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Uncertainty is the only certainty there is,
and knowing how to live with insecurity is
the only security.

John Allen Paulos



PREFACE

The following paper represents the culmination of research conducted during the
spring of 2023 for the master thesis TMM4935 - Industrial ICT, related to the
Engineering and ICT study program within the Department of Mechanical and
Industrial Engineering at the Norwegian University of Science and Technology
(NTNU). The initial project description was outlined by DNV, through the co-
supervisor Andreas Hafver, and subsequently refined in collaboration with my
supervisor, Professor Shen Yin, in order to suit my specific interests and desires
for the project.

The thesis is constructed upon a theoretical foundation acquired through the
course of five years of studies, and, as such, assumes a certain level of prior know-
ledge on the part of the reader, specifically in terms of mathematical and statistical
concepts, as well as the workings of neural networks and deep learning models in
general. Ergo, the intended target group can be viewed as any student or indi-
vidual with some relevant scientific or academic interest and background.

Thomas Lunde Fosen Trondheim 28/05/2023
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ABSTRACT

Contemporary advances in machine learning and artificial intelligence have em-
phasized the need for reliable and e�cient safety routines when implementing
any such system into real-world applications, as the harm caused by erroneous
predictions and inferences could have severe negative consequences. Therefore,
for any autonomous system based on a deep learning framework to be viable it
must incorporate some notion of confidence or uncertainty in terms of its predic-
tions and decisions. Traditional approaches in deep learning have generally lacked
this ability, which has necessitated the development of specialized methodologies
and techniques explicitly designed to address and mitigate this deficiency. These
concerns introduce the field of uncertainty quantification, which serves as the the-
oretical foundation of this study.

The primary objective of this thesis is to familiarize the reader with uncer-
tainty quantification in deep learning, by presenting fundamental theoretical con-
cepts and challenges, alongside the state-of-the-art of current methodology and
techniques within the field. The thesis o�ers a combination of theoretical under-
standing and practical insights through implementation of methods, investigating
how the theoretical concepts relate to real-world application. Additionally, recom-
mendations and guidelines are presented, to o�er readers general guidance. By
providing a comprehensive overview of the field, the thesis aims to equip research-
ers, practitioners, and decision-makers with the knowledge and tools necessary to
enhance the robustness, trustworthiness, and safety of machine learning systems
in real-world applications.

The key findings of the study suggest that using Deep Ensembles with five
members is a sensible starting point when quantifying uncertainty in deep learn-
ing. However, in scenarios involving transfer learning or concerns regarding the
infrastructure load of hosting multiple models, an alternative approach is to em-
ploy Monte Carlo Dropout with a range of 30 to 100 stochastic forward passes
through the network. Additionally, Temperature Scaling is recommended as a
post-hoc technique to calibrate predictive probabilities in classification models.
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SAMMENDRAG

Moderne fremskritt innen maskinlæring og kunstig intelligens har understreket
behovet for pålitelige og e�ektive sikkerhetsrutiner knyttet til implementeringen
av slike systemer i virkelighetsnære applikasjoner, da skade forårsaket av feilaktige
prediksjoner og slutninger kan ha alvorlige negative konsekvenser. På bakgrunn
av dette må ethvert autonomt system basert på dyp læring inkorporere en form for
tillit eller usikkerhet når det gjelder prediksjoner og beslutninger for å være leve-
dyktig. Tradisjonelle tilnærminger innen dyp læring har manglet evnen til å fange
opp og representere usikkerheten knyttet til deres slutninger på en e�ektiv måte,
noe som har nødvendiggjort utviklingen av spesialiserte metoder og teknikker som
er designet for å håndtere og motvirke denne mangelen. Disse bekymringene gir
opphav til feltet usikkerhetskvantisering, som utgjør det teoretiske grunnlaget for
denne avhandlingen.

Det primære målet med oppgaven er å gjøre leseren kjent med usikkerhetsk-
vantisering i dyp læring, ved å presentere grunnleggende teoretiske prinsipper og
utfordringer, i tillegg til eksisterende metodikker og teknikker innen feltet. Opp-
gaven tilbyr en kombinasjon av teoretisk forståelse og praktiske innsikter gjennom
implementering av metoder, for å undersøke hvordan de teoretiske konseptene re-
laterer seg til virkelighetsnær anvendelse. I tillegg vil anbefalinger og retningslin-
jer blir presentert for å gi leserne generell veiledning. Ved å gi en omfattende
oversikt over feltet har oppgaven som mål å utruste forskere, praktikere og be-
slutningstakere med kunnskapen og verktøyene som er nødvendige for å styrke
robustheten, påliteligheten og sikkerheten til maskinlæringsstystemer i praktiske
applikasjoner.

De viktigste funnene i studien antyder at bruk av Deep Ensembles med fem
medlemmer er et fornuftig utgangspunkt når man kvantifiserer usikkerhet i dyp
læring. I scenarier som involverer overføringslæring eller bekymringer knyttet til
infrastrukturell belastning ved hosting av flere modeller derimot, er en alternativ
tilnærming å benytte seg av Monte Carlo Dropout med et spekter på 30 til 100
stokastiske gjennomkjøringer gjennom nettverket. I tillegg anbefales Temperat-
ure Scaling som en post-hoc teknikk for å kalibrere prediksjonssannsynligheter for
klassifiseringsmodeller.

iv
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CHAPTER

ONE

INTRODUCTION

1.1 Background and Motivation
Novel advancements within machine learning has led to a widespread integra-
tion of AI-systems into modern society, demonstrating remarkable performance
in tasks ranging from image recognition, natural language processing and med-
ical diagnosis. Subsequently, a demand for reliable and e�cient safety-routines
surrounding the use of these systems has arisen, emphasizing the importance of
capturing and accurately portraying the uncertainty related to any generated de-
cision. Therefore, an important prerequisite for any such system to be viable is an
inherent awareness regarding the uncertainty of the inferences they produce, as
the harm caused by potential errors could have dire consequences. Machine learn-
ing models inevitably encounter uncertainty, either stemming from the inherent
uncertainty of the physical phenomena they are interacting with, or due to poten-
tially amendable factors such as lack of data, outliers or model deficiencies. With
these concerns in mind the field of uncertainty quantification (UQ) is introduced,
as the fundamental basis of this thesis.

Formally stated, uncertainty quantification may be formalized as "the process
of quantifying uncertainties associated with model calculations of true, physical
quantities of interest, with the goal of accounting for all the relevant sources of
uncertainty and quantifying the contributions of specific sources to the overall un-
certainty" (Council 2012). As a consequence of the aforementioned safety concerns
a growing interest in the field of UQ has been sparked, stemming from a desire
to enhance the reliability of artificial models, ultimately facilitating the practical
implementation of these systems in real-world applications.

The need for uncertainty-awareness in AI-enabled decision-making becomes es-
pecially evident in safety-critical applications, such as autonomous driving, med-
ical diagnosis, finance and various socio-technical systems, where potential errors
could have severe negative consequences (Varshney and Alemzadeh 2017). Ac-
curately quantifying the associated uncertainty of an inference allows for caution
to be applied, in terms of human intervention, re-evaluation, rejection, safety-
thresholds, or other specific countermeasures. Essentially, the main goal is to
avoid situations and scenarios in which the artificial model is confidently wrong,

1



2 CHAPTER 1. INTRODUCTION

meaning, the actual inference is faulty, even though the model is certain that it is
correct.

Traditional deep learning classifiers have lacked the ability to accurately por-
tray the uncertainty of their inferences, as the conventional use of the softmax
function in the activation layer of neural networks make them susceptible to pro-
ducing overconfident predictions and deceptive representations. The predictive
probabilities obtained from these classifiers are often erroneously interpreted as
model confidence (Gal 2016), which can lead to misleading judgments, especially
when encountering out-of-distribution (OOD) samples. Due to inherent limita-
tions in the mathematical foundations of the softmax activation function, these
models are prone to being confidently wrong in their decisions, which emphasizes
the need for alternative approaches to amend for these deficiencies.

When quantifying uncertainty in a machine learning framework a core as-
pect and desirable feature is the ability to distinguish and categorize underlying
sources of the arising uncertainty, mainly in terms of so-called epistemic (model)
and aleatoric (data) uncertainty. The nature of the arising uncertainty has dis-
tinct implications in terms of counteracting and engineering an accurate response,
which makes the ability to accurately identify the source valuable. This relates
directly to another key feature, namely detecting whether a data sample does not
belong to the previously observed data distribution, otherwise known as out-of-
distribution samples, as systems operating in real-world applications are prone to
being exposed to shifts in the data distribution.

Traditional approaches for quantifying uncertainty often rely on statistical
methods, specifically Bayesian models that involve learning a statistical distri-
bution over model weights. The computational complexity of these approaches
can be prohibiting, however, especially when dealing with complex models and
data. To address these challenges and explore alternative means of modeling un-
certainty, researchers have proposed various alternative avenues of research. These
novel approaches aim to broaden the range of techniques available for uncertainty
quantification and overcome the computational limitations associated with tradi-
tional methods. By investigating alternative modeling strategies, the goal is to
enhance the accuracy, e�ciency, and scalability of uncertainty quantification, in
diverse applications within the field of deep learning.

1.2 Project Description
The main purpose of the thesis is to serve as a valuable resource for both aca-
demic and industrial pursuits in the field of uncertainty quantification in deep
learning. The primary objective is to provide a comprehensive overview of the
necessary theoretical foundations and existing methods, presenting the state-of-
the-art as described in contemporary literature. Furthermore, the thesis includes a
series of experiments conducted on benchmark datasets to investigate and explore
the practical implementation of these methods. By o�ering this combination of
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theoretical understanding and practical insights, the thesis aims to introduce the
reader to available methodologies and frameworks while providing guidance for
their application. Additionally, the thesis aims to identify and highlight potential
limitations and future research directions within the field, equipping the reader
with the knowledge needed to address these challenges.

The thesis is primarily focused on the engineering and technical aspects related
to the field, as opposed to the ethical, social and safety related concerns surround-
ing the use of AI-systems. Instead, it centers on higher-order theoretical concepts,
including some that may be considered esoteric. Therefore, a certain level of prior
knowledge is assumed on the part of the reader, particularly in mathematical and
statistical foundations, as well as a general understanding of neural networks. The
thesis aims to provide a deep exploration of these concepts, catering to readers
who possess the necessary background to engage with the intricate technical as-
pects of uncertainty quantification in deep learning.

1.2.1 Objectives
The thesis can be divided into three distinct sub-objectives, each contributing to
its overall objective. These sub-objectives can be explicitly stated as follows:

1. The first sub-objective is to provide a comprehensive introduction to the
field of uncertainty quantification. This involves exploring and presenting
the necessary theoretical foundations, ensuring the reader develops a strong
understanding of the fundamental concepts.

2. The second sub-objective is to present specific methods from the existing
literature, aiming to provide the reader with an overview of available meth-
odologies, enabling them to navigate the field e�ectively. Additionally, this
exploration will help identify potential gaps and challenges that can guide
future research endeavors.

3. The third sub-objective involves conducting experiments on benchmark data-
sets, aiming to bridge the gap between theoretical foundations and practical
implementation. By investigating the practical implications of the theoret-
ical concepts, the thesis aims to enhance the reader’s understanding of how
uncertainty quantification methods operate in practical settings. The spe-
cifics of the experiments are introduced in Section 4

By achieving these three sub-objectives, the thesis aims to fulfill its broader ob-
jective of providing a thorough understanding of uncertainty quantification in deep
learning, equipping the reader with theoretical knowledge, practical guidelines,
and the ability to partake and contribute to this evolving field. Two things to
note is that throughout the course of the thesis, the terms artificial intelligence,
machine learning and deep learning will be used somewhat interchangeably de-
pending on the context, essentially referring to the same concept, with a varying
degree of generality. Also, in terms of the scope, the thesis is mainly concerned
with classifiers, where as regression models will be included whenever suitable and
relevant.
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1.3 Related Work
A continually expanding body of literature exists following the recent surge in
development and relevancy of AI-systems. Recognizing and acknowledging the pi-
oneering authors is essential, however, as their breakthroughs have laid the ground-
work and paved the way for subsequent and future innovations. The following sec-
tion aims to provide a concise overview of the primary authors and their impact
and contributions to the broader field, while a comprehensive review and discus-
sion surrounding their work will be presented in subsequent sections. Otherwise,
supplementary literature and sources will be explicitly referenced when deemed
fit, to maintain the integrity of the presented material. Furthermore, parts of the
thesis extend upon the corresponding specialization project conducted during the
autumn of 2022 for the course TPK4550 - Reliability, Availability, Maintainability
and Safety at the RAMS department of NTNU. Consequently, although all ma-
terial has been revised, certain sections might appear overlapping or inspired by
the specialization report. In these parts, the initial authors are fully acknowledged
and credited for their contributions.

Gal and Ghahramani (2016) first introduced Monte Carlo Dropout as a means
of quantifying uncertainty in deep learning models, which has since gained signi-
ficant recognition in the field. Building upon this foundation, Lakshminarayanan,
Pritzel and Blundell (2016) extended the same theoretical concept to ensemble
methods, resulting in the development of Deep Ensembles. These two methodolo-
gies have established themselves as reliable and e�cient approaches, forming the
basis of the practical work undertaken in this thesis. In a somewhat distinct dir-
ection from the underlying principles of the previously mentioned methods, two
novel approaches were introduced for approximating uncertainty in neural net-
works. The first framework, known as Prior Networks, was proposed by Malinin
and Gales (2018), while another framework built on similar foundations, called
Evidential Deep Learning, was proposed by Sensoy, Kaplan and Kandemir (2018)
and Amini et al. (2019). Numerous avenues and fields of research explore new
methods for uncertainty quantification, however, given the scope of the thesis,
these two approaches were selected as alternative approaches to the previously
recognized methods.

In addition to the aforementioned methods that explicitly quantify uncertainty,
another approach known as Temperature Scaling is included. The method is pro-
posed by Guo et al. (2017), and focuses on calibrating the generated predictions of
a classification model. While its intended functionality di�ers from the previously
discussed methods, it is considered a valuable supplement for any classification
model involved in prediction generation. Therefore, the method is included as a
useful addition to the repertoire of uncertainty quantification techniques.



1.4. THESIS STRUCTURE 5

1.4 Thesis Structure
The thesis follows a structured framework outlined as follows:

Section 1 introduces the background and motivation for the thesis, and specifies the
project description.

Section 2 provides a thorough presentation of the necessary theoretical prerequisites
and foundations of uncertainty quantification within deep learning, and aims
to establish the required background knowledge.

Section 3 explores existing methods from the literature, thus providing an overview of
various methodologies employed in uncertainty quantification.

Section 4 focuses on practical experiments conducted to investigate and validate some
of the presented methods. The results obtained from these experiments are
analyzed and discussed.

Section 5 provides a comprehensive discussion of the findings, highlighting the implic-
ations, limitations, and potential future directions in uncertainty quantific-
ation research.

Section 6 concludes the thesis by summarizing the key findings and contributions.
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CHAPTER

TWO

THEORY

The upcoming section aims to introduce and review the underlying theoretical
principles of uncertainty quantification in deep learning, serving as a conceptual
foundation for the corresponding methodology. As mentioned, although an in-
troduction to certain basic concepts will be provided, several of the concepts are
potentially esoteric, and, as such, some prior knowledge is assumed on the part of
the reader, specifically in terms of mathematical and statistical concepts, as well
as the basics of deep learning and neural networks.

2.1 Uncertainty Quantification
An important prerequisite for any viable machine learning system intended to
make decisions based on real-world phenomena is a trustworthy representation of
the uncertainty and confidence of a generated inference. As such, reliable meth-
ods and systems for accurately capturing and portraying these uncertainties are
necessary, based on the underlying theoretical field of uncertainty quantification,
which will be introduced in this section.

In addition to safety-critical concerns, it is worth mentioning that quantifica-
tion of uncertainty also has other fields of application within deep learning, related
to optimization in active learning (Aggarwal et al. 2014; Nguyen, Destercke and
Hüllermeier 2019), and within certain specific learning algorithms, such as decision
trees (Tom Michael Mitchell 2002).

Generally, the main sources of uncertainty in machine learning modeling in-
clude, but are not limited to (Gal 2016);

i) Out-of-distribution samples - OOD samples refer to data points that do
not belong to the initially observed and modeled data distribution. This
generally renders the model unable to accurately classify and recognize the
sample, unless the model has been explicitly designed to include features
that can capture these shifts in the data distribution.

ii) Data noise - The observable data might contain inherent noise or inac-
curacies, which is traditionally referred to as aleatoric uncertainty.

7



8 CHAPTER 2. THEORY

iii) Uncertainty related to model parameters and structure - Uncertainty related
to the choice of model structure and corresponding parameters that most
accurately portrays the data can arise, as oftentimes there exists a wide
range of potential models that fit the data. Also, scarcity of available data
points contribute to this uncertainty. This makes up what is referred to as
epistemic uncertainty.

Traditionally, methods for capturing uncertainty in machine learning models
have yet to be concerned with distinguishing between the underlying sources of the
arising uncertainty. In recent years, however, e�orts have been made in order to
explore the utility and viability of developing means of distinguishing the sources,
especially in terms of aleatoric and epistemic uncertainty, as this would enable de-
velopers to more accurately produce adequate countermeasures for handling the
uncertainty (Hüllermeier and Waegeman 2021).

On the basis of these descriptions, an introduction to aleatoric and epistemic
uncertainty is necessary, as these sources constitute the majority of the uncer-
tainty related to machine learning models and play a large role in many of the
contemporary advances within the field.

2.1.1 Aleatoric versus Epistemic Uncertainty
A crucial distinction to make when evaluating uncertainty is whether the under-
lying source is of aleatoric or epistemic nature, as this allows for accurately imple-
menting specific countermeasures (Hüllermeier and Waegeman 2021). Aleatoric
uncertainty, often called data uncertainty, generally stems from the inherent uncer-
tainty of studied phenomena, characterized by being irreducible. The uncertainty
being irreducible means that no additional information exists, and no possible
improvements to the developed model can be made, to account for and reduce
the uncertainty. A textbook example of aleatoric uncertainty is that of a coin-
toss. The non-deterministic nature of this phenomenon excludes the possibility
of producing and gaining further insight into the event’s outcome, thus deeming
the uncertainty irreducible. Generally, this underlying source of uncertainty is en-
countered in terms of noisy, imprecise or low-resolution data.

In addition to this categorization a further distinction can be made between
homoscedastic and heteroscedastic aleatoric uncertainty, usually described as con-
stant and variable data uncertainty, respectively. The key distinction between
the two is that homoscedastic uncertainty is invariant to input samples, meaning
the uncertainty is constant across the entire observation space and noise does not
vary across inputs. This representation is rarely accurate when operating with
real-world phenomena and related data spaces, however, making it less useful for
a viable implementation.

Heteroscedastic uncertainty, on the other hand, refers to scenarios in which the
inherent randomness of data is a function of the data itself, meaning the level of
observational noise varies across the data distribution (Davis, Zhu and Oldfather
2020). The observed noise across a data space relating to real-world phenomena
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tends to vary, which makes the heteroscedastic representation of uncertainty better
suited for describing and handling these processes. Illustrations of the aforemen-
tioned sources of uncertainty are presented by Gal (2015), in Figure 2.1.1.

(a) Heteroscedastic Uncer-
tainty

(b) Low Homoscedastic Un-
certainty

(c) High Homoscedastic Un-
certainty

Figure 2.1.1: Observational noise visualized through three di�erent uncertainty
representations, presented by Gal (2015). In (a) the data uncertainty, represented
by the blue shadings, varies across the input space. Specifically, the uncertainty is
high in areas containing few data samples, whereas in areas containing many data
samples, the uncertainty is low. This is generally the most accurate and desired
portrayal of a system modeling real-world phenomena, referred to as heterosce-
dastic uncertainty. The uncertainty in (b) and (c), on the other hand, does not
vary but is constant across the input space and has a constant, finite, variance.
It is evident from these models that they do not accurately reflect data noise,
outliers, and lack of data, making this representation less viable as a method for
describing physical phenomena. This is referred to as homoscedastic uncertainty.

In contrast to aleatoric uncertainty, epistemic, or knowledge uncertainty, refers
to uncertainty that stems from a lack of information and insu�cient knowledge.
Due to this fact, this uncertainty is reducible, as it can in principle be reduced by
additional knowledge, improving the model’s ignorance and inaccuracy. Generally,
lack of training data is a major source of epistemic uncertainty, one example being
the under-representation of racial minorities in a facial recognition dataset, or the
absence of rare words in a language representation model. In this scenario, coun-
termeasures to improve and reduce the arising uncertainty can be made, which
makes the distinction and classification of the uncertainty useful. A visualization
of aleatoric and epistemic uncertainty in a linear process is illustrated in Figure
2.1.2.



10 CHAPTER 2. THEORY

Figure 2.1.2: Visualization of aleatoric and epistemic uncertainty in a linear
process. In the areas where the model lacks data points, epistemic uncertainty
arises, as the model does not contain su�cient information to produce reliable
and confident inferences. In the areas containing enough data, however, the un-
certainty arises from the inherent variance of the data itself, as distinguished in
the left and right cluster of data points in the linear process.

Identifying the underlying sources of uncertainty as either aleatoric or epistemic
entails identifying whether the uncertainty is reducible or not, allowing for poten-
tial specific countermeasures to be implemented. As of yet, traditional machine
learning methods have not been equipped to explicitly capture this distinction,
or any measure of uncertainty to a great extent, as they are mostly based on
purely statistical approaches. However, as machine learning and artificial models
are becoming more and more extensive and prevalent in modern technology, the
need for novel approaches for capturing uncertainty and accurately identifying the
underlying sources has arisen. Kendall and Gal (2017) show that capturing and
identifying epistemic and heteroscedastic aleatoric uncertainties independently has
a positive impact on the predictive performance of models, and that combining
the two improves the performance even further.

The team presented further insight, namely that modeling aleatoric uncertainty
is highly advantageous for real-time applications and when large amounts of data
are available. For safety-critical applications and when there is a general lack
of data, they concluded that modeling epistemic uncertainty is vital, especially
if the model needs to be aware of potential out-of-distribution samples. The
team produced state-of-the-art performance on benchmark tasks within semantic
segmentation and depth regression, by realizing that the two sources of uncertainty
are not mutually exclusive, but can be combined, thus proving the viability and
utility of capturing the aforementioned sources of uncertainty.
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2.1.2 Mathematical Representations
To accurately model uncertainty in a desired deep learning framework, a math-
ematical representation of the relevant concepts is useful, as a guideline, in ad-
dition to providing a theoretical foundation. Such a representation is presented
by Hüllermeier and Waegeman (2021) in combination with Abdar et al. (2021),
whose formulations will be introduced in this section.

As a starting point, the total predictive uncertainty is presented as a baseline
for further derivations, as the sum of aleatoric and epistemic uncertainty, yielding

PU¸˚˙˝
P redictive

= AU¸˚˙˝
Aleatoric

+ EU¸˚˙˝
Epistemic

(2.1)

Considering a set of training data D := {(x1, y1), . . . , (xN , yN)} µ X ◊ Y for
an instance space X and a set Y comprised of potential outcomes associated to an
instance, the non-deterministic dependency between the two produces the condi-
tional probability distribution on Y , as stated in Equation (2.2). The dependency
is described through new instances, xi, in the instance space.

p(y|xi) = p(xi|y)
p(xi)

(2.2)

The conditional probability distribution on Y , referred to as the predictive
posterior distribution within Bayesian inference, holds the property that in terms
of aleatoric uncertainty, even given complete information regarding the density p,
uncertainty related to the outcome of y remains, as it does not uniquely identify
a single outcome of y.

Generally, assuming a hypothesis space H, a learner is concerned with generat-
ing a hypothesis h

ú
œ H that minimizes the expected loss, given the loss function

¸ : Y ◊ Y æ R, where the generated hypotheses are mappings between the in-
stances and outcomes, namely h : X æ Y . To minimize the expected loss, the
point-wise Bayes predictor, as given in Equation (2.3), provides the most accurate
predictions.

f
ú(x) := argmin

ŷœY

⁄

Y
¸(y, ŷ) dP (y|x) (2.3)

The deviation between the point-wise Bayes predictor and the true risk minim-
izer, as stated in Equation (2.4), is directly correlated to the epistemic uncertainty
due to the fact that it represents the correctness of the model and choice of hypo-
thesis space H.

hú := argmin
hœH

R(h) (2.4)

Then, given a training dataset comprised of C classes, as well as a function
y = f

w(x) parameterized by w, the goal is to optimize said parameters, aiming
to fit the function to the desired outputs, where the epistemic uncertainty is then
represented as the probability distribution over these parameters. Usually, within
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Bayesian statistics, this is done by using the softmax likelihood for classification
tasks, and the Gaussian likelihood for regression tasks (Abdar et al. 2021). These
are formulated in Equations (2.5) and (2.6), respectively.

p(y|X, w) = e
fw

y (X)

�C
i=1e

fw
yi

(X) (2.5)

The softmax likelihood for training data comprised of C classes, model para-
meters w and inputs X is given in Equation (2.5), whereas the Gaussian likelihood
for the same scenario is given in Equation (2.6), where · refers to the model pre-
cision, and I is the identity matrix.

p(y|X, w) = N (y; f
w(x), ·

≠1
I) (2.6)

The aleatoric uncertainty from the model can then be captured by formu-
lating the model precision as a function of the data. Several approaches ex-
ist for capturing the corresponding epistemic uncertainty, one of which being
based on combining two functions, namely the predictive mean, f

◊(x), and the
model precision, g

◊(x). By doing so, the likelihood function can be defined as
yi = N (f ◊(x), g

◊(x)≠1), which can then be combined with the Euclidean distance
loss function, formulated in Equation (2.7), as a means of representing the pre-
dictive variance, as derived in Equation (2.8)

E
W1,W2,b(X, Y ) = 1

2N
�N

i=1 ||yi ≠ ŷ||
2 (2.7)

Equation (2.7) states the Euclidean distance loss function, whereas Equation
(2.8) defines the predictive variance, representing epistemic uncertainty.

ˆV ar[Xú] := 1
T

�T
t=1g

w̃t(X)I+f
w̃t(Xú)T

f
w̃t(Xú)≠Ẽ[yú]T Ẽ[yú] æ

T æŒ
V arqú

◊ (yú|xú)[yú]
(2.8)

Several approaches and methods for representing and capturing the aforemen-
tioned sources of uncertainty exist, with the presented framework being intended
to serve as a basis for gaining insight into the necessary theoretical foundations of
any such approach.

2.1.3 Decomposing Uncertainty in a ML Framework
Based on the presented mathematical foundations, a notational framework for
representing the decomposition of total uncertainty within a machine learning
framework can be introduced. Specifically, a formalization of the terms repres-
enting uncertainty within a Bayesian framework will be presented, as statistical
approaches constitute the foundation of many relevant methodologies within the
field. This formalization is provided by Davis, Zhu and Oldfather (2020).

Generally, Bayesian neural networks (BNN) are concerned with generating a
set of predictions, from which a predictive distribution can be used in order to es-
timate the variance of said distribution over predictions. By use of the total law of
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variance, also known as Eve’s law, the variance of this distribution, which can be
viewed as a measure of the total uncertainty of the model, can be decomposed as
stated in Equation (2.9) (Kendall and Gal 2017). Considering a BNN with random
model parameters ◊, an input sample x with corresponding target variable y, and
the expected value E(), the following describes the relationship between the total
uncertainty, the expected value of a target variable, and its corresponding variance.

V (y|x) = V (E[y|x, ◊])
¸ ˚˙ ˝

f(x,◊)

+E[V (y|x, ◊)]
¸ ˚˙ ˝

‡2(x,◊)

(2.9)

Equation (2.9) describes the relationship between the expected value of a tar-
get variable y and its corresponding variance. The expected value of the target
variable is represented as E[y|x, ◊]), which stems from the definition as defined in
Equation (2.10). The corresponding variance, V (y|x, ◊), is stated as ‡

2(x, ◊), and
defined in Equation (2.11).

f(x, ◊) = E[y|x, ◊] (2.10)

The expected value of a target variable can be estimated by a single forward
pass through the neural network, from which the corresponding variance can also
be obtained.

‡
2(x, ◊) = V (y|x, ◊) (2.11)

Following these properties, the variance related to the BNN’s predicted mean,
V (f(x, ◊)), and the average of the BNN’s predicted variance, E[s2(x, ◊)], constitute
the total uncertainty, as

Total Uncertainty = V (f(x, ◊))
¸ ˚˙ ˝

Epistemic Uncertainty

+ E[‡2(x, ◊)]
¸ ˚˙ ˝

Aleatoric Uncertainty

(2.12)

Based on the aforementioned properties, Kendall and Gal (2017) present a
set through which the total uncertainty of a model can be obtained, stated in
Equation (2.13).

{f(x, ◊t), ‡
2(x, ◊t)}T

t=1 ≥ BNN◊t(x) where ◊t ≥ p(◊|D) (2.13)

This equation formalizes a set comprised of the mean and variance obtained
from a single forward propagation through the network for a fixed input sample
x, repeated T distinct times to generate a set. ◊t refers to the random model
parameters for each distinct forward pass, where ≥ refers to a single simulation
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of the BNN. Then, the epistemic and aleatoric uncertainties can be obtained from
samples of the set, either separately or conjoined, following the property stated in
Equation (2.9).

Though less prevalent in existing methods, these formulations can also be
altered to distinctly capture heteroscedastic aleatoric uncertainty, as formulated
in Equation (2.14), by averaging a sample set of the predictive variance.

‡
2(x) = E◊ ≥ q(◊,D)[‡2(x, ◊)] = 1

T
‡

2(x, ◊t) (2.14)

Once again, the BNN is used to estimate ‡
2(x, ◊). Ideally, if this term tends to-

ward zero, no inherent uncertainty exists. As homoscedastic aleatoric uncertainty
generally fails to accurately portray any real-world phenomena, formulations re-
garding this source is deemed unnecessary to introduce.
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2.2 Theoretical Prerequisites
In addition to the presented theory regarding uncertainty quantification, some
theoretical prerequisites are necessary to fully comprehend the methodologies and
discussions to be further presented. The following section is intended to provide
the reader with an introduction and overview of these concepts.

2.2.1 Dropout
As dropout constitutes the theoretical foundation of one of the major contempor-
ary methods within the field, namely Monte Carlo Dropout, a brief introduction
to the theoretical underpinnings of this feature should be presented in order to
provide a thorough understanding of the mechanism of the method.

Initially, dropout was introduced by Srivastava et al. (2014) as a means of
preventing overfitting in complex deep neural networks, by randomly dropping
certain neurons and corresponding connections from the network during train-
ing, essentially preventing neurons from co-adapting too much, ensuring that the
model does not become overly dependent on the training data. Overfitting refers
to scenarios where a machine learning model erroneously learns the noise and
specificities of a dataset, instead of generalizing to the underlying patterns and
relationships describing said data. In layman’s terms, this means that the model
learns to merely recognize the specific data samples contained in the dataset, as
opposed to learning the features that describe said samples, in order to be able
to recognize future, unseen samples of a similar class. As opposed to this, under-
fitting refers to scenarios in which the model is not able to learn the descriptive
features of the given data.

An illustration of overfitting and underfitting is presented in Figure 2.2.1. By
looking at a collection of data samples, represented in the graphs by blue dots,
the estimated regression function of the machine learning model, presented as the
light blue line, either becomes too heavily dependent on the specific samples, as is
evident in 2.2.1c, or fails to learn any features from the data, as shown in 2.2.1a.
Overfitting could occur due to a number of reasons, with the most common being
an insu�cient amount of training data, or excessive training of the model.



16 CHAPTER 2. THEORY

(a) Underfitting (b) Well calibrated fit (c) Overfitting

Figure 2.2.1: Graphs visualizing overfitting and underfitting. The graphs show
the estimated regression function of a machine leaning model, in light blue, and
the ideal function describing the data samples, as the dotted line. (a) presents a
scenario where the model is unable to learn any features from the data samples,
and merely describes the data by means of a simplistic linear model, which is
referred to as underfitting the model. (c), on the other hand, visualizes a scenario
in which the model has become too heavily dependent on the specific data points,
and thus learns the specific samples, making it less useful when introducing new
samples. This is what is referred to as overfitting. (b) visualizes a well calibrated
fit, where the model accurately captures the trends of the observed data, instead
of the specific data samples.

Srivastava et al. (2014) provide an illustration of the general structure of dro-
pout, in Figure 2.2.2. The illustration shows a neural network before and after dro-
pout is applied, where certain neurons and corresponding connections are dropped
depending on the specified dropout rate, which, essentially, is a measure of the
probability of a single neuron being dropped.

Figure 2.2.2: Model architecture of a neural network before (left) and after
(right) dropout is employed, presented by Srivastava et al. (2014). As shown in
the architecture in the right model, certain neurons are switched o� in each layer
of the network, dependent on the dropout rate. By doing so, the neural networks
avoids becoming overly dependent on the observed data samples, as the model is
forced to generalize through removing certain connections in the network.

How this regularization technique can be utilized as a means to capture model
uncertainty is presented and discussed in Section 3.1.
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2.2.2 Deficiencies of the Softmax Probability
A crucial feature for any machine learning model concerned with producing infer-
ences in real-world applications is the ability to recognize and distinguish input
samples that do not belong to the previously observed and modeled data, form-
ally known as out-of-distribution (OOD) samples. Traditionally, the use of the
softmax activation function has been prevalent within multi-class classification
(Sensoy, Kaplan and Kandemir 2018), which has entailed certain limitations in
terms of interpreting the outputs of the models when encountering OOD samples,
some of which will be discussed in the following section.

The central issue that arises in terms of uncertainty quantification when the
softmax activation function is employed in the output layer of a neural network is
that the resulting prediction probabilities of an inference are limited to the already
modeled classes of data, meaning, the output is purely a measure of the probability
of the input sample belonging to one of the modeled classes, as compared to the
other modeled classes. In other words, the softmax probabilities inherently lack
any means of providing insight into whether an input sample actually belongs to
the observed data distribution, and therefore, due to the function’s mathematical
properties and limitations, the generated probabilities are merely applicable for
conclusions regarding their comparative value against the specified classes, and do
not represent general model confidence.

As such, the resulting prediction probabilities are often erroneously interpreted
as model confidence (Gal and Ghahramani 2016), even though a high softmax
probability does not necessarily correlate to high prediction certainty, as the out-
put from the softmax layer can merely be interpreted as a probability vector over
the modeled classes. On the basis of the aforementioned limitation, an introduc-
tion to the functionality and underlying theory of the softmax activation function
should be presented, in order to provide the reader with an understanding of the
mechanisms that need to be accounted for in order to counteract this deficiency.

Formally, the softmax activation function converts a vector of N real num-
bers to a probability distribution over N possible outcomes, essentially classes, as
defined in Equation (2.15).

‡(U)i = e
ui

�N
j=1e

uj
(2.15)

Mathematically, the softmax function takes in an input vector U with elements
ui for i = {1, . . . , N} relating to N classes, and produces a corresponding output
vector. The normalization term �N

j=1e
uj ensures that the output range is fixed

from 0 to 1, and that all the output elements sum to 1, essentially producing a
probability distribution over the output classes. This output vector, as mentioned,
is easily misconstrued as a probability vector representing model confidence, due
to its probabilistic traits. The vector, however, merely normalizes the input vector,
as seen in the example calculation in Equation (2.16), by use of the normalization
term. Evaluating the formula, as provided in Equation (2.15), provides insight
into the mechanism of the function, and how it can be viewed as a normalization
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term.

The values in the output vector are essentially point estimates of each class
probability for a given input sample, which, as mentioned, do not provide any con-
clusion regarding the associated uncertainty of the generated prediction. Equation
(2.16) shows an example calculation of the softmax function, taking in one vector
and outputting a normalized vector.

‡

Q

ccca

S

WWWU

3.2
1.3
0.2
0.8

T

XXXV

R

dddb æ
e

ui

�J
j=1e

uj
æ

S

WWWU

0.775
0.116
0.039
0.070

T

XXXV (2.16)

An example of the softmax activation function producing an unjustifiably con-
fident prediction is presented by Gal and Ghahramani (2016), by means of a
idealized binary classification problem, illustrated in Figure 2.2.3.

Essentially, what the illustration depicts, is a scenario in which the softmax
output produces an erroneously confident prediction, as the softmax function does
not adjust the predictive probabilities accurately in the extrapolations of the point
estimates away from the observed data. The softmax output mistakenly assigns
a predictive probability of 1 to the sample x

ú, represented by the dotted red line,
even though the point lies far outside the observed data, which lies between the
two dotted gray lines. This emphasizes how, even though the softmax output is
high, the model is actually uncertain in its prediction. This can be somewhat
combated, however, by instead passing the distribution as opposed to the function
though the softmax activation function, as indicated by the gray shadings, where
the darker shades represent higher uncertainty estimates.

(a) Softmax Input (b) Corresponding Softmax Output

Figure 2.2.3: Visualization of an arbitrary function f(x) as softmax input in (a),
with corresponding softmax output ‡(f(x)) in (b), both represented as functions
of the data x. The training-data exists between the two dotted gray lines, while
the solid line represents the function point estimate. The shaded gray area is
used to illustrate the function uncertainty, while the point x

ú represents a sample
that occurs far outside the observed training data. The figures are developed and
presented by Gal and Ghahramani (2016).

Sensoy, Kaplan and Kandemir (2018) provide concrete formulations of the de-
ficiencies of modeling class probabilities with the softmax activation function. As-
suming a K- class classification task they define the likelihood function as Equation
(2.17), for an observed tuple (x, y) comprised of a sample and its corresponding
label. ‡() refers to the the softmax activation function, as presented in Equation
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(2.15), and fj(x, ◊) refers to the j ≠ th output channel of the neural network f(·),
with model parameters ◊. Mult() refers to a multinomial mass function that de-
scribes the probability distribution of a multinomial random variable.

Pr(y|x, ◊) = Mult(y|‡(f1(x, ◊)), · · · , ‡(fK(x, ◊))), (2.17)

By maximizing the multinomial likelihood in terms of the model parameters,
the softmax function can reduce the resulting class probabilities into a simplex.
Due to computational concerns, however, the negative log-likelihood, formally
known as the cross entropy loss, is generally minimized instead. This loss is
formulated as

≠log p(y|x, ◊) = ≠log ‡(fy(x, ◊)) (2.18)

The negative log-likelihood, as stated in Equation (2.18), can be viewed as
maximum likelihood estimation when interpreted probabilistically, which inher-
ently is not capable of inferring predictive distribution variance, as it is a fre-
quentist technique. Another issue is that the predictions generated based on the
softmax activation function are prone to being exaggerated by outliers, due to the
function’s exponent on the neural network’s outputs. Therefore, the predictions
obtained from the softmax activation layer are not useful for drawing conclusions
regarding the overall confidence of an inference, other than it’s comparative value
against the other classes. On account of this, no information regarding the data
distribution is available. An experiment performed to demonstrate this scenario
will be presented in Section 4.3.

The inadequacies of the softmax output layer have produced certain challenges
in terms of quantifying model uncertainty, as presented in this section. Therefore,
specific features and methods are needed in order to amend for these deficiencies,
some of which will be presented during the course of this thesis.

2.2.3 Bayesian Inference
A vast amount of the available methodologies within the field of uncertainty
quantification are to some degree related to and/or dependent on an underlying
Bayesian framework, meaning, an introduction to Bayesian inference is necessary
in order to fully comprehend the theoretical foundations constituting these meth-
ods. Gelman et al. (2014) provide a thorough review and introduction to Bayesian
inference, whose formulations will be presented in this section.

Essentially, Bayesian statistical frameworks are concerned with updating and
refining beliefs about an unknown variable or parameter based on the introduc-
tion of novel information. Two core aspects of this framework that are especially
important as they appear in most, if not all, statistical uncertainty quantification
methods, are prior and posterior distributions.
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Simply put, a prior distribution is a probability distribution used to describe
the parameters of a model prior to any data or information being observed. An
example of this could be to assume the prior distribution of the regression coe�-
cients in a linear regression model to be Gaussian. In relation to this, the posterior
distribution refers to the probability distribution that describes the updated prior
distribution, after observing new data or information. Generally, this update from
the prior to posterior distribution is calculated by multiplying a likelihood func-
tion, which essentially measures the probability of observing the data given specific
parameters, with the prior distribution, by means of Bayes’ theorem. One could
say that the posterior distribution updates the beliefs regarding model parameters
modeled in the prior distribution, based on new information.

Mathematical formulations regarding this framework can be made, following
the notation presented by Gelman et al. (2014). As mentioned, generally speaking,
the underlying idea behind Bayesian statistics is based on updating beliefs based
on the introduction of new information. Specifically, this can be formulated in
terms of probability statements of a parameter ◊, or unobserved data ỹ, which are
conditional on the observed value of a sample y, stated as p(◊|y) or p(ỹ|y). The
notation p(·|·) will be used frequently, denoting the aforementioned probability
statements, namely the conditional probability density, where the arguments are
context dependent. In addition to this, the terms distribution and density will be
used interchangeably, referring to the same concept.

A prerequisite for making probability statements regarding a parameter ◊

provided data y is a so-called joint probability distribution for these ◊ and y, which
is denoted in Equation (2.19). Here, the term p(◊) refers to the prior distribution,
as introduced, and the term p(y|◊) refers to the data distribution.

p(◊, y)
¸ ˚˙ ˝

Joint P robability Distribution

= p(◊)
¸ ˚˙ ˝

P rior Distribution

◊ p(y|◊)
¸ ˚˙ ˝

Data Distribution

(2.19)

Then, by conditioning, which will be introduced in detail in Section 2.2.4,
on the observed value of y by use of Bayes’ rule, the prior distribution can be
described as in Equation (2.20).

p(◊|y) = p(◊, y)
p(y) = p(◊)p(y|◊)

p(y) (2.20)

In this context, the term p(y) refers to the sum �◊ p(◊) p(y|◊) over all values
of ◊. Making inferences past observed data, often called predictive inference, is a
core aspect of Bayesian statistics, which, following the presented notations, can
be formulated as

p(y) =
⁄

p(y, ◊)d◊ =
⁄

p(◊)p(y|◊) d◊ (2.21)

This statement can be viewed as the prior predictive distribution of y, as it is
independent of any previous observations. Then, after observing new information,
in terms of data y, an unknown observable ỹ can be predicted from the same
process, which yields the distribution of said ỹ as stated in Equation (2.22). This
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distribution is referred to as the posterior predictive distribution, as it is condi-
tioned on observations of data.

p(ỹ|y) =
⁄

p(ỹ, ◊|y) d◊

=
⁄

p(ỹ|◊, y)p(◊|y) d◊

=
⁄

p(ỹ|◊)p(◊|y) d◊

(2.22)

The posterior predictive distribution, as described in the above equation, can
be presented in terms of an average of conditional predictions over the parameter’s
posterior distribution, which is the case in the second and third line of the state-
ment in Equation (2.22).

As mentioned, the posterior distribution can be attained through the likelihood
function being multiplied with the prior distribution, as is the basis of the Bayes’
theorem. As such, the ratio of the posterior density, at points ◊1 and ◊2, produces
what is referred to as the posterior odds for ◊1 as compared to ◊2, formally stated
in Equation (2.23).

p(◊1|y)
p(◊2|y) =

p(◊1)p(y|◊1)
p(y)

p(◊2)p(y|◊2)
p(y)

= p(◊1)
p(◊2)

·
p(y|◊1)
p(y|◊2)

(2.23)

What this formulation states is that the prior odds p(◊1)
p(◊2) can be multiplied by

the likelihood ratio p(y|◊1)
p(y|◊2) , in order to mathematically obtain the posterior odds.

A necessary supplement to Bayesian inference in the field of Bayesian statics
within machine learning and as a whole, is that of Gaussian processes, which will
be introduced succeedingly.

2.2.4 Gaussian Distributions and Processes
Following the introduction of Bayesian inference, a subsequent introduction to
Gaussian distributions is necessary, as these distributions constitute the basis of
Bayesian statistics. Gaussian processes are a crucial concept within the clas-
sical Bayesian framework, that o�er reliable measures of predictive uncertainty
(Rasmussen and Williams 2005). Their e�cacy has been demonstrated in vari-
ous domains, including transfer learning (Kandemir 2015), deep learning (Wilson
et al. 2016), and active learning (Houlsby et al. 2012). Therefore, in order to
fully understand the machine learning techniques relying on Gaussian processes,
it is necessary to introduce their underlying theoretical principles. Rasmussen and
Williams (2005) provide a thorough theoretical introduction to Gaussian processes
within machine learning.

Gaussian processes are extensions of the Gaussian probability distribution, also
known as the normal probability distribution, that o�er a useful tool for statistical
modeling by providing a measure of confidence when predicting functions. This
feature enables the incorporation of prior knowledge when making predictions in
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regression, classification, and clustering tasks (Kim and J. Lee 2007; Kapoor et
al. 2010). For any given set of data points, there exist multiple functions that
could fit said data, potentially infinite in number. Gaussian processes account
for this by assigning probabilities to each of these functions, in order to represent
the most probable generalization of the data, using the mean of the probability
distributions. The multivariate version of the Gaussian distribution is particularly
relevant due to its ability to accurately model complex systems, making it a valu-
able tool for handling real-world phenomena.

Figure 2.2.4: Illustration of a uni-variate Gaussian density over a single variable
and a multivariate Gaussian density over two variables, in the left and right plot,
respectively, presented by Görtler, Kehlbeck and Deussen (2019).

Generally, the multivariate Gaussian distribution, also known as the joint nor-
mal distribution, is based on the definition of "a random variable being k-variate
normally distributed if every linear combination of its k components have a uni-
variate normal distribution" (Shi 2019). This entails the mathematical prop-
erty of X = (X1, . . . , Xk)T being multivariate Gaussian distributed, assuming
Y = a1X1 +a2X2 + . . .+akXk is normally distributed, for any constant real vector
a œ R

k.

Following the notation presented by Görtler, Kehlbeck and Deussen (2019),
based on the underlying assumptions as presented, Equation (2.24) can be used to
state a vector-valued random variable X with a multivariate Gaussian distribution,
in terms of its mean vector µ and corresponding covariance matrix �, essentially
meaning that the vector X follows a normal distribution.

X =

S

WWWWU

X1
X2
...

Xn

T

XXXXV
≥ N (µ, �) . (2.24)

The two terms, namely the mean vector µ and covariance matrix �, can be
viewed as measurements of the distribution’s expected value, based on each dimen-
sion’s mean, and its corresponding shape, determined by the correlation between
the independent variables, respectively. The mean vector, as mentioned, is solely
dependent on the mean value of each dimension, where as the covariance matrix
is obtained through the mathematical property formulated in terms of two inde-
pendent variables as presented in Equation (2.25).
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� = Cov(Xi, Xj) = E[(Xi ≠ µi)(Xj ≠ µj)T ] (2.25)

This mathematical relationship is expressed in the matrix in Equation (2.26),
where the i ≠ th diagonal of the matrix represents the i-th independent variable’s
variance, and the correlation between the i-th and j-th variable is represented by
the ij-th element of the matrix.

� =

S

WWWWU

‡
2
1 0 . . . 0

0 ‡
2
2 . . . 0

... ... . . . ...
0 0 . . . ‡p

2

T

XXXXV
(2.26)

A significant benefit of the multivariate Gaussian distribution is the fact that it
adheres to the same underlying assumptions as the Central Limit Theorem, which
expresses that the mean vector X tends toward a multivariate Gaussian distribu-
tion for large samples, assuming the elements of said vector {X1, X2, . . . , Xn} are
independent and identically distributed (I.I.D.) variables. Gaussian processes pos-
sess another critical trait in regard to uncertainty modeling, which is their ability
to function as universal predictors, meaning they are capable of fitting a broad
range of nonlinear prediction functions to data, at the same time enabling the
calculation of the variance of predictions through closed-form expressions (Tran,
Ranganath and Blei 2015). Moreover, Gaussian processes are non-parametric
models, and thus do not contain any stochastic model parameters.

A crucial feature of Gaussian distributions that makes them useful within sev-
eral domains is the fact that they are are closed under so-called marginalization
and conditioning. Essentially, what this means, is that these mathematical opera-
tions can be performed on the distributions, with the resulting distribution being
a modified Gaussian itself.

Generally, conditioning can be viewed as a process of revising a probability
distribution by incorporating novel information. Specifically, this means that the
distribution of one variable is updated based on observations of other variables.
Within a Bayesian framework based on Gaussian processes, this entails a prior
distribution over functions being updated to a posterior distribution where the
new observations are incorporated. Due to the fact that uncertainty is modeled
as a distribution over possible functions that could fit a dataset within Gaussian
statistics, conditioning allows for capturing the posterior distribution over these
functions by conditioning a prior distribution on the observed data.

Marginalization is a mathematical operation used in order to obtain the dis-
tribution of a subset of variables, by integrating out certain variables from a joint
probability distribution (Rasmussen and Williams 2005). Within a Gaussian pro-
cess, this entails capturing the posterior distribution over the function values con-
sidering a set of test points, assuming there already exists a prior distribution over
the function itself and the observed data.
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By considering two subsets of original random variables, X and Y , obtained in
Equation (2.27), the aforementioned operations can be formulated mathematically.

PX,Y =
C
X

Y

D

≥ N (µ, �) = N

AC
µX

µY

D

,

C
�XX�XY

�Y X�Y Y

DB

(2.27)

As mentioned, marginalization allows for capturing partial information from
multivariate probability distribution, resulting in marginalized probability distri-
butions, which, mathematically, are denoted as

X ≥ N (µX , �XX)
Y ≥ N (µY , �Y Y )

(2.28)

assuming a Gaussian distribution P (X, Y ) over vectors of random variables, X

and Y . Essentially, what this formulation states is that the partitions, or subsets,
are merely dependent on their corresponding entries in the mean and covariance,
µ and �. Further elaborating on this notion, one can marginalize out a desired
random variable from the Gaussian distribution, simply by dropping the variables
from µ and �. Should the probability density of X = x be desirable, for instance,
all possible combinations of outcomes of Y that could lead to this result need to
be considered, leading to the formulation stated in Equation (2.29).

pX(x) =
⁄

y
pX,Y (x, y)dy =

⁄

Y
pX|Y (x, y)pY (y)dy (2.29)

Conditioning, as a means of examining the probability of one variable being
dependent on another, is a key aspect of Gaussian processes, as it essentially
constitutes the basis for Bayesian inference. As mentioned, the operation is closed
and therefore produces a modified Gaussian. Conditioning is defined in Equation
(2.30), where the new mean solely depends on the conditioned variable, as opposed
to the covariance matrix, which does not depend on said variable.

X|Y ≥ N (µX + �XY �≠1
Y Y (Y ≠ µY ), �XX ≠ �XY �≠1

Y Y �Y X

Y |X ≥ N (µY + �Y X�≠1
XX(X ≠ µX), �Y Y ≠ �Y X�≠1

XX�XY
(2.30)

Turner (2016) provides a 2D illustration of the operation of conditioning, in
Figure 2.2.5, where the value of one variable in a distribution is fixed, in order to
be able to compute the corresponding probability density of the other variable,
conditioned on the fixed variable.
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(a) A variable y1 fixed to a singe value, allowing
for conditioning to be performed.

(b) Probability density of the variable y2 com-
puted based on the fixed variable y1.

Figure 2.2.5: 2D Conditioning example provided by Turner (2016). The variable
y1 is fixed, as shown in (a), which enables the computation of the probability
density of y2 based on the fixed variable, as shown in (b).

The resulting distribution from this operation is a modified Gaussian, with a
corresponding mean and covariance, µ and �, illustrated in Figure 2.2.6.

Figure 2.2.6: Modified Gaussian distribution resulting from the conditioning
operation, presented by Turner (2016). The resulting probability density following
the operation is a modified Gaussian, due to the property y2 œ N (µ, �).

These theoretical underpinnings make up the core of so-called Gaussian Pro-
cesses, which are characterized by Shi (2019) as probability distributions over pos-
sible functions that fit a set of data-points. As such, these processes have a wide
array of applications within the context of machine learning and uncertainty quan-
tification, especially in terms of regression and classification tasks. Another de-
scriptive feature of Gaussian processes in a machine learning framework is that
they are non-parametric, meaning, they do not assume any specific relationship
between the input space and desired outputs, but rather are concerned with cap-
turing the predictive uncertainty when mapping from input to output, providing
some measure of reliability alongside the inference itself.

The measure of uncertainty related to inferences can be obtained directly, as
the Gaussian processes provide an assembly of potential functions that describe
a set of observations, through the related uncertainty of the estimated regression
function, as illustrated by Hüllermeier and Waegeman (2021) in Figure 2.2.7.
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Figure 2.2.7: Hüllermeier and Waegeman (2021) provide an example of a uni-
variate Gaussian process, where the associated uncertainty of the estimated re-
gression function f(x) is represented by the orange band surrounding the func-
tion. The uncertainty around the estimated regression function is reduced as new
information, in the form of data-points, is introduced. M(x) depicts the ideal
function describing the data.

Following the introduction of Bayesian inference and Gaussian processes, the
theoretical foundations of specific methodologies in the field of uncertainty quan-
tification can be presented, in light of this underlying statistical framework.
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In the following section certain specific methodologies from the field will be presen-
ted, to provide an insight into currently available approaches. The methods have
been selected on account of a variety of factors, ranging from their prevalence in the
existing literature, their e�cacy and proven results, as well as their potential for
further improvements and applications. Specifically, Monte Carlo Dropout, Deep
Ensembles, Prior Networks, Evidential Deep Learning and Temperature Scaling
will be introduced. A comprehensive discussion regarding the optimal areas of
use, advantages and disadvantages of the di�erent methodologies and how they
compare will be presented in Section 5.

3.1 Monte Carlo Dropout
Monte Carlo Dropout is a method for capturing model uncertainty first intro-
duced by Gal and Ghahramani (2016). The method is based on the realization
that employing dropout before every weight layer of a neural network can be in-
terpreted as a Bayesian approximation of the Gaussian process, thus allowing for
information regarding the uncertainty surrounding the inferences to be obtained.
As mentioned in Section 2.2.1, dropout is traditionally used as a regularization
technique designed to combat overfitting of model parameters to training data,
whereas, in this case, the inherent functionality is exploited in order to generate
information regarding the predictive uncertainty of the model.

A significant benefit of the method is the fact that existing model architec-
tures do not need to be altered in order to include the desired functionality, as the
method merely relies on utilizing dropout in the neural network’s layers during
the inference of the model, rather than during the training procedure. This allows
pre-existing, trained models to adopt the method, reducing the need for poten-
tially complex training and developmental procedures. By performing dropout
during inference multiple distinct predictions are produced for each input sample,
removing any potential determinism from the model, meaning distinct outputs
will be generated for the same sample for each forward pass through the network.
The uncertainty and corresponding variance of generated predictions can then be

27
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evaluated, by inferring a predictive distribution p(y|x, D), assuming an input x,
target y and N training samples D = (xi, yi)N

i=1. This foundation essentially con-
stitutes the basis of Monte Carlo Dropout.

The following framework for representing the method notationally was de-
veloped by Gal and Ghahramani (2016), with the intention of serving as a formal-
ized structure of Monte Carlo Dropout. Based on said framework, Davis, Zhu and
Oldfather (2020) provide some useful formulations, which serve as a useful start-
ing point that will be introduced initially. A distinct sample can be drawn from
the approximated parametric posterior distribution ◊t ≥ q(◊|D), for each dropout
configuration ◊t. By doing so, a feasible approximation can be used to represent
the predictive distribution, as denoted in Equation (3.1). This approximation fol-
lows directly from Equation (3.2), which states the true predictive distribution for
variational inference.

p(y|x) ≥
1
T

�T
t=1 p(y|x, ◊t) such that ◊t ≥ q(◊, D) (3.1)

Equation (3.1) formalizes an approximation of the true predictive distribu-
tion for variational inference, derived from Equation (3.2). This approximation
is necessary as computing the true distribution is not feasible in a deep learning
framework.

p(y|x) ≥

⁄

�
p(y|x, ◊)
¸ ˚˙ ˝
likelihood

q(◊, D)
¸ ˚˙ ˝
posterior

d◊ (3.2)

Assuming the likelihood to be Gaussian distributed, the mean f(x, ◊) and
variance s

2(x, ◊) can be obtained from simulations of the network and subsequently
used to specify the Gaussian function, denoted as N in Equation (3.3)

p(y|x, ◊) = N (f(x, ◊)
¸ ˚˙ ˝

mean

, s
2(x, ◊)

¸ ˚˙ ˝
variance

) (3.3)

Following these formulations, the framework presented by Gal and Ghahramani
(2016) can be further explored. Considering an L≠layered model with loss function
E(·, ·) that generates an output ŷ where the true output is yi for every instance
sample xi assuming 1 Æ i Æ N , the L2 cost function can be formulated as

Ldropout = 1
N

Nÿ

i=1
E(yi, ŷ) + ⁄

Lÿ

i=1
(||Wi||

2
2 + ||bi||

2
2) (3.4)

Here, the weight matrices are denoted as Wl, with corresponding dimensions
K◊Ki≠1, and the bias vectors with dimensions Ki for the i≠th layer as bi. ⁄ refers
to the weight decay. By exploiting the aforementioned structures, the uncertainty
of a neural network can be captured, through the approximate predictive distri-
bution for an instance sample x with the corresponding set of random variables
w = {Wi}

L
i=1 , stated as

q(y|x) =
⁄

p(y|x, w)q(w)dw (3.5)
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where y œ R
N , assuming the output vectors to be N -dimensional for an

L≠layered model. The approximate variational distribution q(w) can be eval-
uated analytically, by sampling T sets of realization vectors from the Bernoulli
distribution, thus obtaining an estimate defined as

Eq(y|x) (y) ¥
1
T

�T
t=1ŷ(x, W

t
1, . . . , W

t
L) (3.6)

where {W
t
1, . . . , W

t
L}

T
t=1 is obtained from the Bernoulli distribution {z

t
1, . . . z

t
L}

T
t=1

assuming z
t
i = [zt

i,j]
Ki
j=1. The estimate in Equation (3.6) essentially represents aver-

aging T stochastic forward passes through a neural network, and constitutes the
foundation of the Monte Carlo Dropout method, through which uncertainty can
be quantified. The optimal number of forward passes through the network could
be evaluated analytically, although, generally, a range of 30-100 is considered an
appropriate range (Gal and Ghahramani 2016). By including the weight decay
⁄ and prior length scale l, the model precision · can be obtained through the
following property, as

· = pl
2

2N⁄
(3.7)

Finally, the predictive log-likelihood can be estimated, which provides a meas-
ure of the model’s performance in terms of fitting the mean and uncertainty.
Provided a dataset X and Y , possible output values y

ú based on a new input x
ú

can be obtained through the predictive probability stated as

log p(yú
|x

ú
, X, Y ) ≥ log

3 1
T

�T
t=1p(yú

|x
ú
, wt)

4
where wt ≥ q(w) (3.8)

For regression tasks, this log-likelihood is formulated in Equation (3.9). Here,
· refers to the model precision, as obtained through Equation (3.7).

log p(yú
|x

ú
, X, Y ) ≥ LogSumExp (≠1

2· ||y ≠ ŷt||
2)

≠log (T ) ≠
log (2fi)

2 ≠
log (·≠1)

2

(3.9)

A visualization of the intended architecture of Monte Carlo Dropout is provided
by Davis, Zhu and Oldfather (2020), in Figure 3.1.1. The neural network is altered
during each forward pass by distinct dropout configurations. By doing so, several
forward passes through slightly distinct model structures can be performed to
obtain a predictive distribution p(f(x, ◊)) over the mean.
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Figure 3.1.1: Example structure of Monte Carlo Dropout in a deep neural net-
work, presented by Davis, Zhu and Oldfather (2020). Several distinct variations
of the same model can be seen, each with its own corresponding dropout configur-
ation. By combining the forward passes through the model variations a predictive
mean p(f(x, ◊)) can be generated, as shown in the generated distribution above
the networks.

The fact that uncertainty estimates can be obtained through stochastic for-
ward passes facilitates, as mentioned, the reuse and implementation of pre-existing
models, as the method does not require invasive adjustments or redevelopment of
the prior model structure. Also, a major advantage stems from the fact that the
stochastic forward passes can be performed concurrently, meaning the running
time is identical to that of traditional dropout. Despite its simplicity of imple-
mentation, the method has performed well within various applications and fields,
obtaining state-of-the-art results within a range tasks, some of which are presented
in Table 3.1.1, to provide an overview of some existing applications.

Study Method Application
Leibig et al. (2017) CNN Diabetic Retinophaty
Choi et al. (2017) Mixture Density Network Regression
Jungo, McKinley et al. (2018) Full-Res ResNet Brain Tumor Segmentation
Jungo, Meier et al. (2018) FCN Brain Tumor Segmentation
Vandal et al. (2018) Variational LSTM Predicting Flight Delays
DeVries and Taylor (2018) CNN Medical Image Segmentation
Tousignant et al. (2019) CNN MRI Images
Norouzi et al. (2019) FCN MRI Image Segmentation
Roy et al. (2018) Bayesian FCN MRI Segmentation
Filos et al. (2019) CNN Diabetic Retinophaty
Harper and Southern (2022) RNN and CNN Emotion Prediction

Table 3.1.1: Overview of studies on the e�ectiveness of Monte Carlo Dropout
within a range of applications.

Experiments relating to Monte Carlo Dropout and a thorough discussion based
on the introduced foundations will be presented in Sections 4 and 5, respectively.
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3.2 Deep Ensembles
Following the realization that dropout can be used for uncertainty estimation, re-
search was performed to investigate whether the same principle could be applied
within ensemble methods. Subsequently, Deep Ensembles, first presented by Lak-
shminarayanan, Pritzel and Blundell (2016), were introduced as an alternative to
Bayesian methods for capturing model uncertainty. The method has yielded state-
of-the-art performances across a variety of machine learning tasks (Krizhevsky,
Sutskever and G. E. Hinton 2012; Mikolov et al. 2013; Zhou and Troyanskaya
2015; Yann LeCun, Bengiuo and G. Hinton 2015), and has been shown to outper-
form Monte Carlo Dropout in capturing out-of-distribution samples (Ovadia et al.
2019; Fort, Hu and Lakshminarayanan 2019), in addition to providing high-quality
uncertainty estimates.

Deep Ensembles are built on an underlying theoretical principle analogous to
that of the French mathematician Nicolas de Condorcet’s jury theorem, which
states that, generally, assuming the chance of each distinct juror’s decision or ver-
dict to be correct to be greater than 50%, the corresponding probability of the
jury as a whole reaching a correct verdict tends toward 100% as the number of
jurors increases, given that the decision made by each juror is independent of the
others (Estlund 1994). Stated formally, Condorcet’s theorem states that during a
dichotomous choice, if the competence of each individual comprising a collective
is greater than 0.5, then, under the majority rule, the competence of the collect-
ive decision comprised of said individuals approaches 1, as either the number of
individuals or the competence of the individuals increases.

Generally speaking, ensemble methods can be viewed as learning algorithms
that produce inferences by combining the inferences made by underlying models,
often referred to as weak learners. Essentially, Deep Ensembles is an ensemble
method where the ensemble consists of deep neural networks. The inferences pro-
duced by the underlying models are usually combined by weighted or unweighted
voting, which allows for certain models to be assigned higher importance or trust
than others when producing a final decision. Most of the time these ensembles
provide better results than the individual models that they are comprised of, as
per Dietterich (2000), and by exploiting this general structure, predictive uncer-
tainty estimates can be obtained. An example of a Deep Ensemble structure is
provided by Ashukha et al. (2020), in Figure 3.2.1.
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Figure 3.2.1: Example architecture of a Deep Ensemble provided by Ashukha et
al. (2020). Several networks, that together constitute an ensemble, are introduced
to distinct input samples, which, in this case, are augmentations of the same image.
Each model then generates a prediction, which, in turn, is combined with the other
generated predictions, to make one final inference. As can be seen in the figure,
each model in the ensemble does not necessarily generate the correct prediction,
whereas the final averaged prediction output by the ensemble is correct. In this
fashion ensembles tend to account for possible misclassifications.

As a general rule, two steps are included in ensembling machine learning mod-
els, namely, training the di�erent models and combining the results. As a means
of obtaining variations across the models in the ensemble, the training regimes
and data, feature subsets and model architectures can be altered. Generating
the final inference of the ensemble can be done in multiple ways, some of which
include averaging, which simply averages the predictions made by each distinct
model, model stacking, which trains new models on top of the predictions, or one
can design custom voting rules, tailored for any desired purpose. The example
shown in Figure 3.2.1 uses the averaging method, where the inferences from each
model in the ensemble are combined and averaged.

Lakshminarayanan, Pritzel and Blundell (2016) propose a general framework
for setting up a Deep Ensemble comprised of three steps, namely

1) Use a proper scoring rule as the training criterion

2) Smooth the predictive distributions by use of adversarial training

3) Train the ensemble

A mathematical framework is needed to facilitate the implementation of the
aforementioned steps within a machine learning system, which is also presen-
ted by Lakshminarayanan, Pritzel and Blundell (2016). Assuming a dataset
D = {xn, yn}

N
n=1 comprised of N I.I.D. training samples where x œ R

D represents
the D≠dimensional features, the probabilistic predictive distribution p◊(y|x) with
model parameters ◊ can be modeled by use of a neural network. Note that for
regression tasks, y œ R is assumed, whereas for classification tasks, y œ {1, . . . , K}
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is assumed, referring to K distinct classes. For an ensemble consisting of M mod-
els, {◊m}

M
m=1 represents the model parameters of the ensemble.

As mentioned in the first of the three steps, the training criterion should be
a scoring rule, which, essentially, is a function S(p◊, (y, x)) designed to assign a
score to a predictive distribution judged on the perceived quality of the predictions
relative to an event y|x ≥ q(y|x), where q(y, x) states the true distribution on (y,
x)- tuples. As such, the scoring rule is mathematically defined as

S(p◊, q) =
⁄

q(y, x) S(p◊, (y, x)) dydx (3.10)

To ensure that this scoring rule to is proper, it must assume the strict property
stated in Equation (3.11), given that for every p◊ and q, the property p◊(y|x) =
q(y|x) holds true.

S(p◊, q) Æ S(q, q) (3.11)
Following this foundation, a neural network can be trained to calibrate the

predictive uncertainty by minimizing the loss, as given in Equation (3.12). By
investigating these properties, it becomes evident that several loss functions de-
signed for neural networks are in fact proper scoring rules, one of which being
the softmax cross entropy loss, which makes them ideal for use within Deep En-
sembles.

L(◊) = ≠S(p◊, q) (3.12)
In regression tasks a single output value is given, whilst the mean-squared-

error (MSE) is minimized to optimize the parameters. The MSE is not equipped
to capture predictive uncertainty however, which needs to be accounted for. Based
on Nix and Weigend (1994)’s work, by utilizing a neural network that outputs the
predicted mean µ(x) and corresponding variance ‡

2(x) > 0 in the final layer, the
negative log-likelihood criterion, as given in Equation (3.13), can be minimized,
by treating the observed value as an instance from a heteroscedastic Gaussian
distribution.

≠log p◊(yn|xn) = log ‡
2
◊(x)

2 + (y ≠ µ◊(x))2

2‡
2
◊(x) + C (3.13)

The final term C in the above equation refers to a constant. The team found
that this approach performed well in their experiments, and that is serves well as
a foundation for implementing Deep Ensembles concerned with capturing uncer-
tainty.

Normal distribution samples drawn from a Normal-Wishart distribution, which
are higher-order distributions over the parameters of multivariate normal distri-
butions, can be used to visualize the desired behavior of regression models in an
ensemble, as presented by Malinin, Chervontsev et al. (2020) in Figure 3.2.2. The
drawn samples can be used to detail the optimal behavior of each model, in re-
gard to modeling low uncertainty, which essentially represents high confidence,
data uncertainty and knowledge uncertainty, otherwise referred to as aleatoric and
epistemic uncertainty. The figure details this by use of the normal distribution
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samples, drawn from the corresponding Normal-Wishart distribution, as shown in
Figure 3.2.2 and 3.2.3. Both figures represent corresponding scenarios of low un-
certainty, data uncertainty and knowledge uncertainty, in the left to right column,
respectively.

Ideally, the ensemble should produce a widespread distribution, in terms of its
mean and variance, should the observed sample be out-of-distribution, as shown in
the rightmost column in Figure 3.2.2. As opposed to this, when encountering in-
distribution samples, the desired behavior of the ensemble is for it to be consistent
in terms of representing low uncertainty and data uncertainty, as seen in the
left and middle column of the figure. As mentioned, the corresponding Normal-
Wishart distributions of the described scenarios are shown in Figure 3.2.3.

(a) Low Uncertainty (b) Data Uncertainty (c) Knowledge Uncertainty

Figure 3.2.2: Optimal behavior of regression models in an ensemble, presented
in terms of the mean µ along the x-axis, and corresponding variance ‡

2 along the
y-axis, of normal distribution samples drawn from optimal Normal-Wishart dis-
tributions, which are shown in Figure 3.2.3. The columns represent three distinct
scenarios, namely, low uncertainty, data uncertainty and knowledge uncertainty,
from left to right, respectively. The figures are developed by Malinin, Chervontsev
et al. (2020).

(a) Low Uncertainty (b) Data Uncertainty (c) Knowledge Uncertainty

Figure 3.2.3: Visualizations of the Normal-Wishart distributions from which the
normal distribution samples in Figure 3.2.2 were drawn, presented in terms of the
mean, µ, and corresponding variance, ‡

2
. Once again, the three columns represent

the scenarios of low uncertainty, data uncertainty and knowledge uncertainty, from
left to right, respectively (Malinin, Chervontsev et al. 2020).

The second step, as presented by Lakshminarayanan, Pritzel and Blundell
(2016), consists of utilizing adversarial training to smooth the predictive distribu-
tions. Adversarial samples, first introduced by Szegedy (2014), and later improved
by Goodfellow (2015), refer to samples that are misclassified by neural networks
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but are visually indistinguishable from the original sample to a human being, and
should not be confused or related with Generative Adversarial Networks. The
robustness of the models can be improved by generating such samples by adding
perturbations along the direction that is most likely to increase the loss. By in-
cluding this procedure, not only is the robustness of the model improved, but
the predictive distribution can also be smoothed, by increasing the likelihood of
the target sample being close to the observed samples (Goodfellow 2015; Nix and
Weigend 2015).

The third and final step is to train the ensemble’s underlying models. Gener-
ally, the optimal number of members in an ensemble can be evaluated analytically,
however, Lakshminarayanan, Pritzel and Blundell (2016) and Ovadia et al. (2019)
suggest that five members tends to be a viable starting point. Although Deep
Ensembles have attained state-of-the-art results in several tasks, one drawback
of the method as compared to Monte Carlo Dropout, is the computational need,
as both the ensembling and training procedures are potentially computationally
demanding. As mentioned, a further reflection regarding the desired usage and
potential advantages and disadvantages of the method will be presented in Section
5, in light of the necessary considerations of the field as a whole.

3.3 Prior Networks
Malinin and Gales (2018) present a novel approach for quantifying uncertainty in
deep neural networks, namely a class of models named Prior Networks. The un-
derlying idea of Prior Networks is based on integrating prior knowledge regarding
the problem domain directly into the model architecture, primarily in the form of
information about the data being processed by the network. The prior knowledge
in question is not limited to this, however, and could encapsulate other sources of
information, such as the physical laws specific to the domain in which the data is
contained. A notable additional feature of Prior Networks as compared to previous
methods is the ability to explicitly capture and model distributional uncertainty,
the source of which, in this case, is distinct from aleatoric and epistemic uncer-
tainty.

Distributional uncertainty is a common occurrence in real-world applications
that generally stems from data shifts, meaning discrepancies between the train-
ing and test data (Quiñonero-Candela et al. 2010). Specifically, this means that
the model lacks familiarity with the distribution of the test data, having solely
observed the distribution of the available training data. Di�erentiating this type
of uncertainty from other sources is useful in determining and engineering an ap-
propriate response, one of which is to update the current data distribution to
encapsulate the out-of-distribution samples.

The underlying theoretical framework of the methodology will be presented in
order to provide an understanding of the workings of the method, before highlight-
ing the di�erences and similarities to other available methods. A brief introduc-
tion to the traditional approach to uncertainty estimation in a similar framework
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should be presented as to provide the basis of the extended functionalities of the
Prior Networks. Using Malinin and Gales (2018)’s notation, generally, the tradi-
tional approach for capturing predictive uncertainty in a model is formulated in
Equation (3.14), considering a distribution p(x, y) over input features and corres-
ponding labels.

P (y|x, D) =
⁄

P (y|x, ◊
¸ ˚˙ ˝

Data

) p(◊|D)
¸ ˚˙ ˝

Model

d◊ (3.14)

This formulation states that in a Bayesian framework, given a finite dataset
D = {xj, yj}

N
j=1 ≥ p(x, y) for training, the predictive uncertainty of classification

models is given as P (y|x, D) for an input sample x. In this framework, the predict-
ive uncertainty of the model stems from a combination of aleatoric and epistemic
uncertainty, estimated as the posterior distribution over class labels with corres-
ponding model parameters ◊, and the posterior distribution over said parameters
given the training data, respectively.

Obtaining the true posterior p(◊|D) is not necessarily feasible (Kingma, Sali-
mans and Welling 2015), and therefore, an explicit or implicit variational approx-
imation, q(◊), is usually employed in its stead, meaning p(◊|D) ¥ q(◊) (Blundell
et al. 2015). The integral, as given in Equation (3.14), oftentimes needs to be
approximated by sampling, as it may be computationally infeasible to calculate.
Some ways of sampling include, but are not limited to, Monte Carlo Dropout (Gal
2016), Langevin Dynamics (Welling and Teh 2011) or Explicit Ensembling (Laksh-
minarayanan, Pritzel and Blundell 2016). A formalization of a sampling procedure
is provided in Equation (3.15).

P (y|x, D) ¥
1

M
�M

i=1 P (y|x, ◊
(i)), ◊

(i)
≥ q(◊) (3.15)

When considering an ensemble {P (y|x, ◊
(i))}M

i=1, each member, formalized as
P (y|x, ◊

(i)), can be viewed as a categorical distribution µ over labels conditioned
on the input sample x. By use of a simplex each of these aforementioned members
can be visualized, as a collection of distinct points, which, induced via the posterior
distribution over the model parameters, are equivalent to samples of categorical
distributions from an implicit conditional distribution. Simplex visualizations are
statistical concepts that can be used to illustrate the behavior of Prior Networks,
by associating class labels with vertices and representing predictions based on their
particular location as points on the simplex. Essentially, the closer a point is to a
vertex, the more confident the prediction is.

Malinin and Gales (2018) show this in Figure 3.3.1, as a collection of distinct
points representing each member in an ensemble, and the corresponding categor-
ical distribution, in the left and right simplex, respectively.
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(a) Ensemble Representation (b) Categorical Distribution

Figure 3.3.1: For the same input x each member of an ensemble is visualized as
distinct points in the left simplex, alongside the corresponding categorical distri-
bution, in the right simplex (Malinin and Gales 2018).

On this foundation, Malinin and Gales (2018)’s contributions and additions
to the presented traditional framework can be introduced. Stated specifically, the
goal of Prior Networks, which essentially are DNN’s, is to explicitly parameterize a
distribution over distributions by training the network to emulate the behavior of
traditional implicit Bayesian distributions. The desired behavior of such a model
in di�erent scenarios is visualized in Figure 3.3.2, presented by Malinin and Gales
(2018)

Ideally, the neural network should produce a sharp distribution in one of the
corners of a simplex, as shown in Figure 3.3.2c, to signal confidence in its predic-
tion. Conversely, in the case of an out-of-distribution sample, a flat distribution
should be present on the simplex, as is the case in the leftmost simplex in Figure
3.3.2a. For samples located in a region with high data uncertainty, a sharp distri-
bution should be present in the center of the simplex, indicating that the model
is confidently predicting a flat categorical distribution over class labels, as seen in
Figure 3.3.2b.

(a) Out-of-distribution
sample

(b) High Aleatoric Uncer-
tainty

(c) High Prediction Confid-
ence

Figure 3.3.2: Three simplices visualizing the desired behavior of the distribution
over distributions parameterized by the Prior Network , in terms of OOD-samples,
high aleatoric uncertainty and high prediction confidence (Malinin and Gales 2018).

As mentioned, one of the additional functionalities implemented by Malinin
and Gales (2018) is the ability to separate distributional uncertainty as a distin-
guished source of uncertainty by including the term p(µ|x, ◊) to Equation (3.14),
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resulting in the formulation as stated in Equation (3.16). Traditionally, distribu-
tional uncertainty has been contained within the model uncertainty, as opposed to
being viewed as a separate source. Malinin and Gales (2018), however, claim the
distinction to be viable and useful, to identify a mismatch between the training
and test data’s domains. As such, Equation (3.16) states the new structure, which
has previously been experimented with and introduced by Blei, Ng and Jordan
(2003). Note that in the following formulations, µ refers to the categorical distri-
bution over class labels y conditioned on the input x, sampled from q(◊).

P (y|x, D) =
⁄ ⁄

p(y|µ)
¸ ˚˙ ˝

Data

p(µ|x, ◊)
¸ ˚˙ ˝

Distribution

p(◊|D)
¸ ˚˙ ˝

Model

dµd◊ (3.16)

The presented formulations can be used to evaluate the performance of a Prior
Network by deriving certain standardized evaluation metrics, all of which have
been marginalized from Equation (3.16). Max probability, which measures pre-
diction confidence, and entropy, which represents the uncertainty related to the
predictive distribution, are standardized evaluation metrics within machine learn-
ing frameworks, which, combined, can be viewed as an encapsulation of the total
uncertainty of a prediction (Tom M. Mitchell 1997; Gal 2016; Hendrycks and Gim-
pel 2018).

Equation (3.17) states the relevant measure of max probability related to a
specific class c, marginalized from Equation (3.16), whereas the measure of entropy
H(), similarly, is stated in Equation (3.18). Combined, these measures represent
the total uncertainty of predictions.

P = max
c

P (y|x; D) (3.17)

H[P (y|x; D)] = ≠�K
c=1 ln(P (y|x, D)) (3.18)

Another standardized measure, Mutual Information (MI), can be applied to
implicitly capture model uncertainty. MI can be viewed as a measurement of
mutual dependence between two random variables (Witten, Frank and Hall 2016),
which, in this framework, refers to labels y and model parameters ◊. By employing
this measure it is possible to capture the reduction in uncertainty of a variable,
assuming the value of the corresponding variable is known, resulting in the spread
of the assembly P (y|x, ◊

(i))M
i=1 being captured. This spread can be interpreted

as model uncertainty, implicitly. Equation (3.19) defines the MI measure I() by
marginalizing out µ from Equation (3.16).

I[y, ◊|x, D]
¸ ˚˙ ˝

Model Uncertainty

= H[Ep(◊|D) [P (y|x, ◊)]]
¸ ˚˙ ˝

T otal Uncertainty

≠ Ep(◊|D) [H[P (y|x, ◊)]]
¸ ˚˙ ˝
Expected Data Uncertainty

(3.19)

This formulation is derived by Depeweg et al. (2018), based on the assumption
that the model uncertainty can be obtained by subtracting the expected data
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uncertainty from the measure of total uncertainty, captured by the entropy of
each member contained in the ensemble. By marginalizing out ◊ from Equation
(3.16) instead, the MI between labels y and µ can be obtained, which, essentially,
is an explicit measure of the spread due to the distributional uncertainty rather
than the implicit measure in Equation (3.19), as it mimics the behavior of the MI
between y and ◊.

I[y, µ|x; D]
¸ ˚˙ ˝

Distributional Uncertainty

= H[Ep(µ|x;D)[P (y|µ)]]
¸ ˚˙ ˝

T otal Uncertainty

≠ Ep(µ|x;D) [H[P (y|µ)]]
¸ ˚˙ ˝
Expected Data Uncertainty

(3.20)

Another measure of uncertainty, Di�erential Entropy, provided in Equation
(3.21) can also be used to evaluate a Prior Network, capturing distributional un-
certainty by recognizing when the distribution is flat and the corresponding spread
of samples is the greatest (Blahut 2002; Pichler et al. 2022).

H[p(µ|x; D)] = ≠

⁄

SK≠1
p(µ|x; D) ln(p)(µ|x; D) dµ (3.21)

In subsequent work Malinin, Chervontsev et al. (2020) extend this frame-
work to encapsulate regression models, obtaining measures of epistemic, total and
data uncertainty. Instead of yielding point-estimate predictions, the distribution
p(y|x, ◊) over the target y œ R

K is parameterized by a probabilistic regression
model, resulting in a normal distribution with mean µ and a positive-definite
symmetric precision matrix �, formalized in Equation (3.22).

p(y|x, ◊) = N (y|µ, �) where {µ, �} = f(x; ◊) (3.22)

Then, to obtain the uncertainty measures, the MI between labels y and the
parameters of the output distribution {µ, �} is evaluated. These measures are
stated in Equation (3.23).

I[y, {µ, �}]
¸ ˚˙ ˝

Epistemic Uncertainty

= H[Ep(µ,�|x,◊[P (y|µ, ⁄)]]
¸ ˚˙ ˝

T otal Uncertainty

≠ Ep(µ,�|x,◊) [H[P (y|µ, �)]]
¸ ˚˙ ˝

Expected Data Uncertainty

(3.23)

Malinin and Gales (2018) proved the viability of the method by performing well
in terms of capturing distributional uncertainty on certain tasks using the MNIST
and CIFAR-10 benchmark datasets. Once again, advantages and disadvantages
as compared to the other presented methods will be presented in the discussion
in Section 5.

3.4 Evidential Deep Learning
Evidential Deep Learning refers to a related class of models that have appeared
concurrently to Prior Networks that are structurally similar, but mainly di�er in
regards to the training regimes (Sensoy, Kaplan and Kandemir 2018; Amini et
al. 2019). The methodology is based on the notion that learning is an evidence-
acquisition process, by combining the Dempster-Shafer Evidence theory (Sentz
and Ferson 2002) with Subjective Logic (Jøsang 2016), aiming to increase the
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predictive confidence by means of introducing additional evidence. Specifically,
Evidential Deep Learning is concerned with predicting a Dirichlet distribution
of class probabilities, which is then evaluated as an evidence acquisition process
(Bao, Yu and Kong 2021). Estimating the parameters of this distribution enables
modeling aleatoric uncertainty as part of the predictive process.

As such, to understand the method’s underlying theoretical foundations, the
Dempster-Shafer Evidence Theory and Subjective Logic need to be introduced.
The former aims to generalize Bayesian theory to subjective probabilities, as a
scheme for expressing uncertainty inside an Evidential Deep Learning framework
(Heendeni et al. 2008). This is accomplished by considering a set of propositions
and subsequently assigning an interval of the degree of belief in which the set must
lie. The theory is also equipped for handling out-of-distribution samples, as the
probability theory enables certain beliefs to be unassigned to any of the potential
candidates as a means of representing ignorance or insu�cient knowledge.

As opposed to traditional Bayesian methods, which mostly aim to indirectly
infer prediction uncertainty through weight uncertainties, Sensoy, Kaplan and
Kandemir (2018) aimed to explicitly model this by use of Subjective Logic, which
formalizes the Dempster-Shafer belief statements as a Dirichlet distribution. This
specific distribution is commonly used as a prior distribution in Bayesian statist-
ics, following Jøsang (2016)’s structure. Combining the two, a framework can be
concretized , which will be presented in this section. The notation and derivation
for said framework is presented by Sensoy, Kaplan and Kandemir (2018). Note
that this primary implementation is based on classification models, whereas ex-
tended functionality to regression models will be introduced subsequently.

Considering K mutually exclusive class labels, hereby referred to as singletons,
with a corresponding belief mass bk assigned to each k = {1, . . . , K}, as well
as an overall uncertainty mass u, the identity as described in Equation (3.24)
applies, where the total sum equals one. The belief mass is a measure of belief or
support assigned to a specific hypothesis, in this case classes for a specific sample,
representing the degree to which the available evidence supports the hypothesis.

u + �K
k=1bK = 1 (3.24)

This identity applies for bk Ø 0 and u Ø 0, where the belief mass bk for each
singleton is calculated using the evidence for said singleton, described by ek Ø 0
for the k

th singleton. On this basis, the belief mass bk and uncertainty mass µ can
be defined as

bk = ek

S
, u = K

S
(3.25)

where S = �K
i=1(ei + 1). This correlates directly to the behavior of a Prior

Network, as a subjective opinion, stated as a belief mass b = (b1, . . . , bK), can be
seen as a sample from a Dirichlet distribution. This is done by using a probability
density function on a vector p, with corresponding parameters – = (–1, . . . , –K),
resulting in the formulation as presented in Equation (3.26). The Dirichlet distri-
bution can then be viewed as a probability density function for possible values of
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said vector p.

D(p|–)
¸ ˚˙ ˝
Dirichlet

=

Y
]

[

1
B(–)

rK
i=1 p

(–i≠1)
i=1 for p œ SK

0 otherwise
(3.26)

In this formulation, B() refers to the K-dimensional multinomial Beta function
(Kotz, Narayanaswamy and Johnson 2000), and SK refers to the K-dimensional
unit simplex, stated as

SK =
Ó
p|

qK
i=1 pi = 1 and 0 Æ {p1, . . . , pK} Æ 1 (3.27)

Equation (3.28) represents the relationship to the Dirichlet distribution, as the
expected probability for the K ≠th class label, considering an opinion, is the mean
of the corresponding Dirichlet distribution, calculated as

p̂k = –k

S
(3.28)

The team claims that DNN’s are inherently equipped to form opinions regard-
ing classification tasks by means of Dirichlet distributions, based on the presented
formulations. Specifically, whenever a novel observation regarding a sample is re-
lated to an attribute, the Dirichlet parameter can be adjusted in order to adjust
the corresponding distribution, essentially using the parameters of the Dirichlet
distribution to represent the evidence for each class.

Then, the epistemic uncertainty can be obtained from Equation (3.25), assum-
ing –i = {–i1, . . . , –iK} to be the Dirichlet distribution’s parameters for a sample
i, as (–ij ≠ 1) can be used to represent the total evidence estimated by the DNN
for the assignment of the sample i to the j ≠ th class. The mean-squared-error
(MSE) can be minimized to optimize and train a Deep Evidential Learning model
structured as presented, based on a sample X and one-hot labels yi. The formu-
lation of this loss function is denoted as

Li(�) = Epi ≥ D(pi|–i)[||yi ≠ pi||
2
2] = �K

j=1(yij ≠ p̂ij)2 + p̂ij(1 ≠ p̂ij)
(Si + 1) (3.29)

Amini et al. (2019) further extend the work presented by Sensoy, Kaplan and
Kandemir (2018) to encapsulate regression models. The foundations of the frame-
work is modeled on a maximum likelihood perspective, based on maximizing the
likelihood of observing a specific set of training data, assuming the targets yi are
I.I.D. and obtained from a Gaussian distribution with mean and variance para-
meters ◊ = (µ, ‡

2). The objective is to infer the parameters ◊ that maximize the
likelihood of observing specific targets, defined by p(yi|◊). One approach for ob-
taining the aleatoric uncertainty related to a process modeled by Deep Evidential
Learning is to learn these model parameters ◊, captured through minimizing the
negative log-likelihood loss function, given as

Li(w) = ≠log p(yi| µ, ‡
2

¸ ˚˙ ˝
◊

) = 1
2 log(2fi‡

2) + (yi ≠ µ)2

2‡2 (3.30)
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One drawback of this procedure, however, is the fact that the epistemic un-
certainty cannot be obtained concurrently, meaning a specialized approach is ne-
cessary. One such approach consists of placing high-order prior distributions over
the learned parameters of the observed samples’ distribution. Amini et al. (2019)
provide a illustration of this structure, in Figure 3.4.1. The figure details the archi-
tecture of a Deep Evidential Learning model, where the model learns a continuous
target with corresponding measures of aleatoric and epistemic uncertainty, based
on inferring the parameters of an evidential prior distribution. This prior distri-
bution ideally models higher-order probability distributions over the parameters
◊ = (µ, ‡

2).

Figure 3.4.1: Amini et al. (2019) visualize the overall structure of Deep Evid-
ential Learning models for input data x. The maximum likelihood optimization
approach involves estimating the probability distribution of the data by learning
from available information. In contrast, the evidential distribution technique fo-
cuses on constructing probability distributions of higher order that encapsulate
the probability distribution of the parameters that define the likelihood distribu-
tion. These distributions will be further introduced.

The relationship between high order evidential distributions and low order
likelihood distributions is illustrated in Figure 3.4.2, this time in terms of the
parameters µ and ‡

2. The degree of certainty in the model parameters at the
higher-order distribution, specifically the variance ‡

2 and mean µ, results in the
derivation of lower-order distributions over the data, p(y|µ, ‡

2).
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Figure 3.4.2: Illustration of the relationship between high-order evidential dis-
tributions and low-order likelihood distributions, in terms of µ and ‡

2, presented
by Amini et al. (2019). The left quadrant, (A), shows the evidential distribution
from which the single realization sampling in (B) is drawn, and the relationship
to the corresponding low-order likelihood distributions, in (C). Denser probability
mass is indicated by use of darker blue shading.

The evidential prior distributions, as presented in Figures 3.4.1 and 3.4.2, are
placed on unknown model parameters ◊ = (µ, ‡

2) with the intention of probab-
ilistically estimating them. This is done by initially placing a Gaussian prior on
the unknown mean, and an Inverse-Gamma prior on the unknown variance, which
approximates the Gaussian conjugate prior, referred to as the Normal-Inverse
Gaussian (NIG) distribution. Assuming (yi, . . . , yN) ≥ N (µ, ‡

2), the formulations
in Equation (3.31) can be derived.

µ ≥ N (“, ‡
2
⁄

≠1) and ‡
2

≥ �≠1(–, —) (3.31)

In these formulations the Gamma function is represented by �() and the NIG
parameters by “, ⁄, – and —. Single instances N (µi, ‡

2
i ) from the likelihood func-

tion can be obtained from the NIG distribution by drawing samples of ◊, from
which the parameters of the NIG distribution may be used to obtain the uncer-
tainty. Based on this foundation, Amini et al. (2019) present two terms that make
up the loss function used to train the Evidential Deep Learning model, as stated
in Equation (3.32). The statement is based on maximizing and regularizing the
evidence, scaled by a regularization coe�cient ⁄. This formulation is useful as it
provides a guideline for training a model based on a similar structure.

Li(w) = L
SOS
i (w) + ⁄L

R
i (w) (3.32)

The two terms that form the above statement are described in Equations (3.33)
and (3.34). L

SOS
i (w) represents the negative log-likelihood, derived from the sum-

of-square deviations. After performing evaluations in regards to the e�cacy of
this function, the approach was deemed desirable, as it provided the most stable
performance.

L
SOS
i (w) = log

A
—(1 + ⁄)

⁄
+ (– ≠ 1)(yi ≠ “)2

B

+ log

A
�(– ≠ 1)

�(–)

B

(3.33)
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The conventional practice in variational inference has been to utilize Kullback-
Leibler divergence to minimize the disparity between a derived posterior and a
prior, thereby ensuring that the training process is properly constrained. However,
for NIG distributions characterized by low levels of evidence, such a procedure
is deemed ill-defined (Soch and Allefeld 2016), leading to the formulation of a
specialized regularizer for evidence, as outlined below.

L
R
i (w) = |yi ≠ E [µi] ◊ „ = |yi ≠ “| ◊ (2⁄ + –) (3.34)

The underlying rationale behind utilizing this regularizer is to penalize pre-
diction errors and scale with the total evidence of the inferred posterior. Finally,
based on the NIG distribution definitions, as stated in Equation (3.35), the aleat-
oric and epistemic uncertainty of the system can be obtained, through the mean
and variance, as is the standard approach.

E [‡2] = —

– ≠ 1¸ ˚˙ ˝
Aleatoric Uncertainty

and V ar[µ] = —

(– ≠ 1)⁄
¸ ˚˙ ˝
Epistemic Uncertainty

(3.35)

Similarly, the prediction itself is obtained through the property presented in
Equation (3.36).

E [µ] = “ (3.36)
The results Sensoy, Kaplan and Kandemir (2018) and Amini et al. (2019) ob-

tained from their experiments suggest that Evidential Deep Learning could hold
certain advantages as compared to other traditional methods within the field,
concluding that "the e�ciency, scalability, and calibration of our approach could
enable the precise and fast uncertainty estimation required for robust NN deploy-
ment in safety-critical prediction domains" (Amini et al. 2019). A comprehensive
discussion regarding the advantages and areas of use, as well as potential limita-
tions of the method will be presented in Section 5.

3.5 Temperature Scaling
Temperature Scaling is a post-processing calibration method developed by Guo
et al. (2017) intended for a slightly di�erent area of application as compared to
the other presented methods. The primary objective of Temperature Scaling is to
re-calibrate prediction probabilities in classification models, to address the issue of
overconfident prediction values, with the intention of obtaining well-calibrated con-
fidence estimates. However, while the method has been acknowledged as a means
of quantifying total predictive uncertainty in the calibrated probabilities (Davis,
Zhu and Oldfather 2020), it is not su�ciently equipped to explicitly capture aleat-
oric and epistemic uncertainty, particularly in terms of out-of-distribution samples
(Ovadia et al. 2019).

Generally, calibrated confidence predictions refer to probabilities that indicate
the extent to which a prediction corresponds to the likelihood of correctness with
respect to the ground truth. In spite of its simplicity, the technique of Temperat-
ure Scaling has been shown to be remarkably e�ective at calibrating classification
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predictions. The findings suggest that the method can serve as a valuable sup-
plementary feature for any classification model that aims to generate confidence-
aware predictions, particularly due to the fact that it can be readily implemented
into existing deep learning architectures, removing the need for intrusive or ex-
cessive model structure adjustments.

Guo et al. (2017) present a standardized approach for implementing Temper-
ature Scaling as a probabilistic model prediction calibrator for multi-class classi-
fication tasks, based on the core theoretical foundations of Jaynes (1957), as well
as the introduction of the theory into the field of machine learning by G. Hinton,
Vinyals and Dean (2015a).

Essentially, a single scalar parameter T > 0, referred to as the temperature,
constitutes the theoretical basis of the method. This parameter is used to re-scale
the logit scores traditionally used to calculate the softmax outputs. Usually, the
value of this parameter can be evaluated analytically, using the validation set. As
such, the method can be described as a single-parameter version of Platt Logistic
Scaling, previously introduced by Platt (1999).

Utilizing the notation presented by Guo et al. (2017), assuming a logit vector
zi, the calibrated confidence prediction can be stated as

q̂i = max
k

‡SM

3
zi

T

4k

(3.37)

assuming K > 2 classes, where ‡SM refers to the softmax function, as previ-
ously presented in Equation (2.15). The single scalar value T dictates the behavior
of the predicted confidence, as di�erent scenarios arise depending on the value of
said temperature, namely when:

T æ Œ: As the temperature T approaches infinity, the probability q̂, as
defined in Equation (3.37), converges towards 1

K , which can be interpreted
as the upper bound of possible uncertainty.

T > 1: The act of raising the output entropy of the softmax function e�ect-
ively results in the moderation of the softmax.

T = 1: A temperature of 1 corresponds to the initial probability p̂i.

T æ 0: A temperature of 0 leads to the corresponding probability being
reduced to a point mass, i.e. q̂i = 1.

The optimal value of T can be evaluated analytically by minimizing the neg-
ative log-likelihood on a held-out validation dataset, given a probabilistic model
fî(Y |X) with n samples, as stated in Equation (3.38).

L = ≠�n
i=1log(fî(yi|xi)) (3.38)

A crucial characteristic of Temperature Scaling is that the technique does not
influence the model’s overall accuracy, as the temperature parameter T does not
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directly impact the softmax function’s maximum value. Consequently, the model’s
class predictions remain unmodified. An illustration of the structure of a neural
network employing Temperature Scaling is provided in Figure 3.5.1.

Figure 3.5.1: Example architecture that depicts the structure that emerges fol-
lowing implementation of Temperature Scaling in a neural network. The logit
scores produced by the neural network are given as input to the softmax function,
along with the temperature T , which is utilized to adjust the scale of the resulting
probability scores, as specified. As is evident from the illustration, the method is
post-hoc, and thus requires no altercations to the model structure itself.

Standardized evaluation metrics for evaluating the e�cacy of the performed
calibration exist, one of which will be presented in Section 4.6, alongside a prac-
tical implementation of the method. Based on the e�ectiveness and simplicity
of Temperature Scaling as a means of calibrating prediction values, the method
should be considered a possible supplement to any classification model concerned
with generating uncertainty-aware inferences. Note that due to the fact that the
method is based on the re-scaling softmax logits, it is merely applicable in classi-
fication contexts and not regression tasks.
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PRACTICAL EXPERIMENTS

In the upcoming section practical implementations of Monte Carlo Dropout, Deep
Ensembles, and Temperature Scaling will be presented. These specific methods
have been selected as the primary focus for the practical experiments due to various
reasons, primarily centered around feasibility, which will be elaborated upon in
Section 5.

4.1 Softmax Output Compared to Monte Carlo
Dropout Probabilities

As discussed in Section 2.2.2, one of the major drawbacks of the traditional use
of the softmax activation function is the function’s inherent inability to capture
overall prediction confidence or uncertainty. As such, a natural starting point with
regard to evaluating the e�ectiveness of Monte Carlo Dropout in mitigating this
deficiency is to compare the outputs produced by a traditional neural network with
a softmax activation layer, to the prediction probabilities obtained from utilizing
Monte Carlo Dropout in the same network.

To explore this feature an experiment based on the LeNet-5 convolutional
neural network, originally presented by LeCun et al. (1998), was performed. The
model, whose architecture is presented in Figure 4.1.1, was trained on the MNIST
dataset introduced by Deng (2012), and subsequently used to classify samples
from said dataset.

47
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Figure 4.1.1: Model architecture of the developed CNN. The structure is based
on the original LeNet-5 model presented by LeCun et al. (1998), and consists of
two convolutional layers, two max-pooling layers, one flatten layer and three dense
layers. Dropout is performed before each of the dense layers, with a dropout rate
(p = 0.3) that was evaluated analytically by use of a validation set. The fact
that this pre-existing dropout structure can be used to quantify uncertainty is
the core feature of Monte Carlo Dropout. Otherwise, the relevant dimensions and
parameters are presented underneath each layer of the network.

Initially, the trained model was used to perform inference on a sample from
the MNIST dataset, belonging to the class 0. The generated prediction from the
standard network is shown in terms of the softmax output from the final layer of
the model, presented in the first row in Table 4.1.1. The model correctly classifies
the sample as the digit 0, but does not, however, represent any uncertainty related
to this prediction, as expected.

Subsequently, the same model was used to classify the sample, this time by
using Monte Carlo Dropout with 100 forward passes through the network. The
resulting prediction probabilities from this experiment are shown in the second
row of Table 4.1.1. As shown by the classification probabilities, the model is still
confident that the sample belongs to class 0, but is now able to provide additional
information by means of a probability estimate in regards to the confidence of the
inference. This uncertainty measure is obtained by averaging the predicted class
probability for each of the classes obtained from the forward passes through the
network. Due to the relative low complexity of the data and model, the upper
limit of the recommended range of [30-100] stochastic forward passes provided by
Gal and Ghahramani (2016) was used.



4.2. MONTE CARLO DROPOUT REGRESSION EXPERIMENT 49

MNIST Label 0 1 2 3 4 5 6 7 8 9
Softmax Output 1 0 0 0 0 0 0 0 0 0
MCD Probability 0.996 0.0 0.002 0.0 0.0 0.0 0.001 0.001 0 0.001

Table 4.1.1: The softmax output produced by the initial CNN, as compared to
the prediction probabilities produced by the MCD model. Both models correctly
classify the sample as the digit 0, although only the MC Dropout model is able to
provide a measure of uncertainty related to the inference.

Finally, a few practical notes in terms of the implementation are useful. In
most cases, merely specifying the model’s training mode to be true during infer-
ence is a su�cient implementation of Monte Carlo Dropout. Issues could arise,
however, in scenarios where di�erent parts of the model behave di�erently during
inference and training, for example during batch normalization. Therefore, it is
advisable to adopt the implementation as presented by Géron (2019) based on cre-
ating a custom layer that inherits from the regular Dropout feature, thus ensuring
that dropout is switched on without interfering with any other parts, as intended.
An example implementation of this in the Keras framework is presented in the
below code snippet. This specific illustration is based on the Keras framework,
but the overall logic and structure is applicable across di�erent machine learning
frameworks.

1 class MonteCarloDropout (keras. layers . Dropout ):
2 def call(self , inputs ):
3 return super ().call(inputs , training = True)

Listing 4.1: Monte Carlo Dropout layer implemented in Keras..

Note that as dropout was already utilized as a regularization technique in the
initial CNN, no adjustments to the model structure other than ensuring dropout
to be true during inference were necessary in order to implement Monte Carlo
Dropout.

4.2 Monte Carlo Dropout Regression Experiment
To explore the functionality of Monte Carlo Dropout within regression tasks, an
experiment based on the Boston Housing dataset was performed. The Boston
Housing dataset is derived from a study performed by the U.S. Census Service re-
garding the housing market in the Boston area, and provides 14 attributes for 506
distinct houses that can be used to predict the median value of a sample house,
in $1000Õ

s. As mentioned, uncertainty in regression tasks can be represented by a
predictive mean and corresponding probability distribution.

A neural network consisting of three dense layers with ReLu non-linearities,
with dropout applied with a rate of p = 0.1 between said layers, was developed for
the experiment. The model architecture is inspired by the structure proposed for
regression tasks by Gal and Ghahramani (2016), and is visualized in Figure 4.2.1.
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Figure 4.2.1: Model structure developed for the Monte Carlo Dropout regression
task. The network is relatively simplistic, and consists of three dense layers with
dropout applied between each of the layers. The dimensions of each layer is shown
in the plot, and the dropout rate used is p = 0.1. The overall structure is inspired
by Gal and Ghahramani (2016), and included to illustrate how a DNN employing
dropout can be utilized to quantify uncertainty in a regression task.

After fitting the model to the training data, 100 passes through the network
were performed on a sample consisting of 14 attributes, in order to generate a pre-
diction regarding the median value of said sample. The results from the experiment
are presented in Figure 4.2.2, in terms of a predicted mean and a corresponding
density function around this mean. Once again, this amount of forward passes is
feasible due to the low complexity of the data and model.
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Figure 4.2.2: Result from performing 100 forward passes through the Monte
Carlo Dropout model. The predicted mean, which represents the estimated me-
dian value of the sample in $1000Õ

s, is provided with a corresponding probability
density around said mean, as a measure of confidence in the regression estimate.

Practically, this is done by obtaining a predictive distribution through stochastic
forward passes of the model, and then using the predicted mean as a point estim-
ate. The results from this experiment show how adapting Monte Carlo Dropout
in a regression model can generate a predictive mean and corresponding probab-
ility density, which provides a measure of uncertainty in terms of the generated
predictions.

4.3 Softmax Probabilities on OOD Samples
To demonstrate the inadequacies of the softmax function in capturing OOD samples,
a classification experiment based on augmented samples from the MNIST dataset
was performed, the results of which are presented in Figure 4.3.1. The experiment
was designed to demonstrate the softmax activation layer producing erroneously
confident predictions when dealing with OOD samples, using the previously de-
veloped CNN without Monte Carlo Dropout, as presented in Figure 4.1.1.

Figure 4.3.1 details the classification probabilities produced by the model, util-
izing the softmax activation layer, for a continuously rotated sample of a hand-
drawn digit 1 from the MNIST benchmark dataset. As seen by the graphs,
dependent on the angle of rotation of the digit, the model predicts the sample
confidently as either 1, 2 or 7. As discussed in Section 4.3, the reason for this
misrepresentation is the softmax function’s inherent mathematical properties, as
it is merely capable of presenting the probabilities in terms of their comparat-
ive value against the other modeled classes, which produces erroneously confident
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predictions when OOD samples are introduced.

Figure 4.3.1: Demonstration of the softmax activation function’s inability to
capture OOD samples. Augmentations, in the form of rotations, performed on
the digit 1 from the MNIST dataset result in the model producing erroneously
confident predictions depending on the angle of said rotations. Especially looking
at the ranges of rotation [100-175] and [275-350] degrees, it becomes evident that
the confidence the model has in its predictions is misleading and how, therefore,
softmax values should not be misconstrued as general model confidence. Note that
the confidence measure in the graph refers to the softmax output of the model,
and not overall model confidence, as discussed.

Although the softmax activation layer is an e�ective feature within class prob-
ability estimation for in-distribution samples, it is severely limited in terms of cap-
turing out-of-distribution samples, as it treats each class as mutually exclusive.
Approaches aimed as explicitly modeling a separate OOD-class have been pro-
posed to amend for this limitation, although approaches such as Deep Ensembles
have been shown to be a more e�ective method for capturing distributional shifts
(Lakshminarayanan, Pritzel and Blundell 2016).

4.4 Deep Ensemble on OOD Samples
Deep Ensembles are widely considered an e�cient and robust approach for cap-
turing OOD samples that mitigates the deficiencies of merely using the softmax
activation layer. To evaluate the e�ectiveness of this approach, a classification ex-
periment based on the original paper by Lakshminarayanan, Pritzel and Blundell
(2016) and the experiment presented in Section 4.3 was performed, the results
from which are presented in Figure 4.4.1.
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Firstly, the LeNet-5 inspired model, as presented in Figure 4.1.1, was fitted
to the MNIST dataset and subsequently introduced to OOD samples from the
notMNIST dataset, which are presented underneath the x-axis of the graph. The
results from the single network’s inferences are presented as the blue line, and
represent the softmax probabilities related to the predicted class. Note that the
predicted class labels are not presented, due to the fact that none of the samples
belong to the data distribution to which the model has been fitted, and thus the
model should ideally not be confident in any of it’s predictions. As expected, how-
ever, the model is erroneously confident in it’s predictions, even though it does
not actually recognize the samples.

Figure 4.4.1: Experiment comparing a single network against an ensemble of 5
pseudo-randomly initialized instances of said network in terms of capturing OOD
samples sampled from the notMNIST dataset, which are shown underneath the
x-axis of the graph. The single network produces erroneously confident predictions
and is not able to represent the fact that it has not been trained to recognize the
provided samples. The ensemble, however, generates uncertainty-aware predic-
tions that are more representative of the fact that the samples are not contained
in the modeled data distribution. Note that the exact class the single network
and ensemble predict are not presented, but rather the corresponding probabil-
ity/confidence of the prediction itself. Due to the fact that none of the samples
belong to the known data distribution, this information is su�cient in terms of
demonstrating the erroneous nature of this representation.

The Deep Ensemble consists of 5 pseudo-randomly initialized instances of the
single model fitted to the MNIST dataset, with the resulting classification probab-
ilities being represented by the green line. The ensemble is based on the random-
ization approach presented by Lakshminarayanan, Pritzel and Blundell (2016),
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where the members of the ensemble are trained concurrently and independently.
As mentioned, the optimal amount of members in an ensemble can be evalu-
ated empirically, however, 5 members is widely recognized as a viable structure,
which is also proposed as a su�cient amount by Lakshminarayanan, Pritzel and
Blundell (2016). As is evident in the graph, the ensemble better represents the
uncertainty that arises from being introduced to OOD samples, by providing an
adjusted measurement of confidence in it’s predictions, essentially quantifying the
predictive uncertainty of the model.

The results show how generating an ensemble of neural networks provides
an interpretable notion and representation of OOD samples, by averaging the
predictions made by the underlying models. Flexibility exists in terms of the
architecture of the ensemble, as well as the training and optimization procedures
of these models, which is a major advantage of Deep Ensembles.

4.5 Deep Ensemble Regression Task
A regression experiment based on the initial paper by Lakshminarayanan, Pritzel
and Blundell (2016) was performed to compare the performance of a Deep En-
semble to a single model on relatively simplistic toy data. Quasi-randomized data
generated around a cosine function, as visualized in Figure 4.5.1a, was used in
order to estimate the heteroscedastic aleatoric uncertainty around the estimated
regression function. The estimated function is presented as the dark dotted line,
whereas the upper and lower ranges of uncertainty for the single model and en-
semble, measured by the variance around the estimated mean, are represented by
the blue and green lines, respectively. The uncertainty in the range [-4, 0] was
designed to be inherently higher than in the range [0, 4], by increasing the amount
of outliers in the data as well as the general spread. A relatively simplistic dense
neural network with ReLu nonlinearity was used for the experiment, the ensemble
consisting of 5 instances of said network.

The experiment was performed to investigate the e�ect of combining several
deep neural networks, as is the core principle of Deep Ensembles, compared to
merely utilizing the single network, for a simplistic regression task. It is evident
from Figure 4.5.1b that the ensemble produces more accurate uncertainty estim-
ates, especially in terms of the high-uncertainty regions of the data. The main
characteristic and benefit of the Deep Ensemble as compared to the single model,
is it’s robustness in terms of data noise and outliers as the ensemble is able to
better generalize than the single model, which somewhat overfits to the particu-
larities of the generated data.
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(a) Data and Estimated Regression Function (b) Uncertainty Estimates

Figure 4.5.1: Deep Ensemble compared to a single model in capturing the un-
certainty around an estimated regression function related to generated toy data.
Quasi-randomized data was generated around a cosine function, with higher un-
certainty in the range [-4, 0] than in the range [0, 4] in terms of outliers and
general spread, as illustrated in a). The upper and lower bounds of the estimated
uncertainty measured in terms of the variance around the estimated mean of the
5-network ensemble are presented as the green lines, whereas the single network
is presented in blue.

This experiment shows how combining networks in an ensemble can provide
better adjusted uncertainty estimates than merely using a single network in a
regression task. The reasoning for this relates to Condorcet’s jury theorem as
presented in Section 3.2, as the ensemble is more robust and less prone to indi-
vidual errors than a single network. As long as the additional infrastructure load
that arises from hosting several models is feasible, Deep Ensembles are a viable
and e�cient approach for capturing uncertainty in regression tasks.

4.6 Temperature Scaling
To investigate the e�cacy of Temperature Scaling an implementation of the 110-
layer ResNet presented by He et al. (2016) was developed and trained on the
CIFAR-100 dataset (Krizhevsky and G. Hinton 2009). Then, Temperature Scal-
ing was used to calibrate the outputs of the network.

One general recommendation is to integrate Temperature Scaling directly into
the training procedure, where subsequent to training the model the validation set
can be used to obtain the temperature T . Then, this temperature can be used
to re-scale the logit values within the softmax function, as presented in Figure
3.5.1. The re-calibrated softmax probability scores can then be used to convey the
confidence levels of the predictions, which can be evaluated quantitatively through
the use of reliability diagrams, as seen in Figure 4.6.1. These diagrams serve as
a tool for visualizing the degree of alignment between two distributions, namely,
the distributions of expected accuracy and predicted probabilities. Ideally, for a
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perfectly calibrated network, these distributions should be as aligned as to gen-
erate a diagonal function across the diagram. Any deviation from this diagonal
represents miscalibration in the network.

A standardized evaluation metric useful for assessing the e�cacy of calibrations
is the expected calibration error (ECE). This measure is presented by Guo et al.
(2017), derived from the formulations presented by Pakdaman Naeini, Cooper and
Hauskrecht (2015), and is based on dividing predictions into M distinct, equally-
spaced bins. The formulation is derived from the discrepancy between the expected
confidence and the accuracy, which, based on the average ratio of accuracy

confidence from
said bins, is defined in Equation (4.1), where n refers to the total number of
samples. The partitioning of the predictions into distinct, equally-spaced bins
mimics that of the histograms used in the reliability diagrams in Figure 4.6.1.

ECE = �M
m=1

|Bm|

n
|acc(Bm) ≠ conf(Bm)| (4.1)

The measures of accuracy and confidence are presented in Equations (4.2)
and (4.3), respectively, where Bm refers to the set of indices of samples whose
prediction confidence falls within the interval Im = (m≠1

M ,
m
M ), based on M interval

bins sized 1
M .

acc(Bm) = 1
|Bm|

�iœBm1(ŷi = yi) (4.2)

Here, 1 represents an indicator function that takes the value 1 should the
related statement be true, and 0 otherwise. In this case, this refers to scenarios in
which the predicted and actual labels are equal, meaning the prediction is correct.
Also, y and ŷ refers to the true and predicted class label, respectively, whereas p̂i

represents the confidence of a sample i.

conf(Bm) = 1
|Bm|

�iœBm p̂i (4.3)

Using the aforementioned measures as evaluation metrics, the e�ects of employ-
ing the post-hoc calibration method can be visualized in the reliability diagram
in Figure 4.6.1.
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(a) ECE = 18.7 (b) ECE = 2.1

Figure 4.6.1: Reliability diagrams before and after calibration of a 110-layer
ResNet fitted to the CIFAR-100 dataset. The expected calibration error (ECE)
before and after calibration is presented underneath each diagram. As seen in a)
the uncalibrated model tends to be overconfident in its predictions, whereas the
Temperature Scaled model in b) closely resembles the idealized diagonal function,
which is represented by the dotted black line.

In practical terms the temperature can be set to T = 1 during training before
being optimized in terms of the negative log-likelihood on the validation set. After
this, the obtained logits can be multiplied by a parameter 1

T in the softmax layer.
Note that using the same validation set for the training and the calibration is a
prerequisite of Temperature Scaling.

The results demonstrate how simply re-scaling the logit scores using the val-
idation set can combat overconfident predictions and generate better confidence
estimates. Even though each bin is merely adjusted by a single scalar value, the
overall calibration is well-adjusted.
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CHAPTER

FIVE

DISCUSSION

A useful supplement to the presented theory is a discussion and reflection sur-
rounding the potential advantages and disadvantages of the di�erent methods.
The following section will present this, alongside a general overview of which
considerations should be made when implementing a framework for quantifying
uncertainty in a deep learning model.

5.1 Discussion
5.1.1 General Considerations
When considering which uncertainty quantification method to employ for an ap-
plication there is a wide range of factors to consider. Generally, the specific re-
quirements and necessary considerations are highly application-specific, meaning
a definitive guide and answer as to which exact model and method is optimal
for a specific scenario does not necessarily exist. Even so, an informed decision
can be made based on certain underlying guidelines and factors, ranging from
computational e�ciency, storage requirements, scalability, accuracy, interpretab-
ility, robustness, and complexity of implementation. Understanding the specific
requirements and constraints of the task at hand is a major part of the machine
learning field, of which the user has to make an informed decision, based on certain
underlying factors, often multi-variable and complex.

One thing to note is that the presented methods have primarily been experi-
mented with on benchmark datasets and tasks in the available literature, in order
to provide a notion of the method’s generalized performance. However, as with
most machine learning methods, tailoring the model for application-specific use
should prove beneficial in terms of performance. That is to say that any presen-
ted results should not deter one from experimenting with implementing any of
the methods for application-specific use, as the explicit tailoring of the models
and methods for any specific application could greatly improve the performance.
Additionally, fine-tuning of hyperparameters will considerably impact the model’s
overall performance. This means that independent of the choice of model and
uncertainty quantification method, parameter tuning is necessary to obtain high-
quality results and should be considered as a factor independent of the model and

59
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method selection.

In many real-world applications a necessary feature of any viable machine
learning model is the ability to dynamically adapt to changes in the data distribu-
tion over time. Historically, many deep learning systems have been based on the
presupposition that the test and training data share the same distribution. Due
to the dynamic nature of the world and the physical phenomena that these sys-
tems are concerned with however, the validity of this presupposition is somewhat
constrained, as future data tends to steadily diverge from the established distribu-
tion over time. Consequently, the reliability of future predictions can falter. One
critical issue that has been exposed and discussed by Ovadia et al. (2019), Fort,
Hu and Lakshminarayanan (2019) and Nalisnick et al. (2019) is that even though
the predictive performance of a model deteriorates over time following this shift in
data distribution, the corresponding measures of confidence increase, essentially
leading to a concealed failure. On the basis of this phenomenon, some mechanism
for capturing data shifts and detecting OOD samples are deemed critical for any
viable deep learning system.

As per Guo et al. (2017), despite its simplicity, Temperature Scaling has
been shown to improve both the accuracy and calibration of classification models
without the need for intrusive model adjustments. The findings from the experi-
ment performed in Section 4.6 support this notion, by illustrating how the method
can be used to calibrate a trained classification model, supposing it is based on
a softmax activation layer. Employing the method can help identify whether a
model is overly confident or uncertain in its predictions, which combined with its
low computational requirements, relative simplicity of implementation and e�ect-
iveness, means it should be considered a useful supplement to any classification
model. Another advantage of the method is that the running time is highly ef-
ficient, as it scales linearly with the amount of validation set samples, and can
essentially be seen as a one-dimensional convex optimization problem (Guo et
al. 2017). Although several network calibration methods exist, the team claims
that Temperature Scaling is "the simplest, fastest, and most straightforward of the
methods, and surprisingly is often the most e�ective".

Generally, it is natural to distinguish Monte Carlo Dropout and Deep En-
sembles from Prior Networks and Evidential Deep Learning considering certain
factors and features. Structurally it is natural to make this distinction, in addition
to the di�erences related to interpretability, computational complexity and spe-
cialized knowledge requirements. Both Monte Carlo Dropout and Deep Ensembles
are well established and recognized methods within the field, whereas Prior Net-
works and Evidential Deep Learning are relatively new approaches, which di�er
mainly in the fact that they attempt to explicitly incorporate uncertainty into the
model structure itself. Prior Networks and Evidential Deep Learning are gener-
ally considerably more complex than Monte Carlo Dropout and Deep Ensembles in
regard to implementation, interpretability and optimization, and require domain-
specific knowledge and competence. In highly application-specific cases however,
should thorough, pre-existing knowledge regarding the problem domain be avail-
able, these methods might be desirable. In terms of the required competence and
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pre-requisite experience of the user, Prior Networks and Evidential Deep Learning
are also more demanding, which is another contributing factor to recommending
Monte Carlo Dropout and Deep Ensembles as alternative solutions.

The aforementioned reasoning is the rationale behind selecting Monte Carlo
Dropout and Deep Ensembles as the focus for the practical implementations in
Section 4. Prior Networks and Evidential Deep Learning are included in the
thesis to showcase an alternative avenue of research beyond traditional approaches.
These methods show great promise, and future contributions could help further
advance their development and applications.

5.1.2 Monte Carlo Dropout and Deep Ensembles
Deep Ensembles and Monte Carlo Dropout di�er in one fundamental aspect,
namely in terms of the underlying nature of the distributions they generate over
potential functions that fit the data. Generally, the parameters of a neural net-
work outnumber the amount of training samples that the model is fitted to by
a significant amount, meaning, in theory, there exists many di�erent potential
functions that approximate the data-generating function. As such, there exists
many low-loss valleys/minima and regions in the theoretical loss landscape, which
correspond to di�erent viable candidate functions. By combining and ensembling
several of these functions from a Deep Ensemble, through the pseudo-random ini-
tialization of the underlying models, the higher the robustness and likeliness of
this ensemble of functions to accurately portray the underlying data distribution
is, which enables the model to represent the desired low confidence associated with
data points not contained in the initial distribution, otherwise known as out-of-
distribution samples. By doing so, the ensemble obtains a distribution comprised
of diverse functions, located at di�erent low-loss regions (Fort, Hu and Lakshmin-
arayanan 2019).

Monte Carlo Dropout, however, di�ers in a slight but crucial way. Most
Bayesian approaches inherently tend toward one single low-loss valley or region
in the loss landscape, from which it draws its distribution of candidate functions.
Due to this fact, the generated distribution from Monte Carlo Dropout and other
Bayesian approaches are comprised of somewhat similar functions, in regards to
the theoretical data-space as a whole, which means the model is not as robust or
fitted for capturing out-of-distribution samples. Essentially, ensembles can be said
to be better approximators of the true predictive distributions, as there is more
variety in the underlying candidate functions, which can make them more robust
and reliable.

The main advantage of Monte Carlo Dropout is its comparatively low com-
plexity and ease of implementation compared to the other methods, as well as its
applicability within the field of transfer learning. As discussed, no adjustments to
the architecture/structure or retraining of the initial model are necessary, as the
predictions are merely drawn from the predictive distribution obtained through
stochastic forward passes. Also, as these forward passes can be run concurrently,
the computational e�ciency of the method is relatively high. Being able to ex-
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ploit previously trained and optimized models is highly advantageous, reducing
the workload dramatically. The main challenge when implementing the method
is evaluating the optimal dropout rate, based on the complexity of the model
and amount of data, among other factors. Di�erent techniques exist for this, but
generally, empirically evaluating the value by using a validation set is the recom-
mended practice. Monte Carlo Dropout might not be feasible for highly complex
models, as the computational cost of computing multiple forward passes during
inference is more expensive than traditional deterministic predictions.

Deep Ensembles is an alternative approach to traditional Bayesian methods
that is relatively simplistic in terms of implementation, requires little hyperpara-
meter tuning, is parallelizable, and provides high quality uncertainty estimates.
Another benefit of the approach is that it is to a large extent model-independent,
meaning flexibility exists in designing and developing the ensembles’ underlying
neural networks. Deep Ensembles perform well in capturing out-of-distribution
samples, and are able to capture both aleatoric and epistemic uncertainty. The
main drawback of the approach is that it can be resource-demanding, as it requires
the training, storing and optimizing of several models. The ensembles consist of
M times the amount of parameters compared to a single network, which means
that in certain memory-constrained applications, the storage requirements might
be limiting. In such cases, however, the ensemble can be distilled into a simpler
model, as per Bucila, Caruana and Niculescu-Mizil (2006) and G. Hinton, Vinyals
and Dean (2015b).

Also, it is worth to mention that for small tasks with little available data or
highly specialized tasks, Deep Ensembles have not be shown to be as e�ective.
This is somewhat due to the fact that, as previously discussed, the strength of
ensembles stems from generating uncertainty estimates obtained from drawing
candidate functions across a large loss landscape. For a small task with few data
points this landscape is inherently less diverse, in which the additional complexity
of hosting, training and optimizing several distinct models might not be warran-
ted in terms of the overall performance. In such a scenario, Monte Carlo Dropout
should be preferable.

5.1.3 Prior Networks and Evidential Deep Learning
One of the major challenges of utilizing Prior Networks is that they require ex-
plicitly defining and tuning a suitable prior distribution, which can be di�cult
in practice. Also, the complexity of development, implementation and optimiza-
tion is higher than for Monte Carlo Dropout and Deep Ensembles, alongside the
requirement of specialized knowledge on the part of the user. The main advant-
age of the method is that domain-specific knowledge can be implemented directly
into the model structure, which means that less data and less extensive training
procedures might be necessary, as the model does not need to learn and infer
the previously modeled knowledge. In addition, one crucial distinction and ad-
ditional feature of Prior Networks is the fact that they aim to explicitly capture
distributional uncertainty, by parameterizing a prior distribution of the predictive
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distributions. Traditionally, distributional uncertainty has been encapsulated in
the overall model or data uncertainty, where as Malinin and Gales (2018) claim
that this further distinction and categorization is useful, as a means of explicitly
capturing and identifying a mismatch between the domains of the observed data
and the training data.

Evidential Deep Learning, as proposed by Sensoy, Kaplan and Kandemir
(2018), is able to capture both aleatoric and epistemic uncertainty in classific-
ation tasks, and attained attain state-of-the-art results within two specific tasks,
namely detection of OOD queries, as well as endurance against adversarial per-
turbations. In a similar fashion to Prior Networks, Evidential Deep Learning might
potentially shorten and reduce the required training procedure, by explicitly in-
corporating knowledge into the model structure. The main challenges in terms
of Evidential Deep Learning relate to the complexity of development, implement-
ation and optimization. Evidential Deep Learning can be less computationally
e�cient than Prior Networks, as the method involves estimating full probability
distributions, as opposed to estimating point estimates of uncertainty. The inter-
pretability is challenging, as understanding the underlying rationale of decisions
and designing the model structure and underlying probability distributions re-
quires some potentially esoteric knowledge on the part of the user. Even though
the probabilistic representation provided by Evidential Deep Learning in the form
of probability distributions o�er a more comprehensive representation of the un-
certainty, interpreting this information might require expert knowledge and addi-
tional interpretation techniques. Prior Networks, on the other hand, provide less
demanding uncertainty estimates in the form of a variance and standard deviation.

The potentially extensive training and development procedures of the meth-
ods can be limiting as opposed to standard deep learning approaches, especially in
terms of the fine-tuning of hyperparameters. Also, these models are highly sens-
itive to the choice of the prior distribution, which adds to the overall complexity
of the model. The methods are more intrusive than Monte Carlo Dropout and
Deep Ensembles, as more often than not they require restructuring and altering of
the underlying model structure, which further adds to the potential complexity of
the approaches. The methods show promise as novel approaches for quantifying
uncertainty and have been included with the intention of including an avenue for
future research and progress that o�ers an alternative perspective to traditional
methods, although, due to the aforementioned factors, they are not as feasible for
real-world applications as of yet.

5.1.4 Summary
Although no definite statement can be provided in regard to the optimal model and
method selection independent of the task at hand, certain general guidelines and
conclusions can be drawn. Generally speaking, Monte Carlo Dropout and Deep
Ensembles are natural staring points for any endeavor within uncertainty quan-
tification. Both methods have been proven e�ective for quantifying uncertainty,
which, along with their relative simplicity, interpretability, and computational ef-
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ficiency make them desirable as opposed to Prior Networks and Evidential Deep
Learning, which, although promising, are more complex and demand more spe-
cialized knowledge and skills.

Monte Carlo Dropout is desirable over Deep Ensembles in two distinct scen-
arios, namely within transfer learning and should computational complexity and
memory resources be limited. Utilizing pre-existing trained models is often highly
advantageous, which is possible for Monte Carlo Dropout, as the method does
not require restructuring the underlying model architecture. Also, the compu-
tational complexity and memory requirements of Deep Ensembles are higher, as
they require the storing and optimizing of multiple models. Therefore, if host-
ing multiple models poses a concern due to the additional infrastructure load,
Monte Carlo Dropout is a reasonable alternative. Otherwise, Deep Ensembles
have been shown to be well equipped for quantifying uncertainty and capturing
OOD samples, as proven by the state-of-the-art results obtained by Ovadia et al.
(2019).

In classification models Deep Ensembles can be combined with Temperature
Scaling, by calibrating each of the underlying models of the ensemble. By doing so,
the individual models that comprise the ensemble are well adjusted, which reduces
the overall overconfidence of the ensemble and produces more reliable uncertainty
estimates. Temperature Scaling is valuable when interpreting uncertainty estim-
ates in deep learning models, as the method o�ers a way to calibrate the model’s
confidence by adjusting the temperature, thereby enhancing the interpretability
and reliability of the uncertainty estimates.

Should explicitly distinguishing and capturing the uncertainty that arises from
data shifts be desirable, Prior Networks are a potential approach. As opposed to
the other methods, Prior Networks are designed to explicitly capture so-called dis-
tributional uncertainty, which stems from the uncertainty related to a mismatch
between the distributions of the observed data and the training data. Therefore,
the approach is favorable if this feature is particularly desirable for any application.

5.2 Future Work and Literature Gaps
The main field of future interest within uncertainty quantification methods is
scalability. Many of the available methods are severely limited by their computa-
tional complexity, especially when dealing with large amounts of data and complex
models. In order for these methods to be feasible in real-world applications, the
issue of scalability needs to be accounted for. In concordance with this, the com-
putational e�ciency of existing and future methods is an area of vital importance.

Another area of future research is further and more deeply investigating the
underlying sources of uncertainty. Most contemporary methods are primarily
concerned with distinguishing between aleatoric (data), epistemic (model) uncer-
tainty, and potentially the distributional uncertainty. Even further categorization
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could be possible, however, for example parameter uncertainty and structural un-
certainty. Accurately identifying the underlying cause of the uncertainty facilitates
for e�cient managing through implementation of specific countermeasures.

An important aspect of machine learning models is interpretability. Essentially,
the interpretability of a machine learning model refers to the ability to understand
and comprehend how and why the model’s decisions are made, in a way that is
understandable to humans. This is especially important in safety-critical applic-
ations, for the transparency, accountability and trustworthiness of the models, in
addition to facilitating for further improvements and correcting of biases in the
data and model, as well as detecting inconsistencies and errors. Also, provid-
ing insight into the relationships between input features and predictions can help
developers further improve the models. Following the surge in development of
machine learning methods and models it is crucial to recognize the importance of
interpretability, and concurrently develop means and methods of interpreting the
models.

The focal point of attention of uncertainty quantification in deep learning has
previously been directed toward supervised learning tasks. Future work should
include areas such as reinforcement learning, as accurate uncertainty estimates
are important for e�ective decision-making and exploration-exploitation trade-
o�s. Application and implementation of the methods within areas of machine
learning such as long-short-term-memory (LSTM) networks, transformers and self-
supervised/semi-supervised learning should be further explored in the future, fol-
lowing the relevancy and surge in the prevalence of large language models (LLM).

As a means of further improving the e�ectiveness and robustness of Monte
Carlo Dropout, advanced dropout variants should be investigated in future work.
This refers to adaptive or task-specific dropout strategies for dynamically adjust-
ing the dropout rates, based on the complexity of the data or the specific require-
ments and characteristics of the task. Algorithms and methods for counteracting
the computational burden associated with stochastic forward passes through a
network should be investigated, some of which include leveraging hardware accel-
erators, approximate inference methods, or developing better sampling strategies
that can obtain accurate uncertainty estimates with fewer forward passes. Also,
the adaption of Monte Carlo Dropout to structures such as Recurrent Neural Net-
works (RNN) and LSTM networks is a potential future application of the method.
These structures correlate to the ideas underlying Gaussian Process Dynamical
Models and Recursive Gaussian Processes, which means that one would expect
there to exist a suitable dropout approximation for these structures as well. Fi-
nally, exploring the e�ects of hybrid approaches, where Monte Carlo Dropout is
combined with other uncertainty quantification methods such as Deep Ensembles
should be more deeply explored in future work.

An active area of research within Deep Ensembles is called implicit ensembles,
which refers to structures where the members of an ensemble share model para-
meters, by use of methods such as snapshot ensembles (Huang et al. 2017), mul-
tiple heads (S. Lee, Purushwalkam et al. 2015; Osband et al. 2016) and swapout
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(Singh, Hoiem and Forsyth 2016). Briefly stated, these methods are based on shar-
ing weights during training, before implicitly ensembling them during inference,
which could prove more e�cient than traditional ensembles and might mitigate
some of the storage limitations previously encountered. Most of the current re-
search within Deep Ensembles focuses on random initialization of the weights of
the independent networks of the ensemble, in order to obtain distinct loss traject-
ories across the models. Little research exists in terms of Deep Ensembles within
transfer learning, however, where the goal is to reuse pre-existing trained model
weights.

Another promising approach within Deep Ensembles is based on explicitly de-
correlating the predictions made by the underlying networks, with the intention of
promoting ensemble diversity to improve the overall performance of the ensemble.
This approach is presented by S. Lee, Purushwalkam Shiva Prakash et al. (2016),
and should be further explored within the context of uncertainty quantification in
the future. Two additional features that show promise in terms of improving the
performance of Deep Ensembles are stacking (Wolpert 1992) and adaptive mixture
of experts (Jacobs et al. 1991), which are both methods designed for optimizing
ensemble weights.

As Prior Networks and Evidential Deep Learning are novel approaches within
the field there is a general lack of literature on the e�ectiveness of the methods
within a range of applications, such as natural language processing (NLP), speech
recognition, reinforcement learning and computer vision. Currently, the main lim-
itation of these methods stems from challenges related to scalability and compu-
tational requirements, especially for complex data and models. Better algorithms
and methods for improving the computational e�ciency and scalability should
be developed, some of which include approximate inference, adaptive sampling,
and model compression techniques. Another possible avenue of future work is to
combine Prior Networks with traditional Bayesian approaches, in order to exploit
the strengths of each of the approaches. Approaches such as variational inference
and Markov Chain Monte Carlo Dropout are potential developments within this
concept. Also, the e�ect of Prior Networks and Evidential Deep Learning in dif-
ferent real-world applications should be investigated in future research, in order to
assess the viability of the methods and identify potential specific challenges and
requirements that arise in di�erent contexts.



CHAPTER

SIX

CONCLUSION

The thesis has provided a conceptual overview and introduction to uncertainty
quantification in deep learning, by presenting the underlying theoretical found-
ations, alongside contemporary methodologies from the existing literature. In
addition to this, experiments have been performed in order to investigate how the
theoretical concepts relate to practical implementation. The presented work aims
to serve as a useful resource for any endeavor of academic or industrial nature, by
o�ering readers a general overview of the field.

For classification models a general recommendation is to use Deep Ensembles
combined with Temperature Scaling when quantifying uncertainty. Two notable
exceptions exist however, namely within transfer learning scenarios and should
the infrastructure load of hosting multiple models be a concern. In these scenarios
Monte Carlo Dropout is recommended as an alternative. Deep Ensembles have
been shown to improve accuracy, uncertainty estimates and out-of-distribution
robustness in deep learning models, which, combined with its flexibility, inter-
pretability and relative simplicity of implementation makes it a viable approach
for many uncertainty quantification tasks. Note that Temperature Scaling is only
applicable for classification models utilizing a softmax activation layer, and that
for regression tasks the same recommendation applies, except the post-hoc calib-
ration.

Generally, based on the findings of the pioneering authors and the available
literature, m = 5 members in an ensemble and a range of [30-100] stochastic for-
ward passes through the neural network for Monte Carlo Dropout is recommended
as a general guideline. The optimal value of both of these parameters, however,
is application-specific, and usually depends on the desired trade-o� between com-
putational cost and accuracy, and can be evaluated analytically by using a valid-
ation set. In practice, the single scalar parameter T used to calibrate networks
in Temperature Scaling can be set to T = 1 during training, and subsequently be
optimized in terms of the negative log-likelihood on the validation set. Note that
a prerequisite of Temperature Scaling is that the same validation set is used for
the training and the calibration.
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