 ubx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubx6Sep.csv’,header=None).values.

reshape (-1)
31 ubz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubz6Sep.csv’,header=None).values.

reshape (-1)
32 ubu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubu6Sep.csv’,header=None).values.

reshape (-1)
33

34

35

36

37

38 #Define the parameter intial values(constant , if not manually changed)
39 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’]
40 ,par[’p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’

])
41

42 ep = 1e-8 #Perturbation factor
43

44

45 x_store = []
46 z_store = []
47 u_store = []
48

49

50

B APPENDIX B B.1 GyuImplemetation.py

51 #Retrieve the model equations from the simulator
52 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.

CentralizedSimulator_F(par)
53 t_span = np.arange (40000)
54

55

56 #Function returning the data from pertrubating the valve opening ,
57 #small change in either GLC2 or GLC6
58 def Optimizer(valve , eps):
59 #Retrieve the initial values of the states
60 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).

values.reshape (-1)
61 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).

values.reshape (-1)
62 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).

values.reshape (-1)
63 uk = u0
64 xf = x0
65 zk = z0
66

67 #Make list to store all the data
68 GLC2case = []
69 #Change in openings
70 ##Change GLC##
71

72 for k in t_span:
73

74

75 #Solving the initial value problem
76 inputs = ca.vertcat(uk, p0)
77 Fk = F(x0 = xf, z0 = zk , p = inputs)
78 #Retrieving the differential states
79 xf = (Fk[’xf’]).full()
80 #Retrieving the algebraic states
81 zk = (Fk[’zf’]).full()
82 zk[79] = 10 #Make sure the active constraint on the produced gas is active
83

84 #Append results
85 x_store.append(xf)
86 u_store.append(uk)
87 z_store.append(zk)
88 #Perturbation of the valve opening
89 if k == 1:
90 diff = uk[valve]*eps
91 uk[valve] = uk[valve] + diff
92

93 GLC2case.append(zk[7]) #Wellhead pressure 2 1
94 GLC2case.append(zk[1]) #Annulus pressure 2 2
95 GLC2case.append(zk[19]) #Bottomhole pressure 2 3
96 GLC2case.append(zk[11]) #Wellhead pressure 6 4
97 GLC2case.append(zk[5]) #Annulus pressure 6 5
98 GLC2case.append(zk[23]) #Bottomhole pressure 6 6
99 GLC2case.append(zk[74]) #Manifold pressure 7

100 GLC2case.append(xf[29]) #Discharge pressure comp 3 8
101 GLC2case.append(xf[20]) #Separator pressure 9
102 GLC2case.append(zk[55]) #Oil flow 2 10
103 GLC2case.append(zk[49]) #Gas flow 2 11
104 GLC2case.append(zk[59]) #Oil flow 6 12
105 GLC2case.append(zk[53]) #Gas flow 6 13
106 GLC2case.append(zk[78]) #Oil out separator 14
107 GLC2case.append(zk[79]) #Produced gas 15
108 GLC2case.append(zk [107]) #Tot gaslift 16
109

110 return GLC2case , diff

B APPENDIX B B.1 GyuImplemetation.py

111

112

113 #Use finite difference to obtain the how the CV’s change with perturbing the
valves

114 def GetGy(valve1 , valve2 , eps):
115 #finite difference for first valve
116 Delta_y1 = []
117 Delta_y2 = []
118 Listu1 , Delta_u1 = Optimizer(valve1 , eps)
119 Listu2 , Delta_u2 = Optimizer(valve2 , eps)
120 ListNom , Delta_nom = Optimizer(valve1 , 0)
121 for i in range(len(Listu1)):
122 Delta_y1.append ((Listu1[i][0] - ListNom[i][0])/Delta_u1)
123 for i in range(len(Listu2)):
124 Delta_y2.append ((Listu2[i][0] - ListNom[i][0])/Delta_u2)
125

126 return Delta_y1 , Delta_y2
127

128

129 #From the data , get the Guy matrix on correct form
130 def GetGyMatrix(valve1 , valve2 , eps):
131

132 GyMat = np.zeros ((16 ,2)) #16
133 array11 , array22 = GetGy(valve1 ,valve2 ,eps)
134 #Reshape arrays
135 array1 = np.array(array11)
136 array2 = np.array(array22)
137 array1 = array1.reshape ((16 ,1))
138 array2 = array2.reshape ((16 ,1))
139

140 GyMat[:, 0] = array1[:, 0]
141 GyMat[:, 1] = array2[:, 0]
142

143 return GyMat
144

145 mat = Gymat(1,5,ep)
146 #Export to Excel for further use in BAB methods in matlab
147 workbook = xlsxwriter.Workbook(’DataForBandB/Gyu.xlsx’)
148

149 #add the workbook
150 worksheet = workbook.add_worksheet ()
151

152 row = 0
153 col = 0
154

155 # Iterate over the data and write it out row by row.
156 for u1, u2 in (mat):
157 worksheet.write(row , col , u1)
158 worksheet.write(row , col + 1, u2)
159 row += 1
160

161 workbook.close()
162 # Close the Excel file via close method

B APPENDIX B B.2 GydImplementation.py

B.2 GydImplementation.py

This code calculates the Gy

d
.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11 import xlsxwriter
12

13 # Call the parameters
14 import ParameterSOCN
15 import SimulatorSOCN
16 #par now represents the dictionary defined in parameter function
17 par = ParameterSOCN.Params_6wells ()
18

19

20

21

22 import pandas as pd
23 #Retrieve initial guesses for the differential states(x0), algebraic states(z0)

and
24 #controlled variables(u0). Data listed in excel , comma separated files.
25 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).values.

reshape (-1)
26 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).values.

reshape (-1)
27 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).values.

reshape (-1)
28

29 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

30 #controlled variables(u). Data listed in excel , comma separated files.
31 lbx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbx6Sep.csv’,header=None).values.

reshape (-1)
32 lbz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbz6Sep.csv’,header=None).values.

reshape (-1)
33 lbu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbu6Sep.csv’,header=None).values.

reshape (-1)
34 ubx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubx6Sep.csv’,header=None).values.

reshape (-1)
35 ubz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubz6Sep.csv’,header=None).values.

reshape (-1)
36 ubu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubu6Sep.csv’,header=None).values.

reshape (-1)
37

38

39 #Define the parameter intial values(constant , if not manually changed)
40 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],
41 par[’p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
42

43

44

45 ep = 1e-8 #perturbation factor
46

47 x_store = []
48 z_store = []
49 u_store = []

B APPENDIX B B.2 GydImplementation.py

50

51 t_span = np.arange (40000)
52

53

54 #Return how the CV’s change with perturbation for the disturbances
55 def Optimizer(disturbance , eps):
56 #Retrieve return variables of the integrator function
57 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.

CentralizedSimulator_F(par)
58

59 #Retrieve the initial data
60 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).

values.reshape (-1)
61 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).

values.reshape (-1)
62 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).

values.reshape (-1)
63

64 #Define the parameter values locally
65 p0Real = [0.125 , 0.13 , 0.13 , 0.14 , 0.125 , 0.135 , 8, 10, 19, 20, 18,

20, 20, 20]
66 p0Real1 = p0Real
67

68 uk = u0
69 xf = x0
70 zk = z0
71

72 GLC2case = []
73

74

75 for k in t_span:
76

77

78 #Solving the initial value problem
79 inputs = ca.vertcat(uk, p0Real1)
80 Fk = F(x0 = xf, z0 = zk , p = inputs)
81 #Retrieving the differential states
82 xf = (Fk[’xf’]).full()
83 #Retrieving the algebraic states
84 zk = (Fk[’zf’]).full()
85

86 zk[79] = 10 #make sure the constraint is active
87 #Append results
88 x_store.append(xf)
89 u_store.append(uk)
90 z_store.append(zk)
91 #Perturb the disturbances
92 if k == 1:
93 diff = p0Real1[disturbance]*eps
94 p0Real1[disturbance] = p0Real1[disturbance] + diff
95

96 GLC2case.append(zk[7]) #Wellhead pressure 2 1
97 GLC2case.append(zk[1]) #Annulus pressure 2 2
98 GLC2case.append(zk[19]) #Bottomhole pressure 2 3
99 GLC2case.append(zk[11]) #Wellhead pressure 6 4

100 GLC2case.append(zk[5]) #Annulus pressure 6 5
101 GLC2case.append(zk[23]) #Bottomhole pressure 6 6
102 GLC2case.append(zk[74]) #Manifold pressure 7
103 GLC2case.append(xf[29]) #Discharge pressure comp 3 8
104 GLC2case.append(xf[20]) #Separator pressure 9
105 GLC2case.append(zk[55]) #Oil flow 2 10
106 GLC2case.append(zk[49]) #Gas flow 2 11
107 GLC2case.append(zk[59]) #Oil flow 6 12
108 GLC2case.append(zk[53]) #Gas flow 6 13

B APPENDIX B B.2 GydImplementation.py

109 GLC2case.append(zk[78]) #Oil out separator 14
110 GLC2case.append(zk[79]) #Produced gas 15
111 GLC2case.append(zk [107]) #Tot gaslift 16
112

113 return GLC2case ,diff
114

115 #Use finite difference to obtain the how the CV’s change with perturbing the
disturbances

116 def GetGyd(disturbance1 , disturbance2 , eps):
117 #finite difference for first disturbance
118 Delta_y1 = []
119 Delta_y2 = []
120 Listu1 , Delta_u1 = Optimizer(disturbance1 , eps)
121 Listu2 , Delta_u2 = Optimizer(disturbance2 , eps)
122 ListNom , Delta_nom = Optimizer(disturbance1 , 0)
123 for i in range(len(Listu1)):
124 Delta_y1.append ((Listu1[i][0] - ListNom[i][0])/Delta_u1)
125 for i in range(len(Listu2)):
126 Delta_y2.append ((Listu2[i][0] - ListNom[i][0])/Delta_u2)
127

128 return Delta_y1 , Delta_y2
129

130

131 #From the data , get the Gyd matrix on correct form
132 def GetGydMatrix(disturbance1 , disturbance2 , eps):
133

134 GyMat = np.zeros ((16 ,2)) #16
135 array11 , array22 = GetGyd(disturbance1 ,disturbance2 ,eps)
136 #Reshape arrays
137 array1 = np.array(array11)
138 array2 = np.array(array22)
139 array1 = array1.reshape ((16 ,1)) #16
140 array2 = array2.reshape ((16 ,1)) #16
141

142 GyMat[:, 0] = array1[:, 0]
143 GyMat[:, 1] = array2[:, 0]
144

145 return GyMat
146

147 #Retireve Gymat
148 matd = GetGydMatrix (1,5,ep)
149

150

151 workbook = xlsxwriter.Workbook(’DataForBandB/Gyd.xlsx’)
152

153 #Add workbook to worksheet
154 worksheet = workbook.add_worksheet ()
155

156 # Use the worksheet object to write
157 # data via the write() method.
158

159 row = 0
160 col = 0
161

162 # Iterate over the data and write it out row by row.
163 for d1, d2 in (matd):
164 worksheet.write(row , col , d1)
165 worksheet.write(row , col + 1, d2)
166 row += 1
167

168 workbook.close()
169 # Close the Excel file via the close() method.

B APPENDIX B B.3 JuuImplementation.py

B.3 JuuImplementation.py

This code calculates the Juu.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11 import xlsxwriter
12

13

14 ep = 1e-8 #perturbation variable
15 import FiniteDiffJuu
16

17

18 #Use finite finite difference for multivariable to obtain how the cost function
changes with valve change

19 def Juu(valve1 , valve2 , eps):
20 Juu = np.zeros ((2,2))
21 nom , deltanom = FiniteDiffJuu.OptimizerSameu(valve2 ,0)
22 for i in range (2):
23 for j in range (2):
24 if i == j and i == 0:
25 f1 , delta1 = FiniteDiffJuu.OptimizerSameu(valve1 ,eps)
26 f2 , delta2 = FiniteDiffJuu.OptimizerSameu(valve1 ,-eps)
27 Juu[i][j] = (f1 - 2*nom + f2)/(delta1 **2)
28 if i == j and i == 1:
29 f3 , delta3 = FiniteDiffJuu.OptimizerSameu(valve2 ,eps)
30 f4 , delta4 = FiniteDiffJuu.OptimizerSameu(valve2 ,-eps)
31 Juu[i][j] = (f3 - 2*nom + f4)/(delta3 **2)
32 if i != j:
33 f5 , h1 , k1 = FiniteDiffJuu.OptimizerDiffu(valve1 ,valve2 , eps ,eps)
34 f6 , h,k = FiniteDiffJuu.OptimizerDiffu(valve1 ,valve2 , eps ,0)
35 f7 , h, k = FiniteDiffJuu.OptimizerDiffu(valve1 ,valve2 , 0,eps)
36 f8 , h, k = FiniteDiffJuu.OptimizerDiffu(valve1 ,valve2 , -eps ,0)
37 f9 , h, k = FiniteDiffJuu.OptimizerDiffu(valve1 ,valve2 , 0,-eps)
38 f10 , h, k = FiniteDiffJuu.OptimizerDiffu(valve1 ,valve2 , -eps ,-eps

)
39 Juu[i][j] = (f5 - f6 - f7 + 2*nom - f8 - f9 + f10)/(2*h1*k1)
40 ###
41 #if the same manipulated variable is looked at(e.g u1 and u1)
42 # f’’(x) = (f(x+h) -2f(x) +f(x-h))/h**2 (Second -order central)
43

44 #if different manipulated variables are looked at e.g u2 and u1
45 #f’’(x,y) = (f(x+h,y+k) - f(x+h,y) - f(x,y+k) + 2f(x,y) - f(x-h,y) -

f(x,y-k)
46 #+ f(x-h,y-k))/2hk
47

48 return Juu
49

50 #Retrieve Juu
51 matJuu = Juu(1,5,ep)
52 workbook = xlsxwriter.Workbook(’DataForBandB/Juu.xlsx’)
53

54 #Add workbook
55 worksheet = workbook.add_worksheet ()
56

57 # Use the worksheet object to write

B APPENDIX B B.3 JuuImplementation.py

58 # data via the write() method.
59

60 row = 0
61 col = 0
62

63 # Iterate over the data and write it out row by row.
64 for u1, u2 in (matJuu):
65 worksheet.write(row , col , u1)
66 worksheet.write(row , col + 1, u2)
67 row += 1
68

69 workbook.close()
70 # Close the file with close ()

B APPENDIX B B.4 JudImplementation.py

B.4 JudImplementation.py

This code calculates the Jud.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11 import xlsxwriter
12

13 ep = 1e-8 #perturb value
14 import FiniteDiffJud
15

16

17 def Jud(valve1 , valve2 , disturbance1 , disturbance2 ,eps):
18 Jud = np.zeros ((2,2))
19 nom , deltanom , deltanom1 = FiniteDiffJud.OptimizerDiffud (1,1,0,0)
20 for i in range (2):
21 for j in range (2):
22 if i == 0 and j == 0:
23 f1 , h1 , k1 = FiniteDiffJud.OptimizerDiffud(valve1 ,

disturbance1 , eps ,eps)
24 f2 , h,k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance1 ,

eps ,0)
25 f3 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance1 ,

0,eps)
26 f4 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance1 ,

-eps ,0)
27 f5 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance1 ,

0,-eps)
28 f6 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance1 ,

-eps ,-eps)
29 Jud[i][j] = (f1 - f2 - f3 + 2*nom - f4 - f5 + f6)/(2*h1*k1)
30 if i == 0 and j == 1:
31 f1 , h1 , k1 = FiniteDiffJud.OptimizerDiffud(valve1 ,

disturbance2 , eps ,eps)
32 f2 , h,k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance2 ,

eps ,0)
33 f3 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance2 ,

0,eps)
34 f4 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance2 ,

-eps ,0)
35 f5 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance2 ,

0,-eps)
36 f6 , h, k = FiniteDiffJud.OptimizerDiffud(valve1 ,disturbance2 ,

-eps ,-eps)
37 Jud[i][j] = (f1 - f2 - f3 + 2*nom - f4 - f5 + f6)/(2*h1*k1)
38 if i == 1 and j == 0:
39 f1 , h1 , k1 = FiniteDiffJud.OptimizerDiffud(valve2 ,

disturbance1 , eps ,eps)
40 f2 , h,k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance1 ,

eps ,0)
41 f3 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance1 ,

0,eps)
42 f4 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance1 ,

-eps ,0)
43 f5 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance1 ,

0,-eps)

B APPENDIX B B.4 JudImplementation.py

44 f6 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance1 ,
-eps ,-eps)

45 Jud[i][j] = (f1 - f2 - f3 + 2*nom - f4 - f5 + f6)/(2*h1*k1)
46

47 if i == 1 and j == 1:
48 f1 , h1 , k1 = FiniteDiffJud.OptimizerDiffud(valve2 ,

disturbance2 , eps ,eps)
49 f2 , h,k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance2 ,

eps ,0)
50 f3 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance2 ,

0,eps)
51 f4 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance2 ,

-eps ,0)
52 f5 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance2 ,

0,-eps)
53 f6 , h, k = FiniteDiffJud.OptimizerDiffud(valve2 ,disturbance2 ,

-eps ,-eps)
54 Jud[i][j] = (f1 - f2 - f3 + 2*nom - f4 - f5 + f6)/(2*h1*k1)
55 #Different so will use
56 #f’’(x,y) = (f(x+h,y+k) - f(x+h,y) - f(x,y+k) + 2f(x,y) - f(x-h,y) -

f(x,y-k)
57 #+ f(x-h,y-k))/2hk
58

59 return Jud
60 #retrieve Jud
61 matJud = Jud(1,5,1,5,ep)
62

63

64 workbook = xlsxwriter.Workbook(’DataForBandB/Jud.xlsx’)
65

66 #Add workbook
67 worksheet = workbook.add_worksheet ()
68

69

70 row = 0
71 col = 0
72

73 # Iterate over the data and write it out row by row.
74 for u1, u2 in (matJud):
75 worksheet.write(row , col , u1)
76 worksheet.write(row , col + 1, u2)
77 row += 1
78

79 workbook.close()
80 # Close the workbook

B APPENDIX B B.5 Wd.py

B.5 Wd.py

This code calculates the Wd.
1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11 import xlsxwriter
12

13 # Call the parameters
14 import ParameterSOCN
15

16 #par now represents the dictionary defined in parameter function
17 par = ParameterSOCN.Params_6wells ()
18

19

20 #Define the parameter intial values(constant , if not manually changed)
21 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],
22 par[’p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
23

24 #Define the disturbance matrix
25 def Wd():
26 Wd = np.zeros ((2 ,2))
27 Wd [0][0] = (p0 [1]/100) *3
28 Wd [1][1] = (p0 [5]/100) *2
29 return Wd
30

31 #retireve Wd
32 matWd = Wd()
33

34 workbook = xlsxwriter.Workbook(’DataForBandB/Wd.xlsx’)
35

36 #Add the workbook
37 worksheet = workbook.add_worksheet ()
38

39 # Use the worksheet object to write
40 # data via the write() method.
41

42 row = 0
43 col = 0
44

45 # Iterate over the data and write it out row by row.
46 for d1, d2 in (matWd):
47 worksheet.write(row , col , d1)
48 worksheet.write(row , col + 1, d2)
49 row += 1
50

51 workbook.close()

B APPENDIX B B.6 Wn.py

B.6 Wn.py

This code calculates the Wn.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11 import xlsxwriter
12

13 # Call the parameters
14 import ParameterSOCN
15 import SimulatorSOCN
16 #par now represents the dictionary defined in parameter function
17 par = ParameterSOCN.Params_6wells ()
18

19

20

21

22 import pandas as pd
23 #Retrieve initial guesses for the differential states(x0), algebraic states(z0)

and
24 #controlled variables(u0). Data listed in excel , comma separated files.
25 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).values.

reshape (-1)
26 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).values.

reshape (-1)
27 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).values.

reshape (-1)
28

29 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

30 #controlled variables(u). Data listed in excel , comma separated files.
31 lbx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbx6Sep.csv’,header=None).values.

reshape (-1)
32 lbz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbz6Sep.csv’,header=None).values.

reshape (-1)
33 lbu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbu6Sep.csv’,header=None).values.

reshape (-1)
34 ubx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubx6Sep.csv’,header=None).values.

reshape (-1)
35 ubz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubz6Sep.csv’,header=None).values.

reshape (-1)
36 ubu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubu6Sep.csv’,header=None).values.

reshape (-1)
37

38 x0O = x0
39 z0O = z0
40 u0O = u0
41

42

43

44 #Define the parameter intial values(constant , if not manually changed)
45 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],
46 par[’p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
47

48 def Wn():
49 #Define error related to the measurement in %

B APPENDIX B B.6 Wn.py

50 errorP = 0.0025
51 errorF = 1
52 GLC2case = []
53 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.

CentralizedSimulator_F(par)
54 nu = u_var.shape [0]
55 nx = x_var.shape [0]
56

57 #Define equality constraints of nlp , equals the model equations
58 eqcon = ca.vertcat(alg , dif)
59 x = ca.vertcat(u_var , x_var , z_var)
60

61 #Define the optimization problem(x = states , L= objective function , g =
inequality constraints , p = parameters)

62 nlp = {
63 ’x’: ca.vertcat(u_var , x_var , z_var),
64 ’f’: L,
65 ’g’: ca.vertcat(eqcon , g_var),
66 ’p’: p_var ,
67 }
68

69 #Define upper/lower bounds for the inequality constraints
70 lbg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , -ca.inf))
71 ubg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , 0))
72

73 #Use IPOPT(interior point optimizer) fromt the CasADI framework to solve the
nlp

74 opt_inst = ca.nlpsol(’opt_inst ’, ’ipopt ’, nlp)
75

76 #Extract the solution of the optimization , feed ipopt initial values , lower
and upper bounds

77 opt_res = (opt_inst(p=p0,x0 = ca.vertcat(u0,x0,z0), lbx = ca.vertcat(lbu ,lbx ,
lbz), ubx = ca.vertcat(ubu ,ubx ,ubz), lbg=lbg , ubg=ubg))

78 #u0 ,x0 ,z0
79 states = opt_res[’x’]
80 cost = opt_res[’f’]
81 Wn = np.eye ((15))
82

83 GLC2case.append(states [59]. full()) #Wellhead pressure 2
84 GLC2case.append(states [53]. full()) #Annulus pressure 2
85 GLC2case.append(states [71]. full()) #Bottomhole pressure 2
86 GLC2case.append(states [63]. full()) #Wellhead pressure 6
87 GLC2case.append(states [57]. full()) #Annulus pressure 6
88 GLC2case.append(states [75]. full()) #Bottomhole pressure 6
89 GLC2case.append(states [126]. full()) #Manifold pressure
90 GLC2case.append(states [49]. full()) #Discharge pressure comp 3
91 GLC2case.append(states [40]. full()) #Separator pressure
92 GLC2case.append(states [107]. full()) #Oil flow 2
93 GLC2case.append(states [101]. full()) #Gas flow 2
94 GLC2case.append(states [111]. full()) #Oil flow 6
95 GLC2case.append(states [105]. full()) #Gas flow 6
96 GLC2case.append(states [130]. full()) #Oil out separator
97 GLC2case.append(states [131]. full()) #Produced gas
98 GLC2case.append(states [136]. full()) #Tot gaslift
99 #Use the nominal state to find the measurement error related to the variables

100 for i in range(len(GLC2case)):
101 for j in range(len(GLC2case)):
102 if i == j and i <= 8: #8
103 Wn[i][j] = (GLC2case[i]/100)*errorP
104 if i == j and i > 7:
105 Wn[i][j] = (GLC2case[i]/100)*errorF
106

107 return Wn
108

B APPENDIX B B.6 Wn.py

109

110 matWn = Wn()
111

112 workbook = xlsxwriter.Workbook(’DataForBandB/Wn.xlsx’)
113

114 #Add workbook
115 worksheet = workbook.add_worksheet ()
116

117 row = 0
118 col = 0
119

120 # Iterate over the data and write it out row by row.
121 for d1,d2,d3,d4 ,d5 ,d6 ,d7,d8,d9,d10 ,d11 ,d12 ,d13 ,d14 ,d15 in (matWn):
122 worksheet.write(row , col , d1)
123 worksheet.write(row , col + 1, d2)
124 worksheet.write(row , col + 2, d3)
125 worksheet.write(row , col + 3, d4)
126 worksheet.write(row , col + 4, d5)
127 worksheet.write(row , col + 5, d6)
128 worksheet.write(row , col + 6, d7)
129 worksheet.write(row , col + 7, d8)
130 worksheet.write(row , col + 8, d9)
131 worksheet.write(row , col + 8, d9)
132 worksheet.write(row , col + 9, d10)
133 worksheet.write(row , col + 10, d11)
134 worksheet.write(row , col + 11, d12)
135 worksheet.write(row , col + 12, d13)
136 worksheet.write(row , col + 13, d14)
137 worksheet.write(row , col + 14, d15)
138

139 row += 1
140

141 #Close workbook
142 workbook.close()

B APPENDIX B B.7 FiniteDiffJuu.py

B.7 FiniteDiffJuu.py

This code provides the necessary step data for obtaining Juu.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11

12 # Call the parameters
13 import ParameterSOCN
14 import SimulatorSOCN
15 #par now represents the dictionary defined in parameter function
16 par = ParameterSOCN.Params_6wells ()
17

18

19

20

21 import pandas as pd
22 #Retrieve initial guesses for the differential states(x0), algebraic states(z0)

and
23 #controlled variables(u0). Data listed in excel , comma separated files.
24 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).values.

reshape (-1)
25 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).values.

reshape (-1)
26 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).values.

reshape (-1)
27

28 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

29 #controlled variables(u). Data listed in excel , comma separated files.
30 lbx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbx6Sep.csv’,header=None).values.

reshape (-1)
31 lbz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbz6Sep.csv’,header=None).values.

reshape (-1)
32 lbu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbu6Sep.csv’,header=None).values.

reshape (-1)
33 ubx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubx6Sep.csv’,header=None).values.

reshape (-1)
34 ubz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubz6Sep.csv’,header=None).values.

reshape (-1)
35 ubu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubu6Sep.csv’,header=None).values.

reshape (-1)
36

37 x0O = x0
38 z0O = z0
39 u0O = u0
40

41

42

43 #Define the parameter intial values(constant , if not manually changed)
44 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],par[’

p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
45

46

47

48 #funtion if evaluating same manipulated variable

B APPENDIX B B.7 FiniteDiffJuu.py

49 def OptimizerSameu(valve , eps):
50 #Retrieve return variables of the integrator function
51 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.

CentralizedSimulator_F(par)
52 #Change in openings
53 ##Change GLC##
54 ubu1 = []
55 lbu1 = []
56 for c in u0: #Make local variables and keep all other manipulated constant
57 lbu1.append(c)
58 for d in u0:
59 ubu1.append(d)
60

61 GLC2case = []
62 lbufunc = lbu1
63 ubufunc = ubu1
64 #Perturb the valve in metione
65 Delta_u = u0[valve]*eps
66 const = u0[valve]*(1+ eps) #Pretrubation of valve opening for finite difference
67 #if eps != 0: #If change is 0 we want nominal bounds
68 lbufunc[valve] = const
69 ubufunc[valve] = const
70 #Call the simulator
71 ################### Optimizer ###################
72 #addCons =
73 #Get shape of controlled , and differential states
74 nu = u_var.shape [0]
75 nx = x_var.shape [0]
76

77 #Define equality constraints of nlp , equals the model equations
78 eqcon = ca.vertcat(alg , dif)
79 x = ca.vertcat(u_var , x_var , z_var)
80

81 #Define the optimization problem(x = states , L= objective function , g =
inequality constraints , p = parameters)

82 nlp = {
83 ’x’: ca.vertcat(u_var , x_var , z_var),
84 ’f’: L,
85 ’g’: ca.vertcat(eqcon , g_var),
86 ’p’: p_var ,
87 }
88

89 #Define upper/lower bounds for the inequality constraints
90 lbg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , -ca.inf))
91 ubg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , 0))
92

93 #Use IPOPT(interior point optimizer) fromt the CasADI framework to solve the
nlp

94 opt_inst = ca.nlpsol(’opt_inst ’, ’ipopt ’, nlp)
95

96 #Extract the solution of the optimization , feed ipopt initial values , lower
and upper bounds

97 opt_res = (opt_inst(p=p0,x0 = ca.vertcat(u0,x0,z0), lbx = ca.vertcat(lbufunc ,
lbx ,lbz), ubx = ca.vertcat(ubufunc ,ubx ,ubz), lbg=lbg , ubg=ubg))

98 #u0 ,x0 ,z0
99 states = opt_res[’x’]

100 cost = opt_res[’f’]
101

102 return cost , Delta_u
103

104 #funtion of evaluating different manipulated variables
105 def OptimizerDiffu(valve1 , valve2 , eps1 , eps2):
106 #Retrieve return variables of the integrator function

B APPENDIX B B.7 FiniteDiffJuu.py

107 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.
CentralizedSimulator_F(par)

108 #Change in openings
109 ##Change GLC##
110 ubu1 = []
111 lbu1 = []
112 for c in u0: #Make local variables and keep all other manipulated constant
113 lbu1.append(c)
114 for d in u0:
115 ubu1.append(d)
116

117 GLC2case = []
118 lbufunc = lbu1
119 ubufunc = ubu1
120 Delta_u1 = u0[valve1]*eps1
121 Delta_u2 = u0[valve1]*eps2
122 const1 = u0[valve1]*(1+ eps1) #Pretrubation of valve opening for finite

difference
123 const2 = u0[valve2]*(1+ eps2)
124 #if eps != 0: #If change is 0 we want nominal bounds
125 lbufunc[valve1] = const1
126 ubufunc[valve1] = const1
127 lbufunc[valve2] = const2
128 ubufunc[valve2] = const2
129 #Call the simulator
130 ################### Optimizer ###################
131 #addCons =
132 #Get shape of controlled , and differential states
133 nu = u_var.shape [0]
134 nx = x_var.shape [0]
135

136 #Define equality constraints of nlp , equals the model equations
137 eqcon = ca.vertcat(alg , dif)
138 x = ca.vertcat(u_var , x_var , z_var)
139

140 #Define the optimization problem(x = states , L= objective function , g =
inequality constraints , p = parameters)

141 nlp = {
142 ’x’: ca.vertcat(u_var , x_var , z_var),
143 ’f’: L,
144 ’g’: ca.vertcat(eqcon , g_var),
145 ’p’: p_var ,
146 }
147

148 #Define upper/lower bounds for the inequality constraints
149 lbg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , -ca.inf))
150 ubg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , 0))
151

152 #Use IPOPT(interior point optimizer) fromt the CasADI framework to solve the
nlp

153 opt_inst = ca.nlpsol(’opt_inst ’, ’ipopt ’, nlp)
154

155 #Extract the solution of the optimization , feed ipopt initial values , lower
and upper bounds

156 opt_res = (opt_inst(p=p0,x0 = ca.vertcat(u0,x0,z0), lbx = ca.vertcat(lbufunc ,
lbx ,lbz), ubx = ca.vertcat(ubufunc ,ubx ,ubz), lbg=lbg , ubg=ubg))

157 #u0 ,x0 ,z0
158 states = opt_res[’x’]
159 cost = opt_res[’f’]
160

161

162 return cost , Delta_u1 , Delta_u2

B APPENDIX B B.8 FiniteDiffJud.py

B.8 FiniteDiffJud.py

This code provides the necessary step data for obtaining Jud.

1

2 import numpy as np
3 from sys import path
4 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
5 from casadi import *
6 import casadi as ca
7 from tabulate import tabulate
8 from texttable import Texttable
9 import latextable

10 from decimal import Decimal
11

12 # Call the parameters
13 import ParameterSOCN
14 import SimulatorSOCN
15 #par now represents the dictionary defined in parameter function
16 par = ParameterSOCN.Params_6wells ()
17

18

19

20

21 import pandas as pd
22 #Retrieve initial guesses for the differential states(x0), algebraic states(z0)

and
23 #controlled variables(u0). Data listed in excel , comma separated files.
24 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).values.

reshape (-1)
25 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).values.

reshape (-1)
26 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).values.

reshape (-1)
27

28 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

29 #controlled variables(u). Data listed in excel , comma separated files.
30 lbx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbx6Sep.csv’,header=None).values.

reshape (-1)
31 lbz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbz6Sep.csv’,header=None).values.

reshape (-1)
32 lbu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbu6Sep.csv’,header=None).values.

reshape (-1)
33 ubx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubx6Sep.csv’,header=None).values.

reshape (-1)
34 ubz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubz6Sep.csv’,header=None).values.

reshape (-1)
35 ubu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubu6Sep.csv’,header=None).values.

reshape (-1)
36

37 x0O = x0
38 z0O = z0
39 u0O = u0
40

41

42

43 #Define the parameter intial values(constant , if not manually changed)
44 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],par[’

p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
45 p0Real = [0.125 , 0.13 , 0.13, 0.14, 0.125, 0.135 , 8, 10, 19, 20, 18, 20, 20, 20]
46 ep = 1e-8
47

48

B APPENDIX B B.8 FiniteDiffJud.py

49 #Function for perturbing manipulated variable and disturbance at same time
50 def OptimizerDiffud(valve , disturbance , eps1 , eps2):
51 #Retrieve return variables of the integrator function
52 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.

CentralizedSimulator_F(par)
53 #Change in openings
54 ##Change GLC##
55 ubu1 = []
56 lbu1 = []
57 dist = []
58 for c in u0: #Make local variables and keep all other manipulated constant
59 lbu1.append(c)
60 for d in u0:
61 ubu1.append(d)
62 for e in p0Real:
63 dist.append(e)
64

65 GLC2case = []
66 lbufunc = lbu1
67 ubufunc = ubu1
68

69

70

71 #perturb the disturbance and valve opening
72 Delta_d = dist[disturbance]*eps2
73 Delta_u = u0[valve]*eps1
74

75 constu = u0[valve]*(1+ eps1) #Pretrubation of valve opening for finite
difference

76 constd = dist[disturbance]*(1+ eps2) #Pretrubation of disturbance opening for
finite difference

77

78 #if eps != 0: #If change is 0 we want nominal bounds
79 lbufunc[valve] = constu
80 ubufunc[valve] = constu
81 dist[disturbance] = constd
82

83

84 ################### Optimizer ###################
85

86 #Get shape of controlled , and differential states
87 nu = u_var.shape [0]
88 nx = x_var.shape [0]
89

90 #Define equality constraints of nlp , equals the model equations
91 eqcon = ca.vertcat(alg , dif)
92 x = ca.vertcat(u_var , x_var , z_var)
93

94 #Define the optimization problem(x = states , L= objective function , g =
inequality constraints , p = parameters)

95 nlp = {
96 ’x’: ca.vertcat(u_var , x_var , z_var),
97 ’f’: L,
98 ’g’: ca.vertcat(eqcon , g_var),
99 ’p’: p_var ,

100 }
101

102 #Define upper/lower bounds for the inequality constraints
103 lbg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , -ca.inf))
104 ubg = ca.vertcat(np.full(eqcon.shape , 0), np.full(g_var.shape , 0))
105

106 #Use IPOPT(interior point optimizer) fromt the CasADI framework to solve the
nlp

107 opt_inst = ca.nlpsol(’opt_inst ’, ’ipopt ’, nlp)

B APPENDIX B B.8 FiniteDiffJud.py

108

109 #Extract the solution of the optimization , feed ipopt initial values , lower
and upper bounds

110 opt_res = (opt_inst(p= dist ,x0 = ca.vertcat(u0 ,x0 ,z0), lbx = ca.vertcat(
lbufunc ,lbx ,lbz), ubx = ca.vertcat(ubufunc ,ubx ,ubz), lbg=lbg , ubg=ubg))

111 #u0 ,x0 ,z0
112 states = opt_res[’x’]
113 cost = opt_res[’f’]
114

115

116 return cost , Delta_u , Delta_d

B APPENDIX B B.9 H from linearized model

B.9 H from linearized model

This code provides the necessary step data for obtaining H in case 2.

1 # -*- coding: utf -8 -*-
2

3 import numpy as np
4 from numpy.linalg import inv
5 import GydImplementation
6 import GyuImplementation
7 import JuuImplementation
8 import JudImplementation
9 import Wd

10 import Wn
11 ep = 1e-8 #perturb value
12

13 #Get Gyu
14 Gmat = GyuImplementation.GetGyMatrix (1,5,ep)
15 #Get Juu
16 Juu = JuuImplementation.Juu(1,5, ep)
17 #Get Jud
18 Jud = JudImplementation.Jud(1,5,1,5,ep)
19 #Get Gyd
20 Gmatd = GydImplementation.GetGydMatrix (1,5,ep)
21 #Obtain F from the linear realationship
22 Fmat = np.dot(-Gmat ,np.dot(inv(Juu), Jud)) + Gmatd
23 #Get Wd
24 Wd = Wd.Wd()
25 #Get Wn
26 Wn = Wn.Wn()
27

28

29

30

31 ##################### Optimal measurement combinations
##############################

32 #Worst case Branch and Bound , annulus 2 and bottomhole 2
33 F1 = np.array ([[Fmat [1][0] , Fmat [1][1]] ,[Fmat [2][0] , Fmat [2][1]]])
34 FWd1 = np.matmul(F1, Wd)
35 Wn1 = np.array ([[Wn[1][1] , 0], [0, Wn [2][2]]])
36 Y1 = np.concatenate ((FWd1 , Wn1.T), axis = 1)
37 #Y = [[-0.13019906 0.05559134 0.00253839 0.]
38 # [-0.34231843 0.02344421 0. 0.00343078]]
39 Gy1 = np.array ([[Gmat [1][0] , Gmat [1][1]] , [Gmat [2][0] , Gmat [2][1]]])
40 Yt1 = np.transpose(Y1)
41 h1 = np.matmul(inv(np.matmul(Y1 ,Yt1)),Gy1).transpose ()
42 print(h1)
43 print(Y1)
44 # ai2 Bh2
45 #[[3583.10465771 -1449.41787407]
46 # [-146.18640435 67.56021995]]
47

48 #Average loss Branch and Bound , annulus 2 and annulus 6
49 F2 = np.array ([[Fmat [1][0] , Fmat [1][1]] ,[Fmat [4][0] , Fmat [4][1]]])
50 print(F2)
51 FWd2 = np.matmul(F2, Wd)
52 Wn2 = np.array ([[Wn[1][1] , 0], [0, Wn [4][4]]])
53 Y2 = np.concatenate ((FWd2 , Wn2.T), axis = 1)
54 Gy2 = np.array ([[Gmat [1][0] , Gmat [1][1]] , [Gmat [4][0] , Gmat [4][1]]])
55 Yt2 = np.transpose(Y2)
56 h2 = np.matmul(inv(np.matmul(Y2 ,Yt2)),Gy2).transpose ()
57 #Y = [[-0.13019906 0.05559134 0.00253839 0.]
58 #[0.02353136 -0.10664106 0. 0.0025349]]
59 print(h2)
60 print(Y2)

B APPENDIX B B.9 H from linearized model

61 # ai2 ai6
62 #[[413.16600486 326.50490982]
63 #[305.9743484 663.475804]]
64

65 #Worst case Partial Branch and Bound(2var), discharge pressure and annulus 6
66 F3 = np.array ([[Fmat [7][0] , Fmat [7][1]] ,[Fmat [4][0] , Fmat [4][1]]])
67 FWd3 = np.matmul(F3, Wd)
68 Wn3 = np.array ([[Wn[7][7] , 0], [0, Wn [4][4]]])
69 Y3 = np.concatenate ((FWd3 , Wn3.T), axis = 1)
70 Gy3 = np.array ([[Gmat [7][0] , Gmat [7][1]] , [Gmat [4][0] , Gmat [4][1]]])
71 Yt3 = np.transpose(Y3)
72 h3 = np.matmul(inv(np.matmul(Y3 ,Yt3)),Gy3).transpose ()
73 #Y = [[-0.02940493 -0.06080479 0.00396529 0.]
74 # [0.02353136 -0.10664106 0. 0.0025349]]
75 print(h3)
76 print(Y3)
77 # pdisch ai6
78 #[[-6976.59161527 3401.78133543]
79 # [-8339.24832552 4481.00108404]]
80

81 #Worst case Partial Branch and Bound(3var), discharge pressure and annulus 6 and
bottomhole 6

82 F4 = np.array ([[Fmat [7][0] , Fmat [7][1]] ,[Fmat [4][0] , Fmat [4][1]] , [Fmat [5][0] ,
Fmat [5][1]]])

83 FWd4 = np.matmul(F4, Wd)
84 Wn4 = np.array ([[Wn[7][7] , 0,0], [0, Wn[4][4] ,0] , [0, 0, Wn [5][5]]])
85 Y4 = np.concatenate ((FWd4 , Wn4.T), axis = 1)
86 Gy4 = np.array ([[Gmat [7][0] , Gmat [7][1]] , [Gmat [4][0] , Gmat [4][1]] , [Gmat [5][0] ,

Gmat [5][1]]])
87 Yt4 = np.transpose(Y4)
88 h4 = np.matmul(inv(np.matmul(Y4 ,Yt4)),Gy4).transpose ()
89 #Y = [[-0.02940493 -0.06080479 0.00396529 0. 0.]
90 #[0.02353136 -0.10664106 0. 0.0025349 0.]
91 #[0.09889795 -0.2016167 0. 0. 0.00344215]]
92 print(h4)
93 print(Y4)
94 # DischP ai6 bh6
95 #[[-234922.1903769 476847.10061302 -181679.62737955]
96 # [-549333.90812753 1128132.39347296 -431189.32210637]]
97

98 #Worst case Partial Branch and Bound(4var), discharge pressure and annulus 6 and
bottomhole 6 and annulus 2

99 F5 = np.array ([[Fmat [7][0] , Fmat [7][1]] ,[Fmat [4][0] , Fmat [4][1]] , [Fmat [5][0] ,
Fmat [5][1]] ,[Fmat [1][0] , Fmat [1][1]]])

100 FWd5 = np.matmul(F5, Wd)
101 Wn5 = np.array ([[Wn[7][7] , 0,0,0], [0, Wn[4][4],0 ,0], [0, 0, Wn[5][5] ,0] , [0, 0,

0, Wn [1][1]]])
102 Y5 = np.concatenate ((FWd5 , Wn5.T), axis = 1)
103 Gy5 = np.array ([[Gmat [7][0] , Gmat [7][1]] , [Gmat [4][0] , Gmat [4][1]] , [Gmat [5][0] ,

Gmat [5][1]] , [Gmat [1][0] , Gmat [1][1]]])
104 Yt5 = np.transpose(Y5)
105 h5 = np.matmul(inv(np.matmul(Y5 ,Yt5)),Gy5).transpose ()
106 print(h5)
107 #Y = [[-0.02940493 -0.06080479 0.00396529 0. 0. 0.]
108 # [0.02353136 -0.10664106 0. 0.0025349 0. 0.]
109 # [0.09889795 -0.2016167 0. 0. 0.00344215 0.]
110 # [-0.13019906 0.05559134 0. 0. 0. 0.00253839]]
111 print(Y5)
112 # DischP ai6 bh6 ai2
113 #[[-805763.43006082 131567.44007523 291161.30688082 427066.88982393]
114 # [-691151.33978905 1042352.54566528 -313718.6801493 106098.72807374]]
115

116 #Average loss Partial Branch and Bound(2var), discharge pressure and annulus 2
117 F6 = np.array ([[Fmat [7][0] , Fmat [7][1]] ,[Fmat [1][0] , Fmat [1][1]]])

B APPENDIX B B.9 H from linearized model

118 FWd6 = np.matmul(F6, Wd)
119 Wn6 = np.array ([[Wn[7][7] , 0], [0, Wn [1][1]]])
120 Y6 = np.concatenate ((FWd6 , Wn6.T), axis = 1)
121 Gy6 = np.array ([[Gmat [7][0] , Gmat [7][1]] , [Gmat [1][0] , Gmat [1][1]]])
122 Yt6 = np.transpose(Y6)
123 h6 = np.matmul(inv(np.matmul(Y6 ,Yt6)),Gy6).transpose ()
124 print(Y6)
125 #Y = [[-0.02940493 -0.06080479 0.00396529 0.]
126 # [-0.13019906 0.05559134 0. 0.00253839]]
127 print(h6)
128 # DischP ai2
129 #[[-2704.12302706 327.18670482]
130 # [-2675.80879344 68.22602697]]
131

132

133 #Average loss Partial Branch and Bound(3var), discharge pressure and annulus 2 and
bottomhole 2

134 F7 = np.array ([[Fmat [7][0] , Fmat [7][1]] ,[Fmat [1][0] , Fmat [1][1]] , [Fmat [2][0] ,
Fmat [2][1]]])

135 FWd7 = np.matmul(F7, Wd)
136 Wn7 = np.array ([[Wn[7][7] , 0,0], [0, Wn[1][1] ,0] , [0, 0, Wn [2][2]]])
137 Y7 = np.concatenate ((FWd7 , Wn7.T), axis = 1)
138 Gy7 = np.array ([[Gmat [7][0] , Gmat [7][1]] , [Gmat [1][0] , Gmat [1][1]] , [Gmat [2][0] ,

Gmat [2][1]]])
139 Yt7 = np.transpose(Y7)
140 h7 = np.matmul(inv(np.matmul(Y7 ,Yt7)),Gy7).transpose ()
141 print(Y7)
142 #Y = [[-0.02940493 -0.06080479 0.00396529 0. 0.]
143 # [-0.13019906 0.05559134 0. 0.00253839 0.]
144 # [-0.34231843 0.02344421 0. 0. 0.00343078]]
145 print(h7)
146 # DischP ai2 bh2
147 #[[-41674.87829334 -52288.11647798 23376.24685595]
148 # [-403800.65877812 -541499.5586333 240611.02868619]]
149

150 #Worst case Partial Branch and Bound(4var), discharge pressure and wellhead 6 and
bottomhole 2 and annulus 2

151 F8 = np.array ([[Fmat [7][0] , Fmat [7][1]] ,[Fmat [3][0] , Fmat [3][1]] , [Fmat [2][0] ,
Fmat [2][1]] ,[Fmat [1][0] , Fmat [1][1]]])

152 FWd8 = np.matmul(F8, Wd)
153 Wn8 = np.array ([[Wn[7][7] , 0,0,0], [0, Wn[3][3],0 ,0], [0, 0, Wn[2][2] ,0] , [0, 0,

0, Wn [1][1]]])
154 Y8 = np.concatenate ((FWd8 , Wn8.T), axis = 1)
155 Gy8 = np.array ([[Gmat [7][0] , Gmat [7][1]] , [Gmat [3][0] , Gmat [3][1]] , [Gmat [2][0] ,

Gmat [2][1]] , [Gmat [1][0] , Gmat [1][1]]])
156 Yt8 = np.transpose(Y8)
157 h8 = np.matmul(inv(np.matmul(Y8 ,Yt8)),Gy8).transpose ()
158 print(Y8)
159 #Y = [[-0.02940493 -0.06080479 0.00396529 0. 0. 0.]
160 #[0.04422688 0.13007002 0. 0.00201958 0. 0.]
161 #[-0.34231843 0.02344421 0. 0. 0.00343078 0.]
162 #[-0.13019906 0.05559134 0. 0. 0. 0.00253839]]
163 print(h8)
164 # DischP Wh6 BH2 ai2
165 #[[-686015.79742427 -613181.02538563 -334371.87860306 825709.36229966]
166 # [-659260.97418188 -243106.42626252 98775.47820129 -193401.98141469]]

B APPENDIX B B.10 SimulatorSOCN.py

B.10 SimulatorSOCN.py

This code is primarily based on the previous work, related to the modelling of the system done in
the authors project thesis [1]. The file includes all the model equations and the integrator.

1 #Simulation file
2 #Constructs the integrator
3

4

5 import numpy as np
6 from casadi import *
7

8 def CentralizedSimulator_F(par):
9

10 ## Retriving the parameters from Param function ##
11

12 #Wells
13 n_w = par[’n_w’]
14 L_w = par[’L_w’]
15 H_w = par[’H_w’]
16 D_w = par[’D_w’]
17 L_bh = par[’L_bh’]
18 H_bh = par[’H_bh’]
19 D_bh = par[’D_bh’]
20 L_a = par[’L_a’]
21 H_a = par[’H_a’]
22 D_a = par[’D_a’]
23 rho_o = par[’rho_o’]
24 C_iv = par[’C_iv’]
25 C_pc = par[’C_pc’]
26 mu_oil = par[’mu_oil ’]
27 A_w = par[’A_w’]
28 A_bh = par[’A_bh’]
29 V_a = par[’V_a’]
30 p_res = MX.sym(’p_res’,n_w)
31 PI = MX.sym(’PI’,n_w)
32 T_a = MX.sym(’T_a’,n_w)
33 T_w = MX.sym(’T_w’,n_w)
34 R = par[’R’]
35 Mw = par[’Mw’]
36

37 #Riser
38 T_r = par[’T_r’]
39 L_r = par[’L_r’]
40 A_r = par[’A_r’]
41 H_r = par[’H_r’]
42 D_r = par[’D_r’]
43 C_pr = par[’C_pr’]
44 rho_ro = par[’rho_ro ’]
45

46 #Separator
47 L_s = par[’L_s’]
48 r_s = par[’r_s’]
49 T_s = par[’T_s’]
50 C_gs = par[’C_gs’]
51 C_os = par[’C_os’]
52 v_s = par[’V_s’]
53

54

55 #Compressor
56 n_c = par[’n_c’]
57 C_in = par[’C_in’]
58 C_out = par[’C_out’]
59 C_rec = par[’C_rec’]
60 T_in = par[’T_in’]

B APPENDIX B B.10 SimulatorSOCN.py

61 T_d = par[’T_d’]
62 Z_in = par[’Z_in’]
63 n_v = par[’n_v’]
64 #alphas
65 alpha_1 = par[’alpha_1 ’]
66 alpha_2 = par[’alpha_2 ’]
67 alpha_3 = par[’alpha_3 ’]
68 alpha_4 = par[’alpha_4 ’]
69 alpha_5 = par[’alpha_5 ’]
70 alpha_6 = par[’alpha_6 ’]
71 #beta
72 beta_1 = par[’beta_1 ’]
73 beta_2 = par[’beta_2 ’]
74 beta_3 = par[’beta_3 ’]
75 beta_4 = par[’beta_4 ’]
76 beta_5 = par[’beta_5 ’]
77 beta_6 = par[’beta_6 ’]
78 #gammas1(Further implementation)
79 gamma_11 = par[’gamma_11 ’]
80 gamma_21 = par[’gamma_21 ’]
81 gamma_31 = par[’gamma_31 ’]
82 #gammas2(Further implementation)
83 gamma_12 = par[’gamma_12 ’]
84 gamma_22 = par[’gamma_22 ’]
85 gamma_32 = par[’gamma_32 ’]
86 #gammas3(Further implementation)
87 gamma_13 = par[’gamma_13 ’]
88 gamma_23 = par[’gamma_23 ’]
89 gamma_33 = par[’gamma_33 ’]
90 #Dynamic Coefficients for compressor dynamic equations
91 Coef_1 = par[’Coef_1 ’]
92 Coef_2 = par[’Coef_2 ’]
93 Coef_3 = par[’Coef_3 ’]
94

95 #Gaslift
96 C_iv = par[’C_iv’]
97 C_gl = par[’C_gl’]
98 L_gl = par[’L_gl’]
99 r_gl = par[’r_gl’]

100

101

102 #Differential states
103 #Well system
104 m_ga = MX.sym(’m_ga’,n_w) #Mass gas in annulus[ton] (23 -28) x
105 m_gt = MX.sym(’m_gt’,n_w) #Mass gas in tubing[ton] (29 -34) x
106 m_ot = MX.sym(’m_ot’,n_w) #Mass oil in tubing[ton] (35 -40) x
107 #Riser
108 m_gr = MX.sym(’m_gr’ ,1) #Mass gas in riser[ton] (41) x
109 m_or = MX.sym(’m_or’ ,1) #Mass oil in riser[ton] (42) x
110 #Separator
111 p_gs = MX.sym(’p_gs’ ,1) #Pressure of gas in separator[bar] (43)
112 h_ls = MX.sym(’h_ls’ ,1) #Height of oil in separator[bar] (44) #NO SOC x
113 #Compressor 1
114 p_s1 = MX.sym(’p_s1’,n_c) #Suction Pressure Gas lift Compressor 1[bar] (45)x
115 p_d1 = MX.sym(’p_d1’,n_c) #Discharge Pressure Gaslift Compressor 1[bar] (46)x
116 w_c1 = MX.sym(’w_c1’,n_c) #Gas massflow rate Gas -lift Compressor 1[kg/s] (47)x
117 #Compressor 2
118 p_s2 = MX.sym(’p_s2’,n_c) #Suction Pressure Gas lift Compressor 2[bar] (48) x
119 p_d2 = MX.sym(’p_d2’,n_c) #Discharge Pressure Gas lift Compressor 2[bar] (49)

x
120 w_c2 = MX.sym(’w_c2’,n_c) #Gas massflow rate Gas lift Compressor 2[kg/s] (50)

x
121 #Compressor 3
122 p_s3 = MX.sym(’p_s3’,n_c) #Suction Pressure Gas lift Compressor 3[bar] (51) x

B APPENDIX B B.10 SimulatorSOCN.py

123 p_d3 = MX.sym(’p_d3’,n_c) #Discharge Pressure of Gas lift Compressor 3[bar]
(52)

124 w_c3 = MX.sym(’w_c3’,n_c) #Gas massflow rate in Gas -lift Compressor 3[kg/s]
(53) x

125 #Gas Lift
126 m_gl = MX.sym(’m_gl’ ,1) #Mas gas in gas line[ton] (54)x
127

128

129 #Algebraic states
130 #Well
131 p_ai = MX.sym(’p_ai’,n_w) #Annulus pressure at injection[bar] (55 -60)
132 p_wh = MX.sym(’p_wh’,n_w) #Wellhead pressure[bar] (61 -66)
133 p_wi = MX.sym(’p_wi’,n_w) #Injection point pressure in tubing[bar] (67 -72) x
134 p_bh = MX.sym(’p_bh’,n_w) #Bottom -hole pressure[bar] (73 -78)
135 rho_ai = MX.sym(’rho_ai ’,n_w) #Density of gas annulus injection point[bar]

(79 -84) x
136 rho_m = MX.sym(’rho_m’,n_w) #Density mixed oil/gas in tubing[kg/m^3] (85 -90) x
137 w_iv = MX.sym(’w_iv’,n_w) #Flow gas through injection valve[kg/s] (91 -96) x
138 w_pc = MX.sym(’w_pc’,n_w) #Flow through production choke[kg/s] (97 -102) #NO

SOC x
139 w_pg = MX.sym(’w_pg’,n_w) #Flow gas through production choke[kg/s] (103 -108) #

NO SOC
140 w_po = MX.sym(’w_po’,n_w) #Flow oil through production choke[kg/s] (109 -114) #

NO SOC
141 w_ro = MX.sym(’w_ro’,n_w) #Flow oil from reservoir[kg/s] (115 -120) #NO SOC x
142 w_rg = MX.sym(’w_rg’,n_w) ##Flow gas from reservoir[kg/s] (121 -126) #NO SOC x
143 #Riser
144 p_rh = MX.sym(’p_rh’, 1) #Pressure riser head[bar] (127) x
145 rho_r = MX.sym(’rho_r’ ,1) #density oil/gas riser[kg/m^3] (128) x
146 p_m = MX.sym(’p_m’, 1) #Manifold pressure[bar] (129)
147 w_pr = MX.sym(’w_pr’, 1) #Flow through riser valve[kg/s] (130) #NO SOC x
148 w_to = MX.sym(’w_to’, 1) #Flow oil through riser valve[kg/s] (131) #NO SOC x
149 w_tg = MX.sym(’w_tg’, 1) #Flow gas through riser valve[kg/s] (132) #NO SOC x
150 #Separator
151 w_os = MX.sym(’w_os’ ,1) #Produced oil out of separator[kg/s] (133) #NO SOCx
152 w_gs = MX.sym(’w_gs’ ,1) #Produced gas out of separator[kg/s] (134) x
153 rho_gs = MX.sym(’rho_gs ’, 1) #Gas density in separator[kg/m^3] (135) x
154 p_os = MX.sym(’p_os’, 1) #Separator oil pressure[bar] (136)x
155 v_os = MX.sym(’v_os’, 1) #Volume of oil in separator[m^3] (137)x
156 v_gs = MX.sym(’v_gs’ ,1) #Volume of gas in separator[m^3] (138)x
157 #Compressor 1
158 w_in1 = MX.sym(’w_in1’,n_c) #Flow gas in compressor 1[kg/s] (139)x
159 w_out1 = MX.sym(’w_out1 ’,n_c) #Flow gas out compressor 1[kg/s] (140) #NO SOCx
160 rho_in1 = MX.sym(’rho_in1 ’,n_c) #Density gas in compressor 1[kg/m^3] (141) x
161 rho_d1 = MX.sym(’rho_d1 ’,n_c) #Density gas out compressor 1[kg/m^3] (142) x
162 Phi1 = MX.sym(’Phi1’,n_c) #Pressure Ratio compresor 1[-] (143)x
163 Pow1 = MX.sym(’Pow1’,n_c) #Power con sum ption compressor 1[kW] (144)x
164 y_p1 = MX.sym(’y_p1’,n_c) #Polytropic Head compressor 1[m] (145)x
165 n_p1 = MX.sym(’n_p1’,n_c) #Polytropic Efficiency 1[%] (146)x
166 w_rec1 = MX.sym(’w_rec1 ’, n_c) #Recycle mass flow[kg/s] (147) #NO SOCx
167 #Further implementation
168 Phi_max1 = MX.sym(’Phi_max1 ’,n_c) #Max Pressure ratio (148) #NO SOCx
169 gamma_2_dummy1 = MX.sym(’gamma_2_dummy1 ’,n_c) #constraint (149) #NO SOCx
170 #Compressor 2
171 w_in2 = MX.sym(’w_in2’,n_c) #Flow gas in compressor 2[kg/s] (150) #NO SOCx
172 w_out2 = MX.sym(’w_out2 ’,n_c) #Flow gas out compressor 2[kg/s] (151) #NO SOCx
173 rho_in2 = MX.sym(’rho_in2 ’,n_c) #Density gas in compressor 2[kg/m^3] (152)x
174 rho_d2 = MX.sym(’rho_d2 ’,n_c) #Density gas out compressor 2[kg/m^3] (153)x
175 Phi2 = MX.sym(’Phi2’,n_c) #Pressure Ratio compresor 2[-] (154)x
176 Pow2 = MX.sym(’Pow2’,n_c) #Power con sum ption compressor 2[kW] (155)x
177 y_p2 = MX.sym(’y_p2’,n_c) #Polytropic Head compressor 2[m] (156)x
178 n_p2 = MX.sym(’n_p2’,n_c) #Polytropic Efficiency 2[%] (157)x
179 w_rec2 = MX.sym(’w_rec2 ’, n_c) #Recycle mass flow 2[kg/s] (158) #NO SOCx
180 #Further implementation

B APPENDIX B B.10 SimulatorSOCN.py

181 Phi_max2 = MX.sym(’Phi_max2 ’,n_c) #Max pressure ratio (159) #NO SOCx
182 gamma_2_dummy2 = MX.sym(’gamma_2_dummy2 ’,n_c) #constraint (160) #NO SOCx
183 #Compressor 3
184 w_in3 = MX.sym(’w_in3’,n_c) #Flow gas in compressor 2[kg/s] (161) #NO SOCx
185 w_out3 = MX.sym(’w_out3 ’,n_c) #Flow gas out compressor 2[kg/s] (162) #NO SOCx
186 rho_in3 = MX.sym(’rho_in3 ’,n_c) #Density gas in compressor 2[kg/m^3] (163)x
187 rho_d3 = MX.sym(’rho_d3 ’,n_c) #Density gas out compressor 2[kg/m^3] (164)x
188 Phi3 = MX.sym(’Phi3’,n_c) #Pressure Ratio compresor 2[-] (165)x
189 Pow3 = MX.sym(’Pow3’,n_c) #Power con sum ption compressor 2[kW] (166)x
190 y_p3 = MX.sym(’y_p3’,n_c) #Polytropic Head compressor 2[m] (167)x
191 n_p3 = MX.sym(’n_p3’,n_c) #Polytropic Efficiency 2[%] (168)x
192 w_rec3 = MX.sym(’w_rec3 ’, n_c) #Recycle mass flow 2[kg/s] (169) #NO SOCx
193 #Further implementation
194 Phi_max3 = MX.sym(’Phi_max3 ’,n_c) #Max pressure ratio (170) #NO SOCx
195 gamma_2_dummy3 = MX.sym(’gamma_2_dummy3 ’,n_c) #constraint (171) #NO SOC x
196 #Gl system
197 w_gl = MX.sym(’w_gl’,n_w) #Flow through gas lift choke[kg/s] (172 -177)x
198 p_out = MX.sym(’p_out’ ,1) #Pressure in gas lift line[bar] (178)x
199 rho_out = MX.sym(’rho_out ’ ,1) #density of gas in gas lift line[kg/m^3] (179)x
200

201

202 #Control input
203

204 #Gas lift
205 u_gl = MX.sym(’u_gl’, n_w) #Valve opening gas lift chokes [0-1] (0-5)
206

207 #Separator
208 z_ov = MX.sym(’z_ov’, 1) #Valve opening separator oil out[0-1] (6)
209

210 #Compressor
211 u_1 = MX.sym(’u_1’,n_c) #Valve opening inlet compressor 1[0-1] (7)
212

213 #Wells
214 u_pc = MX.sym(’u_pc’, n_w) #Valve opening production chokes [0-1] (8 -13)
215

216 #Compressor
217 u_2 = MX.sym(’u_2’,n_c) #Valve opening inlet compressor 2, outlet 1[0 -1] (14)
218 u_3 = MX.sym(’u_3’,n_c) #Valve opening inlet compressor 3, outlet 2[0 -1] (15)
219 u_4 = MX.sym(’u_4’,n_c) #Valve opening outlet compressor 3[0-1] (16)
220 u_rec1 = MX.sym(’u_rec1 ’,n_c) #Valve opening recycle compressor 1[0 -1] (17)
221 u_rec2 = MX.sym(’u_rec2 ’,n_c) #Valve opening recycle compressor 2[0 -1] (18)
222 u_rec3 = MX.sym(’u_rec3 ’,n_c) #Valve opening recycle compressor 3[0 -1] (19)
223 omega1 =MX.sym(’omega1 ’,n_c) #Speed of compressor 1[rad/s] (20)
224 omega2 = MX.sym(’omega2 ’,n_c) #Speed of compressor 2[rad/s] (21)
225 omega3 = MX.sym(’omega2 ’,n_c) #Speed of compressor 3[rad/s] (22)
226

227 #Parameters(Possible to introduce more)
228 #Wells
229 GOR = MX.sym(’GOR’,n_w)
230 #Separator
231 p_go = MX.sym(’p_go’ ,1)
232 p_oo = MX.sym(’p_oo’, 1)
233

234 #Constraints
235 wmax_gl = MX.sym(’wmax_gl ’ ,1)
236 wmax_pg = MX.sym(’wmax_pg ’ ,1)
237 Powmax_glcom = MX.sym(’Powmax_glcom ’ ,1)
238

239

240

241 #Algebraic equations
242 #Wells
243 f1 = -p_ai*1e5 + ((R*T_a/(V_a*Mw) + 9.81* H_a/V_a)*m_ga*1e3) #Bernoulli

B APPENDIX B B.10 SimulatorSOCN.py

244 f2 = -p_wh*1e5 + ((R*T_w/Mw)*(m_gt*1e3/(L_w*A_w + L_bh*A_bh - m_ot*1e3/rho_o))
) - ((m_gt*1e3+m_ot*1e3)/(L_w*A_w))*9.81* H_w/2 #Bernoulli

245 f3 = -p_wi*1e5 + (p_wh*1e5 + 9.81/(A_w*L_w)*fmax(0,(m_ot*1e3+m_gt*1e3 -rho_o*
L_bh*A_bh))*H_w + 128* mu_oil*L_w*w_pc /(3.14* D_w **4*((m_gt*1e3 + m_ot*1e3)*p_wh
*1e5*Mw*rho_o)/(m_ot*1e3*p_wh*1e5*Mw + rho_o*R*T_w*m_gt*1e3))) #Bernoulli/
Hagen -Poiseuille

246 f4 = -p_bh*1e5 + (p_wi*1e5 + rho_o *9.81* H_bh + 128* mu_oil*L_bh*w_ro /(3.14* D_bh
**4* rho_o)) #Bernoulli/Hagen -Poiseuille

247 f5 = -rho_ai *1e2 +(Mw/(R*T_a)*p_ai*1e5) #Ideal gas law x
248 f6 = -rho_m*1e2 + ((m_gt*1e3 + m_ot*1e3)*p_wh*1e5*Mw*rho_o)/(m_ot*1e3*p_wh*1e5

*Mw + rho_o*R*T_w*m_gt*1e3)#Relationship oil/gas x
249 f7 = -w_iv + C_iv*sqrt(rho_ai *1e2*fmax (0.001 ,(p_ai*1e5 - p_wi*1e5)))#Valve

equation
250 f8 = -w_pc + u_pc*C_pc*sqrt(rho_m*1e2*fmax (0.001 ,(p_wh*1e5 - p_m*1e5)))#Valve

equation
251 f9 = -w_pg + ((m_gt*1e3)/fmax(1e-3,(m_gt*1e3+m_ot*1e3)))*w_pc #massfraction of

gas
252 f10 = -w_po + ((m_ot*1e3)/fmax(1e-3,(m_gt*1e3+m_ot*1e3)))*w_pc #massfraction

oil
253 f11 = -w_ro + PI*1e-6*(p_res *1e5 - p_bh*1e5)#From definition of Productivity

index
254 f12 = -w_rg + GOR*w_ro #From definition of Gas -oil ratio
255 #Riser system
256 f15 = -p_rh*1e5 + ((R*T_r/Mw))*(m_gr*1e3/(L_r*A_r)) - ((m_gr*1e3+m_or*1e3)/(

L_r*A_r))*9.81* H_r/2 #Bernoulli
257 f16 = -rho_r *1e2 + ((m_gr*1e3 + m_or*1e3)*p_rh*1e5*Mw*rho_ro)/(m_or*1e3*p_rh*1

e5*Mw +rho_ro*R*T_r*m_gr*1e3)
258 f17 = -p_m*1e5 + (p_rh*1e5 + 9.81/(A_r*L_r)*(m_or*1e3+m_gr*1e3)*H_r + 128*

mu_oil*L_r*w_pr/(np.pi*D_r **4*((m_gr*1e3+m_or*1e3) * p_rh*1e5*Mw*rho_ro) / (
m_or*1e3*p_rh*1e5*Mw+rho_ro*R*T_r*m_gr*1e3))) #Realationship oil/gas

259 f18 = -w_pr + 1*C_pr * np.sqrt(rho_r*1e2*fmax (0.001 ,(p_rh*1e5-p_gs*1e5))) #
Valve equation

260 f19 = -w_to + (m_or*1e3/(m_gr*1e3 + m_or*1e3))*w_pr #massfraction oil
261 f20 = -w_tg + (m_gr*1e3/(m_gr*1e3 + m_or*1e3))*w_pr #massfraction gas
262 #Separator system
263 f21 = -w_os + z_ov*C_os*sqrt(rho_ro *1e2*fmax (0.001 ,(p_os*1e5 - p_oo*1e5))) #

Valve equation
264 f22 = -w_gs + C_gs*np.sqrt(rho_gs *1e2 *fmax (0.001 ,(p_gs*1e5 - p_go*1e5))) #

Valve equation
265 f23 = -rho_gs *1e2 + (Mw/(T_s * R) * p_gs*1e5) #Ideal gas law x
266 f24 = -p_os*1e5 + p_gs*1e5 + rho_ro * 9.81 * h_ls #Bernoulli equation
267 f25 = -v_os + ((0.5* r_s **2) *((2*np.arccos(fmax(0,(r_s -h_ls)/r_s)))-np.sin ((2*

np.arccos(fmax(0,(r_s -h_ls)/r_s))))))*L_s #Based on equation of segment/circle
, derivative of the Area

268 f26 = -v_gs + fmax(0,(v_s - v_os)) #Based on relation volume of gas/oil in
separator

269 #Compressor 1
270 f27 = -w_in1 + C_in*u_1*np.sqrt(rho_in1 *1e2*fmax (0.001 ,(p_gs*1e5 - p_s1*1e5)))

#Valve equation x
271 f28 = -w_out1 + C_in*u_2*np.sqrt(rho_d1 *1e2*fmax (0.001 ,(p_d1*1e5-p_s2*1e5)))#

Valve equation x
272 f29 = -rho_in1 *1e2 + (Mw/(R*T_in)*p_gs*1e5)#Ideal gas law x
273 f30 = -rho_d1 *1e2 + (Mw/(R*T_d)*p_d1*1e5)#Ideal gas law x
274 f31 = -Phi1 + alpha_1 + alpha_2*omega1 + alpha_3*w_c1 + alpha_4*omega1*w_c1 +

alpha_5*omega1*omega1 + alpha_6*w_c1*w_c1# xPolynomial realationship/
approximation

275 f32 = -Pow1 + (y_p1/(n_p1))*w_c1#Based on how much of the potential power that
can be utilized x

276 f33 = -y_p1*1e5 + (Z_in *R *T_in/(Mw))*(n_v/(n_v -1)) *((Phi1 **((n_v -1)/n_v))
-1)# xEquation for polytropic head

277 f34 = -n_p1*1e2 + beta_1 + beta_2*omega1 + beta_3*Phi1 + beta_4*omega1*Phi1 +
beta_5*omega1*omega1 + beta_6*Phi1*Phi1# xPolynomial realationship/
approximation

278 f35 = -Phi_max1 + gamma_11 *(w_c1 -gamma_21) + gamma_31 #Further work

B APPENDIX B B.10 SimulatorSOCN.py

279 f36 = - gamma_2_dummy1 + w_c1 - ((Phi1 - gamma_31)/gamma_11) #Further work
280 f37 = -w_rec1 + C_rec*u_rec1*np.sqrt(rho_d1 *1e2*fmax (0.0001 ,(p_d1*1e5 - p_s1*1

e5))) #Valve equation x
281 #Compressor 2
282 f38 = -w_in2 + C_in*u_2*np.sqrt(rho_in2 *1e2*fmax (0.001 ,(p_d1*1e5 - p_s2*1e5)))

#Valve equation
283 f39 = -w_out2 + C_in*u_3*np.sqrt(rho_d2 *1e2*fmax (0.001 ,(p_d2*1e5-p_s3*1e5)))#

Valve equation
284 f40 = -rho_in2 *1e2 + (Mw/(R*T_in)*p_d1*1e5)#Ideal gas law x
285 f41 = -rho_d2 *1e2 + (Mw/(R*T_d)*p_d2*1e5)#Ideal gas law
286 f42 = -Phi2 + alpha_1 + alpha_2*omega2 + alpha_3*w_c2 + alpha_4*omega2*w_c2 +

alpha_5*omega2*omega2 + alpha_6*w_c2*w_c2#Polynomial realationship/
approximation

287 f43 = -Pow2 + (y_p2/n_p2)*w_c2#Based on how much of the potential power that
can be utilized

288 f44 = -y_p2*1e5 + (Z_in *R *T_in/(Mw))*(n_v/(n_v -1)) *((Phi2 **((n_v -1)/n_v))
-1)#Equation for polytropic head

289 f45 = -n_p2*1e2 + beta_1 + beta_2*omega2 + beta_3*Phi2 + beta_4*omega2*Phi2 +
beta_5*omega2*omega2 + beta_6*Phi2*Phi2#Polynomial realationship/approximation

290 f46 = -Phi_max2 + gamma_12 *(w_c2 -gamma_22) + gamma_32 #Further work
291 f47 = - gamma_2_dummy2 + w_c2 - ((Phi2 - gamma_32)/gamma_12) #Further work
292 f48 = -w_rec2 + C_rec*u_rec2*np.sqrt(rho_d2 *1e2*fmax (0.0001 ,(p_d2*1e5 - p_s2*1

e5)))#Valve equation
293 #Compressor 3
294 f49 = -w_in3 + C_in*u_3*np.sqrt(rho_in3 *1e2*fmax (0.001 ,(p_d2*1e5 - p_s3*1e5)))

#Valve equation
295 f50 = -w_out3 + C_in*u_4*np.sqrt(rho_d3 *1e2*fmax (0.001 ,(p_d3*1e5-p_out*1e5)))#

Valve equation
296 f51 = -rho_in3 *1e2 + (Mw/(R*T_in)*p_d2*1e5)#Ideal gas law
297 f52 = -rho_d3 *1e2 + (Mw/(R*T_d)*p_d3*1e5)#Ideal gas law
298 f53 = -Phi3 + alpha_1 + alpha_2*omega3 + alpha_3*w_c3 + alpha_4*omega3*w_c3 +

alpha_5*omega3*omega3 + alpha_6*w_c3*w_c3#Polynomial realationship/
approximation

299 f54 = -Pow3 + (y_p3/n_p3)*w_c3#Based on how much of the potential power that
can be utilized

300 f55 = -y_p3*1e5 + (Z_in *R *T_in/(Mw))*(n_v/(n_v -1)) *((Phi3 **((n_v -1)/n_v))
-1)#Equation for polytropic head

301 f56 = -n_p3*1e2 + beta_1 + beta_2*omega3 + beta_3*Phi3 + beta_4*omega3*Phi3 +
beta_5*omega3*omega3 + beta_6*Phi3*Phi3#Polynomial realationship/approximation

302 f57 = -Phi_max3 + gamma_13 *(w_c3 -gamma_23) + gamma_33 #Further work
303 f58 = - gamma_2_dummy3 + w_c3 - ((Phi3 - gamma_33)/gamma_13) #Further work
304 f59 = -w_rec3 + C_rec*u_rec3*np.sqrt(rho_d3 *1e2*fmax (0.001 ,(p_d3*1e5 - p_s3*1

e5)))#Valve equation
305 #Gas Lift
306 f60 = -w_gl + C_gl*u_gl*np.sqrt(rho_out *1e2*fmax (0.001 ,(p_out*1e5 - p_ai*1e5))

)#Valve equation
307 f61 = -p_out *1e5 + R*T_d*m_gl*1e3/(Mw*np.pi*r_gl*r_gl*L_gl)#Ideal gas law x
308 f62 = -rho_out *1e2 + (Mw/(R*T_d)*p_out*1e5)#Ideal gas law
309

310 #Differential equations
311 #Wells
312 df1 = (w_gl - w_iv)*1e-3 #m_ga , massbalance of gas annulus
313 df2 = (w_iv + w_rg - w_pg)*1e-3 #m_tg , massbalance of gas tubing
314 df3 = (w_ro - w_po)*1e-3 #m_to , massbalance of oil tubing
315 #Riser
316 df4 = (sum(w_pg.nz) - w_tg)*1e-3#*1e-3 #m_gt , massbalance gas riser
317 df5 = (sum(w_po.nz) - w_to)*1e-3#*1e-3 #m_ot , massbalance oil riser
318 #Separator
319 df6 = ((R*T_s/(v_gs*Mw))*(w_tg - w_gs - w_in1)) + (p_gs/(v_gs*rho_ro))*((w_to

- w_os)*1e-4)# p_gs , based on derivative of ideal gas law
320 df7 = (((w_to - w_os))/rho_ro)/(2* L_s * np.sqrt(h_ls* fmax (0 ,((2 *r_s)-h_ls)))

)#h_ls , based on equation of segment/circle , derivative of the Area
321 #Compressor system(diff equations)
322 #Compressor 1

B APPENDIX B B.10 SimulatorSOCN.py

323 df8 = (w_in1 - w_c1 + w_rec1) * Coef_1 #p_s1 , based on gas in/out of system
324 df9 = (w_c1 - w_out1 - w_rec1) *Coef_2 #p_d1 , based on gas in/out of system
325 df10 = (p_s1*Phi1 - p_d1) * Coef_3 #w_c1 , based on pressure difference between

in/out
326 # Define variables for combined systems (needed only for decomposition case)
327 #Compressor 2
328 df11 = (w_in2 - w_c2 + w_rec2) * Coef_1 #p_s2 , based on gas in/out of system
329 df12 = (w_c2 - w_out2 - w_rec2) *Coef_2 #p_d2 , based on gas in/out of system
330 df13 = (p_s2*Phi2 - p_d2) * Coef_3 #w_c2 , based on pressure difference between

in/out
331 #Compressor 3
332 df14 = (w_in3 - w_c3 + w_rec3) * Coef_1#p_s3 , based on gas in/out of system
333 df15 = (w_c3 - w_out3 - w_rec3) *Coef_2#p_d3 , based on gas in/out of system
334 df16 = (p_s3*Phi3 - p_d3) * Coef_3#w_c3 , based on pressure difference between

in/out
335 #Gas lift(diff equations)
336 df17 = (w_out3 - sum(w_gl.nz))*1e-3 #m_gl , based on massbalance
337

338 #Form the DAE system
339 dif = vertcat(df1 ,df2 ,df3 ,df4 , df5 ,df6 ,df7 ,df8 ,df9 ,df10 ,df11 ,df12 ,df13 ,df14 ,

df15 ,df16 ,df17) #Differential equations
340 alg = vertcat(f1 ,f2 ,f3 ,f4,f5,f6,f7,f8 ,f9 ,f10 ,f11 ,f12 ,f15 ,f16 ,f17 ,f18 ,f19 ,f20 ,

f21 ,f22 ,f23 ,f24 ,f25 ,f26 ,f27 ,f28 ,f29 ,f30 ,f31 ,f32 ,f33 ,f34 ,f35 ,f36 ,f37 ,f38 ,f39 ,
f40 ,f41 ,f42 ,f43 ,f44 ,f45 ,f46 ,f47 ,f48 ,f49 ,f50 ,f51 ,f52 ,f53 ,f54 ,f55 ,f56 ,f57 ,f58 ,
f59 ,f60 ,f61 ,f62) #Algebraic equations

341 x_var = vertcat(m_ga ,m_gt ,m_ot ,m_gr , m_or ,p_gs ,h_ls ,p_s1 ,p_d1 , w_c1 , p_s2 ,p_d2
,w_c2 ,p_s3 ,p_d3 ,w_c3 ,m_gl) #Differential states

342 z_var = vertcat(p_ai ,p_wh ,p_wi ,p_bh ,rho_ai ,rho_m ,w_iv ,w_pc ,w_pg ,w_po ,w_ro ,w_rg
, p_rh ,rho_r ,p_m ,w_pr ,w_to ,w_tg ,w_os ,w_gs ,rho_gs ,p_os ,v_os ,v_gs ,w_in1 ,w_out1 ,
rho_in1 ,rho_d1 , Phi1 ,Pow1 ,y_p1 ,n_p1 ,Phi_max1 ,gamma_2_dummy1 ,w_rec1 ,w_in2 ,
w_out2 ,rho_in2 ,rho_d2 , Phi2 ,Pow2 ,y_p2 ,n_p2 ,Phi_max2 ,gamma_2_dummy2 ,w_rec2 ,
w_in3 ,w_out3 ,rho_in3 ,rho_d3 ,Phi3 ,Pow3 ,y_p3 ,n_p3 ,Phi_max3 ,gamma_2_dummy3 ,w_rec3
,w_gl ,p_out ,rho_out)#Algebraic states

343 u_var = vertcat(u_gl ,z_ov ,u_1 ,u_pc ,u_2 ,u_3 ,u_4 ,u_rec1 ,u_rec2 ,u_rec3)#Control
variables

344 p_var = vertcat(GOR ,wmax_gl ,wmax_pg ,Powmax_glcom ,p_go ,p_oo ,omega1 ,omega2 ,
omega3)#Parameters/constraints

345

346

347 #Inequality constraints
348 g_var = vertcat ((w_gs -wmax_pg) ,((Pow1 + Pow2 + Pow3)-Powmax_glcom) ,(sum(w_gl.

nz)- wmax_gl))
349

350 #Objective function(Whant to maximize oil pruduction and minimize power con sum
ption)

351 L = -0.6* w_os + 0.03*(Pow1 + Pow2 + Pow3)
352

353 #Free variables need to be added
354 alg = substitute(alg ,p_res ,par[’p_res’])
355 alg = substitute(alg ,PI,par[’PI’])
356 alg = substitute(alg ,T_a ,par[’T_a’])
357 alg = substitute(alg ,T_w ,par[’T_w’])
358

359 #Constructing the total DEA system , into CasADI framework
360 dae = {’x’: x_var ,’z’: z_var ,’p’: vertcat(u_var ,p_var),’ode’: dif ,’alg’: alg ,’

quad’: L}
361

362 #Define integration time
363 opts = {’tf’: par[’tf’]}
364

365 #Create IDAS integrator for the DAE system
366 F = integrator(’F’,’idas’,dae ,opts)
367

368 #Returns values

B APPENDIX B B.10 SimulatorSOCN.py

369 return F,x_var , z_var , u_var , p_var , alg , dif , L, g_var

B APPENDIX B B.11 ParameterSOCN.py

B.11 ParameterSOCN.py

This code is primarily based on the previous work, related to the modelling of the system done in
the authors project thesis [1]. The file includes all the models constant parameters in a dictionary.

1 #Parameter file
2 #Function returns a dictionary with the models constant parameters
3

4 import numpy as np
5

6 def Params_6wells ():
7 par = {} #Dictionary to store the parameters
8 par[’n_w’] = 6 #Number of wells
9

10 ##### Well Parameters ####
11

12 #Length , height and diameter of wells[m]
13 par[’L_w’] = np.array ([1500 , 1500, 1500, 1500, 1500, 1500])
14 par[’H_w’] = np.array ([1000 ,1000 ,1000 ,1000 ,1000 ,1000])
15 par[’D_w’] = np.array ([0.121 ,0.121 ,0.121 ,0.121 ,0.121 ,0.121])
16

17 #Length , height and diameter of bottom hole[m]
18 par[’L_bh’] = np.array ([500, 500, 500, 500, 500, 500])
19 par[’H_bh’] = np.array ([500, 500, 500, 500, 500, 500])
20 par[’D_bh’] = np.array ([0.121 ,0.121 ,0.121 ,0.121 ,0.121 ,0.121])
21

22 #Length , height and diameter of annuluses[m]
23 par[’L_a’] = par[’L_w’] # Lenght of annuls equals length of well
24 par[’H_a’] = par[’H_w’] # Height of annuls equals length of well
25 par[’D_a’] = np.array ([0.189 , 0.189 , 0.189, 0.189 , 0.189, 0.189])
26

27 #Density oil , injection valve char and production choke valve char
28 par[’rho_o ’] = np.array ([8 ,8 ,7.9 ,8 ,8.2 ,8.05]) *1e2 #[kg/m^3]
29 par[’C_iv’] = np.array ([0.1e-3 ,0.1e-3,0.1e-3,0.1e-3 ,0.1e-3,0.1e-3]) #[m^2]
30 par[’C_pc’] = np.array ([2e-3,2e-3,2e-3,2e-3,2e-3,2e-3]) #[m^2]
31

32 #Gas -oil ratio of wells[kg/kg], possible disturbance
33 #par[’GOR ’] = np.array ([0.1 ,0.12 ,0.09 ,0.108 ,0.115 ,0.102]) + 0.01
34 #par[’GOR ’] = np.array ([0.11 ,0.12 ,0.12 ,0.12 ,0.12 ,0.13]) + 0.0329
35 #par[’GOR ’] = np.array ([0.11 ,0.115 + 0.02 ,0.125 ,0.11 ,0.132 ,0.13]) +

0.0329 #Manages + 0.025
36 #par[’GOR ’] = np.array ([0.11 ,0.115 ,0.125 ,0.111 ,0.131 ,0.13]) + 0.0329 #

Manages + 0.055
37 #par[’GOR ’] = np.array ([0.13 ,0.12 ,0.13 , 0.12, 0.13, 0.12])
38 #par[’GOR ’] = np.array ([0.13 ,0.12 + 0.002875 * 4 ,0.13 , 0.115, 0.14,

0.125]) + 0.0279
39 #par[’GOR ’] = np.array ([0.13 ,0.122 ,0.135 , 0.115 - 0.002875 * 4 ,

0.127, 0.125]) + 0.027
40 #par[’GOR ’] = np.array ([0.133 ,0.128 ,0.135 , 0.115 + 0.002875 * 4 ,

0.132, 0.13]) + 0.0263
41 #par[’GOR ’] = np.array ([0.133 ,0.128 ,0.135 , 0.125 , 0.132, 0.13]) +

0.0263
42 #par[’GOR ’] = np.array ([0.13 ,0.125 + 0.003125 *1 ,0.13 , 0.12 , 0.129 ,

0.125]) + 0.026
43 #par[’GOR ’] = np.array ([0.154 ,0.152 ,0.156 ,0.148 + 0.00379 * 1

,0.153, 0.154]) #Manages up to 10% increase and 2.5, 5 and 10% decrease
44 #par[’GOR ’] = np.array ([0.154 ,0.152 + 0.00152*3 ,0.156 ,0.1488 ,0.153,

0.154]) #Manages decrease and increase of 2.5, 5 and 10% well 4 + 0.00379*4
45 #par[’GOR ’] = np.array ([0.154 ,0.152 ,0.156 ,0.1488 + 0.00379*2 ,0.153,

0.154]) + 0.0028
46 par[’GOR’] = np.array ([0.125 , 0.13 ,0.13 ,0.14 ,0.125 , 0.135])
47 #par[’GOR ’] = np.array ([0.125 , 0.13 ,0.129 ,0.142 ,0.1252 , 0.135])
48 #4.36397
49 #0.00013
50 #0.537969

B APPENDIX B B.11 ParameterSOCN.py

51 par[’p_res ’] = np.array ([150 ,155 ,155 ,160 ,155 ,155]) #Reservoir pressure[bar]
52 par[’PI’] = np.array ([15 ,14 ,15 ,14 ,14 ,15])* 0.5 #Productvity index wells[kg s

^-1 bar^-1]
53 #par[’PI ’] = np.array ([7,7,7,7,7,7])* 0.5 #Productvity index wells[kg s^-1 bar

^-1]
54 par[’T_a’] = np.array ([273, 273, 273, 273, 273, 273]) + 28 #Annulus

temperature[K]
55 par[’T_w’] = np.array ([273, 273, 273, 273, 273, 273]) + 32 #Well temperature[K

]
56

57 #Area of well , bottom hole and volume of annulus
58 par[’A_w’] = np.pi*(par[’D_w’]/2) **2 #[m^2]
59 par[’A_bh’] = np.pi*(par[’D_bh’]/2) **2 #[m^2]
60 par[’V_a’] = par[’L_a’]*(np.pi*(par[’D_a’]/2) **2 - np.pi*(par[’D_w’]/2) **2) #[

m^3]
61 #Volume of annulus will equal the area of the total well and annulus minus the

well
62

63

64 #Constraints
65 par[’wmax_gl ’] = np.array ([8]) #Max gas lift
66 #par[’wmax_pg ’] = np.array ([10]) #Max produced gas
67 par[’wmax_pg ’] = np.array ([10]) #Max produced gas
68 #par[’Powmax_glcom ’] = np.array ([19]) #Max power #Nominal
69 par[’Powmax_glcom ’] = np.array ([19]) #Max power
70

71 #General parameters
72 par[’R’] = 8.314 #Gas constant [m^3 Pa K^-1 mol^-1]
73 par[’Mw’] = 20e-3 #Molar weighgt kg/mol
74 par[’tf’] = 1 #Simulation time
75 par[’mu_oil ’] = 0.001 #Oil viscosity[kg m^ 1 s^ 1]
76

77

78 #### Riser System ####
79 par[’L_r’] = 500 #Length of riser[m]
80 par[’H_r’] = 500 #Height of riser[m]
81 par[’D_r’] = 0.121 #Diameter of riser[m]
82 A_r = np.pi*(par[’D_r’]/2) **2
83 par[’A_r’] = A_r #Area of riser[m^2]
84 par[’T_r’] = 30+273 #Temperature riser[K]
85 par[’C_pr’] = 0.003 #Valve char riser valve[m^2]
86 rho_ro = np.sum(par[’rho_o ’])/6
87 par[’rho_ro ’] = rho_ro #Density of oil in riser[kg/m^3]
88

89

90 #### Separator ####
91 par[’L_s’] = 5 #10 length Separator[m] #Oversized
92 par[’r_s’] = 1.65 #radius Separator[m] #Oversized
93 par[’T_s’] = 29 + 273 #Temperature Separator[K]
94 V_sep = np.pi * par[’r_s’]**2 * par[’L_s’]
95 par[’V_s’] = V_sep #Volume of Separator[m3]
96 par[’C_gs’] = 5.5*0.001 #Valve char gas outlet[m^2]
97 par[’C_os’] = 5.5*0.001*0.5*0.5#5.5*0.001*0.5*0.5 #Valve char oil outlet[m^2]
98 par[’p_go’] = 20 #pressure gas out[bar]
99 par[’p_oo’] = 20 - 2 #pressure oil out[bar]

100

101 #### Compressors ####
102 par[’n_c’] = 1 #This parameter is just an early implementation error.
103 par[’T_d’] = 298 #Temperature out of compessor(assume heat is removed)[K]
104 par[’C_in’] = 9e -4*2.93#Valve char is equal for all in/out valves[m^2]
105 par[’T_in’] = 298 #Temperature inlet compressors[K]
106 par[’Z_in’] = 0.9 #Compression factor(difference from ideal behaviour)[-]
107 par[’n_v’] = 1.27 #Polytropic coefficient [-]
108 par[’C_out ’] = 1.201e-3 #Valve char out , not used at this impelementation[m^2]

B APPENDIX B B.11 ParameterSOCN.py

109 par[’C_rec ’] = 1.1*3.5e-5 *2 #Recycle valve char[m^2]
110 par[’omega1 ’] = 20
111 par[’omega2 ’] = 20
112 par[’omega3 ’] = 20
113 #alpha values for the approximation of pressure ratio
114 par[’alpha_1 ’] = 1.05 * 0.745 *2.3
115 par[’alpha_2 ’] = 0.7 * -1.4e-2 *-1
116 par[’alpha_3 ’] = 0.3 * 0.11 * -4.09e-2
117 par[’alpha_4 ’] = 1.75 * 0.13* 9.86e-4
118 par[’alpha_5 ’] = 1.0 * 0.5* -4.25e-4 *-1
119 par[’alpha_6 ’] = 300* (-0.15)* 2.45e-5 *2
120

121 #beta values for the approximation of efficiency
122 par[’beta_1 ’] = 0.7* 9*5.91e-2 *200
123 par[’beta_2 ’] = -2.13e-1 *2
124 par[’beta_3 ’] = 2.93e-1
125 par[’beta_4 ’] = 2.97e-3
126 par[’beta_5 ’] = -2.68e-5
127 par[’beta_6 ’] = -1.1e1 *(-0.1) *1.2 *2
128

129 #Dynamic coefficients for compressor dynamic equations
130 par[’Coef_1 ’] = 1e4
131 par[’Coef_2 ’] = 1e5
132 par[’Coef_3 ’] = 1
133

134 a = 0.1#0.073
135 #gamma values for further implementation of surge and choke constraints
136 #Comp1
137 par[’gamma_11 ’] = 250*0.015* 0.55 * a#0.085#0.085 #0.08
138 par[’gamma_21 ’] = 0.5* 3.812e-2 * 0.1
139 par[’gamma_31 ’] = 1.08* 0.615* 3 * 0.7
140

141 #Comp2
142 #gamma values for further implementation of surge and choke constraints
143 par[’gamma_12 ’] = 250*0.015* 0.55 * a#0.085#0.085 #0.06
144 par[’gamma_22 ’] = 0.5* 3.812e-2 * 0.1
145 par[’gamma_32 ’] = 1.08* 0.615* 3 * 0.7
146

147 #Comp3
148 #gamma values for further implementation of surge and choke constraints
149 par[’gamma_13 ’] = 250*0.015* 0.55 * a#0.085#0.085#0.09 #0.058
150 par[’gamma_23 ’] = 0.5* 3.812e-2 * 0.1
151 par[’gamma_33 ’] = 1.08* 0.615* 3 * 0.7
152

153 #### Gas lift ####
154 par[’L_gl’] = 500 #Length gas lift line[m]
155 par[’r_gl’] = 0.15 #radius gas lift line[m]
156 par[’C_gl’] = np.array ([5e-5,5e-5,5e-5,5e-5,5e-5,5e-5]) #Valve char gas lift

valves[m^2]
157 par[’C_iv’] = np.array ([0.1e-3 ,0.1e-3,0.1e-3,0.1e-3 ,0.1e-3,0.1e-3]) * 1.35 #

Valve char injection valves[m^2]
158

159 return par

B APPENDIX B B.12 Controlimplementations.py

B.12 Controlimplementations.py

This file shows the controller implementations related to self-optimizing and regulatory control.

1 #Main file
2 #Coding based on and inspired by model made by Risvan Dirza(NTNU).
3 #Integrates the system of equations with the use of the CasADI framework IDAS

integrator.
4 #Optimize the system of equations with the use of the CasADI framework IPOPT nlp

solver.
5

6

7 import numpy as np
8 from sys import path
9 path.append(r"C:/ Users/Bruker/Documents/CASADIPython/casadi -windows -py38 -v3.5.5 -64

bit")
10 from casadi import *
11 import casadi as ca
12 from tabulate import tabulate
13 from texttable import Texttable
14 import latextable
15 from decimal import Decimal
16

17 # Call the parameters
18 import ParameterSOCN
19

20 #par now represents the dictionary defined in parameter function
21 par = ParameterSOCN.Params_6wells ()
22

23

24

25

26 import pandas as pd
27 #Retrieve initial guesses for the differential states(x0), algebraic states(z0)

and
28 #controlled variables(u0). Data listed in excel , comma separated files.
29 x0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/x06Sep.csv’,header=None).values.

reshape (-1)
30 z0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/z06Sep.csv’,header=None).values.

reshape (-1)
31 u0 = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/u06Sep.csv’,header=None).values.

reshape (-1)
32

33 #Retrieve the lower and upper bounds for the differential states(x), algebraic
states(z) and

34 #controlled variables(u). Data listed in excel , comma separated files.
35 lbx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbx6Sep.csv’,header=None).values.

reshape (-1)
36 lbz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbz6Sep.csv’,header=None).values.

reshape (-1)
37 lbu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/lbu6Sep.csv’,header=None).values.

reshape (-1)
38 ubx = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubx6Sep.csv’,header=None).values.

reshape (-1)
39 ubz = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubz6Sep.csv’,header=None).values.

reshape (-1)
40 ubu = pd.read_csv(’DatafolderSOCProdGasLimitWhN5/ubu6Sep.csv’,header=None).values.

reshape (-1)
41

42

43

44 x0O = x0
45 z0O = z0
46 u0O = u0
47

B APPENDIX B B.12 Controlimplementations.py

48 #Define the parameter intial values(constant , if not manually changed)
49 p0 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],par[’

p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
50 p00 = ca.vertcat(par[’GOR’],par[’wmax_gl ’],par[’wmax_pg ’],par[’Powmax_glcom ’],par[

’p_go’],par[’p_oo’],par[’omega1 ’],par[’omega2 ’],par[’omega3 ’])
51 #Call the simulator
52 import SimulatorSOCN
53

54 #Retrieve return variables of the integrator function
55 F,x_var , z_var , u_var , p_var , alg , dif , L, g_var = SimulatorSOCN.

CentralizedSimulator_F(par)
56

57 ###For plotting of integration results ####
58 #t_span = np.arange (10000)
59 #x-values containers
60

61 m_ga1plot = []
62 m_ga2plot = []
63 m_ga3plot = []
64 m_ga4plot = []
65 m_ga5plot = []
66 m_ga6plot = []
67 m_gt1plot = []
68 m_gt2plot = []
69 m_gt3plot = []
70 m_gt4plot = []
71 m_gt5plot = []
72 m_gt6plot = []
73 m_ot1plot = []
74 m_ot2plot = []
75 m_ot3plot = []
76 m_ot4plot = []
77 m_ot5plot = []
78 m_ot6plot = []
79 m_grplot = []
80 m_orplot = []
81 p_gsplot = []
82 h_lsplot = []
83 p_s1plot = []
84 p_d1plot = []
85 w_c1plot = []
86 p_s2plot = []
87 p_d2plot = []
88 w_c2plot = []
89 p_s3plot = []
90 p_d3plot = []
91 w_c3plot = []
92 m_glplot = []
93 #u-value containers
94 u_gl1plot = []
95 u_gl2plot = []
96 u_gl3plot = []
97 u_gl4plot = []
98 u_gl5plot = []
99 u_gl6plot = []

100 z_ovplot = []
101 u_1plot = []
102 u_2plot = []
103 u_3plot = []
104 u_4plot = []
105 u_rec1plot = []
106 u_rec2plot = []
107 u_rec3plot = []
108 u_pc1plot = []

B APPENDIX B B.12 Controlimplementations.py

109 u_pc2plot = []
110 u_pc3plot = []
111 u_pc4plot = []
112 u_pc5plot = []
113 u_pc6plot = []
114 #z-calue containers
115 p_ai1plot = []
116 p_ai2plot = []
117 p_ai3plot = []
118 p_ai4plot = []
119 p_ai5plot = []
120 p_ai6plot = []
121 p_wh1plot = []
122 p_wh2plot = []
123 p_wh3plot = []
124 p_wh4plot = []
125 p_wh5plot = []
126 p_wh6plot = []
127 p_wi1plot = []
128 p_wi2plot = []
129 p_wi3plot = []
130 p_wi4plot = []
131 p_wi5plot = []
132 p_wi6plot = []
133 p_bh1plot = []
134 p_bh2plot = []
135 p_bh3plot = []
136 p_bh4plot = []
137 p_bh5plot = []
138 p_bh6plot = []
139 rho_ai1plot = []
140 rho_ai2plot = []
141 rho_ai3plot = []
142 rho_ai4plot = []
143 rho_ai5plot = []
144 rho_ai6plot = []
145 rho_m1plot = []
146 rho_m2plot = []
147 rho_m3plot = []
148 rho_m4plot = []
149 rho_m5plot = []
150 rho_m6plot = []
151 w_iv1plot = []
152 w_iv2plot = []
153 w_iv3plot = []
154 w_iv4plot = []
155 w_iv5plot = []
156 w_iv6plot = []
157 w_pc1plot = []
158 w_pc2plot = []
159 w_pc3plot = []
160 w_pc4plot = []
161 w_pc5plot = []
162 w_pc6plot = []
163 w_pg1plot = []
164 w_pg2plot = []
165 w_pg3plot = []
166 w_pg4plot = []
167 w_pg5plot = []
168 w_pg6plot = []
169 w_po1plot = []
170 w_po2plot = []
171 w_po3plot = []
172 w_po4plot = []

B APPENDIX B B.12 Controlimplementations.py

173 w_po5plot = []
174 w_po6plot = []
175 w_ro1plot = []
176 w_ro2plot = []
177 w_ro3plot = []
178 w_ro4plot = []
179 w_ro5plot = []
180 w_ro6plot = []
181 w_rg1plot = []
182 w_rg2plot = []
183 w_rg3plot = []
184 w_rg4plot = []
185 w_rg5plot = []
186 w_rg6plot = []
187 p_rhplot = []
188 rho_rplot = []
189 p_mplot = []
190 w_prplot = []
191 w_toplot = []
192 w_tgplot = []
193 w_osplot = []
194 w_gsplot = []
195 rho_gsplot = []
196 p_osplot = []
197 v_osplot = []
198 v_gsplot = []
199 w_in1plot = []
200 w_out1plot = []
201 rho_in1plot = []
202 rho_d1plot = []
203 Phi1plot = []
204 Pow1plot = []
205 y_p1plot = []
206 n_p1plot = []
207 Phi_max1plot = []
208 gamma_2_dummy1plot = []
209 w_rec1plot = []
210 w_in2plot = []
211 w_out2plot = []
212 rho_in2plot = []
213 rho_d2plot = []
214 Phi2plot = []
215 Pow2plot = []
216 y_p2plot = []
217 n_p2plot = []
218 Phi_max2plot = []
219 gamma_2_dummy2plot = []
220 w_rec2plot = []
221 w_in3plot = []
222 w_out3plot = []
223 rho_in3plot = []
224 rho_d3plot = []
225 Phi3plot = []
226 Pow3plot = []
227 y_p3plot = []
228 n_p3plot = []
229 Phi_max3plot = []
230 gamma_2_dummy3plot = []
231 w_rec3plot = []
232 w_gl1plot = []
233 w_gl2plot = []
234 w_gl3plot = []
235 w_gl4plot = []
236 w_gl5plot = []

B APPENDIX B B.12 Controlimplementations.py

237 w_gl6plot = []
238 p_outplot = []
239 rho_outplot = []
240 CostVsOpening = []
241 C1 = []
242 C2 = []
243 C3 = []
244 C4 = []
245 C5 = []
246 C6 = []
247 C7 = []
248 C8 = []
249 C9 = []
250 C10 = []
251 C11 = []
252 C12 = []
253 C13 = []
254 C14 = []
255 C15 = []
256 C16 = []
257 C17 = []
258 C18 = []
259 C19 = []
260 C20 = []
261 C21 = []
262 C22 = []
263 C23 = []
264 C24 = []
265 C25 = []
266 C26 = []
267

268 #Exact local method 2 MV/2 dist
269 B11 = []
270 B12 = []
271 B21 = []
272 B22 = []
273 B31 = []
274 B32 = []
275 B41 = []
276 B42 = []
277 B51 = []
278 B52 = []
279 B61 = []
280 B62 = []
281 B71 = []
282 B72 = []
283 B81 = []
284 B82 = []
285 B91 = []
286 B92 = []
287 B101 = []
288 B102 = []
289 B111 = []
290 B112 = []
291 B121 = []
292 B122 = []
293 B131 = []
294 B132 = []
295 B141 = []
296 B142 = []
297 B151 = []
298 B152 = []
299 B161 = []
300 B162 = []

B APPENDIX B B.12 Controlimplementations.py

301

302

303 #Define time span of simulation
304 t_span = np.arange (100000)
305

306 #Initialize initial values
307 uk = u0
308 xf = x0
309 zk = z0
310

311 #Make containers for storing integrator/control output
312 x_store =[]
313 z_store = []
314 u_store = []
315 p_store = []
316 error_store1 = [0]
317 error_store2 = [0,0]
318 error_store3 = [0,0]
319 error_store4 = [0]
320 error_store5 = [0]
321 error_store6 = [0]
322 error_store7 = [0]
323 error_store8 = [0]
324 error_storeA = [0]
325 error_storeB = [0]
326 error_storeC = [0]
327 error_storeD = [0]
328 error_store11 = [0]
329 error_store12 = [0]
330 error_store13 = [0]
331 error_store14 = [0]
332 error_storeC1 = [0]
333 error_storeC2 = [0]
334 error_storeC3 = [0]
335 error_storeC11 = [0]
336 error_storeC22 = [0]
337 error_storeC33 = [0]
338 B = []
339 u_1plot = []
340 u_2plot = []
341 u_3plot = []
342 u_4plot = []
343 u_5plot = []
344 u_6plot = []
345 u_7plot = []
346 u_8plot = []
347 u_11plot = []
348 u_12plot = []
349 u_13plot = []
350 u_14plot = []
351 lowestpoint = []
352 u_Aplot = []
353 u_Bplot = []
354 u_Cplot = []
355 u_Dplot = []
356 cplot = []
357 error_store = [0,0]
358 timer = 1000
359

360 ################### Integrator ###################
361 Condition = 0
362 for k in t_span:
363 #Change to simulate disturbance in GOR(Possible to implement disturbance in

more variables)

B APPENDIX B B.12 Controlimplementations.py

364 #p0[1] += 0.0013
365 #Simulate change in GOR for different wells
366 #if k == 5000:
367 #p0[1] += 0.01
368 #p0[1] -= 0.02
369 #p0[1] += 0.0013*3
370 #p0[5] += 0.00135*2
371 #p0[2] += 0.1
372 #p0[3] += 0.1
373 #p0[4] += 0.1
374 #p0[5] -= 0.00135*2
375

376

377 #Simulate change in valve opening for different wells
378 #if k == 10000:
379 #uk[0] -= 0.4
380 #uk[1] += uk [1]*10**(-5)
381 #uk[2] += uk [5]*10**(-5)
382 #uk[3] += 0.1
383 #uk[4] += 0.1
384 #uk[5] += 0.1
385

386

387 #Solving the initial value problem
388 inputs = ca.vertcat(uk, p0)
389 Fk = F(x0 = xf, z0 = zk , p = inputs)
390 #Retrieving the differential states
391 xf = (Fk[’xf’]).full()
392 #Retrieving the algebraic states
393 zk = (Fk[’zf’]).full()
394

395 #zk[79] = 10
396 #Append results
397 x_store.append(xf)
398 u_store.append(uk)
399 z_store.append(zk)
400

401

402 #Exact local method 2MV/2d from branch and bound F caluclated from linearized
model

403

404

405 #Annulus P and bottomhole P well 2 GLC2
406 #PI controller , tuned with SIMC rules
407 h2 = 3583.10465771* zk[1] - 1449.41787407* zk[19]# -7.98501232* zk[1] -

64.82349538* zk[19]
408 h_sp2 = 1.64907832*10**(5)# -9.70655713*10**(3) #72.5945 #Nominal optimal

wellhead pressure
409 tau12 = 101#720
410 tauC2 = 200#4000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
411 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
412 Kp2 = 1/(308.12053295 *tauC2)#Proportional gain 0.45315772
413 Ki2 = Kp2/tauI2 #Integral gain
414 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
415 #Calculate new controller output
416 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
417 #Update the controller output for z_ov(oil valve separator)
418 uk[1] = u2
419 #Store all errors , to be used for previous errors
420 error_store2.append(error2)
421 u_2plot.append(u2)

B APPENDIX B B.12 Controlimplementations.py

422

423 #Annulus P and bottomhole P well 2 GLC6
424 #PI controller , tuned with SIMC rules
425 h3 = -146.18640435* zk[1] + 67.56021995* zk[19]#2.60067824* zk[1] + 16.08713207*

zk[19]
426 h_sp3 = -5.57177646*10**(3)#2.47171494*10**(3) #72.5945 #Nominal optimal

wellhead pressure
427 tau13 = 185#424
428 tauC3 = 200#4000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
429 tauI3 = ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC rules

for integration processes.
430 Kp3 = 1/(0.33032675* tauC3)#Proportional gain 0.04527007
431 Ki3 = Kp3/tauI3 #Integral gain
432 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
433 #Calculate new controller output
434 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
435 #Update the controller output for z_ov(oil valve separator)
436 uk[5] = u3
437 #Store all errors , to be used for previous errors
438 error_store3.append(error3)
439 u_5plot.append(u3)
440

441

442

443 #Annulus P2 and annulus P6 GLC2
444 #PI controller , tuned with SIMC rules
445 h2 = 413.16600486* zk[1] + 326.50490982* zk[5]#22.88897358* zk[1] - 22.67672343*

zk[5]
446 h_sp2 = 7.50573395*10**(4)#24.7206142#72.5945 #Nominal optimal wellhead

pressure
447 tau12 = 67
448 tauC2 = 63#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
449 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
450 Kp2 = 1/(39.72975464 *tauC2)#Proportional gain 2.2514496
451 Ki2 = Kp2/tauI2 #Integral gain
452 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
453 #Calculate new controller output
454 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
455 #Update the controller output for z_ov(oil valve separator)
456 uk[1] = u2
457 #Store all errors , to be used for previous errors
458 error_store2.append(error2)
459 u_2plot.append(u2)
460

461 #Annulus P2 and annulus P6 GLC6
462 #PI controller , tuned with SIMC rules
463 h3 = 305.9743484* zk[1] + 663.475804* zk[5]# -22.18074525* zk[1] + 24.49319288* zk

[5]
464 h_sp3 = 9.83410265*10**(4)#2.31372351*10**(2) #72.5945 #Nominal optimal

wellhead pressure
465 tau13 = 65
466 tauC3 = 65#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
467 tauI3 = ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC rules

for integration processes.
468 Kp3 = 1/(63.61388852 *tauC3)#Proportional gain 2.39501819
469 Ki3 = Kp3/tauI3 #Integral gain
470 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
471 #Calculate new controller output

B APPENDIX B B.12 Controlimplementations.py

472 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*
error_store3 [-1]))))

473 #Update the controller output for z_ov(oil valve separator)
474 uk[5] = u3
475 #Store all errors , to be used for previous errors
476 error_store3.append(error3)
477 u_5plot.append(u3)
478

479 #
480

481 #Annulus P6 and DischargeP GLC2
482 #PI controller , tuned with SIMC rules
483 h2 = -6976.59161527* xf[29] + 3401.78133543* zk[5]# -4.3656668* xf[29] -

26.84908555* zk[5]
484 h_sp2 = -7.65887664*10**(5)# -3.41748920*10**(3) #72.5945 #Nominal optimal

wellhead pressure
485 tau12 = 264
486 tauC2 = 6000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
487 tauI2 = 500#ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC

rules for integration processes.
488 Kp2 = 1/(318.34137393 *tauC2)#Proportional gain 0.2417497
489 Ki2 = Kp2/tauI2 #Integral gain
490 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
491 #Calculate new controller output
492 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
493 #Update the controller output for z_ov(oil valve separator)
494 uk[1] = u2
495 #Store all errors , to be used for previous errors
496 error_store2.append(error2)
497 u_2plot.append(u2)
498

499 #Annulus P6 and DischargeP GLC6
500 #PI controller , tuned with SIMC rules
501 h3 = -8339.24832552* xf[29] + 4481.00108404* zk[5]#10.22381382* xf[29] +

65.47016409* zk[5]
502 h_sp3 = -8.73421692*10**(5)#8.26624307*10**(3) #72.5945 #Nominal optimal

wellhead pressure
503 tau13 = 163
504 tauC3 = 6000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
505 tauI3 = 500#ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC

rules for integration processes.
506 Kp3 = 1/(782.41556659* tauC3)#Proportional gain 5.99665696
507 Ki3 = Kp3/tauI3 #Integral gain
508 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
509 #Calculate new controller output
510 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
511 #Update the controller output for z_ov(oil valve separator)
512 uk[5] = u3
513 #Store all errors , to be used for previous errors
514 error_store3.append(error3)
515 u_5plot.append(u3)
516

517

518 #Annulus P6 and DischargeP GLC2 and discharge pressure 6
519 #PI controller , tuned with SIMC rules
520 h2 = -234922.1903769* xf[29] + 476847.10061302* zk[5] - 181679.62737955* zk[23]#

1290.90504975* xf[29] + 16765.46161926* zk[5] + 17129.3708444* zk[23]
521 h_sp2 = -1.40687276*10**(7)#4.26395815*10**(6) #72.5945 #Nominal optimal

wellhead pressure
522 tau12 = 274#744

B APPENDIX B B.12 Controlimplementations.py

523 tauC2 = 4000#300# Controller time , can be changed up or down depending on needs
for fast control or smooth control

524 tauI2 = 600#ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC
rules for integration processes.

525 Kp2 = 1/(9792.10072892* tauC2)#Proportional gain 7.27672269
526 Ki2 = Kp2/tauI2 #Integral gain
527 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
528 #Calculate new controller output
529 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
530 #Update the controller output for z_ov(oil valve separator)
531 uk[1] = u2
532 #Store all errors , to be used for previous errors
533 error_store2.append(error2)
534 u_2plot.append(u2)
535

536 #Annulus P6 and DischargeP GLC6
537 #PI controller , tuned with SIMC rules
538 h3 = -549333.90812753* xf[29] + 1128132.39347296* zk[5] - 431189.32210637* zk

[23]# -1676.90699719* xf[29] - 21807.04221199* zk[5] - 22311.54379972* zk[23]
539 h_sp3 = -3.24457153*10**(7)# -5.55012462*10**(6) #72.5945 #Nominal optimal

wellhead pressure
540 tau13 = 133#1454
541 tauC3 = 2000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
542 tauI3 = 600#ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC

rules for integration processes.
543 Kp3 = 1/(119828.95678892* tauC3)#Proportional gain 6.35087093
544 Ki3 = Kp3/tauI3 #Integral gain
545 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
546 #Calculate new controller output
547 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
548 #Update the controller output for z_ov(oil valve separator)
549 uk[5] = u3
550 #Store all errors , to be used for previous errors
551 error_store3.append(error3)
552 u_5plot.append(u3)
553

554

555 #Annulus P6 and DischargeP GLC2 and discharge pressure 6, annulus pressure 2
556 #PI controller , tuned with SIMC rules
557 h2 = -805763.43006082* xf[29] + 131567.44007523* zk[5] + 291161.30688082* zk[23]

+ 427066.88982393* zk[1]#61119.14498099* xf[29] + 147027.68286197* zk[5] -
58183.45153308* zk[23] + 201082.69102819* zk[1]

558 h_sp2 = -3.15021186*10**(7)#3.70454342*10**(7) #72.5945 #Nominal optimal
wellhead pressure

559 tau12 = 169#52#52#120#28 #28
560 tauC2 = 2000#3000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
561 theta2 = 0
562 tauI2 = ca.fmin(tau12 , 4*(tauC2 + theta2)) #Integral time , corresponding to

SIMC rules for integration processes.
563 Kp2 = 1/((75093.770713) *(tauC2 + theta2))#Proportional gain 17809.50303836
564 Ki2 = Kp2/tauI2 #Integral gain
565 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
566 #Calculate new controller output
567 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Ki2*error2 + Kp2*error2 - Kp2*

error_store2 [-1])))) #Kp2*error2 - Kp2*error_store2 [-1]
568 #Update the controller output for z_ov(oil valve separator)
569 uk[1] = u2
570 #Store all errors , to be used for previous errors
571 error_store2.append(error2)
572 u_2plot.append(u2)

B APPENDIX B B.12 Controlimplementations.py

573

574

575 #Annulus P6 and DischargeP GLC6
576 #PI controller , tuned with SIMC rules
577 h3 = -691151.33978905* xf[29] + 1042352.54566528* zk[5] - 313718.6801493* zk[23]

+ 106098.72807374* zk[1]#62702.16245358* xf[29] + 118363.56280388* zk[5] -
103353.02902385* zk[23] + 216378.02726489* zk[1]

578 h_sp3 = -3.67767947*10**(7)#2.97248713*10**(7) #72.5945 #Nominal optimal
wellhead pressure

579 tau13 = 137#120 #120
580 tauC3 = 1500#6000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
581 tauI3 = ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC rules

for integration processes.
582 Kp3 = 1/(120198.22672229* tauC3)#Proportional gain 5746.51735918
583 Ki3 = Kp3/tauI3 #Integral gain
584 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
585 #Calculate new controller output
586 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
587 #Update the controller output for z_ov(oil valve separator)
588 uk[5] = u3
589 #Store all errors , to be used for previous errors
590 error_store3.append(error3)
591 u_5plot.append(u3)
592

593

594 # discharge pressure , annulus pressure 2 GLC2
595 #PI controller , tuned with SIMC rules
596 h2 = -2704.12302706* xf[29] + 327.18670482* zk[1]#10.56433836* xf[29] +

64.592046* zk[1]
597 h_sp2 = -3.97329886*10**(5)#8.24045229*10**(3) #72.5945 #Nominal optimal

wellhead pressure
598 tau12 = 226#48 #28
599 tauC2 = 226#2000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
600 tauI2 = 100#ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC

rules for integration processes.
601 Kp2 = 1/(152.50011205* tauC2)#Proportional gain 5.88649612
602 Ki2 = Kp2/tauI2 #Integral gain
603 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
604 #Calculate new controller output
605 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
606 #Update the controller output for z_ov(oil valve separator)
607 uk[1] = u2
608 #Store all errors , to be used for previous errors
609 error_store2.append(error2)
610 u_2plot.append(u2)
611

612 #Annulus P6 and DischargeP GLC6
613 #PI controller , tuned with SIMC rules
614 h3 = -2675.80879344* xf[29] + 68.22602697* zk[1]# -4.68023771* xf[29] -

27.54634754* zk[1]
615 h_sp3 = -4.19115433*10**(5)#77569*10**(3) # -3.54212505*10**(3) #72.5945 #Nominal

optimal wellhead pressure
616 tau13 = 258#201 #120
617 tauC3 = 258#2000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
618 tauI3 = ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC rules

for integration processes.
619 Kp3 = 1/(124.23138298 *tauC3)#Proportional gain 0.26182904
620 Ki3 = Kp3/tauI3 #Integral gain
621 error3 = (h_sp3 - h3) #Difference between setpoint and measured value

B APPENDIX B B.12 Controlimplementations.py

622 #Calculate new controller output
623 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
624 #Update the controller output for z_ov(oil valve separator)
625 uk[5] = u3
626 #Store all errors , to be used for previous errors
627 error_store3.append(error3)
628 u_5plot.append(u3)
629

630

631 # discharge pressure , annulus pressure 2 GLC2
632 #PI controller , tuned with SIMC rules
633 h2 = -41674.87829334* xf[29] - 52288.11647798* zk[1] + 23376.24685595* zk[19]#

-2855.6340659* xf[29] - 19423.56983834* zk[1] - 16311.40372815* zk[19]
634 h_sp2 = -8.73664507*10**(6)# -4.66529004*10**(6) #72.5945 #Nominal optimal

wellhead pressure
635 tau12 = 10#1553#1553#78#1540#28
636 tauC2 = 1553#5000#78#300# Controller time , can be changed up or down depending

on needs for fast control or smooth control
637 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
638 Kp2 = 0.01*1/(20.70448516 *tauC2)#Proportional gain 3.90348885
639 Ki2 = Kp2/tauI2 #Integral gain
640 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
641 #Calculate new controller output
642 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
643 #Update the controller output for z_ov(oil valve separator)
644 uk[1] = u2
645 #Store all errors , to be used for previous errors
646 error_store2.append(error2)
647 u_2plot.append(u2)
648

649 #Annulus P6 and DischargeP GLC6
650 #PI controller , tuned with SIMC rules
651 h3 = -403800.65877812* xf[29] - 541499.5586333* zk[1] + 240611.02868619* zk[19]

-6405.52726445* xf[29] - 43548.86813336* zk[1] - 36426.92700546* zk[19]
652 h_sp3 = -8.62554440*10**(7)# -1.04405564*10**(7) #72.5945 #Nominal optimal

wellhead pressure
653 tau13 = 251#78 #120
654 tauC3 = 5000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
655 tauI3 = ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC rules

for integration processes.
656 Kp3 = 100*1/(20122.01897968 *tauC3)#Proportional gain 366.28016462
657 Ki3 = Kp3/tauI3 #Integral gain
658 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
659 #Calculate new controller output
660 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
661 #Update the controller output for z_ov(oil valve separator)
662 uk[5] = u3
663 #Store all errors , to be used for previous errors
664 error_store3.append(error3)
665 u_5plot.append(u3)
666

667

668 # discharge pressure , annulus pressure 2 GLC2
669 #PI controller , tuned with SIMC rules
670 h2 = -686015.79742427* xf[29] - 613181.02538563* zk[11] - 334371.87860306* zk[23]

+ 825709.36229966* zk[1]# -3716.69625337* xf[29] - 4798.98978458* zk[11] -
15641.39990574* zk[23] - 20136.44541368* zk[1]

671 h_sp2 = -1.20961591*10**(8)# -5.17761673*10**(6) #72.5945 #Nominal optimal
wellhead pressure

B APPENDIX B B.12 Controlimplementations.py

672 tau12 = 120#152#700#500#28
673 tauC2 = 120#1000#300# Controller time , can be changed up or down depending on

needs for fast control or smooth control
674 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
675 Kp2 = 0.1*1/(107137.28766212 *tauC2)#Proportional gain
676 Ki2 = 10*Kp2/tauI2 #Integral gain
677 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
678 #Calculate new controller output
679 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1]))))
680 #Update the controller output for z_ov(oil valve separator)
681 uk[1] = u2
682 #Store all errors , to be used for previous errors
683 error_store2.append(error2)
684 u_2plot.append(u2)
685

686 #Annulus P6 and DischargeP GLC6
687 #PI controller , tuned with SIMC rules
688 h3 = -659260.97418188* xf[29] - 243106.42626252* zk[11] + 98775.47820129* zk

[23] - 193401.98141469* zk[1]#10994.18774889* xf[29] + 96974.47619766* zk[11] -
49965.87429334* zk[23] - 29143.59981315* zk[1]

689 h_sp3 = -1.30643789*10**(8)# -2.54303615*10**(5) #72.5945 #Nominal optimal
wellhead pressure

690 tau13 = 221#500#502 #120
691 tauC3 = 221#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
692 tauI3 = ca.fmin(tau13 , 4*tauC3) #Integral time , corresponding to SIMC rules

for integration processes.
693 Kp3 = 0.1*1/(30081.59183107 *tauC3)#Proportional gain
694 Ki3 = 10*Kp3/tauI3 #Integral gain
695 error3 = (h_sp3 - h3) #Difference between setpoint and measured value
696 #Calculate new controller output
697 u3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][5] + (Kp3*error3 + Ki3*error3 - Kp3*

error_store3 [-1]))))
698 #Update the controller output for z_ov(oil valve separator)
699 uk[5] = u3
700 #Store all errors , to be used for previous errors
701 error_store3.append(error3)
702 u_5plot.append(u3)
703

704

705 ############### Implementation Exact local method positive
##########################

706 #BHP&PDIsch3
707 #PI controller , tuned with SIMC rules
708 h2 = -539914.34688897* zk[19] - 2784.25256079* xf[29]# -446413.25092053* zk[19] +

19345.66174978* xf[29]
709 h_sp2 = -7.45362992*10**(7)# -58181520.23667923#72.5945 #Nominal optimal

wellhead pressure
710 tau12 = 431#645
711 tauC2 = 2000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
712 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
713 Kp2 = 1/(7359.86887271 *tauC2)#Proportional gain 3664.2726547185534
714 Ki2 = Kp2/tauI2 #Integral gain
715 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
716 #Calculate new controller output
717 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
718 #Update the controller output for z_ov(oil valve separator)
719 uk[1] = u2
720 #Store all errors , to be used for previous errors

B APPENDIX B B.12 Controlimplementations.py

721 error_store2.append(error2)
722 u_2plot.append(u2)
723

724

725

726 #BHP&Prod oil w2
727 #PI controller , tuned with SIMC rules
728 h2 = -9.20434088*10**(2)*zk[19] + 0.491188339* zk[55]# -45.41318981* zk[19] -

0.08392059* zk[55]
729 h_sp2 = -1.26305988*10**(5)# -6233.1416364#72.5945 #Nominal optimal wellhead

pressure
730 tau12 = 434#624
731 tauC2 = 2000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
732 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
733 Kp2 = 1/(12.33380599* tauC2)#Proportional gain 0.42254083285255406
734 Ki2 = Kp2/tauI2 #Integral gain
735 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
736 #Calculate new controller output
737 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
738 #Update the controller output for z_ov(oil valve separator)
739 uk[1] = u2
740 #Store all errors , to be used for previous errors
741 error_store2.append(error2)
742 u_2plot.append(u2)
743

744

745

746 #BHP&Prod gas w2
747 #PI controller , tuned with SIMC rules
748 h2 = -42892.00474827* zk[19] + 22740.06185649* zk[49]# -2193.44492237* zk[19] -

3680.37324392* zk[49]
749 h_sp2 = -5.83284406*10**(6)# -309629.99426986#72.5945 #Nominal optimal wellhead

pressure
750 tau12 = 404#774
751 tauC2 = 2000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
752 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
753 Kp2 = 1/(713.05330544* tauC2)#Proportional gain 8.377426299741053
754 Ki2 = Kp2/tauI2 #Integral gain
755 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
756 #Calculate new controller output
757 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
758 #Update the controller output for z_ov(oil valve separator)
759 uk[1] = u2
760 #Store all errors , to be used for previous errors
761 error_store2.append(error2)
762 u_2plot.append(u2)
763

764

765

766 #BHP&tot gaslift
767 #PI controller , tuned with SIMC rules
768 h2 = -293089.71870215* zk[19] + 21259.28465932* zk [107]# -19877.79126375* zk[19] -

9122.48640609* zk [107]
769 h_sp2 = -4.01290192*10**(7)# -2767317.74641531#72.5945 #Nominal optimal

wellhead pressure
770 tau12 = 432#634
771 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control

B APPENDIX B B.12 Controlimplementations.py

772 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules
for integration processes.

773 Kp2 = 1/(3975.79288856 *tauC2)#Proportional gain 173.0044692063084
774 Ki2 = Kp2/tauI2 #Integral gain
775 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
776 #Calculate new controller output
777 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
778 #Update the controller output for z_ov(oil valve separator)
779 uk[1] = u2
780 #Store all errors , to be used for previous errors
781 error_store2.append(error2)
782 u_2plot.append(u2)
783

784

785

786 #Prod oil w2&Tot gaslift
787 #PI controller , tuned with SIMC rules
788 h2 = 286.77917524* zk[55] + 15.07388955* zk[107]#257.76699191* zk[55] -

81.78981924* zk [107]
789 h_sp2 = 3.63226099*10**(3)#2852.31828537#72.5945 #Nominal optimal wellhead

pressure
790 tau12 = 110#211
791 tauC2 = 500#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
792 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
793 Kp2 = 1/(10.69748668 *tauC2)#Proportional gain 4.721775281990528
794 Ki2 = Kp2/tauI2 #Integral gain
795 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
796 #Calculate new controller output
797 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
798 #Update the controller output for z_ov(oil valve separator)
799 uk[1] = u2
800 #Store all errors , to be used for previous errors
801 error_store2.append(error2)
802 u_2plot.append(u2)
803

804

805 #Prod gas w2&Tot gaslift
806 #PI controller , tuned with SIMC rules
807 h2 = 2900.46415236* zk[49] - 388.45472794* zk[107]#2804.15788752* zk[49] -

750.21433487* zk[107]
808 h_sp2 = 5.11373807*10**(3)#3322.98685992#72.5945 #Nominal optimal wellhead

pressure
809 tau12 = 202#337
810 tauC2 = 500#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
811 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
812 Kp2 = 1/(23.21338918* tauC2)#Proportional gain 12.736480716320484
813 Ki2 = Kp2/tauI2 #Integral gain
814 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
815 #Calculate new controller output
816 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
817 #Update the controller output for z_ov(oil valve separator)
818 uk[1] = u2
819 #Store all errors , to be used for previous errors
820 error_store2.append(error2)
821 u_2plot.append(u2)
822

823

B APPENDIX B B.12 Controlimplementations.py

824

825

826

827 ############### Implementation Exact local method negative
##########################

828 #BHP&Pwh2
829 #PI controller , tuned with SIMC rules
830 h2 = -5.34574111*10**(5)*zk[19] - 1.41642159* zk[7]# -483783.15402796* zk[19] -

9043.21957475* zk[1]
831 h_sp2 = -7.33602582*10**(7)# -67308259.10694613#72.5945 #Nominal optimal

wellhead pressure
832 tau12 = 434#645
833 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
834 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
835 Kp2 = 1/(7160.60340766* tauC2)#Proportional gain 3664.2726547185534
836 Ki2 = Kp2/tauI2 #Integral gain
837 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
838 #Calculate new controller output
839 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
840 #Update the controller output for z_ov(oil valve separator)
841 uk[1] = u2
842 #Store all errors , to be used for previous errors
843 error_store2.append(error2)
844 u_2plot.append(u2)
845

846

847

848 #BHP&Prod oil w2
849 #PI controller , tuned with SIMC rules
850 h2 = -4.32905553*10**(5)*zk[19] + 2.30539895*10**(2)*zk[55]#

-6.26485343*10**(4)*zk[19] + 26.0408009* zk[55]
851 h_sp2 = -5.94051978*10**(7)# -8596997.59926734#72.5945 #Nominal optimal

wellhead pressure
852 tau12 = 434#624
853 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
854 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
855 Kp2 = 1/(5800.92483758* tauC2)#Proportional gain 0.42254083285255406
856 Ki2 = Kp2/tauI2 #Integral gain
857 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
858 #Calculate new controller output
859 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
860 #Update the controller output for z_ov(oil valve separator)
861 uk[1] = u2
862 #Store all errors , to be used for previous errors
863 error_store2.append(error2)
864 u_2plot.append(u2)
865

866

867

868 #BHP&Prod gas w2
869 #PI controller , tuned with SIMC rules
870 h2 = -466615.86146777* zk[19] + 17771.12021649* zk[49]# -62520.82233189* zk[19] +

613.91453191* zk[49]
871 h_sp2 = -6.39925358*10**(7)# -8578357.35508944#72.5945 #Nominal optimal

wellhead pressure
872 tau12 = 432#774
873 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control

B APPENDIX B B.12 Controlimplementations.py

874 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules
for integration processes.

875 Kp2 = 1/(6349.30100954* tauC2)#Proportional gain 8.377426299741053
876 Ki2 = Kp2/tauI2 #Integral gain
877 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
878 #Calculate new controller output
879 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
880 #Update the controller output for z_ov(oil valve separator)
881 uk[1] = u2
882 #Store all errors , to be used for previous errors
883 error_store2.append(error2)
884 u_2plot.append(u2)
885

886

887

888 #BHP&tot gaslift
889 #PI controller , tuned with SIMC rules
890 h2 = -526464.96151215 *zk[19] + 5189.13501704* zk [107]# -125435.8109666* zk[19] -

12587.91389531* zk[107]
891 h_sp2 = -7.22248665*10**(7)# -17268144.34149321#72.5945 #Nominal optimal

wellhead pressure
892 tau12 = 434#634
893 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
894 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
895 Kp2 = 1/(7059.68830538 *tauC2)#Proportional gain #173.0044692063084*20
896 Ki2 = Kp2/tauI2 #Integral gain
897 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
898 #Calculate new controller output
899 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
900 #Update the controller output for z_ov(oil valve separator)
901 uk[1] = u2
902 #Store all errors , to be used for previous errors
903 error_store2.append(error2)
904 u_2plot.append(u2)
905

906

907

908 #Prod oil w2&Tot gaslift
909 #PI controller , tuned with SIMC rules
910 h2 = 284.98125313* zk[55] + 26.83981752* zk[107]#259.40899698* zk[55] +

122.2241566* zk [107]
911 h_sp2 = 3.66080317*10**(3)#3755.40804699#72.5945 #Nominal optimal wellhead

pressure
912 tau12 = 110#211
913 tauC2 = 400#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
914 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
915 Kp2 = 1/(10.69984226 *tauC2)#Proportional gain 4.721775281990528
916 Ki2 = Kp2/tauI2 #Integral gain
917 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
918 #Calculate new controller output
919 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
920 #Update the controller output for z_ov(oil valve separator)
921 uk[1] = u2
922 #Store all errors , to be used for previous errors
923 error_store2.append(error2)
924 u_2plot.append(u2)
925

B APPENDIX B B.12 Controlimplementations.py

926

927 #Prod gas w2&Tot gaslift
928 #PI controller , tuned with SIMC rules
929 h2 = 3016.84474179* zk[49] - 270.09782426* zk[107]#3051.23091538* zk[49] +

57.97844937* zk [107]
930 h_sp2 = 5.89843246*10**(3)#7398.40393725#72.5945 #Nominal optimal wellhead

pressure
931 tau12 = 200#337
932 tauC2 = 500#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
933 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
934 Kp2 = 1/(24.81747272 *tauC2)#Proportional gain 12.736480716320484
935 Ki2 = Kp2/tauI2 #Integral gain
936 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
937 #Calculate new controller output
938 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
939 #Update the controller output for z_ov(oil valve separator)
940 uk[1] = u2
941 #Store all errors , to be used for previous errors
942 error_store2.append(error2)
943 u_2plot.append(u2)
944

945 #
##

946

947

948

949

950 ##################### Single controlled variable SOC
################################

951 #Wellhead pressure case 7#(POSITIVE GAIN WITH Prod gas constraint)
952 #PI controller , tuned with SIMC rules
953 h2 = z_store[k][7]
954 h_sp2 = 80.6189#72.5865#72.5945 #Nominal optimal wellhead pressure
955 tau12 = 262
956 tauC2 = 1500#400# Controller time , can be changed up or down depending on needs

for fast control or smooth control
957 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
958 Kp2 = 1/(0.012908143129770892* tauC2)#Proportional gain
959 Ki2 = Kp2/tauI2 #Integral gain
960 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
961 #Calculate new controller output
962 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
963 #Update the controller output for z_ov(oil valve separator)
964 uk[1] = u2
965 #Store all errors , to be used for previous errors
966 error_store2.append(error2)
967 u_2plot.append(u2)
968

969 hD = u_store[k][1]
970 h_spD = 0.64172 #
971 tauCD = 1200#1600#2575 #Controller time , can be changed up or down depending

on needs for fast control or smooth control
972 tau1D = 500#65
973 thetaD = 0
974 #Opening = 0.291193 optimal nominal
975 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.

B APPENDIX B B.12 Controlimplementations.py

976 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain
#0.0007929643656716369

977 KiD = KpD/tauID #Integral gain
978 errorD = (h_spD - hD) #Difference between setpoint and measured value
979 #Calculate new controller output
980 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
981 #Update the controller output for z_ov(oil valve separator)
982 uk[2] = uD
983 #Store all errors , to be used for previous errors
984 error_store3.append(errorD)
985 u_Dplot.append(uD)
986

987

988 #Bottomhole pressure #(POSITIVE GAIN WITH Prod gas constraint)
989 #PI controller , tuned with SIMC rules
990 h2 = z_store[k][19]
991 h_sp2 = 137.231#123.725 #Nominal optimal bottomhole pressure
992 tau12 = 690
993 tauC2 = 1900#1300 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
994 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
995 Kp2 = 1/(0.01339127782608702* tauC2)#Proportional gain
996 Ki2 = Kp2/tauI2 #Integral gain
997 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
998 #Calculate new controller output
999 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1000 #Update the controller output for z_ov(oil valve separator)
1001 uk[1] = u2
1002 #Store all errors , to be used for previous errors
1003 error_store2.append(error2)
1004 u_2plot.append(u2)
1005

1006

1007 #Annulus pressure #(POSITIVE GAIN WITH Prod gas constraint)
1008 #PI controller , tuned with SIMC rules
1009 h2 = z_store[k][1]
1010 h_sp2 = 101.536#87.8149 #Nominal optimal annulus pressure
1011 tau12 = 64
1012 tauC2 = 1300#64#1300 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1013 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1014 Kp2 = 1/(0.13092841875000039* tauC2)#Proportional gain
1015 Ki2 = Kp2/tauI2 #Integral gain
1016 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1017 #Calculate new controller output
1018 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1019 #Update the controller output for z_ov(oil valve separator)
1020 uk[1] = u2
1021 #Store all errors , to be used for previous errors
1022 error_store2.append(error2)
1023 u_2plot.append(u2)
1024

1025 #Separator pressure #(POSITIVE GAIN WITH Prod gas constraint)
1026 #PI controller , tuned with SIMC rules
1027 h2 = x_store[k][20]
1028 h_sp2 = 21.8954 #Nominal optimal Sep pressure
1029 tau12 = 550
1030 theta2 = 289

B APPENDIX B B.12 Controlimplementations.py

1031 tauC2 = 2000#1000#3000#1500#1300 #Controller time , can be changed up or down
depending on needs for fast control or smooth control

1032 tauI2 = ca.fmin(tau12 , 4*(tauC2 + theta2)) #Integral time , corresponding to
SIMC rules for integration processes.

1033 Kp2 = (1/(0.00022573436363638227))*(1/(tauC2 + theta2))#Proportional gain
1034 Ki2 = Kp2/tauI2 #Integral gain
1035 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1036 #Calculate new controller output
1037 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1038 #Update the controller output for z_ov(oil valve separator)
1039 uk[1] = u2
1040 #Store all errors , to be used for previous errors
1041 error_store2.append(error2)
1042 u_2plot.append(u2)
1043

1044 hD = u_store[k][1]
1045 h_spD = 0.537969 #
1046 tauCD = 3000#293#2575 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1047 tau1D = 500#65
1048 thetaD = 0
1049 #Opening = 0.291193 optimal nominal
1050 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1051 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369
1052 KiD = KpD/tauID #Integral gain
1053 errorD = (h_spD - hD) #Difference between setpoint and measured value
1054 #Calculate new controller output
1055 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1056 #Update the controller output for z_ov(oil valve separator)
1057 uk[2] = uD
1058 #Store all errors , to be used for previous errors
1059 error_store3.append(errorD)
1060 u_Dplot.append(uD)
1061

1062

1063 hD = u_store[k][1]
1064 h_spD = 0.537969 #
1065 tauCD = 1000#1600#2575 #Controller time , can be changed up or down depending

on needs for fast control or smooth control
1066 tau1D = 500#65
1067 thetaD = 0
1068 #Opening = 0.291193 optimal nominal
1069 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1070 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369
1071 KiD = KpD/tauID #Integral gain
1072 errorD = (h_spD - hD) #Difference between setpoint and measured value
1073 #Calculate new controller output
1074 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] + (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1075 #Update the controller output for z_ov(oil valve separator)
1076 uk[2] = uD
1077 #Store all errors , to be used for previous errors
1078 error_store3.append(errorD)
1079 u_Dplot.append(uD)
1080

1081 #Manifold pressure#
1082 #PI controller , tuned with SIMC rules
1083 h2 = z_store[k][74]

B APPENDIX B B.12 Controlimplementations.py

1084 h_sp2 = 78.683 #Nominal optimal man pressure
1085 tau12 = 293
1086 tauC2 = 2500 #Controller time , can be changed up or down depending on needs

for fast control or smooth control
1087 tauI2 = ca.fmin(tau12 , 4*(tauC2)) #Integral time , corresponding to SIMC rules

for integration processes.
1088 Kp2 = (1/(0.004487439590443815))*(1/(tauC2))#Proportional gain
1089 Ki2 = Kp2/tauI2 #Integral gain
1090 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1091 #Calculate new controller output
1092 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1093 #Update the controller output for z_ov(oil valve separator)
1094 uk[1] = u2
1095 #Store all errors , to be used for previous errors
1096 error_store2.append(error2)
1097 u_2plot.append(u2)
1098

1099 hD = u_store[k][1]
1100 h_spD = 0.537969 #
1101 tauCD = 500#293#2575 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1102 tau1D = 500#65
1103 thetaD = 0
1104 #Opening = 0.291193 optimal nominal
1105 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1106 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369
1107 KiD = KpD/tauID #Integral gain
1108 errorD = (h_spD - hD) #Difference between setpoint and measured value
1109 #Calculate new controller output
1110 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1111 #Update the controller output for z_ov(oil valve separator)
1112 uk[2] = uD
1113 #Store all errors , to be used for previous errors
1114 error_store3.append(errorD)
1115 u_Dplot.append(uD)
1116

1117

1118 #Discharge comp 3 pressure#Negative gain from prod gas.
1119 #PI controller , tuned with SIMC rules
1120 h2 = x_store[k][29]
1121 h_sp2 = 159.22 #Nominal optimal man pressure
1122 tau12 = 225
1123 tauC2 = 800#225#1300 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1124 tauI2 = ca.fmin(tau12 , 4*(tauC2)) #Integral time , corresponding to SIMC rules

for integration processes.
1125 Kp2 = (1/(0.06490573644444389))*(1/(tauC2))#Proportional gain
1126 Ki2 = Kp2/tauI2 #Integral gain
1127 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1128 #Calculate new controller output
1129 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1130 #Update the controller output for z_ov(oil valve separator)
1131 uk[1] = u2
1132 #Store all errors , to be used for previous errors
1133 error_store2.append(error2)
1134 u_2plot.append(u2)
1135

1136 hD = u_store[k][1]
1137 h_spD = 0.537969 #

B APPENDIX B B.12 Controlimplementations.py

1138 tauCD = 2000#1600#2575 #Controller time , can be changed up or down depending
on needs for fast control or smooth control

1139 tau1D = 500#65
1140 thetaD = 0
1141 #Opening = 0.291193 optimal nominal
1142 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1143 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369
1144 KiD = KpD/tauID #Integral gain
1145 errorD = (h_spD - hD) #Difference between setpoint and measured value
1146 #Calculate new controller output
1147 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1148 #Update the controller output for z_ov(oil valve separator)
1149 uk[2] = uD
1150 #Store all errors , to be used for previous errors
1151 error_store3.append(errorD)
1152 u_Dplot.append(uD)
1153

1154

1155

1156

1157

1158 ############# Case 7 Nullspace Positive ######################################
1159 #BHP&WHP
1160 #PI controller , tuned with SIMC rules
1161 h2 = 0.99819296* zk[19] - 0.06009004* zk[7]#0.95155469* z_store[k][19] +

0.30747954* z_store[k][7]#0.99819296* zk[19] - 0.06009004* zk[7]#
1162 h_sp2 = 132.1386341894136#155.37146395069#72.5945#132.13866341894136# #

Nominal optimal wellhead pressure
1163 tau12 = 621#668 #621
1164 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1165 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1166 Kp2 = (1/(0.00967549 *tauC2))#Proportional gain #0.00967549

0.007077228592814475
1167 Ki2 = Kp2/tauI2 #Integral gain
1168 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1169

1170 #Calculate new controller output
1171 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2 [-1])))) #- 0.1* Kp2*(error2 - error_store2[k-1])))))
1172 #Update the controller output for z_ov(oil valve separator)
1173 uk[1] = u2
1174 #Store all errors , to be used for previous errors
1175 error_store2.append(error2)
1176 u_2plot.append(u2)
1177

1178 #BHP&Annulus P
1179 #PI controller , tuned with SIMC rules
1180 h2 = 0.99918968* zk[19] - 0.04024904* zk[1]#0.97178607* z_store[k][19] +

0.23586401* z_store[k][1]
1181 h_sp2 = 133.03309302#157.3078622915#72.5945 #Nominal optimal wellhead pressure
1182 tau12 = 591#814
1183 tauC2 = 1500#3000# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1184 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1185 Kp2 = 1/(0.01025999 *tauC2)#Proportional gain 0.01025999 #0.005105094594594611
1186 Ki2 = Kp2/tauI2 #Integral gain
1187 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1188 #Calculate new controller output

B APPENDIX B B.12 Controlimplementations.py

1189 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*
error_store2[k-1]))))

1190 #Update the controller output for z_ov(oil valve separator)
1191 uk[1] = u2
1192 #Store all errors , to be used for previous errors
1193 error_store2.append(error2)
1194 u_2plot.append(u2)
1195

1196 #BHP&Manifold P#With negative gain
1197 #PI controller , tuned with SIMC rules
1198 h2 = 0.99797747* zk[19] - 0.06356854* zk[74]#0.93394895* z_store[k][19] +

0.35740644* z_store[k][74]
1199 h_sp2 = 131.95168963#156.2885592759#72.5945 #Nominal optimal wellhead pressure
1200 tau12 = 620#641
1201 tauC2 = 2000#1500# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1202 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1203 Kp2 = 1/(0.00942779* tauC2)#Proportional gain #0.008088352730108911
1204 Ki2 = Kp2/tauI2 #Integral gain
1205 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1206 #Calculate new controller output
1207 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1208 #Update the controller output for z_ov(oil valve separator)
1209 uk[1] = u2
1210 #Store all errors , to be used for previous errors
1211 error_store2.append(error2)
1212 u_2plot.append(u2)
1213

1214 #BHP&Disch comp3
1215 #PI controller , tuned with SIMC rules
1216 h2 = 0.9999867* zk[19] + 0.00515668* xf[29]#0.99906231* z_store[k][19] -

0.04329552* x_store[k][29]
1217 h_sp2 = 138.05023113#130.2088071692100#72.5945 #Nominal optimal wellhead

pressure
1218 tau12 = 621#645
1219 tauC2 = 1200#Controller time , can be changed up or down depending on needs for

fast control or smooth control
1220 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1221 Kp2 = 1/(0.00946077 *tauC2)#Proportional gain 0.008200548527131894
1222 Ki2 = Kp2/tauI2 #Integral gain
1223 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1224 #Calculate new controller output
1225 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1226 #Update the controller output for z_ov(oil valve separator)
1227 uk[1] = u2
1228 #Store all errors , to be used for previous errors
1229 error_store2.append(error2)
1230 u_2plot.append(u2)
1231

1232 hD = u_store[k][1]
1233 h_spD = 0.419185 #
1234 tauCD = 1600#2575 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1235 tau1D = 500#65
1236 thetaD = 0
1237 #Opening = 0.291193 optimal nominal
1238 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1239 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369

B APPENDIX B B.12 Controlimplementations.py

1240 KiD = KpD/tauID #Integral gain
1241 errorD = (h_spD - hD) #Difference between setpoint and measured value
1242 #Calculate new controller output
1243 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1244 #Update the controller output for z_ov(oil valve separator)
1245 uk[2] = uD
1246 #Store all errors , to be used for previous errors
1247 error_store3.append(errorD)
1248 u_Dplot.append(uD)
1249

1250 ############# Case 7 Nullspace Negative ######################################
1251 #BHP&WHP
1252 #PI controller , tuned with SIMC rules
1253 h2 = 0.99992464* zk[19] - 0.01227675* zk[7]#0.26764386* z_store[k][19] +

0.96351791* z_store[k][7]
1254 h_sp2 = 136.23092774#114.40678858615#72.5945 #Nominal optimal wellhead

pressure
1255 tau12 = 621#85
1256 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1257 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1258 Kp2 = 1/(0.00941242 *tauC2)#Proportional gain 0.011343201176470408
1259 Ki2 = Kp2/tauI2 #Integral gain
1260 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1261 #Calculate new controller output
1262 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1263 #Update the controller output for z_ov(oil valve separator)
1264 uk[1] = u2
1265 #Store all errors , to be used for previous errors
1266 error_store2.append(error2)
1267 u_2plot.append(u2)
1268

1269

1270 #BHP&ANnnulus P
1271 #PI controller , tuned with SIMC rules
1272 h2 = 0.99999641* zk[19] - 0.00267783* zk[1]#0.99982427* z_store[k][19] +

0.0187467* z_store[k][1]
1273 h_sp2 = 136.9586203#139.1103493275#72.5945 #Nominal optimal wellhead pressure
1274 tau12 = 621#638
1275 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1276 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1277 Kp2 = 1/(0.0093887 *tauC2)#Proportional gain 0.06698454823529186
1278 Ki2 = Kp2/tauI2 #Integral gain
1279 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1280 #Calculate new controller output
1281 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1282 #Update the controller output for z_ov(oil valve separator)
1283 uk[1] = u2
1284 #Store all errors , to be used for previous errors
1285 error_store2.append(error2)
1286 u_2plot.append(u2)
1287

1288 #BHP&Sep pressure
1289 #PI controller , tuned with SIMC rules
1290 h2 = 0.99371152* zk[19] + 0.11197063* xf[20]#0.87581411* z_store[k][19] -

0.48264858* x_store[k][20]
1291 h_sp2 = 138.81967765#109.6210472557125#72.5945 #Nominal optimal wellhead

pressure

B APPENDIX B B.12 Controlimplementations.py

1292 tau12 = 623#624
1293 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1294 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1295 Kp2 = 1/(0.0092726 *tauC2)#Proportional gain 0.06698454823529186
1296 Ki2 = Kp2/tauI2 #Integral gain
1297 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1298 #Calculate new controller output
1299 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1300 #Update the controller output for z_ov(oil valve separator)
1301 uk[1] = u2
1302 #Store all errors , to be used for previous errors
1303 error_store2.append(error2)
1304 u_2plot.append(u2)
1305

1306 #BHP&Man pressure
1307 #PI controller , tuned with SIMC rules
1308 h2 = 0.9999131* zk[19] - 0.01318273* zk[74]#0.03331483* z_store[k][19] -

0.99944491* z_store[k][74]
1309 h_sp2 = 136.18182529# -74.067496417#72.5945 #Nominal optimal wellhead pressure
1310 tau12 = 622#294
1311 tauC2 = 2000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1312 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1313 Kp2 = 1/(0.00936008 *tauC2)#Proportional gain 0.002987406462584945
1314 Ki2 = Kp2/tauI2 #Integral gain
1315 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1316 #Calculate new controller output
1317 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1318 #Update the controller output for z_ov(oil valve separator)
1319 uk[1] = u2
1320 #Store all errors , to be used for previous errors
1321 error_store2.append(error2)
1322 u_2plot.append(u2)
1323

1324 #BHP&Disch comp 3 pressure
1325 #PI controller , tuned with SIMC rules
1326 h2 = 0.999999889* zk[19] - 4.70335652*10**(-4)*xf[29]#0.99994079* z_store[k][19]

- 0.01088206* x_store[k][29]
1327 h_sp2 = 137.15610524#135.4512098921#72.5945 #Nominal optimal wellhead pressure
1328 tau12 = 623 #629
1329 tauC2 = 1000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1330 tauI2 = ca.fmin(tau12 , 4*tauC2) #Integral time , corresponding to SIMC rules

for integration processes.
1331 Kp2 = 1/(0.00934041* tauC2)#Proportional gain 0.009034566454690212
1332 Ki2 = Kp2/tauI2 #Integral gain
1333 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1334 #Calculate new controller output
1335 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] - (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1336 #Update the controller output for z_ov(oil valve separator)
1337 uk[1] = u2
1338 #Store all errors , to be used for previous errors
1339 error_store2.append(error2)
1340 u_2plot.append(u2)
1341

1342 hD = u_store[k][1]
1343 h_spD = 0.537969 #

B APPENDIX B B.12 Controlimplementations.py

1344 tauCD = 1600#2575 #Controller time , can be changed up or down depending on
needs for fast control or smooth control

1345 tau1D = 500#65
1346 thetaD = 0
1347 #Opening = 0.291193 optimal nominal
1348 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1349 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369
1350 KiD = KpD/tauID #Integral gain
1351 errorD = (h_spD - hD) #Difference between setpoint and measured value
1352 #Calculate new controller output
1353 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1354 #Update the controller output for z_ov(oil valve separator)
1355 uk[2] = uD
1356 #Store all errors , to be used for previous errors
1357 error_store3.append(errorD)
1358 u_Dplot.append(uD)
1359

1360

1361 #BHP&Sep pressure
1362 #PI controller , tuned with SIMC rules
1363 h2 = 5.55555562*10**(-6)*z_store[k][19] + x_store[k][20]
1364 h_sp2 = 21.8915762#72.5945 #Nominal optimal wellhead pressure
1365 tau12 = 319
1366 theta1S = 189
1367 tauC2 = 4000#300# Controller time , can be changed up or down depending on needs

for fast control or smooth control
1368 tauI2 = ca.fmin(tau12 , 4*(tauC2 + theta1S)) #Integral time , corresponding to

SIMC rules for integration processes.
1369 Kp2 = 1/(0.00014624952978058362 *(tauC2 + theta1S))#Proportional gain
1370 Ki2 = Kp2/tauI2 #Integral gain
1371 error2 = (h_sp2 - h2) #Difference between setpoint and measured value
1372 #Calculate new controller output
1373 u2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][1] + (Kp2*error2 + Ki2*error2 - Kp2*

error_store2[k-1]))))
1374 #Update the controller output for z_ov(oil valve separator)
1375 uk[1] = u2
1376 #Store all errors , to be used for previous errors
1377 error_store2.append(error2)
1378 u_2plot.append(u2)
1379

1380 hD = u_store[k][1]
1381 h_spD = 0.537969 #
1382 tauCD = 4000#2575 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1383 tau1D = 500#65
1384 thetaD = 0
1385 #Opening = 0.291193 optimal nominal
1386 tauID = ca.fmin(tau1D , 4*(tauCD + thetaD)) #Integral time , corresponding to

SIMC rules for integration processes.
1387 KpD = (1/(0.006462045398132644))*(1/(tauCD + thetaD)) #Proportional gain

#0.0007929643656716369
1388 KiD = KpD/tauID #Integral gain
1389 errorD = (h_spD - hD) #Difference between setpoint and measured value
1390 #Calculate new controller output
1391 uD= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] - (KpD*errorD + KiD*errorD - KpD*

error_store3 [-1]))))
1392 #Update the controller output for z_ov(oil valve separator)
1393 uk[2] = uD
1394 #Store all errors , to be used for previous errors
1395 error_store3.append(errorD)
1396 u_Dplot.append(uD)

B APPENDIX B B.12 Controlimplementations.py

1397

1398

1399

1400 ###
1401 ################## Surge Control ##################################
1402

1403 Scon = 3.25895
1404 ############### Conmpressor

1###
1405 if x_store[k][24] < Scon:#Scon :#3.79601:
1406 #PI controller , tuned with SIMC rules
1407 hC1 = x_store[k][24]
1408 h_spC1 = Scon#72.5945 #Nominal optimal wellhead pressure
1409 tau1C1 = 1
1410 tauCC1 = 10#100# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1411 tauIC1 = ca.fmin(tau1C1 , 4* tauCC1) #Integral time , corresponding to

SIMC rules for integration processes.
1412 KpC1 = 1/(0.3114571* tauCC1)#1/(0.012908143129770892* tauC2)#Proportional

gain
1413 KiC1 = KpC1 /tauIC1 #Integral gain
1414 errorC1 = (h_spC1 - hC1) #Difference between setpoint and measured

value
1415 #Calculate new controller output
1416 uC1 = ca.fmax(0, ca.fmin(1, (u_store[k -1][17] + (KpC1 *errorC1 + KiC1*

errorC1 - KpC1*error_storeC1 [-1]))))
1417 #Update the controller output for z_ov(oil valve separator)
1418 uk[17] = uC1
1419 #Store all errors , to be used for previous errors
1420 error_storeC1.append(errorC1)
1421 #u_2plot.append(u6)
1422

1423 if x_store[k][24] > Scon and u_store[k -1][17] >= 0:
1424 #PI controller , tuned with SIMC rules
1425 hC1 = x_store[k][24]
1426 h_spC1 = Scon#72.5945 #Nominal optimal wellhead pressure
1427 tau1C1 = 10
1428 tauCC1 = 10#100# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1429 tauIC1 = ca.fmin(tau1C1 , 4* tauCC1) #Integral time , corresponding to

SIMC rules for integration processes.
1430 KpC1 = 1/(0.3114571* tauCC1)#1/(0.012908143129770892* tauC2)#Proportional

gain
1431 KiC1 = KpC1 /tauIC1 #Integral gain
1432 errorC1 = (h_spC1 - hC1) #Difference between setpoint and measured

value
1433 #Calculate new controller output
1434 uC1 = ca.fmax(0, ca.fmin(1, (u_store[k -1][17] + (KpC1 *errorC1 + KiC1*

errorC1 - KpC1*error_storeC11 [-1])))) #+ Ki6*error6 - Kp6*error_store6 [-1]))
))

1435 #Update the controller output for z_ov(oil valve separator)
1436 uk[17] = uC1
1437 #Store all errors , to be used for previous errors
1438 error_storeC11.append(errorC1)
1439 #u_2plot.append(u6)
1440 #

###

1441 ############### Conmpressor
2###

1442

1443

1444 if x_store[k][27] < Scon:#3.79601:
1445 #PI controller , tuned with SIMC rules

B APPENDIX B B.12 Controlimplementations.py

1446 hC2 = x_store[k][27]
1447 h_spC2 = Scon#72.5945 #Nominal optimal wellhead pressure
1448 tau1C2 = 10
1449 tauCC2 = 10#200# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1450 tauIC2 = ca.fmin(tau1C2 , 4* tauCC2) #Integral time , corresponding to SIMC

rules for integration processes.
1451 KpC2 = 1/(2*0.3114571* tauCC2)#1/(0.012908143129770892* tauC2)#Proportional

gain
1452 KiC2 = KpC2/tauIC2 #Integral gain
1453 errorC2 = (h_spC2 - hC2) #Difference between setpoint and measured value
1454 #Calculate new controller output
1455 uC2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][18] + (KpC2*errorC2 + KiC2*

errorC2 - KpC2*error_storeC2 [-1]))))
1456 #Update the controller output for z_ov(oil valve separator)
1457 uk[18] = uC2
1458 #Store all errors , to be used for previous errors
1459 error_storeC2.append(errorC2)
1460 #u_2plot.append(u6)
1461

1462 if x_store[k][27] > Scon and u_store[k -1][18] >= 0:
1463 #PI controller , tuned with SIMC rules
1464 hC2 = x_store[k][27]
1465 h_spC2 = Scon#72.5945 #Nominal optimal wellhead pressure
1466 tau1C2 = 10
1467 tauCC2 = 10#200# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1468 tauIC2 = ca.fmin(tau1C2 , 4* tauCC2) #Integral time , corresponding to SIMC

rules for integration processes.
1469 KpC2 = 1/(2*0.3114571* tauCC2)#1/(0.012908143129770892* tauC2)#Proportional

gain
1470 KiC2 = KpC2/tauIC2 #Integral gain
1471 errorC2 = (h_spC2 - hC2) #Difference between setpoint and measured value
1472 #Calculate new controller output
1473 uC2 = ca.fmax(0, ca.fmin(1, (u_store[k -1][18] + (KpC2*errorC2 + KiC2*

errorC2 - KpC2*error_storeC22 [-1]))))
1474 #Update the controller output for z_ov(oil valve separator)
1475 uk[18] = uC2
1476 #Store all errors , to be used for previous errors
1477 error_storeC22.append(errorC2)
1478 #u_2plot.append(u6)
1479

1480 #
###

1481 ############### Conmpressor
3###

1482

1483 if x_store[k][30] < Scon:
1484 #PI controller , tuned with SIMC rules
1485 hC3 = x_store[k][30]
1486 h_spC3 = Scon#72.5945 #Nominal optimal wellhead pressure
1487 tau1C3 = 10
1488 tauCC3 = 10#400# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1489 tauIC3 = ca.fmin(tau1C3 , 4* tauCC3) #Integral time , corresponding to SIMC

rules for integration processes.
1490 KpC3 = 1/(3*0.3114571* tauCC3)#1/(0.012908143129770892* tauC2)#Proportional

gain
1491 KiC3 = KpC3/tauIC3 #Integral gain
1492 errorC3 = (h_spC3 - hC3) #Difference between setpoint and measured value
1493 #Calculate new controller output
1494 uC3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][19] + (KpC3*errorC3 + KiC3*

errorC3 - KpC3*error_storeC3 [-1]))))

B APPENDIX B B.12 Controlimplementations.py

1495 #Update the controller output for z_ov(oil valve separator)
1496 uk[19] = uC3
1497 #Store all errors , to be used for previous errors
1498 error_storeC3.append(errorC3)
1499 #u_2plot.append(u6)
1500

1501 if x_store[k][30] > Scon and u_store[k -1][19] >= 0:
1502 #PI controller , tuned with SIMC rules
1503 hC3 = x_store[k][30]
1504 h_spC3 = Scon#72.5945 #Nominal optimal wellhead pressure
1505 tau1C3 = 10
1506 tauCC3 = 10#400# Controller time , can be changed up or down depending on

needs for fast control or smooth control
1507 tauIC3 = ca.fmin(tau1C3 , 4* tauCC3) #Integral time , corresponding to SIMC

rules for integration processes.
1508 KpC3 = 1/(3*0.3114571* tauCC3)#1/(0.012908143129770892* tauC2)#Proportional

gain
1509 KiC3 = KpC3/tauIC3 #Integral gain
1510 errorC3 = (h_spC3 - hC3) #Difference between setpoint and measured value
1511 #Calculate new controller output
1512 uC3 = ca.fmax(0, ca.fmin(1, (u_store[k -1][19] + (KpC3*errorC3 + KiC3*

errorC3 - KpC3*error_storeC33 [-1]))))
1513 #Update the controller output for z_ov(oil valve separator)
1514 uk[19] = uC3
1515 #Store all errors , to be used for previous errors
1516 error_storeC33.append(errorC3)
1517 #u_2plot.append(u6)
1518 #

###

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531 #Prod gas control Split Range control with Batton strategy
1532 ###
1533 #if z_store[k][79] > 10.0001:
1534 if Condition == 0:
1535 ###### Test with multiple controllers controlling active constraint

##
1536 #PI controller , tuned with SIMC rules(integration process) well 4
1537 h4 = z_store[k][79]
1538 h_sp4 = 10.0000 #
1539 tauC4 = 2000#2000#5000#5000#5000#1500#2000#1500#800#572 #Controller time ,

can be changed up or down depending on needs for fast control or smooth
control

1540 tau14 = 572#2000#1000#572
1541 #theta4 = 272
1542 #Opening = 0.291193 optimal nominal
1543 tauI4 = ca.fmin(tau14 , 4*(tauC4 + theta4)) #Integral time , corresponding

to SIMC rules for integration processes.
1544 Kp4 = (1/(0.000630722569930093))*(1/(tauC4 + theta4)) #Proportional gain

#0.0007929643656716369
1545 Ki4 = Kp4/tauI4 #Integral gain
1546 error4 = (h_sp4 - h4) #Difference between setpoint and measured value
1547 #Calculate new controller output

B APPENDIX B B.12 Controlimplementations.py

1548 #tauD = 2
1549 u4 = ca.fmax(0, ca.fmin(1, (u_store[k -1][0] + (Kp4*error4 + Ki4*error4 -

Kp4*error_store [-1] + Kp4 *0*(error4 - 2* error_store [-1] + error_store [-2]))))
)

1550 #Update the controller output for z_ov(oil valve separator)
1551 uk[0] = u4
1552 #Store all errors , to be used for previous errors
1553 error_store.append(error4)
1554 u_4plot.append(u4)
1555

1556 if u4 == 1 or u4 == 0:
1557 Condition = 1
1558 if Condition == 1:
1559 #PI controller , tuned with SIMC rules(integration process) well 4
1560 hA = z_store[k][79]
1561 h_spA = 10.0000 #
1562 tauCA = 2000#3000#5000#800#559#800# Controller time , can be changed up or

down depending on needs for fast control or smooth control
1563 tau1A = 559
1564 #thetaA = 288
1565 #Opening = 0.291193 optimal nominal #0.0006445851520572363
1566 tauIA = ca.fmin(tau1A , 4*(tauCA + thetaA)) #Integral time , corresponding

to SIMC rules for integration processes.
1567 KpA = (1/(0.0006445851520572363))*(1/(tauCA + thetaA)) #Proportional gain

#0.0007929643656716369
1568 KiA = KpA/tauIA #Integral gain
1569 errorA = (h_spA - hA) #Difference between setpoint and measured value
1570 #Calculate new controller output
1571 uA = ca.fmax(0, ca.fmin(1, (u_store[k -1][4] + (KpA*errorA + KiA*errorA -

KpA*error_store [-1] + KpA *0*(errorA - 2* error_store [-1] + error_store [-2])))))
#+

1572 #Update the controller output for z_ov(oil valve separator)
1573 uk[4] = uA
1574 #Store all errors , to be used for previous errors
1575 error_store.append(errorA)
1576 u_Aplot.append(uA)
1577 if uA == 1 or uA == 0:
1578 Condition = 2
1579 if Condition == 2:
1580 #PI controller , tuned with SIMC rules(integration process) well 4
1581 hB = z_store[k][79]
1582 h_spB = 10.0000 #
1583 tauCB = 2000#572 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1584 tau1B = 572
1585 #thetaB = 296
1586 #Opening = 0.291193 optimal nominal
1587 tauIB = ca.fmin(tau1B , 4*(tauCB + thetaB)) #Integral time , corresponding

to SIMC rules for integration processes.
1588 KpB = (1/(0.00065996849848586))*(1/(tauCB + thetaB)) #Proportional gain

#0.0007929643656716369
1589 KiB = KpB/tauIB #Integral gain
1590 errorB = (h_spB - hB) #Difference between setpoint and measured value
1591 #Calculate new controller output
1592 uB= ca.fmax(0, ca.fmin(1, (u_store[k -1][2] + (KpB*errorB + KiB*errorB - KpB

*error_store [-1]))))
1593 #Update the controller output for z_ov(oil valve separator)
1594 uk[2] = uB
1595 #Store all errors , to be used for previous errors
1596 error_store.append(errorB)
1597 u_Bplot.append(uB)
1598 if uB == 1 or uB == 0:
1599 Condition == 3
1600

B APPENDIX B B.12 Controlimplementations.py

1601 if Condition == 3:
1602 #PI controller , tuned with SIMC rules(integration process) well 4
1603 hC = z_store[k][79]
1604 h_spC = 10.0000 #
1605 tauCC = 2000#572 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1606 tau1C = 572
1607 #thetaC = 500#296
1608 #Opening = 0.291193 optimal nominal
1609 tauIC = ca.fmin(tau1C , 4*(tauCC + thetaC)) #Integral time , corresponding

to SIMC rules for integration processes.
1610 KpC = (1/(0.000673985738959532))*(1/(tauCC + thetaC)) #Proportional gain

#0.0007929643656716369
1611 KiC = KpC/tauIC #Integral gain
1612 errorC = (h_spC - hC) #Difference between setpoint and measured value
1613 #Calculate new controller output
1614 uC= ca.fmax(0, ca.fmin(1, (u_store[k -1][3] + (KpC*errorC + KiC*errorC - KpC

*error_store [-1]))))
1615 #Update the controller output for z_ov(oil valve separator)
1616 uk[3] = uC
1617 #Store all errors , to be used for previous errors
1618 error_store.append(errorC)
1619 u_Cplot.append(uC)
1620 if uC == 1 or uC == 0:
1621 Condition = -1
1622

1623 if Condition == -1:
1624 uk[0] == 0
1625

1626 #Min selector , with logic to open previous valves
1627 openings = [uk[0] - u_store[k -1][0] , uk[4] - u_store[k-1][4] , uk[2] - u_store

[k-1][2] ,uk[3] - u_store[k -1][3]] #Find the valve from the split range
controller that is active

1628 relatedtoop = [0,4,2,3] #The position in u_gl
1629 diffvalve , activevalve = next (((num , idx) for idx , num in enumerate(openings)

if num != 0), (0, Condition)) #Find change in active valve and it’s related
index

1630 opt_open = [0.64172 , 0.60811 , 0.545984 , 0.367095] #Nominal openings
1631 difffromopt = opt_open[activevalve] - u_store[k][relatedtoop[activevalve]] #

meaures difference from nominal opening
1632 if diffvalve > difffromopt: #Min selector looks at which of the inputs is the

smalles
1633 uk[relatedtoop[activevalve]] = opt_open[activevalve]
1634 #Restart the valve openings when the constraint is not active
1635 if uk[relatedtoop[activevalve]] == opt_open[activevalve] and Condition !=

0:
1636 Condition -= 1
1637

1638

1639 #
##

1640

1641

1642 ############### Constant Level control
##

1643 #PI controller , tuned with SIMC rules(integration process) level separator
1644 h8 = x_store[k][21]
1645 h_sp8 = 1.64904#1.64915 #
1646 tauC8 = 500#500#50 #Controller time , can be changed up or down depending on

needs for fast control or smooth control
1647 tauI8 = 4*tauC8 #Integral time , corresponding to SIMC rules for integration

processes.
1648 Kp8 = 1/(0.005* tauC8)#Proportional gain

B APPENDIX B B.12 Controlimplementations.py

1649 Ki8 = Kp8/tauI8 #Integral gain
1650 error8 = (h_sp8 - h8) #Difference between setpoint and measured value
1651 #Calculate new controller output
1652 u8 = ca.fmax(0, ca.fmin(1, (u_store[k -1][6] - (Kp8*error8 + Ki8*error8 - Kp8*

error_store8[k-1]))))
1653 #Update the controller output for z_ov(oil valve separator)
1654 uk[6] = u8
1655 #Store all errors , to be used for previous errors
1656 error_store8.append(error8)
1657 u_8plot.append(u8)
1658

1659

1660 ############### HH and LL level control
##

1661 #PI controller , tuned with SIMC rules(integration process) level separator
1662 if x_store[k][21] < 0.8:#1.484:
1663 h8 = x_store[k][21]
1664 h_sp8 = 0.8#1.484#1.64904#1.64915 #
1665 tauC8 = 100 #Controller time , can be changed up or down depending on needs

for fast control or smooth control
1666 tauI8 = 4*tauC8 #Integral time , corresponding to SIMC rules for

integration processes.
1667 Kp8 = 1/(0.005* tauC8)#Proportional gain 0.00005
1668 Ki8 = Kp8/tauI8 #Integral gain
1669 error8 = (h_sp8 - h8) #Difference between setpoint and measured value
1670 #Calculate new controller output
1671 u8 = ca.fmax(0, ca.fmin(1, (u_store[k -1][6] - (Kp8*error8 + Ki8*error8 -

Kp8*error_store8 [-1]))))
1672 #Update the controller output for z_ov(oil valve separator)
1673 uk[6] = u8
1674 #Store all errors , to be used for previous errors
1675 error_store8.append(error8)
1676 u_8plot.append(u8)
1677 if x_store[k][21] > 2.5:
1678 h8 = x_store[k][21]
1679 h_sp8 = 2.5#1.814#1.64904#1.64915 #
1680 tauC8 = 100 #Controller time , can be changed up or down depending on needs

for fast control or smooth control
1681 tauI8 = 4*tauC8 #Integral time , corresponding to SIMC rules for

integration processes.
1682 Kp8 = 1/(0.005* tauC8)#Proportional gain 0.00005
1683 Ki8 = Kp8/tauI8 #Integral gain
1684 error8 = (h_sp8 - h8) #Difference between setpoint and measured value
1685 #Calculate new controller output
1686 u8 = ca.fmax(0, ca.fmin(1, (u_store[k -1][6] - (Kp8*error8 + Ki8*error8 -

Kp8*error_store8 [-1]))))
1687 #Update the controller output for z_ov(oil valve separator)
1688 uk[6] = u8
1689 #Store all errors , to be used for previous errors
1690 error_store8.append(error8)
1691 u_8plot.append(u8)
1692

1693

1694 ################################
1695 #appending the resulting x values from the integration
1696 ################################
1697

1698 m_ga1plot.append(xf[0])
1699 m_ga2plot.append(xf[1])
1700 m_ga3plot.append(xf[2])
1701 m_ga4plot.append(xf[3])
1702 m_ga5plot.append(xf[4])
1703 m_ga6plot.append(xf[5])
1704 m_gt1plot.append(xf[6])

B APPENDIX B B.12 Controlimplementations.py

1705 m_gt2plot.append(xf[7])
1706 m_gt3plot.append(xf[8])
1707 m_gt4plot.append(xf[9])
1708 m_gt5plot.append(xf[10])
1709 m_gt6plot.append(xf[11])
1710 m_ot1plot.append(xf[12])
1711 m_ot2plot.append(xf[13])
1712 m_ot3plot.append(xf[14])
1713 m_ot4plot.append(xf[15])
1714 m_ot5plot.append(xf[16])
1715 m_ot6plot.append(xf[17])
1716 m_grplot.append(xf[18])
1717 m_orplot.append(xf[19])
1718

1719 p_gsplot.append(xf[20])
1720 h_lsplot.append(xf[21])
1721 p_s1plot.append(xf[22])
1722 p_d1plot.append(xf[23])
1723 w_c1plot.append(xf[24])
1724 p_s2plot.append(xf[25])
1725 p_d2plot.append(xf[26])
1726 w_c2plot.append(xf[27])
1727 p_s3plot.append(xf[28])
1728 p_d3plot.append(xf[29])
1729 w_c3plot.append(xf[30])
1730 m_glplot.append(xf[31])
1731

1732 ################################
1733 #appending u-values
1734 ################################
1735 u_gl1plot.append(uk[0])
1736 u_gl2plot.append(uk[1])
1737 u_gl3plot.append(uk[2])
1738 u_gl4plot.append(uk[3])
1739 u_gl5plot.append(uk[4])
1740 u_gl6plot.append(uk[5])
1741 z_ovplot.append(uk[6])
1742 u_1plot.append(uk[7])
1743 #u_2plot.append(uk[14])
1744 #u_3plot.append(uk[15])
1745 #u_4plot.append(uk[16])
1746 u_rec1plot.append(uk[17])
1747 u_rec2plot.append(uk[18])
1748 u_rec3plot.append(uk[19])
1749 u_pc1plot.append(uk[8])
1750 u_pc2plot.append(uk[9])
1751 u_pc3plot.append(uk[10])
1752 u_pc4plot.append(uk[11])
1753 u_pc5plot.append(uk[12])
1754 u_pc6plot.append(uk[13])
1755 ###############################
1756 #appending z-values
1757 ###############################
1758

1759 p_ai1plot.append(zk[0])
1760 p_ai2plot.append(zk[1])
1761 p_ai3plot.append(zk[2])
1762 p_ai4plot.append(zk[3])
1763 p_ai5plot.append(zk[4])
1764 p_ai6plot.append(zk[5])
1765 p_wh1plot.append(zk[6])
1766 p_wh2plot.append(zk[7])
1767 p_wh3plot.append(zk[8])
1768 p_wh4plot.append(zk[9])

B APPENDIX B B.12 Controlimplementations.py

1769 p_wh5plot.append(zk[10])
1770 p_wh6plot.append(zk[11])
1771 p_wi1plot.append(zk[12])
1772 p_wi2plot.append(zk[13])
1773 p_wi3plot.append(zk[14])
1774 p_wi4plot.append(zk[15])
1775 p_wi5plot.append(zk[16])
1776 p_wi6plot.append(zk[17])
1777 p_bh1plot.append(zk[18])
1778 p_bh2plot.append(zk[19])
1779 p_bh3plot.append(zk[20])
1780 p_bh4plot.append(zk[21])
1781 p_bh5plot.append(zk[22])
1782 p_bh6plot.append(zk[23])
1783

1784 rho_ai1plot.append(zk[24])
1785 rho_ai2plot.append(zk[25])
1786 rho_ai3plot.append(zk[26])
1787 rho_ai4plot.append(zk[27])
1788 rho_ai5plot.append(zk[28])
1789 rho_ai6plot.append(zk[29])
1790 rho_m1plot.append(zk[30])
1791 rho_m2plot.append(zk[31])
1792 rho_m3plot.append(zk[32])
1793 rho_m4plot.append(zk[33])
1794 rho_m5plot.append(zk[34])
1795 rho_m6plot.append(zk[35])
1796 w_iv1plot.append(zk[36])
1797 w_iv2plot.append(zk[37])
1798 w_iv3plot.append(zk[38])
1799 w_iv4plot.append(zk[39])
1800 w_iv5plot.append(zk[40])
1801 w_iv6plot.append(zk[41])
1802 w_pc1plot.append(zk[42])
1803 w_pc2plot.append(zk[43])
1804 w_pc3plot.append(zk[44])
1805 w_pc4plot.append(zk[45])
1806 w_pc5plot.append(zk[46])
1807 w_pc6plot.append(zk[47])
1808 w_pg1plot.append(zk[48])
1809 w_pg2plot.append(zk[49])
1810 w_pg3plot.append(zk[50])
1811 w_pg4plot.append(zk[51])
1812 w_pg5plot.append(zk[52])
1813 w_pg6plot.append(zk[53])
1814 w_po1plot.append(zk[54])
1815 w_po2plot.append(zk[55])
1816 w_po3plot.append(zk[56])
1817 w_po4plot.append(zk[57])
1818 w_po5plot.append(zk[58])
1819 w_po6plot.append(zk[59])
1820 w_ro1plot.append(zk[60])
1821 w_ro2plot.append(zk[61])
1822 w_ro3plot.append(zk[62])
1823 w_ro4plot.append(zk[63])
1824 w_ro5plot.append(zk[64])
1825 w_ro6plot.append(zk[65])
1826 w_rg1plot.append(zk[66])
1827 w_rg2plot.append(zk[67])
1828 w_rg3plot.append(zk[68])
1829 w_rg4plot.append(zk[69])
1830 w_rg5plot.append(zk[70])
1831 w_rg6plot.append(zk[71])
1832 p_rhplot.append(zk[72])

B APPENDIX B B.12 Controlimplementations.py

1833 rho_rplot.append(zk[73])
1834

1835 p_mplot.append(zk [74])
1836 w_prplot.append(zk[75])
1837 w_toplot.append(zk[76])
1838 w_tgplot.append(zk[77])
1839 w_osplot.append(zk[78])
1840 w_gsplot.append(zk[79])
1841 rho_gsplot.append(zk[80])
1842 p_osplot.append(zk[81])
1843 v_osplot.append(zk[82])
1844 v_gsplot.append(zk[83])
1845 w_in1plot.append(zk[84])
1846 w_out1plot.append(zk[85])
1847 rho_in1plot.append(zk[86])
1848 rho_d1plot.append(zk[87])
1849 Phi1plot.append(zk[88])
1850 Pow1plot.append(zk[89])
1851 y_p1plot.append(zk[90])
1852 n_p1plot.append(zk[91])
1853 Phi_max1plot.append(zk [92])
1854 gamma_2_dummy1plot.append(zk [93])
1855 w_rec1plot.append(zk[94])
1856 w_in2plot.append(zk[95])
1857 w_out2plot.append(zk[96])
1858 rho_in2plot.append(zk[97])
1859 rho_d2plot.append(zk[98])
1860 Phi2plot.append(zk[99])
1861 Pow2plot.append(zk [100])
1862 y_p2plot.append(zk [101])
1863 n_p2plot.append(zk [102])
1864 Phi_max2plot.append(zk [103])
1865 gamma_2_dummy2plot.append(zk [104])
1866 w_rec2plot.append(zk [105])
1867 w_in3plot.append(zk [106])
1868 w_out3plot.append(zk [107])
1869 rho_in3plot.append(zk [108])
1870 rho_d3plot.append(zk [109])
1871 Phi3plot.append(zk [110])
1872 Pow3plot.append(zk [111])
1873 y_p3plot.append(zk [112])
1874 n_p3plot.append(zk [113])
1875 Phi_max3plot.append(zk [114])
1876 gamma_2_dummy3plot.append(zk [115])
1877 w_rec3plot.append(zk [116])
1878 w_gl1plot.append(zk [117])
1879 w_gl2plot.append(zk [118])
1880 w_gl3plot.append(zk [119])
1881 w_gl4plot.append(zk [120])
1882 w_gl5plot.append(zk [121])
1883 w_gl6plot.append(zk [122])
1884 p_outplot.append(zk [123])
1885 rho_outplot.append(zk [124])
1886 ######
1887

1888 B.append (-0.6*zk[78] + 0.03*(zk[89] + zk [100] + zk [111]))
1889

1890 #Nullspace positive
1891 C1.append (0.95155469* zk[19] + 0.30747954* zk[7])
1892 C2.append (0.97178607* zk[19] + 0.23586401* zk[1])
1893 C3.append (0.93394895* zk[19] + 0.35740644* zk[74])
1894 C4.append (0.99906231* zk[19] - 0.04329552* xf[29])
1895 #Nullspace negative
1896 C5.append (0.26764386* zk[19] + 0.96351791* zk[7])

B APPENDIX B B.12 Controlimplementations.py

1897 C6.append (0.99982427* zk[19] + 0.0187467* zk[1])
1898 C7.append (0.87581411* zk[19] - 0.48264858* xf[20])
1899 C8.append (0.03331483* zk[19] - 0.99944491* zk[74])
1900 C9.append (0.99994079* zk[19] - 0.01088206* xf[29])
1901

1902 #Nullspace positive New
1903 C1.append (0.99819296* zk[19] - 0.06009004* zk[7]) #132.1386341894136
1904 C2.append (0.99918968* zk[19] - 0.04024904* zk[1]) #133.03309302
1905 C3.append (0.99797747* zk[19] - 0.06356854* zk[74]) #c_ns = 131.95168963
1906 C4.append (0.9999867* zk[19] + 0.00515668* xf[29]) #c_ns = 138.05023113
1907 #Nullspace negative New
1908 C5.append(0.99992464* zk[19] - 0.01227675* zk[7]) #c_ns = 136.23092774
1909 C6.append (0.99999641* zk[19] - 0.00267783* zk[1]) #c_ns = 136.9586203
1910 C7.append (0.99371152* zk[19] + 0.11197063* xf[20]) #c_ns = 138.81967765
1911 C8.append (0.9999131* zk[19] - 0.01318273* zk[74]) #c_ns = 136.18182529
1912 C9.append (0.999999889* zk[19] - -4.70335652*10**(-4)*xf [29]) #c_ns =

137.15610524
1913

1914

1915

1916

1917

1918 #Test multiple controllers
1919 C10.append (5.55555562*10**(-6)*zk[19] + 1*xf[20])
1920 C11.append (0.04200139* zk[7] + 0.99843881* zk[19] + 0.00643228* zk[1] +

0.00407959* zk[74] - 0.03602514* xf[29])#ugl2
1921 C12.append (-0.17305043* zk[7] + 0.00643228* zk[19] + 0.97349828* zk[1] -

0.01680838* zk[74] + 0.1484276* xf[29])#u1
1922 C13.append (-0.10975503* zk[7] + 0.00407959* zk[19] - 0.01680838* zk[1] +

0.9893395* zk[74] + 0.09413832* xf[29])#ugl3
1923 C14.append (0.96919972* zk[7] - 0.03602514* zk[19] + 0.1484276* zk[1] +

0.09413832* zk[74] + 0.16870481* xf[29])#ugl4
1924

1925 #Positive Exact local method
1926 C15.append (-446413.25092053* zk[19] + 19345.66174978* xf [29])
1927 C16.append (-45.41318981* zk[19] - 0.08392059* zk[55])
1928 C17.append (-2193.44492237* zk[19] - 3680.37324392* zk[49])
1929 C18.append (-19877.79126375* zk[19] - 9122.48640609* zk [107])
1930 C19.append (257.76699191* zk[55] - 81.78981924* zk [107])
1931 C20.append (2804.15788752* zk[49] - 750.21433487* zk [107])
1932

1933 #Negative Exact local method
1934 C21.append (-483783.15402796* zk[19] - 9043.21957475* zk[1])
1935

1936 C22.append (-6.26485343*10**(4)*zk[19] + 26.0408009* zk [55])
1937 C23.append (-62520.82233189* zk[19] + 613.91453191* zk[49])
1938 C24.append (-125435.8109666* zk[19] - 12587.91389531* zk [107])
1939 C25.append (259.40899698* zk[55] + 122.2241566* zk [107])
1940 C26.append (3051.23091538* zk[49] + 57.97844937* zk [107])
1941

1942 #Positive Exact local method new
1943 C15.append (-539914.34688897* zk[19] - 2784.25256079* xf [29])
1944 C16.append (-9.20434088*10**(2)*zk[19] + 0.491188339* zk [55])
1945 C17.append (-42892.00474827* zk[19] + 22740.06185649* zk [49])
1946 C18.append (-293089.71870215* zk[19] + 21259.28465932* zk [107])
1947 C19.append (286.77917524* zk[55] + 15.07388955* zk [107])
1948 C20.append (2900.46415236* zk[49] - 388.45472794* zk [107])
1949

1950 #Negative Exact local method new
1951 C21.append (-5.34574111*10**(5)*zk[19] - 1.41642159* zk[7])
1952

1953 C22.append (-4.32905553*10**(5)*zk[19] + 2.30539895*10**(2)*zk [55])
1954 C23.append (-466615.86146777* zk[19] + 17771.12021649* zk [49])
1955 C24.append (-526464.96151215 *zk[19] + 5189.13501704* zk [107])

B APPENDIX B B.12 Controlimplementations.py

1956 C25.append (284.98125313* zk[55] + 26.83981752* zk [107])
1957 C26.append (3016.84474179* zk[49] - 270.09782426* zk [107])
1958

1959

1960

1961

1962

1963 #Exact local method 2MV/2 dist
1964 #Positive GOR
1965 B11.append (-7.98501232* zk[1] - 64.82349538* zk[19])
1966 B12.append (2.60067824* zk[1] + 16.08713207* zk[19])
1967

1968 B21.append (22.88897358* zk[1] - 22.67672343* zk[5])
1969 B22.append (-22.18074525* zk[1] + 24.49319288* zk[5])
1970

1971 B31.append (-4.3656668* xf[29] - 26.84908555* zk[5])
1972 B32.append (10.22381382* xf[29] + 65.47016409* zk[5])
1973

1974 B41.append (1290.90504975* xf[29] + 16765.46161926* zk[5] + 17129.3708444* zk [23])
1975 B42.append (-1676.90699719* xf[29] - 21807.04221199* zk[5] - 22311.54379972* zk

[23])
1976

1977 B51.append (61119.14498099* xf[29] + 147027.68286197* zk[5] - 58183.45153308* zk
[23] + 201082.69102819* zk[1])

1978 B52.append (62702.16245358* xf[29] + 118363.56280388* zk[5] - 103353.02902385* zk
[23] + 216378.02726489* zk[1])

1979

1980 B61.append (10.56433836* xf[29] + 64.592046* zk[1])
1981 B62.append (-4.68023771* xf[29] - 27.54634754* zk[1])
1982

1983 B71.append (-2855.6340659* xf[29] - 19423.56983834* zk[1] - 16311.40372815* zk
[19])

1984 B72.append (-6405.52726445* xf[29] - 43548.86813336* zk[1] - 36426.92700546* zk
[19])

1985

1986 B81.append (-3716.69625337* xf[29] - 4798.98978458* zk[11] - 15641.39990574* zk
[23] - 20136.44541368* zk[1])

1987 B82.append (10994.18774889* xf[29] + 96974.47619766* zk[11] - 49965.87429334* zk
[23] - 29143.59981315* zk[1])

1988

1989 #Negative GOR
1990 B91.append (-8361.73566402* zk[1] - 447667.21081462* zk[19])
1991 B92.append (1732.29646306* zk[1] + 92410.72240929* zk[19])
1992

1993 B101.append (27.44028606* zk[1] + 0.88681124* zk[5])
1994 B102.append (0.19466741* zk[1] + 56.00386487* zk[5])
1995

1996 B111.append (-17.41643364* xf[29] - 12.97245266* zk[5])
1997 B112.append (-10.17879649* xf[29] + 47.6991263* zk[5])
1998

1999 B121.append (-478.12873683* xf[29] + 2230.28224625* zk[5] + 96372.60899258* zk
[23])

2000 B122.append (2147.79026662* xf[29] - 10459.67002223* zk[5] - 451407.75988817* zk
[23])

2001

2002 B131.append (-25887.46368923* xf[29] - 17940.01178791* zk[5] + 96464.81364318* zk
[23] - 43658.25180635* zk[1])

2003 B132.append (-173556.7739217* xf[29] - 149936.46976775* zk[5] - 450770.1683109*
zk[23] - 301895.11536725* zk[1])

2004

2005 B141.append (-15.291117* xf[29] + 1.09866488* zk[1])
2006 B142.append (-169.14956472* xf[29] - 290.9096779* zk[1])
2007

B APPENDIX B B.12 Controlimplementations.py

2008 B151.append (1771.19498418* xf[29] - 5980.18444265* zk[1] - 483434.7839778* zk
[19])

2009 B152.append (-551.82431496* xf[29] + 990.31272722* zk[1] + 103554.28183372* zk
[19])

2010

2011 B161.append (3101.32595098* xf[29] + 83580.47286321* zk[11] - 483442.38333034* zk
[23] - 3881.96886745* zk[1])

2012 B162.append (9522.55485732* xf[29] + 633036.44230348* zk[11] + 103496.72452484*
zk[23] + 16882.14580032* zk[1])

2013

2014

2015

2016 #Exact local method 2MV/2 dist new F = dy/du
2017 #Positive GOR
2018 B11.append (262.73305154* zk[1] - 5405.75910492* zk[19])
2019 B12.append (-49.55775679* zk[1] + 1024.08822321* zk[19])
2020

2021 B21.append (21.3202415* zk[1] - 17.0239858* zk[5])
2022 B22.append (-16.24253356* zk[1] + 13.61745927* zk[5])
2023

2024 B31.append (-2.73047731* xf[29] - 18.56622293* zk[5])
2025 B32.append (5.69386534* xf[29] + 39.39328154* zk[5])
2026

2027 B41.append (-4776.52311651* xf[29] + 13848.85934925* zk[5] + 134604.1345925* zk
[23])

2028 B42.append (14989.20015347* xf[29] - 43486.3050394* zk[5] - 422482.0911806* zk
[23])

2029

2030 B51.append (44144.59427475* xf[29] + 186246.51824044* zk[5] + 127291.28221963* zk
[23] + 197772.20401727* zk[1])

2031 B52.append (52545.97703735* xf[29] + 88863.50125175* zk[5] - 428096.17318851* zk
[23] + 151829.86277082* zk[1])

2032

2033 B61.append (6.97905258* xf[29] + 59.01674559* zk[1])
2034 B62.append (-2.34535959* xf[29] - 19.47440931* zk[1])
2035

2036 B71.append (-8217.86437896* xf[29] - 43636.39030824* zk[1] - 510211.17724758* zk
[19])

2037 B72.append (1451.93134491* xf[29] + 7706.53437138* zk[1] + 90213.05215366* zk
[19])

2038

2039 B81.append (-18668.46283178* xf[29] - 88207.07033211* zk[11] - 509535.79352571* zk
[23] - 53203.53374925* zk[1])

2040 B82.append (42011.02824372* xf[29] + 342334.37720436* zk[11] + 87591.86697055* zk
[23] + 44836.91495394* zk[1])

2041

2042

2043

2044 #Negative GOR
2045 B91.append (5.66780409*10**(2)*zk[1] - 1.29304852*10**(5)*zk [19])
2046 B92.append (-1.08955450*10**(2)*zk[1] + 92410.72240929*10**(4)*zk[19])
2047 B101.append (19.34328063* zk[1] - 12.68412868* zk[5])
2048 B102.append (-12.60618675* zk[1] + 28.29496047* zk[5])
2049 B111.append (-0.92565692* xf[29] + 1.59970784* zk[5])
2050 B112.append (-1.29256536* xf[29] + 20.86229131* zk[5])
2051 B121.append (1124.0888743* xf[29] + 13506.02748707* zk[5] + 84996.94427602* zk

[23])
2052 B122.append (-5895.11552797* xf[29] - 70727.29636203* zk[5] - 445289.30784748* zk

[23])
2053 B131.append (-113289.79962532* xf[29] - 426206.37623219* zk[5] + 124911.1956689*

zk[23] + 810049.2431397* zk[1])
2054 B132.append (13751.40257385* xf[29] + 4777.67783779* zk[5] - 452143.16163039* zk

[23] - 139097.16143212* zk[1])
2055 B141.append (-14.89941033* xf[29] + 91.88326244* zk[1])

B APPENDIX B B.12 Controlimplementations.py

2056 B142.append (-4.83431855* xf[29] - 25.85243427* zk[1])
2057 B151.append (-2.04592345*10**(3)*xf[29] + 1.31255197*10**(4)*zk[1] -

5.49032199*10**(5)*zk[19])
2058 B152.append (3.72185169*10**(2)*xf[29] - 2.39358468*10**(3)*zk[1] +

1.01916981*10**(5)*zk[19])
2059 B161.append (-27598.25690498* xf[29] - 507211.84911125* zk[11] - 545266.45637924*

zk[23] + 293076.88722314* zk[1])
2060 B162.append (18765.22060244* xf[29] + 365100.33533589* zk[11] + 99206.33061025*

zk[23] - 203907.68245748* zk[1])
2061

2062

2063 #Exact local method 2MV/2 dist new F = dy/du
2064 #Positive GOR
2065 B11.append (3583.10465771* zk[1] - 1449.41787407* zk[19])
2066 B12.append (-146.18640435* zk[1] + 67.56021995* zk[19])
2067

2068 B21.append (413.16600486* zk[1] + 326.50490982* zk[5])
2069 B22.append (305.9743484* zk[1] + 663.475804* zk[5])
2070

2071 B31.append (-6976.59161527* xf[29] + 3401.78133543* zk[5])
2072 B32.append (-8339.24832552* xf[29] + 4481.00108404* zk[5])
2073

2074 B41.append (-234922.1903769* xf[29] + 476847.10061302* zk[5] - 181679.62737955*
zk[23])

2075 B42.append (-549333.90812753* xf[29] + 1128132.39347296* zk[5] -
431189.32210637* zk [23])

2076

2077 B51.append (-805763.43006082* xf[29] + 131567.44007523* zk[5] + 291161.30688082*
zk[23] + 427066.88982393* zk[1])

2078 B52.append (-691151.33978905* xf[29] + 1042352.54566528* zk[5] - 313718.6801493*
zk[23] + 106098.72807374* zk[1])

2079

2080 B61.append (-2704.12302706* xf[29] + 327.18670482* zk[1])
2081 B62.append (-2675.80879344* xf[29] + 68.22602697* zk[1])
2082

2083 B71.append (-41674.87829334* xf[29] - 52288.11647798* zk[1] + 23376.24685595* zk
[19])

2084 B72.append (-403800.65877812* xf[29] - 541499.5586333* zk[1] + 240611.02868619*
zk[19])

2085

2086 B81.append (-686015.79742427* xf[29] - 613181.02538563* zk[11] - 334371.87860306*
zk[23] + 825709.36229966* zk[1])

2087 B82.append (-659260.97418188* xf[29] - 243106.42626252* zk[11] + 98775.47820129*
zk[23] - 193401.98141469* zk[1])

2088

2089

2090 print(’Power 2:’, Pow2plot [-1])
2091 print(Power2)
2092 print(’Power 3:’, Pow3plot [-1])
2093 print(Power3)
2094 print(’Oil prod :’, w_osplot [-1])
2095 print(Oil)
2096 print(’Cost caluclated in the simulations ’,B[-1])
2097 print(’Recycle flow 1’, w_rec1plot [-1])
2098 print(’Recycle flow 2’, w_rec2plot [-1])
2099 print(’Recycle flow 3’, w_rec3plot [-1])
2100 print(’Flow through compressor 1’, w_c1plot [-1])
2101 print(’Flow through compressor 2’, w_c2plot [-1])
2102 print(’Flow through compressor 3’, w_c3plot [-1])
2103

2104 print(’Separator pressure sec last: ’, p_gsplot [-2])
2105 print(’Separator level last: ’, h_lsplot [-1])
2106 print(’Separator level sec last: ’, h_lsplot [-2])
2107 print(’Oil flow into separator: ’, w_toplot [-2])

B APPENDIX B B.12 Controlimplementations.py

2108 print(’Oil out sep:’, w_osplot [-1])

B APPENDIX B B.13 Calculations.py

B.13 Calculations.py

This

	Introduction
	Thesis structure

	Theory
	Hierarchical control
	Real time optimization
	Plantwide control
	Self optimizing control
	Nullspace method
	Brute Force method
	Valve position control
	Selectors
	Split Range control with baton strategy
	PID tuning
	SIMC method
	Approximation of loss
	Exact local method
	Local loss for normally distributed noise and disturbance
	Method for minimum loss
	Branch and Bound
	Active constraint region
	Anti-windup
	Finite difference
	Oil and gas operation/GOR effect
	Surge control in compressors
	Casadi - numerical solver

	Modelling and control
	Model
	Objective
	Nominal point
	Well system with gas lift
	Riser and manifold system
	Separator system
	Compressor system

	Control Implementations
	Implementation of surge control
	Implementation of total produced gas control
	Implementation of changing active constraint control
	Implementation of level control
	Implementation of valve position control

	Method
	Method Implementation
	Top-down analysis
	Case 1
	Case 2

	Results
	Objective function change with GOR
	Regulatory control results
	Surge control
	Produced gas control
	Level Control
	Valve position control
	Changing constraint regions

	Results of Case 1
	Single controlled variable
	Null space method
	Exact local method

	Results of Case 2
	Proposed overall control structure Branch and Bounds average loss
	Case 2 linear approach

	Discussion
	Model assumptions and limitations
	General observations about the results
	Case 1
	Case 2

	Conclusion
	Further work
	Appendix A
	Mearument combinations with related loss, proposed by Branch and Bounds.
	One manipulated variable, single controlled variable simulation results.
	Nullspace method simulations results.
	Exact local method simulations results.

	Appendix B
	GyuImplemetation.py
	GydImplementation.py
	JuuImplementation.py
	JudImplementation.py
	Wd.py
	Wn.py
	FiniteDiffJuu.py
	FiniteDiffJud.py
	H from linearized model
	SimulatorSOCN.py
	ParameterSOCN.py
	Controlimplementations.py
	Calculations.py

