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Abstract

The growing popularity of virtual reality (VR) and augmented reality (AR) headsets has opened
up new opportunities for immersive video experiences. This thesis explores the potential of fully
immersive video-like experiences using depth camera-based recordings, leveraging the voxel octree
data structure for storing these recordings. The goal is to investigate the feasibility of lossy encoding
methods for voxel octrees, aiming to achieve efficient video compression while preserving spatial
and temporal similarities within the data.

Two main research questions are addressed: (1) the feasibility of lossy subtree substitution for
encoding sparse voxel octrees, and (2) the suitability of Discrete Cosine Transform (DCT) for
lossy encoding of color information in voxel octrees. The thesis presents a comprehensive analysis
of these research questions through experiments and evaluations. The results demonstrate that
while subtree substitution showed limitations, DCT encoding proved to be a promising technique
for color compression in voxel octrees.

The thesis contributes novel methods for lossy encoding of voxel octrees and provides insights
into the potential future directions for 3D video encoding. However, computational cost, the
exploration of hybrid approaches (such as combining voxel octrees with B+-trees), better methods
for performing octree comparison, and better ordering of color data before DCT compression
remain as areas for further research and improvement.
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Sammendrag

Med en økende interesse for VR og AR-utstyr har det åpnet opp nye muligheter for mer oppslukende
video-opplevelser. Disse kan bl.a lages ved å ta opp video med dybdekameraer, og large disse i
”voxel octree” datastrukturer. Denne oppgaven undersøker bruk av ”voxel octree” for å levere
oppslukende video-opplevelser tatt opp med dybdekamera. Målet er å undersøke muligheten til å
bruke diverse metoder for å large ”octrees” med tap - der unødvendig informasjon blir fjernet for å
spare plass. To research-spørsm̊al blir presentert: (1) Hvorvidt det er mulig å redusere filstørrelsen
p̊a et ”octree” ved å fjerne deler som ligner, og (2) hvorvidt det er mulig å bruke ”Discrete Cosine
Transform (DCT)” for å komprimere fargene i disse trærne.

Oppgaven presenterer en analyse av disse spørsm̊alene ved hjelp av eksperimenter og numerisk
analyse av testmateriale. Resultatene viser at DCT virker lovende som teknologi, og at substitusjon
av trær trenger mer arbeid for å være lovende.

Oppgaven presenterer ogs̊a nye teknikker for å lagre ”voxel octree” med tap. Videre presenteres flere
videre temaer som kan tas opp i senere arbeid, som hybrid-datastrukturer, bedre sammenligning
av volumet i to trær, og bedre teknikker for å sammenligne fargen i to trær.
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Part I

Introduction

This part discusses the overall project motivation, goal, research questions, and contributions.

1



2 Motivation

In recent years, the sale of VR and AR headsets have increased in both the consumer and profes-
sional market. Multiple sources expect the market to continue growing, such as (Virtual Reality
Headset Market Share & Growth Report, 2030 2023). As a result, many companies are investing a
lot of resources into the field. A notable example is Meta(previously Facebook), which purchased
Oculus in 2014 and renamed it to Meta in a show of intention to pivot its business model towards
this new human interfacing frontier. Meta isn’t alone - other large tech companies also have a pawn
in the game. Microsoft has been releasing its own AR kit aimed at professionals, the HoloLens,
since 2016. Apple recently joined the game by announcing its AR headset, Apple Vision Pro.

With more VR/AR gear in the wild, new opportunities are opening for entertainment and pro-
ductivity. One such opportunity is video. While traditional two-dimensional videos are already
enjoyed in VR/AR through applications that simulate cinemas (Rodgers, 2022), there is a potential
for fully immersive video-like experiences where the user is able to walk around the video as it is
being played. While this is already achievable using traditional 3d animation with rigged meshes,
it is worth exploring how the same goal can be achieved for depth camera-based recordings.

These three-dimensional videos have many applications in both entertainment and productivity. In
entertainment, they could allow for media where the user is encouraged to view the video multiple
times, following a different actor every time. One could claim that the emphasis on viewing a video
multiple times from different perspectives teaches the viewer values such as nuances and considering
different people’s viewpoints. In this manner, these videos could be used in an educational context
by teaching children about the value of considering other’s viewpoint.

Productive applications also exist. A popular example is teleconferencing, where 3d video could
be used to unite people around the world such that they perceive each other as existing in the
same meeting room. Another possible application is training videos. For example, many fast food
chains have historically used videos to help onboard new employees on how to operate machines
and serve customers. Today, some companies use VR training software in order to train new
employees (Sisson, 2020). 3d videos may be another useful tool for this application.

Voxel octrees are an interesting data structure due to the quality of having an unlimited level of
detail and the ability to store large, sparse structures efficiently. As you will see in Part II, they are
well-studied, and see a lot of adaptation in both academia and practical applications. Famously,
John Carmack spoke well about the use of octrees for storing 3d assets in a 2008 interview(Shrout,
2008). Carmack spent the interview talking about how he thought Octrees were the future of 3d
asset storage due to their infinite detail quality, and that he wanted hardware that was designed
to render them efficiently. However, his dream never came true. Figure 1 shows a Google Trends
search, showing the popularity of the search term ”Octree”. By the time Carmack was interviewed,
octrees were already becoming less popular, and their popularity never recovered.

This was 10 years before NViDIA released their first line of RTX graphics cards, effectively making
raytracing available to the masses. While octrees never took off in the way Carmack wished,
they have never been completely off the table. With current-generation graphics cards putting
raytracing-capable hardware in the hands of consumers, now is as good a time as any to reconsider
its use.

Figure 1: Screencapture from Google Trends (Google Trends 2023) showing relative popularity of
the term ”octree” worldwide since 2004

2



Voxel octrees, as a spatial tree-structure, is an interesting data structure for video encoding. This
is due to the fact that child nodes recursively re-define the volume of their parent in double the
resolution. Because of this quality, it is easy to store scenes where the resolution varies locally
depending on need. It is also possible to perform various forms of adaptive rendering where the
renderer decides how far down the tree it wants to iterate depending on some factor. This is
similar to how one uses tesselation to get a similar result when rendering polygons. Doing this
has an obvious benefit: speeding up rendering and being able to better prioritize where to spend
rendering resources.

One example of adaptive rendering is using the current distance to the camera to render objects
far away with a lower quality. One could also apply this technique to lower the bandwidth needed
to stream the recording over the internet. In VR/AR applications, one could perform foveated
rendering. This is a technique where an iris tracker is used to prioritize rendering parts that the
eye is looking at.

While adaptive rendering techniques exist for polygon rendering, they have some shortcomings
that octrees don’t have. For example, octrees can easily render different parts of the same tree in
varying levels of detail, without risking jagged edges or seams where two levels of detail intersect.
Figure 2 illustrates this - notice how the model is not watertight along the seam between the two
levels of detail. As long as the two levels of detail do not share the same vertices at the seams, this
is bound to happen.

Figure 2: Illustration showing problematic mesh seams in a sphere model where the front and back
are rendered at different levels of quality.

With the current modern technological landscape, we think it is about time Octrees gets some
attention again. Therefore, in this thesis, we will apply the Voxel octree data structure to the
encoding of three-dimensional videos. It is our hope that by doing this, we contribute valuable
information to the scientific literature about possible ways forward for 3d video encoding in the
future.

3 Goals

The overarching goal of this thesis is to present a sparse voxel octree(SVO)-based lossy
video encoding method. In a previous preparatory course, software for capturing and building
SVOs was written (as will be explained in Section 13). In this thesis we will build on this by
Investigating lossy encoding of voxel octrees in two manners, which are futher broken down in
Section 14. The core of this thesis is designing a video encoding scheme for Voxel octrees that:

3



• Is able to benefit from the temporal and spatial similarities that may exist within an octree
and across multiple frames in a video sequence.

• Is able to encode the tree data structure in a space-efficient manner

In addition to the aforementioned goals, we will generally work to reduce the filesize of the voxel
octree video by experimenting with efficient schemes for encoding SVOs.

Although the ability to selectively load only parts of the octree is mentioned as a motivation for
the choice of voxel octrees, we do not consider it a necessity for showing off the format. It will
therefore be considered out of scope for this thesis. The same goes for techniques for efficiently
rendering these octrees - there exists a lot of literature on this already.

3.1 Subtree substitution

The first technique we want to use to lossily compress sparse voxel octrees with is what we will call
subtree substitution. A sparse voxel octree is a tree structure with many layers of nodes. Previous
solutions like (Kämpe et al., 2016) have already used this fact by finding subtrees that are identical
and de-duplicating them by using the same subtree as child of multiple parent nodes. This can be
done within one octree, or even across multiple octrees, to save space. In octrees that are digitally
rendered with a lot of static geometry between each frame, there are some serious savings to be
made by doing this.

In this thesis, we will keep to a theme of using real-life captures that therefore will see less savings
when deduplicating by looking for completely identical subtrees. Instead, we will make this process
lossy by combing through all nodes of a given voxel level, marking nodes as similar if they are close
to identical using some comparison function.

We will bundle together multiple frames into chunks, creating a DAG containing the data of
multiple SVOs. We will then perform the deduplication process once per chunk. Figure 3 shows
an example tree structure before deduplication has been performed, while Figure 4 shows the
resulting DAG with fewer nodes encoding the same information.

Figure 3: An illustration of two trees before
deduplication by subtree substitution

Figure 4: An illustration of the same trees
as in Figure 3, but after deduplication has
been done.

3.2 DCT encoding of color data

DCT is famously used in JPEG, among other applications. It’s a technique for signal encoding
where a signal, usually a two-dimensional one, is encoded as a set of weights that when multiplied
by corresponding cosine waves become an estimation of the original system. As the human vision
system is bad at recognizing high-frequency noise, we can quantize these weights depending on
the frequency of the cosine wave they correspond to in such a manner that sacrifices detail in
high-frequency areas. Depending on how much quantization is applied, this technique can give us
impressive gains without much noticeable loss of detail.
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4 Research questions

The goals from Section 3 can be summed up by an overall question we want to answer: ”How
well can we encode sparse voxel octrees in a lossy manner?”, or simply put: ”Are voxel octrees a
suitable data structure for 3d video encoding?”. Using the two overall goals in Section 3 and the two
approaches we wish to use for lossy encoding, we present our research questions in Table 1. Research
questions are a systematic way to seek and gain knowledge about a subject. In this thesis, we will
use them to divide-and-conquer the big question into smaller, more easily researchable questions.

RQ1 How feasible is lossy subtree substitution for lossy encoding of SVOs?
RQ2 How feasible is DCT for lossy encoding of color information in a SVO?

Table 1: Research questions proposed by this thesis
.

Oates, 2005 suggests that one research question is usually related to one research strategy. In this
thesis, we will follow this way of thinking by using research questions to organize the experiments
we later perform in Part V. The goal is for the research questions to lay the base for the later
experiments to thoroughly the subject. We will now go through each research question and explain
the motivation behind them.

4.1 RQ1

RQ1 aims to answer whether or not lossy subtree substitution is a feasible method for lossy
encoding of SVOs. This is one of the simpler approaches, as in theory, all we have to do is find
parts of the trees that are similar and replace them. However, there are two main reasons why we
think this may be challenging:

• Even with hundreds or thousands of nodes, there may still be very few subtrees that are
similar enough. This is because the number of possible combinations of children increases
exponentially, and is very large even for only a few layers.

• Even if similar trees are found, the colors also have to match as well

As with many things in life, the devil is in the detail. As will be explained later in this thesis,
finding a solid method for searching similar octrees is hard to both define and implement. It is a
goal of this thesis to contribute experience with this technique to the scientific literature, and this
is therefore one of our research questions.

4.2 RQ2

RQ2, in a similar manner to RQ1, aims to figure out whether or not DCT is a valuable technique
for color encoding in SVOs. It makes sense to try applying technologies we already know. With
DCT already being popular in applications like JPEG (Wallace, 1992), applying it again to SVOs
might be an ”easy win”. RQ2 exists out of curiosity as to what would happen if we gave it a try.

5 Contributions

This thesis contributes the following to the scientific literature:

• A method for performing lossy encoding of voxel octrees using multiple techniques, which we
believe are novel.
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• A simple yet configurable testing platform for performing online tests of perceived quality
using videos.

There are similar solutions out there. For example, Museth, 2013 is a time series-compatible
encoding scheme for volumetric data. There are also solutions that use two-dimensional videos as
their ground fundament. In fact, (Kämpe et al., 2016) suggests what we aim to do as a possible
future work. As you will find in Part II, there are to our knowledge no papers that attempt to
encode sequential trees in a lossy manner for the sake of rendering, making our method novel.
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Part II

Background

This section provides the background necessary to read the rest of the Thesis, an (abridged)
literature review of the field, as well as a description of the current state of the art.
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6 A primer on video encoding and 3d scene encoding

6.1 Octrees

An octree is a tree structure where each node may have up to 8 children.

A voxel octree is an octree where the goal is to represent a voxel in variable detail by allowing
each node to be subdivided into 8 smaller nodes, each 1

8 the volume of their parent. This can be
represented as each node containing 8 slots corresponding to fixed areas, in which a child may or
may not exist. The absence of a child implies that the area is empty, while the opposite implies
that the area is defined by the child node.

A octree datastructure allows for some neat benefits:

• Infinite detail

• Empty areas to not consume memory - memory consumption is affected by model complexity,
similar to 3d models.

• Level of Detail can be varied in different areas of the octree

– You could load higher detail in areas closer to the camera.

– Using meshes with variable LoD means you are inherently dealing with different models,
which may cause seams in the sections where they join.

There are also some inherent downsides to this data structure. Being a tree structure, you have to
dereference a pointer per layer traverse. This is not optimal on modern hardware, which is often
reliant on a high amount of cache hits. With octrees having a low branching factor(i.e few children
per node - a deeper tree is needed to reach a given resolution), octrees are slow on memory-bound
systems.

Other n-tree data structures with usage in spatial encoding exist. A good example is the quadtree,
which is already used for traditional 2d video encoding today TODO: Cite. Figure 5 illustrates
an example of a quadtree, which in this context serves as a simplified explanation of how spatial
tree structures are able to efficiently encode detail by avoiding encoding areas with no data.

Figure 5: An example quadtree with a resolution of 23x23 = 8x8

The quadtree in Figure 5 can be drawn as a tree structure where each node contains four child
pointers, one for each of the four areas you get if you subdivide the root box into 4 equally sized
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Figure 6: Illustration showing child pointers for each node of the quadtree shown in Figure 5

boxes. Figure 6 illustrates this. We use the order top-left, top-right, bottom-left, bottom-right for
the child pointers in this exampe. A black pointer box means it contains a pointer, while a white
one means no pointer exists. If encoded correctly, this kind of data structure can be very spare
efficient for sparse data.

John Carmack is a known fan of voxel octrees, having talked extensively about how it could be the
content format of the future in Shrout, 2008. Carmacks wishes did not come true - the industry is
still very focused on triangle-based rendering. However, recently, with the introduction of NVIDIA
RTX, raytracing is suddenly in the mainstream. Therefore, we believe a reevaluation of raytracing
as a rendering technique is useful.

Volumetric video is already in widespread use in the entertainment industry. However, voxel octrees
haven’t seen much use. There are many reasons for this, with one of the main probably being the
need for new technologies to tightly integrate with existing tools.

7 Background

7.1 Surface reconstruction

Modern surface reconstruction from a Pointcloud is usually based on Poisson Surface reconstruction
(Kazhdan et al., 2006), where an indicator function is used to determine if an arbitrary given point
is inside or outside a shape. A threshold can then be picked and used to build a surface in the
gradient between the inside and outside that will approximate the pointcloud. This is in itself a
tough problem, as you rely on normals to be accurate in order for the indicator function field to
be accurate. Recent papers like Xu et al., 2023 show promising progress in this field.

7.2 Octrees in research

Rendering an octree is nothing new - Octrees have been heavily investigated in scientific literature.
We have been able to render octrees in real-time for more than 10 years. For example Laine and
Karras, 2011 presents an advanced data structure and rendering method that was able to render
octrees of high resolution using a GPU.

(Wurm et al., 2010) is very similar to what we are doing in that they are using octrees for the
storage of depth sensor data. However, their focus is purely on spatial data, and do not care about
RGB data.

Another worthy mention is the use of octrees in many research applications. For example, Takikawa
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et al., 2021 uses an Octree data structure to encode feature vectors for a Neural SDF renderer.
Another paper, Yu et al., 2021, uses octrees to generate a lookup table of from NeRF(Mildenhall
et al., 2020) network, that can be used to speed up rendering.

We are not the first people to apply DCT to an octree either. (Baziyad et al., 2021) did it for the
purpose of steganography - hiding information in plain sight.

7.3 In video games

Although voxel octrees never experienced the mainstream adoption in video games as Carmack
wanted, they are still in use. A great example of this is Oortmerssen et al., 2004 - a quake-style
shooter that uses voxel octrees for their level format.

Figure 7: Illustration of Cube2: Sauerbraten, from Oortmerssen et al., 2004

8 Other approaches to 3d video encoding

There exists many non-octree approaches to 3d video encoding. These approaches can generally
be categorized into three different groups depending on their approach.

One common approach is to work with ”proxy meshes” - pre-defined meshes which are then trans-
formed in some manner. A normal issue in this camp is dealing with textures - when combining
captures from multiple cameras it is normal that the resulting textures may appear blurry. (Casas
et al., 2015) is an example of such a paper, which solves the texturing problem using optical flow.
However, this camp is in generall uninteresting to our goal, as a proxy model makes the solutions
incompatible with general video encoding without known models to pick from.

Another approach is to generate videos from novel viewpoints by blending together videos from
multiple viewpoints. This can be called IBR, Image Based Rendering, and is often considered to
be pioneered by papers such as the lumigraph paper (Cohen et al., 1996). (Zitnick et al., 2004)
a more modern paper on this subject - they use color segmentation to segment objects believed
to exist on the same depth layer. They then use these color segments to build a depth map for
each camera, which can be used to create novel views of the scene by blending together parts from
different views.

The last approach is different variations on voxel grids. An example is OpenVDB (Museth, 2013),
a B+tree-inspired format. It is a ”hierarchical data structure and a suite of tools for the effi-
cient manipulation of sparse, time-varying, volumetric data discretized on three-dimensional grids”
OpenVDB - about 2023. The biggest difference between the OpenVDB approach and octrees is the
resulting tree depths - OpenVDB allows for a configurable number of children per node, allowing
for faster access due to less pointer dereferencing and more sequential access. On the other hand,
octrees are fixed to 8 possible children. In reality, OpenVDB can be seen as a hybrid grid/octree
solution, consisting of a few layers of pointers followed by a layer containing only leaf nodes.

This is good for its intended usecase - efficient storage of baked/computed volumetric data later to
be used when rendering production movies. However, this approach makes it inflexible for captured
video: The number of pointer layers is fixed compile-time, and the ”infinite level of detail” benefit
is completely gone.
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9 3d video in commercial industries

4DViews provides HOLOSYS, a video capture system that generates textured meshes. This seems
to be the current golden standard, being a commercial product that has seen use in pop music
videos and similar. It can also easily be used in video games and other realtime software through
Unity and Unreal Engine plugins (4Dviews - Volumetric video capture technology 2023).

Sony is also working on volumetric capture techniques that can produce traditional meshes as
output. This makes them useable in a traditional 3d workflow, an important feature (Shrout,
2008). Additionally, Unity provides a product called Metacast - which is used to deliver volumetric
video of sports events. However, none of these approaches utilize octrees as far as we know.

10 Existing works on video encoding using SVO’s

While SVO’s have received much attention in the research scene, not much work has been put into
video encoding using it. There are some exceptions, however.

(Kämpe et al., 2016) is the closest to what we are doing, being similar in exploiting temporal and
spatial consistency by encoding multiple SVOs in a single Direct Ascyclic Graph. Their results are
impressive, but note that their lack of lossy encoding makes their method weak against datasets
based on real life data. This is something they note themselves, and something that is a suggested
future work.

Their kinect dataset, which is the only real-life based dataset for which they provided the number
of points in the source material, has on average 126k points according to them. With this amount
of data, they are able to encode SVOs at 11.2 megabytes per second, and 5.15 megabytes per
second with a reduced DAG. Note that they use 24 frames per second, while this master will use
30.

There is also the work of the MPEG Standardization group, who are developing V-PCC Jang et al.,
2019 as a solution to encoding 3d video as a sequence of pointclouds. V-PCC works by recursively
dividing the area containing points into smaller boxes until there are sufficiently few points within
the subdivided bounding box. The contents of the boxes box are then orthogonally projected onto
each of the 6 sides of the box, and the resulting images are stitched together and treated as normal
2-dimensional frames in a video. This allows V-PCC to borrow from the decades of work on 2d
video encoding.

There are two major downsides to this approach. Primarily, the biggest downside is that compres-
sion artifacts cause geometric distortions. Works such as Akhtar et al., 2021 attempt to mitigate
this issue. You also risk losing details if the rendering boxes are too big, as some points may be
occluded by others from some angles.

In many ways, this paper is mostly a successor to (Kämpe et al., 2016). However, the use of lossy
image encoding is similar to that of (Jang et al., 2019), with the main difference being that our
solution only uses this encoding scheme for color data, while V-PCC uses it for spatial encoding
as well.
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Part III

Design

In this section we will discuss the planning of the software project. This includes a risk assessment
and awareness of certain project constraints. We will also discuss design decisions, wanted features
and qualities, and plan a timeline for the implementation of the Software.
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11 Risk assessment

No matter the project, there are always risks. With this thesis aiming to implement novel solutions,
the risk is even larger. In fact, according to (Oates, 2005), what we are doing is the design and
creation research strategy. One of the main downsides to this strategy is the additional risk. As
they put it in (Oates, 2005, p. 122), ”It is risky if you do not have the necessary technical or artistic
skills. Enthusiasm is no substitute.”

There are several risks that need to be considered. Proper risk management is important in order
to reduce unexpected situations. In the following sections, we will discuss the main risks we
considered, and how we chose to work to reduce them.

11.1 No significant benefits are found over the current state of the art,
time is wasted

What we are doing is implementing novel technology. However, until we have a working prototype,
we cannot guarantee that there are any benefits of the method we are implementing.

However, we are not completely in the dark. What we ended up doing to guard us against this
risk, was to perform literature research. By looking at papers doing similar things to us, we could
get an idea of the performance to be expected from our solution. This is also helpful in that it
allows us to build on earlier papers, saving research and implementation time by allowing us to
base our software on earlier experiences by other researchers.

While we are not able to fully guard ourselves against this risk, performing this measure will help
us feel confident in our work as we design and implement it. While we can’t completely guard
ourselves against the risk of our our experiment being a step in the wrong direction, we can at least
get an idea of what we can expect from similar studies. As Oates puts it, the literature review
provides the foundation for our research (Oates, 2005, p. 73).

11.2 Software is not completed by the deadline

The thesis has a deadline, and it is according to the university only possible to get an extension if
you have an extremely good reason. The worst thing that can happen should the project not be
completed on time is that the thesis could be failed. This is considered the worst outcome for us
as a lot of time has to be re-invested in order to retry later. There is also the argument that by
not completing on time, or by finishing with something subpar in order to deliver on time, we are
not contributing as good quality findings to the scientific literature as we should.

Again, proper literature research and knowledge of the field is important to avoid this. Proper
scheduling as done in Section 15 is also useful as it allows us to detect that we are behind schedule
as fast as possible by comparing actual implementation time to what we expected. However, it is
simply a tool for spotting issues - it cannot magically make us more time. What we do with the
knowledge that we are behind schedule is also important. In our case, we would solve being behind
schedule by re-defining goals in order to reduce the scope of the project.

11.3 External factors

Sometimes, unexpected things can happen outside of the project. Since it is developed by humans,
factors such as personal ambition, working towards long-term personal goals, natural disasters,
and loss of close friends or family may lead to less time being able to be put towards development.

This is simply a fact of life and nothing you can completely guard yourself against. We solve it by
planning in some extra margin, such that unforeseen events could appear without jeopartizing the
project.
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12 Stakeholders

12.1 Me

I am the main stakeholder of this project, as my degree is dependent on it being successful,
at least to the point of being able to deliver an acceptable thesis. There are many possible
consequences I may have to face depending on the outcome of this thesis. For example, I may fail
to graduate on time, which hurts my current career trajectory and visa situation as I intend to
keep working in Japan after graduation. On the other side of things, if the research has not been
done properly(f.ex by not properly respecting privacy regulations) there may be organizational or
even legal punishments down the line.

12.2 Advisors

I am advised by Nobuyuki Umetani(JP) and Jon Ynge Hardeberg(NO). While they are not actively
partaking in most of the design and implementation outside of providing advice, their name is on
the thesis and therefore bear some of the responsibility for what the thesis contains. As researchers,
these people are also dependent on metrics like paper count when their work is assessed, and as
such the failure to finish a thesis may hurt them in this manner as well.

12.3 Research organizations

Especially NTNU, but also the University of Tokyo, may in some manner face consequences if this
thesis ends up being problematic. Outside of this, as a student of NTNU, they have a stake in my
thesis being successful for the sake of statistics that could be used to determine university-related
policies in Norway and direct funding towards them.

12.4 The industry and society

Lack of proper assessments in this paper may have both positive or negative consequences for the
industry and society. If the thesis ends up presenting Octree video as something better than it is,
we risk other researchers wasting time and investors wasting money trying to build on the method.
In addition, we risk bad derivative work being pushed onto consumers, which may give them a
worse experience than necessary if another method was used for 3d video encoding.

If the method is better than this thesis is able to prove, society may lose out on a good solution to
a problem, which comes at a cost of unnecessary use of any resource the solution ends up utilizing
better than other state of the art solutions.

13 Existing work

In a precursor to this thesis, work has been put into writing software to assist with the capture
and rendering of voxel octrees. The work was put in as a part of another course, IT3915, and
therefore does not count as work performed on the thesis for the sake of avoiding self-plagiarising.
However, an overview of the system will be presented here for the purpose of context as to what
systems we were using and their capabilities.

13.1 Overview

The voxel octree capture system consists of multiple tools that together form an entire capture
pipeline. The pipeline is able to capture Pointclouds from multiple depth cameras, stitch them
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together to one coherent Pointcloud, convert it to a SVO, and render it. The following is a list of
the binaries that resulted from this work:

• OctreeMasterCapture - captures multiple Pointclouds and stitches them together.

• ply2octree - reads Pointclouds stored as PLY and converts them to octrees.

• OctreeMasterPlayback - renders an octree using Raymarching(CUDA), or as a mesh. Altern-
atively, it can also render the entire octree as a wireframe.

Figure 8: A screenshot from the OctreeMas-
terPlayback application rendering in wireframe
mode

Figure 9: A screenshot from the OctreeMaster-
Playback application in CUDA rayamrch mode,
illustrating how many iterations each ray had to
take before reaching a solid voxel.

13.2 Capture

A capture application was written using C++ that reads Pointclouds from multiple Intel Realsense
D415 Depth cameras. The code was written such that other cameras could be introduced later. The
application can use an ArUco marker to calibrate the depth cameras such that their pointclouds
are all in the same coordinate system. This calibration is provided by OpenCV (Bradski, 2000)

The application writes single-frame Pointclouds to disk in the PLY file format. The ply format
was chosen due to high level of adaptation with other Pointcloud software, like Cignoni et al., n.d.

13.3 Conversion

The conversion tool is an executable that takes a single PLY file and outputs an octree. To invoke
it on multiple files at once, an external tool must be used. We used well-known UNIX tools such
as find and GNU parallel (Tange, 2021):

find . -name "*.ply" |

parallel -j 10 "

~/git/uni/octree-suite/bin/ply2octree --in {} --out \$( echo {} | sed 's/ply/oct/g' )

"

The conversion algorithm is simple and leaves much to be desired. Consider the following psuedo-
code, where TREE MIN is minimum depth at which a leaf node may exist, POINTS are the
pointcloud points, and TREE is the octree being built.
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TREE ← {}
while point = POINTS.next(); point ̸= NULL do

current tree = TREE
current level = 0
while current level < TREE MINorcurrent tree.children.length ̸= 0 do

slot← determinequadrant(point, current tree)
current level← current level + 1
current tree← current tree.children[slot]
if current level > TREE MAX then current tree.add average(point) =0

This algorithm recursively subdivides an octree until there is a voxel corresponding to every point.
However, if subdividing voxel further surpasses the resolution limit, it will instead average the
color of all points within the region voxel that hit the limit and use this color.

13.4 Rendering

The rendering is performed either using triangles, a wireframe(Figure 8), or CUDA Raymarch-
ing(Figure 9). The former two renderers were written for debugging purposes, while the latter
was meant as the final rendering solution. The CUDA Raymarcher was also heavily inspired by
(Laine and Karras, 2011), notably using the same bit-flipping technique to reduce the number of
comparisons that had to be made in order to look for ray-voxel intersections.

14 Functional requirements

Functionality requirements are high-level goals for the functionality of the software. Put simply,
they explain what the software is expected to do. Even though there was only one developer,
we chose to add prioritization to certain, such that ”nice to have”s could be separated from
requirements critical to the paper’s success.

Table 2 shows the list of functional requirements, with a description and attached priority. Note
that FR6 is at the bottom of the list and has the highest integer associated with it, even if its
priority was 1. This is due to being discovered late on in the development cycle. This will be
touched on more in Section 16.
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ID Requirement Comments Priority
FR1 Render animated octrees There should be an application that can

render sequential octrees after each other
1

FR2 Octree compression There should exist an application that can
load a sequence of octrees, combine them, and
produce new files containing multiple octrees
where similar subtrees are combined to save
space

1

FR3 Frame output The octree renderer should be able to export
every frame of the octree sequence to an image
such that we can create videos to use during
a subjective assessment test.

2

FR4 Pre-defined animations When exporting images as explained in FR3,
it should be possible to pre-set some camera
pose or movement to use for said image ex-
port, to ensure that candidates are presented
equally in subjective tests

4

FR5 Rendering of competing
solutions

In order to ensure a fair comparison between
my thesis work and current state-of-the-art,
the renderer should be able to render compet-
ing 3d video formats and export the renders
using FR3.

3

FR6 DCT-encoding of color In order to save space, we want to experiment
with the application of DCT for lossily encod-
ing octree colors

1

Table 2: Functional requirements for the project

14.1 Quality requirements

Quality requirements complement functional requirements by setting expectations for how well
the aforementioned functionalities are to perform in different ways. The exact priority of quality
requirements is very context-dependent, and depends on the use-case of the software. We will
discuss two qualities that are especially wanted, some of which similar papers also touch upon.

14.1.1 Low file size

As media is primarily streamed over the internet nowadays (Stokel-Walker, 2021), it is important
that the file sizes are as low as possible. This is because not everyone has a good internet connection,
and cellular plans usually give you a fixed amount of data per month that you are allowed to
transmit and receive. (Kämpe et al., 2016) uses file size(and its ability to compress octrees in a
good manner) as one of their main measures of success.

There is also the argument of not putting a burden on society. Streaming services like Netflix have
been known for years to hog up a considerable amount of the bandwidth available in the global
Internet infrastructure. ISPs have even been trying to get these streaming services to pay for the
traffic they are generating (Brodkin, 2023). If SVO-based 3d video is ever adopted in mainstream
use, and it completely saturates the internet, our technology has hurt society.

14.1.2 Low generation time

Converting pointcloud data to SVO takes compute power. There are two main motivations for
wanting lower generation time. First, if we reduce computational requirements enough, we can
perform the encoding in realtime, enabling live-streaming. Current literature hints to this not
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being possible at the moment, with both (Kämpe et al., 2016) and (Jang et al., 2019) being unable
to perform realtime computation at the moment. However, it is definitely a wanted quality that
should be aimed for.

14.1.3 Low loading time

Before SVO-based videos can be rendered, they have to be loaded. This process also takes compute
time. Shortcuts taken during generation in order to minimize file size may have negative effects on
load time. For example, (Kämpe et al., 2016) chose to store their octree in a predetermined order
on disk in order to not have to store pointers. However, this has some negative effects on load
time, as you now need to perform extra logic work to deduce correct pointers in order to make the
octree traversable in a random order.

14.2 Planned timeline, use of agile development methods

Due to only being one person, agile tools like Scrum (Kniberg, 2015) were considered overkill.
Scrum is a popular Agile framework in which big goals are divided into smaller tasks that developers
themselves estimate the cost of. The next 2-4 weeks are then planned by sorting the smaller tasks
by priority and filling the schedule until the total expected development time of all the tasks
matches an expected upper limit for how much work can be done. Being a framework, Scrum also
suggests teams adjust how things work to their liking. Meetings are then held at the end of every
cycle to discuss what went right and what went wrong, in order to better optimize time estimations
and avoid unnecessary blockers.

Since there was only one developer on this project, and only one deliverable at the end, we ended up
going for a more traditional style of waterfall development. Waterfall-development is, in contrary
to scrum, a style of development with longer development cycles and fewer deliverable deadlines.
The biggest downside to this approach is the inability to detect blockers and other issues in a
reasonable time, as deliverables are often few and far between.

The development time on hand was planned to be from January to April 2023, which corresponds
to 4-8 scrum ”sprints”. With the number of functional requirements shown in Table 2, using
scrum wouldn’t really work, as there would have been too few items to convert into user stories.
In addition, there were some dependencies: FR3 and FR4 were dependent on FR2. FR2 was not
testable without FR1. Therefore, it made more sense to allocate a rough development time per
functional requirement and then take it from there.

While we chose not to use Scrum, it is worth noting that many of the advertised benefits of agile
development are very much wanted for the development of prototype software. There are many
things that can go wrong, and you have to be able to modify your plan to handle these unexpected
events. For example, upon implementing a feature, you might figure out it doesn’t perform as
expected. In this situation, experimental software development requires one of the main benefits
of Agile: Being flexible and able to quickly respond to unexpected problems when developing
software.

15 Schedule

The writing and research for this thesis was scheduled from the beginning of January to the 10th
of July. In addition to this, there were some soft deadlines. The authors stay at the University of
Tokyo ended on the 31st of May. After this date, they would be unable to use university resources
such as the lab pc and the on-campus supercomputer. In addition to this, Professor Umetani’s lab
was a community with many skilled individuals with interests in similar fields. It was therefore
important that both software development and experiments were done by the end of May in order
to fully take advantage of the available resources.
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Table 3 shows the rather optimistic schedule that was made for the project

January February March April
Implement video
encoder(FR2)

Implement video
encoder(FR2)

Implement video
renderer(FR1)

Run experiments

May June July
Run experiments Writing Writing

Table 3: Planned schedule of the thesis

Considering the time it takes to write a Master’s thesis, and the scope of tests we wanted to
perform on our method, we considered it important to dedicate a lot of time to non-programming
tasks. If anything, the main author was confident in their ability to write software and wanted
more leeway in places they had less experience.

As for dividing ”code” into more granular components, we found this hard due to the lack of
distinguishable features of the applications being developed. As discussed in Section 14, there
are few requirements, and those that do exist often hang together such that it makes the most
sense to develop them in tandem. Due to these reasons, we considered dividing the programming
effort planning-wise into ”Video encoding” and ”Video rendering” sufficient. The stretch goals(not
priority 1), were considered to be implicitly part of either of the aforementioned categories, should
there be available time.
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Part IV

Implementation

In this section we will go over the process of implementing the software as per Part III design
parameters.
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16 Implementation

In this section, we will discuss how implementing the planned software and encoding methods
went. We will first touch on the discrepancies between the planned development timeline and the
actual development time. Then, we will touch on how the software was implemented.

In total, two different lossy compression types have been implemented and will later be assessed
in Part V: Subtree substitution compression, and Discrete Cosine Transform (DCT). Subtree
substitution compression uses the fact that we are working with a tree data structure by attempting
to find and merge similar-looking subtrees, saving space at the cost of some visual degradation to
the user. Discrete cosine transform(DCT) is the same trick used by JPEG to save space (Wallace,
1992), and works by applying the discrete cosine transform to groups of nodes in the octree together.
Like in JPEG, resulting values are then quantized to reduce quality in the high-noise part of the
images users are less likely to notice.

16.1 Timeline

As discussed in Section 15, the implementation of the software was set to happen between January
and March. In reality, this schedule was far exceeded, and the software was still being written
until the middle of july. Table 4 shows the actual development schedule.

January February March April
Implement video
encoder(FR2)

Implement video
encoder(FR2)

Implement video
renderer(FR1)

Implement video
encoder(FR2)

May June July
Implement video
encoder(FR2) +
Run experiments

Run experiments +
Writing

Run experiments +
Writing

Table 4: Actual schedule

The biggest timesink was implementing the encoding software. In total, multiple weeks were spent
solving memory-related bugs in the software. In addition, it was a challenge to get the software
fast enough for it to be usable. Multithreading using pthrads was applied to speed things up, but
this was also a major contributor to the aforementioned memory bugs. After a while, the analysis
tool valgrind(Seward, n.d.) was applied to find and fix hard-to-find bugs faster. In hindsight, using
it from the beginning as a routine when testing code most likely would have saved a lot of time.
Had valgrind been used earlier, some bugs could have been found early on in the implementation
phase before they became part of large, complex, and hard-to-debug multi-thread state machines.

The main author’s experience with C++ is partially to blame for this. While the main author has
known about C++ for at least 10 years, he has no practical experience with it outside smaller video
games written on a hobby basis, and C/C++ courses taken at NTNU. Even with good grades,
working on small assignments doesn’t give a lot of experience in writing larger long-term projects
where technical decisions could cause issues in the long run.

In addition to technical issues, real-life problems also affected the schedule. This thesis was written
in Japan during an exchange, and the main author found out he wanted to continue living in Japan
after the end of his studies. A job hunting effort followed, the difficulty of which was orders of
magnitude harder than anything previously experienced in the Norwegian market. In total, over
a week was lost to job interviews, technical assignments, and other job-related activities.

Whether or not job hunting-related issues could be avoided is up for discussion. On one hand,
”simply return to Norway” or ”be more prepared” are both valid arguments. Job hunting in a
foreign market like Japan is hard - you don’t know your competition well, many companies require
you to be native in the local language, and there are many people who want to get in. However,

21



for the author’s long-term goal of working in Japan, getting a job was necessary.

16.2 Goal achievements

In Table 2 we defined the functional requirements we wanted for our application. Table 5 shows
the status of these requirements at the end of the project.

ID Requirement Succeeded? Priority
FR1 Render animated octrees Yes 1
FR2 Octree compression Yes 1
FR3 Frame output Yes 2
FR4 Pre-defined animations No 4
FR5 Rendering of competing

solutions
No 3

FR6 DCT-encoding of color Yes 1

Table 5: The functional requirements and whether or not they were implemented

As you can see, FR4 and FR5 were not implemented. This is due to time constraints and changes in
the test design. We initially wanted to perform a full one-on-one perceptual test against other state-
of-the-art solutions, but due to difference in rendering techiques it would quickly become a case
of comparing apples and oranges. FR4 would have been a nice-to-have for the tests, but was not
considered a necessity. This is reflected in the relatively low priority of 4. FR6 was implemented.
In Section 14 we touched on the fact that FR6 was added on late in the development process.
DCT as a feasible option was discovered in May. Making a choice on whether or not to implement
it was hard. Adding more features this late in the development cycle, after the planned end date
for development, is risky. However, some quick experiments found that the results were too good
not to consider, and that it would be a great addition to the thesis.

16.3 Tree substitution compression

16.3.1 Octree similarity

The hardest part of this thesis was implementing tree substitution compression. The goal is to
compress an octree structure consisting of nodes with an associated color in a lossy manner by
removing trees that look similar. This is hard, as what ”similar” means is hard to define.

There are several reasons why this is the case. First of all, there are multiple ways in which a tree
can be similar. For example, two octrees can be structurally identical but have different colors.
On the other hand, two octrees may be very structurally dissimilar but have the same overall look
color-wise. There may exist many situations where one of the two cases is preferred over the other,
but making this choice is hard. Making rules for making the choice will therefore be even harder,
as you cannot rely on the same ”hunch” we are using when performing experiments on human
perception of quality.

Even if we were able to find a good way of comparing the structure of two octrees, there are many
problems. Due to not being a uniform grid, we cannot easily compare the color of two octrees
either. For example, how would one compare the color of two octrees where the intersection of
their volume(i.e. the volume they share) is empty?

For the problem of calculating the similarity between two octrees, we ended up using a score system
where a pair of trees were rated 0-1 on how similar they were volumetrically. In this scale, 0 means
the intersection of their volumes is empty and 1 means they are completely identical. The C++
code used to calculate their similarity is attached in Section A. A quick summary of the algorithm
is the following:
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• Both trees have no children(leaf node)? Return 1 - completely similar

• One tree is a leaf node? Return the fill rate of the non-leaf node that is filled - the more
filled the more similar

• No tree is a leaf node? Calculate the average similarity of each possible child slot:

– Child doesn’t exist for neither? Similarity is 1

– Child exists for one of them? Similarity is 1− fillrate - Completely filled means com-
pletely dissimilar

– Child exists for both? Use this algorithm to calculate their similarity.

16.3.2 Comparison order

There is also the question of how we make the comparisons - do you compare every possible
subtree(from every layer) with each other? Do you compare every node of the same level of
the tree? Both imply O(n2) comparisons, meaning comparisons will get very computationally
expensive if there are too many trees.

The solution we ended up with was based on multiple steps:

• Perform node pruning sequentially layer by layer, starting from the top. This allows us to
skip nodes in lower layers that were already pruned as part of pruning at higher levels.

• Sort nodes into buckets based on similarity

• Find the node that is the most similar to other nodes in the same bucket

• Mark all nodes that are similar enough to the best node as pruned, recursively

For step 2, a Hash Map using the child occupancy flags of each node as key was used. As there are
8 possible child positions, and 2 possible states for each position(Occupied, Non-occupied), this
results in a hash map with 28 = 256 buckets. The key can be calculated by setting the bits in
an 8-bit integer corresponding to the slots of the tree that have a child, while the octree is being
loaded from disk.

Step 3 was implemented using a modified version of the clustering algorithm k-means. K-means
works by selecting k ”cluster centers” and then iteratively redefining them based on the average
position of the elements in their corresponding cluster. However, due to the lack of an Euclidean
problem space, we am unable to use Euclidean distance and the concept of a ”cluster center”.
Instead, we used the function for calculating octree similarity as previously mentioned, and had
a single node per cluster considered its best candidate. This increases the time complexity of
k-means to n2.

Due to the added time complexity of step 3, the whole process was written to run paralellized.
This was done by inserting each bucket of the aforementioned hash map into a job list, which
was then processed by a pool of threads. Step 4 was also ran during this process. Had the graph
been cyclic, this could have caused race condition issues. However, due to the nature of trees, and
the fact that we are simply marking nodes as trimmed(and specifying their replacement), a race
condition would at most cause a tree to be marked as pruned several times.

16.3.3 Using CUDA to speed up comparison

At one point we refactored the comparison code such that it could run in CUDA. However, this
gave no speedups whatsoever. In most cases, the results were identical or slightly slower than our
CPU-only comparisons. This makes sense, as GPUs are generally memory-bound once you start
accessing main memory from the compute kernel. One also has to factor in the fact that all the
needed data has to be transferred to the GPU. We ended up removing the CUDA code due to it
not being helpful.
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16.4 Lossy color compression using DCT

Discrete Cosine Transform(DCT) is a method by which data is converted to a list of weights that
when applied to cosine functions produces an estimation of the original input. It is famously used
by JPEG (Wallace, 1992). After applying DCT to our storage format, it was found that even an
imperfect implementation greatly reduced file size. Our implementation works like this:

• Converts color data from RGB to YUV

• Applies DCT to color data in groups of 64 bytes. We treat them as an 8x8 image even though
there is no correlation on the y-axis.

• Quantizes the result, reducing the resolution on high-frequency signals

• Compression using ZLIB

16.4.1 RGB to YUV

YUV is a different color space from RGB, meaning it is a different coordinate system for repres-
enting colors. RGB uses the three primary colors Red, Green, and Blue as axes. On the other
hand, YUV encodes color with one axis corresponding to Luminance(Y, Darkness/lightness) and
two axes of color(UV). This is beneficial to image encoding, as empirical tests show there is more
entropy along the Luminance axis (Wallace, 1992). This is backed by the fact that the human
vision system is optimized for recognizing contrast.

In our dataset, the U and V color arrays post-compresson are around 50% more compressed than
the Y array. This indicates that the U and V layers have less entropy, and are therefore possible
to compress to a smaller size.

16.4.2 DCT

We use the same DCT type as JPEG, DCT-II (Wallace, 1992). The algorithm is run separately on
the Y, U, and V channels. The main difference between us and JPEG is the existence of a Y-axis
in the source data. While JPEG divides the image to be compressed into 8x8 chunks, we simply
divide the array of Y, U, and V color data for each layer into chunks of 64 bytes that are treated
as 8x8 images. Additionally, we do not subsample the U and V layers.

Figure 10: A montage of 8x8
DCT-encoded blocks from
the Y color channel of layer
10. Taken from a chunk in the
wave dataset, scaled 400% us-
ing nearest neighbor

Figure 11: A montage of 8x8
DCT-encoded blocks from
the U color channel of layer
10. Taken from a chunk in the
wave dataset, scaled 400% us-
ing nearest neighbor

Figure 12: A montage of 8x8
DCT-encoded blocks from
the V color channel of layer
10. Taken from a chunk in the
wave dataset, scaled 400% us-
ing nearest neighbor
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Not organizing color data such that there is a correlation on the Y axis has an obvious downside -
there may be a lot of noise on that axis. However, in practice, spatial coherence in colors is strong
enough for it to not be a showstopper. Figure 10, Figure 11, and Figure 12 show examples of
the data we are DCT-encoding. As you can see, most 8x8 squares have some kind of consistency.
However, there are also 8x8 squares with a lot of noise and sudden color changes. These areas are
hard for DCT to accurately encode, and we should therefore aim to remove them in a later version.

A solution to the aforementioned y-axis alignment issue is to perform DCT on a per-node basis on
every third layer, only performing the transformation on points where there is a voxel. Nodes on
layers that don’t have a DCT encoding could get their color by averaging the color of their DCT-
having children. We believe this would yield great results, but did not have time to implement a
prototype.

16.4.3 Quantization

Quantization is performed by dividing the DCT-transformed signals by a predetermined number,
effectively limiting the number of discrete signal levels a signal can have. Each signal can have
a different divisor, usually with low-frequency signals having lower divisors and therefore being
allowed more signal levels. In our case, we build a lookup table with divisors for each signal by
linearly interpolating between a wanted lowest for the low-frequency signals, and a wanted highest
number for high-frequency signals.

This is different from jpeg, where 100 quantization tables are pre-determined and used to give the
user a more user-friendly compression quality range selection range from 1-100. We strayed from
this approach due to time constraints.

16.4.4 Compression

Compression was done using zlib (Gailly and Adler, 2022) as it is a well-known compression library
that was easily accessible and therefore low-risk to use given the time constraints. Compression is
important, as it is where the space saving is we take the quantized data with most high-frequency
signals discarded, and compress it by using the fact that most of the quantized table is zeroes.
JPEG uses Run-length encoding followed by Huffman encoding. We found zlib to be better in
our use-case than simply using run-length encoding and ran out of time to consider any sort of
Huffman encoding (Huffman, 1952).

17 Optimizations

The base data structure used by our octree video file format is very wasteful, and can be optimized
in several ways. Howver, due to to time constraints, we decided on implementing optimizations in
a best-effort manner after proof of concept was already working. This meant that optimizations
were mostly done in the May-June months.

17.1 Original data structure

This subsection goes over the original file format used to store octree videos before any optimiza-
tions were made.

Figure 13 is a description of the original file format used to store octree, in pseudo c. Note that
every child pointer is a 32-bit integer, and that 3 bytes are used to store color. Note also the fields
childCount and childFlags, which are redundant and can be deduced at load-time. However,
we will not count the removal of these fields as an optimization as they could have been removed
from the start. Figure 14 is an illustration of how Figure 13 looks in memory. Figure 15 shows
how the data structure will look in memory when we are finished with this section.
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#define TREE_DEPTH 20

#define OCTREE_POSSIBLE_CHILD_COUNT 8

struct OctreeVideoHeader {

int magic;

int tree_depth;

int headerSize;

int layerSizes[TREE_DEPTH];

};

struct OctreeVideoLayer {

OctreeVideoNode nodes[layerSize];

};

struct OctreeVideoNode {

char r;

char g;

char b;

char childCount; // Number of children

char childFlags; // Bitmask indicating what child pointers are not null

char leafFlags; // Bitmask indicating what children are leaf nodes

int childPointers[OCTREE_POSSIBLE_CHILD_COUNT];

};

Figure 13: Original octree data structure
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child
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leaf
flags child pointers R G B child

count
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leaf
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Read order: Left-to-right top-to-bottom

Figure 14: An illustration of how data is laid out in memory as in Figure 13

Y

Read order: Left-to-right

U V Child flags child pointers

Figure 15: An illustration of how the data structure a layer with a few nodes will look in memory
with the modifications discussed in this section

In this structure, OctreeVideoNode is the structure of the actual nodes in the tree. r, g, and b

encode the node color. Even non-leaf nodes have a color, in order to standardize the data structure.
It also allows us to render more coarse versions of the octree to save on compute resources, should
it be wanted. childCount is the number of children of a node. It is not necessary and can be
derived by calculating the population count of the childFlags field. The childFlags is used as 8
binary flags representing whether or not each of the 8 possible child slots contains a child or not.
leafFlags is similar to childFlags, but instead of referring to the existence of a child or not,
each bit represents wether or not the child is a leaf(i.e has no children) or not.

childPointers contains pointers to the nodes children. When written to and from disk, only
pointers to children are written. That is, if a node has 3 children, 3 pointers are written to disk.
The childFlags field is used to determine how many pointers exist, and where to place them in
childPointers.
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17.2 Write order

The original file format is written the same way it is stored in-memory: node-major. This means
that all the fields for a single node are written together. By writing all values for a single field
type in a continuous array, we are able to better compress them, as the chance of there being
repetition is greater compared to when all fields for a given node are written together. It is hard
to numerically prove this as most of the optimizations mentioned in this chapter were done at the
same time, and altering how data was written to disk was important to many of the tricks we will
be discussing further.

Instead, we perform numerical investigations in Section 19 on the data format

17.3 Optimizing pointer sizes

If the octree is written depth first to disk, when no nodes are substituted, all child nodes exist
right after another. Even with a large amount of tree substitution, most nodes still have a very
short distance between their children. This can be abused.

Instead of writing the actual child pointers to disk, we can write the difference between the current
and previously written child offset. When no lossy tree substitutions are made, this means the
value ‘1‘ is continuously written to disk. As a result, it can be trivially compressed.
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Part V

Testing and evaluation

In this part we carry out experiments and evaluate metrics of our suggested solution.
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18 Dataset

For the purpose of this thesis, two datasets were made: wave and walk. These datasets were
generated with the goal of testing our suggested encoding algorithm with different levels of difficulty.
Sadly, the walk dataset was corrupted some time after we lost access to the sensors used to capture
test data, and as such we could not use it for this thesis.

wave is considered the simplest dataset, and is a 2.4 second clip of a human waving recorded at
30fps for a total of 75 frames. It is considered simple as most of the video remains relatively
stationary throughout the recording. walk was a 9.9 second clip of a human walking around at
30fps for a total frame count of 297 frames. It was considered harder to compress than walk as the
subject is moving a lot around.

Figure 16 illustrates a frame from wave. The subject is wearing plain clothes, something we are
aware makes compression easier, as there is more uniformity and less variation. Had there been
more time, we would have prepared harder-to-compress clothing, such as clothing with advanced
patterns.

Figure 16: A still frame from the wave dataset(No lossy compression applied)

Table 6 shows the number of discrete points per frame in the source pointcloud dataset that is
then converted to octrees.

Wave Walk
Min 351024 266395
Average
(Rounded)

375290 498059

Max 389660 801660

Table 6: Number of points in dataset source material

Figure 17 shows the process used to generate octree video files using our solution.

Unlike other papers, like (Kämpe et al., 2016), the resolution of our dataset is dynamic. This is due
to the algorithm, we used to convert pointclouds to octrees, as explained in Section 13. Figure 18
shows how many nodes we had in on average per layer in thewave dataset. Note that the minimum
resolution was configured to 7 layers, or 27 = 128 per axis. As you can see, layer 11 is the layer
with most nodes, at a resolution of 211 = 2048 per axis. Table 7 shows the total number of nodes
per layer over the entire dataset.
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Intel Realsense
D415

Pointcloud conversion
(librealsense)

Octree conversion
(ply2oct)

Octree concatenation
(DAG creation)

Subtree substitution

Writing to disk
(DCT + zlib)

ROSBAG video stream

PLY pointcloud

Individual octrees

DAG

DAG with
shared children

Octree encoding
software

Figure 17: The processing pipeline that creates octree videos from raw Intel RealSense captures

1 2 3 4 5
75 225 1158 4791 16371
6 7 8 9 10
62034 254343 1126116 4780329 18013617
11 12 13 14 15
50406255 52650486 937506 87420 10932
16 17 18 19 20
1425 204 0 0 0

Table 7: Node count per layer over all frames in the wave dataset
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Figure 18: Chart showing the average number of nodes per frame in the wave dataset

19 Numeric evaluation

In this section we perform numeric evaluation based on empirical data gathered from the thesis.

19.1 File size comparison

Table 8 shows the filesizes for the two datasets, both in their original pointcloud form, and in their
raw octree form. We also show the compressed filesizes using gzip to give a certain measure of how
much entropy the files contain. The Pointcloud rows refer to the raw .ply pointcloud files, while
Raw octree refers to the files containing octrees that are converted from .ply. There is one octree
file per pointcloud file, and no compression is done. In our pointcloud-to-octree-video pipeline(See
Figure 17), these octree files can be considered an intermediate product.

Wave Rotate
Pointcloud 403 MiB 2118 MiB
Pointcloud (Compressed,
gzip)

352 MiB
(87% of
original)

1749 MiB
(82% of
original)

Raw octree 368 MiB 1931 MiB
Raw octree (Compressed,
gzip)

221 MiB
(60% of
original)

1040 MiB
(53% of
original)

Table 8: File sizes of the datasets
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19.2 Compression gains by number of frames per chunk

The octree substitution compression works by concatenating multilpe octrees together into one
common data structure and then removing similar entries. Since the end result is then compressed,
there is a theoretical compression gain through storing more trees together, as there is more data
for zlib to work with.
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Figure 19: Chart showing the relationship between number of frames being saved together and the
total filesize in MiB

We performed an experiment to measure how much chunk size affects the overall file size of the
output DAG video. We performed this by iteratively running our octree encoder on the wave

dataset with 1-75(number of frames in the dataset) frames per chunk, resulting in 75 to 2 chunks
in total. We disabled substitution of similar octrees, and used the highest possible settings for DCT
encoding. These settings were picked due to computational cost, as well as more data theoretically
resulting in better compression results.

Figure 19 shows the amount of file shrinkage obtained depending on how many frames are com-
pressed together. As we can see, after around 18 frames, the gain of compressing more frames
together quickly disappears. After 40 frames, the line has for all practical purposes flatlined. Note
that, even if compressing 20 frames together results in a file size improvement, we are still only
saving 250 KiB of space per chunk, which is almost negligible.

The reason for the negligible amount of gain from compressing multiple frames is caused by the
manner in which we compress the DAGs: we compress data layer-by-layer. Most layers have
thousands, if not hundreds of thousands of nodes, as can be seen in Table 7. The only gain by
bunching more frames together happens in the uppermost and lowermost layers(1-6 and 14-20),
that in general have fewer nodes. The most extreme example is the uppermost layer, which has
exactly one node, the root node, per frame in the chunk.
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19.3 Child pointer compression

There are several methods for storing an octree on disk depending on needs. (Kämpe et al., 2016)
Used a file structure in which no child pointers were used - instead the nodes were stored in a pre-
determined order and needed to be loaded into memory and have child pointers deduced before you
could access the structure manually. We experimented with a scheme for encoding these pointers
in a very efficient way. Figure 20 illustrates how efficient it was.
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Figure 20: Chart showing the child pointer compression ratio, overlaid with the number of nodes
per layer

From Figure 20, there is a reverse relationship between the compression ratio and number of nodes.
This can be explained by the layers with a few nodes being harder to compress due to not having
enough repetitive content. The sudden drop at layer 15 can also be explained: There are no more
nodes after that point(See Table 7), and there is therefore nothing to compress.

19.4 Color data compression

Figure 21, Figure 22, and Figure 23 show the relationship between compression ratio and overall
filesize for the Y, U, and V channels in our wave dataset compressed with DCT. Note that we
use the YUV color space for color compression. While the relationship between the compression
ratios varies as the size decreases, we can see that the Y channel is generally 1.5-2x less compressed
than U and V. This supports the idea that most interesting detail is captured in the Y channel,
something JPEG cleverly uses by downsampling the U and V channels (Wallace, 1992).

While we did not downsample the U and V channels, it may be interesting to look into for future
works, especially when the spatial coherence of color data in an octree is taken into account.
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Figure 21: A chart showing how the compres-
sion ratio improved for the Y channel as file size
got lower
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Figure 22: A chart showing how the compres-
sion ratio improved for the U channel as file size
got lower
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Figure 23: A chart showing how the compres-
sion ratio improved for the V channel as file size
got lower

19.5 Substitution encoding speed as a function of chunk size

As mentioned earlier in Section 16.3.2, we use a O(n2) method when we search for subtrees that
are similar. As a result, we expect the encoding speed to increase rapidly as the number of frames
per chunk increases.
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In order to visualize and verify this, we ran the encoder once using default settings with chunk
sizes ranging from 1 to 17. The PC used was a laptop with a Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz. As a result, it is possible that the first results are slightly faster than expected due
to no thermal throttling, but this is not expected to be a huge factor, as we ran using only one
thread on the 6-core CPU. Figure 24 shows the results we gathered. Table 9 shows the number of
seconds per chunk for chunks of size 1-6 frames
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Figure 24: Chart showing encoding time as a function of number of frames per chunk

1 frame 2 frames 3 frames 4 frames 5 frames 6 frames
16s 24s 82s 172s 311s 459s

Table 9: Number of seconds for encoding a small number of frames per chunk(Same data as in
Figure 24)

An interesting point is the shape of the graph in Figure 24. It appears exponential until around a
chunk size of 10 frames. After this, the line continues in a mostly linear manner. Why this happens
is unknown, but may be due to imprecision in the results caused by running on a laptop.

20 Subjective test design

As the goal of this thesis is to investigate a novel scheme for 3d video encoding, it is useful to test
how artifacts of the encoding scheme is experienced by humans. For this purpose, some subjective
tests were carried out. In this section, we explain how we designed our subjective tests and why we
made the choices we did. We will then describe the tests we carried out, and discuss the results.

The goal of the subjective tests we carried out was to get a mapping between encoding quality and
the perceived quality. We carried out two tests in total, based on the research questions defined
in Section 4:

• A test of our DCT compression (RQ2)

• A test of our tree substitution compression (RQ1)
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The reason for the tests being in opposite order of the research questions is one of practicality -
the comptuational cost of testing RQ2 was much lower, so it was used as a preliminary test of our
test hardware. The experiment for RQ1 was performed last-minute.

20.1 Test material generation

As we did not have a web-compatible renderer for our octree data, it was necessary to render it
to some intermediate format suitable for web consumption. Another worry was the computational
cost of rendering our octrees - if the powerful computer we used to render struggled, would test
subjects’ computers be able to render anything at an usable framerate?

Of course, this question can have serious implications for feasibility of our suggested method.
However, we chose to blame limited time on the performance issues we are facing. Based on prior
experience when experimenting with octree rendering, we believe better performance is very much
achievable had there been more time to optimize the renderer.

With realtime rendering in the browser of of the question, the choice quickly fell on video. This
decision was made early on in the process, and was defined as FR3 in Table 2. The videos were
generated by taking the frames exported by our software and concatenating them together in
ffmpeg. Figure 25 shows the steps taken to go from an octree video file to mp4 video files. The
following command was used to build the video files:

ffmpeg -framerate 30 -pattern_type glob -i "$FRAME_DIR/${FOLDER_NAME}/*.png" \

-c:v libx264 -crf 10 -pix_fmt yuv420p "${VIDEO_DIR}/${FOLDER_NAME}.mp4"

The bash variables come from this copy-pasted command being part of a bash script. As often
seems customary, we will now explain the ffmpeg command line flags used:

• -pattern type glob -i configures ffmpeg to load frames from disk using a provided glob
pattern.

• -c:v libx264 specifies the encoder - a H.264 implementation

• -crf 10 specifies the constant rate factor (Encode/H.264 - Ffmpeg 2022-09-23), the ”recom-
mended rate control mode for most uses”. A rate factor of 10 is 11 values better than the
default of 21. Having completely lossless video was considered to generate too big video files,
so a compromise was selected by picking a CRF value low enough that it was impossible to
see any major compression artifacts.

• -pix fmt yuv420p Specifies the pixel format of the output video. yuv420p is a chroma
subsampling scheme.

• "$VIDEO DIR/$FOLDER NAME.mp4" output filename

20.2 Test tool

Finding a testing tool was harder than expected, and multiple candidates were considered, but our
requirements made it hard to make a good fit. The following requirements were put in place after
performing experiment design:

• Needed to support video playback - if only still images are shown we are unable to test for
visual artifacts that may be more visible when they vary a lot frame-by-frame.

• Needed to support randomization of samples - we want to show each user the same videos in
a different order to reduce the chance of known bias sources such as lack of familiarity with
the dataset.
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Figure 25: The processing pipeline that converts octree video files to mp4 files suitable for an
online test

• The ability to perform some kind of training - We want to show the user some examples of
what to expect before the actual test starts in order to combat the aforementioned biases.

• Needs to be ran online - due to the situation surrounding the exchange this thesis was written
during, the main author physical access to campus before the thesis was finished, and needed
to be able to gather test data online. This has an added benefit of being able to run the
experiments on even more people.

QuickEval (Ngo et al., 2015) is a Psychometric image evaluation tool designed by the Colorlab at
NTNU Gjøvik - the lab of the Norwegian supervisor for this paper. It is a great tool for carrying
out subjective experiments on images. However, it has no video support, and therefore had to be
dropped.

Another worthy mention is Versus (Vuong et al., 2018), an online tool that even supports being
used together with Mechanical Turk (Amazon Mechanical Turk 2023). Mechanical Turk is a tool
by Amazon that lets you pay humans a small sum to do small tasks for you. Mechanical Turk
has a great history within this field, being especially popular to label data for machine learning
purposes. However, Versus is made for 2AFC and does not support video out of the box. Even
if Versus did support video, 2AFC was considered too complex for our use case, as it requires the
user to make a lot of comparisons. We considered this to be too much effort for our test subjects.
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Google Forms (Google Forms 2023) could have worked, but did not support randomizing pairs of
videos and input fields, and was therefore also dropped. Forms does have a feature that allows
you to randomize the order of questions. However, if done, it caused all videos to appear at the
top of the form, with all questions then following in random order. Google Apps Script could be
used to generate forms where videos and questions are correctly randomized in a pairwise manner.
However, this would require every test taker to use a unique form, which makes distributing the
test harder.

In the end, a custom solution for video testing was developed. There is no reason to reinvent the
wheel, but after a long search for a fitting evaluation tool, nothing was found that met all our
requirements. The sunk costs fallacy was also an item of consideration - at one point it would be
more productive to make a tool that could do the job rather than keep looking.

The custom solution was written in an afternoon - less time than was spent looking for an evaluation
tool. As a guide to avoiding common experiment pitfalls, (Del Pin and Amirshahi, 2022) was used
as a guide. To make deployment and management easier, extra requirements were added. Table 10
shows the functional requirements we gave ourselves for the development of this test tool.

ID Requirement Comments
FTR1 Video playback We want to show video recordings of our en-

coding scheme
FTR2 Randomization of test

videos
By randomizing the order of videos being
shown to the test subjects, we reduce the ef-
fect of biases such as the effect of users slowly
learning how the dataset looks (Del Pin and
Amirshahi, 2022)

FTR3 Training support Needs to be able to show users test videos be-
fore the experiment begins. Needs to clearly
indicate that they are being trained on how
things are supposed to look.

FTR4 Accessible from online Needs to run in a web browser and should be
accessible through the internet, as we didn’t
have reliable access to a big amount of test
subjects.

FTR5 Configurable through a
simple configuration file

It should be simple to configure aspects of the
test, such that we can iteratively work on our
test up until we show it to actual users.

FTR6 Easy to deploy We had access to bare metal hardware that
already ran Docker and a HTTP Reverse
Proxy chat could handle TLS termination. If
the software could be packaged as a single
HTTP web server in a Docker container, it
could be deployed in minutes using existing
infrastructure.

FTR7 Ability to ensure the video
is shown properly

Today, many people use mobile devices. As
a result, if the URL to the test is shared on
social media or other platforms, it is likely
that users will visit the test site from a mo-
bile device. As these devices often have lim-
ited resolution and are often small, they are
not optimal devices for performing visual as-
sessments. We, therefore, want the ability to
stop users with too small screens from parti-
cipating in the test.

Table 10: Functional requirements for the test tool. NOTE: These requirements are not ordered,
as they were all considered equally critical to be implemented.

38



It is easy to argue that the lack of a prioritization of the tasks in Table 10 is foolish, as it puts you
in an ”all or nothing” situation where you either implement everything or end up with a product
that lacks critical features yet has other less critical(in the eyes of someone - user? stakeholder?)
items implemented. However, in this case, the choice of no prioritization fell on the opinion that
the failure to implement any of the wanted goals would make the tool useless for our use case. Had
we not been able to implement everything, other tools that also lacked in certain areas yet were
better developed over a longer time frame would have been better choices.

FTR1, FTR2, FTR3, and FTR4 were all original requirements when we were looking at other altern-
atives. If any of these were not fulfilled, other options would have probably been better. FTR5 and
FTR6 were added to avoid slowing us down by causing big amounts of extra work. FTR5 was added
as it was important that the tool was fast to use. FTR6 was added as spending a lot of time getting
the tool into production was unwanted. FTR7 was added as a ”nice to have” that we could enforce
due to owning the test platform. While it was not critical to the test’s execution, it has an effect
of the quality of the results we gathered.

In the end, a SvelteKit (Harris et al., 2022) web application was developed using the requirements
in Table 10 as a guide. The choice of SvelteKit fell on the main author having used Svelte (Harris
et al., 2016) for Single Page Apps in the past, and knowing SvelteKit allowed a similar workflow to
Svelte with added server-side rendering and business logic capabilities without the need to write a
separate web server.

The web application worked by using a UUID provided as part of the URL the user would visit
the site with as a lookup key for finding a json-based manifest file stored in the filesystem on the
server. This manifest file configures the web browser for the test, containing information on what
videos to show, what documents to show, etc. Section C shows the manifest files used for the two
subjective tests. The manifest file supports configuring the following parameters:

• Title

• Author and contact information, which is shown before the experiment. Once the experiment
is complete, the contact information is again shown to the subject.

• Filename of explanation file - An explanation of the test about to be performed is written in
markdown, loaded from the server, and sent to the client upon loading of the manifest. It is
then rendered as HTML.

• Range configuration - how many points, and what to label the first and last point as.

• Minimum screen size

• List of training videos with title and description, that are to be shown chronologically

• List of video files to run the experiment on, to be randomized

FTR7 Was implemented using the aforementioned ”minimum screen size” field in the manifest file.
We ended up settling on making sure there were enough pixels on the browser’s HTML viewport.
The logic behind this decision was that if the viewport is wider than the videos being shown,
there is most likely space to show the videos at their full resolution, which we considered the most
important.

Experiment results are submitted by storing the rated subjective quality of each video in a JavaS-
cript object, and transmitting it to the server using a HTTP POST request serialized as JSON.
On the server, the data is validated to be JSON and then dumped to a directory on disk using
a server-determined random filename. These steps were made to avoid Unrestricted File upload-
related security vulnerabilities, as described by OWASP (Dalili et al., 2023). While a database
could be used, there was no expectation of this data needing to be read again by the web server at
a later date. Additionally, as this data would later be programmatically manipulated in order to
generate graphs, it was thought that keeping the data in a machine-readable format made it easier
to make graphs later on.

The test tool is Open-Source and is available at https://github.com/petterroea/videotest
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20.3 Test flow

We will now discuss the flow followed by the test subject during the experiment. The test consists
of 4 phases:

• Introduction

• Training

• Experiment

• Submission

20.4 Introduction

The user arrives at the test by following an URL. They are shown a document that outlines the
test, giving some context and instructions. This document is the explanation file as described
earlier and is customized on a per-test basis by us. The goal of this stage is to provide the test
subject with the knowledge required to properly carry out the test (Del Pin and Amirshahi, 2022),
as well as reassure them that they are not taking an exam and that they should follow their gut
feeling in order to provide the most accurate results. The user may proceed with the experiment
by pressing a button labeled OK located at the bottom of the document.

20.5 Training

The user is sequentially shown a set of videos, one by one. Above each video, a title and description
explaining how the video fits in the dataset is shown. For example, a video could be labeled ”100%
compressed” with the description ”This video is 100% compressed and should be considered the
worst-case”. The user can proceed to the next video by clicking a button labeled OK, but this
button does not appear until the video has been played in its entirety.

In our case, we use two videos for training - the highest compressed example we had, and the lowest
compressed video. We chose to not provide an example of a ”medium compressed” video or similar
as it is hard to determine what ”medium” or ”50%” means - it could refer to what is perceived by
the user as half-way compressed, or it could mean the file size is halfway between the minimum
and maximum compression example. By not giving an example of a ”medium compressed” video,
we make the user use their own perception to determine ”medium”.

20.6 Experiment

The user is shown videos in a similar manner to during training. However, instead of a title per
video, the current test progress is shown. Unlike the training stage, the user is also given a slider
they can use to rate the video on a Likert scale from 1-7. For each video, the test subject is forced
to watch through the entirety before they are allowed to select their rating. They can proceed to
the next video by clicking a button labeled OK

20.7 Submission

After all the videos have been viewed and rated, pressing the aforementioned GO button takes
the user to a screen where they are asked to submit the data. The intention of this screen is to
give the test subject the ability to back out from submitting their results before anything is sent
to the server. Upon pressing an Submit button, data is uploaded to the server, and the user is
prompted with a final screen.
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This screen provides the author’s e-mail address in case of questions and tells them that they can
safely close their browser window.

21 DCT subjective test

This subjective experiment was done to answer RQ2: How feasible is DCT for lossy encoding of
color information in a SVO?. Most of the test design is explained in Section 20. The explanatory
document is attached in Section B.1.

Figure 26: A frame from the DCT test, with no quantization (Same as Fig-
ure 16)

Figure 27: The same frame, but with the maximum amount of quantization
applied.

The test subjects were shown a range of videos rendered from our octree rendering software, with
varying degrees of quantization applied to DCT encoding. This affects the file size, as it is in the
quantization step that detail is discarded. Recordings with the best possible(Figure 26) and worst
possible(Figure 27) quantization settings were shown to the user prior to the experiment, in order
to train them on how the dataset would look.

Figure 28 shows the relationship between perceived quality and the file size of the whole animation.
Note that it is the zlib compression of the quantized data that actually reduces the file size, as this
is where we eliminate repetitive patterns of zeroes caused by high-frequency data being reduced to
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Figure 28: Chart showing line plot and scatter points for the relationship between file size and
perceived quality for our DCT test

0. You can also see Figure 19 for an overview of how the file size is affected by compression when
there is little data to compress.

One thing that immediately sticks out is that the test subjects, on average, never really rated
anything in the dataset more than 6. It almost seems as if the training we did was inefficient, or
that the users rebelled against our suggestion of ”best quality”.

This abnormality can be blamed on the dataset, which due to being captured on consumer-grade
cameras had a considerable amount of noise, especially around the edges. One user made contact
to complain about the dataset’s quality, claiming it ”made it hard to figure out how bad the
compression was”. As giving further guidance would skew the result, no extra guidance was
provided to said user other than to reinforce the fact that they were to respond using their gut
feeling.

The dataset could have been cleaned up more, but this is something we lacked the necessary time
to do. In hindsight, using a premade dataset from a professional source could have given us better
results.

When it comes to the appearance of compression, it seems we can reduce the file size by around 50%
before humans notice. From there, the quality drops rapidly. Had there been time to implement
DCT in a manner that better accounted for spatial coherence, it is very possible that better
numbers could have been achieved. We leave this as a possible future work.

22 Substitution subjective test

This subjective experiment was done to answer RQ1: How feasible is lossy subtree substitution
for lossy encoding of SVOs?. Most of the test design is explained in Section 20. The explanatory
document is attached in Section B.2.

42



This dataset was built by running a script that encoded the wave dataset once for each permutation
of two lists of pre-defined values that affect our tree substitution: color importance and nearness
factor. The nearness factor is how similar two trees need to be substituted, and color importance
is how much the nearness is ”punished” depending on how dissimilar they are in color. We used
10 frames per chunk when building the dataset for these tests, as we considered it a good balance
between giving the substitution algorithm enough nodes to search through in order to find good
matches, and required compute time. As we showed in Figure 24, increasing the number of frames
per chunk greatly increases compute time, of which we had little at this point in the thesis process.

Sadly, an unexpected bug was hit during the encoding phase, and most of our encoding processes
did not complete. Of those that did complete, most of them had almost no nodes substituted. Due
to time constraints, we opted not to fix the bug, as it could have been a week of debugging away.
Instead, we opted to continue with the small dataset we had, removing most of the encoded data
with similar file sizes. What we were left with were 6 compressed octrees with file sizes ranging
from 38 to 110MB. The number of participants in this test was low. This was also caused by a
lack of time.

Another issue met during test generation was the difficulty of tuning the compression parameters.
While we ran many encodings, we found many of them to either not remove nodes at all, or remove
too many nodes(60+%), like in the example we have with the least quality. We spent a considerable
amount of time trying to tune these parameters to get good in-between results, but even if we were
able to do so, the aforementioned bug stopped most of these encoding runs from completing.

Figure 29: A frame from the substitution test, with no quantization

Figure 30: The same frame, but with a lot of substitutions( 60%) being made
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This lack of test data is bad. However, given the almost instantaneous drop in perceived quality,
we believe this test says enough about our method. Figure 31 shows the results we collected.
Unlike with Figure 28, the perceived quality drops off almost instantaneously.

It is possible to argue that the immediate drop in quality from the 110MB output to the 105MB
output is due to human factors. It could be that the test subjects felt the need to mark anything
not ”perfect” with a lower grade than 7. However, we can see that quality grades 3 and 4 were
used for the 105MB output, while the 110MB output never saw a grade lower than 5.

Another possible issue is the fact that the best entry in the dataset was still rated as low as 5. The
same video was shown to the test subject during the training phase. We, therefore, suggest this to
be caused by ineffective training or a bad dataset. Section 21 experienced a similar phenomenon,
where even the best video was given a 6 on average.

One fact that was interesting was how the octrees looked at a high amount of substitution. It
is clear that the differentiation algorithm did work, as you would often see certain parts of the
subject’s body be completely still for the duration of a 10-frame chunk, while other parts were
moving. This shows that the algorithm was successfully detecting similar parts and merging them.
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Figure 31: Chart showing how perceived quality decreases as the file size of the tree substituted
data decreases.
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Part VI

Discussion and conclusion
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23 Discussion

23.1 RQ1 and RQ2 - wrapping up our experiments

In Section 4 we discussed two main RQs we wanted answers to, which we later researched in Part V.
We will now consider what we believe the answer to these research questions is.

23.1.1 RQ1

The results from the RQ1 experiment(Section 22) were underwhelming. Unlike in RQ2 (Sec-
tion 21), the perceived quality fell off almost immediately. We believe this is a result of our
similarity algorithm, which is unable to take into account octrees that appear similar but mostly
occupy slightly different parts of the voxel area being compared (See Section 16.3).

Another issue is the color similarity. As we only use the average color of all children when com-
paring, we are unable to properly take into account high-frequency noise and small details. As a
result, many substitutions where there is a tiny bit of skin can be seen on the clothing, and vice
versa, in the test data we generated.

However, this does not completely dispel tree substitution as a viable method. (Kämpe et al.,
2016) showed that lossless tree substitution was a viable method, even for real-life data. Instead,
we believe our methods should be worked on. For example, it may be better to use a Signed
distance field when comparing two trees, as it would allow you to treat two octrees with no volume
in common as similar if the volume they occupy is similar but not the same.

Additionally, some benefits may be gained from using other techniques for comparing colors. For
example, DCT-encoding subtrees could help, as it would allow us to compare the amount of different
signal frequencies in the color of the child node. This would be useful, as high-noise colors would
better stand out in a scheme like this, compared to just using the average color of all children.

23.1.2 RQ2

For RQ2 we seem to have gotten satisfactory results - a compression rate of 50% without humans
noticing is a good start. It is important to consider that the dataset quality may have affected
these results, as noise in the base data may have stopped test subjects from spotting compression
artifacts earlier. Note also that our DCT implementation is relatively rudimentary, as discussed
in Section 16.4.

Had we had time to implement DCT in a way that better utilized the spatial nature of the data,
we think even better compression is possible. Had the dataset been more noisy(i.e the subject was
wearing more noisy clothes), it is also possible that compression artifacts would have been hidden
better, improving the perceived quality.

We originally went for SVO late in the development cycle, and we believe we made the right choice
by doing so. This was a good find, and a promising subject to keep investigating. We therefore
conclude that DCT is a feasible solution for performing lossy encoding of SVOs.

23.2 The effect of branching factors - comparing with VDB

As implied by (Museth, 2013), octrees are an inferior data structure for deep trees due to their
branching factor. The dataset we used is 10 levels deep at many places, meaning at least 10 pointer
dereferences is needed for rendering. If you factor in the fact that the Raymarcher may have to
march great portions of the tree in order to hit anything, it is clear that we are talking about a
lot of pointer references. However, there are multiple possible compromises that could be made,
depending on needs.
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(Museth, 2013) suggests that increasing the Branching factor gives benefits over octrees. In fact,
VDB often only needs a 3-4 layers to store a considerable amount of data, due to their large
Branching factor. However, this comes as the cost of memory - each ”node” in VDB has many
children, 64++. With this kind of configuration, if only one child is actually populated, a node
may be extremely memory-wasteful. It is however important to note that in such a situation, the
pointer list would still compress well. This means that the cost would mostly be in RAM after the
file is loaded, not in file size.

The solution probably lies in a compromise. We can take inspiration from VDB, by storing the
first N layers in nodes with many children, and then use octrees to encode additional detail beyond
these many-child nodes. This could give amortized performance similar to that of VDB, with the
added benefit of supporting infinite detail as with normal octrees. Figure 32 illustrates how this
could look.

The actual gain of using a VDB-octree-hybrid would heavily depend on how often the octree part
of the structure is hit, as well as GPU-related issues like branch divergence caused by needing new
logic in order to handle octree traversal in some cases. In addition, it is important to consider that
VDB details like layer count and node size are determined compile-time based on the needs of the
project. Determining this compile-time adds extra branching to the code, which may reduce any
possible gains brought forward by this improvement.

Layer 0

Layer 1

Layer 2

Layer 3 (octree)

Layer 4 (octree)

Figure 32: A possible VDB/octree compromise? Illustration with simplified nodes.

VDB is not a lossy format. It’s main goal was to efficiently store simulation data for production
movies. However, by introducing some of the qualities of VDB into our solution, we believe it may
be possible to gain some additional benefits.

23.3 Our method vs others - encoding efficiency

(Kämpe et al., 2016) is the most similar other method, and is able to present much lower file sizes
than us - why? The only dataset for which they provide number of points, Kinect, has on average
126k points per frame. With this amount of data, they achieve 54.9 mbit/s at 24fps. This is 33%
of the size of our wave dataset, which averages 375k points per frame. At the lowest filesize at
which we can perform DCT without humans noticing any difference, the whole dataset is 50MB.
This is 16 Megabytes per second at 24 FPS, or 128 megabits/s. With 45.9 mbit/s being 42% less
than 128 megabits/s, the fact is that we are actually able to compress more data per second, not
taking into account that we, unlike them, still encode pointers in the file. Our DCT method is
therefore comparable to other state of the art solutions.

23.4 The computational cost

Just like (Kämpe et al., 2016), our method is not fast enough to be used in real-time. In fact, it is
currently quite far from it. The same goes for (Jang et al., 2019). It is important to note that 2d
encoding is also computationally expensive, with hardware encoding often being utilized. Still, the
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amount of nodes we have per layer are nothing compared to the amount of pixels in an image(with
the maximum number of nodes in one frame of the wave dataset being 389660, while a 4k image
has around 8 million pixels - 21 times the amount of color data.

It is clear that the computational cost is still a huge issue and that future work should look
into how this cost can be reduced. From our experience, the biggest bottleneck is memory -
evidenced by the fact that we tried moving our entire encoding pipeline to CUDA with no benefit, as
discussed in Section 16.3.3. This is further evidence that a B+-tree-based compromise as discussed
in Section 23.2 may be a way forward, as it allows us to greatly reduce pointer dereferencing.

23.5 Meta-discussion: The thesis process

In the end, the planned and actual development time ended up being very different. The difference
between Table 4 and Table 3 is large, and it is clear that the project was very big for one person
to work on alone. However, we don’t believe incorrect use of developer methodology was to blame,
meaning we are satisfied with our planning. Even if it took time before we realized we were short
of time, the changes we would have done would have happened during the planning phase of the
project, before a line of code was written. Had we done this again we would have relied more on
earlier work and reduced the scope of the project to a simpler one.

The biggest take-away from this project as a developer has been to play it safe, understand your
limits, and stand on the shoulder of giants as much as you can.

24 Conclusion

In this thesis, we have demonstrated a working system for performing lossy octree compression in
two distinct manners. We have also performed experiments on octree data output from encodings
made using these techniques. We believe the use of DCT for compression of color in octree videos,
and substitution of trees in a lossy manner using a similarity function novel, and consider these
our contribution to the scientific literature. This includes the implementation details, and the
experience we gained and documented in this thesis. The tools developed for this thesis, as well as
tools written earlier in order to support the thesis, are available at https://github.com/petterroea/
Octree-suite

We have also contributed a simple tool, for performing subjective experiments with videos over
the internet. Its source code can be fetched from https://github.com/petterroea/videotest

While there were many deviations from the development plan, both in terms of time schedule and
in features implemented, we find these to be acceptable and consider the end-result satisfactory.
There are things that could have been done differently, and we have learned from this. Our method
is not perfect and can for example not be used to perform live encoding of 3d video. However,
when comparing with similar solutions, we conclude that we have contributed novel methods that
are feasible and deserve further research.

We also contributed three major items which we suggest could be further investigated:

• Using DCT in SVOs

• Tree substitution using better comparison methods.

• Octree-b+tree hybrids.

25 Future works

As mentioned in Section 23.2, we believe investigating a OpenVDB-inspired B+-tree Octree hybrid
may be worthwhile. There are many downsides to using octrees that can be mitigated by using

48

https://github.com/petterroea/Octree-suite
https://github.com/petterroea/Octree-suite
https://github.com/petterroea/videotest


the best of both worlds.

In addition to this, we believe we have shown that our implemented systems are of such merit
that they are worthy of being worked on further. We have shown that we can use DCT to greatly
compress the size of our color data without affecting the apparent quality. Further improving how
DCT is applied to SVOs could lead to even better results.

Tree substitution is also an interesting path go to down. Even if it did not give as good results as
we expected, we believe there are many possible improvements that can be made by investigating
novel ways of comparing the volume and color of SVOs.
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Glossary

AR Augmented reality - technology that aims to augment the real life environment around you
by superimposing extra information. i, 2, 3

ArUco Printable black-and-white markers. This allows software to understand where a camera
is in a room, relative to the marker.. 15

Branching factor The number of children a node has. In the context of volumetric formats, a
lower branching factor means needing to traverse more nodes to access the same information
in a given spatial resolution.. 47

CUDA SDK for writing software that runs in parallel on NViDIA GPUs. 15, 16, 23

DAG Directed Acyclic graph - a graph where the relationship between nodes has a direction and
there are no cycles. 4

DCT Discrete Cosine Transform - a lossy compression technique that decomposes a signal into
cosine waves of different frequencies and amplitudes. i, ii, v, viii, 4, 5, 17, 21, 22, 24, 25, 33,
46–49

Depth camera A special type of camera which uses various techniques is able to capture the
depth of what is in front of it as a 2d height map.. 15

Euclidean The ”normal” coordinate space we are used to, where the distance between two points
on the same axis is always uniform. 23

PLY File format for 3d data(including pointclouds) with large adoption. 15

Pointcloud A data structure which encodes points in a 3d-space. Usually points with RGB data
attached, gathered from depth+RGB sensors.. 9, 14, 15

Raymarcher Rendering software using the Raymarching technique. 16, 46

Raymarching A rendering technique that simulates rays coming out of the camera, slowly moving
the ray forward until it hits something. 15, 16, 52

RGB A color space often used general purpose applications. Represents color on three axes, each
axis referring to of the three primary colors the human vision system is able to distinguish..
24

Signed distance field A mathematical way of representing geometry as a continuous function
where the output value is how a given coordinate is from the closest object.. 46

SVO Sparse voxel octree. 3–5, 15, 17, 18, 42, 46, 48, 49

UNIX Family of operating systems. Linux is a UNIX-compatible operating system. 15

VR Virtual Reality - technology that aims to replace the real life environment around you. i, 2,
3

YUV A color space in which color is represented by three axis, one correlating two lightness and
the other two correlating to some mix of red, green, and blue. 24, 33
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Appendix

A Octree similarity algorithm

A.1 Similarity

// **Structural** octree similarity

template <typename T>

__host__ __device__ float layeredOctreeSimilarity(layer_ptr_type lhs,

layer_ptr_type rhs, int layer, T* container) {↪→

if(layer == OCTREE_MAX_DEPTH) {

#ifdef __CUDA_ARCH__

return 0.0f;

#else

throw "Octree is too deep";

#endif

}

auto lhs_node = container->getNode(layer, lhs);

auto rhs_node = container->getNode(layer, rhs);

int lhs_children = lhs_node->getChildCount();

int rhs_children = rhs_node->getChildCount();

if(!lhs_children && !rhs_children) {

// Both leaf nodes? 100% similar

return 1.0f;

} else if(lhs_children && !rhs_children) {

// rhs has no children, meaning it's a leaf node.

// The more space lhs occupies, the more similar the nodes are

return layeredOctreeFillRate(lhs, layer, container);

} else if(!lhs_children && rhs_children) {

// Same as above but opposite

return layeredOctreeFillRate(rhs, layer, container);

}

// Both nodes are populated - calculate similarity of the children

float sum = 0.0f;

for(int i = 0; i < 8; i++) {

auto lhs_child = lhs_node->getChildByIdx(i);

auto rhs_child = rhs_node->getChildByIdx(i);

if(lhs_child == NO_NODE && rhs_child == NO_NODE) {

// Both child spots are empty, 100% similar

sum += 1.0f;

} else if(lhs_child != NO_NODE && rhs_child != NO_NODE) {

// Both child spots are occupied, get their similarity

sum += layeredOctreeSimilarity<T>(lhs_child, rhs_child, layer+1,

container);↪→

} else if(lhs_child != NO_NODE && rhs_child == NO_NODE) {

// lhs child is occupied, rhs child is empty. They are 100% similar

if lhs is empty↪→

sum += 1.0f - layeredOctreeFillRate<T>(lhs_child, layer+1,

container);↪→

} else { //lhs_child == NO_NODE && rhs_child != NO_NODE

// Only rhs child is occupied, fill rate is inverse of lhs fill rate

sum += 1.0f - layeredOctreeFillRate<T>(rhs_child, layer+1,

container);↪→

}

}
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return sum / 8.0f;

}

A.2 Fillrate

template <typename T>

__host__ __device__ float layeredOctreeFillRate(layer_ptr_type tree, int layer,

T* container) {↪→

if(layer == OCTREE_MAX_DEPTH) {

#ifdef __CUDA_ARCH__

return 0.0f;

#else

throw "Octree is too deep";

#endif

}

auto tree_node = container->getNode(layer, tree);

// No children? Leaf node - 100% fill

if(!tree_node->getChildCount()) {

return 1.0f;

}

/*if(

lhs->getLeafFlags() == rhs->getLeafFlags() &&

lhs->getChildFlags() == rhs->getChildFlags() &&

lhs->getLeafFlags() ^ lhs->getChildFlags() == 0) {

return 1.0f;

} */

auto childFlags = tree_node->getChildFlags();

auto leafFlags = tree_node->getLeafFlags();

//All children are leafs? Use bit magic instead

if( leafFlags == childFlags ) {

// How many % of the children are filled?

return (static_cast<float>(popcount(childFlags)) / 8.0f);

}

// Not all children are leafs, we need to recurse

float sum = 0.0f;

// Add all leafs to the sum

sum += static_cast<float>(popcount(leafFlags));

#pragma GCC unroll 8

for(int i = 0; i < OCTREE_SIZE; i++) {

// Recurse all children that aren't leafs

if(((childFlags ^ leafFlags) >> i) & 1) {

sum += layeredOctreeFillRate<T>(tree_node->getChildByIdx(i), layer+1,

container);↪→

}

}

return sum / 8.0f;

}
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B Subjective assessment data

B.1 DCT test materials

This appendix presents information given to the user as part of the subjective assessments per-
formed in this thesis.
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This experiment aims to measure how humans perceive output from a novel 3d
video system looks. The goal is to measure how much we can compress a file
without a noticable degradation in perceived quality.

Please read the entire document before proceeding.

What is compression?
Compression is how we save space when storing or transferring media. There are
two types of compression: Lossy and lossless. Lossless compression lets you make
data smaller withut losing any information. You may have used this yourself
using the .zip file format.

Lossy compression works by throwing away information we think you won’t notice
is missing. For example, .jpeg files as well as most video files are compressed in
a lossy manner. You may have experienced lossy compression through services
like Netflix and YouTube.

The following image is compressed with relatively little information being thrown
away:

(credit https://unsplash.com/photos/ iMdsjoif tZo)

The next image is compressed with most of the information thrown away. Note
that while the file size is almost 10 times smaller than the original, you can still
make out the subject of the image:

The easiest way to see lossy compression in action is to look up videos where
confetti or similar effects are used, as they are notoriously difficult to compress
in a lossy manner.

How the experiment works
You will be shown video files and asked to rate them on a scale from 1-7. On
this scale, 1 means “It looks completely compressed, all detail is gone”, and 7
means “It doesn’t look like it was compressed at all.”. For each video, use your
gut feeling to decide how much you think the video is compressed.

Before the experiment starts, you will be shown 2 videos to “train” you on how
the source material is supposed to look with no compression.

This experiment takes around 5 minutes.

There is no right or wrong answer - the experiment aims to learn
about how you as a human perceive our data

Please note that you will download around 100MB of data by running
this experiment - it may not be a good idea to partake from a cellular
connection. Connecting to a WiFi network or an Ethernet cable is
recommended.
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B.2 Subtree substitution materials

C Subjective experiment configuration

This appendix presents the manifest files used to set up the two subjective experiments we ran.

C.1 Subjective test 1: DCT

{

"title": "DCT test",

"author": "Liam S. Crouch",

"contact": "me@petterroea.com",

"explanation": "lobby.md",

"range": {

"max_range": 7,

"min_label": "All detail is gone",

"max_label": "No noticeable loss of detail"

},

"min_screen_size": 1300,

"training": [

{

"title": "0% compression",

"description": "This video file is not compressed at all",

"file": "videos/1_1.mp4"

},

{

"title": "100% compression",

"description": "This video file is compressed to the maximum possible

extent",↪→

"file": "videos/128_128.mp4"

}

],

"files": [

"videos/1_1.mp4",

"videos/128_128.mp4",

"videos/128_64.mp4",

"videos/128_16.mp4",

"videos/128_8.mp4",

"videos/64_64.mp4",

"videos/64_32.mp4",

"videos/64_8.mp4",

"videos/32_64.mp4",

"videos/16_128.mp4",

"videos/32_16.mp4",

"videos/8_128.mp4",

"videos/32_8.mp4",

"videos/1_128.mp4",

"videos/2_128.mp4",

"videos/8_64.mp4",

"videos/4_64.mp4",

"videos/8_32.mp4",

"videos/16_8.mp4",

"videos/4_32.mp4",

"videos/8_16.mp4",

"videos/1_32.mp4",

"videos/4_16.mp4",
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"videos/2_16.mp4",

"videos/4_8.mp4",

"videos/4_4.mp4",

"videos/4_1.mp4",

"videos/2_4.mp4",

"videos/1_4.mp4"

]

}

C.2 Subjective test 2: Tree substitution

{

"title": "Tree substitution test",

"author": "Liam S. Crouch",

"contact": "me@petterroea.com",

"explanation": "lobby.md",

"range": {

"max_range": 7,

"min_label": "Complete loss of quality",

"max_label": "No apparent change in quality"

},

"min_screen_size": 1300,

"training": [

{

"title": "0% compression",

"description": "This video is not modified at all",

"file": "videos/c0.1_n0.995.mp4"

},

{

"title": "100% compression",

"description": "This is the most modification you can expect",

"file": "videos/c0.02_n0.9.mp4"

}

],

"files": [

"videos/c0.03_n0.95.mp4",

"videos/c0.05_n0.95.mp4",

"videos/c0.02_n0.9.mp4",

"videos/c0.09_n0.95.mp4",

"videos/c0.01_n0.99.mp4",

"videos/c0.1_n0.995.mp4"

]

}

D Use of Open Source Libraries

The following Open Source libraries were used in this project. We would like to thank their authors
for their contribution to the open-source community, which has been of great use to us.

• OpenCV

• libRealsense2

• ImGUI

• glm
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• stb

• rapidjson

• SDL2

• GLEW

• zlib

• libstdc++
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