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Abstract 
Some marine operations such as helicopter landing on a deck require low motions of the 

vessel, called Quiescent Periods (QPs). QP prediction methods are used to determine the 

short-term future calm opportunities, to safely perform the operation. A new tool for signal 

filtering has recently gained attention: the Prony method. It consists in fitting a sum of 

exponential components to the signal. In this context, this thesis applies the Prony tool to 

QP prediction and evaluates the prediction quality. 

Based on a JONSWAP wave spectrum, the waves and the motions are modelled within the 

linear theory. This thesis presents the occurrence statistics of QPs, both in the waves and 

the modelled vessel motions. These statistics could constitute a tool for marine operations 

planning. This work then describes the Prony method, with an implementation in MATLAB 

of a least squares Prony algorithm applied to wave prediction. The prediction quality is 

discussed with the parameters of the analysis. A preliminary filtering of the signal was 

found to significantly increase the prediction quality. The Prony method obtains reliable 

predictions of 20 seconds for the waves, and reaches 30 seconds for the vessel motions. 
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Sammendrag 
Marine operasjoner slik som helikopterlanding på et dekk offshore krever små bevegelser 

i fartøyet, kalt stille perioder (Quiescent Periods på engelsk). En prediksjonsmetode for 

stille perioder kan brukes til å bestemme fremtidige rolige tidsrom på kort sikt, for å utføre 

operasjonen på en sikker måte. Et nytt verktøy for signalfiltrering har nylig fått 

oppmerksomhet: Prony metoden. Den består av å tilpasse en sum av eksponentielle 

komponenter til signalet. Denne oppgaven bruker Prony metoden til å predikere stille 

perioder og evaluerer prediksjonskvaliteten. 

Basert på et JONSWAP bølgespektrum er bølgene og bevegelsene modellert med lineær 

bølge teori. Denne oppgaven presenterer statistikken knyttet til stille perioder, både for 

bølgene og de modellerte fartøybevegelsene. Dette utgjør et verktøy for planlegging av 

marine operasjoner for en gitt sjøgang. Deretter beskrives Prony metoden, med en minste 

kvadraters Prony algoritme brukt til bølgeprediksjon, i MATLAB. Prediksjonskvaliteten med 

hensyn til parameterne i analysen er diskutert. Kvaliteten økte betydelig ved å etablere og 

inkludere filtrering av signalet. Prony metoden oppnådde pålitelige prediksjon på 20 

sekunder for bølgene, og hele 30 sekunder for fartøyets bevegelser. 
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Marine operations are often limited by sea conditions. In large seas, the decision to perform 

maneuvers such as helicopter landing on a ship, cargo hoisting from a vessel to an offshore 

platform or maintainance activities can either lead to excessive risks or the cancelation of 

the task. Due to the recent improvements in computational resources and techniques, a 

new branch of oceanography has emerged: Deterministic Sea Wave Prediction (DSWP). It 

aims at predicting short-term incoming waves, and has to be distinguished from the 

statistical description of waves that has been used for decades. 

In most sea conditions, groups of large waves often alternate with calmer periods. Such 

interval is termed Quiescent Period (QP), from the Latin root quiescere (rest, quiet). The 

new DSWP methods are now able to predict the incoming waves and the occurrence of 

calm periods a few seconds in advance, which can be of effective help for the safety and 

the success of marine operations. 

QPs can refer to two phenomena: calm periods in the sea surface elevation, in other words 

waves, or small motions of a vessel at sea. In the first case, a calm period is a group of 

waves with small amplitudes, where the critical amplitude is called threshold, as shown in 

Figure 1. In the second case, QPs refer to time intervals when the motions of interest are 

below a defined amplitude, either one motion at a time or all motions of interest which can 

be more restrictive. 

The minimum time length of a QP depends on the performed task, but is usually between 

ten seconds and a few minutes. For example, a helicopter landing on a ship requires a time 

window of twenty to thirty seconds, while firing operations on a military vessel can take 

up to one minute. 

Two main methodologies exist for QP prediction: looking backwards and looking forward. 

These methods are summarized in Giron-Sierra & Esteban (2010), and Sherman (2007) 

provides an extensive bibliography and an evaluation of the different QP prediction 

methods. 

The idea of the methods that look back in the past is to record the recent ship motions, 

and fit it to a model via a filter to predict the future motions. Different signal filters have 

been used since the late 1960s, first claiming 6 seconds of prediction horizon             

1 Introduction 

            

    

    

    

    

 

   

   

   

 
 
 
   
 
 
 

    

             

Figure 1: Example of a quiescent period in a signal 
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(Dalzell, 1965; Kaplan, 1969). In the 80s, an ARMA model (Auto-Regressive Moving 

Average) was introduced (Yumori, 1981), and then improved to obtain up to 10 seconds of 

prediction with respect to roll and 15 seconds for pitch and heave. Most of these methods 

try to fit a given model to the wave envelope and proceed to a signal continuation. They 

are real-time methods and are computed in less than a second. 

The looking forward methods have appeared more recently, with the spread of radar 

imaging. The three main tasks of this methodology are: measuring incident waves with 

enough distance; applying a propagation model to compute wave deformation as it moves 

towards the ship; computing the ship motions with a model of the ship dynamics. The new 

radar imaging methods are now able to measure incident waves up to three nautical miles 

(5.5 km) (Nieto Borge et al., 2004). New propagation models based on wavelet analysis 

have been able to predict QPs up to two minutes in advance (Dong et al., 2008). In contrast 

with the Fourier analysis, wavelet models can analyse the frequency contents of a signal 

in the time domain. Thus, it can be used for non-stationary signals, while the Fourier 

transform is adapted to stationary signals. However, these methods require heavy 

computations. 

The aim of this study is to implement a new method for QP prediction that enters the first 

category of these methodologies. Based on the Prony analysis, it consists in fitting a sum 

of damped sinusoids to the waves. First introduced by Gaspard de Prony who studied 

expansion characteristics of gases (Prony, 1795), this method has recently gained 

attention due to advances in computer systems. It has now applications in various 

engineering sectors such as electric power quality analysis, fluid dynamics or biomedical 

signal filtering (Duclos et al., 2001; Fernández Rodríguez et al., 2018; Zygarlicki & 

Mroczka, 2012). 

This thesis first focuses on the modelling of irregular waves and vessel motions in linear 

theory and the use of sea state spectra, as well as statistical properties of quiescent 

periods. This work then describes the theory behind Prony analysis, and implements an 

algorithm based on the least squares Prony method in MATLAB. In the last section, the 

Prony method is used for wave prediction, and the influence of the main parameters on 

the prediction quality is presented. 
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This thesis describes the implementation of the Prony analysis in a signal. It can be used 

directly on the wave surface elevation signal, but the real applications of QP prediction 

methods are often based on vessel motions. A transfer function is applied to the incident 

waves signal, resulting in the motions of interest for a certain ship such as heave, pitch 

and roll. 

The choice was made to create times series as modelled surface elevation signals, and not 

to use real measurements. The reader must keep this in mind regarding all results and 

conclusions. 

2.1 Irregular waves model with linear theory 

The time series are generated with the use of an oceanographic spectrum, the JONSWAP 

(Joint North Sea Wave Observation Project) spectrum. This spectrum is commonly used 

for engineering applications when analysing irregular waves. It provides information on 

wave energy distribution for idealized conditions, namely a sea state after a constant wind 

has been blowing for some time. A real spectrum would be more sophisticated, with several 

peaks referring to different swells, and would require an additional information on the 

direction of the waves. For simplicity, a unidirectional model is considered. 

This spectrum is a parameterized function defining the wave energy distribution with 

respect to the wave frequency. A formulation depending on the significant wave height 𝐻𝑠 

and the peak period 𝑇𝑝 (or peak angular frequency 𝜔𝑝 = 2𝜋 𝑇𝑝⁄ ) was proposed by Goda 

(1988): 

𝑆(𝜔) = 𝛽𝐻𝑠
2
𝜔𝑝
4

𝜔5
exp [ −

5

4
(
𝜔

𝜔𝑝
)

−4

] ∙ 𝛾𝑟 , (1) 

in which 

𝛾 ∈ [1,7],  

𝑟 = exp [ −
1

2𝜎
(
𝜔

𝜔𝑝
− 1)

2

],  

𝜎 = {
0.07, if 𝜔 ≤ 𝜔𝑝,

0.09, if 𝜔 > 𝜔𝑝,
  

𝛽 =
0.0624 ∙ (1.094 − 0.01915 ∙ ln (𝛾))

0.23 + 0.0336 ∙ 𝛾 − 0.185 (1.9 + 𝛾)⁄
.  

The constant 𝛾 is called the peak-enhancement factor. Although it can vary between the 

different regions of the world, its mean value 𝛾 = 3.3 is usually considered, as in this study. 

Figure 2 shows examples of JONSWAP spectra for multiple values of 𝐻𝑠 and 𝑇𝑝, and 𝛾 = 3.3. 

2 Irregular waves and ship motion modelling 
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This spectrum forms the basis for the creation of the signal. In this thesis, we consider 

linear waves in infinite deep water: the sea state is a sum of 𝑛 sinusoids with angular 

frequencies 𝜔𝑗 regularly distributed. The amplitudes are directly computed from the 

spectrum: a high spectral density leads to a high amplitude for the given component. The 

surface elevation at a given point in space is computed by the random phase model: 

𝑋(𝑡) = ∑𝐴𝑗 ∙ cos(𝜔𝑗𝑡 + 𝜑𝑗)

𝑛

𝑗=1

, (2) 

in which for each component indexed by 𝑗: 

𝐴𝑗 = √2𝑆(𝜔𝑗)Δ𝜔,  

𝜑𝑗 ∈ [0,2𝜋[.  

The phases are randomly generated, making the signal similar to irregular waves. Δ𝜔 refers 

to the interval between two successive angular frequencies. This model has a widespread 

use in marine engineering, and is a very simple way to create simulations of waves in an 

irregular sea state. In this thesis, these generated signals are used for wave prediction. 

2.2 Vessel motions model 

As most marine operations are performed on a ship, the prediction methods are often 

based on vessel motions. The modelling of ship dynamics is extremely complex, but a 

simple approach consists in using simple uncoupled transfer functions 𝐻(𝜔) for each 

motion. A transfer function is a complex function that describes the system’s output, here 

the vessel motions, based on the input, the waves, for each component of frequency 𝜔. It 

contains two pieces of information: the output’s amplitude and phase. The amplitude of 

𝐻(𝜔) describes how a frequency component is amplified or reduced in the output, while the 

phase results in the time shift between the input and the output. 

When modelling ship motions, we often only consider heave, pitch and roll. The response 

spectra are then given by the following expression: 

𝑅(𝜔) = |𝐻(𝜔)|2 ∙ 𝑆(𝜔). (3) 

Figure 2: The JONSWAP spectrum shape 
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Figure 3 shows realistic transfer functions for heave, pitch and roll and the associated 

response spectra for a ship. The wave spectrum that was used is a JONSWAP spectrum 

with standard values of 𝐻𝑠 = 1 m, 𝑇𝑝 = 10 s and 𝛾 = 3.3. The units of the amplitude |𝐻(𝜔)| are 

[m/m] for heave and [rad/m] for pitch and roll. For the response spectra, 𝑅(𝜔) is given in 

[m2s] for heave and [rad2s] for pitch and roll. No ship speed is considered, and the encounter 

frequency, which is the frequency seen from the ship, is the same as the wave frequency. 

Implementing a non-zero speed would result in a shift in frequencies of the motion spectra, 

affecting the response. For simplicity the motionless case only is studied, but the case of 

non-zero speed will be discussed later. 

These RAOs (Response Amplitude Operators) will be used for the rest of the thesis to 

compute the motions of a ship. From the response spectra, the motions are reconstructed 

the following way: 

𝑀(𝑡) =∑√2𝑅(𝜔𝑗)𝑑𝜔 ∙ cos (𝜔𝑗𝑡 + 𝜑𝑗 + phase (𝐻(𝜔𝑗)))

𝑛

𝑗=1

. (4) 

Figure 4 presents a time series realization of the waves and the motions of interest. The 

QPs are framed in red. The QPs that are in common between the three motions are 

highlighted with a black dotted line. 

Figure 3: Transfer functions and response spectra for the 
vessel motions 
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A time interval is detected as a QP if the maximum of the absolute value of the signal stays 

below a given threshold height, called 𝐴𝑚𝑎𝑥, for a minimum time denoted 𝑇𝑚𝑖𝑛. For example, 

Figure 4 was created with threshold heights of 0.3 m for waves and heave, 6° and 9° for 

pitch and roll respectively. The minimum length of a QP was set to 15 s. 

                      

        

    

 

   

 
  
 

 

                      

        

    

 

   
 
 
 
  

  
 

 

                      

        

   

 

  

 
   

 
  
  

                      

        

   

 

  

 
 
   
  
 

Figure 4: Time series realization of irregular waves and 
vessel motions, with threshold heights of 𝟎. 𝟑 𝐦 for waves 

and heave, 𝟔° and 𝟗° for pitch and roll respectively, and a 

minimum QP length of 𝟏𝟓 𝐬 
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When an operation needs to be performed, the stakeholders involved first examine the 

conditions, the chances of success, and the possibility to find a time window that is long 

enough to execute the mission. It can be a precious advantage to study quiescent periods 

statistics for given sea state conditions: the decision-makers could decide if the chance to 

find proper quiescent periods is high enough for the operation to be performed. 

In this thesis, we focus on the quality of QP prediction for the presented waves model. A 

critical parameter is the number of components in the waves signal, 𝑛. The properties of 

the signal vary with this number, in the same way QP prediction does. Thus, highlighting 

QP statistics for different numbers of wave components is relevant here. Three numbers 

of components will be used in this part: 𝑛1 = 20, 𝑛2 = 100 and 𝑛3 = 1,000. 

All statistics are computed numerically in MATLAB, by generating 𝑚 signals of length 𝑇𝑚𝑎𝑥 

and detecting the quiescent periods. 𝑇𝑚𝑎𝑥 is usually set to 100𝑇𝑝. The minimum QP length 

(the minimum time for a period to be detected as quiescent) is denoted 𝑇𝑚𝑖𝑛, and is usually 

higher than 2𝑇𝑝, as most marine operations require at least 20 seconds to be performed. 

3.1 Length and proportion of quiescent periods in waves 

The first quantity of interest for the decision-makers is the time length of quiescent periods 

for a given threshold height. 

Al-Ani et al. (2019) give some results on such statistical properties, based on probability 

distribution models for QPs. This paper gives the probability of quiescent runs of a certain 

number of waves, for different thresholds, and the mean duration of these QPs. In the 

present work, the QPs intervals are continuous and we deal with time length instead of 

runs of waves. Similarities with regards to QP distributions were noted, as presented later. 

The JONSWAP spectrum might play an important role in the QP statistics. Figure 5 shows 

the mean length of QPs with respect to the threshold height. It was computed from three 

spectra with different peak periods but the same significant height, for 𝑛2 = 100 

components. The minimum length of a QP is set to 𝑇𝑚𝑖𝑛 = 2𝑇𝑝, which is dependent on the 

spectrum. It also displays the scaled mean length of these QPs, for which the mean length 

is divided by the peak period. 

3 Statistics of quiescent periods 
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The scaled mean length is similar for the three spectra: this underlines the independence 

of statistical properties from the parameter 𝑇𝑝. Indeed, a multiplication by a factor 𝑘 of 𝜔𝑝 

leads to a multiplication of all frequencies by the same factor. We can show from equations 

(1) and (2) that the new signal is simply stretched in the time domain by this factor. 

Likewise, the statistics are independent from the significant wave height 𝐻𝑠 if we scale the 

threshold. Consequently, all properties and predictions are independent from 𝐻𝑠 and 𝑇𝑝 

after the scaling step. This is proved in Appendix 1. 

Thus, all computations can be performed with the same JONSWAP parameters. For 

simplicity, we choose 𝐻𝑠 = 1 m and 𝑇𝑝 = 10 s. In this thesis, QP lengths and threshold heights 

are given unscaled, for a better physical understanding of the properties. This result also 

proves that quiescent periods will be longer for sea states with higher peak periods: when 

the swell is dominant, a higher peak period implies longer quiescent periods. Regarding 

the encounter frequency of a moving ship, a shift in the wave spectrum would have a 

similar effect and either lead to shorter wave periods in the case of sailing towards the 

waves or longer waves when sailing in the same direction, and so longer or shorter QPs 

respectively. One would then say that it is better to sail in the same direction as the waves. 

However, in reality ships often sail towards the waves to increase stability at high seas, 

leading to a shift in high frequencies. This could be explained by the fact that a vessel acts 

as a low-pass filter. Thus, sailing in the waves instead of sailing in the same direction 

reduces the response of the ship and increases stability. 

For the standard values of the JONSWAP spectrum, Figure 6 shows the mean length of QPs 

for 𝑛1, 𝑛2 and 𝑛3, for a minimum QP time of 𝑇𝑚𝑖𝑛 = 2𝑇𝑝 = 20 s. The average proportion of QPs 

that compose the signal is computed, in other words the probability to be in a QP at a 

random time. 

                         

                    

  

  

  

  

   

 
 
 
 
   

 
 
  
  
 
  

 
       

 
 
       

 
 
       

                         

                    

 

 

 

 

 
 
 
  
 
  

 
 
 
   

 
 
  

 
 
       

 
 
       

 
 
       

Figure 5: Mean length and scaled mean length of QPs, for 
three JONSWAP spectra with different peak periods 
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For a threshold height of 0 𝑚, there is obviously no QP. On the contrary, when 𝐴𝑚𝑎𝑥 is high 

there is only a few chances for a wave to be higher and the whole signal is detected as 

quiescent. The mean length of QPs comes close to the total length of the signal which is 

𝑇𝑚𝑎𝑥 = 1,000 s here. 

The interesting threshold range corresponds to a realistic proportion of QPs, namely when 

this ratio is lower than 50 %, as it can really be called a quiescent period. Figure 7 zooms 

in the pertinent range of thresholds. 

              

                    

 

   

    

 
 
 
 
   

 
 
  
  
 
  

 
     

 
 
      

 
 
       

              

                    

 

  

   

 
 
 
 
  

  
 
 
  
  

 
  
 

 

 
 
     

 
 
      

 
 
       

Figure 6: Mean length and mean total proportion of QPs in 
the signal 

                     

                    

  

  

  

  

  

 
 
 
 
   

 
 
  
  
 
  

 
     

 
 
      

 
 
       

                     

                    

 

  

  

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

 
 
     

 
 
      

 
 
       

Figure 7: Mean length and total proportion of QPs for the 
pertinent threshold range 
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We clearly notice that the proportion and mean length of QPs in the signal composed by 

𝑛1 = 20 components are lower than for 𝑛2 and 𝑛3. A higher discretization confirms the 

convergence of those properties for large values of 𝑛, 𝑛3 = 1,000 being very close to the 

infinite case. Hence, the statistical properties of this signal are similar to the properties of 

an infinite sum of cosines. 

Figure 8 reveals additional information on the length distribution of the quiescent periods. 

An arbitrary threshold height of 0.3 m was used; the distribution of QPs length is similar for 

different values of 𝐴𝑚𝑎𝑥. 

The high periodicity of the first signal leads to uneven distributed QPs lengths. For the two 

other signals, the probability to find QPs of a certain time length follows a logarithmic 

decrease. In Al-Ani et al. (2019), this property is also highlighted. 

We can also study the influence of the parameter 𝑇𝑚𝑖𝑛 on the mean length of QPs.         

Figure 9 shows the mean length and proportion of QPs for various values of 𝑇𝑚𝑖𝑛. Only the 

case 𝑛3 = 1,000 is displayed here. 

 
 
     

            

               

  

  

  

 
  

 
 
 
   
  
  
 

 

                    

 
 
      

            

               

  

  

  

 
  

 
 
 
   
  
   

 

                    

 
 
       

            

               

  

  

  

 
  

 
 
 
   
  
  
 

 

                  

Figure 8: Quiescent period length distribution 
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An interesting property of QPs can be highlighted: for a given threshold, the difference 

between the mean length 𝑇𝑄𝑃 and the minimum time 𝑇𝑚𝑖𝑛 of QPs is independent from this 

parameter 𝑇𝑚𝑖𝑛. A deeper look into this property would be interesting, but no explanation 

has been found yet using the distribution of QPs length. 

Figure 10 displays this difference for several values of 𝑇𝑚𝑖𝑛. This property allows us to use 

only one value of 𝑇𝑚𝑖𝑛 to compute the mean length of any QP. However, the total proportion 

of QPs in the signal depends on 𝑇𝑚𝑖𝑛. Consequently, we need Figure 10 to find all useful 

statistics.  

Figure 9 allows us to find precious information about the quiescent periods that we could 

find in a sea state close to the ideal conditions described by the JONSWAP spectrum. To 

illustrate this, let us consider a helicopter landing on a vessel, in a large sea state defined 

by 𝐻𝑠 = 3.8 m and 𝑇𝑝 = 8 s being possible real conditions. The maximum wave height from 

trough to crest is limited to two meters during the landing for safety measures, which 

means that the threshold height is set to 𝐴𝑚𝑎𝑥 = 1 m. The pilot needs a time window of at 

                     

                    

 

  

  

  

  

 
 
 
 
   

 
 
  
  
 
 

 
   

       

 
   

       

 
   

       

 
   

       

                     

                    

 

  

  

  

  

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

 
   

       

 
   

       

 
   

       

 
   

       

Figure 9: Mean length and total proportion of QPs for 
different minimum QP lengths 

                     

                    

 

 

  

  

  

  

 
 

 
  
  

 
  
  
 
 

 
   

       

 
   

       

 
   

       

 
   

       

Figure 10: Difference between the mean time and the 
minimum length of QPs 
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least 𝑇𝑚𝑖𝑛 = 25 s to perform the operation. Only the case 𝑛3 = 1,000 components is 

considered here. 

First, we need to scale these data to fit the computed graphs. The values corresponding to 

the real sea state will be denoted 𝑟 (𝐻𝑠
𝑟 = 3.8 m and 𝑇𝑝

𝑟 = 8 s), and the values corresponding 

to the reference scaled sea state will be denoted 𝑠 (𝐻𝑠
𝑠 = 1 m and 𝑇𝑝

𝑠 = 10 s). The scaled 

threshold height is then: 

𝐴𝑚𝑎𝑥
𝑠 = 𝐴𝑚𝑎𝑥

𝑟 ∙
𝐻𝑠
𝑠

𝐻𝑠
𝑟
= 1 ∙

1

3.8
≃ 0.263 m, (5) 

and the scaled minimum length of QPs is: 

𝑇𝑚𝑖𝑛
𝑠 = 𝑇𝑚𝑖𝑛

𝑟 ∙
𝑇𝑝
𝑠

𝑇𝑝
𝑟
= 25 ∙

10

8
= 31.25 s. (6) 

For these scaled values, Figure 9 gives the mean length and proportion of QPs longer than 

𝑇𝑚𝑖𝑛
𝑠  in the scaled state: 𝑇𝑄𝑃

𝑠 ≃ 39 s and 𝑃𝑄𝑃 ≃ 5 %. In the real sea state, the mean length of 

these QPs is: 

𝑇𝑄𝑃
𝑟 = 𝑇𝑄𝑃

𝑠 ∙
𝑇𝑝
𝑟

𝑇𝑝
𝑠
= 39 ∙

8

10
= 31.2 s. (7) 

3.2 Mean gap and waiting time between quiescent periods 

These results are extremely useful for decision-makers. With the mean QP length and 

proportion of QPs in the signal, we can compute the mean gap between two succeeding 

QPs. This gap corresponds to the time interval separating the end of a QP from the start 

of the following one. This mean gap is given by: 

𝑇𝑔𝑎𝑝 =
𝑇𝑄𝑃
𝑃𝑄𝑃

− 𝑇𝑄𝑃 

                                                  =
31.2

0.05
− 31.2 ≃ 593 s ≃ 10 min. 

(8) 

We remark that this gap is long for the example above: this is mainly due to the low 

occurrence of QPs, with only 5 % of the signal covered by QP intervals. We can also compute 

the mean interval between the start of a QP and the start of the following one, which is 

simply: 

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑇𝑔𝑎𝑝 + 𝑇𝑄𝑃 =
𝑇𝑄𝑃
𝑃𝑄𝑃

. (9) 

Another quantity of interest is the mean waiting time for a quiescent period to occur. This 

notion refers to the mean time that one has to wait to find the start of the first incoming 

QP from a random point in time. In real life conditions, when someone decides to perform 

an operation from a starting point, this waiting time corresponds to the mean time he/she 

has to wait before being able to start the manoeuvre. The mean waiting time is given by 

the expression: 

𝑇𝑊𝑇 =
𝑇𝑚𝑖𝑛
2
+

𝑇𝑔𝑎𝑝
2

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
=
𝑇𝑚𝑖𝑛
2
+ 𝑃𝑄𝑃𝑇𝑄𝑃 (1 −

1

𝑃𝑄𝑃
)

2

=
𝑇𝑚𝑖𝑛
2
+ 𝑇𝑔𝑎𝑝(1 − 𝑃𝑄𝑃). (10) 

This formula was found by fitting the real waiting time (obtained from direct computation) 

and the waiting time obtained from the previous statistics. Despite intensive discussion 
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and thinking with my supervisor and colleagues, no precise mathematical explanation could 

be given. 

Figure 11 shows the mean gap, interval and waiting time for the scaled sea state of 

reference, with 𝑇𝑚𝑖𝑛 = 2𝑇𝑝 = 20 s. Overall, the three quantities are close to each other, but 

we always have: 

𝑇𝑊𝑇 < 𝑇𝑔𝑎𝑝 < 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 . (11) 

The gap and waiting time increase exponentially when the threshold decreases: for a 

threshold of 0.15 m, they are close to 4,000 s. Last, we can compute the mean waiting time 

for different values of 𝑇𝑚𝑖𝑛, as illustrated in Figure 12: the mean waiting time increases 

significantly with 𝑇𝑚𝑖𝑛. We observe that for QPs of at least 30 seconds and thresholds below 

0.2 meters, the waiting time goes to infinity: a marine operation cannot be performed for 

these parameters. 

If one wants to use these graphs to extract the statistics previously presented, scaling the 

data to fit the reference JONSWAP parameters is the only required step. These quantities 

can help decide if the desired parameters for a marine operation are coherent with the 

current sea state, and if the probability to find a quiescent period in a close future is high 

enough. 

                     

                    

 

   

   

   

   

 
 
 
 
   

 
 
  
  
 
 

   

        

            

Figure 11: Mean gap, interval and waiting time between 
two QPs 

                     

                    

 

    

    

    

    

 
 
 
 
  

 
   
 
 
  
  

 
  
 
 

 
   

       

 
   

       

 
   

       

Figure 12: Mean waiting time for different values of the 
minimum QP time 
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3.3 Statistics of quiescent periods for vessel motions 

It is possible to extract the same statistics for the quiescent periods that can be found in 

the motions of a ship that navigates in a given sea state. In this section, only the case 

𝑛3 = 1,000 is considered, with the reference sea state given by 𝐻𝑠 = 1 m and 𝑇𝑝 = 10 s. 

The equivalent of Figure 9 for the vessel motions is presented in Figure 13: it shows the 

mean length and mean proportion of QPs in each motion, for the pertinent range of 

thresholds and different minimum times. The motion statistics are very similar to the wave 

statistics, only the threshold range differs. We can use it to extract the useful statistics for 

the motions, such as the mean length and proportion of QPs of a certain minimum length, 

as well as the average waiting time and gap between two successive QPs. 

When an operation needs to be performed, we often need all the motions to be calm. Thus, 

we want to have a look at the QPs that are in common between the different degrees of 

freedom. Let us consider first the quiescent periods that are in common between heave 

and pitch, as shown in Figure 14. 

    
  

 

 

 
   

       

 
   

       

 
   

       

 
   

       

         

                    

 

  

 
 
 
 
   

 
 
  
  
 
 

     

         

                    

 

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

   

                    

 

  

 
 
 
 
   

 
 
  
  
 
 

     

   

                    

 

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

       

                    

 

  

 
 
 
 
   

 
 
  
  
 
 

    

       

                    

 

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

Figure 13: Mean length and total proportion of QPs for the vessel motions for different 
minimum QP times 
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A few comments can arise. To start with, the curve corresponding to the lowest threshold 

height for pitch is constant. The most restrictive parameter is the pitch threshold, and 

almost every QP that is detected for pitch is also detected for heave. On the contrary, the 

highest pitch threshold is not restrictive and we find the curve for heave only. When the 

threshold heights are balanced between the motions, both can be restrictive and the 

proportion of QPs is lower than for only one degree of freedom. The same data is shown 

in Appendix 2 in a three-dimensional way. The same computation can be done for QPs in 

common with heave and roll or pitch and roll; the results are similar. 

Last, we can fix the threshold heights of the three degrees of freedom, and study in which 

way finding QPs that are in common for the three motions restricts their occurrence. 

Several cases can be found: 

• The occurrence of QPs is similar for the three motions: the three threshold heights 

are equally restrictive. 

• The occurrence of QPs is lower for one of the motions: the corresponding threshold 

is more restrictive than the others. 

• The occurrence of QPs is higher for one of the motions: the corresponding threshold 

is less restrictive than the others. 

• The occurrence of QPs is different for each motion. 

The first case is presented in Figure 15 as a function of 𝑇𝑚𝑖𝑛, where the three thresholds 

are equally restrictive. 

                     

 
     

    

  

  

  

  

 
 
 
 
   

 
 
  
  
 
  

     
     

 
     

     

 
     

     

 
     

     

                     

 
     

    

 

  

  

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

 
     

     

 
     

     

 
     

     

 
     

     

Figure 14: Mean length and total proportion of QPs that 
are in common between heave and pitch 
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The mean length and proportion of QPs is really close for the three motions. The QPs in 

common between the three motions are about 2 to 3 times less frequent than for each 

motion, and their length is about 4 seconds shorter. These results show that when carrying 

out an operation, finding QPs in common between the motions implies significantly longer 

waiting times and overall shorter QPs. We can use (10) to compute the waiting time of QPs 

in each motion and in common between the three motions. For instance, for a minimum 

length 𝑇𝑚𝑖𝑛 = 20 s, the waiting times are 𝑇𝑊𝑇
𝐻𝑒𝑎𝑣𝑒 ≃ 50 s for heave only and 𝑇𝑊𝑇

𝐼𝑛 𝑐𝑜𝑚𝑚𝑜𝑛 ≃ 120 s 

for QPs in common between heave and pitch. 

Figure 16 shows the second case, where the heave threshold was set more restrictive than 

the pitch and roll threshold heights. The mean length of QPs is similar between the more 

restrictive motion (heave) and the QPs in common between the three motions. The 

proportion of QPs in common is lower than in the previous case, and also lower than for 

heave only: the heave threshold is still not the only restrictive parameter. 

              

 
   

    

  

  

  

  

  

 
 
 
 
   

 
 
  
  
 
 

     

     

    

         

              

 
   

    

 

  

  

  

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

     

     

    

         

Figure 15: Mean length and total proportion of QPs that 
are in common between the three motions - equivalent 

restrictions 
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Analogous comments can be made for the two last cases presented in Appendix 3. 

              

 
   

    

  

  

  

  

  

 
 
 
 
   

 
 
  
  
 
 

     

     

    

         

              

 
   

    

 

  

  

  

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

     

     

    

         

Figure 16: Mean length and total proportion of QPs that 
are in common between the three motions - more 

restrictive threshold for heave 
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Invented by Gaspard de Prony in 1795, the Prony method is used for signal filtering and 

approximation. The powerful Fourier analysis has overshadowed this method for a long 

time, but the recent improvements in computer technology have made it a useful tool in 

several engineering applications. The fact that it works correctly for finite time samples 

sometimes makes it more appropriate than the Fourier analysis, and allows a continuation 

of the signal that is impossible with the other method. Indeed, the information contained 

in the Fourier transform is limited to the time window of the original sampled signal, as the 

inverse Fourier transform is a periodic function of period 𝑇𝑚𝑎𝑥. Attempting a continuation 

of the signal would lead to a replication of the signal. 

This thesis aims at trying this new method and analysing the main parameters that 

influence the prediction. 

4.1 The Prony method 

The original method consists in solving two linear systems of equations that lead to the 

parameters of the solution: damping factors 𝛼𝑘, angular frequencies 𝜔𝑘, amplitudes 𝐴𝑘 and 

phases 𝜑𝑘  (𝑘 = 1,… 𝑝) of the 𝑝 functions. 

It matches a curve 𝑥𝑝[𝑖] of 𝑝 exponential components to a signal 𝑥𝑠[𝑖] composed of 𝑛𝑠 = 2𝑝 

samples, 𝑥𝑝[𝑖] ≈ 𝑥𝑠[𝑖] (𝑖 = 1,…𝑛𝑠) with 

𝑥𝑝[𝑖] = ∑𝐴𝑘 ∙ 𝑒
(𝛼𝑘+𝑗𝜔𝑘)+Δ𝑡(𝑖−1)+𝜑𝑘

𝑝

𝑘=1

 

 = ∑ℎ𝑘 ∙ 𝑧𝑘
𝑖−1

𝑝

𝑘=1

≈ 𝑥𝑠[𝑖].      

(12) 

Δ𝑡 is the sampling period, ℎ𝑘 is the time-independent component and 𝑧𝑘 is the exponential 

component or pole. Here, 𝑗 is the imaginary unit. 

If the 𝑝 poles are different, equation (12) expresses the general solution of a homogeneous 

linear difference equation that can be written 𝐙 ∙ 𝐡 = 𝐱𝐬: 

(

 
 

𝑧1
0 𝑧2

0

𝑧1
1 𝑧2

1

⋯ 𝑧𝑝
0

⋯ 𝑧𝑝
1

⋮ ⋮

𝑧1
𝑝−1

𝑧2
𝑝−1

⋱ ⋮

⋯ 𝑧𝑝
𝑝−1

)

 
 
(

ℎ1
ℎ2
⋮
ℎ𝑝

) = (

𝑥𝑠[1]

𝑥𝑠[2]
⋮

𝑥𝑠[𝑝]

). (13) 

It has as a characteristic equation 

𝜙(𝑧) =∏(𝑧 − 𝑧𝑘)

𝑝

𝑘=1

=∑𝑎[𝑘] ∙ 𝑧𝑝−𝑘

𝑝

𝑘=0

 ;  𝑎[0] = 1, (14) 

where the poles 𝑧𝑘 are the roots of the characteristic polynomial 𝜙(𝑧) and 𝑎[𝑘] are its 

coefficients. 

4 Implementation of the Prony method for 

wave prediction 
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Equation (12) can be rewritten as a linear prediction model expressed by the following 

matrix system 𝐓 ∙ 𝐚 = 𝐱𝐬: 

(

𝑥𝑠[𝑝] 𝑥𝑠[𝑝 − 1]

𝑥𝑠[𝑝 + 1] 𝑥𝑠[𝑝]

⋯ 𝑥𝑠[1]

⋯ 𝑥𝑠[2]
⋮ ⋮

𝑥𝑠[2𝑝 − 1] 𝑥𝑠[2𝑝 − 2]
⋱ ⋮
⋯ 𝑥𝑠[𝑝]

)(

𝑎[1]

𝑎[2]
⋮

𝑎[𝑝]

) = −(

𝑥𝑠[𝑝 + 1]

𝑥𝑠[𝑝 + 2]
⋮

𝑥𝑠[2𝑝]

). (15) 

𝐚 is called the linear prediction coefficients vector and is made of the coefficients of 𝜙(𝑧). 

𝐱𝐬 is the observation vector, and 𝐓 is the forward linear prediction matrix (a Toeplitz 

matrix). 

The Prony method is structured in three main steps: 

1. Solving the linear system (15) to get the values of 𝐚 that are the coefficients of the 

characteristic polynomial 𝜙(𝑧). 

2. Finding the roots 𝑧𝑘 of 𝜙(𝑧), leading to the damping factors and frequencies: 

𝛼𝑘 =
ln|𝑧𝑘|

Δ𝑡
, (16) 

𝜔𝑘 =
tan−1 [

𝐼𝑚(𝑧𝑘)
𝑅𝑒(𝑧𝑘)

]

Δ𝑡
. 

(17) 

3. Solving the original system (13) to get the values of 𝐡, that lead to the amplitudes 

and phases: 

𝐴𝑘 = |ℎ𝑘|, (18) 

𝜑𝑘 = tan
−1 [

𝐼𝑚(ℎ𝑘)

𝑅𝑒(ℎ𝑘)
]. (19) 

This method is used when 𝑛𝑠 = 2𝑝, and results in an exact fit between the sampled signal 

and the exponentials if matrices 𝐓 and 𝐙 are non-singular. When 𝑛𝑠 ≠ 2𝑝 which is often the 

case, the two systems are either overdetermined (more equations than unknowns) or 

underdetermined. The solutions can be approximated via different methods, such as the 

least squares (LS) or the total least squares (TLS) methods. 

The least squares approach gives a solution to the general minimization problem 

min‖𝐀𝐱 − 𝐛‖, with 𝐀 ∈ ℂ𝑚,𝑛, 𝐛 ∈ ℂ𝑚,1, 𝐱 ∈ ℂ𝑛,1. The solution is given by the normal equation: 

𝐱𝐿𝑆 = (𝐀
H𝐀)−1𝐀H𝐛, (20) 

where H denotes the Hermitian conjugate of a complex matrix. In practice, MATLAB 

computes the least squares solution with its own algorithms, using more efficient methods 

based on QR or LU decomposition. 

The Prony analysis results in the 𝑝 exponential components that are summed to reconstruct 

the signal. In practice, it gives both negative and positive frequencies for each component, 

with the same amplitude, damping factor and phase. In reality, the reconstructed signal is 

composed of 𝑝/2 components. In case of an odd number, the first component has a zero 

amplitude. 
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4.2 Implementation in MATLAB 

In (Fernández Rodríguez et al., 2018), four algorithms are implemented in MATLAB and 

tested for biomedical signal filtering: the classic method, the LS and TLS methods, and 

another non-polynomial method called matrix pencil method. The results in this thesis are 

based on the open access code that is presented in this article. The LS method being the 

most efficient method, it has been used for wave prediction. The other algorithms have 

not been tested in this work. After simplification and adaptation of the open access code, 

the LS algorithm was tested under MATLAB R2022b and is presented in Code 1: 

Code 1: Least Squares method for the Prony analysis 

function [Ap, Alphap, Wp, Phip] = PronyLS (x, p, dt) 

 

% x: sampled signal to be analysed 

% p: number of components in the reconstructed signal 

% dt: sampling interval 

 

ns = length(x);     % number of samples 

 

% Step 1 

T = toeplitz(x(p:ns-1),x(p:-1:1)); 

a = -T\x(p+1:ns); 

 

% Step 2 

c = transpose([1;a]); 

r = roots(c); 

Alphap = log(abs(r))/dt;    % damping factors 

Wp = angle(r)/dt;           % angular frequencies 

 

% Step 3 

Z = zeros(ns,p); 

for i=1:length(r) 

Z(:,i) = transpose(r(i).^(0:ns-1)); 

end 

h = Z\x(1:ns); 

Ap = abs(h);                % amplitudes 

Phip = angle(h);            % phases 

 

end 

 

The sampled signal is given in vector x; p is the number of components in the recomposed 

signal; dt is the sampling interval Δ𝑡. The output vectors 𝐴𝑝, 𝐴𝑙𝑝ℎ𝑎𝑝, 𝑊𝑝, 𝑃ℎ𝑖𝑝 are the results 

from the approximation made by the function 𝑃𝑟𝑜𝑛𝑦𝐿𝑆. 

In step 1, the function 𝑇 =  𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧(𝑐, 𝑟) creates the Toeplitz matrix from equation (15) of 

dimensions (𝑛𝑠 − 𝑝) × 𝑝 (𝑝 × 𝑝 in the classic method), with 𝑐 as its first column and 𝑟 as its 

first row. The system is then solved with the computation of 𝐚. The MATLAB backslash 

operator is used to solve linear systems of the form 𝐀𝐱 − 𝐛. In the case of square matrices, 

𝐀\𝐛 computes the matrix 𝐀−1𝐛 if 𝐀 is invertible. For non-square matrices, it returns a least 

squares solution of the system. 

The coefficients of the polynomial 𝜙(𝑧) are now found. In step 2, the function 𝑟 =  𝑟𝑜𝑜𝑡𝑠(𝑐) 

obtains the roots of this polynomial defined by the row vector 𝑐. This vector must also 

contain the element 𝐚[0] = 1, which was not obtained in the system solution and is added 

to vector 𝐚. With the obtained roots 𝑟 that correspond to 𝑧𝑘 in the problem to solve, the 

damping factors and frequencies can be computed with equations (16) and (17). The 

MATLAB function 𝑎𝑛𝑔𝑙𝑒(𝑟) computes the phases of the roots. 
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Step 3 starts with the creation of the matrix 𝐙 from the original system 𝐙 ∙ 𝐡 = 𝐱𝐬 (of 

dimensions 𝑝 × 𝑝 in the classic method and 𝑛𝑠 × 𝑝 in the least squares method). The system 

is then solved to obtain 𝐡, which leads to the amplitudes and phases from (18) and (19). 

4.3 Predictions based on least squares Prony method 

The prediction computations are structured as followed: 

• Choice of the original signal parameters: number of components 𝑛; number of 

samples 𝑛𝑠; end time 𝑡1 for the approximation; end time 𝑡2 for prediction; spectrum 

parameters 𝐻𝑠 and 𝑇𝑝. 

• Choice of the number of components in the reconstructed signal 𝑝 from the Prony 

method. 

• Creation of the spectrum and the sampled signal 𝑋𝑠 with the random phases model. 

• Performing of the Prony analysis on the sampled signal up to 𝑡1. 

• Reconstruction of the approximated signal 𝑋𝑝 with the obtained frequencies, 

amplitudes, damping factors and phases up to 𝑡2. 

• Comparison of the original and the reconstructed signals along the approximation 

interval [0; 𝑡1] and the prediction interval ]𝑡1; 𝑡2]. 

• Calculation of the predicted time 𝜏. 

The resolution of the two systems in the Prony algorithm can induce a failure in the 

analysis, for example if the matrices are rank deficient or singular. This can arise more or 

less frequently given the parameters of the analysis or the choice of the samples. 

An important comment here is that the reconstructed signal 𝑋𝑝 is filtered. Sometimes, high 

frequencies can be associated with negative damping factors. This leads to the explosion 

of the amplitude after some point. The filtering is simple as we can simply disregard the 

components with high frequencies, and increases the prediction quality. The cut-off 

frequency is usually set around 3 rad/s. 

In the least squares approximation, the parameter 𝑝 must be lower than 𝑛𝑠. In practice, it 

is easier to consider the fraction 𝜋 = 𝑝 𝑛𝑠⁄ ∈ ]0; 1[. The results of the Prony analysis are given 

in terms of 𝜋. For 𝜋 = 0.5, the classic method is used (we have 𝑛𝑠 = 2𝑝). Otherwise, the 

least squares method is applied. As it has better results than the classic method (even for 

𝜋 < 0.5), the value of 𝜋 = 0.5 will be avoided in the computations. 

Figure 17 shows a signal reconstruction and prediction for two different values of 𝜋, for 

𝑛𝑠 = 100 sample points. The black vertical dotted line separates the approximation interval 

from the prediction interval. This illustrates the different results that the Prony analysis 

can give: for 𝜋 < 0.4, the LS method usually does not obtain a perfect fit with the sampled 

signal. However, the approximation can be good and give a correct prediction for a few 

seconds. For 𝜋 > 0.4, most of the times the LS method results in a perfect fit as in this 

example. Here, we could evaluate a correctly predicted time of around 5 seconds. 
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Figure 18 shows the amplitudes, phases and damping factors plotted as a function of the 

reconstructed frequencies from the Prony analysis, for the case 𝜋 = 0.6 that was presented 

in Figure 17. Only the positive frequencies are displayed, and the frequencies over 3 radians 

associated with a zero amplitude are hidden. The approximation of the interval [0; 𝑡1] can 

be perfect even for completely different components parameters. However, the signals are 

different after more than five seconds of prediction. 

4.4 Error definition for approximation and prediction 

In order to characterise the quality of the approximation and the prediction, we have to 

introduce an error calculation between the sampled and reconstructed signals. Two 

different errors are used: the absolute error (AE) and the root mean square error (RMSE). 

Figure 17: Example of Prony analysis and signal prediction 

Figure 18: Approximated angular frequencies, amplitudes, 

phases and damping factors 
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The AE evaluates the distance between the two signals at any point. The RMSE estimates 

the average quality of the approximation. They are defined for a time step 𝑖 by: 

AE(𝑖) = |
𝑥𝑠[𝑖] − 𝑥𝑡[𝑖]

𝑀
|, (21) 

RMSE(𝑖) =
√
∑ (

𝑥𝑠[𝑘] − 𝑥𝑡[𝑘]
𝑀

)
2

𝑖
𝑘=1

Δ𝑡 ∙ (𝑖 − 1)
. 

(22) 

For easier comparisons between datasets and later for the vessel motions signals, the 

signals are normalized by the maximum of the absolute value of 𝑥𝑠[𝑘], 𝑀 = max
𝑘=1,…𝑛𝑠

|𝑥𝑠[𝑘]|. 

First, the quality of the approximation is evaluated by the RMSE at time 𝑡1 for the 

approximation interval. If this error is below a maximum acceptable error 𝜀𝑚𝑎𝑥
RMSE = 0.07 m, 

the approximation is qualified as correct enough to be used. In this case, the absolute error 

and the root mean square error are computed for the prediction part for every time step. 

The initial point of the RMSE is set at 10 sample points before 𝑡1, so that a bad prediction 

only for the first samples after 𝑡1 has a smaller influence and gives a chance to the rest. 

When these errors exceed a maximum acceptable limit (𝜀𝑚𝑎𝑥
RMSE = 0.07 m and 𝜀𝑚𝑎𝑥

AE = 0.2 m), 

the predicted signal is considered to be too far from the original one. The final predicted 

time 𝜏 is the average between the predicted times from the absolute error and the root 

mean square error. 

Figure 19 shows an example of a Prony analysis for which RMSE(𝑡1) = 0.069 m: the 

approximation is barely good enough to be used. Though, the RMSE after 𝑡1 is too high, 

leading to an overall small predicted time 𝜏 = 2.4 s. Appendix 4 shows another example with 

a perfect approximation, for which the predicted time is 𝜏 = 7.1 s. 

Figure 19: Errors and predicted times on a Prony analysis 
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The main objective of this section is to study the influence of the parameters that are 

important for the predictions. Those parameters are: 

• 𝑛: number of components in the original signal, 

• 𝑛𝑠: number of sample points in the original signal, 

• 𝑡1: end time for the approximation, 

• 𝜋 = 𝑝 𝑛𝑠⁄ : fraction of the number of components in the reconstructed signal. 

The spectrum parameters are not important in this part: stretching the signal in the time 

or amplitude domains does not influence the scaled predicted time. Thus, all computations 

are made with 𝐻𝑠 = 1 m and 𝑇𝑝 = 10 s. 

However, one more determining parameter that was studied here is the cut-off frequency 

that is used to define the spectrum. The effect of the high frequency components in the 

original signal will be discussed at the end of this section. In the next paragraphs, this cut-

off frequency is kept constant: 𝜔𝑐𝑢𝑡 = 2.856 rad/s. 

5.1 Number of components in the original signal 

First, the influence of the number 𝑛 of components in the sampled signal is studied. The 

same numbers from section 3 are used: 𝑛1 = 20, 𝑛2 = 100 and 𝑛3 = 1,000. The aim of this 

study is to find the optimal parameters in terms of prediction quality and success of the 

analysis. 

5.1.1 Low number of components 

The main particularity that distinguishes 𝑛1 = 20 from 𝑛2 and 𝑛3 is that the associated signal 

is highly periodic for the time scales considered here. It favours the prediction: it is very 

easy to find parameters for which the Prony algorithms gives the exact same components 

as in the original signal, leading to a perfect reconstruction. We need at least 𝑝 ≥ 2𝑛1 to 

find all original components, as the reconstructed signal is made of 𝑝/2 distinct 

exponentials, as explained in 4.1. The time 𝑡1 must be long enough, usually more than 80 s. 

For example, with 𝑛𝑠 = 200, 𝜋 = 0.4 and 𝑡1 = 100 s, the Prony analysis results in a perfect 

reconstruction, with almost one hundred percent success. 

For 𝑛2 = 100 components, the exact replication of the signal is harder to obtain. In order to 

find the best parameters for the prediction, we can study the effect of 𝑛𝑠, 𝑡1 and 𝜋 in a 

simple optimization process made by hand. First, the limits of the parameters must be 

defined: 

• 𝑛𝑠 ≤ 1,100 points: this number is limited by the size of the two systems to solve. For 

higher numbers, the analysis is unstable and often fails. 

• 𝜋 ≥ 0.35: the results are particularly bad for lower values. 

• 100 ≤ 𝑡1 ≤ 500: the results are bad for lower values, and the sampling quality is not 

correct for longer time lengths. For a smooth enough signal, the maximum sampling 

interval should not be longer than Δ𝑡𝑚𝑎𝑥 = 0.5 s. Thus, we consider 𝑡1 ≤ Δ𝑡𝑚𝑎𝑥 ∙ 𝑛𝑠. 

5 Parametric study for predictions 
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Once the limits are defined, we can run a set-based optimization process. The visualization 

of the results is easier when only two parameters vary. The following figures highlight the 

results of the computation. Each point is an average calculated on 200 iterations. 

First, Figure 20 shows the predicted time as a function of 𝜋 and 𝑛𝑠, as well as the proportion 

of successful analyses. 𝑡1 was fixed with a value of 200 s. The curve for 𝑛𝑠 = 200 points is 

considered irrelevant as Δ𝑡 = 1 s, but is still displayed for comparison. For 𝑛𝑠 ≥ 500, the 

predicted times are equivalent, with a maximum for 𝜋 = 0.45 and 𝜋 = 0.55 of almost 12 

seconds of average predicted time. The analyses are more successful for larger values of 

𝜋, but the predicted time decreases. 𝜋 = 0.85 could also be considered, as it has a really 

high success rate. This rate is also slightly higher when the number of sample points is 

low. 

Figure 21 then shows the same quantities as a function of the number of sample points 

and the end time for the approximation interval. The value of 𝜋 = 0.45 was used here. We 

should keep in mind that these curves are relevant when 𝑡1 ≤ Δ𝑡𝑚𝑎𝑥 ∙ 𝑛𝑠: for 𝑡1 = 500 s, only 

𝑛𝑠 ≥ 1,000 should be kept. For 𝑡1 = 300 s, only 𝑛𝑠 ≥ 600 should be considered. We notice that 

for 𝑡1 = 500 s, the average predicted time is 20 s, which is in reality the prediction end time. 

This means that the approximation is perfect and the components are the same as in the 

original signal. However, due to the substantial size of the systems to solve, the rate of 

success is lower than 30 %: the Prony analysis either results in a perfect reconstruction or 

in a failure most of the time. 

Figure 20: Prediction quality as a function of the number 
of exponential components and number of sample points, 

for 100 components in the original signal 
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Appendix 5 shows the same computation for 𝜋 = 0.85. The average predicted time is similar 

to the previous case, except for 𝑡1 = 500 s for which there are no perfect reconstructions. 

Nonetheless, the success rate is much higher. We globally see an increased prediction time 

for higher numbers of sample points. 

To complete these two figures, we can also plot the prediction quality as a function of 𝜋 

and 𝑡1, also shown in Appendix 5. It confirms the previous comments. The best average 

predicted time is around 12 seconds, and is obtained by a wide range of parameters values. 

5.1.2 High number of components 

In the last case 𝑛3 = 1,000, the Prony analysis cannot result in a perfect approximation due 

to the size of the systems. This case is the closest to an infinite number of linear 

components in the case of an irregular sea state. The same optimization process was made 

in order to find the best parameters and assess the quality of the Prony predictions. 

For simplicity, only the case 𝑡1 = 300 s is studied. As no perfect approximations can be 

obtained, this value achieves good results both for the predicted time and the success rate. 

Figure 22 shows the prediction quality as a function of 𝜋 and 𝑛𝑠. The results are very similar 

to the previous case 𝑛2 = 100 components. The best average predicted times are around 

12.2 seconds, obtained for 𝜋 = 0.45, and 𝑛𝑠 = 800 or 1,100. However, the success rate is very 

low, with around 20 % of correct approximations. This rate is significantly higher for high 

numbers of components in the reconstructed signal, 𝜋 = 0.85 being again a value of interest 

with an average predicted time of 10 seconds but 80 % of success. 

                                

 
 

 

 

  

  

  

 
 
 
 
  

  
 
  
  

 
  
  

 
  
 
 

 
 
        

 
 
        

 
 
        

                                

 
 

 

  

   

 
  

 
  
 
  
 
 
 
 
 
 
 
  
 

 

 
 
        

 
 
        

 
 
        

Figure 21: Prediction quality as a function of the number of 
sample points and the approximation end time, for 100 

components in the original signal 
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For complementary information on the predicted times, Figure 23 displays the distribution 

of the predicted times 𝜏 for the case 𝜋 = 0.45, 𝑛𝑠 = 1,000 and 𝑡1 = 300 s, computed for 1,000 

iterations. The average predicted time µ and the standard deviation 𝜎 are specified. 98 % 

of analyses obtain more than 7.5 seconds of prediction: this proves that when the 

approximation is successful, in other words the RMSE for the approximation part is below 

the maximum acceptable error, the Prony method is totally reliable for this time interval. 

5.2 Motion prediction 

The performances of the Prony analysis for wave prediction were analysed in the previous 

part, with a few seconds or consistent predictions. But marine operations often require 

more than 30 seconds of quiescence to be performed. This part focuses on vessel motions 

predictions. It aims at evaluating the effect of the transfer functions on the prediction 

quality. 

Figure 22: Prediction quality as a function of the number 
of exponential components and number of sample points, 

for 1,000 components in the original signal 

Figure 23: Predicted time distribution for the waves 
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The same transfer functions as in section 3.3 are used for heave, pitch and roll. The errors 

definition and restrictions are similar than in the previous part. Only the case 𝑛3 = 1,000 

components is studied here, as it is more reflective of a real case. 

First, one should keep in mind that the success of the Prony analysis is often low: obtaining 

a correct approximation for the three motions at the same time is really rare. Thus, the 

statistics that are presented here are computed independently for each motion. This can 

also be a determining factor when using the Prony method for marine operations: it might 

be easier to predict waves and use a motion model on the predicted signal than first 

computing the motions and using the Prony tool on the obtained signals. 

The short optimization process of the previous section is repeated for the motions. 

Prediction quality is presented in Figure 24 as a function of 𝜋 and 𝑛𝑠, for a fixed 𝑡1 = 300 s. 

The predictions are slightly better, with 15 to 17 seconds in average. The success rates are 

equivalent to the waves case. We observe the same optimal parameters as previously: the 

Prony analysis works the same way for the motions than for the waves. One explanation 

for the longer predictions would be that the transfer functions act as filters, reducing the 

high frequency noise. 

5.3 Signal filtering for longer predictions 

The better predictions obtained for vessel motions arise the question of high frequency 

noise and signal filtering. To my knowledge, the impact of a signal filtering preceding the 

Prony analysis has not been studied yet. 

The sampled signal is created via a random phases model, and consists of a sum of 

sinusoidal components. The filtering is thus done simply, by removing every component 

with a frequency 𝜔 > 𝜔𝑐𝑢𝑡. In the case of real data, a low-pass filter would give similar 

results. The original signal is created with 𝑛 = 10,000 components, for 𝜔𝑐𝑢𝑡 = 4 rad/s. For 

𝜔𝑐𝑢𝑡 = 1 rad/s, about 83 % of the components are removed (the signal contains exactly      

𝑛 = 1,736 components). The previous parts and some tests have shown that for 𝑛 > 1,000 

Figure 24: Prediction quality as a function of the number of exponential components and 
number of sample points, for the vessel motions 
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components, the results are independent from this number 𝑛: the effect of filtering is only 

reflected in the removal of high frequencies. 

Consequently, there are now two filtering steps for the predictions. First, a preliminary 

filtering of the wave signal removes the high frequencies before the computation of the 

motions and the Prony analysis. This section will analyze the impact of this filtering. After 

the analysis, a second filtering process is carried out, this time on the reconstructed signal. 

This filtering is only performed to get rid of the high frequencies associated with positive 

damping factors, which otherwise would lead to a divergence of the reconstructed signal. 

For this second filtering, the prediction is untouched when the signal does not diverge. The 

choice of this second cut-off frequency is not important and can be kept constant, for 

example around 4𝜔𝑝. 

Only two cases for the parameters of the Prony analysis are analysed here: 𝑛𝑠 = 1,000 

sample points; 𝑡1 = 300 s; for 𝜋 = 0.45 and 𝜋 = 0.85. In the previous study, these two cases 

obtained very good results. Figure 25 shows the first case, for 𝜋 = 0.45 which obtains the 

best results regarding the predicted times. Appendix 6 presents the second case, that has 

a much higher success rate but slightly shorter predictions. 

The filtering has a strong impact on the prediction quality. First, the chance of success of 

the analysis is slightly higher for lower cut-off frequencies. Second, we observe a clear 

increase of the average predicted times, up to 50 seconds for 𝜔𝑐𝑢𝑡 = 1 rad/s. However, there 

is a need to define the minimum acceptable cut-off frequency so that the filtered signal 

still reflects the original one. 

This is presented in Figure 26 where the wave and heave signals have been filtered with 

cut-off angular frequencies of 2𝜔𝑝 = 1.26 rad/s and 3𝜔𝑝 = 1.89 rad/s. The wave signal is 

slightly modified for 𝜔𝑐𝑢𝑡 = 2𝜔𝑝. As the transfer functions already act as filters, the heave 

signal stays really close to the non-filtered one. Thus, we can consider that a cut-off 

frequency of 2𝜔𝑝 is acceptable for the ship motions. For waves only, it might be more 

realistic to have a larger cut-off frequency such as 3𝜔𝑝. 

Figure 25: Influence of high frequency filtering on the 
prediction quality 
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We can then use Figure 25 to check the best average predicted time that is associated with 

these cut-off frequencies: for the waves with 𝜔𝑐𝑢𝑡 = 3𝜔𝑝, the mean predicted time would 

be around 20 seconds. For the motions with 𝜔𝑐𝑢𝑡 = 2𝜔𝑝, this time would be around 35 

seconds, which is twice longer than without filtering. For large vessels with slower motions 

and in other sea states, this time could be even greater and the Prony method might 

achieve predictions of one minute. 

For complementary information, Figure 27 shows the predicted times distribution for the 

vessel motions, in the case 𝜔𝑐𝑢𝑡 = 3𝜔𝑝 for the waves and 𝜔𝑐𝑢𝑡 = 2𝜔𝑝 for the motions. The 

parameters of the Prony analysis are 𝑛𝑠 = 1,000 sample points, 𝑡1 = 300 s, 𝜋 = 0.45. The worst 

analyses for the motions obtain 20 seconds of prediction, and 95 % of them achieve 

predicted times of at least 28 seconds (30 seconds for roll), which gives a large reliable 

window for the Prony method predictions. In the case of the waves, this window is not as 

large, reaching 17 seconds, because the cut-off frequency is set higher. 

Figure 26: Filtration of the wave and heave signals 



41 

 

Figure 28 shows an example of waves and motions signals that are all correctly predicted 

at the same time, which is rare for the same parameters as in Figure 27, as the success 

rate is low. 

Last, the question that arose was whether the error was related to the quality of the 

predictions or if these quantities were independent. It appears that for the values of          

𝜋 > 0.4, the Prony analysis results either in a perfect approximation of the sampled signal 

or in a failure of the method, with a very few exceptions. This is shown in Figure 29 for 200 

attempts. The computation parameters are similar to those used in Figure 27. 

Figure 27: Predicted times distribution after filtering 

Figure 28: Example of four successful predictions with the optimal parameters 
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For 𝜋 < 0.4, there are no perfect approximations. The RMSE is never zero, but the maximum 

acceptable errors define the approximations that are good enough. We observe in        

Figure 30 that in the case 𝜋 < 0.4 (𝜋 = 0.37 here), the RMSE for waves is slightly correlated 

with the predicted time. Only the predictions with RMSE < 0.1 m are shown in the figure. 

However, the prediction quality being lower than for 𝜋 > 0.4, this case is not used. We could 

set a more restrictive error limit and keep the best approximations, which would lead to 

better results. However, this would cause the success rate to decrease. 

This part showed that filtering the wave signal can significantly increase the prediction 

quality, without loss of information. For real life applications, the filter must be adapted to 

the sea state and the quantities at stake, but remains a key parameter of the Prony 

method. 

Figure 29: Predicted time as a function of the root mean square error 

Figure 30: Predicted time as a function of the root mean 
square error for the waves, for a low number of 

exponential components 
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The demand for reliable sea wave predictions used for marine operations leads to an overall 

improvement of the existing techniques. The real-time methods based on filters now obtain 

up to fifteen seconds of prediction, while radar imaging combined with wavelet analysis 

reach two minutes. Up to now, the newly emerged Prony method has mostly been applied 

to filter design and approximations of ringdown signals, but this thesis is an attempt to use 

it as a tool for predictions on modelled wave signals. 

The main objective of these methods is to detect future quiescent periods which are long 

enough to perform tasks at sea. In this work, the modelling process of the waves was first 

explained, and a model for vessel motions was presented. The signals were created via the 

JONSWAP wave spectrum, used in the linear wave theory in irregular sea states. 

Useful quiescent periods statistics were extracted from the signals, showing the distribution 

of calm intervals and their occurrence rate in the surface elevation and in the motions. 

Similarities were found with previous work about the logarithmic decrease of the quiescent 

period distribution with regard to their length. Additional information were added to the 

previous works, with the average waiting time for such periods to arise. The analysis of 

these statistics allows for a wise selection of the two main factors affecting the incidence 

of quiescent periods, namely their minimum length and the maximum amplitude of the 

signal. These results constitute a planning step that should be completed before applying 

the prediction method to the waves or the vessel motions. 

The theory behind the Prony analysis was described, using the least squares algorithm. It 

was then implemented for wave prediction in MATLAB, and the method to evaluate the 

prediction quality was explained. 

The last section explored the effect of the important parameters on the predictions. In 

average, the Prony method obtained accurate reconstructions of 12 seconds for wave 

signals alone, and 15 to 17 seconds for heave, pitch and roll. Comparable methods for sea 

wave prediction today reach 10 to 15 seconds. Finally, the signal was filtered in order to 

obtain better predictions. Although this step seems not to have been performed in previous 

works, it allowed the Prony method to achieve an average of 20 seconds and 35 seconds 

for waves and ship motions respectively. Besides, long reliable intervals were obtained, 

with 95 % of successful analyses reaching 30 seconds of prediction for the ship motions. 

Similar filtering techniques could be implemented for other domains of application. 

The Prony analysis was proved to be successful in linear wave theory. The Prony algorithm 

chosen might play a role in the prediction quality, the matrix-pencil method giving 

promising results. Besides, the solvers used for linear systems have a great influence on 

the success of the analysis. Though MATLAB algorithms are efficient, it might be interesting 

to examine other tools. 

Further work should focus on predicting the wave envelope in order to obtain longer 

predictions. This real-time prediction method then needs to be tested on non-linear waves. 

Possible recommendations would be to reconstruct the signal with linear terms, but also 

try a second or a third order wave theory reconstruction. This could later be developed for 

real wave measurements and vessel motions to assess its efficiency, and the possibility to 

implement it for actual marine operations. 

6 Conclusion 
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Appendix 1: Proof that a wave signal is stretched in the time domain and in its 

amplitude when the peak period and the significant wave height of the JONSWAP 

spectrum are multiplied by a certain factor 

Let us consider here a wave signal 𝑋1(𝑡) created from a JONSWAP spectrum 𝑆1(𝜔) with 

parameters 𝐻𝑠 and 𝜔𝑝. A second signal is created from a spectrum 𝑆2(𝜔) with parameters 

𝑎 ∙ 𝐻𝑠 and 𝑏 ∙ 𝜔𝑝. Both signals are created with the same numbers of components, 𝑛. We 

want to show that this signal is equal to 𝑋2(𝑡) = 𝑎𝑋1(𝑏𝑡): it is stretched both in amplitude 

and time by the same factors. 

The 𝑛 components are equally distributed between a minimum and a maximum frequency, 

respectively 𝜔1 and 𝜔2. These frequencies are chosen according to 𝜔𝑝, so that they fit the 

spectrum window. They are chosen of the form: 𝜔1 = 𝑘1𝜔𝑝 and 𝜔2 = 𝑘2𝜔𝑝. 

The frequency interval between two components is equal to Δ𝜔 =
𝜔2−𝜔1

𝑛−1
= 𝜔𝑝

𝑘2−𝑘1

𝑛−1
, and 

component number 𝑗 ∈ ⟦1; 𝑛⟧ has a frequency 𝜔𝑗 = 𝜔1 + (𝑗 − 1)Δ𝜔 = 𝜔𝑝 ∙ (𝑘1 + (𝑗 − 1)
𝑘2−𝑘1

𝑛−1
), 

which is directly proportional to 𝜔𝑝. Thus, the component number 𝑗 in the second signal 

has a frequency 𝜔𝑗
2 = 𝑏𝜔𝑗

1, and the frequency interval of the second signal is equal to     

Δ𝜔2 = 𝑏Δ𝜔1 (the 2 denotes the second signal and not a square). 

First, we can calculate the amplitude of the spectrum density of component number 𝑗 in 

the second signal with equation (1): 

𝑆2(𝜔𝑗
2) = 𝑆2(𝑏𝜔𝑗

1) = 𝛽(𝑎𝐻𝑠)
2
(𝑏𝜔𝑝)

4

(𝑏𝜔𝑗
1)
5 exp [−

5

4
(
𝑏𝜔𝑗

1

𝑏𝜔𝑝
)

−4

] ∙ 𝛾𝑟  

                              =
𝑎2

𝑏
𝛽𝐻𝑠

2
𝜔𝑝
4

(𝜔𝑗
1)
5 exp [−

5

4
(
𝜔𝑗
1

𝜔𝑝
)

−4

] ∙ 𝛾𝑟  

=
𝑎2

𝑏
𝑆1(𝜔𝑗

1).                    

Then with (2) we obtain the amplitude 𝐴𝑗
2 of component 𝑗 in the second signal: 

𝐴𝑗
2 = √2𝑆2(𝜔𝑗

2)Δ𝜔2  

           = √
𝑎2

𝑏
𝑆1(𝜔𝑗

1)𝑏Δ𝜔1  

    = 𝑎𝐴𝑗
1.                    

Finally, the second signal is equal to: 

𝑋2(𝑡) =∑𝐴𝑗
2 ∙ cos(𝜔𝑗

2𝑡 + 𝜑𝑗)

𝑛

𝑗=1

  

                                       = ∑𝑎𝐴𝑗
1 ∙ cos(𝑏𝜔𝑗

1𝑡 + 𝜑𝑗)

𝑛

𝑗=1

= 𝑎𝑋1(𝑏𝑡).  

 

  



 

Appendix 2: Mean length and total proportion of QPs that are in common between 

heave and pitch, displayed in three dimensions 

 

  

  

  

     

 
 
 
 
   

 
 
  
  
  

   

  

 
     

    

 

 
     

    

    

  

    
     

 

      
 
 
 
  

  
 
 
  
  
 
  
 

 

   

 
     

    

  

 

 
     

    

    
    

     



 

Appendix 3: Mean length and total proportion of QPs that are in common between 

the three motions - less restrictive threshold for heave (first figure) and three 

different restrictions (second figure) 

 

 

 

  

              

 
   

    

  

  

  

  

  

 
 
 
 
   

 
 
  
  
 
 

     

     

    

         

              

 
   

    

 

  

  

  

  

 
 
 
 
  

  
 
 
  
  

 
  
 

 

     

     

    

         



 

Appendix 4: Errors and predicted times on a Prony analysis with a perfect 

approximation 

 

 

 

 

  



 

Appendix 5: Prediction quality as a function of the number of sample points and 

the approximation end time, in the case 𝝅 = 𝟎. 𝟖𝟓 (first figure); as a function of the 

number of exponential components and the approximation end time, in the case 

𝒏𝒔 = 𝟏𝟎𝟎𝟎 (second figure), for 𝟏𝟎𝟎 components in the original signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                

 
 

 

 

  

  

 
 
 
 
  

  
 
  
  

 
  
  

 
  
 
 

 
 
        

 
 
        

 
 
        

                                

 
 

 

  

   

 
  

 
  
 
  
 
 
 
 
 
 
 
  
 

 

 
 
        

 
 
        

 
 
        



 

Appendix 6: Influence of high frequency filtering on the prediction quality, in the 

case 𝒏𝒔 = 𝟏, 𝟎𝟎𝟎; 𝒕𝟏 = 𝟑𝟎𝟎 𝒔; 𝝅 = 𝟎. 𝟖𝟓 
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