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Abstract

Optimal control of processes is important to ensure efficient and safe plant operations. The
growing popularity and use of Dynamic Flux Balance Analysis (dFBA) models have paved
the way to implement more advanced control structures for bioreactors, such as Model
Predictive Control (MPC). As the dFBA consists of a set of dynamic mass balance equa-
tions and an optimization that calculates the cell’s metabolic fluxes, a bi-level optimization
problem arises when MPC is applied. The bi-level optimization problem can be solved by
reformulating the inner optimization to a set of algebraic expressions utilizing the duality
theory and Karush–Kuhn–Tucker (KKT) optimality conditions.

In this work, we first proposed reformulations of the dFBA model for batch and continuous
stirred tank (CSTR) bioreactors that would make the dFBA feasible for MPC applications.
The ordinary differential equation (ODE) system was discretized using the orthogonal
collocation approach for finite elements and we implemented an adaptive mesh strategy to
place the elements. A penalization method for the optimality conditions was also utilized,
as too many hard constraints may lead to convergence error and infeasible problems. We
evaluated this methodology in a case study of the Escherichia coli core metabolic network,
emphasizing the accuracy and efficiency of the different dFBA reformulations. Finally,
we applied MPC to our CSTR dFBA models, where we tested the controller’s ability to
handle changes in the setpoint, and disturbances in the glucose feed concentration and the
maximal glucose uptake to the cells. The goal was to compare the KKT and duality theory
reformulations of the MPC model regarding computation time and reliability.

We have shown that MPC can be applied to CSTR bioreactors based on the Escherichia
coli core metabolic network model utilizing dFBA. The MPC controller performed well,
keeping the biomass concentration close to the desired setpoint. It was found that the
MPC can handle relatively large changes in the setpoint of biomass, disturbances in the
glucose feed concentration, and disturbances in the maximal glucose uptake. Overall,
the penalized duality theory reformulation was computationally faster than the penalized
KKT reformulation and more reliable, returning fewer failed MPC optimizations than the
penalized KKT reformulation when solved with the IPOPT solver.
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Sammendrag

Optimal kontroll av prosesser er viktig for å sikre effektiv og trygg operasjon av prosessan-
legg. Den økende populariteten og bruken av Dynamisk Fluks Balanse Analyse (dFBA)
modeller har gjort det mulig å ta i bruk mer avanserte kontrollmetoder, slik som Modell
Prediktiv Kontroll (MPC). Ettersom dFBA består av ett sett dynamiske massebalanser og
ett optimaliseringsproblem som regner ut de metabolske fluksene i cellene, får vi ett to-nivå
optimaliseringsproblem når vi tar i bruk MPC. Det to-nivå optimaliseringsproblemet kan
bli løst ved å omformulere det indre optimaliseringsproblemet til ett sett av algebraiske
utrykk ved hjelp av dualitets teori og Karush–Kuhn–Tucker (KKT) optimalitetskondis-
joner.

I dette arbeidet har vi først foreslått omformuleringer av dFBA modellen for batch og kon-
tinuerlig blande-tank (CSTR) bioreaktorer som kan bli tatt i brukt for MPC applikasjoner.
Systemet av ordinære differensialligninger (ODE) ble diskretisert ved bruk av ortogonal
kollokasjon og vi tok i bruk en adaptivt mesh-strategi for å plassere kollokasjonspunktene.
En straffemetode ble også tatt i bruk for optimalitets kondisjon reformuleringene, ettersom
for mange strenge begrensninger i MPC-optimaliseringsproblemet kan føre til konvergen-
sproblemer eller uløselige problemer. Vi evaluerte modellene våre i en studie av Escherichia
coli bakteriens kjernemetabolske nettverk, hvor vi la vekt på dFBA modellens nøyaktighet
og effektivitet. Tilslutt tok vi i bruk MPC for CSTR-modellreformuleringene og testet kon-
trollerens evne til å håndtere endringer i settpunktet, forstyrrelser i glukosekonsentrasjo-
nen for reaktorføden, og den maksimale glukoseinntaks-parameteren for cellen. Målet var
å sammenligne dualitets teori og KKT reformuleringene av MPC-modellen, med fokus på
reformuleringenes beregningstid og pålitelighet.

Vi har vist at MPC kan bli tatt i bruk for CSTR bioreaktorer som bruker Escherichia coli
bakteriens kjerne metabolske nettverksmodell basert på dFBA. MPC-kontrolleren presterte
bra, og holdt biomassekonsentrasjonen nært det ønskede settpunktet. Vi fant at MPC-
kontrolleren kan håndterer relativt store endringer i settpunktet for biomasse, samt store
forstyrrelser i glukosekonsentrasjonen for reaktorføden og den maksimale glukoseinntaks-
parameteren. Alt i alt, var den straffede dualitets teori reformuleringen raskere og mer
pålitelig enn den straffede KKT-reformuleringen, med færre ikke vellykkede MPC opti-
maliseringer enn den straffede KKT-reformuleringen når systemet ble løst med løseren
IPOPT.
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1 Introduction

1 Introduction

1.1 Motivation

Bioprocessing is an important field of research as it is an essential part of many food,
chemical and pharmaceutical industries [5]. Bioprocessing refers to the use of microbial,
animal, and plant cells, and their components, such as enzymes, to manufacture goods and
destroy harmful waste. Premodern biomanufacturing has its origins in antiquity, where
it was used to create food products like bread, beer, cheese and wine. Since then the
field of bioprocessing have expanded to encompass the manufacturing of a large range of
commercial products. Everything from relatively cheap materials like industrial alcohol
and organic solvents to expensive products like antibiotics, vaccines and therapeutic pro-
teins. Everyday household products like citric acid and baker’s yeast are also products of
bioprocessing [5].

Optimal control of processes is important to ensure efficient and safe process plant op-
erations. The topic of process control has thus become increasingly important in recent
years, as stronger competition, tougher environmental and safety regulations, and rapidly
changing economic conditions have made the performance requirements of process plants
more difficult to satisfy [26]. Currently, control structures of bioprocesses are recipe-based
with insufficient ability to handle possible uncertainties [10].

One of the main challenges of implementing more advanced control structures, such as
Model Predictive Control (MPC), to bioprocesses is the lack of good mathematical models.
Therefore is one of the most ambitious goals of systems biology to develop good mathe-
matical models of biological systems. [3, 26]. The models currently used in control are
unstructured and based on a very simplistic representation of the cellular metabolism [10].
This results in the models only being valid for a very limited range of process conditions
and limit their ability to predict cellular behavior in response to changing environmental
conditions [10].

In recent years improvements in genome sequencing have allowed for the reconstruction of
genome-scale metabolic networks for multiple organisms. High-throughput next-generation
sequencing (HT-NGS) technologies can produce over 100 times more data than the se-
quencers based on the Sanger method, introduced in 1977. Many models have been built
based on these networks, for example the Flux Balance Analysis (FBA) model [19, 21].

Dynamic Flux Balance Analysis (dFBA) is a widely applied variant of the FBA model
approach, growing in popularity because it can account for wide ranges of cellular behav-
ior and operation conditions [18, 16]. The dFBA has therefore paved the way to imple-
ment more advanced control structures for bioprocesses, such as the MPC. The dFBA
model consists of a set of dynamic mass balance equations and an optimization that cal-
culates the cell’s metabolic fluxes through the metabolic network [15]. Thus a bi-level
optimization problem arises when MPC is applied, which can be solved by reformulating
the inner optimization to a set of algebraic expressions utilizing the duality theory and
Karush–Kuhn–Tucker (KKT) optimality conditions. We want to avoid bi-level optimiza-
tion as they often are very time-consuming to solve. This is a result of the fact that we
must analyse multiple upper-level optimization candidates at the same time as we have to
analyse the corresponding lower-level optimization candidates [7]. dFBA models based on
numerical solution approaches, such as those developed by Nakama and Jäschke [16], and
Oliveira et al. [18] have shown that model-based control of bioprocesses employing dFBA
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can be successfully formulated and solved with line search interior point solvers using the
KKT reformulations. However, none of these works explore the utilization of the duality
theory reformulations of the dFBA or MPC models.

1.2 Project goals

This project aims to apply MPC to a bioreactor using the dFBA model of the Escherichia
coli core metabolism. The goal is to compare the KKT and duality theory reformulations
of the dFBA model regarding computation time and reliability.

1.3 Scope of work

The paper by Oliveira et al. [18] is used as a basis to develop a reformulation of the dFBA
model for batch and continuous stirred tank (CSTR) bioreactors that would make the
dFBA feasible to MPC applications. The first step is to reformulate the inner optimization
problem of the dFBA model with duality theory and KKT optimality conditions. The
second step is to introduce the mass balances for the batch and CSTR bioreactors. The
third step is to introduce a penalization method for the optimality conditions, as too
many hard constraints may lead to convergence error and infeasible problems. The fourth
step is to solve the dFBA with the direct approach (DA) and the non-linear programming
approach (NLPA). In the DA we apply an ordinary differential equation (ODE) solver that
calls a non-linear problem (NLP) optimizer at each step. In the NLPA the set of dynamic
mass balances is discretized with the orthogonal collocation method with finite elements.
The fifth step is to introduce an adaptive mesh strategy to place the finite elements, in
order to increase the accuracy of the dFBA model reformulations. Finally, we applied
MPC to our CSTR dFBA models and tested the controller’s ability to handle changes in
the setpoint, disturbances in the glucose feed concentration, and disturbances the maximal
glucose uptake of the cells.

Relevant theory is presented, followed by a description of the dFBA model reformulations,
key components, and implementation. Thereafter we present a description of the MPC
applied to the dFBA reformulations for the CSTR. A case study of the Escherichia coli
core metabolism is conducted to test the model reformulations and the MPC with emphasis
on computational time, accuracy and reliability. Finally, a short conclusion and some
suggestions for future improvements of the dFBA model reformulations are given. The
ȷulıa code used in the project is presented in Appendix B.
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2 Theoretical background

2 Theoretical background

In this chapter relevant theory for the thesis is presented. First, the basic concepts of
Flux Balance Analysis (FBA) and some of its variants are explained. Thereafter, mass
balances for batch and continuous stirred tank bioreactors (CSTR) are presented, shortly
followed by the expressions used for the uptake of substrates to the cells. These expressions
are necessary to solve our Dynamic FBA (dFBA) model. Thereafter, the basics of some
mathematical methods used in this thesis are presented. This includes an introduction to
duality theory and Karush–Kuhn–Tucker (KKT) optimality conditions, and the concepts of
orthogonal collocation. These methods are needed to rearrange the optimization problem
of the FBA to a set of algebraic equations and to discretize the set of differential equations
in the dFBA. Lastly, the basics of Model Predictive Control (MPC) are presented, as we
want to apply this type of controller to our bioreactor models.

2.1 Flux balance analysis

Flux balance analysis is an important tool for studying metabolic networks as it does not
require kinetic information about individual reactions or the concentrations of intermediate
metabolites, thus allowing us to deal with our current difficulties with measuring metabolite
levels and kinetics in vivo conditions [19]. The FBA calculates the metabolic fluxes through
metabolic networks, which are experimentally determined from the genome of the organism
and contain information about all the known reactions in the cells. The FBA may be used
to approximate the growth rate, or the rate of production or consummation of specific
metabolites [19, 5].

The first step in FBA is to present the metabolic reactions mathematically. The metabolic
network of the organism is used to create a stoichiometric matrix (S) that contains the
stoichiometric coefficients of each reaction. Every row in the matrix represents a metabo-
lite, and every column represents a metabolic reaction. Some reactions, like the reaction
of biomass, are added by introducing an artificial "biomass-reaction", a reaction that con-
sumes precursor metabolites to create biomass. The stoichiometries impose constraints on
the flow of metabolites through the network. These constraints differentiate the FBA from
other approaches that require hard-to-estimate reaction kinetic parameters [19].

The second step is to add lower (LB) and upper (UB) bounds of the reactions. These
bounds are used to define the maximum and minimum allowed fluxes through the metabolic
network. The lower bounds may be used to force a reaction to be irreversible by setting
the bound larger or equal to zero.

The third step is to define an objective. Often the objective is to maximise the growth of
biomass. The objective is usually given on the form cTv, where v is a vector containing
all the metabolic fluxes and c is a vector containing weights that indicate how much each
reaction contribute to the objective.

The fourth step is to assume steady state. At steady state is the flux trough each reaction
given by Sv = 0.

The final step is to solve the FBA as an optimization problem. This is necessary as large
networks usually have more reactions than metabolites, and therefore multiple solutions of
the FBA usually exist, resulting in an optimization problem.
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2 Theoretical background 2.1 Flux balance analysis

min
v

− cTv (1a)

s.t. Sv = 0 (1b)
LB − v ≤ 0 (1c)
v − UB ≤ 0 (1d)

Like all models the FBA creates predictions that have to be verified by experimental data.
Studies, such as those conducted by Edwards et al. [6], have shown that the FBA works
well for predicting the growth rate of Escherichia coli on several different substrates [19].

2.1.1 Parsimonious FBA

The FBA usually has multiple optimal solutions [19]. One reason for this is that the
metabolic networks may contain loops. For example, the loop present between the metabo-
lites fumarate (fum) and succinate (succ) in the citric acid cycle in the Escherichia coli
core metabolic network, see Figure 1 [20].

Figure 1: A loop in the core metabolic network of Escherichia coli is present between the metabolites
fumarate (fum) and succinate (succ) in the citric acid cycle. SUCDi is the succinate dehydro-
genase reaction and FRD7 is the fumarate reductase reaction [20].

There are multiple ways to limit the number of possible solutions for the FBA. A common
solution is to minimize the total absolute value of all the fluxes in the metabolic network
by adding a penalization term to the objective expression. This approach is called par-
simonious FBA (pFBA) [14, 12]. A variation of the pFBA given by Ploch et al.[22] is
presented below.

min
v

− cTv + vTWv (2a)

s.t. Sv = 0 (2b)
LB − v ≤ 0 (2c)
v − UB ≤ 0 (2d)

Where W is a diagonal matrix containing very small wights.

2.1.2 Dynamic Flux Balance Analysis

A drawback of the FBA is that it does not give any information about the concentration
of the metabolites. A commonly applied variation of the FBA that allows us to track
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the concentration of the extracellular metabolites is the dFBA. The main assumption of
dFBA is that the intracellular reactions are much faster than the extracellular ones, thus
we may consider the intracellular metabolites to be at a steady state [19]. The dFBA is
thus implemented by adding mass balances for the extracellular metabolites and kinetics
for the uptake of substrates into the cells. The dFBA model expression used in this project
is presented below [18].

dx
dt

= F (x,v) (3a)

vuptake = g(x) (3b)
x ≥ 0 (3c)
v = FBA(vuptake) (3d)

Where x is a vector containing the concentration of the extracellular metabolites, F (x,v)
is the right-hand side of the mass balances, vuptake is a vector with the uptake of substrates
to the cells and g(x) is the kinetic expression used to calculate the substrate uptake.

To solve the dFBA we will be using the Direct Approach (DA) and an approach that we
will refer to as the Non-Linear Programming Approach (NLPA). In the NLPA the ordinary
differential equation (ODE) system is discretized and the FBA is solved for all the time
steps in one optimization problem. In the DA an ODE solver that calls an optimizer that
solves the FBA at each time step is applied. Many efficient ODE solvers are available, and
the DA can therefore be solved relatively fast with modern ODE solvers [16]. However, the
interactions between the ODE solvers and optimization problems may lead to errors. For
example, if the optimization solver does not return a valid solution at an integration step
[18]. Applying MPC directly to the DA would also lead to a bi-level optimization problem,
which we are trying to avoid.

2.2 Bioreactors

To solve the dFBA the expressions for the mass balances of the external metabolites and
the uptake of substrate into the cells are needed. The mass balances are dependent on the
type of bioreactor used in the process, and we will consider batch and CSTR bioreactors
in this project. The substrate uptake to the cells is represented by the Michaelis-Menten
kinetics (MMK).

2.2.1 Batch bioprocesses

Most commercial bioreactors are operated in batch and fed-batch processes. Batch pro-
cesses are operated as a closed system, where substrates are added at the beginning of the
process and products are removed only at the end. As aerobic processes allow air to pass
through the system they are not batch operations in the strictest sense. However, biore-
actors with neither input or output of liquid and/or solids are classified as batch reactors.
Fed-batch processes are similar to batch processes, but they have intermittent or contin-
uous feeding of substrates during the process [5]. As we are focusing on batch processes,
are we not going into more detail on fed-batch processes in this thesis.

Mass balances are given in the general form presented below.
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dx
dt

= Finxin − Foutx + V r (4)

Where Fin and Fout are the flow rate in and out of the system respectively, x is a vector
containing the concentration of the extracellular metabolites in the reactor, xin is a vector
containing the concentration of the metabolites in the inlet flow, V is the volume of the
reactor, and r is a vector containing the reaction rate of the metabolites.

The reaction rate is given by the expression below [18].

r = vxbiomass (5)

Where v is a vector containing the flux of the metabolites calculated by the FBA and
xbiomass is the concentration of biomass.

Introducing Equation 5 to Equation 4, and as the batch system is closed, Fin = Fout = 0,
we obtain the final mass balance for batch reactors.

dx
dt

= V · (vxbiomass) (6)

2.2.2 Continuous bioprocesses

In a few bioprocesses, such as brewing, production of bakers’ yeast, and waste treatment,
bioreactors are operated continuously [5]. This implies that the system is provided with
new substrates and that products are removed during the operation. This is bad for some
bioprocesses, for example bioreactors with free enzymes, as the catalyst are continuously
withdrawn from the system. However, this is less of a problem for bioprocesses using cell
cultures, as growth of new cells replace those who get removed from the system. It is
also possible to use a recycle stream or perfusion mode to recover some of the lost cells
and enzymes [5]. To obtain an expression for the mass balance of continually operated
bioprocesses we are considering a CSTR.

First, we introduce the dilution rate (D) given by D = Fin
V = Fout

V , to the general mass
balance, Equation 4.

dx
dt

= D · (xin − x) + V r (7)

Introducing the reaction rates given by Equation 5 results in the final expression for the
mass balance for CSTR bioreactors.

dx
dt

= D · (xin − x) + xbiomassv (8)

2.2.3 Substrate uptake

The expressions of the kinetics of the substrate uptake into the cells are necessary to
solve the dFBA, as the substrates have to enter the cells before they can take part in the
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reactions. We use Michaelis-Menten kinetics (MMK) to express the uptake of substrates
into the cells. MMK dates back to 1913 and is used to describe enzymatic reactions where
the reaction rate increases in a hyperbolic fashion with substrate concentration [4].

r =
rmaxxS
KM + xS

(9)

Where r is the reaction rate, rmax is the maximal reaction rate, xS is the substrate con-
centration and KM is the Michaelis constant.

To obtain the uptake kinetics we replace the reaction rate with the uptake of the substrates
to the cells (vuptake), resulting in the following expression [18].

vuptake = vmax
xS

KM + xS
(10)

Where vmax is the maximal uptake of the substrate.

2.3 Optimality conditions

Optimality theory is often used to create a certificate of optimality or stopping criteria for
optimization algorithms [27]. We will use optimality conditions to convert an optimization
problem, our FBA, into a system of algebraic equations. Both duality theory [30] and
Karush–Kuhn–Tucker (KKT) optimality conditions [27] are applied to rearrange our FBA
optimization problem.

In this subsection we will consider the generalized optimization problem given in standard
form presented below.

min
x

f0(x) (11a)

s.t. fi(x) ≤ 0 (11b)
hi(x) = 0 (11c)

Where x ∈ Rn. Equation 11 will be referred to as the primal problem and we introduce
its Lagrangian dual function.

g(λi, µi) = infx(L(x, λi, µi)) (12a)

= infx(f0(x) +
m∑
i=1

λihi(x) +

p∑
i=1

µifi(x)) (12b)

The vector µi is referred to as the Lagrangian multiplier associated with the ith inequality
constraint and the vector λi is similarly referred to as the Lagrangian multiplier of the ith
equality constraint. Together they are referred to as the dual variables [27].

For any λi and µi ≥ 0 the Lagrangian dual function gives a lower bound of the optimal
solution of the primal problem [27]. As we want to find the highest lower bound possible
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to solve the primal problem the Lagrangian dual function gives rise to the maximization
problem presented below.

max
λi,µi

g(λi, µi) (13a)

s.t. µi ≥ 0 (13b)

This problem is called the Lagrangian dual problem associated with the primal problem
and will be referred to as the dual problem [27].

We use ∗ to indicate that a variable is optimized. As x∗ minimizes L(x, λ∗
i , µ

∗
i ) over x, its

gradient must vanish at x∗. This adds an additional constraint to the dual problem [30],
resulting in the second dual constraint given below.

∇L(x∗, λ∗
i , µ

∗
i ) = 0 (14)

Finally, before presenting the KKT conditions and duality theory we have to introduce the
weak and strong duality theorems.

The weak duality theorem establishes bounding relations between feasible primal solutions
(p∗) and feasible dual solutions (d∗).

d∗ ≤ p∗ (15)

The strong duality theorem states that if either the primal or dual problem has finite
optimal values, so does the other one and the optimal objective values are equal to one
another [27, 30].

d∗ = p∗ (16)

Note that strong duality does not hold in general. However, if the primal problem is convex
with f0 and fi convex, strong duality usually holds. One simple way to check if strong
duality holds is Slater’s conditions, which states that strong duality holds if the problem
is convex and there exists a x ∈ relint(D) such that

fi(x) < 0, i = 1, ..,m, (17a)
hi(x) = 0. (17b)

Where relint(D) refers to the relative interior of set D given by ∩m
i=0dom(fi) ∩ ∩p

i=1dom(hi).
dom(fi) is the domain of function fi, and dom(hi) is the domain of function hi [27, 30].

2.3.1 Duality theory optimality conditions

According to the weak and strong duality theorem, if the primal and dual solutions are
feasible and their objective values are equal, then the primal and dual solutions are optimal.
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Therefore, one can solve the primal and dual problem simultaneously by collecting all
the primal and dual constraints, and setting the primal and dual objectives equal to one
another. The resulting set of constraints of the optimality conditions of the primal problem
presented in Equation 11 is given below [30].

fi(x
∗) ≤ 0 (18a)

hi(x
∗) = 0 (18b)

∇L(x∗, λ∗
i , µ

∗
i ) = 0 (18c)

µ∗
i ≥ 0 (18d)

f(x∗) = g(λ∗
i , µ

∗
i ) (18e)

2.3.2 Karush–Kuhn–Tucker optimality conditions

For any optimization problem with a differentiable objective and constraint functions for
which strong duality holds, any pair of primal and dual optimal solutions must satisfy the
KKT conditions. The KKT conditions is composed of three parts: the primal feasibility,
the dual feasibility and the complementary slackness (CS) constraints [30].

The CS constraints are a product of strong duality.

f0(x
∗) = g(λ∗

i , µ
∗
i ) (19a)

= infx(f0(x) +

m∑
i=1

λihi(x) +

p∑
i=1

µifi(x)) (19b)

≤ f0(x
∗) +

m∑
i=1

λ∗
ihi(x

∗) +

p∑
i=1

µ∗
i fi(x

∗) (19c)

As the second CS is composed of equality constraints, it may be neglected as it is already
zero. Resulting in the CS conditions given below.

p∑
i=1

µ∗
i fi(x

∗) = 0 (20)

The KKT conditions are presented below for the primal problem presented in Equation 11
[30, 27].

fi(x
∗) ≤ 0 (21a)

hi(x
∗) = 0 (21b)

∇L(x∗, λ∗
i , µ

∗
i ) = 0 (21c)
µ∗
i ≥ 0 (21d)

p∑
i=1

µ∗
i fi(x

∗) = 0 (21e)
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The KKT approach are quite similar to the duality theory approach, and the main dif-
ference is their implementation of the strong duality theorem, as the KKT conditions use
CS constraints instead of setting the primal and dual objectives equal to one another.
Whether one chooses to use the duality theory or KKT reformulations is often dependent
on whether one of the reformulations contain nonlinear or nonconvex terms [30]. How-
ever, the use of CS has a drawback in the form of non-linear problem (NLP) solvers not
being able to handle them [29], as models utilizing CS constraints are locally dependent
at all feasible points, resulting in a non-smooth system. The KKT problem is therefore
usually reformulated into an NLP [16]. This can be done by relaxing the CS by replacing
Equation 20 with,

p∑
i=1

µ∗
i fi(x

∗) = ϵ, (22)

where ϵ is a small constant, or by introducing a penalization term [13]. Where we convert
the problem back to an optimization problem, and move the CS from the set of constraints
to objective function.

2.4 Orthogonal collocation on finite elements

To avoid bi-level optimization problems when we solve the dFBA with the NLPA, we
need to discretize the set of ordinary differential equations (ODE). It was decided to use
orthogonal collocation as orthogonal collocation is found equivalent to implicit Runge-
Kutta methods with high-order accuracy and strong stability properties [18].

The objective in orthogonal collocation is to determine a matrix (M) that relates the
derivatives to the non-derivative values over a horizon consisting of points 1 to n. In
Equation 23 the relationship is presented with three points and an initial point [8].

x′1x′2
x′3

 = M · (

x1x2
x3

−

x0x0
x0

) (23)

Where x0 is the initial value, xi is the x-value in point i and x′i is the value of the derivative
of x in point i.

The derivatives at each point are approximated by Lagrange interpolating polynomials as
shown below.

x(t) = A+Bt+ Ct2 +Dt3 (24a)

x′(t) = B + 2Ct+ 3Dt2 (24b)

Where A, B, C and D are vectors with coefficients and t is a vector containing the time at
each point. For initial value problems the coefficients of A are equal to x0.
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Substituting Equation 24 into Equation 23 gives the following expression.B + 2Ct1 + 3Dt21
B + 2Ct2 + 3Dt22
B + 2Ct3 + 3Dt23

 = M · (

A+Bt1 + Ct21 +Dt31
A+Bt2 + Ct22 +Dt32
A+Bt3 + Ct23 +Dt33

−

AA
A

) (25a)

1 + 2t1 + 3t21
1 + 2t2 + 3t22
1 + 2t3 + 3t23

BC
D

 = M

t1 + t21 + t31
t2 + t22 + t32
t3 + t23 + t33

BC
D

 (25b)

Rearranging and solving for M gives us an expression for the M-matrix.

M =

1 + 2t1 + 3t21
1 + 2t2 + 3t22
1 + 2t3 + 3t23

t1 + t21 + t31
t2 + t22 + t32
t3 + t23 + t33

−1

(26)

We get an expression for the x-value at each point by rearranging Equation 23 and intro-
ducing a factor to accommodate for the length of the finite elements (h) [8].

x1x2
x3

 =

x0x0
x0

+ h · (M

x′1x′2
x′3

) (27)

2.5 Model Predictive Control

We want to test the behavior of our model by applying MPC to the dFBA implemented
for a CSTR. MPC is an important advanced control technique for difficult multi-variable
control problems. Assume that we have a multiple input and output process with inequality
constraints on the input and output variables. If we have a reasonably accurate model we
can use the model and the current measurements to predict the future value of the outputs.
Then the appropriate changes to the input variables can be calculated [26]. The overall
objectives of an MPC controller have been summarized by Qin and Badgwell [23].

• Prevent violations of input and output constraints.

• Drive the output variables to their steady state optimal values, while maintaining
other outputs within specific ranges.

• Drive the input variables to their steady state optimal values using the remaining
degrees of freedom.

• Prevent excessive movement of the input variables.

• Control as many process variables as possible when signals and actuators fail.

The general objective of the MPC is to find the control moves for the next M number of
time steps, however only the first one is implemented. Then a new set of control moves
are calculated. The important advantage of this approach is that new information is
implemented instantly instead of waiting until we calculate the next set of control moves.
The control calculations of an MPC are based on minimizing the predicted deviation from
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the reference trajectory (E(k + 1)) and the changes to the manipulated variables (MV)
(∆u(k)). k is the current sampling instant. The MPC control calculations are thus usually
presented on the general form given below [26].

min
∆u(k)

E(k + 1)TQE(k + 1) + ∆u(k)TR∆u(k) (28a)

s.t. umin(k) ≤ u(k + j) ≤ umax(k) (28b)
∆umin(k) ≤ ∆u(k + j) ≤ ∆umax(k) (28c)
xmin(k + j)− cj ≤ x(k + j) ≤ xmax(k + j) + cj (28d)
x(k + 1) = F (x(k), u(k)) (28e)

Where u, umin, umax, ∆umin, and ∆umax are the value, the minimal value, the maximal
value, the minimal change, and the maximal change of the MV respectively. cj is the slack
variables, x, xmin, and xmax are the value, the minimal value, an the maximal value of
the output, F (x(k), u(k)) is a function used to calculate the output, Q and R are penalty
matrices, and j is given by 0, 1, 2, ...,M − 1. Both Q and R are usually diagonal matrices
with positive elements [26].
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3 Problem statement

3 Problem statement

This chapter presents the key components of our Dynamic Flux Balance Analysis (dFBA)
models and Model Predictive Controller (MPC). First the implementation of the dFBA is
given. Where the parsimonious Flux Balance Analysis (pFBA) optimization problem has
been reformulated with the use of duality theory and Karush–Kuhn–Tucker (KKT) opti-
mality conditions. Thereafter we show how we solve the dFBA with the Direct Approach
(DA) and Non-Linear Programming Approach (NLPA). We then present the mass balances
used for the batch and the continuous stirred tank reactor (CSTR), thus completing our
dFBA models. Finally, we introduce the MPC applied to our dFBA models for CSTR.
The models are implemented in the ȷulıa programming language, and the code is provided
in Appendix B.

3.1 FBA reformulation

We have decided to use the pFBA implementation presented in Equation 29 as this version
of Flux Balance Analysis (FBA) returns a single optimal solution and does not require
multiple optimization operations to be solved.

min
v

− cTv + vTWv (29a)

s.t. Sv = 0 (29b)
LB − v ≤ 0 (29c)
v − UB ≤ 0 (29d)

v is a vector containing the metabolic fluxes, S is the stoichiometric matrix, c is a vector
that combined with the fluxes gives the objective function, W is a diagonal penalty matrix,
LB is the lower bounds and the UB is the upper bounds.

As the goal is to implement MPC, it is necessary to impose the pFBA optimality conditions
through algebraic equations to avoid bi-level optimization problems. We consider two
approaches to rearrange the pFBA, the duality theory approach, Equation 18, and the
KKT approach, Equation 21. First, we find the Lagrangian of the pFBA.

L(v, λ, µU , µL) = −cTv + vTWv + λTSv + µT
L(LB − v) + µT

U (v − UB) (30a)

= (−c + Wv + STλ− µL + µU )
Tv + µT

LLB − µT
UUB (30b)

= (−c + 2Wv + STλ− µL + µU )
Tv − vTWv + µT

LLB − µT
UUB (30c)

Where the Lagrangian multipliers are vectors given by λ, µU and µL.

Since L(v, λ, µU , µL) is a convex quadratic function of v the Lagrangian dual function,
infvL(v, λ, µU , µL), is found from the condition [27],

∇vL(v, λ, µU , µL) = −c + 2Wv + STλ− µL + µU = 0. (31)

The resulting Lagrangian dual function, g(λ, µU , µL), is given below.
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g(λ, µU , µL) = infv(L(λ, µU , µL)) (32a)

= infv((−c + 2Wv + STλ− µL + µU )
Tv − vTWv + µT

LLB − µT
UUB) (32b)

= −vTWv + µT
LLB − µT

UUB (32c)

The duality theory optimality conditions are found by combining the primal feasibility,
dual feasibility and strong duality conditions as in Equation 18. We solve the system as
an optimization problem with a dummy objective function. Resulting in the dual theory
optimality conditions presented below.

min
v,λ,µU ,µL

1 (33a)

s.t. Sv = 0 (33b)
LB − v ≤ 0 (33c)
v − UB ≤ 0 (33d)
µU , µL ≥ 0 (33e)

− c + 2Wv + STλ− µL + µU = 0 (33f)

− vTWv + µT
LLB − µT

UUB = −cTv + vTWv (33g)

Similarly, we find the KKT optimality conditions by replacing the strong duality condition
with the complimentary slackness conditions as in Equation 21. Resulting in the KKT
optimality conditions given below.

min
v,λ,µU ,µL

1 (34a)

s.t. Sv = 0 (34b)
LB − v ≤ 0 (34c)
v − UB ≤ 0 (34d)
µU , µL ≥ 0 (34e)

− c + 2Wv + STλ− µL + µU = 0 (34f)

µT
L(LB − v) = 0 (34g)

µT
U (v − UB) = 0 (34h)

To avoid the potential drawbacks of implementing the complementary slackness (CS) con-
straints, as presented in Section 2.3, we utilize the penalization method [18]. We choose this
method because it can be solved in a single optimization problem and Baumrucker et al. [1]
have shown that non-linear problems (NLP) based on penalisation methods are effective
strategies to solve CS problems. We also decided to apply the penalization method to the
duality theory reformulation of the pFBA to compare the performance of the penalized
and non-penalized reformulations and to remove one of the hard constraints, as too many
hard constraints in MPC problems can lead to infeasible solutions [26]. The strong duality
and CS conditions are thus moved to the objective function as a penalization term.

The penalized dual theory approach is given by the expression below.

14



3 Problem statement 3.2 Implementation of dFBA

min
v,λ,µU ,µL

2vTWv − µT
LLB + µT

UUB − cTv (35a)

s.t. Sv = 0 (35b)
LB − v ≤ 0 (35c)
v − UB ≤ 0 (35d)

− c + 2Wv + STλ− µL + µU = 0 (35e)
µU , µL ≥ 0 (35f)

The penalized KKT approach is given below.

min
v,λ,µU ,µL

µT
U (UB − v) + µT

L(v − LB) (36a)

s.t. Sv = 0 (36b)
LB − v ≤ 0 (36c)
v − UB ≤ 0 (36d)

− c + 2Wv + STλ− µL + µU = 0 (36e)
µU , µL ≥ 0 (36f)

Note that when we introduce the dummy objective or the penalization method to the
reformulations of the pFBA, the reformulations revert back to optimization problems.
However, this is not an issue as the reformulations can be expanded to account for the
MPC without ending up with bi-level optimization problems.

3.2 Implementation of dFBA

We apply the pFBA model, see Equation 29, and the Michaelis-Menten kinetics (MMK)
expressions for the consumption of the substrates, see Equation 10, to the dFBA formula-
tion by Oliveira et al. [18], see Equation 3. The extracellular metabolites considered in the
dFBA are glucose (G), biomass (X), and acetate (A). Glucose is the primary substrate, the
biomass is the desired product and the acetate switches between byproduct and substrate
dependent on the glucose concentration. Note that the vuptake vector in Equation 3 and
Equation 10 has been replaced with an expression for the lower bound of glucose (LBG)
and an expression for the lower bound of acetate (LBA). The resulting expression of the
dFBA is given below.

dx
dt

= F (x,v) (37a)

x ≥ 0 (37b)

LBG = vG,max
xG

KM,G + xG
(37c)

LBA = vA,max
xA

KM,A + xA
(37d)

min
v

− cTv + vTWv (37e)
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3 Problem statement 3.2 Implementation of dFBA

s.t. Sv = 0 (37f)
LB − v ≤ 0 (37g)
v − UB ≤ 0 (37h)

Where F (x,v) is the right-hand side of the mass balances, vG,max is the maximum uptake
of glucose, vA,max is the maximum uptake of acetate, KM,G is the Michaelis constant
for glucose, KM,A is the Michaelis constant for acetate, and x is a vector containing the
concentration of the extracellular metabolites. Note that LBG and LBA are a part of the
LB vector.

We solve the dFBA model, Equation 37, with the Direct Approach (DA) and the Non-
Linear Programming Approach (NLPA).

3.2.1 Direct Approach for dFBA

In the DA we apply an ordinary differential equation (ODE) solver that calls the pFBA
model, Equation 37, at each time step. The ODE solver calculates the metabolite concen-
trations, the lower bound of the substrates, and provides them to our NLP optimizer that
solves the pFBA and returns the metabolic flux for each of the metabolites, see Figure 2.

Figure 2: In the direct approach we apply an ODE solver that calls the pFBA model, Equation 37, at
each time step. The ODE solver calculates the metabolite concentrations, the lower bound
of the substrates (LB) and provides them to our NLP optimizer that solves the pFBA and
returns the metabolic fluxes (v) at each time step.

It is decided to use an implicit, multi-step ODE solver with variable step size, because
the system is reasonably large and the level of stiffness is unknown. The ODE solver
Quasi-constant time step Numerical Differentiation Function (QNDF) from the package
DifferentialEquations [24] is used, as it is recommended for these kinds of problems. We
also added an if statement to the ODE solver to ensure that the concentrations of the
extracellular metabolites do not go below zero.

The optimization problems are solved with the interior point optimizer IPOPT [28], with
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3 Problem statement 3.2 Implementation of dFBA

the MA97 linear solver from HSL [25]. The IPOPT solver is chosen as it is designed to
find local solutions for large-scale non-linear optimization problems.

We do not apply Model Predictive Control (MPC) to the DA as this would result in a bi-
level optimization problem. We instead use the DA as a reference to the NLPA because the
DA solves the original pFBA problem and the adaptive mesh utilized by the ODE solver
makes the DA more accurate in areas with rapid change of the metabolite concentrations
than the NLPA, assuming that the optimization problem returns feasible solutions at each
time step.

3.2.2 Non-Linear Programming Approach for dFBA

The NLPA is the approach we are going to use for the MPC, because it does not result in
a bi-level optimization problem when the MPC is applied. To solve the dFBA model with
the NLPA we apply our duality theory and KKT reformulations of the pFBA problem, see
Section 3.1, to the dFBA formulation, Equation 37, and discretize the set of dynamic mass
balances utilizing orthogonal collocation on finite elements, see Equation 27. Resulting in
the reformulations of the dFBA model presented below.

First we present the non-penalized dFBA model reformulations.

min
v,λ,µU ,µL,G,A,X,LB

1 (38a)

s.t. Sv = 0 (38b)
LB − v ≤ 0 (38c)
v − UB ≤ 0 (38d)

− c + 2Wv + STλ− µL + µU = 0 (38e)
Ψ(v,LB,UB) (38f)
µU , µL ≥ 0 (38g)
G = G0 + h · (M · FG(G,v)) (38h)
A = A0 + h · (M · FA(A,v)) (38i)
X = X0 + h · (M · FX(X,v)) (38j)
G,A,X ≥ 0 (38k)

LBG = vG,max
G

KM,G +G
(38l)

LBA = vA,max
A

KM,A +A
(38m)

Where M is the the orthogonal collocation matrix presented in Equation 26, vG,max is
the maximum uptake of glucose, vA,max is the maximum uptake of acetate, KM,G is the
Michaelis constant for glucose, KM,A is the Michaelis constant for acetate, G, A and X is
the glucose, acetate and biomass concentrations respectively, Fi is the right-hand side of
the mass balance of metabolite i, and h is the size of the finite elements. Ψ(v,LB,UB)
is the strong duality expression or the complementary slackness constraints dependent on
whether we use the duality theory or KKT pFBA reformulation.

Duality theory Ψ(v,LB,UB):
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3 Problem statement 3.2 Implementation of dFBA

cTv − 2vTWv + µT
LLB − µT

UUB = 0 (39)

KKT Ψ(v,LB,UB):

µT
L(LB − v) = 0 (40a)

µT
U (v − UB) = 0 (40b)

Finally we present the penalized dFBA model reformulations.

min
v,λ,µU ,µL,G,A,X,LB

Φ(v,LB,UB) (41a)

s.t. Sv = 0 (41b)
LB − v ≤ 0 (41c)
v − UB ≤ 0 (41d)

− c + 2Wv + STλ− µL + µU = 0 (41e)
µU , µL ≥ 0 (41f)
G = G0 + h · (M · FG(G,v)) (41g)
A = A0 + h · (M · FA(A,v)) (41h)
X = X0 + h · (M · FX(X,v)) (41i)
G,A,X ≥ 0 (41j)

LBG = vG,max
G

KM,G +G
(41k)

LBA = vA,max
A

KM,A +A
(41l)

Where Φ(v,LB,UB) is an objective function depending on the pFBA reformulation.

Duality theory Φ(v,LB,UB)

2vTWv − µT
LLB + µT

UUB − cTv (42)

KKT Φ(v,LB,UB):

µT
U (UB − v) + µT

L(v − LB) (43)

For the orthogonal collocation utilized to discretize the dynamic mass balances, we used
the Radau collocation points presented below.

t1t2
t3

 =

0.1550510.644949
1.000000

 (44)
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3 Problem statement 3.3 Reactor mass balance implementation

3.3 Reactor mass balance implementation

To complete our dFBA model we introduce the mass balances of the metabolites. The
expressions of the mass balances are dependent on the type of bioreactor considered. We
will look at batch reactors as they are one of the most commonly used bioreactors in in-
dustry and will allow us to compare our result with other recently developed models, such
as the dFBA model developed by Oliveira et al. [18]. However, we can not apply MPC
directly to our batch reactor models as the batch reactor designs do not have any manipu-
lated variables we can use in the controller. Therefore, will also consider a CSTR, despite
continuous bioreactors not being very commonly used commercially in bioprocessing [5],
because it is a important and widely used abstraction of reactors in industry that allow
for implementation of control structures, such as MPC.

3.3.1 Batch reactor mass balances

From Equation 6 we are given the right-hand side of the mass balances for a batch reactor
with glucose, acetate, and biomass.

FG(G,v) = V · (vG ·X) (45a)
FA(A,v) = V · (vA ·X) (45b)
FX(X,v) = V · (vX ·X) (45c)

V is the volume of the reactor.

3.3.2 CSTR mass balances

From Equation 8 we are given the right-hand side of the mass balances for a CSTR with
glucose, acetate, and biomass.

FG(G,v) = D · (Gin −G) + vG ·X (46a)
FA(A,v) = D · (Ain −A) + vA ·X (46b)
FX(X,v) = D · (Xin −X) + vX ·X (46c)

D is the dilution rate and Gin, Ain, and Xin are the concentration of glucose, acetate and
biomass in the reactor feed respectively.

The mass balance expressions are added to our expressions of the dFBA model presented
in Section 3.2.

3.4 Steady state model implementation

Before we apply MPC to our CSTR dFBA models, we present the CSTR steady state
models. The steady state models are useful because they can be used to predict the final
concentrations of the extracellular metabolites in the dynamic models, and to find good

19



3 Problem statement 3.4 Steady state model implementation

starting points for our dynamic model simulations. The steady state models are developed
by setting the dynamic mass balance expressions of the CSTR dFBA solved with the
NLPA, Section 3.2.2, to zero.

Non-penalized dFBA steady state models implementation:

min
v,λ,µU ,µL,G,A,X,LB

1 (47a)

s.t. Sv = 0 (47b)
LB − v ≤ 0 (47c)
v − UB ≤ 0 (47d)

− c + 2Wv + STλ− µL + µU = 0 (47e)
Ψ(v,LB,UB) (47f)
µU , µL ≥ 0 (47g)
D · (Gin −G) + vG ·X = 0 (47h)
D · (Ain −A) + vA ·X = 0 (47i)
D · (Xin −X) + vX ·X = 0 (47j)
G,A,X ≥ 0 (47k)

LBG = vG,max
G

KM,G +G
(47l)

LBA = vA,max
A

KM,A +A
(47m)

Penalized dFBA steady state models implementation:

min
v,λ,µU ,µL,G,A,X,LB

Φ(v,LB,UB) (48a)

s.t. Sv = 0 (48b)
LB − v ≤ 0 (48c)
v − UB ≤ 0 (48d)

− c + 2Wv + STλ− µL + µU = 0 (48e)
µU , µL ≥ 0 (48f)
D · (Gin −G) + vG ·X = 0 (48g)
D · (Ain −A) + vA ·X = 0 (48h)
D · (Xin −X) + vX ·X = 0 (48i)
G,A,X ≥ 0 (48j)

LBG = vG,max
G

KM,G +G
(48k)

LBA = vA,max
A

KM,A +A
(48l)
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3.5 Model Predictive Control implementation

We have models with multiple inputs and outputs with inequality constraints, and MPC
is therefore a good control approach for our models [26]. A simplified block diagram of the
MPC implementation is presented in Figure 3. The MPC utilizes the dFBA models solved
with the NLPA and the plant is represented by the dFBA model solved with the DA.
We assume that the underlying control structures, such as proportional integral derivative
(PID) controllers, are very fast compared to the MPC, and therefore we do not consider
them in this project.

Figure 3: A simplified block diagram of the MPC implementation. The MPC utilizes the dFBA models
solved with the NLPA and the plant is represented by the dFBA model solved with the DA.
We assume that the underlying control structures are very fast compared to the MPC, and
thus we do not consider them in this project. u is the manipulated variables and x are the
states in the system.

We use the dilution rate (D) as the manipulated variable, and because we wish to control
the biomass concentration in the reactor, we use the biomass concentration as the MPC
setpoint.

The implementation of the MPC based on the dFBA model utilizing the non-penalized
pFBA reformulations is presented below.

min
v,λ,µU ,µL,G,X,A,LB,D

Q · (X −Xsp)
2 +R · (∆u)2 (49a)

s.t. Sv = 0 (49b)
LB − v ≤ 0 (49c)
v − UB ≤ 0 (49d)

− c + 2Wv + STλ− µL + µU = 0 (49e)
Ψ(v,LB,UB) (49f)
µU , µL ≥ 0 (49g)
G = G0 + h · (M · (D · (Gin −G) + vG ·X)) (49h)
A = A0 + h · (M · (D · (Ain −A) + vA ·X)) (49i)
X = X0 + h · (M · (D · (Xin −X) + vX ·X)) (49j)
G,A,X ≥ 0 (49k)
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LBG = vG,max
G

KM,G +G
(49l)

LBA = vA,max
A

KM,A +A
(49m)

∆D ≤ −∆Dmax (49n)
∆D ≥ ∆Dmax (49o)
D ≥ Dmin (49p)
D ≤ Dmax (49q)

(49r)

Where Q and R are control parameters, ∆D is the change in the dilution rate, Xsp is the
setpoint for biomass, ∆Dmax is the maximal change in the dilution rate, and Dmin and
Dmax is the lowest and highest acceptable value of the dilution rate respectively.

The implementation of the MPC based on the dFBA model utilizing the penalized pFBA
reformulations is presented below.

min
v,λ,µU ,µL,G,X,A,LB,D

Q · (X −Xsp)
2 +R · (∆u)2 + CΦ(v,LB,UB) (50a)

s.t. Sv = 0 (50b)
LB − v ≤ 0 (50c)
v − UB ≤ 0 (50d)

− c + 2Wv + STλ− µL + µU = 0 (50e)
µU , µL ≥ 0 (50f)
G = G0 + h · (M · (D · (Gin −G) + vG ·X)) (50g)
A = A0 + h · (M · (D · (Ain −A) + vA ·X)) (50h)
X = X0 + h · (M · (D · (Xin −X) + vX ·X)) (50i)
G,A,X ≥ 0 (50j)

LBG = vG,max
G

KM,G +G
(50k)

LBA = vA,max
A

KM,A +A
(50l)

∆D ≤ −∆Dmax (50m)
∆D ≥ ∆Dmax (50n)
D ≥ Dmin (50o)
D ≤ Dmax (50p)

(50q)

Where C is a control parameter.
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4 Results and discussion

In this section, we test our models based on Dynamic Flux Balance Analysis (dFBA)
developed in Section 3 with a case study of the Escherichia coli core metabolism. The
specifications for the case study are presented in Section 4.1. First, we test our reformu-
lations of the parsimonious Flux Balance Analysis (pFBA), and compare how the refor-
mulations preform with emphasis on solver time and divergence from the original pFBA
problem. Second, we test our dFBA models for a batch reactor and improve the accuracy
of the models by assuming constant fluxes inside each finite element and by adding an
adaptive mesh strategy. Third, we test our dFBA models for a continuous stirred tank
reactor (CSTR). Finally, we apply Model Predictive Control (MPC) to the dFBA model
reformulations using CSTR. We tune the controller and test how it handles changes in
the setpoint, disturbances in the glucose feed concentration, and disturbances the maximal
glucose uptake.

4.1 Case study specifications

The case study is performed with the Escherichia coli core metabolic network model.
The Escherichia coli core metabolism is chosen because it is a simple and well-established
metabolic model, and we can therefore compare the behavior of our model to existing
literature. The stoichiometric matrix (S), the c vector, the lower bound vector (LB), and
the upper bound vector (UB) of the Escherichia coli, strain K-12 substrain MG1655, core
metabolism are gathered from the database BiGG Models [11]. The core metabolism of
the Escherichia coli cell contains 95 metabolic reactions and 72 metabolites.

The case study is performed under aerobic growth with glucose and acetate, with the
pFBA objective set to maximize the growth rate of the cell. The growth rate is given by
the biomass flux, vbiomass. The diagonal elements in the W matrix are set to 10−6, as they
need to be very small.

4.2 pFBA reformulations comparison

We test the performance of our reformulations of the pFBA problem, given in Section 3.1,
on the the case study presented in Section 4.1. We have changed the oxygen and glucose
lower bounds to the values given by the FBA tutorial for the COBRA Toolbox [9], an
existing model developed to make quantitative predictions of cellular and multicellular
biochemical networks. The new lower bound values are given in Table 1.

Table 1: Lower bounds of oxygen and glucose used to test the performance of the pFBA reformulations
presented in Section 3.1 on a case study of the Escherichia coli core metabolism. The values
are gathered from the FBA tutorial for the COBRA Toolbox [9].

Parameter Value Unit
LBoxygen -30 mmol · gDW−1 · h−1

LBglucose -10 mmol · gDW−1 · h−1

To calculate the difference between the original pFBA and our reformulations of the pFBA
we use the mean squared error (MSE). The MSE is calculated with the following expression.
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MSE =

∑j
i=1(yi − ȳi)

2

j
(51)

Where y is a vector containing the simulation results of our reformulations, j is the number
of elements in y, and ȳ is a vector containing the predicted values we want to compere to
the elements in y, in this case ȳ is the metabolic fluxes of the original pFBA problem.

Table 2 presents the solver status, the objective function, the difference between the ob-
jective value of the original pFBA problem and the reformulations, and the MSE between
the metabolic fluxes in the original pFBA and the reformulations.

Table 2: Simulation of the pFBA reformulations on a case study of the Escherichia coli core metabolism.
In this table we present the solver status, objective function, difference between the objective
value of the original pFBA problem and the reformulations, and the MSE between the metabolic
fluxes from the original pFBA and from the reformulations. SS stands for solved successfully, and
STAL stands for solved to acceptable level. Dual refers to the duality theory reformulation of
the pFBA, P. Dual refers to the penalized duality theory reformulation of the pFBA, KKT refers
to the KKT reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation
of the pFBA.

Method: Status: Objective function: Growth rate difference: MSE fluxes:
Original SS −cTv + vTWv 0 0

Dual SS 1 −5.96 · 10−8 2.06 · 10−9

P. Dual SS −cTv + 2vTWv − µLLB + µUUB 6.06 · 10−7 1.42 · 10−6

KKT STAL 1 1.37 · 10−4 4.46 · 10−3

P. KKT STAL µU (v − UB) + µL(LB − v) 6.05 · 10−7 4.68 · 10−1

From Table 2 we see that the IPOPT solver successfully solved (SS) the duality theory
reformulations and the original pFBA formulation. However, the KKT reformulations were
only solved to the solvers acceptable level (STAL). This implies that the solver algorithm
did not converge to our desired tolerances, set to 10−8, but found a point satisfying the
acceptable tolerance level, set to 10−6, which are the default tolerances of the IPOPT
solver [28]. This is reflected in the KKT reformulations having a larger MSE values of the
metabolic fluxes, and a larger difference in the objective value, than the solutions found
for the duality theory reformulations. The non-penalized KKT approach performed worst
for the objective value with a difference from the original solution equal to 1.37 · 10−4,
compared to the other reformulations with differences from the original solution less than
10−6. The penalized KKT reformulation performed well for the difference in the objective
function, but the MSE for the metabolic fluxes are very high, 4.68 · 10−1, compared to
the duality theory reformulations, 2.06 · 10−9 and 1.42 · 10−6 for the non-penalized and
penalized version respectively. Overall, has the non-penalized duality theory approach the
closest solution to the original pFBA problem.

The size of the optimization problems of the pFBA formulations and the time required to
solve them are presented in Table 3. The time presented is the average of ten simulations.
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Table 3: Simulation of the pFBA reformulations on a case study of the Escherichia coli core metabolism.
In this table we present the size of the optimization problems and the time used to solve the
original pFBA problem and its reformulations. The time presented is the average of 10 sim-
ulations. Dual refers to the duality theory reformulation of the pFBA, P. Dual refers to the
penalized duality theory reformulation of the pFBA, KKT refers to the KKT reformulation of
the pFBA, and P. KKT refers to the penalized KKT reformulation of the pFBA.

Method: Time: [s] Number of Number of Number of Number of
iterations: variables: equality constraints: inequality constraints:

Original 0.016 37 95 72 190
Dual 0.037 33 357 168 380

P. Dual 0.043 46 357 167 380
KKT 0.095 83 357 169 380

P. KKT 0.194 224 357 167 380

The original optimization problem is much smaller than the optimization problems of the
pFBA reformulations, as shown in Table 3. The number of variables in the original formula-
tion are 95 while the number of variables in the reformulations are 357. The reformulations
also have more equality and inequality constraints than the original problem. The original
problem has 72 equality and 190 inequality constraints while the reformulations have be-
tween 167 and 169 equality constraints and 380 inequality constraints. Overall is the size
difference between the reformulations very small, only varying with one or two equality
constraints. It was thus expected that the original problem would be much faster to solve
than the reformulations, roughly two times faster than the fastest pFBA reformulation.
This is promising for the Direct Approach we later will use to solve the Dynamic FBA
model (dFBA). We see that the duality theory reformulations are much faster to solve
than the KKT reformulations. The non-penalized duality theory reformulation is roughly
2.5 times faster to solve than the non-penalized KKT, and the penalized duality theory
reformulation is roughly 4.5 times faster to solve than the penalized KKT. We also see that
the penalized reformulations are slower than their non-penalized versions. The penalized
KKT is the slowest of all the approaches, requiring 0.194 seconds to solve compared to the
other approaches requiring less than 0.100 seconds.

4.3 pFBA reformulations with decreased tolerances comparison

To deal with the poor performance of the KKT reformulations it is decided to decrease
the constraint violation tolerance and acceptable tolerance parameters of the Ipopt solver.
The acceptable tolerance level is set to our desired tolerance, and to ensure that we do not
break any of our constraints we decrease the constraint violation tolerance to a very small
value.

• Acceptable tolerance: 10−6 → 10−8

• Constraint violation tolerance: 10−4 → 10−10

We run one more simulation of the pFBA reformulations with the lower bounds presented
in Table 1.

Table 4 presents the solver status, the objective function, the difference between the ob-
jective value of the original pFBA problem and the reformulations, and the MSE between
the metabolic fluxes in the original pFBA and the reformulations.
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Table 4: Simulation of the pFBA reformulations on a case study of the Escherichia coli core metabolism
with decreased tolerances of the IPOPT solver. In this table we present the solver status,
objective function, difference between the objective value of the original pFBA problem and the
reformulations, and the MSE between the metabolic fluxes from the original pFBA and from
the reformulations. The optimizers acceptable tolerance and constraint violation tolerance are
reduced from the default values. SS stands for solved successfully, Dual refers to the duality
theory reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation
of the pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the
penalized KKT reformulation of the pFBA.

Method: Status: Objective function: Growth rate difference: MSE fluxes:
Original SS −cTv + vTWv 0 0

Dual SS 1 −4.38 · 10−8 4.27 · 10−8

P. Dual SS −cTv + 2vTWv − µLLB + µUUB 6.06 · 10−7 1.10 · 10−6

KKT SS 1 −6.62 · 10−8 4.79 · 10−8

P. KKT SS µU (v − UB) + µL(LB − v) 6.06 · 10−7 1.31 · 10−6

From Table 4 we see that all the reformulations, including the KKT reformulations, of
the pFBA are solved successfully with the decreased tolerances. The absolute value of
the deviation between the optimal solution of the reformulations and the original pFBA
problem for the objective is very small, less than 7 ·10−7. The MSE between the metabolic
fluxes are also very small, less than 2 · 10−6 for all the reformulations. Overall is the non-
penalized reformulations closer to the original solution than their penalized versions. The
non-penalized reformulations have a deviation from the original solution to the order of
10−8, compared to the penalized reformulations that have a deviation to the order of 10−7.
Similarly are the MSE of the metabolic fluxes for the non-penalized reformulations to the
order of 10−8 compared to the penalized versions with an order of 10−6. It was expected
that the non-penalized reformulations would be more accurate than the penalized ones, as
the penalized versions have moved some of the constraints to the objective function and
are thus more relaxed than the non-penalized reformulations. Overall are the differences in
the solution between the duality theory approaches and the KKT approaches neglectable.

The size of the optimization problems of the pFBA formulations and the time required to
solve them are presented in Table 5. The time is given as a average of ten simulations.

Table 5: Simulation of the pFBA reformulations on a case study of the Escherichia coli core metabolism
with decreased tolerances of the IPOPT solver. In this table we present the size of the optimiza-
tion problems and the time used to solve the original pFBA problem and its reformulations.
The time presented is the average of 10 simulations and the optimizers acceptable tolerance and
constraint violation tolerance are reduced from the default values. Dual refers to the duality
theory reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation
of the pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the
penalized KKT reformulation of the pFBA.

Method: Time: [s] Number of Number of Number of Number of
iterations: variables: equality constraints: inequality constraints:

Original 0.019 36 95 72 190
Dual 0.048 42 357 168 380

P. Dual 0.060 60 357 167 380
KKT 0.047 42 357 169 380

P. KKT 0.177 170 357 167 380

The difference in solver time between the non-penalized duality theory and the non-
penalized KKT reformulations are neglectable, 0.001 seconds, as shown in Table 5. On
the other hand, is the penalized duality theory reformulation roughly 3 times faster to
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solve than the penalized KKT reformulation. The penalized approaches are slower than
the non-penalized ones, with the non-penalized duality theory reformulation being roughly
25% faster than the penalized reformulation and the non-penalized KKT reformulation
being roughly 3.7 times faster than the penalized reformulation.

We compare the solver time and accuracy of the reformulations for the pFBA problem
before and after we decreased the tolerances of the solver. In Table 6 we present the differ-
ences as the solution with decreased tolerances minus the solution without the tolerance
decrease.

Table 6: Comparison of the solver time and deviation of the pFBA reformulations from the original pFBA
problem before and after the tolerances of the solver were decreased from its default values. The
differences as the solution with decreased tolerances minus the solution without the tolerance
decrease. Dual refers to the duality theory reformulation of the pFBA, P. Dual refers to the
penalized duality theory reformulation of the pFBA, KKT refers to the KKT reformulation of
the pFBA, and P. KKT refers to the penalized KKT reformulation of the pFBA.

Method: Time difference: [s] Time difference: [%] Difference in objective: Difference in MSE:
Original 0.003 18.75 0.00 0.00

Dual 0.011 29.73 −1.58 · 10−8 4.06 · 10−8

P. Dual 0.017 39.53 0.00 −3.02 · 10−7

KKT -0.048 -50.53 −1.37 · 10−4 −4.46 · 10−3

P. KKT -0.017 -8.76 1.00 · 10−9 −4.68 · 10−1

From Table 6 we see that the solver time of the original problem and the duality theory
reformulations increased when we decreased the tolerances. The time to solve the original
problem increased by roughly 18.75 %, and the duality reformulations increased by roughly
29.73 % for the non-penalized version and 39.53 % for the penalized versions. On the other
hand, we see that the solver time of the KKT reformulations has decreased. The solver
time of the non-penalized KKT reformulation decreased by roughly 50.53% and the solver
time for the penalized version decreased by roughly 8.76 %. Overall the accuracy of the
reformulations increases or has an insignificant decrease, less than 10−6, when we decreased
the tolerances. We see the largest improvement in accuracy for the MSE of the metabolic
fluxes in the penalized KKT reformulation with a reduction of the difference between the
reformulation and original pFBA of −4.68 · 10−1.

Overall we see that the decreased tolerances are necessary for the accuracy of the KKT
reformulations, while the change in the accuracy of the duality theory reformulations is
neglectable. Despite the time increase for the duality theory reformulations it is decided
to keep the decreased tolerances for all the pFBA reformulations. The reasoning for this
is that more constraints are added when we introduce the dFBA model which will affect
the solver time, and we want a fair comparison between the duality theory and KKT
reformulations.

4.4 Batch bioreactor model based on dFBA

We test our dFBA model reformulations for a batch reactor, see Section 3.2 and Section 3.3.
The initial conditions of our dFBA models are gathered from Oliveira et al. [18] and
provided in Table 7. Note that the Michaelis constant for acetate (KA,M ) is not given, but
we assume that it is equal to the Michaelis constant for glucose (KG,M ).
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Table 7: Initial conditions for the simulations of the batch bioreactor model based on dFBA. The param-
eters are gathered from Oliveira et al. [18]. The Michaelis constant of acetate (KA,M ) is not
given, but we assume that it is equal to the Michaelis constant of glucose (KG,M )

Parameter: Symbol: Value: Unit:
Size of finite elements h 0.888 h

Initial glucose concentration G0 10.5 mmol/L
Initial biomass concentration X0 0.01 gDW/L
Initial acetate concentration A0 0.10 mmol/L
Michaelis constant glucose KG,M 0.01 mmol/L
Michaelis constant acetate KA,M 0.01 mmol/L
Maximal glucose uptake vmax,G -10.5 mmol/gDW h
Maximal acetate uptake vmax,A -2.5 mmol/gDW h

Oxygen lower bound LBO -19.0 mmol/gDW h

As glucose is the main source of substrate in the reactor we stop the simulation right before
we run out of glucose. It was found that the glucose is consumed after roughly 5.33 hours,
by running a simulation with the direct approach (DA), and 6 finite elements are used in
the orthogonal collocation used for the Non-Linear Programming Approach (NLPA).

The solver time, number of times the pFBA where solved in the DA, the solver status, and
the MSE between the glucose, biomass and acetate concentration calculated by the NLPA
reformulations and the DA are presented in Table 8.

Table 8: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the solver time, number of times the DA solved the pFBA, solver
status, and the MSE between the glucose, biomass and acetate concentration found by the
NLPA reformulations and the DA. The batch bioreactor simulation is run for 5.33 hours with 6
finite elements. MIE stands for maximum number of iterations reached, STAL stands for solved
to acceptable level, and SS stands for solved successfully. Dual refers to the duality theory
reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation of the
pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the penalized
KKT reformulation of the pFBA.

Method: Time: [s] Number of calls: Status: MSE glucose: MSE biomass: MSE acetate:
DA 7.65 242 SS/STAL 0 0 0
Dual 113 - MIE 2.12 · 10−4 4.60 · 10−7 8.23 · 10−4

P. Dual 22.1 - SS 2.12 · 10−4 4.60 · 10−7 8.22 · 10−4

KKT 11.1 - SS 2.12 · 10−4 4.60 · 10−7 8.23 · 10−4

P. KKT 7.79 - SS 2.12 · 10−4 4.60 · 10−7 8.22 · 10−4

The DA called the non-linear problem (NLP) solver 242 times, and the NLP solver solved
successfully (SS) or to an acceptable level (STAL) each time, see Table 8. The penalized
NLPA reformulations and the non-penalized KKT reformulation are also solved success-
fully. The non-penalized duality theory NLPA reached the maximum number of iterations,
3000, which implies that the reformulation did not converge, and thus failed to solve suc-
cessfully. 3000 is the default maximum number of iterations and was not increased, as
model reformulations requiring this amount of iterations are to slow to compete with the
other reformulation. We expected that the non-penalized reformulations would fail to
solve successful as they are less robust than the penalized reformulations. However, we
also expected the non-penalized KKT reformulation to fail to converge as the IPOPT-
solver should have more difficulty solving the complementary constraint problem present
in the KKT reformulation.
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All the reformulations returned the same result, except for a small difference in the MSE
of acetate for the non-penalized and penalized reformulations. We did not expect any
large deviation between the NLPA reformulations, as they all solve the same mathematical
problem. However, as the penalized reformulations are more relaxed, as some of the hard
constraints are moved to the objective, are the small deviation between the penalized and
non-penalized methods expected.

The non-penalized duality theory reformulation is the slowest method requiring 113 seconds
to solve, compered to the penalized duality theory reformulation, which is the second
slowest method, requiring 22.1 seconds to solve. The fastest method is the DA which
used 7.65 seconds to solve. This is quite close to the penalized KKT reformulation which
required 7.79 seconds. It was expected that the DA would be one of the fastest methods
as the time span is quite small, 5.33 hours, and the ODE solver therefore only need to call
the NLP-optimizer 242 times. Overall we see that the KKT reformulations are faster than
the duality theory reformulations and that the penalized reformulations are faster than the
non-penalized reformulations. We did not expect that the penalized KKT reformulation
would be faster than the penalized duality theory reformulations as the penalized duality
reformulations were faster than the penalized KKT reformulation in the test of the pFBA
in Section 4.3. Nor did we expect such a large difference in solver time between the non-
penalized KKT and duality theory reformulations, as they preformed quite similarly when
we tested the reformulations of the pFBA problem in Section 4.3. However, this is most
likely a result of the duality theory reformulation failing to converge for the non-penalized
duality theory reformulation.

The concentration profiles of biomass, glucose and acetate are presented in Figure 4, Fig-
ure 5 and Figure 6 respectively.

Figure 4: Concentration profile of the biomass for the batch bioreactor model based on dFBA, for a case
study of the Escherichia coli core metabolism. The batch bioreactor simulation is run for 5.33
hours with 6 finite elements. Dual refers to the duality theory reformulation of the pFBA,
P. Dual refers to the penalized duality theory reformulation of the pFBA, KKT refers to the
KKT reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation of
the pFBA.
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Figure 5: Concentration profile of the glucose
for the batch bioreactor model based
on dFBA, for a case study of the Es-
cherichia coli core metabolism. The
batch bioreactor simulation is run
for 5.33 hours with 6 finite elements.
Dual refers to the duality theory re-
formulation of the pFBA, P. Dual
refers to the penalized duality theory
reformulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to the
penalized KKT reformulation of the
pFBA.

Figure 6: Concentration profile of the acetate
for the batch bioreactor model based
on dFBA, for a case study of the Es-
cherichia coli core metabolism. The
batch bioreactor simulation is run
for 5.33 hours with 6 finite elements.
Dual refers to the duality theory re-
formulation of the pFBA, P. Dual
refers to the penalized duality theory
reformulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to the
penalized KKT reformulation of the
pFBA.

From Figure 4, Figure 5 and Figure 6 it is apparent that the concentration profiles calcu-
lated by the NLPA reformulations follow the concentration profiles of the DA closely. This
is consistent with the small values of the MSE, presented in Table 8. The shape of the
concentration profiles are the same as those found by Oliveira et al. [18].

We also present the metabolic fluxes of the extracellular metabolites for some of the finite
elements in the NLPA models. The fluxes of the extracellular metabolites are useful to
see how the changes in concentration affects the cellular behavior at each time step. As
the difference in the results of the different reformulations is neglectable, we will only
be considering the penalized duality theory reformulation. The metabolic fluxes of the
extracellular metabolites found by the penalized duality theory reformulation are presented
in Table 9. The fluxes are given for each point in a finite element and three of the finite
elements are presented.
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Table 9: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the metabolic fluxes of the metabolic reactions found by the penalized
duality theory reformulation for some of the finite elements. The batch bioreactor simulation is
run for 5.33 hours with 6 finite elements. Point 1 refers to the first point in a finite element,
Point 2 refers to the second point in a finite element, and Point 3 refers to the third point in a
finite element.

Metabolite: Time: [s] Concentration: [g/L and mmol/L] Point 1: Point 2: Point 3:
0.14 - 0.89 0.01 - 0.02 8.32 · 10−1 8.32 · 10−1 8.32 · 10−1

Biomass 1.91 - 2.67 0.05 - 0.09 8.32 · 10−1 8.32 · 10−1 8.32 · 10−1

4.58 - 5.33 0.45 - 0.84 8.32 · 10−1 8.31 · 10−1 7.85 · 10−1

0.14 - 0.89 10.48 - 10.36 −10.49 −10.49 −10.49
Glucose 1.91 - 2.67 10.01 - 9.47 −10.49 −10.49 −10.49

4.58 - 5.33 4.95 - 0.09 −10.48 −10.46 −9.46

0.14 - 0.89 0.11 - 0.15 3.78 3.78 3.78
Acetate 1.91 - 2.67 0.28 - 0.47 3.78 3.78 3.78

4.58 - 5.33 2.07 - 3.70 3.76 3.72 1.73

From Table 9 it is apparent that the metabolic fluxes of biomass, glucose and acetate are
dependent on the glucose concentration. The metabolic fluxes are more or less constant
until the glucose concentration approaches zero in the third point in the last element. At
this point the absolute value of the metabolic fluxes decrees. This behavior was expected
as the cells consume as much glucose as possible and turn it into biomass and acetate.
When the glucose concentration decreases less glucose enters the cells, as described by the
Michaelis-Menten kinetics, resulting in less energy and material being available to the cells
to produce biomass and acetate.

4.5 Batch bioreactor model based on dFBA - increased time span

We increase the time span for the dFBA models used in Section 4.4 to include the point
where the acetate in the reactor is consumed. This point was found by a simulation with
the DA to be at roughly 7.1 hours. The orthogonal collocation used to discretize the mass
balances in the NLPA reformulations uses 10 finite elements, resulting in a length of 0.71
hours. The initial conditions are presented in Table 7.

The solver time, number of times the pFBA where solved in the DA, the solver status, and
the MSE between the glucose, biomass and acetate concentration calculated by the NLPA
reformulations and the DA are presented in Table 10.

Table 10: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the solver time, number of times the DA solved the pFBA, solver
status, and the MSE between the glucose, biomass and acetate concentration found by the
NLPA reformulations and the DA. The batch bioreactor simulation is run for 7.1 hours with 10
finite elements. IPD stands for infeasible problem detected, MIE stands for maximum number
of iterations reached, STAL stands for solved to acceptable level, and SS stands for solved
successfully. Dual refers to the duality theory reformulation of the pFBA, P. Dual refers to the
penalized duality theory reformulation of the pFBA, KKT refers to the KKT reformulation of
the pFBA, and P. KKT refers to the penalized KKT reformulation of the pFBA.

Method: Time: [s] Number of calls: Status: MSE glucose: MSE biomass: MSE acetate:
DA 9.26 559 SS/STAL 0 0 0
Dual 596 - MIE 7.98 4.63 · 10−2 1.70

P. Dual 69.5 - SS 8.70 5.07 · 10−2 1.70
KKT 192 - IPD 8.64 5.05 · 10−2 1.65

P. KKT 75.4 - STAL 8.69 5.06 · 10−2 1.70
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From the MSE is it apparent that the NLPA reformulations diverge a lot from the DA, see
Table 10. The MSE for all the three extracellular metabolites are very high, especially for
glucose, which is between 7.98 and 8.70, and for the acetate, which is between 1.65 and
1.70. This was expected as Oliveira et al. [18] also got large deviations when compering
his NLPA reformulations of the dFBA model to the DA approach.

From the solver status of the NLPA reformulations we see that the non-penalized du-
ality theory approach reached the maximum number of iterations (MIE) and that the
non-penalized KKT approach resulted in an infeasible problem (IPD). Thus these two ap-
proaches failed to find the optimal solution. The penalized duality reformulation solved the
problem successfully (SS) and the penalized KKT reformulation solved the problem to an
acceptable level (STAL), but we see from the MSE that the results from the penalized refor-
mulations are very similar to the result from the non-penalized ones. Implying that also the
penalized approaches failed to find the correct solution. As the penalized reformulations are
more robust than the penalized ones, is it expected that the penalized reformulations can
return solver status as successfully solved, despite the non-penalized reformulations return-
ing failures. On the other hand, did we not expect the results between the non-penalized
and penalized NLPA reformulations to be so close when the non-penalized reformulation
fails to find the optimal solution.

The concentration profiles of biomass, glucose and acetate are presented in Figure 7, Fig-
ure 8 and Figure 9 respectively.

Figure 7: Concentration profile of the biomass for the batch bioreactor model based on dFBA, for a case
study of the Escherichia coli core metabolism. The batch bioreactor simulation is run for 7.1
hours with 10 finite elements. Dual refers to the duality theory reformulation of the pFBA,
P. Dual refers to the penalized duality theory reformulation of the pFBA, KKT refers to the
KKT reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation of
the pFBA.
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Figure 8: Concentration profile of the glucose
for the batch bioreactor model based
on dFBA, for a case study of the Es-
cherichia coli core metabolism. The
batch bioreactor simulation is run
for 7.1 hours with 10 finite elements.
Dual refers to the duality theory re-
formulation of the pFBA, P. Dual
refers to the penalized duality theory
reformulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to the
penalized KKT reformulation of the
pFBA.

Figure 9: Concentration profile of the acetate
for the batch bioreactor model based
on dFBA, for a case study of the Es-
cherichia coli core metabolism. The
batch simulation is run modeled for
7.1 hours with 10 finite elements.
Dual refers to the duality theory re-
formulation of the pFBA, P. Dual
refers to the penalized duality theory
reformulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to the
penalized KKT reformulation of the
pFBA.

From Figure 7, Figure 8 and Figure 9 is it apparent that the concentration profiles calcu-
lated by the NLPA reformulations of the dFBA do not fit the DA concentration profiles.
This was expected from the high MSE values in Table 10. We see that the glucose is
consumed slower in the NLPA reformulations than the DA reformulation, resulting in a
slower increase in the biomass concentration of the NLPAs. From Figure 9 we also see that
the acetate concentration profile is rapidly changing between increasing and decreasing,
implying that some of the acetate is consumed before all the glucose is used up by the
cells. This was expected as Oliveira et al. [18] got similar results from his models, and
found that the NLPAs do not find the correct solution because of rapid changes in the
metabolite fluxes inside each finite element.

To confirm that we experience the same problem as the one identified by Oliveira et al. [18]
we present the metabolic fluxes of the extracellular metabolites at each time step for four
of the finite elements. As the solution from the different NLPA reformulations are very
similar we are only considering the penalized duality theory reformulation. The metabolic
fluxes of the extracellular metabolites are presented in Table 11.

33



4 Results and discussion 4.6 Batch bioreactor model based on dFBA - constant
metabolic fluxes in each finite element

Table 11: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the metabolic fluxes of the metabolic reactions found by the penalized
duality theory reformulation for some of the finite elements. The batch bioreactor simulation
is run for 7.1 hours with 10 finite elements. Point 1 refers to the first point in a finite element,
Point 2 refers to the second point in a finite element, and Point 3 refers to the third point in
a finite element.

Metabolite: Time: [s] Concentration: [g/L and mmol/L] Point 1: Point 2: Point 3:
0.11 - 0.71 0.01 - 0.02 8.32 · 10−1 3.70 · 10−1 8.32 · 10−1

Biomass 2.95 - 3.55 0.06 - 0.09 8.32 · 10−1 4.15 · 10−1 8.32 · 10−1

5.08 - 5.68 0.24 - 0.36 8.32 · 10−1 5.90 · 10−1 8.32 · 10−1

6.50 - 7.10 0.67 - 0.91 8.04 · 10−1 4.84 · 10−1 2.08 · 10−9

0.11 - 0.71 10.48 - 10.43 −10.49 −4.37 −10.49
Glucose 2.95 - 3.55 9.86 - 9.59 −10.49 −4.41 −10.49

5.08 - 5.68 7.70 - 6.37 −10.49 −6.25 −10.48
6.50 - 7.10 2.64 - 0.00 −9.88 −5.13 −1.03 · 10−4

0.11 - 0.71 0.11 - 0.11 3.78 −5.43 · 10−1 3.78
Acetate 2.95 - 3.55 0.20 - 0.18 3.78 −2.36 3.78

5.08 - 5.68 0.45 - 0.35 3.78 −2.43 3.77
6.50 - 7.10 0.79 - 0.03 2.56 −2.46 −1.97

From Table 11 we see the changes in the metabolic fluxes in each finite element as described
by Oliveira et al. [18]. The biomass flux is smaller in the second collocation point of the
finite elements than expected compared to the first and third collocation points. The
glucose and acetate fluxes show that both acetate and glucose are consumed in the second
collocation point.

4.6 Batch bioreactor model based on dFBA - constant metabolic fluxes
in each finite element

Oliveira et al. [18] found that the failure of the NLPA reformulations in Section 4.5 are
contributed to the rapid changes in the metabolic fluxes inside each finite element. The
rapid changes gives rise to convergence problems for the optimization problems. Similar
convergence problems were also reported by Biegler et al. [2].

Oliveira et al. solve this problem by assuming that the metabolic fluxes are constant in-
side of each finite element. Considering the MMK, Equation 10, used to calculate the
lower bounds of the substrates it is apparent that this assumption is valid as long as the
concentration of substrates is large compared to the value of the Michaelis constant, KM ,
associated with the substrate.

Oliveira et al. suggest adding constraints to the metabolic fluxes to prevent the fluxes
to change considerably inside the finite elements. This was done by setting the change
between each metabolic flux in the finite element equal to zero.

vki − vk−1
i ≤ 0 (52)

Where vki is the metabolic flux of the ith metabolic reaction in collocation point k.

However, this implementation has two main drawbacks. Firstly, we have to solve the pFBA
three times inside each of the finite elements despite only using one flux value. Resulting
in the system being unnecessary large. Secondly, the flux constraints may contradict the
constraints for the lower bounds.
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Oliveira et al. [18] proposes a more efficient implementation in his code [17], where the
pFBA is only solved once for each finite element, by only using the concentrations of the
substrates in one of the collocation points when solving the pFBA.

In Figure 10 we present the concentration profiles of glucose for the penalized duality
theory NLPA dFBA model reformulation using the concentration in the first, second and
last collocation point in each finite element to solve the pFBA.

Figure 10: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this figure we present the concentration profiles of glucose calculated from the penalized
duality theory NLPA using the metabolic fluxes calculated in the first, second and last collo-
cation point in each finite element. DA refers to the concentration profile calculated by the
direct approach, P. Dual 1 refers to the reformulation using the metabolic fluxes calculated
in the first collocation point, P. Dual 2 refers to the reformulation using the metabolic fluxes
calculated in the second collocation point, and P. Dual 3 refers to the reformulation using the
metabolic fluxes calculated in the third collocation point.

It is apparent that only the model utilizing the last collocation point fit the glucose con-
centration from the DA dFBA model, as shown in Figure 10. This was expected because
using the substrate concentrations from one of the previous points will result in a too large
growth rate, resulting in an overshoot. Consider the collocation point right before the
glucose concentration reaches zero. If we use one of the first two collocation points, the
growth rate in the last point will be too large, and the concentration of glucose will dip
below zero. This violates the constraints for the concentrations being larger or equal to
zero, thus resulting in an infeasible problem. It was thus decided to solve the pFBA with
the substrate concentrations from the last collocation point in each finite element.

Our new NLPA dFBA model reformulations use the third collocation point to calculate
the lower bound of the substrates, replacing the lower bounds of glucose and acetate with
the expressions presented below.

LBG = vG,max
G3

KM,G +G3
(53a)

LBA = vA,max
A3

KM,A +A3
(53b)

G3 is the glucose concentration and A3 is the acetate concentration at the third collocation
point in each finite element.

We run a new simulation similar to the one in Section 4.5. The solver time, number of
times the pFBA where solved in the DA, the solver status, and the MSE between the
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glucose, biomass and acetate concentration calculated by the NLPA reformulations and
the DA are presented in Table 12.

Table 12: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the solver time, number of times the DA solved the pFBA, solver
status, and the MSE between the glucose, biomass and acetate concentration found by the
NLPA reformulations and the DA. The batch bioreactor simulation is run for 7.1 hours with
10 finite elements and constant metabolic fluxes in each of the finite elements. RF stands
for restoration failed, IPD stands for infeasible problem detected, STAL stands for solved
to acceptable level, and SS stands for solved successfully. Dual refers to the duality theory
reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation of the
pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the penalized
KKT reformulation of the pFBA.

Method: Time: [s] Number of calls: Status: MSE glucose: MSE biomass: MSE acetate:
DA 9.26 559 SS/STAL 0 0 0
Dual 47.3 - RF 4.30 · 10−2 2.48 · 10−4 3.70 · 10−2

P. Dual 5.88 - SS 4.32 · 10−2 2.37 · 10−4 7.16 · 10−2

KKT 12.7 - IPD 4.30 · 10−2 2.48 · 10−4 3.70 · 10−2

P. KKT 4.34 - SS 4.32 · 10−2 2.37 · 10−4 7.16 · 10−2

From Table 12 we see that the solver fails to converge for the non-penalized NLPA refor-
mulations. However, despite failing to find the optimal solution, the non-penalized NLPA
reformulations still return results close to the DA and penalized NLPA reformulations.
With the MSE of the glucose and acetate concentration being smaller for the the non-
penalized NLPAs than the MSE of the penalized NLPA reformulations. The penalized
NLPAs solved successfully and the MSE for the extracellular metabolites are relatively
small, between 2.37 · 10−4 and 7.16 · 10−2. The failure of the non-penalized reformulations
and the similar MSE values for the different NLPA reformulations was expected as these
results are quite similar to our previous ones.

We see a large improvement in the solver time of the NLPA reformulations for the new
dFBA model, and both penalized reformulations are solved faster than the DA reformula-
tion of the dFBA model. This was expected as we only solve the pFBA one time for each
finite element instead of three. Overall is the KKT reformulations faster to solve than the
duality theory reformulations.

The concentration profiles of biomass, glucose and acetate are presented in Figure 11,
Figure 12 and Figure 13 respectively.
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Figure 11: Concentration profile of the biomass for the batch bioreactor model based on dFBA, for a case
study of the Escherichia coli core metabolism. The batch bioreactor simulation is run for 7.1
hours with 10 finite elements and constant metabolic fluxes in each of the finite elements. Dual
refers to the duality theory reformulation of the pFBA, P. Dual refers to the penalized duality
theory reformulation of the pFBA, KKT refers to the KKT reformulation of the pFBA, and
P. KKT refers to the penalized KKT reformulation of the pFBA.

Figure 12: Concentration profile of the glu-
cose for the batch bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The batch bioreac-
tor simulation is run for 7.1 hours
with 10 finite elements and con-
stant metabolic fluxes in each of
the finite elements. Dual refers
to the duality theory reformula-
tion of the pFBA, P. Dual refers
to the penalized duality theory re-
formulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to
the penalized KKT reformulation
of the pFBA.

Figure 13: Concentration profile of the ac-
etate for the batch bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The batch bioreac-
tor simulation is run for 7.1 hours
with 10 finite elements and con-
stant metabolic fluxes in each of
the finite elements. Dual refers
to the duality theory reformula-
tion of the pFBA, P. Dual refers
to the penalized duality theory re-
formulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to
the penalized KKT reformulation
of the pFBA.

From Figure 11, Figure 12 and Figure 13 we see that the concentration profiles of the
metabolites calculated by the NLPA reformulations are very close to the concentration
profiles found by the DA. The difference in the results is partly contributed to the place-
ment of the finite elements. As the glucose concentration reaches zero inside one of the
finite elements, are the metabolic fluxes changing considerably inside the element at this
point. This is in violation with our assumption of the fluxes not changing inside the finite
elements. This results in a premature decrease in the acetate concentration, as only the
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last collocation point is used to calculate the metabolic fluxes. Oliveira et al. [18] got
similar results and found that the accuracy of the models can be improved by introducing
an adaptive mesh strategy to adjust the size and placement of the finite elements.

4.7 Batch bioreactor model based on dFBA - adaptive mesh

To improve the accuracy of the dFBA model presented in Section 4.6 Oliveira et al. [18]
introduced an adaptive mesh where he let the size of the finite elements (h) change freely
based on the equidistant element size (h∗).

0 ≤ hi ≤ 2h∗ (54a)
N∑
i=1

hi = tend (54b)

Where N is the total number of finite elements and tend is the end time.

We introduce a similar approach to Oliveira et al. [18], but we add an additional penal-
ization term to the optimization objective. This term penalises the sum of the change
in the glucose concentration in a finite element multiplied with the step size of the finite
element. We added this term as the solver did not place the finite elements in the desired
locations just using the implementation suggested by Oliveira et al., and this term thus
gives us more control over the placement of the finite elements. For the batch reactor we
decided to use h∗ equal to 0.5 hours instead of 0.71 hours, because we want to keep the
finite elements slightly closer to another.

Non-penalized dFBA model implementation:

min
v,λ,µU ,µL,h

N∑
n=1

hn(G1,n −G3,n) (55a)

s.t. Sv = 0 (55b)
LB − v ≤ 0 (55c)
v − UB ≤ 0 (55d)

− c + 2Wv + STλ− µL + µU = 0 (55e)
Ψ(v,LB,UB) (55f)
µU , µL ≥ 0 (55g)
G = G0 + h · (M · FG(G,v)) (55h)
A = A0 + h · (M · FA(A,v)) (55i)
X = X0 + h · (M · FX(X,v)) (55j)
G,A,X ≥ 0 (55k)

LBG = vG,max
G3

KM,G +G3
(55l)

LBA = vA,max
A3

KM,A +A3
(55m)
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N∑
n=1

(hn) = tend (55n)

h ≤ 2h∗ (55o)
h ≥ 0 (55p)

Where G1,n is the glucose concentration at the first collocation point in finite element n,
G3,n is the glucose concentration at the third collocation point in finite element n, and hn
is the length of collocation point n.

Penalized dFBA model implementation:

min
v,λ,µU ,µL,h

Φ(v,LB,UB) + 0.1

N∑
n=1

hn(G1,n −G3,n) (56a)

s.t. Sv = 0 (56b)
LB − v ≤ 0 (56c)
v − UB ≤ 0 (56d)

− c + 2Wv + STλ− µL + µU = 0 (56e)
µU , µL ≥ 0 (56f)
G = G0 + h · (M · FG(G,v)) (56g)
A = A0 + h · (M · FA(A,v)) (56h)
X = X0 + h · (M · FX(X,v)) (56i)
G,A,X ≥ 0 (56j)

LBG = vG,max
G3

KM,G +G3
(56k)

LBA = vA,max
A3

KM,A +A3
(56l)

N∑
n=1

(hn) = tend (56m)

h ≤ 2h∗ (56n)
h ≥ 0 (56o)

We run a simulation with our adaptive mesh for the dFBA batch model reformulations.
The initial conditions are the same as those presented for our simulation in Section 4.5.

The solver time, number of times the pFBA where solved in the DA, the solver status,
and the MSE between the glucose, biomass and acetate concentration calculated by the
different NLPA reformulations and the DA are presented in Table 13.
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Table 13: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the solver time, number of times the DA solved the pFBA, solver
status, and the MSE between the glucose, biomass and acetate concentration found by the
NLPA reformulations and the DA. The batch bioreactor simulation is run for 7.1 hours with
10 finite elements, constant metabolic fluxes in each of the finite elements, and adaptive mesh.
MIE stands for maximum number of iterations reached, STAL stands for solved to acceptable
level, and SS stands for solved successfully. Dual refers to the duality theory reformulation of
the pFBA, P. Dual refers to the penalized duality theory reformulation of the pFBA, KKT
refers to the KKT reformulation of the pFBA, and P. KKT refers to the penalized KKT
reformulation of the pFBA.

Method: Time: [s] Number of calls: Status: MSE glucose: MSE biomass: MSE acetate:
DA 9.26 559 SS/STAL 0 0 0
Dual 84.5 - MIE 1.67 · 10−3 6.88 · 10−6 6.86 · 10−3

P. Dual 9.55 - SS 1.62 · 10−3 6.67 · 10−6 6.64 · 10−3

KKT 81.9 - SS 1.62 · 10−3 6.67 · 10−6 6.64 · 10−3

P. KKT 10.0 - SS 1.62 · 10−3 6.67 · 10−6 6.64 · 10−3

Comparing the result from the dFBA model using the adaptive mesh strategy, see Table 13,
to the results from the dFBA model without the adaptive mesh, see Table 12, we see that
the NLPA reformulations utilizing the adaptive mesh is much closer to the solution of the
DA than the NLPA reformulations not utilizing the adaptive mesh strategy.

Considering the penalized NLPA reformulations that were solved successfully in both cases
we see that the MSE of glucose is reduced from 4.32·10−2 to 1.62·10−3, the MSE of biomass
is reduced from 2.37 ·10−4 to 6.67 ·10−6, and the MSE of acetate is reduced from 7.16 ·10−2

to 6.64 · 10−3. Similar results are found for the non-penalized NLPAs. However, we see
that the time required to solve the systems have increased for the NLPA reformulations.
With the exception of the non-penalized KKT reformulation are the solver times of the
NLPAs has roughly doubled. The solver time of the non-penalized KKT increased much
more, from 12.7 seconds to 81.9 seconds. Despite the increase in the solver time are
the penalized NLPA reformulations still able to compete with the DA, as the difference
between the penalized NLPA reformulations and the DA is less than one second. Overall
is the increase in required solver time expected as we have increase the size of the system
by adding additional variables and constraints to our optimization problems.

The concentration profiles of biomass, glucose and acetate are presented in Figure 14,
Figure 15 and Figure 16 respectively.
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Figure 14: Concentration profile of the biomass for the batch bioreactor model based on dFBA, for a
case study of the Escherichia coli core metabolism. The batch bioreactor simulation is run
for 7.1 hours with 10 finite elements, constant metabolic fluxes in each of the finite elements,
and adaptive mesh. Dual refers to the duality theory reformulation of the pFBA, P. Dual
refers to the penalized duality theory reformulation of the pFBA, KKT refers to the KKT
reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation of the
pFBA.

Figure 15: Concentration profile of the glu-
cose for the batch bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The batch bioreac-
tor simulation is run for 7.1 hours
with 10 finite elements, constant
metabolic fluxes in each of the fi-
nite elements, and adaptive mesh.
Dual refers to the duality theory re-
formulation of the pFBA, P. Dual
refers to the penalized duality the-
ory reformulation of the pFBA,
KKT refers to the KKT reformu-
lation of the pFBA, and P. KKT
refers to the penalized KKT refor-
mulation of the pFBA.

Figure 16: Concentration profile of the ac-
etate for the batch bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The batch bioreac-
tor simulation is run for 7.1 hours
with 10 finite elements, constant
metabolic fluxes in each of the fi-
nite elements, and adaptive mesh.
Dual refers to the duality theory re-
formulation of the pFBA, P. Dual
refers to the penalized duality the-
ory reformulation of the pFBA,
KKT refers to the KKT reformu-
lation of the pFBA, and P. KKT
refers to the penalized KKT refor-
mulation of the pFBA.

From Figure 14, Figure 15 and Figure 16 we see that all the solvers place the finite elements
in the same positions. We also see that the concentration profiles of the NLPA reformula-
tions are very close to the concentration profiles of the DA. However, there is still a small
deviation where the glucose concentration reaches zero, despite one finite element starting
roughly at this point. Resulting in the following finite element having a small decrease of
the glucose concentration when it should be zero. This was expected as our dFBA model is
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less accurate where we have low substrate concentrations, as a consequence of our assump-
tion that the fluxes are constant in each finite element and the MMK used to describe the
substrate uptake to the cells. Another drawback of the NLPA model reformulations is that
they have difficulties in describing the behavior of the metabolites when one of the concen-
tration reaches zero, as a result of the assumption of constant fluxes. For example when
the glucose concentration in the third collocation point reaches zero will the lower bound
of the glucose uptake be set to zero for the entire element, resulting in glucose present in
the first two collocation points not being consumed. Thus the metabolite concentrations
can not reach zero. This problem is also present in the DA reformulation, but hidden in
the sheer amount of points used by the ODE solver to describe the behavior in this area.
Another limitation of our dFBA model utilizing the adaptive mesh strategy is that we
have to gather some information about the behavior of the substrates, in particular which
substrate that reaches zero first, to be able to initialize the adaptive mesh penalization
term in the objective function.

4.8 CSTR bioreactor model based on dFBA

As we wish to apply MPC to our dFBA model, we must change from a batch reactor to a
reactor design with possible manipulated variables that can be used in control applications.
We decided to use a CSTR bioreactor because it is an important abstraction of reactors
in industry, that allow for implementation of control structures. We test our dFBA model
developed in Section 4.6 for a batch reactor on a CSTR by replacing the mass balances for
batch processes with the mass balances for CSTR processes, presented in Equation 46.

The initial conditions of our dFBA model are provided in Table 14. The values of the
maximal glucose and acetate uptake, the lower bound of oxygen, and the Michaelis constant
for glucose are gathered from Oliveira et al. [18] and are the same as those used to initialize
the batch reactor in Section 4.4. We assume that the Michaelis constant for acetate is equal
to the one given for glucose and decided to use a feed of glucose roughly half the size of
the maximal glucose uptake. The parameters for the dilution rate and the extracellular
metabolite concentrations are found by a combination of using the steady state model,
presented in Section 3.4, and by trial and error where the goal was to start close to, but
not at, steady state. It was decided to stop the simulation after 30 hours and to use 30
finite elements.
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Table 14: Initial conditions for the simulations of the CSTR bioreactor model based on dFBA for a case
study of the Escherichia coli core metabolism. The parameters are gathered from Oliveira
et al. [18]. The Michaelis constant of acetate (KA,M ) is not given, but we assume that it is
equal to the Michaelis constant of glucose (KG,M ), and the parameters for the dilution rate
and the extracellular metabolite concentrations are found by trial and error where the goal was
to start close to, but not at steady state.

Parameter: Symbol: Value: Unit:
Size of finite elements h 1.00 h

Initial glucose concentration G0 1.00 mmol/L
Initial biomass concentration X0 0.30 gDW/L
Initial acetate concentration A0 1.00 mmol/L
Michaelis constant glucose KG,M 0.01 mmol/L
Michaelis constant acetate KA,M 0.01 mmol/L
Maximal glucose uptake vmax,G -10.5 mmol/gDW h
Maximal acetate uptake vmax,A -2.5 mmol/gDW h

Oxygen lower bound LBO -19.0 mmol/gDW h
Dilution rate D 0.80 h−1

Glucose feed concentration Gf 5.00 mmol/L
End time tend 30 h

The solver time, the number of times the pFBA were solved in the DA, the solver status,
and the MSE between the glucose, biomass and acetate concentration calculated by the
NLPA reformulations and the DA are presented in Table 15.

Table 15: Simulation of the CSTR dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the solver time, number of times the DA solved the pFBA, solver
status, and the MSE between the glucose, biomass and acetate concentration found by the
NLPA reformulations and the DA. The CSTR bioreactor simulation is run for 30 hours with
30 finite elements and constant metabolic fluxes in each of the finite elements. STAL stands for
solved to an acceptable level, and SS stands for solved successfully. Dual refers to the duality
theory reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation
of the pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the
penalized KKT reformulation of the pFBA.

Method: Time: [s] Number of calls: Status: MSE glucose: MSE biomass: MSE acetate:
DA 6.96 418 SS/STAL 0 0 0
Dual 4.54 - SS 2.00 · 10−4 1.24 · 10−6 1.26 · 10−4

P. Dual 17.2 - SS 2.01 · 10−4 1.24 · 10−6 1.26 · 10−4

KKT 9.14 - SS 2.01 · 10−4 1.24 · 10−6 1.26 · 10−4

P. KKT 5.24 - SS 2.01 · 10−4 1.24 · 10−6 1.26 · 10−4

The time required to solve the KKT NLPA reformulations is relatively small, below 10
seconds, and the non-penalized KKT reformulation requires more time to solve than the
penalized KKT reformulation. This corresponds well with the results from the batch
reactor simulation in Section 4.6. The computational time required to solve the duality
theory NLPAs is the opposite of what we expected from our previous simulations, with the
non-penalized reformulation being very fast, 4.54 seconds, and the penalized reformulation
being the slowest of all the NLPA reformulation, requiring 17.2 seconds to solve. The
reason for the large computational time required to solve the penalized duality theory
reformulation compared to the other ones is unknown. However, it might be a result
of the IPOPT solver having a hard time solving this reformulation for the given initial
extracellular metabolite concentrations. The performance of the solver might be improved
by changing the initial conditions or the number of finite elements.
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The concentration profiles of biomass, glucose and acetate are presented in Figure 17,
Figure 18 and Figure 19 respectively.

Figure 17: Concentration profile of the biomass for the CSTR bioreactor model based on dFBA, for
a case study of the Escherichia coli core metabolism. The CSTR bioreactor simulation is
run for 30 hours with 30 finite elements and constant metabolic fluxes in each of the finite
elements. Dual refers to the duality theory reformulation of the pFBA, P. Dual refers to the
penalized duality theory reformulation of the pFBA, KKT refers to the KKT reformulation
of the pFBA, and P. KKT refers to the penalized KKT reformulation of the pFBA.

Figure 18: Concentration profile of the glu-
cose for the CSTR bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The CSTR bioreac-
tor simulation is run for 30 hours
with 30 finite elements and con-
stant metabolic fluxes in each of
the finite elements. Dual refers
to the duality theory reformula-
tion of the pFBA, P. Dual refers
to the penalized duality theory re-
formulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to
the penalized KKT reformulation
of the pFBA.

Figure 19: Concentration profile of the ac-
etate for the CSTR bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The CSTR bioreac-
tor simulation is run for 30 hours
with 30 finite elements and con-
stant metabolic fluxes in each of
the finite elements. Dual refers
to the duality theory reformula-
tion of the pFBA, P. Dual refers
to the penalized duality theory re-
formulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to
the penalized KKT reformulation
of the pFBA.

From Table 15 all the NLPA reformulations are solved successfully and with roughly the
same degree of divergence from the DA reformulations. The value of the MSE for the NLPA
dFBA model reformulations are very low, MSE of the glucose concentration is roughly
2.01 · 10−4, MSE of the biomass concentration is 1.24 · 10−6, and MSE of the acetate
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concentration is 1.26 · 10−4. The small MSE was expected as none of the extracellular
metabolite concentrations reached zero, as shown in Figure 17, Figure 18 and Figure 19,
where our NLPA reformulations had the largest divergence from the DA reformulation of
the dFBA model for batch reactors in Section 4.6.

From Figure 17, Figure 18 and Figure 19 we also see that the different NLPA model
reformulations and the DA reformulation stabilize at the same steady state metabolite
concentrations. We compare the end concentration found by the dFBA to the steady state
model presented in Section 3.4 and see that the steady state concentrations found by the
two models are the same. Roughly 0.1379 mmol/L for the glucose concentration, 0.3973
gDW/L for the biomass concentration, and 1.1845 mmol/L for the acetate concentration.
However, the NLPA reformulations deviate from the DA when we enter the area where
the cells start to consume acetate. This was expected, as our results from the batch model
NLPA reformulations also differed from the DA in this area, see Section 4.6. The deviation
between the NLPAs and DA might be decreased in this area by introducing the adaptive
mesh strategy from Section 4.7 or by increasing the number of finite elements.

4.9 CSTR bioreactor model based on dFBA - adaptive mesh

To decrease the deviation between the NLPA reformulations of the CSTR dFBA model
and the DA reformulation of the CSTR model in Section 4.8 it was decided to introduce
the adaptive mesh strategy utilized for the batch reactor in Section 4.7. The equidistant
element size (h∗) used by the adaptive mesh is set to 1 hour, and the weight used for the
adaptive mesh penalization term is set to 0.01 instead of 0.1. The remaining parameters
used to initialize the CSTR are the same as those used in Section 4.8 and presented in
Table 14.

The solver time, number of times the pFBA where solved in the DA, the solver status, and
the MSE between the glucose, biomass and acetate concentration calculated by the NLPA
reformulations and the DA are presented in Table 16.

Table 16: Simulation of the CSTR dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the solver time, number of times the DA solved the pFBA, solver
status, and the MSE between the glucose, biomass and acetate concentration found by the
NLPA reformulations and the DA. The CSTR bioreactor simulation is run for 30 hours with
30 finite elements, constant metabolic fluxes in each of the finite elements, and an adaptive
mesh. MIE stands for maximum number of iterations reached, STAL stands for solved to
an acceptable level, and SS stands for solved successfully. Dual refers to the duality theory
reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation of the
pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the penalized
KKT reformulation of the pFBA.

Method: Time: [s] Number of calls: Status: MSE glucose: MSE biomass: MSE acetate:
DA 6.96 418 SS/STAL 0 0 0
Dual 102 - MIE 1.48 · 10−4 8.71 · 10−7 9.50 · 10−5

P. Dual 14.2 - SS 1.33 · 10−4 7.76 · 10−7 8.50 · 10−5

KKT 18.2 - SS 1.35 · 10−4 7.89 · 10−7 8.64 · 10−5

P. KKT 12.1 - STAL 1.33 · 10−4 7.76 · 10−7 8.50 · 10−5

From Table 16 we see that the non-penalized duality theory NLPA reached the maxi-
mum number of iterations, 3000, and thus did not converge to the optimal solutions, such
as the other NLPA reformulations. This is reflected in the large computational time re-
quired to solve the non-penalized duality theory reformulation and the high MSE value
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of the extracellular metabolites compared to the DA reformulation. Where the MSE of
the non-penalized duality theory NLPA is slightly higher than the one found by the other
approaches. We also see that the two penalized NLPA reformulations were the closest to
the DA. It was expected that the non-penalized duality theory reformulation would fail as
this is consistent with our previous results for the batch reactor, see Section 4.7.

The quickest NLPA was the penalized KKT reformulation, which only required 12.1 sec-
onds to solve, the second fastest reformulation was the penalized duality theory NLPA,
which required 14.2 seconds to solve. From Section 4.7 we expected the time required to
solve the penalized reformulations to be relatively close, and faster than the non-penalized
reformulations.

Comparing the result from the dFBA model using the adaptive mesh, see Table 16, to
the results from the dFBA model without the adaptive mesh, see Table 15, we see that
the NLPA model reformulations utilizing the adaptive mesh strategy are closer to the
solution of the DA than the NLPA reformulations not utilizing the adaptive mesh strategy.
Considering the penalized reformulation that was solved successfully in both cases we see
that the MSE of glucose is reduced from 2.01 · 10−4 to 1.33 · 10−4, the MSE of biomass is
reduced from 1.24 · 10−6 to 7.76 · 10−7, and the MSE of acetate is reduced from 1.26 · 10−4

to 8.50 · 10−5. On the other hand, we see that the time required to solve the system
increased for all the NLPA reformulations, with the exception of the penalized duality
theory reformulation which was reduced from 17.2 seconds to 14.2 seconds. The non-
penalized duality theory reformulation increased from 4.54 seconds to 102 seconds, the
non-penalized KKT reformulation increased from 9.14 to 18.2, and the penalized KKT
reformulation increased from 5.24 seconds to 12.1 seconds. The time increase is expected
as we have increased the size of the optimization problem. Therefore is the time decrease
of the penalized duality theory reformulation unexpected, but this might imply a too large
computational time observed when the penalized duality theory reformulation was solved
in Section 4.8.

The concentration profiles of biomass, glucose and acetate are presented in Figure 20,
Figure 21 and Figure 22 respectively.

Figure 20: Concentration profile of the biomass for the CSTR bioreactor model based on dFBA, for a
case study of the Escherichia coli core metabolism. The CSTR bioreactor simulation is run
for 30 hours with 30 finite elements, constant metabolic fluxes in each of the finite elements,
and an adaptive mesh. Dual refers to the duality theory reformulation of the pFBA, P. Dual
refers to the penalized duality theory reformulation of the pFBA, KKT refers to the KKT
reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation of the
pFBA.
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Figure 21: Concentration profile of the glu-
cose for the CSTR bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The CSTR bioreac-
tor simulation is run for 30 hours
with 30 finite elements, constant
metabolic fluxes in each of the
finite elements, and an adaptive
mesh. Dual refers to the duality
theory reformulation of the pFBA,
P. Dual refers to the penalized du-
ality theory reformulation of the
pFBA, KKT refers to the KKT re-
formulation of the pFBA, and P.
KKT refers to the penalized KKT
reformulation of the pFBA.

Figure 22: Concentration profile of the ac-
etate for the CSTR bioreactor
model based on dFBA, for a case
study of the Escherichia coli core
metabolism. The CSTR bioreac-
tor simulation is run for 30 hours
with 30 finite elements, constant
metabolic fluxes in each of the
finite elements, and an adaptive
mesh. Dual refers to the duality
theory reformulation of the pFBA,
P. Dual refers to the penalized du-
ality theory reformulation of the
pFBA, KKT refers to the KKT re-
formulation of the pFBA, and P.
KKT refers to the penalized KKT
reformulation of the pFBA.

From Figure 20, Figure 21 and Figure 22 we see that most of the finite elements are placed
in the beginning of the simulation, where we have the largest changes in the extracellular
metabolite concentrations. Resulting in a reduction the deviance between the NLPA refor-
mulations and the DA results. However, the NLPA reformulations are still deviating from
the DA when the system starts to consume acetate, and it might be necessary to increase
the number of finite elements to further improve the results of the NLPA reformulations.

Overall, the accuracy improvement of the NLPA reformulations is very small compared to
the increase in time required to solve the optimization problems, and therefore we will not
utilize the adaptive mesh strategy in the dFBA CSTR model used for the MPC part of
this thesis.

4.10 Tuning of the MPC control parameters

We apply MPC to our CSTR model based on the NLPA dFBA reformulations. Resulting
in the optimization problems presented in Section 3.5.

Before we test how the performance of the MPC applied to our dFBA models we tune the
control parameters by trial and error. The goal is to find values of the control parameters
that result in little to no oscillation and small divergence from the setpoint. We keep the
Q control parameter constant and tune the R and C parameters.

The initial conditions for the system used to test the control parameters are the same as
those used to initialize the CSTR model in Section 4.8. However, we have changed the
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initial dilution rate and extracellular metabolites to the steady state values for the system.
The steady state values are found with the steady state model presented in Section 3.4.
The initial values used in the simulations are presented in Table 17.

Table 17: Initial conditions used to tune the MPC model based on dFBA for CSTR on a case study
of the Escherichia coli core metabolism. The parameters are gathered from Oliveira et al.
[18]. The Michaelis constant of acetate (KA,M ) is not given, but we assume that it is equal
to the Michaelis constant of glucose (KG,M ), and the parameters for the dilution rate and
the extracellular metabolite concentrations are found with the steady state model presented in
Section 3.4.

Parameter: Symbol: Value: Unit:
Size of finite elements h 1.00 h

Initial glucose concentration G0 1.23 mmol/L
Initial biomass concentration X0 0.30 gDW/L
Initial acetate concentration A0 1.32 mmol/L
Michaelis constant glucose KG,M 0.01 mmol/L
Michaelis constant acetate KA,M 0.01 mmol/L
Maximal glucose uptake vmax,G -10.5 mmol/gDW h
Maximal acetate uptake vmax,A -2.5 mmol/gDW h

Oxygen lower bound LBO -19.0 mmol/gDW h
Dilution rate D 0.829 h−1

Glucose feed concentration Gf 5.00 mmol/L
End time tend 30 h

Number of control actions M 4 -

We only present the results from the tuning of the penalized duality theory control model,
as the behavior is similar for all the NLPA control model reformulations.

4.10.1 R control parameter

First, we tune the R control parameter. The simulation is performed with a controller that
changes the setpoint from 0.3 gDW/L to 0.35 gDW/L biomass. The control action of the
controller is updated each hour.

The time required to solve one MPC optimization, the status of the solver, and the MSE
between the biomass concentration and the setpoint for the penalty duality theory NLPA
control model is presented in Table 18.

Table 18: In this table we present the time required to solve one MPC optimization, the solver status,
and the MSE of the deviation between the biomass concentration and the setpoint for different
values of the R controller parameter in the MPC for a case study of the Escherichia coli
core metabolism. SS stands for solved successfully, and the time is the average of 30 MPC
optimizations.

R-value: Time: [s] Status: MSE biomass:
1.00 0.53 SS 3.70 · 10−4

0.10 0.48 SS 1.79 · 10−4

0.01 0.81 SS 1.63 · 10−4

The biomass concentration, dilution rate, glucose concentration, and acetate concentration
profiles are presented in Figure 23, Figure 24, Figure 25 and Figure 26 respectively.

48



4 Results and discussion 4.10 Tuning of the MPC control parameters

Figure 23: The biomass concentration profile
for the tuning of the R control pa-
rameter in the MPC for a case
study of the Escherichia coli core
metabolism. The model uses the
penalized duality NLPA dFBA re-
formulation for a CSTR.

Figure 24: The dilution rate profile for the
tuning of the R control parameter
in the MPC for a case study of the
Escherichia coli core metabolism.
The model uses the penalized dual-
ity NLPA dFBA reformulation for
a CSTR.

Figure 25: The glucose concentration profile
for the tuning of the R control pa-
rameter in the MPC for a case
study of the Escherichia coli core
metabolism. The model uses the
penalized duality NLPA dFBA re-
formulation for a CSTR.

Figure 26: The acetate concentration profile
for the tuning of the R control pa-
rameter in the MPC for a case
study of the Escherichia coli core
metabolism. The model uses the
penalized duality NLPA dFBA re-
formulation for a CSTR.

From Table 18, Figure 23, Figure 24, Figure 25 and Figure 26 we see that the system
oscillates more for large values of the R control parameter, resulting in a larger deviation
from the setpoint. This was expected as large R values will penalize the system for large
changes in the manipulated variable, the dilution rate (D), compared to the penalization
of the deviation from the setpoint. Therefore is it desirable to keep R small compared to
the Q control parameter as we wish the system to return to the setpoint quickly.

From Table 18 we also see that the time necessary to solve the system first decreases
when we increase the R control parameter, but starts to increase when the value of R
keeps decreasing. Implying that decreasing the R value unnecessarily might result in slow
control actions. However, as the changes in time overall are quite small, less than 0.4
seconds, and our primary goal is to have as little deviation from the setpoint as possible,
it is decided to use very small values of R.
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4.10.2 C control parameter

Second, we tune the C control parameter for the penalized dFBA models. This is done
by testing the behavior of the MPC utilizing the penalized duality theory NLPA dFBA
model with different values of C. The test is performed with a constant setpoint set to 0.3
gDW/L biomass, and the control action is updated each hour.

The time required to solve one MPC optimization, the status of the solver and the MSE
between the biomass concentration and the setpoint for the penalty duality theory NLPA
control model is presented in Table 19.

Table 19: In this table we present the time required to solve one MPC optimization, the solver status,
and the MSE of the deviation between the biomass concentration and the setpoint for different
values of the R controller parameter in the MPC for a case study of the Escherichia coli
core metabolism. SS stands for solved successfully, MIE stands for the maximum number of
iterations reached, and the time is the average of 30 MPC optimizations.

C-value: Time: [s] Status: MSE biomass:
1000 1.13 SS 2.55 · 10−11

1 0.50 SS 2.39 · 10−16

0.001 12.3 MIE 2.73 · 10−9

The biomass concentration, dilution rate, glucose concentration, and acetate concentration
profiles are presented in Figure 27, Figure 28, Figure 29 and Figure 30 respectively.

Figure 27: The biomass concentration profile
for the tuning of the C control pa-
rameter in the MPC for a case
study of the Escherichia coli core
metabolism. The model uses the
penalized duality NLPA dFBA re-
formulation for a CSTR.

Figure 28: The dilution rate profile for the
tuning of the C control parameter
in the MPC for a case study of the
Escherichia coli core metabolism.
The model uses the penalized dual-
ity NLPA dFBA reformulation for
a CSTR.
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Figure 29: The glucose concentration profile
for the tuning of the C control pa-
rameter in the MPC for a case
study of the Escherichia coli core
metabolism. The model uses the
penalized duality NLPA dFBA re-
formulation for a CSTR.

Figure 30: The acetate concentration profile
for the tuning of the C control pa-
rameter in the MPC for a case
study of the Escherichia coli core
metabolism. The model uses the
penalized duality NLPA dFBA re-
formulation for a CSTR.

From Table 19 we see that the control model fails to converge if the value of the C control
parameter is too low, this is apparent as the reformulations utilizing the lowest C-value
reach the maximum number of iterations, thus not converging properly. Furthermore,
from Figure 27, Figure 28, Figure 29 and Figure 30 we see that low C-values results in
sudden spikes and a slight increase in the biomass concentration above the setpoint This
was expected as the C control parameter is used to enforce the optimality conditions of
the original pFBA problem for the dFBA model.

On the other hand is the deviation between the biomass concentration and the setpoint
increasing if the C control parameter is too high and the time required to solve a control
action increases. High values of the C control parameter also result in sudden spikes in
the concentration profiles of biomass and glucose. This is expected as too large C-values
result in the enforcement of the optimality conditions being prioritized over the necessary
control actions.

4.11 MPC changing the setpoint

We apply the tuned MPC to our dFBA model for the CSTR and test the controller’s
ability to handle changes in the setpoint of biomass. The value of the control parameters
is presented in Table 20. As we prioritize to stay close to the setpoint it was decided to
use a very small value, 10−10, for the R control parameter. The C control parameter and
maximal change in the dilution rate (∆umax) where found by trial and error, where the
goal was to avoid unsuccessful MPC optimizations.

Table 20: Tuned control parameters for the MPC used to test the MPC model based on dFBA for CSTR
for a case study of the Escherichia coli core metabolism.

Parameter P.dual P. KKT Dual/KKT
Q 1.0 1.0 1.0
R 10−10 10−10 10−10

C 10 10−2 -
∆umax 0.2 0.2 0.2
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We change the setpoint of the biomass concentration from 0.2 gDW/L to 0.4 gDW/L and
keep all the other parameters constant. The initial conditions of the test are the same
as those used to tune the control parameters in Section 4.10, but the dilution rate and
the extracellular metabolite concentrations are changed to the steady state conditions for
biomass concentration at 0.2 gDW/L. The control actions are updated every hour and
the controller solves the system for four control actions each time. The initial values are
presented in Table 21.

Table 21: Initial conditions used to test the MPCs ability to handle changes in the setpoint. The pa-
rameters are gathered from Oliveira et al. [18]. The Michaelis constant of acetate (KA,M ) is
not given, but we assume that it is equal to the Michaelis constant of glucose (KG,M ), and
the parameters for the dilution rate and the extracellular metabolite concentrations are found
with the steady-state model presented in Section 3.4.

Parameter: Symbol: Value: Unit:
Size of finite element h 1.00 h
Initial dilution rate D0 0.831 h−1

Michaelis constant glucose KG 0.01 mmol/L
Michaelis constant acetate KA 0.01 mmol/L
Maximal glucose uptake vG,max -10.5 mmol/gDW h
Maximal acetate uptake vA,max -2.5 mmol/gDW h

Lower bound oxygen LBO -19.0 mmol/gDW h
Initial biomass concentration xX,0 0.200 gDW/L
Initial glucose concentration xG,0 2.480 mmol/L
Initial acetate concentration xA,0 0.895 mmol/L
Glucose feed concentration Gf 5 mmol/L
Number of control actions M 4 -

End time tend 35 h

The time required to solve one MPC optimization, the number of times the MPC optimiza-
tion failed and the MSE between the biomass concentration and the setpoint are presented
in Table 22.

Table 22: Simulation of the MPC based on the dFBA model for a CSTR on a case study of the Escherichia
coli core metabolism. In this table we present the time required to solve one MPC optimization,
the solver status, and the MSE of the deviation between the biomass concentration and the
setpoint. The setpoint for the biomass concentration was increased from 0.2 gDW/L to 0.4
gDW/L. The time is the average of 30 MPC optimizations. Dual refers to the duality theory
reformulation of the pFBA, P. Dual refers to the penalized duality theory reformulation of the
pFBA, KKT refers to the KKT reformulation of the pFBA, and P. KKT refers to the penalized
KKT reformulation of the pFBA.

Method: Time: [s] Solver failures: MSE biomass:
Dual 8.67 19 1.01 · 10−2

P. Dual 0.96 1 3.79 · 10−3

KKT 8.80 25 1.03 · 10−2

P. KKT 3.14 1 3.79 · 10−3

From Table 22 we see that the controllers using the non-penalized NLPA reformulations
have many unsuccessfully solved MPC optimizations. The non-penalized KKT reformu-
lation fails 25 of 30 times and the non-penalized duality theory reformulation fails 19 of
30 times. The penalized NLPA reformulations failed less often, with only one failed MPC
optimization each. It was expected that the non-penalized reformulations would fail more
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often than the penalized ones as the non-penalized reformulations have more hard con-
straints than the penalized ones, and too many hard constraints may lead to convergence
problems for MPC controllers [26].

The penalized NLPA reformulations have the same degree of divergence from the setpoint
of biomass, see the small MSE. However, the penalized duality theory NLPA reformulation,
requiring on average of 0.96 seconds to solve one MPC optimization, is much faster than
the penalized KKT NLPA reformulation, requiring an average of 3.14 seconds to solve
one MPC optimization. This was unexpected as the penalized KKT reformulation was
computationally faster than the penalized duality theory reformulation when we tested
the dFBA models for a CSTR in Section 4.8. As the only difference between the two
penalized reformulations is the Φ(v,LB,UB) term in the objective function and the values
of the control parameters, which are a part of the objective, must the difference in solver
time stem from how the IPOPT-solver handles the objective functions. The performance
of the penalized KKT reformulation might be improved by adjusting the value control
parameters.

The biomass concentration, dilution rate, glucose concentration, and acetate concentration
profiles are presented in Figure 31, Figure 32, Figure 33 and Figure 34 respectively.

Figure 31: The biomass concentration profile
from the MPC test with changing
setpoint for a case study of the
Escherichia coli core metabolism.
The setpoint for the biomass con-
centration was increased from 0.2
gDW/L to 0.4 gDW/L. The time
is the average of 30 MPC optimiza-
tions. Dual refers to the duality
theory reformulation of the pFBA,
P. Dual refers to the penalized du-
ality theory reformulation of the
pFBA, KKT refers to the KKT re-
formulation of the pFBA, and P.
KKT refers to the penalized KKT
reformulation of the pFBA.

Figure 32: The dilution rate profile from the
MPC test with changing setpoint
for a case study of the Escherichia
coli core metabolism. The setpoint
for the biomass concentration was
increased from 0.2 gDW/L to 0.4
gDW/L. The time is the average of
30 MPC optimizations. Dual refers
to the duality theory reformula-
tion of the pFBA, P. Dual refers
to the penalized duality theory re-
formulation of the pFBA, KKT
refers to the KKT reformulation of
the pFBA, and P. KKT refers to
the penalized KKT reformulation
of the pFBA.
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Figure 33: The glucose concentration profile
from the MPC test with changing
setpoint for a case study of the
Escherichia coli core metabolism.
The setpoint for the biomass con-
centration was increased from 0.2
gDW/L to 0.4 gDW/L. The time
is the average of 30 MPC optimiza-
tions. Dual refers to the duality
theory reformulation of the pFBA,
P. Dual refers to the penalized du-
ality theory reformulation of the
pFBA, KKT refers to the KKT re-
formulation of the pFBA, and P.
KKT refers to the penalized KKT
reformulation of the pFBA.

Figure 34: The acetate concentration profile
from the MPC test with changing
setpoint for a case study of the
Escherichia coli core metabolism.
The setpoint for the biomass con-
centration was increased from 0.2
gDW/L to 0.4 gDW/L. The time
is the average of 30 MPC optimiza-
tions. Dual refers to the duality
theory reformulation of the pFBA,
P. Dual refers to the penalized du-
ality theory reformulation of the
pFBA, KKT refers to the KKT re-
formulation of the pFBA, and P.
KKT refers to the penalized KKT
reformulation of the pFBA.

From Figure 31, Figure 32, Figure 33 and Figure 34 we see that the MPC models utilizing
the non-penalized NLPA reformulations fail to return to steady state when we increase the
setpoint. While the glucose concentration of the penalized reformulations stops decreasing
right before it reaches zero, do the concentration from the non-penalized reformulations
keep decreasing until they reaches and stay at zero. As our model reformulations are least
accurate in the area where the substrate concentrations approaches zero, was it expected
that the non-penalized model reformulations would fail in this area.

From Figure 31, Figure 32, Figure 33 and Figure 34 we also see that the MPC utilizing the
penalized NLPA reformulation stays close to the setpoint, without much oscillation when
the setpoint changes. This was expected as we used very small values of the R control
parameter for all the MPC models.

From the small changes in the steady state of the dilution rate when we change the setpoint,
it is apparent the system is very sensitive to changes in the manipulated variable. This
was expected as we are working with very low concentrations of extracellular metabolites.

4.12 MPC with disturbance in the glucose feed concentration

Second, we test the MPCs ability to handle disturbances in the glucose feed concentra-
tion. We change the glucose feed from 5.0 mmol/L to 8.0 mmol/L and keep all the other
parameter constant. We use the same initial conditions as in Section 4.11.

The time required to solve one MPC optimization, how many times the solver failed to
converge, and the MSE between the biomass concentration and the setpoint are presented
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in Table 23.

Table 23: Simulation of the MPC based on the dFBA model for a CSTR on a case study of the Escherichia
coli core metabolism. In this table we present the time required to solve one MPC optimization,
the solver status, and the MSE of the deviation between the biomass concentration and the
setpoint. The glucose feed concentration was increased from 5.0 mmol/L to 8.0 mmol/L. The
time is the average of 30 MPC optimizations. P. Dual refers to the penalized duality theory
reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation of the
pFBA.

Method: Time: [s] Solver failures: MSE biomass:
P. Dual 0.95 0 1.51 · 10−10

P. KKT 2.29 0 1.49 · 10−10

Both the penalized duality theory reformulation and the penalized KKT reformulation
were solved successfully at all the MPC optimizations, see Table 23, and the difference
in MSE between the two methods are neglectable, less than 1.0 · 10−10. However, the
penalized KKT approach requires much more time to solve one MPC optimization, 2.29
seconds, than the penalized duality theory approach, 0.95 seconds. This is consistent with
our results from the changing setpoint test in Section 4.11.

The biomass concentration, dilution rate, glucose concentration, acetate concentration,
and glucose feed concentration profiles are presented in Figure 35, Figure 36, Figure 37,
Figure 38, and Figure 39 respectively.

Figure 35: The biomass concentration profile
from the MPC test with distur-
bance in glucose feed concentration
for a case study of the Escherichia
coli core metabolism. The glucose
feed concentration was increased
from 5.0 mmol/L to 8.0 mmol/L.
The time is the average of 30 MPC
optimizations. P. Dual refers to the
penalized duality theory reformu-
lation of the pFBA, and P. KKT
refers to the penalized KKT refor-
mulation of the pFBA.

Figure 36: The dilution rate profile from the
MPC test with disturbance in glu-
cose feed concentration for a case
study of the Escherichia coli core
metabolism. The glucose feed con-
centration was increased from 5.0
mmol/L to 8.0 mmol/L. The time
is the average of 30 MPC optimiza-
tions. P. Dual refers to the penal-
ized duality theory reformulation
of the pFBA, and P. KKT refers
to the penalized KKT reformula-
tion of the pFBA.
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Figure 37: The glucose concentration profile
from the MPC test with distur-
bance in glucose feed concentration
for a case study of the Escherichia
coli core metabolism. The glucose
feed concentration was increased
from 5.0 mmol/L to 8.0 mmol/L.
The time is the average of 30 MPC
optimizations. P. Dual refers to the
penalized duality theory reformu-
lation of the pFBA, and P. KKT
refers to the penalized KKT refor-
mulation of the pFBA.

Figure 38: The acetate concentration profile
from the MPC test with distur-
bance in glucose feed concentration
for a case study of the Escherichia
coli core metabolism. The glucose
feed concentration was increased
from 5.0 mmol/L to 8.0 mmol/L.
The time is the average of 30 MPC
optimizations. P. Dual refers to the
penalized duality theory reformu-
lation of the pFBA, and P. KKT
refers to the penalized KKT refor-
mulation of the pFBA.

Figure 39: The glucose feed concentration profile from the MPC test with disturbance in glucose feed
concentration for a case study of the Escherichia coli core metabolism. The glucose feed
concentration was increased from 5.0 mmol/L to 8.0 mmol/L. The time is the average of
30 MPC optimizations. P. Dual refers to the penalized duality theory reformulation of the
pFBA, and P. KKT refers to the penalized KKT reformulation of the pFBA.

From Figure 35, Figure 36, Figure 37, Figure 38, and Figure 39, we see that the controller
performs well. The deviation in the biomass concentration from the setpoint is very small.
However, the behavior of the MPC controllers is quite interesting. Right after the glucose
feed is increased the controllers increase the dilution rate, to lower the biomass concentra-
tion. Thereafter the controllers lower the dilution rate, allowing the biomass concentration
to increase, before once more increasing the dilution rate to its steady state value. The
biomass is then slowly rising back up to the setpoint. This behavior was expected as the
biomass growth rate is dependent on the biomass concentration. Therefore, by washing
out some of the biomass at the initial increase of the glucose feed concentration, the MPC
controllers avoid a rapid increase of the biomass concentration that could have resulted in
a large overshoot of biomass, that probably would have required longer time to wash out.
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4.13 MPC with disturbance in maximal glucose uptake

Finally, we test the MPCs ability to handle disturbances in the maximal glucose uptake
rate. We change the maximal glucose uptake from -10.5 mmol/L to -5.25 mmol/L and
keep all the remaining parameters constant. We use the same initial conditions as in
Section 4.11.

The time required to solve one MPC optimization, the status of the solver, and the MSE
between the biomass concentration and the setpoint are presented in Table 24.

Table 24: Simulation of the MPC based on the dFBA model for a CSTR on a case study of the Escherichia
coli core metabolism. In this table we present the time required to solve one MPC optimization,
the solver status, and the MSE of the deviation between the biomass concentration and the
setpoint. The maximal glucose uptake was changed from -10.5 mmol/L to -5.25 mmol/L. The
time is the average of 30 MPC optimizations. P. Dual refers to the penalized duality theory
reformulation of the pFBA, and P. KKT refers to the penalized KKT reformulation of the
pFBA.

Method Time [s] Solver failures: MSE X
P. Dual 0.76 0 1.34 · 10−4

P. KKT 2.92 1 1.34 · 10−4

The penalized KKT reformulation fails to solve one of the MPC optimizations, see Ta-
ble 24. However, comparing the MSE values of the penalized duality theory and KKT
reformulations show that one failure did not result in a noticeable difference in the results
from the two approaches. The penalized duality theory reformulation is much faster than
the penalized KKT reformulation, which requires 0.76 seconds to solve one MPC optimiza-
tion compared to the KKT, which requires 2.92 seconds to solve one MPC optimization.
The time difference is consistent with our previous results for the controllers, and the one
failed optimization for the KKT reformulation might be contributing to the larger KKT
solver time.

The biomass concentration, dilution rate, glucose concentration, acetate concentration,
and the maximum glucose uptake profiles are presented in Figure 40, Figure 41, Figure 42,
Figure 43, and Figure 44 respectively.
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Figure 40: The biomass concentration pro-
file from the MPC test with dis-
turbance in glucose feed concen-
tration for a case study of the
Escherichia coli core metabolism.
The maximal glucose uptake was
changed from -10.5 mmol/L to -
5.25 mmol/L. The time is the av-
erage of 30 MPC optimizations. P.
Dual refers to the penalized duality
theory reformulation of the pFBA,
and P. KKT refers to the penalized
KKT reformulation of the pFBA.

Figure 41: The dilution rate profile from the
MPC test with disturbance in glu-
cose feed concentration for a case
study of the Escherichia coli core
metabolism. The maximal glu-
cose uptake was changed from -10.5
mmol/L to -5.25 mmol/L. The
time is the average of 30 MPC op-
timizations. P. Dual refers to the
penalized duality theory reformu-
lation of the pFBA, and P. KKT
refers to the penalized KKT refor-
mulation of the pFBA.

Figure 42: The glucose concentration profile
from the MPC test with distur-
bance in glucose feed concentra-
tion for a case study of the Es-
cherichia coli core metabolism.
The maximal glucose uptake was
changed from -10.5 mmol/L to -
5.25 mmol/L. The time is the av-
erage of 30 MPC optimizations. P.
Dual refers to the penalized duality
theory reformulation of the pFBA,
and P. KKT refers to the penalized
KKT reformulation of the pFBA.

Figure 43: The acetate concentration profile
from the MPC test with distur-
bance in glucose feed concentra-
tion for a case study of the Es-
cherichia coli core metabolism.
The maximal glucose uptake was
changed from -10.5 mmol/L to -
5.25 mmol/L. The time is the av-
erage of 30 MPC optimizations. P.
Dual refers to the penalized duality
theory reformulation of the pFBA,
and P. KKT refers to the penalized
KKT reformulation of the pFBA.
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Figure 44: The maximal glucose uptake profile from the MPC test with disturbance in glucose feed
concentration for a case study of the Escherichia coli core metabolism. The maximal glucose
uptake was changed from -10.5 mmol/L to -5.25 mmol/L. The time is the average of 30 MPC
optimizations. P. Dual refers to the penalized duality theory reformulation of the pFBA, and
P. KKT refers to the penalized KKT reformulation of the pFBA.

From Figure 40, Figure 41, Figure 42, Figure 43, and Figure 44 we see that the controller
preforms well. The deviation in the biomass concentration from the setpoint is small. This
was expected from the low MSE values in Table 24. However, we observe a slight oscil-
lation in the glucose and biomass concentrations when the absolute value of the maximal
glucose uptake is decreased, and a slight oscillation in the acetate concentration when the
absolute value of the maximal glucose uptake is increased. The controllers behave as ex-
pected, lowering the dilution rate when the absolute value of the maximal glucose uptake
is decreased, to wash out less of the biomass, and increasing the dilution rate when the
absolute value of the maximal glucose uptake is increased.

Overall, the MPC utilizing the penalized duality theory reformulation of the pFBA is much
faster than the MPC utilizing the penalized KKT reformulations. It is also slightly more
robust, returning fewer failed MPC optimizations than the KKT reformulation. This is a
bit surprising as the penalized KKT performed better than the penalized duality theory
reformulations for the test of the CSTR model implementation, Section 4.8. This might
be attributed to the value of the control parameters, or how the IPOPT solver treats the
expanded objective functions.
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5 Conclusion

The duality theory reformulation of the Parsimonious Flux Balance Analysis (pFBA) is
presented as an alternative to the more commonly used Karush–Kuhn–Tucker (KKT)
optimality condition reformulations. It was found that the non-penalized reformulations
are faster to solve than their penalized versions, and that the duality theory reformulations
are faster than the KKT reformulations. The duality theory reformulations are also closer
to the results of the original pFBA problem than the KKT reformulations, and the non-
penalized reformulations are closer than the penalized ones. It was also found that the KKT
reformulation needs a lower acceptable tolerance level and constraint violation tolerance
to compete with the performance of the duality theory reformulations.

When developing the Dynamic Flux Balance Analysis (dFBA) model for the batch reactor
it was found that large changes in the metabolic fluxes between the collocation points
inside a finite element utilized by the Non-Linear Programming Approach (NLPA) may
lead to convergence problems. These problems may arise when the systems changes from
producing to consuming one of the extracellular metabolites.

The problems arising from rapidly changing fluxes inside the finite elements can be avoided
by assuming constant metabolic fluxes inside each finite element. An advantage of this
assumption is that we only need to calculate the fluxes for one of the collocation points
inside each of the finite elements, thus reducing the size of our optimization problems
and the time required to solve them. It was found that the concentration in the last
collocation point must be used to calculate the metabolic fluxes, as using any of the previous
points would result in an overshoot. A drawback of this assumption is that the metabolite
concentrations may not reach zero, resulting in small deviations in the areas where one of
the extracellular metabolites are consumed. This problem is also present when the Direct
Approach (DA) is used to solve our dFBA problem, but is less pronounced as the ordinary
differential equation (ODE) solver utilized by the DA uses a lot more points than the
NLPA reformulations.

It was found that the deviation between the DA and NLPA reformulations can be reduced
by introducing an adaptive mesh strategy to our NLPA reformulations of the dFBA. By
strategically placing the finite elements, to avoid having the transition from producing to
consuming one of the extracellular metabolites inside one of the elements, are the deviation
between the DA and NLPA reformulations for the batch reactor greatly reduced. However,
the improvement form utilizing the adaptive mesh strategy is less pronounced for the
continuous stirred tank reactor (CSTR) models. A drawback of the adaptive mesh strategy
is that it increases the size of the optimization problems, thus also increasing the required
solver time.

From our simulations of the models for batch and CSTR bioreactors based on dFBA solved
with the NLPA reformulations it was found that the non-penalized NLPA reformulations
overall are less reliable than the penalized NLPA reformulations. The IPOPT solver was
more likely to fail for the non-penalized reformulations than the penalized ones. The penal-
ized reformulations of the dFBA are also in general more efficient than the non-penalized
reformulations, requiring less time to solve. The penalized KKT reformulation was overall
the fastest of the NLPA reformulations, solving faster or as fast as the duality theory re-
formulation. The difference in deviation from the DA between the NLPA reformulations
are neglectable.
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We have shown that Model Predictive Control (MPC) can be applied to CSTR bioreactors
based on dFBA. The MPC controller performed well, keeping the biomass concentration
close to the desired setpoint. It was found that the MPC can handle relatively large
changes in the setpoint, disturbances in the glucose feed, and disturbances in the maximal
glucose uptake. Overall, the penalized duality theory reformulation was much faster than
the penalized KKT reformulation and more reliable when solved with the IPOPT solver.
However, it should be mentioned that this may be attributed to the weighting of the control
parameters used in the two different MPC model reformulations.
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6 Future Work

For future work, the challenges associated with expanding the application of our models
developed in this paper to the genome scale Escherichia coli metabolic network must be
investigated. Larger metabolic networks will increase the size of the optimization problems
and we therefore expect the computational time required to solve a MPC optimization to
increase. We need to test whether our models can be solved in a timely manner for com-
mercially used bioprocesses. This also holds true for the genome scale metabolic network
of other commercially used organisms. A larger metabolic network would also presumably
give larger differences between the penalized duality theory and penalized KKT reformu-
lations, making potential differences between the methods more reliable.

The dFBA and MPC models should also be applied to other commonly used bioreactor
designs, such as the fed-batch bioreactor. Our models had a harder time handling batch
processes as the concentration of the substrates reached zero, than handling the CSTR
where the concentrations of the extracellular metabolites for the most part stay above
zero. Therefore, we expect our MPC models to have a harder time handling fed-batch
than CSTR bioreactors, and it might be necessary to introduce adaptive mesh for the
MPC models. This will likely increase the computationally time required to solve the
system, and more efficient adaptive mesh strategies should therefore be explored.

From our current results is it difficult to say with certainty whether the observed differ-
ences between the penalized duality theory and penalized KKT MPC reformulations stem
from the pFBA reformulations or the differences in control parameters used in the MPC
simulations. The MPC models should therefore also be tested for larger ranges of control
parameter values to test the effect of the control parameters on our observed results.
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A Lower bounds

A.1 Lower bounds for batch bioreactor model based on dFBA

The lower bound of the glucose and acetate found by the penalized duality theory refor-
mulation in Section 4.4 are presented in Table 25. The lower bounds are given for each
point in a finite element, and three finite elements are presented.

Table 25: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the lower bounds of the metabolic reactions found by the penalized
duality theory reformulation for some of the finite elements. The batch bioreactor simulation
is run for 5.33 hours with 6 finite elements. Point 1 refers to the first point in a finite element,
Point 2 refers to the second point in a finite element, and Point 3 refers to the third point in
a finite element.

Metabolite: Time: [s] Concentration: [mmol/L] Point 1: Point 2: Point 3:
0.14 - 0.89 10.48 - 10.36 −10.49 −10.49 −10.49

Glucose 1.91 - 2.67 10.01 - 9.47 −10.49 −10.49 −10.49
4.58 - 5.33 4.95 - 0.09 −10.48 −10.46 −9.46

0.14 - 0.89 0.11 - 0.15 −2.28 −2.32 −2.34
Acetate 1.91 - 2.67 0.28 - 0.47 −2.41 −2.44 −2.45

4.58 - 5.33 2.07 - 3.70 −2.48 −2.49 −4.49

As expected from the Michaelis-Menten kinetics (MMK) used for the substrate uptake,
Equation 10, are the lower bound of glucose not changing until the glucose concentration
becomes very low, see Table 25. We can see the same behavior for the acetate as the
change in the acetate lower bound stabilizes as the acetate concentration increases.

A.2 Lower bounds for batch bioreactor model based on dFBA - in-
creased time span

The lower bound of the substrates found by the penalized duality theory reformulation in
Section 4.5 are presented in Table 26.

Table 26: Simulation of the batch dFBA model on a case study of the Escherichia coli core metabolism.
In this table we present the lower bounds of the metabolic reactions found by the penalized
duality theory reformulation for some of the finite elements. The batch bioreactor simulation
is run for 7.1 hours with 10 finite elements. Point 1 refers to the first point in a finite element,
Point 2 refers to the second point in a finite element, and Point 3 refers to the third point in
a finite element.

Metabolite: Time: [s] Concentration: [mmol/L] Point 1: Point 2: Point 3:
0.11 - 0.71 10.48 - 10.43 −10.49 −10.49 −10.49

Glucose 2.95 - 3.55 9.86 - 9.59 −10.49 −10.49 −10.49
5.08 - 5.68 7.70 - 6.37 −10.49 −10.49 −10.48
6.50 - 7.10 2.64 - 0.00 −10.46 −10.33 −1.03 · 10−4

0.11 - 0.71 0.11 - 0.11 −2.29 −2.29 −2.30
Acetate 2.95 - 3.55 0.20 - 0.18 −2.38 −2.36 −2.37

5.08 - 5.68 0.45 - 0.35 −2.45 −2.43 −2.43
6.50 - 7.10 0.79 - 0.03 −2.47 −2.46 −1.97
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A Lower bounds A.2 Lower bounds for batch bioreactor model based on dFBA -
increased time span

From Table 26 we see that the lower bounds behave as expected with changes in the glucose
and acetate concentrations. The lower bound of glucose is not changing until the glucose
concentration becomes very low. The lower bound of acetate is increasing and decreasing,
but this is consistent with the rapid changes we see in the acetate concentration, Figure 9.
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B Project code

In this section we present some of the code scripts used in this project. For the code in its
entirety please see the Process-Optimization-and-Control GitHub, https://github.com/
Process-Optimization-and-Control.

B.1 Julia packages

This project used ȷulıa versions 1.8.5 with the packages presented below.

• Blink v0.12.6

• DifferentialEquations v7.7.0

• Distributions v0.25.87

• Ipopt v1.2.1

• JuMP v1.10.0

• PlotlyJS v0.18.10

• Plots v1.38.9

• TimerOutputs v0.5.22

• Trebuchet v0.2.2

The IPOPT solver used the MA97 linear solver from HSL [25].

B.2 Escherichia coli core model

The code presented below gathers the stoichiometric matrix (S), the c-vector (c), the lower
bounds (LB) and the upper bounds (UB) of the metabolic reactions, the reaction names
(Rxnames), and the metabolic fluxes (v) of the Escherichia coli core metabolic model
and stores them in a structure. The function printFluxes prints all the fluxes sufficiently,
10−5, different from zero, and the changeRxnBounds function changes the lower or upper
bounds for a given metabolic reaction.

include("init.jl")

mutable struct E_coli_Model

S::Matrix
c::Vector
LB::Vector
UB::Vector
Rxnames::Vector
v::Vector

function E_coli_Model(S::Matrix, c::Vector, LB::Vector, UB::Vector,
Rxnames::Vector)↪→
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B Project code B.3 Batch models with adaptive mesh

v = zeros(size(S)[2])
new(S, c, LB, UB, Rxnames, v)

end
end

# Print fluxes
# ---------------------------------------------------------------------
function printFluxes(model::Any, print_all::Any)

println("Fluxes:")
println("----------------------------------------------")
for i = 1:length(model.v)

if print_all == false
if (abs(model.v[i]) > 1e-5)

println("$(model.Rxnames[i]): $(model.v[i])")
end

else
println("$(model.Rxnames[i]): $(model.v[i])")

end
end

end

# Change reaction bounds
# ---------------------------------------------------------------------
function changeRxnBounds(model::Any, rec_target::String, val_target::Any,

bound_target::String)↪→

for i = 1:length(model.v)
if model.Rxnames[i] == rec_target

if bound_target == "l"
model.LB[i] = val_target

elseif bound_target == "u"
model.UB[i] = val_target

else
println("l for lower bound and u for upper bound")

end
return nothing

end
end

end

E_coli_Model_init = E_coli_Model(init_mod[:S], init_mod[:c], init_mod[:LB],
init_mod[:UB], init_mod[:Rxnames])↪→

B.3 Batch models with adaptive mesh

In this subsection we present some the code used to simulate the batch process with
adaptive mesh.

main.jl

main.jl is used to initialize the system, run the batch simulation, and to plot the results.

# include("dFBA Batch/main adaptive mesh.jl")

import Ipopt, JuMP, Plots, TimerOutputs, DifferentialEquations
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include("E. coli core/E_coli_Model.jl")
include("init.jl")
include("DAP/DAP.jl")
include("DAP/DAPsaveat.jl")
include("MSE.jl")

include("Adaptive mesh/Duality.jl")
include("Adaptive mesh/P-Duality.jl")
include("Adaptive mesh/KKT.jl")
include("Adaptive mesh/P-KKT.jl")

timer = TimerOutputs.TimerOutput()

# Initialize model:
mod = E_coli_model
changeRxnBounds(mod, "EX_o2(e)", v_omax , "l")

Bio_index = 13
Ace_index = 20
Glu_index = 28

t_0 = 0 # h
t_end = 7.1 # h
N = 10 # Number of finite elements

# Dual:
display("Dual")
TimerOutputs.reset_timer!(timer)
t_Dual, G_Dual, X_Dual, A_Dual, status_Dual = TDual(mod, G_0, X_0, A_0, K_g, K_a,

v_gmax, v_amax, Bio_index, Ace_index, Glu_index, t_0, t_end)↪→

display(timer)

# P. Dual:
display("P. Dual:")
TimerOutputs.reset_timer!(timer)
t_PDual, G_PDual, X_PDual, A_PDual, status_PDual = TPDual(mod, G_0, X_0, A_0,

K_g, K_a, v_gmax, v_amax, Bio_index, Ace_index, Glu_index, t_0, t_end)↪→

display(timer)

# KKT:
display("KKT")
TimerOutputs.reset_timer!(timer)
t_KKT, G_KKT, X_KKT, A_KKT, status_KKT = TKKT(mod, G_0, X_0, A_0, K_g, K_a,

v_gmax, v_amax, Bio_index, Ace_index, Glu_index, t_0, t_end)↪→

display(timer)

# P. KKT:
display("P. KKT")
TimerOutputs.reset_timer!(timer)
t_PKKT, G_PKKT, X_PKKT, A_PKKT, status_PKKT = TPKKT(mod, G_0, X_0, A_0, K_g, K_a,

v_gmax, v_amax, Bio_index, Ace_index, Glu_index, t_0, t_end)↪→

display(timer)

# Display results:

t_DAP, G_DAP, X_DAP, A_DAP = DAPsave(mod, G_0, X_0, A_0, K_g, K_a, v_gmax,
v_amax, Bio_index, Ace_index, Glu_index, t_end, t_Dual)↪→
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display("Dual:")
display(status_Dual)
display(MSE(G_DAP, G_Dual))
display(MSE(X_DAP, X_Dual))
display(MSE(A_DAP, A_Dual))

t_DAP, G_DAP, X_DAP, A_DAP = DAPsave(mod, G_0, X_0, A_0, K_g, K_a, v_gmax,
v_amax, Bio_index, Ace_index, Glu_index, t_end, t_PDual)↪→

display("P. Dual:")
display(status_PDual)
display(MSE(G_DAP, G_PDual))
display(MSE(X_DAP, X_PDual))
display(MSE(A_DAP, A_PDual))

t_DAP, G_DAP, X_DAP, A_DAP = DAPsave(mod, G_0, X_0, A_0, K_g, K_a, v_gmax,
v_amax, Bio_index, Ace_index, Glu_index, t_end, t_KKT)↪→

display("KKT:")
display(status_KKT)
display(MSE(G_DAP, G_KKT))
display(MSE(X_DAP, X_KKT))
display(MSE(A_DAP, A_KKT))

t_DAP, G_DAP, X_DAP, A_DAP = DAPsave(mod, G_0, X_0, A_0, K_g, K_a, v_gmax,
v_amax, Bio_index, Ace_index, Glu_index, t_end, t_PKKT)↪→

display("P. KKT:")
display(status_PKKT)
display(MSE(G_DAP, G_PKKT))
display(MSE(X_DAP, X_PKKT))
display(MSE(A_DAP, A_PKKT))

# Direct Approach:
display("DA:")
TimerOutputs.reset_timer!(timer)
t_DAP, G_DAP, X_DAP, A_DAP = DAP(mod, G_0, X_0, A_0, K_g, K_a, v_gmax, v_amax,

Bio_index, Ace_index, Glu_index, t_end)↪→

display(timer)

# Ploting the results:
using Plots

t_points_Dual = [t_0]
for n = 4:3:N*3+1

global t_points_Dual
t_points_Dual = vcat(t_points_Dual, t_Dual[n])

end

t_points = [t_0]
for n = 4:3:N*3+1

global t_points
t_points = vcat(t_points, t_PDual[n])

end

t_points_KKT = [t_0]
for n = 4:3:N*3+1

global t_points_KKT
t_points_KKT = vcat(t_points_KKT, t_KKT[n])

end
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t_points_PKKT = [t_0]
for n = 4:3:N*3+1

global t_points_PKKT
t_points_PKKT = vcat(t_points_PKKT, t_PKKT[n])

end

pG = plot(t_DAP,G_DAP, title="Glucose", xaxis="Time [h]",yaxis="Concentration
[mmol/L]", label="DA", lw=2, ls=:solid, color=:blue)↪→

pG = plot!(t_Dual,G_Dual, label="Dual", lw=2, ls=:dashdot, color=:orange)
pG = plot!(t_PDual,G_PDual, label="P. Dual", lw=2, ls=:dash, color=:green)
pG = plot!(t_KKT,G_KKT, label="KKT", lw=2, ls=:dashdotdot, color=:purple)
pG = plot!(t_PKKT,G_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red)
pG = scatter!(t_points_Dual, zeros(length(t_points_Dual)) ,label="Finite elements

Dual",color=:orange, markershape=:star5)↪→

pG = scatter!(t_points, zeros(length(t_points)) , label="Finite elements P.
Dual", color=:green)↪→

pG = scatter!(t_points_KKT, zeros(length(t_points_KKT)) ,label="Finite elements
KKT",color=:purple, markershape=:square)↪→

pG = scatter!(t_points_PKKT, zeros(length(t_points_PKKT)) ,label="Finite elements
P. KKT",color=:red, markershape=:cross)↪→

pX = plot(t_DAP,X_DAP, title="Biomass", xaxis="Time [h]",yaxis="Concentration
[g/L]", label="DA", lw=2, ls=:solid, color=:blue)↪→

pX = plot!(t_Dual,X_Dual, label="Dual", lw=2, ls=:dashdot, color=:orange)
pX = plot!(t_PDual,X_PDual, label="P. Dual", lw=2, ls=:dash, color=:green)
pX = plot!(t_KKT,X_KKT, label="KKT", lw=2, ls=:dashdotdot, color=:purple)
pX = plot!(t_PKKT,X_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red)
pX = scatter!(t_points_Dual, zeros(length(t_points_Dual)) ,label="Finite elements

Dual",color=:orange, markershape=:star5)↪→

pX = scatter!(t_points, zeros(length(t_points)) ,label="Finite elements P. Dual",
color=:green)↪→

pX = scatter!(t_points_KKT, zeros(length(t_points_KKT)) ,label="Finite elements
KKT",color=:purple, markershape=:square)↪→

pX = scatter!(t_points_PKKT, zeros(length(t_points_PKKT)) ,label="Finite elements
P. KKT",color=:red, markershape=:cross)↪→

pA = plot(t_DAP,A_DAP, title="Acetate", xaxis="Time [h]",yaxis="Concentration
[mmol/L]", label="DA", lw=2, ls=:solid, color=:blue, legend=:topleft)↪→

pA = plot!(t_Dual,A_Dual, label="Dual", lw=2, ls=:dashdot, color=:orange)
pA = plot!(t_PDual,A_PDual, label="P. Dual", lw=2, ls=:dash, color=:green)
pA = plot!(t_KKT,A_KKT, label="KKT", lw=2, ls=:dashdotdot, color=:purple)
pA = plot!(t_PKKT,A_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red)
pA = scatter!(t_points_Dual, zeros(length(t_points_Dual)) ,label="Finite elements

Dual",color=:orange, markershape=:star5)↪→

pA = scatter!(t_points, zeros(length(t_points)) ,label="Finite elements P. Dual",
color=:green)↪→

pA = scatter!(t_points_KKT, zeros(length(t_points_KKT)) ,label="Finite elements
KKT",color=:purple, markershape=:square)↪→

pA = scatter!(t_points_PKKT, zeros(length(t_points_PKKT)) ,label="Finite elements
P. KKT",color=:red, markershape=:cross)↪→

# Save plots:
savefig(pG,"SGT.pdf")
savefig(pX,"SXT.pdf")
savefig(pA,"SAT.pdf")
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DAP.jl

DAP.jl is used to simulate the batch dFBA model of Escherichia coli core metabolic model
using the Direct Approach (DA).

using Ipopt, DifferentialEquations, JuMP

# pFBA solver:
function pFBA(mod)

S = mod.S
c = mod.c
UB = mod.UB
LB = mod.LB

W = zeros(Float64, size(S)[2], size(S)[2])
for i = 1:size(S)[2]

for j = 1:size(S)[2]
if i == j

W[i, j] = 1e-6
end

end
end

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
JuMP.set_silent(model)

JuMP.@variable(model, v[i=1:length(c)], start = mod.v[i])

for i = 1:length(c)
JuMP.@constraint(model, LB[i] <= v[i] <= UB[i])

end

JuMP.@constraint(model, S*v .== 0)

JuMP.@expression(model, FO, -transpose(c)*v + transpose(v)*W*v)

JuMP.@objective(model, Min, FO)

JuMP.optimize!(model)

v_opt = JuMP.value.(v)

for i = 1:length(c)
mod.v[i] = v_opt[i]

end

return JuMP.raw_status(model)
end

# Reactor rquations:
function reactor!(dC, C, consts, t)

global status

# Gathering constants:
# ----------------------------------------------------
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K_g = consts[1]
K_a = consts[2]
v_gmax = consts[3]
v_amax = consts[4]
model = consts[5]
Bio_index = consts[6]
Ace_index = consts[7]
Glu_index = consts[8]

# Gathering concentrations
X = C[1]
G = C[2]
A = C[3]

if A < 0
A = 0
changeRxnBounds(model, "EX_ac(e)", 0, "l")

else
v_a = v_amax*(A/(K_a + A))
changeRxnBounds(model, "EX_ac(e)", v_a, "l")

end
if G < 0

G = 0
changeRxnBounds(model, "EX_glc(e)", 0, "l")

else
v_g = v_gmax*(G/(K_g + G))
changeRxnBounds(model, "EX_glc(e)", v_g, "l")

end

st = pFBA(model)
status = vcat(status, st)

mu, v_g, v_a = model.v[Bio_index], model.v[Glu_index], model.v[Ace_index]

# Mass balance equations:
# ----------------------------------------------------
dXdt = mu*X
dGdt = v_g*X
dAdt = v_a*X

# Return result:
# ----------------------------------------------------
dC .= vcat(dXdt, dGdt, dAdt)

return nothing
end

# Direct Approach:
function DAP(model, G_0, X_0, A_0, K_g, K_a, v_gmax, v_amax, Bio_index,

Ace_index, Glu_index, t_end)↪→

global status

# Initialization:
# ----------------------------------------------------
init = vcat(X_0, G_0, A_0)
consts = vcat(K_g, K_a, v_gmax, v_amax, model, Bio_index, Ace_index,

Glu_index)↪→
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status = []

# Initializing boundary in t-direction:
#-------------------------------------------------------------------
tspan = [0, t_end] # s

# Solving the ODE-system:
#-------------------------------------------------------------------
prob = ODEProblem(reactor!, init, tspan, consts)
sol = DifferentialEquations.solve(prob, QNDF(autodiff=false), reltol=1e-6,

abstol=1e-6)↪→

display(sol.destats)
display(status)
for i in status

if i != "Solve_Succeeded"
display(i)

end
end

# Gathering results:
#-------------------------------------------------------------------
t = Array{Float64}(undef,size(sol.t,1))
C_X = Array{Float64}(undef,size(sol.t,1))
C_G = Array{Float64}(undef,size(sol.t,1))
C_A = Array{Float64}(undef,size(sol.t,1))

# t2 - tend:
#-------------------------------------------------------------------
for i=1:size(sol.t,1)

t[i] = sol.t[i]
C_X[i] = sol[i][1,1]
C_G[i] = sol[i][2,1]
C_A[i] = sol[i][3,1]

end

# Reset model:
for i = 1:length(mod.v)

mod.v[i] = 0.0
end

return t, C_G, C_X, C_A
end

Duality.jl

Duality.jl is used to simulate the batch dFBA model of Escherichia coli core metabolic
model using the non-penalized duality theory Non-Linear Programming Approach (NLPA).

# Duality theory reformulation:

using Ipopt, JuMP

function Dual(mod, G_0, X_0, A_0, K_g, K_a, v_gmax, v_amax, Bio_index, Ace_index,
Glu_index, t_0, t_end)↪→
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t_list = [t_0]
G_list = [G_0]
X_list = [X_0]
A_list = [A_0]

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
↪→

A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
↪→

t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Numer of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2
1 t[3] t[3]^2

]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilazing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix: #reactions*#finite

elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB my, => Matrix: #reactions*#finite
elements↪→
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JuMP.@variable(model, umy[1:j, 1:N]) # UB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, dt[1:N]) # Finite elment size => Vector: #finite
elements↪→

# Time constraints:
JuMP.@constraint(model, sum(dt) == t_end)
for n = 1:N

JuMP.@constraint(model, 0 <= dt[n] <= 1)
end

# Defining LB:
if Ace_index < Glu_index

for n = 1:N
for k = 1:Ace_index-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

else
for n = 1:N

for k = 1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:Ace_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
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JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
end

# Orthogonal collocation constraints:
for c = 1:3

JuMP.@NLconstraint(model, X[c,1] == X_0[c] +
dt[1]*(M[c,1]*(v[Bio_index,1]*X[1,1]) +
M[c,2]*(v[Bio_index,1]*X[2,1]) + M[c,3]*(v[Bio_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,1] == G_0[c] +
dt[1]*(M[c,1]*(v[Glu_index,1]*X[1,1]) +
M[c,2]*(v[Glu_index,1]*X[2,1]) + M[c,3]*(v[Glu_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,1] == A_0[c] +
dt[1]*(M[c,1]*(v[Ace_index,1]*X[1,1]) +
M[c,2]*(v[Ace_index,1]*X[2,1]) + M[c,3]*(v[Ace_index,1]*X[3,1])))

↪→

↪→

for n = 2:N
JuMP.@NLconstraint(model, X[c,n] == X[3,n-1] +

dt[n]*(M[c,1]*(v[Bio_index,n]*X[1,n]) +
M[c,2]*(v[Bio_index,n]*X[2,n]) + M[c,3]*(v[Bio_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,n] == G[3,n-1] +
dt[n]*(M[c,1]*(v[Glu_index,n]*X[1,n]) +
M[c,2]*(v[Glu_index,n]*X[2,n]) + M[c,3]*(v[Glu_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,n] == A[3,n-1] +
dt[n]*(M[c,1]*(v[Ace_index,n]*X[1,n]) +
M[c,2]*(v[Ace_index,n]*X[2,n]) + M[c,3]*(v[Ace_index,n]*X[3,n])))

↪→

↪→

end
end

# Duality Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] .+

transpose(mod.S)*lam[:,n] .+ umy[:,n] .- lmy[:,n] .== 0)↪→

JuMP.@constraint(model, -transpose(mod.c)*v[:,n] +
transpose(v[:,n])*W*v[:,n] == -transpose(v[:,n])*W*v[:,n] +
transpose(lmy[:,n])*LB[:,n] - transpose(umy[:,n])*UB)

↪→

↪→

end

# Objective:
JuMP.@NLexpression(model, FO, sum(dt[n]*(G[1,n]-G[3,n]) for n=1:N))
JuMP.@NLobjective(model, Min, FO)

JuMP.optimize!(model)

# Gather the solution:
for n = 1:N

t_list = vcat(t_list, [last(t_list)+0.155051*JuMP.value.(dt)[n],
last(t_list)+0.644949*JuMP.value.(dt)[n],
last(t_list)+1.0000*JuMP.value.(dt)[n]])

↪→

↪→

for c = 1:3
G_list = vcat(G_list, JuMP.value.(G)[c,n])
X_list = vcat(X_list, JuMP.value.(X)[c,n])
A_list = vcat(A_list, JuMP.value.(A)[c,n])

end
end

return t_list, G_list, X_list, A_list, JuMP.raw_status(model)
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end

P-Duality.jl

P-Duality.jl is used to simulate the batch dFBA model of Escherichia coli core metabolic
model using the penalized duality theory NLPA.

# Penalized duality theory reformulation:

using Ipopt, JuMP

function PDual(mod, G_0, X_0, A_0, K_g, K_a, v_gmax, v_amax, Bio_index,
Ace_index, Glu_index, t_0, t_end)↪→

t_list = [t_0]
G_list = [G_0]
X_list = [X_0]
A_list = [A_0]

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
↪→

A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
↪→

t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Numer of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2
1 t[3] t[3]^2

]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilazing UB:
UB = mod.UB
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model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix: #reactions*#finite

elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, dt[1:N]) # Finite elment size => Vector: #finite
elements↪→

# Time constraints:
JuMP.@constraint(model, sum(dt) == t_end)
for n = 1:N

JuMP.@constraint(model, 0 <= dt[n] <= 1)
end

# Defining LB:
if Ace_index < Glu_index

for n = 1:N
for k = 1:Ace_index-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

else
for n = 1:N

for k = 1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:Ace_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])
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end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
end

# Orthogonal collocation constraints:
for c = 1:3

JuMP.@NLconstraint(model, X[c,1] == X_0[c] +
dt[1]*(M[c,1]*(v[Bio_index,1]*X[1,1]) +
M[c,2]*(v[Bio_index,1]*X[2,1]) + M[c,3]*(v[Bio_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,1] == G_0[c] +
dt[1]*(M[c,1]*(v[Glu_index,1]*X[1,1]) +
M[c,2]*(v[Glu_index,1]*X[2,1]) + M[c,3]*(v[Glu_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,1] == A_0[c] +
dt[1]*(M[c,1]*(v[Ace_index,1]*X[1,1]) +
M[c,2]*(v[Ace_index,1]*X[2,1]) + M[c,3]*(v[Ace_index,1]*X[3,1])))

↪→

↪→

for n = 2:N
JuMP.@NLconstraint(model, X[c,n] == X[3,n-1] +

dt[n]*(M[c,1]*(v[Bio_index,n]*X[1,n]) +
M[c,2]*(v[Bio_index,n]*X[2,n]) + M[c,3]*(v[Bio_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,n] == G[3,n-1] +
dt[n]*(M[c,1]*(v[Glu_index,n]*X[1,n]) +
M[c,2]*(v[Glu_index,n]*X[2,n]) + M[c,3]*(v[Glu_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,n] == A[3,n-1] +
dt[n]*(M[c,1]*(v[Ace_index,n]*X[1,n]) +
M[c,2]*(v[Ace_index,n]*X[2,n]) + M[c,3]*(v[Ace_index,n]*X[3,n])))

↪→

↪→

end
end

# Duality Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] .+

transpose(mod.S)*lam[:,n] .+ umy[:,n] .- lmy[:,n] .== 0)↪→

end

# Objective:
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JuMP.@NLexpression(model, FO, sum(sum(-mod.c[l]*v[l,n] +
2*v[l,n]*W[l,l]*v[l,n] - lmy[l,n]*LB[l,n] + umy[l,n]*UB[l] for l in 1:j)
for n in 1:N) + 0.1*sum(dt[n]*(G[1,n]-G[3,n]) for n=1:N))

↪→

↪→

JuMP.@NLobjective(model, Min, FO)

JuMP.optimize!(model)

# Gather the solution:
for n = 1:N

t_list = vcat(t_list, [last(t_list)+0.155051*JuMP.value.(dt)[n],
last(t_list)+0.644949*JuMP.value.(dt)[n],
last(t_list)+1.0000*JuMP.value.(dt)[n]])

↪→

↪→

for c = 1:3
G_list = vcat(G_list, JuMP.value.(G)[c,n])
X_list = vcat(X_list, JuMP.value.(X)[c,n])
A_list = vcat(A_list, JuMP.value.(A)[c,n])

end
end

return t_list, G_list, X_list, A_list, JuMP.raw_status(model)
end

KKT.jl

KKT.jl is used to simulate the batch dFBA model of Escherichia coli core metabolic model
using the non-penalized Karush–Kuhn–Tucker (KKT) NLPA.

# KKT reformulation:

using Ipopt, JuMP

function KKT(mod, G_0, X_0, A_0, K_g, K_a, v_gmax, v_amax, Bio_index, Ace_index,
Glu_index, t_0, t_end)↪→

t_list = [t_0]
G_list = [G_0]
X_list = [X_0]
A_list = [A_0]

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
↪→

A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
↪→

t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Numer of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2

81



B Project code B.3 Batch models with adaptive mesh

1 t[3] t[3]^2
]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilazing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix: #reactions*#finite

elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, dt[1:N]) # Finite elment size => Vector: #finite
elements↪→

# Time constraints:
JuMP.@constraint(model, sum(dt) == t_end)
for n = 1:N

JuMP.@constraint(model, 0 <= dt[n] <= 1)
end

# Defining LB:
if Ace_index < Glu_index

for n = 1:N
for k = 1:Ace_index-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:Glu_index-1
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JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

else
for n = 1:N

for k = 1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:Ace_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
end

# Orthogonal collocation constraints:
for c = 1:3

JuMP.@NLconstraint(model, X[c,1] == X_0[c] +
dt[1]*(M[c,1]*(v[Bio_index,1]*X[1,1]) +
M[c,2]*(v[Bio_index,1]*X[2,1]) + M[c,3]*(v[Bio_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,1] == G_0[c] +
dt[1]*(M[c,1]*(v[Glu_index,1]*X[1,1]) +
M[c,2]*(v[Glu_index,1]*X[2,1]) + M[c,3]*(v[Glu_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,1] == A_0[c] +
dt[1]*(M[c,1]*(v[Ace_index,1]*X[1,1]) +
M[c,2]*(v[Ace_index,1]*X[2,1]) + M[c,3]*(v[Ace_index,1]*X[3,1])))

↪→

↪→

for n = 2:N
JuMP.@NLconstraint(model, X[c,n] == X[3,n-1] +

dt[n]*(M[c,1]*(v[Bio_index,n]*X[1,n]) +
M[c,2]*(v[Bio_index,n]*X[2,n]) + M[c,3]*(v[Bio_index,n]*X[3,n])))

↪→

↪→
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JuMP.@NLconstraint(model, G[c,n] == G[3,n-1] +
dt[n]*(M[c,1]*(v[Glu_index,n]*X[1,n]) +
M[c,2]*(v[Glu_index,n]*X[2,n]) + M[c,3]*(v[Glu_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,n] == A[3,n-1] +
dt[n]*(M[c,1]*(v[Ace_index,n]*X[1,n]) +
M[c,2]*(v[Ace_index,n]*X[2,n]) + M[c,3]*(v[Ace_index,n]*X[3,n])))

↪→

↪→

end
end

# Duality Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] .+

transpose(mod.S)*lam[:,n] .+ umy[:,n] .- lmy[:,n] .== 0)↪→

end

# CS:
for n = 1:N

JuMP.@constraint(model, transpose(lmy[:,n])*(v[:,n] .- LB[:,n]) == 0)
JuMP.@constraint(model, transpose(umy[:,n])*(UB .- v[:,n]) == 0)

end

# Objective:
JuMP.@NLexpression(model, FO, sum(dt[n]*(G[1,n]-G[3,n]) for n=1:N))
JuMP.@NLobjective(model, Min, FO)

JuMP.optimize!(model)

# Gather the solution:
for n = 1:N

t_list = vcat(t_list, [last(t_list)+0.155051*JuMP.value.(dt)[n],
last(t_list)+0.644949*JuMP.value.(dt)[n],
last(t_list)+1.0000*JuMP.value.(dt)[n]])

↪→

↪→

for c = 1:3
G_list = vcat(G_list, JuMP.value.(G)[c,n])
X_list = vcat(X_list, JuMP.value.(X)[c,n])
A_list = vcat(A_list, JuMP.value.(A)[c,n])

end
end

return t_list, G_list, X_list, A_list, JuMP.raw_status(model)
end

P-KKT.jl

P-KKT.jl is used to simulate the batch dFBA model of Escherichia coli core metabolic
model using the penalized KKT NLPA.

# Penalized KKT reformulation:

using Ipopt, JuMP
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function PKKT(mod, G_0, X_0, A_0, K_g, K_a, v_gmax, v_amax, Bio_index, Ace_index,
Glu_index, t_0, t_end)↪→

t_list = [t_0]
G_list = [G_0]
X_list = [X_0]
A_list = [A_0]

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
↪→

A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
↪→

t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Numer of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2
1 t[3] t[3]^2

]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilazing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix: #reactions*#finite

elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→
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JuMP.@variable(model, lmy[1:j, 1:N]) # LB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB my, => Matrix: #reactions*#finite
elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, dt[1:N]) # Finite elment size => Vector: #finite
elements↪→

# Time constraints:
JuMP.@constraint(model, sum(dt) == t_end)
for n = 1:N

JuMP.@constraint(model, 0 <= dt[n] <= 1)
end

# Defining LB:
if Ace_index < Glu_index

for n = 1:N
for k = 1:Ace_index-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

else
for n = 1:N

for k = 1:Glu_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Glu_index,n] == v_gmax*G[3,n]/(K_g +

G[3,n]))↪→

for k = Glu_index+1:Ace_index-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[Ace_index,n] == v_amax*A[3,n]/(K_a +

A[3,n]))↪→

for k = Ace_index+1:j
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
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for c = 1:3
JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
end

# Orthogonal collocation constraints:
for c = 1:3

JuMP.@NLconstraint(model, X[c,1] == X_0[c] +
dt[1]*(M[c,1]*(v[Bio_index,1]*X[1,1]) +
M[c,2]*(v[Bio_index,1]*X[2,1]) + M[c,3]*(v[Bio_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,1] == G_0[c] +
dt[1]*(M[c,1]*(v[Glu_index,1]*X[1,1]) +
M[c,2]*(v[Glu_index,1]*X[2,1]) + M[c,3]*(v[Glu_index,1]*X[3,1])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,1] == A_0[c] +
dt[1]*(M[c,1]*(v[Ace_index,1]*X[1,1]) +
M[c,2]*(v[Ace_index,1]*X[2,1]) + M[c,3]*(v[Ace_index,1]*X[3,1])))

↪→

↪→

for n = 2:N
JuMP.@NLconstraint(model, X[c,n] == X[3,n-1] +

dt[n]*(M[c,1]*(v[Bio_index,n]*X[1,n]) +
M[c,2]*(v[Bio_index,n]*X[2,n]) + M[c,3]*(v[Bio_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, G[c,n] == G[3,n-1] +
dt[n]*(M[c,1]*(v[Glu_index,n]*X[1,n]) +
M[c,2]*(v[Glu_index,n]*X[2,n]) + M[c,3]*(v[Glu_index,n]*X[3,n])))

↪→

↪→

JuMP.@NLconstraint(model, A[c,n] == A[3,n-1] +
dt[n]*(M[c,1]*(v[Ace_index,n]*X[1,n]) +
M[c,2]*(v[Ace_index,n]*X[2,n]) + M[c,3]*(v[Ace_index,n]*X[3,n])))

↪→

↪→

end
end

# Duality Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] .+

transpose(mod.S)*lam[:,n] .+ umy[:,n] .- lmy[:,n] .== 0)↪→

end

# Objective:
JuMP.@NLexpression(model, FO, sum(sum(((v[l,n] - LB[l,n])*lmy[l,n]) +

(-v[l,n] + UB[l])*umy[l,n] for l in 1:j) for n in 1:N) +
0.1*sum(dt[n]*(G[1,n]-G[3,n]) for n=1:N))

↪→

↪→

JuMP.@NLobjective(model, Min, FO)

JuMP.optimize!(model)

# Gather the solution:
for n = 1:N

t_list = vcat(t_list, [last(t_list)+0.155051*JuMP.value.(dt)[n],
last(t_list)+0.644949*JuMP.value.(dt)[n],
last(t_list)+1.0000*JuMP.value.(dt)[n]])

↪→

↪→

for c = 1:3
G_list = vcat(G_list, JuMP.value.(G)[c,n])
X_list = vcat(X_list, JuMP.value.(X)[c,n])
A_list = vcat(A_list, JuMP.value.(A)[c,n])

end
end
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return t_list, G_list, X_list, A_list, JuMP.raw_status(model)
end

B.4 MPC models

In this subsection we present some the code used to tests the Model Predictive Controller
(MPC).

main.jl

main.jl is used to initialize the system, run the MPC loop, and to plot the results.

# include("MPC/main.jl")

import Ipopt, JuMP, Plots

include("E. coli model/E_coli_Model.jl")
include("init.jl")
include("DA.jl")
include("pFBA reformulations/Duality.jl")
include("pFBA reformulations/P-Duality.jl")
include("pFBA reformulations/KKT.jl")
include("pFBA reformulations/P-KKT.jl")

# Initialize E. coli core metabolic network:
mod = E_coli_Model_init
changeRxnBounds(mod, "EX_o2(e)", v_omax , "l")

# Initialize MPC:
t_0 = 0 # h
t_end = 35 # h
N = 35
dt = (t_end-t_0)/N
sp = [0.2*ones(1,6) 0.4*ones(1,15) 0.2*ones(1,15)] # 0.2*ones(1,N+1)
G_f = G_f0*ones(1,N+1) # [G_f0*ones(1,6) 8*ones(1,15) G_f0*ones(1,15)] #

G_f0*ones(1,N+1)↪→

v_gmax = v_gmax_0*ones(1,N+1) #[v_gmax_0*ones(1,6) -5.25*ones(1,15)
v_gmax_0*ones(1,15)]↪→

time = Array{Float64}(undef, N+1)
time[1] = t_0

# Dual:
G_Dual = Array{Float64}(undef, N+1)
X_Dual = Array{Float64}(undef, N+1)
A_Dual = Array{Float64}(undef, N+1)
D_Dual = Array{Float64}(undef, N+1)
time_Dual = Array{Float64}(undef, N)
status_Dual = Array{Any}(undef, N)
t_list_Dual = [t_0]
G_list_Dual = [G_0]
X_list_Dual = [X_0]
A_list_Dual = [A_0]
G_Dual[1] = G_0
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X_Dual[1] = X_0
A_Dual[1] = A_0
D_Dual[1] = D_0

# P. Dual:
G_PDual = Array{Float64}(undef, N+1)
X_PDual = Array{Float64}(undef, N+1)
A_PDual = Array{Float64}(undef, N+1)
D_PDual = Array{Float64}(undef, N+1)
time_PDual = Array{Float64}(undef, N)
status_PDual = Array{Any}(undef, N)
t_list_PDual = [t_0]
G_list_PDual = [G_0]
X_list_PDual = [X_0]
A_list_PDual = [A_0]
G_PDual[1] = G_0
X_PDual[1] = X_0
A_PDual[1] = A_0
D_PDual[1] = D_0

# KKT:
G_KKT = Array{Float64}(undef, N+1)
X_KKT = Array{Float64}(undef, N+1)
A_KKT = Array{Float64}(undef, N+1)
D_KKT = Array{Float64}(undef, N+1)
time_KKT = Array{Float64}(undef, N)
status_KKT = Array{Any}(undef, N)
t_list_KKT = [t_0]
G_list_KKT = [G_0]
X_list_KKT = [X_0]
A_list_KKT = [A_0]
G_KKT[1] = G_0
X_KKT[1] = X_0
A_KKT[1] = A_0
D_KKT[1] = D_0

# P. KKT:
G_PKKT = Array{Float64}(undef, N+1)
X_PKKT = Array{Float64}(undef, N+1)
A_PKKT = Array{Float64}(undef, N+1)
D_PKKT = Array{Float64}(undef, N+1)
time_PKKT = Array{Float64}(undef, N)
status_PKKT = Array{Any}(undef, N)
t_list_PKKT = [t_0]
G_list_PKKT = [G_0]
X_list_PKKT = [X_0]
A_list_PKKT = [A_0]
G_PKKT[1] = G_0
X_PKKT[1] = X_0
A_PKKT[1] = A_0
D_PKKT[1] = D_0

# MSE:
MSE_Dual = 0
MSE_PDual = 0
MSE_KKT = 0
MSE_PKKT = 0
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for n = 1:N
global t_list_Dual, G_list_Dual, X_list_Dual, A_list_Dual, t_list_PDual,

G_list_PDual, X_list_PDual, A_list_PDual, t_list_PKKT, G_list_PKKT,
X_list_PKKT, A_list_PKKT, MSE_Dual, MSE_PDual, MSE_PKKT, time_Dual,
time_PDual, time_PKKT,status_Dual, status_PDual, status_PKKT, status_KKT,
t_list_KKT, G_list_KKT, X_list_KKT, A_list_KKT, MSE_KKT

↪→

↪→

↪→

↪→

display(n)

time[n+1] = time[n]+dt

# MPC control optimizations:
D_Dual[n+1], time_Dual[n], status_Dual[n] = Dual(mod, G_Dual[n], X_Dual[n],

A_Dual[n], K_g, v_gmax[n], 4, D_Dual[n], G_f[n], sp[n])↪→

D_PDual[n+1], time_PDual[n], status_PDual[n] = PDual(mod, G_PDual[n],
X_PDual[n], A_PDual[n], K_g, v_gmax[n], 4, D_PDual[n], G_f[n], sp[n])↪→

D_KKT[n+1], time_KKT[n], status_KKT[n] = KKT(mod, G_KKT[n], X_KKT[n],
A_KKT[n], K_g, v_gmax[n], 4, D_KKT[n], G_f[n], sp[n])↪→

D_PKKT[n+1], time_PKKT[n], status_PKKT[n] = PKKT(mod, G_PKKT[n], X_PKKT[n],
A_PKKT[n], K_g, v_gmax[n], 4, D_PKKT[n], G_f[n], sp[n])↪→

# Dual:
G_Dual[n+1], X_Dual[n+1], A_Dual[n+1], C_t, C_G, C_X, C_A = DAP(mod,

G_Dual[n], X_Dual[n], A_Dual[n], K_g, v_gmax[n], v_omax, time[n],
time[n+1], D_Dual[n+1], G_f[n])

↪→

↪→

t_list_Dual = vcat(t_list_Dual, C_t)
G_list_Dual = vcat(G_list_Dual, C_G)
X_list_Dual = vcat(X_list_Dual, C_X)
A_list_Dual = vcat(A_list_Dual, C_A)

# P. Dual:
G_PDual[n+1], X_PDual[n+1], A_PDual[n+1], C_t, C_G, C_X, C_A = DAP(mod,

G_PDual[n], X_PDual[n], A_PDual[n], K_g, v_gmax[n], v_omax, time[n],
time[n+1], D_PDual[n+1], G_f[n])

↪→

↪→

t_list_PDual = vcat(t_list_PDual, C_t)
G_list_PDual = vcat(G_list_PDual, C_G)
X_list_PDual = vcat(X_list_PDual, C_X)
A_list_PDual = vcat(A_list_PDual, C_A)

# KKT:
G_KKT[n+1], X_KKT[n+1], A_KKT[n+1], C_t, C_G, C_X, C_A = DAP(mod, G_KKT[n],

X_KKT[n], A_KKT[n], K_g, v_gmax[n], v_omax, time[n], time[n+1],
D_KKT[n+1], G_f[n])

↪→

↪→

t_list_KKT = vcat(t_list_KKT, C_t)
G_list_KKT = vcat(G_list_KKT, C_G)
X_list_KKT = vcat(X_list_KKT, C_X)
A_list_KKT = vcat(A_list_KKT, C_A)

# P. KKT:
G_PKKT[n+1], X_PKKT[n+1], A_PKKT[n+1], C_t, C_G, C_X, C_A = DAP(mod,

G_PKKT[n], X_PKKT[n], A_PKKT[n], K_g, v_gmax[n], v_omax, time[n],
time[n+1], D_PKKT[n+1], G_f[n])

↪→

↪→

t_list_PKKT = vcat(t_list_PKKT, C_t)
G_list_PKKT = vcat(G_list_PKKT, C_G)
X_list_PKKT = vcat(X_list_PKKT, C_X)
A_list_PKKT = vcat(A_list_PKKT, C_A)

# MSE:
MSE_Dual = MSE_Dual + (X_Dual[n]- sp[n])^2
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MSE_PDual = MSE_PDual + (X_PDual[n]- sp[n])^2
MSE_KKT = MSE_KKT + (X_KKT[n]- sp[n])^2
MSE_PKKT = MSE_PKKT + (X_PKKT[n]- sp[n])^2

end

# Calculate MSE:
MSE_Dual = MSE_Dual + (X_Dual[N+1]- sp[N+1])^2
MSE_PDual = MSE_PDual + (X_PDual[N+1]- sp[N+1])^2
MSE_KKT = MSE_KKT + (X_KKT[N+1]- sp[N+1])^2
MSE_PKKT = MSE_PKKT + (X_PKKT[N+1]- sp[N+1])^2

# Display results:
display("Status:")
display("Dual:")
for i in status_Dual

if i != "Solve_Succeeded"
display(i)

end
end
display("P. Dual:")
for i in status_PDual

if i != "Solve_Succeeded"
display(i)

end
end
display("KKT:")
for i in status_KKT

if i != "Solve_Succeeded"
display(i)

end
end
display("P. KKT:")
for i in status_PKKT

if i != "Solve_Succeeded"
display(i)

end
end

display("MSE:")
display(MSE_Dual/N)
display(MSE_PDual/N)
display(MSE_KKT/N)
display(MSE_PKKT/N)

display("Time:")
display(sum(time_Dual)/N)
display(sum(time_PDual)/N)
display(sum(time_KKT)/N)
display(sum(time_PKKT)/N)

# Plot results:
using Plots

pG = plot(t_list_Dual,G_list_Dual, title="Glucose", xaxis="Time
[h]",yaxis="Concentration [mmol/L]", label="Dual", lw=2, ls=:solid,
color=:orange)

↪→

↪→
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pG = plot!(t_list_PDual,G_list_PDual, title="Glucose", xaxis="Time
[h]",yaxis="Concentration [mmol/L]", label="P. Dual", lw=2, ls=:dash,
color=:green)

↪→

↪→

pG = plot!(t_list_KKT,G_list_KKT, label="KKT", lw=2, ls=:dashdotdot,
color=:purple)↪→

pG = plot!(t_list_PKKT,G_list_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red)

pX = plot(t_list_Dual,X_list_Dual, title="Biomass", xaxis="Time
[h]",yaxis="Concentration [g/L]", label="Dual", lw=2, ls=:solid,
color=:orange)

↪→

↪→

pX = plot!(t_list_PDual,X_list_PDual, title="Biomass", xaxis="Time
[h]",yaxis="Concentration [g/L]", label="P. Dual", lw=2, ls=:dash,
color=:green)

↪→

↪→

pX = plot!(t_list_KKT,X_list_KKT, label="KKT", lw=2, ls=:dashdotdot,
color=:purple)↪→

pX = plot!(t_list_PKKT,X_list_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red)
pX = plot!(time, sp[1,:], label="Setpoint", lw=2, ls=:dash, color=:blue,

linetype=:steppost)↪→

pA = plot(t_list_Dual,A_list_Dual, title="Acetate", xaxis="Time
[h]",yaxis="Concentration [mmol/L]", label="Dual", lw=2, ls=:solid,
color=:orange)

↪→

↪→

pA = plot!(t_list_PDual,A_list_PDual, title="Acetate", xaxis="Time
[h]",yaxis="Concentration [mmol/L]", label="P. Dual", lw=2, ls=:dash,
color=:green)

↪→

↪→

pA = plot!(t_list_KKT,A_list_KKT, label="KKT", lw=2, ls=:dashdotdot,
color=:purple)↪→

pA = plot!(t_list_PKKT,A_list_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red)

pD = plot(time, D_Dual, title="Dilution rate", xaxis="Time [h]",yaxis="Dilution
rate [h^-1]", label="Dual", lw=2, ls=:solid, color=:orange,
linetype=:steppost)

↪→

↪→

pD = plot!(time, D_PDual, title="Dilution rate", xaxis="Time
[h]",yaxis="Dilution rate [h^-1]", label="P. Dual", lw=2, ls=:dash,
color=:green, linetype=:steppost)

↪→

↪→

pD = plot!(time, D_KKT, label="KKT", lw=2, ls=:dashdotdot, color=:purple,
linetype=:steppost)↪→

pD = plot!(time, D_PKKT, label="P. KKT", lw=2, ls=:dot, color=:red,
linetype=:steppost)↪→

pGf = plot(time, G_f[1,:], title="Glucose feed", xaxis="Time
[h]",yaxis="Concentration [mmol/L]", label="Glucose feed", lw=2, ls=:dash,
color=:blue, linetype=:steppost)

↪→

↪→

pgmax = plot(time, v_gmax[1,:], title="Maximal glucose uptake", xaxis="Time
[h]",yaxis="Maximal glucose uptake", label="Maximal glucose uptake", lw=2,
ls=:dash, color=:blue, linetype=:steppost)

↪→

↪→

# Save plots:
savefig(pG,"MPC-G.pdf")
savefig(pX,"MPC-X.pdf")
savefig(pA,"MPC-A.pdf")
savefig(pD,"MPC-D.pdf")
savefig(pGf,"MPC-Gf.pdf")
savefig(pgmax,"MPC-gmax.pdf")
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DA.jl

DA.jl is used to simulate the CSTR dFBA model of Escherichia coli core metabolic model
using the Direct Approach (DA).

using Ipopt, DifferentialEquations, JuMP

# pFBA solver:
function pFBA(mod)

S = mod.S
c = mod.c
UB = mod.UB
LB = mod.LB

W = zeros(Float64, size(S)[2], size(S)[2])
for i = 1:size(S)[2]

for j = 1:size(S)[2]
if i == j

W[i, j] = 1e-6
end

end
end

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-10)
set_optimizer_attribute(model, "tol", 1e-10)
JuMP.set_silent(model)

JuMP.@variable(model, v[i=1:length(c)], start = mod.v[i])

for i = 1:length(c)
JuMP.@constraint(model, LB[i] <= v[i] <= UB[i])

end

JuMP.@constraint(model, S*v .== 0)

JuMP.@expression(model, FO, -transpose(c)*v + transpose(v)*W*v)

JuMP.@objective(model, Min, FO)

JuMP.optimize!(model)

v_opt = JuMP.value.(v)

for i = 1:length(c)
mod.v[i] = v_opt[i]

end

return nothing
end

# Reactor equations:
function reactor!(dC, C, consts, t)
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# Gathering constants:
# ----------------------------------------------------
K_g = consts[1]
v_gmax = consts[2]
v_omax = consts[3]
model = consts[4]
D = consts[5]
G_f = consts[6]

# Gathering concentrations
X = C[1]
G = C[2]
A = C[3]

# Calculating variabels
if A < 0

changeRxnBounds(model, "EX_ac(e)", 0, "l")
else

v_a = -2.5*(A/(0.01 + A))
changeRxnBounds(model, "EX_ac(e)", v_a, "l")

end
if G < 0

changeRxnBounds(model, "EX_glc(e)", 0, "l")
else

v_g = v_gmax*(G/(K_g + G))
changeRxnBounds(model, "EX_glc(e)", v_g, "l")

end
pFBA(model)
mu, v_g, v_a = model.v[13], model.v[28], model.v[20]

# Mass balance equations:
# ----------------------------------------------------
dXdt = -D*X + mu*X
dGdt = D*(G_f - G) + v_g*X
dAdt = -D.*A + v_a*X

# Return result:
# ----------------------------------------------------
dC .= vcat(dXdt, dGdt, dAdt)

return nothing
end

# Direct Approach
function DAP(model, G_0, X_0, A_0, K_g, v_gmax, v_omax, t_0, t_end, D, G_f)

# Initialization:
# ----------------------------------------------------
init = vcat(X_0, G_0, A_0)
consts = vcat(K_g, v_gmax, v_omax, model, D, G_f)

# Initializing boundary in t-direction:
#-------------------------------------------------------------------
tspan = [t_0, t_end] # s

# Solving the ODE-system:
#-------------------------------------------------------------------
prob = ODEProblem(reactor!, init, tspan, consts)
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sol = DifferentialEquations.solve(prob, QNDF(autodiff=false), reltol=1e-6,
abstol=1e-6)↪→

display(sol.destats)

# Gathering results:
#-------------------------------------------------------------------
t = Array{Float64}(undef,size(sol.t,1))
C_X = Array{Float64}(undef,size(sol.t,1))
C_G = Array{Float64}(undef,size(sol.t,1))
C_A = Array{Float64}(undef,size(sol.t,1))

# t2 - tend:
#-------------------------------------------------------------------
for i=1:size(sol.t,1)

t[i] = sol.t[i]
C_X[i] = sol[i][1,1]
C_G[i] = sol[i][2,1]
C_A[i] = sol[i][3,1]

end

# Reset model
for i = 1:length(mod.v)

mod.v[i] = 0.0
end

# Return results:
return last(C_G), last(C_X), last(C_A), t, C_G, C_X, C_A

end

Duality.jl

Duality.jl is used to solve one MPC optimization with the non-penalized duality theory
Non-Linear Programming Approach (NLPA).

# Duality theory MPC reformulation:

using Ipopt, JuMP

function Dual(mod, G_0, X_0, A_0, K_g, v_gmax, N, u, G_f, sp)

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Number of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2

95



B Project code B.4 MPC models

1 t[3] t[3]^2
]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilaizing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix:

#reactions*#finite elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, D[1:N]) # Dilution rate => Vector: #finite
elements↪→

# Defining LB:
for n = 1:N

for k = 1:20-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[20,n] == -2.5*A[3,n]/(0.01 + A[3,n]))
for k = 20+1:28-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[28,n] == v_gmax*G[3,n]/(K_g + G[3,n]))
for k = 28+1:j

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end

end
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# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
JuMP.@constraint(model, 0 <= D[n] <= 1)

end

# Orthogonal collocation constraints:
JuMP.@constraint(model, X[:,1] .== X_0 .+ dt*M*(D[1]*(- X[:,1]) .+

v[13,1].*X[:,1]))↪→

JuMP.@constraint(model, G[:,1] .== G_0 .+ dt*M*(D[1]*(G_f .- G[:,1]) .+
v[28,1].*X[:,1]))↪→

JuMP.@constraint(model, A[:,1] .== A_0 .+ dt*M*(D[1]*(- A[:,1]) .+
v[20,1].*X[:,1]))↪→

for n = 2:N
JuMP.@constraint(model, X[:,n] .== [X[3,n-1] for z = 1:3] .+

dt*M*(D[n]*(- X[:,n]) .+ v[13,n].*X[:,n]))↪→

JuMP.@constraint(model, G[:,n] .== [G[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(G_f .- G[:,n]) .+ v[28,n].*X[:,n]))↪→

JuMP.@constraint(model, A[:,n] .== [A[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(- A[:,n]) .+ v[20,n].*X[:,n]))↪→

end

# Duality constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] +

transpose(mod.S)*lam[:,n] + umy[:,n] - lmy[:,n] .== 0)↪→

JuMP.@constraint(model, -transpose(mod.c)*v[:,n] +
transpose(v[:,n])*W*v[:,n] == -transpose(v[:,n])*W*v[:,n] +
transpose(lmy[:,n])*LB[:,n] - transpose(umy[:,n])*UB)

↪→

↪→

end

# MPC constraints:
for n in 1:N

JuMP.@constraint(model, D[n] >= u - 0.2)
JuMP.@constraint(model, D[n] <= u + 0.2)

end

# Objective:
JuMP.@NLobjective(model, Min, sum(sum((X[c,n] - sp)^2 for n = 1:N) for c =

1:3) + 1e-10*(u - D[1])^2)↪→

JuMP.optimize!(model)

return JuMP.value.(D)[1], JuMP.solve_time(model), JuMP.raw_status(model)
end

97



B Project code B.4 MPC models

P-Duality.jl

P-Duality.jl is used to solve one MPC optimization with the penalized duality theory
NLPA.

# Penalized duality theory MPC reformulation:

using Ipopt, JuMP

function PDual(mod, G_0, X_0, A_0, K_g, v_gmax, N, u, G_f, sp)

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Number of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2
1 t[3] t[3]^2

]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilaizing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix:

#reactions*#finite elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→
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JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, D[1:N]) # Dilution rate => Vector: #finite
elements↪→

# Defining LB:
for n = 1:N

for k = 1:20-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[20,n] == -2.5*A[3,n]/(0.01 + A[3,n]))
for k = 20+1:28-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[28,n] == v_gmax*G[3,n]/(K_g + G[3,n]))
for k = 28+1:j

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
JuMP.@constraint(model, 0 <= D[n] <= 1)

end

# Orthogonal collocation constraints:
JuMP.@constraint(model, X[:,1] .== X_0 .+ dt*M*(D[1]*(- X[:,1]) .+

v[13,1].*X[:,1]))↪→

JuMP.@constraint(model, G[:,1] .== G_0 .+ dt*M*(D[1]*(G_f .- G[:,1]) .+
v[28,1].*X[:,1]))↪→

JuMP.@constraint(model, A[:,1] .== A_0 .+ dt*M*(D[1]*(- A[:,1]) .+
v[20,1].*X[:,1]))↪→

for n = 2:N
JuMP.@constraint(model, X[:,n] .== [X[3,n-1] for z = 1:3] .+

dt*M*(D[n]*(- X[:,n]) .+ v[13,n].*X[:,n]))↪→

JuMP.@constraint(model, G[:,n] .== [G[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(G_f .- G[:,n]) .+ v[28,n].*X[:,n]))↪→

JuMP.@constraint(model, A[:,n] .== [A[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(- A[:,n]) .+ v[20,n].*X[:,n]))↪→

end
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# Duality theory Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] +

transpose(mod.S)*lam[:,n] + umy[:,n] - lmy[:,n] .== 0)↪→

end

# MPC constraints:
for n in 1:N

JuMP.@constraint(model, D[n] >= u - 0.2)
JuMP.@constraint(model, D[n] <= u + 0.2)

end

# Objective:
JuMP.@NLexpression(model, FO, sum(sum((X[c,n] - sp)^2 for n = 1:N) for c =

1:3) + 1e-10*(u - D[1])^2 + 10*sum(sum(-mod.c[l]*v[l,n] +
2*v[l,n]*W[l,l]*v[l,n] - lmy[l,n]*LB[l,n] + umy[l,n]*UB[l] for l in 1:j)
for n in 1:N))

↪→

↪→

↪→

JuMP.@NLobjective(model, Min, FO)

JuMP.optimize!(model)

return JuMP.value.(D)[1], JuMP.solve_time(model), JuMP.raw_status(model)
end

KKT.jl

KKT.jl is used to solve one MPC optimization with the non-penalized Karush–Kuhn–Tucker
(KKT) NLPA.

# KKT MPC reformulation:

using Ipopt, JuMP

function KKT(mod, G_0, X_0, A_0, K_g, v_gmax, N, u, G_f, sp)

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Number of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2
1 t[3] t[3]^2

]
M = M_1*M_2^(-1)

# Creating W-matrix:
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W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilaizing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix:

#reactions*#finite elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, D[1:N]) # Dilution rate => Vector: #finite
elements↪→

# Defining LB:
for n = 1:N

for k = 1:20-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[20,n] == -2.5*A[3,n]/(0.01 + A[3,n]))
for k = 20+1:28-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[28,n] == v_gmax*G[3,n]/(K_g + G[3,n]))
for k = 28+1:j

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
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JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
JuMP.@constraint(model, 0 <= D[n] <= 1)

end

# Orthogonal collocation constraints:
JuMP.@constraint(model, X[:,1] .== X_0 .+ dt*M*(D[1]*(- X[:,1]) .+

v[13,1].*X[:,1]))↪→

JuMP.@constraint(model, G[:,1] .== G_0 .+ dt*M*(D[1]*(G_f .- G[:,1]) .+
v[28,1].*X[:,1]))↪→

JuMP.@constraint(model, A[:,1] .== A_0 .+ dt*M*(D[1]*(- A[:,1]) .+
v[20,1].*X[:,1]))↪→

for n = 2:N
JuMP.@constraint(model, X[:,n] .== [X[3,n-1] for z = 1:3] .+

dt*M*(D[n]*(- X[:,n]) .+ v[13,n].*X[:,n]))↪→

JuMP.@constraint(model, G[:,n] .== [G[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(G_f .- G[:,n]) .+ v[28,n].*X[:,n]))↪→

JuMP.@constraint(model, A[:,n] .== [A[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(- A[:,n]) .+ v[20,n].*X[:,n]))↪→

end

# Duality Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] +

transpose(mod.S)*lam[:,n] + umy[:,n] - lmy[:,n] .== 0)↪→

end

# CS:
for n = 1:N

JuMP.@constraint(model, transpose(lmy[:,n])*(v[:,n] .- LB[:,n]) == 0)
JuMP.@constraint(model, transpose(umy[:,n])*(UB .- v[:,n]) == 0)

end

# MPC constraints:
for n in 1:N

JuMP.@constraint(model, D[n] >= u - 0.2)
JuMP.@constraint(model, D[n] <= u + 0.2)

end

# Objective:
JuMP.@NLobjective(model, Min, sum(sum((X[c,n] - sp)^2 for n = 1:N) for c =

1:3) + 1e-10*(u - D[1])^2)↪→

JuMP.optimize!(model)

return JuMP.value.(D)[1], JuMP.solve_time(model), JuMP.raw_status(model)
end
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P-KKT.jl

P-KKT.jl is used to solve one MPC optimization with the penalized KKT NLPA.

# Penalized KKT MPC reformulation:

using Ipopt, JuMP

function PKKT(mod, G_0, X_0, A_0, K_g, v_gmax, N, u, G_f, sp)

X_0 = [X_0 for i = 1:3] # Initial concentration of biomass, gDW/L
G_0 = [G_0 for i = 1:3] # Initial concentration of glucose, mmol/L
A_0 = [A_0 for i = 1:3] # Initial concentration of acetate, mmol/L
t = [0.155051, 0.644949, 1.0000] # Collocation points
i = size(mod.S)[1] # Number of metabolites
j = size(mod.S)[2] # Number of reactions

# Creating M-matrix:
M_1 = [t[1] 1/2*t[1]^2 1/3*t[1]^3

t[2] 1/2*t[2]^2 1/3*t[2]^3
t[3] 1/2*t[3]^2 1/3*t[3]^3

]
M_2 = [1 t[1] t[1]^2

1 t[2] t[2]^2
1 t[3] t[3]^2

]
M = M_1*M_2^(-1)

# Creating W-matrix:
W = zeros(Float64, j, j)
for k = 1:j

for l = 1:j
if k == l

W[k, l] = 1e-6
end

end
end

# Initilaizing UB:
UB = mod.UB

model = Model(Ipopt.Optimizer)
set_optimizer_attribute(model, "linear_solver", "ma97")
set_optimizer_attribute(model, "constr_viol_tol", 1e-10)
set_optimizer_attribute(model, "acceptable_tol", 1e-8)
JuMP.set_silent(model)

# Variabels:
JuMP.@variable(model, v[1:j, 1:N]) # Fluxes, => Matrix:

#reactions*#finite elements↪→

JuMP.@variable(model, G[1:3, 1:N]) # Glucose, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, X[1:3, 1:N]) # Biomass, => Matrix: #collocation
points*#finite elements↪→

JuMP.@variable(model, A[1:3, 1:N]) # Acetate, => Matrix: #collocation
points*#finite elements↪→
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JuMP.@variable(model, lam[1:i, 1:N]) # Lambda, => Matrix:
#metabolites*#finite elements↪→

JuMP.@variable(model, lmy[1:j, 1:N]) # LB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, umy[1:j, 1:N]) # UB-my, => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, LB[1:j, 1:N]) # Lower bounds => Matrix:
#reactions*#finite elements↪→

JuMP.@variable(model, D[1:N]) # Dilution rate => Vector: #finite
elements↪→

# Defining LB:
for n = 1:N

for k = 1:20-1
JuMP.@constraint(model, LB[k,n] == mod.LB[k])

end
JuMP.@NLconstraint(model, LB[20,n] == -2.5*A[3,n]/(0.01 + A[3,n]))
for k = 20+1:28-1

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end
JuMP.@NLconstraint(model, LB[28,n] == v_gmax*G[3,n]/(K_g + G[3,n]))
for k = 28+1:j

JuMP.@constraint(model, LB[k,n] == mod.LB[k])
end

end

# Constraints for variables:
for n = 1:N

for k = 1:j
JuMP.@constraint(model, v[k,n] <= UB[k])
JuMP.@constraint(model, LB[k,n] <= v[k,n])
JuMP.@constraint(model, lmy[k,n] >= 0)
JuMP.@constraint(model, umy[k,n] >= 0)

end
for c = 1:3

JuMP.@constraint(model, G[c,n] >= 0)
JuMP.@constraint(model, X[c,n] >= 0)
JuMP.@constraint(model, A[c,n] >= 0)

end
JuMP.@constraint(model, 0 <= D[n] <= 1)

end

# Orthogonal collocation constraints:
JuMP.@constraint(model, X[:,1] .== X_0 .+ dt*M*(D[1]*(- X[:,1]) .+

v[13,1].*X[:,1]))↪→

JuMP.@constraint(model, G[:,1] .== G_0 .+ dt*M*(D[1]*(G_f .- G[:,1]) .+
v[28,1].*X[:,1]))↪→

JuMP.@constraint(model, A[:,1] .== A_0 .+ dt*M*(D[1]*(- A[:,1]) .+
v[20,1].*X[:,1]))↪→

for n = 2:N
JuMP.@constraint(model, X[:,n] .== [X[3,n-1] for z = 1:3] .+

dt*M*(D[n]*(- X[:,n]) .+ v[13,n].*X[:,n]))↪→

JuMP.@constraint(model, G[:,n] .== [G[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(G_f .- G[:,n]) .+ v[28,n].*X[:,n]))↪→

JuMP.@constraint(model, A[:,n] .== [A[3,n-1] for z = 1:3] .+
dt*M*(D[n]*(- A[:,n]) .+ v[20,n].*X[:,n]))↪→

end
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# Duality Constraints:
for n = 1:N

JuMP.@constraint(model, mod.S*v[:,n] .== 0)
JuMP.@constraint(model, -mod.c .+ 2 .*W*v[:,n] +

transpose(mod.S)*lam[:,n] + umy[:,n] - lmy[:,n] .== 0)↪→

end

# MPC constraints:
for n in 1:N

JuMP.@constraint(model, D[n] >= u - 0.2)
JuMP.@constraint(model, D[n] <= u + 0.2)

end

# Objective:
JuMP.@NLexpression(model, FO, sum(sum((X[c,n] - sp)^2 for n = 1:N) for c =

1:3) + 1e-10*(u - D[1])^2 + 1e-2*sum(sum(((v[l,n] - LB[l,n])*lmy[l,n]) +
(-v[l,n] + UB[l])*umy[l,n] for l in 1:j) for n in 1:N))

↪→

↪→

JuMP.@NLobjective(model, Min, FO)

JuMP.optimize!(model)

return JuMP.value.(D)[1], JuMP.solve_time(model), JuMP.raw_status(model)
end
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