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Abstract: Wireless Underground Sensor Networks (WUGSNs) transmit data collected from under-
ground objects such as water substances, oil substances, soil contents, and others. In addition, the
underground sensor nodes transmit the data to the surface nodes regarding underground irregulari-
ties, earthquake, landslides, military border surveillance, and other issues. The channel difficulties of
WUGSNs create uncertain communication barriers. Recent research works have proposed different
types of channel assessment techniques and security approaches. Moreover, the existing techniques
are inadequate to learn the real-time channel attributes in order to build reactive data transmission
models. The proposed system implements Deep Learning-based Multi-Channel Learning and Pro-
tection Model (DMCAP) using the optimal set of channel attribute classification techniques. The
proposed model uses Multi-Channel Ensemble Model, Ensemble Multi-Layer Perceptron (EMLP)
Classifiers, Nonlinear Channel Regression models and Nonlinear Entropy Analysis Model, and
Ensemble Nonlinear Support Vector Machine (ENLSVM) for evaluating the channel conditions. Ad-
ditionally, Variable Generative Adversarial Network (VGAN) engine makes the intrusion detection
routines under distributed environment. According to the proposed principles, WUGSN channels
are classified based on the characteristics such as underground acoustic channels, underground to
surface channels and surface to ground station channels. On the classified channel behaviors, EMLP
and ENLSVM are operated to extract the Signal to Noise Interference Ratio (SNIR) and channel
entropy distortions of multiple channels. Furthermore, the nonlinear regression model was trained
for understanding and predicting the link (channel behaviors). The proposed DMCAP has extreme
difficulty finding the differences of impacts due to channel issues and malicious attacks. In this
regard, the VGAN-Intrusion Detection System (VGAN-IDS) model was configured in the sensor
nodes to monitor the channel instabilities against malicious nodes. Thus, the proposed system deeply
analyzes multi-channel attribute qualities to improve throughput in uncertain WUGSN. The testbed
was created for classified channel parameters (acoustic and air) with uncertain network parameters;
the uncertainties of testbed are considered as link failures, noise distortions, interference, node
failures, and number of retransmissions. Consequently, the experimental results show that DMCAP
attains 10% to 15% of better performance than existing systems through better throughput, minimum
retransmission rate, minimum delay, and minimum energy consumption rate. The existing tech-
niques such as Support Vector Machine (SVM) and Random Forest (RF)-based Classification (SMC),
Optimal Energy-Efficient Transmission (OETN), and channel-aware multi-path routing principles
using Reinforcement Learning model (CRLR) are identified as suitable for the proposed experiments.
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1. Introduction

WUGSNs are widely used in the field of object surveillance under the ground surface.
WUGSNs need multiple underground sensor nodes deployed sparsely or densely under
the surface level. The underground sensor nodes detect the environmental objects and
resources (oil substances, water substances, soil materials, etc.). Extensively, these networks
help to observe the real-time object movements in defense sectors [1]. WUGSN nodes
are operated with a limited set of resources (memory, processor, energy, and lifetime)
amongst real-time issues such as vulnerable medium, channel distortions, and uncertain
environmental conditions. Amid these network issues, learning and predicting the wireless
channel parameters are major problems.

Particularly, a WUGSN channel maintains three types of links for each data transmis-
sion. The channel creates the association between underground sensor node and surface
sensor node. Next, the channel provides the link between surface sensor node and ground
base station. In addition, a third type of link makes the data path between underground
sensor nodes [2]. Each type of wireless channel carries network data under unique data
traffic parameters and channel quality metrics. The channel qualities and traffic parameters
are configured based on signal strength (amplitude), transmission energy, receiving energy,
data transfer rate, transmission range, noise rate, interference rate, attenuation rate, traffic
type, connection establishment rate, antenna type, medium access control policies, influ-
ence rate of legitimate sensor nodes, influence rate of malicious sensor nodes, and other
uncertain events.

The channel quality parameters are uncommon for different types of WUGSN medi-
ums established for underground transmission, underground to surface transmission, and
surface to base station transmission [3–5]. In this case, the channel parameter analysis
model needs suitable channel quality management principles, adaptive learning functions,
and reactive backing systems [6,7]. The recent development in computing arena initiates
the variants of Machine Learning (ML) and Deep Learning (DL) frameworks to make
intelligent decisions against critical problems. Recently introduced channel quality assess-
ment techniques use ML and DL approaches for predicting the channel behaviors. The
artificial decision-making systems provide channel metric collection, data preprocessing,
classification, decision making, and report generation phases.

The existing solutions contribute better understanding practices against uncertain
channel measurements. Rehan et al. [8] proposed ML-based channel quality and stability
evaluation procedures for Wireless Sensor Networks (WSNs). This novel channel assess-
ment model achieved baseline channel prediction principles for evaluating channel rank
points, signal strength indicator, and connection quality metrics. In this work, the com-
mon aggregated channel quality indicator value showed the stability of wireless channels.
Similarly, Aldossari et al. [9] analyzed the channel modelling principles for wireless com-
munication. The channel modelling is the process of computing channel measurement
quantities using statistical data analysis, stochastic process, and ML principles. This work
modelled the wireless channel qualities using signal fading rate, bandwidth rate, Doppler
spread, and block error rate.

The ML-based channel measurement functions were computed for observing upper
bound and lower bound characteristics of wireless channels. In the same manner, many
research works have evolved to track and analyze the wireless channel parameters [10,11].
Moreover, the existing wireless channel models were limited against nonlinear event anal-
ysis policies and multi-channel attribute analysis policies. Firstly, the existing channel
configuration models and parameter estimation models utilized default attributes of static
wireless sensor networks. Secondly, the classification of channel distortions due to environ-
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mental issues and malicious events were not identified separately. Finally, the observation
of various medium qualities (underground substances and open-air medium) was not
attained through optimal ML and DL approaches. These are noted as crucial research
problems for feasible data communication.

On the prospect, the proposed DMCAP creates the suitable signaling models, nonlinear
channel assessment models, multi-channel interference models, and channel distortion
analysis models against uncertain WUGSN channels. Particularly, the proposed research
work is motivated to design and implement a reactive nonlinear channel learning models
and IDS engines for supporting feasible channel quality estimation. This research work
backs higher throughput attainment through the proposed DMCAP model with EMLP,
ENLSVM, VGAN-IDS, and nonlinear entropy analysis procedures.

The proposed DMCAP model is significant against existing techniques in terms of
differentiated channel assessment procedures. Notably, most of the existing techniques
were implemented for analyzing the channel qualities using linear models for WUGSN.
The existing techniques were not implemented accurately for evaluating multi-channel
quality assessment factors such as nonlinear noise quantity, entropy rate, signal loss rate,
and multi-channel interference rate (underground, underground to surface, and surface to
surface). According to the motivation, this proposed model classifies the channel under
three categories such as underground wireless channels, underground–surface channels
and surface wireless channels. The proposed channel models and signal models are created
by analyzing wireless channel attributes and signal attributes, respectively.

Particularly, the proposed DMCAP model analyzes the channel quality metrics and
nonlinearity issues using EMLP and ENLSVM. In this case, EMLP is used to determine
the classified entropy levels for various wireless channels. The development of EMLP
(back propagation procedures) is initialized over the configured model of interference and
energy optimization. EMLP is a useful procedure for classifying the channel interference on
multiple attribute (multi-modal) validation schemes. In this manner, ensemble MLP units
are created to learn and classify multi-channel entropy attributes in WUGSN environment.

In the next case, ENLSVM ensures multi-level classifier units for extracting SNIR from
multiple channel quality metrics. ENLSVM consists of multi-channel SNIR distribution
procedures, SNIR classification, and likelihood analysis procedures under uncertain net-
work conditions. In the final case, VGAN-IDS analyzes the channel distortion rate initiated
by malicious sensor nodes. On this basis, the proposed model observes and classifies
the channel quality metrics of WUGSN through reactive channel learning and adapta-
tion procedures. Thus, the proposed DMCAP model achieves optimal data transmission
pattern and energy saving solution. The proposed DMCAP model has the motivation to
optimize overall WUGSN communication quality depends upon real-time multi-channel
uncertainties. The technical contributions of proposed model are listed below.

• Development of multi-channel signaling and channel models;
• Development of multi-channel ensemble model and channel attribute classification

model;
• Implementing channel entropy classification procedures (EMLP);
• Configuring SNIR distribution and nonlinear regression procedures (ENLSVM);
• Channel distortion analysis against malicious events;
• Supporting optimal wireless channel utilization and data communication solutions

through proposed channel behavior learning techniques.

Unlike other existing techniques, the testbed of the proposed model was configured
for both surface level channel parameters and underground channel parameters. According
to real-time assumptions, the proposed DMCAP model was enriched with a dual channel
propagation model such as acoustic (underground) and ground (surface) features. These
are the notable features of the proposed DMCAP model compared with existing tech-
niques. On these conditions, the proposed DMCAP model significantly classifies real-time
multi-channel attributes based on SNIR, entropy, malicious events, and other nonlinear
distortions.
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The contributions of the proposed DMCAP model has the benefits such as optimal en-
ergy utilization rate, optimal link establishment rate, minimal routing delay, and maximum
secure throughput rate compared with existing techniques. Compared with other existing
techniques, the proposed model was specially developed for WUGSN. Furthermore, the
proposed model was modelled to predict multi-channel quality metrics for reducing the
impacts of channel uncertainties in WUGSN. The results provided in Section 4 illustrate
the benefits of proposed model against existing techniques practically.

On the basis of research motivation, the manuscript has notable research works that
contribute to the channel evaluation and attribute assessment model in Section 2. Section 3
of this manuscript explains the technical contributions and system design of proposed
DMCAP model. Section 4 provides the experiment details and performance evaluation.
This section shows the implementation details, network configuration parameters, channel
configurations, and results. Finally, Section 5 summarizes the crucial contributions of the
research work with appropriate future philosophies.

2. Related Works

In wireless networks, channel models perform a major role in implementing a reliable
data communication system. Flawless data transmission highly depends on the quality of
wireless channels and the rate of distortions. On this basis, any intelligent (ML and DL)
communication models should properly learn and predict the active channel conditions.
The wireless channel modelling procedures and the data communication models are closely
related to each other. There are different types of wireless networks found as wireless
sensor networks, mobile ad-hoc networks, wireless personnel area networks, and wireless
local area networks.

Among these networks, wireless sensor networks are deployed for collecting the
ecological data from various objects on the surface, sea, and underground areas. Compared
with other sensor networks, WUGSNs are highly dominated by channel distortions and
underground obstacles.

Similarly, WUGSNs consist of both underground links and surface links. On this
environment, the nature of each channel is configured uniquely with crucial parameters
(antenna type, interference, noise, energy, etc.). Understanding the real-time channel distor-
tions and modelling the channels according to the need aids better reactive communication
systems. The proposed DMCAP model implements a realistic WUGSN channel model
and channel quality prediction model with the help of multi-channel quality assessment
policies. The scope of the proposed research work was initiated from various related
research works. This section describes the recently developed channel assessment and
channel quality estimation policies.

Bogena et al. [12] proposed a novel signal attenuation assessment model against soil
contents for hybrid WUGSNs. In this contribution, the low-cost soil surface network was
created to estimate the wireless signal transmission. This work evaluated various signaling
possibilities against different types of soil thickness. This work stated that the WUGSN can
communicate with other nodes via 5 cm soil surface (thickness). This work enabled radio
communication channel using ZigBee network protocol to build soil-net environment. In
this environment, ZigBee communication channels were created to share the information
between underground sensor nodes to evaluate the ability of signal attenuation levels.
Similarly, the channels were enabled to connect underground soil nodes and surface
nodes. This work stated that the attenuation rate created by soil thickness levels affected
the channel ability. However, this work missed the versatile configurations of various
uncertainties such as noise, link failures, node failures, and dropped packets.

Sharma et al. [13] analyzed the technical benefits and limitations of Internet of Things
(IoT) environment and WSNs. This work provided the details such as network hetero-
geneity, energy optimization, scalability, routing delay, network security, channel flexibility,
and data throughput. This work classified different types WSNs and the characteristics in
terms of mobility, energy resources, deployment models, and architectures. Yan et al. [14]
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proposed game theory approaches for clustering the sensor nodes in order to reduce the en-
ergy consumptions. Game theory is the technique considered for various decision-making
systems. In this case, each sensor node of the WSN was treated as a player node on the
field. On this deployment model, the sensor nodes were clustered on the basis of their
current states (active or passive). This work provided a solution for energy-based clustering
solutions in WSNs. The energy-efficient game theory approach and clustering, mechanisms
introduced in this work were configure to identify the migration status of active node in to
sleep state and vice versa. In the same manner, this protocol introduced penalty principles
that were working against greedy nodes or selfish nodes available in sensor networks.
Notably, these penalty procedures were applied to control the energy violations created by
communicating nodes in the network. However, this technique was not developed with
well-defined intelligent approaches, uncertain channel models and ML procedures.

Among the solutions developed against various problems of WSNs, the accurate
detection and prediction of channel events play a crucial part. O’Mahony et al. [15]
proposed a method of analyzing the channel characteristics of WSNs using Support Vector
Machine (SVM) and Random Forest (RF)-based Classification model (SMC). SVM and RF
are the ML approaches used in the work to understand the nature of real-time wireless
channel qualities. This work developed an experimental base for analyzing the channel
noise rates, jamming problems, data transfer difficulties and other signaling properties.
This work contributed for wireless channel quality assessment practices. This mechanism
provided a proper data point collection principles to observe the channel irregularities and
uncertainties of wireless sensor networks. At the same time, the suggested channels with
optimal conditions were identified as suitable for data communication. On the other side,
the supervised models need nonlinear data analysis support systems.

In addition, the effort of this mechanism did not identify multi-path channel distur-
bances, underground uncertainties and unique properties of multiple channels. Singh
et al. [16] proposed Optimal Energy-Efficient Transmission (OETN) with naked mole-rate
principles. The need for channel parameter estimation and the quality of service model are
the important features for WUGSN. The provided model in this work integrated naked
mole-rat algorithm and cross layer multi-channel assessment policies to improve wireless
channel stability. Since the energy-efficient channel stability model was defined properly,
this work achieved the reliable data communication. Notably, the mole-rat algorithm was
applied with magnetic induction procedures. This work stated that the generic electromag-
netic signaling mechanisms were seriously affected by channel uncertainties. In this regard,
this work found the magnetic induction technique for the underground sensor network.
The influence of the above work found the solution for ensuring better throughput and
minimal energy consumption in WUGSN. In contrast, uncertain induction rates were not
evaluated for multiple channels of WUGSN.

Di et al. [17] proposed channel-aware multi-path routing principles using Reinforce-
ment Learning model (CRLR) for underwater sensor networks. Compared with previous
works, CRLR delivered a complex channel analysis and learning practices towards un-
derwater channel estimations. In this regard, the CRLR model was proposed to improve
wireless routing protocol functions and ensure optimal data communication possibilities
under single-path and multi-path routing strategies. In addition, this work found Rein-
forcement Learning model to optimize the channel energy utilization factors. At the same
time, this work confirmed real-time rewards for channel events to improve the channel
throughput with minimal energy consumption. However, the CRLR was not developed to
meet uncertain channel conditions and vulnerable channels.

Similarly, other recent research works proposed various wireless communication strate-
gies, ML applications, data distribution principles, and security measures for WSNs [18–20].
Cortés et al. [21] proposed wireless channel observation techniques against signal jam-
ming attacks with the help of collaborative node mechanisms. The work analyzed the
possibilities of jamming problems initiated from other malicious nodes to legitimate sensor
nodes. Particularly, the cooperative signal detection model was enabled for maintain-
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ing feasible data communication channels for industrial sensor networks. However, this
system was limited in terms of heterogeneity features and uncertain network conditions.
The existing systems described above found various real-time problems on handling the
wireless channels and underground channels. Furthermore, the underground substances,
rock displacements, and oil contents were noted as crucial obstacles. Further, the works
suggested the applications of suitable ML techniques for channel stability predictions.

Tam et al. [22] proposed multi-objective teaching–learning scheme for handling the
problems of sensor networks such as coverage probability and lifetime enhancement. This
scheme implemented optimized evolutionary algorithms, genetic algorithm, and multi-
objective policies. In the implementation, sensor spacing solutions, sensor dominated
solutions, and optimal node quantity solutions were attained through network attribute
learning models. This work determined the possibilities of better network lifetime and
node coverage. At the same time, this scheme stated the importance of a continuous net-
work optimization problem to determine lifetime and coverage abilities. Though solutions
are expected to be improved with well-trained ML and DL approaches. Singh et al. [23]
debated wireless sensor underground infrastructures and underground monitoring prob-
lems. Particularly, this work discussed soil monitoring methods and other environmental
observations using WSNs.

In the same manner, the involvement of the work led to the development of WSN
infrastructure using magnetic induction principles that are suitable for underground ap-
plications. In addition, the effort of the work was continued with the future scopes of
WSN-based underground applications. Yet, this article was incomplete in terms of research
innovations.

In the same manner, Sun et al. [24] delivered the potentials of border surveillance
using WSNs. As WSNs are manufactured using resource-limited components, the signifi-
cance of lifetime and energy factors is inevitable. In order to improve the lifetime, energy
optimization, and transmission coverage quality, Ehlali et al. [25] and Pal et al. [26] devel-
oped different types of coverage analysis models and lifespan improvement strategies for
WSNs. However, most of the existing systems were not taking WUGSN characteristics and
channel uncertainties under research constraints seriously; this is needed and this problem
is estimated to be resolved. Additionally, the available channel assessment techniques and
WSN communication protocols were not ensuring feasible data throughput under dynamic
channel conditions [27,28]. The literature analysis provides various technical details with
the following limitations.

• Multi-channel characteristics are not considered for improving data transmission
quality;

• The channels of WUGSNs are not assumed with realistic conditions (acoustic and
air-based channel parameters);

• The reasons for data loss are not classified under malicious behaviors and channel
behaviors;

• Channel models and attributes are not properly analyzed through multi-classifier
units and nonlinear functions. Since WUGSN has heterogeneous channel behaviors
(distortions), these are necessary for future channel assessment plans.

The proposed model was implemented with appropriate nonlinear data analysis
models, ensemble channel attribute classification models, and malicious event analysis
models to improve the entire network communication quality.

Consequently, this proposed model attempts to reduce the number of retransmissions,
routing delay, and energy wastages by effectively assessing multiple channel properties of
WUGSN. Table 1 shows the comparison of previous works (limitations) and the proposed
idea to implement DMCAP. Practically, WSNs, WUGSNs, and other wireless network
channels are more vulnerable to uncertain channel qualities. Furthermore, WUGSN channel
properties are uncommon for underground mediums and surface mediums with crucial
real-time distortions. In this field, the deep multi-channel assessment principles are required
to maintain the reliable communication against channel problems and malicious events
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(intruders). The proposed DMCAP model technically approaches all these issues and
ensures the solutions against the mentioned problems.

Table 1. Previous works and motivation of proposed work.

Previous Techniques Motivations of Proposed Work

Homogeneous wireless channel assessment
techniques are proposed.

Multi-channel (heterogeneous) assessment
techniques are required.

Linear and moderate channel models are
created for implementing the networks.

WUGSNs are expected to be considered with
more realistic network parameters.

Uncertain conditions are not produced in the
network model effectively.

More uncertain conditions must be imposed on
underground and open medium of WUGSN.

Energy optimization is not taken crucially for
WUGSN with differentiated channel qualities.

Energy optimization must be taken crucially
for WUGSN with differentiated channel
qualities.

3. DMCAP System

WUGSN has the collection of UGN underground sensor nodes that are deployed
beneath the surface. Each sensor node UGi has maximum 5 m of circular transmission
range through underground obstacles. The underground obstacles between the sensor
nodes can be observed as soil substance, rocks, colloidal surfaces, oil substances, and others.
Sensor nodes transmit the data to surface nodes or neighbor nodes through electromagnetic
signals or acoustic signals. Gs surface sensor nodes receive the underground data streams
continuously from different sensors. This proposed system designs the Gs surface nodes as
mobile ad-hoc sensor nodes that can move around the surveillance area gradually. In the
next level, BGs number of ground base stations receive the signals from surface nodes. This
hybrid WUGSN has different types of channel environments between UGN, Gs and BGs
points. According to this network design, each channel link needs significant traffic
parameters, signal models, and noise models for different links. UGN nodes forward the
data to neighbor nodes and surface nodes (red nodes). At the same time, surface sensor
nodes can detect the neighbor sensor node or nearest base station to deliver the data.

3.1. Signaling and Channeling Models

The proposed system formulates complex signaling parameters and channel distortion
factors as provided below. The multi-channel signal models and noise models are provided
in the following equations.

Signal Attenuation factor:

Sαi = ω

√
me
2

(√
1 +

(e′
e

)2
− 1

)
(1)

Equations (1) and (2) state ω as signal wavelength. m and e are electromagnetic
permeability and real permittivity factor respectively. e′ indicates imaginary portion of
dielectric permittivity factor.

Signal Phase shifting factor:

Sβi = ω

√
me
2

(√
1 +

(e′
e

)2
+ 1

)
(2)

signal reflection factor:

S(R)i =
1−√e′
1 +
√

e′′
(3)
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attenuation due to reflection:

S(RA)i = 10 log
2·S(R)i

1 + S(R)i (4)

Equations (3) and (4) illustrate reflection models. Similarly, the underground particles
such as soil contents, water contents and other particles create signal attenuation between
all sensor nodes. The underground sensor signals are affected due to reflection, absorption,
refraction, and scattering of electromagnetic signals. The receiving power at different links
are derived as provided in Equations (5)–(7).

Receiving power at UGN link,

P(R)Ui−Ui = Ptr + Gtr + Grx − LossUG (5)

• Ptr¯Sensor Node′s Transmission Power;
• Gtr¯Transmisison Gain;
• Grx¯Receiving Gain;
• LossUG¯Underground Signal Loss.

Receiving power at Gs and UGN link:

P(R)Ui−Si = Ptr + Gtr + Grx −
[
LossUG + Loss0 + LossA

]
(6)

• Loss0¯Free space loss;
• LossA¯Loss due to adversarial events.

Receiving power at Gs and BGs link:

P(R)Si−Bi = Ptr + Gtr + Grx −
[
Loss0 + LossA

]
(7)

Over these signaling models, Signal to Noise Interference Ratio (SNIR) is determined
for uncertain and lossy conditions under different channels and links. In the determination
phase, set SNIR threshold range between ϑ1 and ϑ2. In this work, SNIR is adjusted for
different channels (Equation (8)). The SNIR is tuned based on novel training algorithm.

SNIR(Ui−Ui, Ui− Si, Si− Bi) ∝ CQ·NC·TF(dt) (8)

• SNIR(Ui−Ui, Ui− Si, Si− Bi) < ϑ1, Signal Dropped;
• SNIR (Ui−Ui, Ui− Si, Si− Bi) ≥ ϑ2, Signal recieved at the sink;
• SNIR (Ui−Ui, Ui− Si, Si− Bi) ∈ R(ϑ1, ϑ2), Adversarial block;
• CQ¯Channel Type;
• NC¯Node Type;
• TF¯Learning Factor at regular interval;
• ϑ1¯Lower bound;
• ϑ2¯Upper Bound.

As mentioned in Equation (8), three types of channels (links) are created to transfer
the information from set of underground sensor nodes to base station via surface sensor
nodes. These channels are configured with separate frequencies, bandwidths, energy limits,
and other communication needs. Particularly, the link Ui−Ui is a static under the ground
level. At the same time, the links such as Ui− Si and Si− Bi are dynamic surface links in
the WUGSN [29,30].

Since the surface nodes are moving from one location to another location randomly,
these links are separately maintained with the help of unique mobility patterns. In addition,
the communication parameters and interference rates of the links are changed against
Ui− Ui link attributes. As illustrated in Figure 1, the brown color nodes are UGi, the
green color node is Gi and the base station is BGi. Figure 1 shows the channels (links)
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between the sensor nodes and base station. As multiple channels are needed for this
heterogeneous WUGSN, the implementation of multi-channel SNIR model with learning
factors is a crucial task. The time bounded streams of signaling and interference factors
are collected and packed as individual tuple as provided below. The WUGSN channel
parameters and distortion cases are determined continuously through complex mathemat-
ical functions. Furthermore, these details are modelled as T(S)αi and T(P)αi. These are
channel monitoring tuples used as the sequence of inputs to the proposed ML techniques.
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Signal attenuation tuple:

T(S)αi = (Sαi, Sβi, S(R)i, S(RA)i)·dτ
dt
∀ LN (9)

Signal energy tuple:

T(P)αi =
(

P(R)Ui−Ui, P(R)Ui−Si, P(R)Si−Bi
)
·dτ

dt
∀ LN (10)

Equations (9) and (10) illustrate the details of T(S)αi and T(P)αi. In Equations (9) and (10),
τ states signaling interval; LN denotes total number of wireless links in the network. These
channel quality management tuples are provided in the ML network layers to compute
learning factor and adaptive channel quality weight factor [31–33].

3.2. Multi-Channel Ensemble Model and Channel Attribute Classification Model

As WUGSN needs multi-channel data transmission model, signaling parameters, and
channel distortions are dynamically determined at each signaling intervals. The statistical
channel analysis models and other conventional models analyze the channel qualities with
nominal assumptions. In this case, the requirement of multi-channel ensemble classification
model is more crucial.

Algorithm 1 shows the procedure of multi-channel interference and energy model
based on channel quality tuples, T(S)αi and T(P)αi. Algorithm 1 initiates various classifica-
tion procedures for analyzing the real-time quality of WUGSN channels. Most importantly,
the multi-channel quality evaluation procedures are initialized in each sensor node de-
ployed at either underground locations or surface points.
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Algorithm 1: Multi-Channel Interference and Energy Modelling Procedure

Input: Channel Parameters and Identifiers
Output: Ensemble Classifier Activation
1: Get channel parameters as tuple, T(S)αi and T(P)αi

2: Get channel identifiers, Chi ∀ S(Ui−Ui, Ui− Si, Si− Bi)
3: Initiate traffic analyzer for all active nodes
4: Compute ensemble DL engine function, DE(F) and Build ensemble classifier units

a. Information Entropy Classifier
b. SNIR Classifier
c. Attack Classifier

5: Install DE(F) for all active nodes
6: Initiate DE(F) for all active communication under svc mode.
7: Call classifiers of DE(F)
8: Redo

End

The subsets of Algorithm 1 lead to enable channel entropy classification practices,
SNIR classification practices, attenuation/energy classification practices, and malicious
event classifications on each wireless channel. In this deep channel quality analysis and
learning model, lightweight ML and DL techniques are utilized for ensuring reliable data
transmission conditions [34]. Figure 2 shows the basic signaling model. According to the
basic model, the transmitted signal quality, receiving signal quality, channel distortions,
and other adversarial factors are evaluated under uncertain mediums. In the first phase of
channel quality assessment process, information entropy is determined and evaluated for
multiple wireless channels. The information entropy model plays a major role in finding the
actual liveliness of each wireless channel of WUGSN. In this regard, the proposed system
implements conditional joint entropy functions with Ensemble Multi-Layer Perceptron
(EMLP) classifier units in each sensor node. The proposed EMLP procedures are reactive
against live channel parameters [35,36].
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The sensor nodes participating in underground communication and surface commu-
nication lead to significant information entropy. The entropy model is defined with joint
conditional distribution function as provided in Equation (11).

H(tnai |ti) = Etnai |rnai
[− log p(tnai |rnai) = − ∑

tiεtnai

p(tnai |rnai) log p(tnai |rnai) (11)

Let the Equation (11) as Ei
N be an entropy pair for active channel at time τ. The

information entropy varies continuously for each data transmission. The proposed system
implements EMLP network for classifying the continuous streaming of entropy deter-
minations. The training phase of EMLP observes the determinations from Equation (11)
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and the relationship model for entropy function is provided in Equations (12) and (13).
Equation (13) illustrates mutual channel entropy value in the network [37].

H(tnai |r_nai) = H(tnai |r_nai)−H(rnai) (12)

I(tnai ; rnai) = ∑
tnai ,rnai

p(tnai , r_nai)· log
p(tnai , rnai)

p(tnai)·p(rnai)
(13)

Similarly, the channel data transfer capacity at τ is defined with I(tnai ; rnai) as men-
tioned in Equation (14).

C(I) = max(I(tnai ; rnai , τ, c)) (14)

Equations (11)–(14) are denoting the channel entropy variances and determinations
of EMLP (Algorithm 2). In this case, let the sensor nodes in an active communication
channel are t_nai and r_nai. In this circumstance, t_nai denotes the active transmitter and
r_nai denotes the active receiver. Etnai |rnai

denotes joint entropy function related to each
active communication pair. H(tnai |ti) and I(tnai |ti) are denoting joint conditional functions
of entropy model and information model. According to Equation (11), H(tnai |ti) ensures
the data dissemination through other nodes (multi-path) based on logarithmic entropy
distribution.

Algorithm 2: EMLP for Entropy Learning and Classification

Input: H(tnai |r_nai), I(tnai ; rnai ), C(I)
Output: Classified results and Entropy Knowledge Base Creation
1: Get all channel entropy determinations
2: Train the EMLP using training data, TE(x, y, τ)
3: Determine the entropy bias rate, ∅(Ui−Ui), ∅(Ui− Si) and ∅(Si− Bi)
4: Set minimal bias function as steepest decent for all data samples
5: EMLP backpropagation unit is modelled as below
Do for all nodes:

dωx,y

dτ
= − ∂∅

∂ωx,y
,

dδx,y

dτ
= − ∂∅

∂δx,y

6: Update the knowledge base, D(E(xi,yi, τ))
7: Redo for all nodes in WUGSN.

End

In this case, data shall be fragmented and distributed according to divide and conquer
approach since multiple paths are active to destination. The equation is remodeled as
indicated to state the relationship between transmitter and forwarding nodes (sink) of
multiple paths under logarithmic scale. Equation (12) indicates H(tnai |r_nai) as a training
function of distributed entropy model with neglected local entropy of each sink (forwarding
node) since this proposed model uses EMLP to strictly consider channel entropy conditions
for each session. In the same manner, Equation (13) I(tnai ; rnai) represents cumulative
channel information distribution probability between t_nai and r_nai for each active session
in WUGSN. Under this scenario, r_nai can be considered as any forwarding node (sink) or
destination node in multi-path channel model.

In addition, the crucial determination over channel data transfer capacity is defined
as C(I) under real-time conditions of WUGSN. Equation (14) has the maximum I(tnai ; rnai)
at τ as the real-time data transfer capacity for a particular channel, c. In this manner, the
training phase of EMLP for multi-channel entropy model can be expressed for effective
WUGSN communication model. This helps to learn the real-time entropy variations for
each channel (Ui−Ui, Ui− Si, Si− Bi).
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3.3. SNIR Distribution and Analysis Using Multi-Channel Nonlinear Regression Model

The generic nonlinear channel regression model is determined as shown in Equation (15).
Generally, SNIR determined at the channel is nonlinear in nature. Similarly, the production
of multi-channel SNIR falls completely under nonlinear functions. In this nonlinear pro-
duction of timeline data of SNIR, the prediction and determination can be modelled with
the help of multi-channel nonlinear regression model. As provided in Equation (15), the
nonlinear function of channel quality management tuples shall be determined.

y(n) = θ0 + (T(S)αi + T(P)αi)·θ1 + θ1·θ0 + (T(S)αi + T(P)αi)
2
+ . . . (15)

y(n) =
θ0

1 + θ1(T(S)αi+T(P)αi)−θ2 (16)

• θi¯Nonlinear quantity factor.

From the nonlinear model determination, the nonlinear ability of each channel impacts
the channel can be calculated. Let the multi-channel nonlinear regression model, m(y(n))
be expressed as

y(n)α C(I) (17)

m(y(n)) = N·y(n)·dCi
dτ

(18)

Equation (18) denotes Ci as channel identifier and N as number of channels. The chan-
nel capacity and attenuation/energy nonlinearity determinations are closely coupled with
SNIR production rate. As the rates of previous channel qualities and quantities vary, SNIR
leads to distortions. At this moment, the learning and classification practices of nonlinear
SNIR sequence make significant effects in WUGSN communication. This is modelled with
the help of Ensemble Nonlinear SVM (ENLSVM). Generally, SNIR determines the upper
bounds in information transferring for a wireless channel. The optimal determination of
SNIR for each wireless channel shows the quality of wireless links against various signal
distortions [38].

In WUGSN, SNIR is defined as provided Equation (19).

SNIR
(

li
)
=

Psl

Il + Noisel
±ϕ (19)

Equation (19) illustrates the SNIR determination at the active link, li. In this equation,
Psl represents required signal quality, Il and Noisel denote interference and noise impacts
in the channel, respectively. Equation (20) shows the multi-channel SNIR determination
function for all active channels. The distribution of multi-channel SNIR

(
li
)

is determined
with the Gaussian distribution model with ϕ as provided in Equation (21).

S
(

SNIR
(

li
))

= SNIR
(

li
)
·ds·dτ ∀ S(L) (20)

• li¯a link at time τ;
• li can be either Ui−Ui or Ui− Si or Si− Bi;
• ϕ¯nonlinear event variance, where 0 ≤ ϕ ≤ 1.

In this case, m is the mean and ϕ2 is the variance in distribution model. The interfer-
ence likelihood function is formulated for given distribution model in Equation (21).

D(V) =
1

(2πϕ2)
1/2 exp

{
− 1

2ϕ2

(
SNIR

(
li
)
−m

)2
}

(21)

l
(

SNIR
(

li
)

/m,ϕ2
)
=

N

∏
n=1

G
(

SNIR(ln)
m

, SNIR
(

li
)2
)

(22)
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l
(

SNIR
(

li
))

=
k

∑
i=1
πiG(SNIR

(
li
)

/mi,ϕ2
i ) (23)

• k—Total number of interference classes;
• i—Interference data class for current channel;
• πi—Mixing coefficient varies from 0 to 1;

• SNIR
(

li
)

—SNIR for channel ‘i’.

The proposed DMCAP effectively uses both nonlinear regression model with ENLSVM
principles to classify SNIR data for multiple channels. Moreover, the effective data distri-
bution function helps to handle the SNIR data space optimally for ENLSVM evaluation
procedures. Algorithm 3 describes the multi-channel SNIR evaluation procedures.

Algorithm 3: ENLSVM

Input: S
(

SNIR
(

li
))

, D(V), l
(

SNIR
(

li
))

Output: Classified data distributions
1: Get training samples for k rounds

2: Set threshold for SNIR
(

lith
)

, D
(

Vth
)

, l
(

SNIR
(

lith
))

-> {Ui−Ui or Ui− Si or Si− Bi}
3: Do training for i = (1,k)

SNIR
(

li
)

for k1 samples/SNIR Classifier
D(V) for k2 samples/Distribution Classifier

l
(

SNIR
(

li
))

for k3 samples/Likelihood Classifier
4: Configure ϕ as nonlinear component for all channels
5: Do testing for i = (1,k), Ensemble Test

e = max ∑
ϕ,threshold

ϕ·[SNIR, D(V), l(SNIR)]

6: Do recurrent training and testing

End

3.4. Channel Quality Distortions Due to Malicious Events

Evaluation of the changes and distortions happens due to abnormal environmental
properties, and the distortions initiated due to malicious attacks are the major risks of
WUGSN. In this concern, the WUGSN channels are vulnerable to jamming attacks, worm-
hole attacks, packet dropping attacks, Distributed Denial of Service (DDoS) attacks, and
other malicious injections. On the field, the channel security system needs to classify the
attacks and other distortions regularly.

The proposed system configures both channel assessment policies and security prac-
tices to monitor the wireless communication parameters [39]. Algorithm 4 presents VGAN
engine to be active in sensor nodes to monitor the wireless transmissions. The VGAN-
enabled IDS works against different types of attacks based on attack knowledge installed
in the node’s local storage [40]. VGAN-IDS initiates event generator functions and event
discriminator functions to monitor the adversarial activities involved in the channels.
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Algorithm 4: VGAN-IDS

Input: Encoded Data Sequences, Channel Quality Metrics
Output: Vulnerability Logs and Attack Classifications

1: Initiate VGAN associated IDS in sensor node
2: Initiate Attack Dataset, Channel attribute dataset
3: Call VGAN (Sample generator, Data discriminator)
4: Set passive capturing mode (low energy) or active capturing mode (optimal energy)
5: Set M = 1 for sensor monitor (VGAN-IDS)
6: Set M = 0 for forwarding nodes
7: Extract the channel data packets and evaluate using VGAN-IDS
8: Classify the data and suspicious events
9: Share alert reports
10: Redo for all sessions

End

VGAN-IDS performs actively over multi-channel neighbor interactions to classify
channel distortions into malicious issues and environmental issues separately. Thus, the
proposed DMCAP model monitors environmental distortions and malicious events inde-
pendently to estimate the quality of wireless channels under uncertain conditions. The
VGAN-IDS model and channel assessment policies proposed in the article safeguard the
multi-channel data transmission against channel distortions and suspicious events. The
proposed system was implemented as shown in Section 4. Section 4 provides an immense
impact on the development of proposed DMCAP model and performance evaluations.
Figure 3 illustrates the overall system model implemented inside each sensor node supports
for reliable network communication. The sensor node has hardware internal components
and software internal components. As shown in Figure 3, the software module of each
WUGSN sensor node contains proposed DMCAP procedures, VGAN-IDS engine, reactive
channel estimator, and DMCAP/IDS activator procedures on demand. In addition, Figure 4
illustrates the overall DMCAP system design and the integral phases used for managing
reactive data transmission. The proposed internal learning system and channel assessment
procedures was initiated for active channels and nodes [41,42].
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4. Experiments and Results

The experimental circumstance provides the WUGSN design using Network Simulator
3.0 (NS 3.0). In this experiment, wireless sensor network patches are installed and WUGSN
parameters are configured as illustrated in Tables 2 and 3. The NS 3.0 sensor network
package provides the configuration features related to noise, interference, amplitude, and
underground channel constraints. Additionally, the proposed network model consists
of electromagnetic signal characteristics and acoustic characteristics. Consequently, the
proposed techniques are developed using C++ and Python 3.8 languages in the modelled
network base.



Energies 2023, 16, 2285 16 of 28

Table 2. WUGSN-surface channel configuration parameters.

Test Bed Features Features

Tool NS-3.0
MAC CSMA/CA
Channel Assessment Model DMCAP
Routing Protocol AOMDV
Number of Sensor Nodes 40, 80, 100
Attack Dataset KDD’99
Transmitter Power (W) 0.56
Receiver Power (W) 0.31
Channel Throughput (Kbps) Variable
Coverage (meters) 50 (maximum)
Channel Surface (Air)
Mobility Surface-Random Way Point
Propagation Two Ray Ground

Table 3. WUGSN configuration parameters.

Test Bed Features Features

Tool NS-3.0
MAC CSMA/CA
Channel Assessment Model DMCAP
Routing Protocol AOMDV
Number of Sensor Nodes 40, 80, 100
Attack Dataset KDD’99
Transmitter Power (W) 0.78
Receiver Power (W) 0.58
Channel Throughput (Kbps) Variable
Coverage (meters) 25 (maximum)
Channel Underground
Mobility Underground-Random Way
Propagation Two Ray Acoustic

The configured WUGSN has the proposed techniques under Medium Access Control
(MAC) policies as inbuilt patches. The network works under 3.5 GHz band around 500 m2

area. The built-up network area contains the sensor nodes with underground channel
characteristics and open surface characteristics. Table 2 shows the WUGSN characteristics
of surface sensor nodes and Table 3 illustrates the configurations of underground channel
parameters.

The dual-type channel quality configurations ensure close real-time WUGSN chan-
nel assumptions [43]. As provided in Figure 3, the knowledge base maintains channel
parameter attributes and malicious event attributes (Knowledge Discovery in Databases
(KDD’99)). Figure 5 shows the variations in major channel quality parameters such as
channel interference rate, channel data transfer rate, and overall channel uncertainty rate.
Moreover, Figure 5 denotes the distortion rates at probability scale measurement. The
observed measurements present the reduction in data transfer rate as uncertainty and
interference rates are increasing over time. The experiment confirms that underground
and surface level channel distortions severely affect sensor node’s data communication
efforts [44]. The test bed of WUGSN initially observes the wireless channel quality metrics
and channel distortions as provided in Figures 5 and 6. Figure 6 relates the quantity of
data retransmission rate and channel noise production rate. Generally, noise is defined as
unwanted signals that disturb the original data communication.



Energies 2023, 16, 2285 17 of 28

Energies 2023, 16, x FOR PEER REVIEW 17 of 29 
 

 

The dual-type channel quality configurations ensure close real-time WUGSN 
channel assumptions [43]. As provided in Figure 3, the knowledge base maintains 
channel parameter attributes and malicious event attributes (Knowledge Discovery in 
Databases (KDD’99)). Figure 5 shows the variations in major channel quality parameters 
such as channel interference rate, channel data transfer rate, and overall channel 
uncertainty rate. Moreover, Figure 5 denotes the distortion rates at probability scale 
measurement. The observed measurements present the reduction in data transfer rate as 
uncertainty and interference rates are increasing over time. The experiment confirms that 
underground and surface level channel distortions severely affect sensor node’s data 
communication efforts [44]. The test bed of WUGSN initially observes the wireless 
channel quality metrics and channel distortions as provided in Figures 5 and 6. Figure 6 
relates the quantity of data retransmission rate and channel noise production rate. 
Generally, noise is defined as unwanted signals that disturb the original data 
communication. 

 
Figure 5. Channel quality measurements. Figure 5. Channel quality measurements.

Energies 2023, 16, x FOR PEER REVIEW 18 of 29 
 

 

 
Figure 6. Channel distortion rate. 

Channel Interference Rate = 𝑆𝑆 ∗ 100 (24)

• 𝑆 − 𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑒𝑠; 
• 𝑆 − 𝑆𝑖𝑔𝑛𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒𝑠. Channel Data Rate = 𝑇𝐻𝑆𝐷  (25)

• 𝑇𝐻 − 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑎𝑡𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑; 
• 𝑆𝐷 − 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Channel Uncertainty Rate = ∑(𝑛 . 𝑙 )𝑑𝜏𝑁𝑎𝑐𝑡𝑖𝑣𝑒  (26)

• 𝑛 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑒𝑠𝑠𝑖𝑜𝑛; 
• 𝑙 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑒𝑠𝑠𝑖𝑜𝑛; 
• 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑒𝑠𝑠𝑖𝑜𝑛. Channel Noise Distortion Rate =  𝑁𝑜𝑖𝑠𝑒 (𝑀) − 𝑁𝑜𝑖𝑠𝑒 (𝜏)𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ∗ 100 (27)

• 𝑁𝑜𝑖𝑠𝑒 (𝑀) − 𝑀𝑒𝑎𝑛 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑒; 
• 𝑁𝑜𝑖𝑠𝑒 (𝜏) − 𝑁𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝜏. Channel Retransmission Rate = 𝑁𝐿 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑎 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∗ 100 (28)

• 𝑁𝐿 − 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑎𝑐ℎ 𝑙𝑖𝑛𝑘. 
Equations (24)–(27) describe the network uncertain conditions enabled in the 

simulation environment. The uncertain channel conditions can be imposed in the 
WUGSN testbed as channel interference rate, noise distortion rate, retransmission rate, 

Figure 6. Channel distortion rate.



Energies 2023, 16, 2285 18 of 28

Channel Interference Rate =
SI

SO ∗ 100 (24)

• SI¯Signal from communicating parties;
• SO¯Signals from other nodes.

Channel Data Rate =
TH
SD

(25)

• TH¯Data Transfer Rate between nodes in bits per second;
• SD¯Session Duration in seconds.

Channel Uncertainty Rate =
∑(nd·ld)dτ

Nactive
(26)

• nd¯Number of node failures in a session;
• ld¯Number of link failures in a session;
• Nactive¯Number of active nodes in a session.

Channel Noise Distortion Rate =
Noise (M)−Noise (τ)

Nactive
∗ 100 (27)

• Noise (M)¯Mean Noise Rate;
• Noise (τ)¯Noise rate at time τ.

Channel Retransmission Rate =
NL

Number of links in a channel
∗ 100 (28)

• NL¯Total Number of Retransmissions between each link.

Equations (24)–(27) describe the network uncertain conditions enabled in the simu-
lation environment. The uncertain channel conditions can be imposed in the WUGSN
testbed as channel interference rate, noise distortion rate, retransmission rate, and overall
channel uncertainty rate as denoted in the equations. The detailed illustrations of imposed
uncertain conditions are provided in Figures 5 and 6. The changes in channel uncertainties
are depicted over the changing number of sensor nodes in the network.

Interference is the signal generated from other sources. Both types of signals crucially
interrupt the channel quality measures [45,46]. According to the real-time channel dis-
tortions, the proposed network model was configured and experimented for evaluating
the system performance. As illustrated in Figures 5 and 6, the total number of sensor
nodes in WUGSN varies from 20 to 200. The total number of sensor nodes contains both
underground sensor nodes and surface nodes. Figure 6 describes the gradual hike of data
retransmission rate against uncertain noise production rate in the wireless channels. In this
case, the data retransmission rate increases from 5% (0.05) to 45% (0.45) rapidly against the
noise rate (0.35 to 0.55). The network channel characteristics experimented in this section
show the competent assumptions of the proposed network model [47].

As illustrated in Figure 6, the rapid hike of sensor nodes’ data retransmission rate
impacts energy consumption rate and network lifetime. Accordingly, the need for efficient
channel assessment and learning system is mandatory to activate channel-aware data
transmission principles for uncertain WUGSNs. The proposed DMCAP model and the
existing models compete to provide reactive data transmission procedures against channel
distortions. The models are evaluated using various learning-support performance metrics.
In this regard, the proposed and existing techniques are evaluated using system precision,
link quality prediction, routing delay, and secure channel throughput against channel
uncertainty rate and other factors.
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Figure 7 clarifies precision rate of different channel assessment techniques. Generally,
system precision rate is determined as provided in Equation (29).

Prec(System) =
C_t
T_t
∗ 100 (29)

• Ct → Correctly predicted True channel distortion events ;
• T_t→ Total predicted events as true channel distortions .
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The system precision rate justifies the actual perfectness of the proposed technique
(Equation (29)). In this case, the DMCAP outperforms the existing techniques (SMC, CRLR,
and OETN). The maximum precision rate of DMCAP is measured as 99.9% where other
techniques fall between 94% and 98.5%. Similarly, the minimal system precision rate is
recorded as 97.8% for the DMCAP model. At the same time, the existing techniques secure
the precision rate from 80% to 91%.

In the existing techniques, SMC is identifying optimal channels based on signal phase
parameters (in-phase and quadrature phase) through software-enabled radio signaling
mechanisms. The samples collected from in-phase and quadrature phase (I and Q) are
applied in to SVM and RF functions. The supervised learning approaches such as SVM and
RF are conventional for analyzing the phase samples of signals deeply. In the developed
testbed, this proposed article assumes more complex uncertain conditions for channel
optimization. Under this case, the existing SMC is not qualified to obtain better precision
and prediction rate (link quality) compared with the proposed model. It attains 85% of
precision rate and 82% of link quality prediction rate. This is lower than the proposed
DMCAP and CRLR (91% of precision and 87% of prediction). The reason behind the
better performance of CRLR is related to effective training procedures of reinforcement
network over channel parameters. At the same time, OETN attains minimal growth in
terms of system precision and link quality prediction. Since the OETN procedures and



Energies 2023, 16, 2285 20 of 28

following baseline node evaluation procedures to optimize the channel utilization and
energy utilization, the result is not significant under uncertain underground conditions.

As provided in Figures 8 and 9, the testbed was adapted to evaluate the performance
of all techniques against changing uncertainty rate (Equation (26)). Link quality predic-
tions can be observed against channel distortions and malicious events. Comparably, the
proposed DMCAP shows 8% of better precision rate than other techniques.

In this experiment, the proposed techniques observe the major channel distortion
issues using multi-channel assessment principles and channel quality tuple analysis pro-
cedures. Additionally, the proposed DMCAP ensures multi-level ML and DL evaluation
schemes for predicting noise, SNIR, entropy, and other significant distortions [48,49]. The
absence of deeply trained evaluation procedures affects the existing techniques against
uncertain WUGSN channels.

Figures 8 and 9 show the measurements of link quality prediction rate against environ-
mental distortions and malicious event distortions. Predicting the link quality to transmit
the data without loss is a primary goal of this proposed system. The goal can be achieved
when the sources of data loss are detected properly. The liveliness of channels is affected
due to either environmental disturbances or malicious events. Finding and treating the
issues ensure the better link prediction rate. Considering the practical issues of link quality
management, the proposed DMCAP system initiates dual case channel quality monitoring
practices. In this manner, DMCAP implements both environmental property assessment
models and malicious event assessment models. The experiments show the benefit of
resilience proposed DMCAP system as provided in Figures 8 and 9. Figure 8 depicts link
quality prediction rate against environmental issues.
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Compared with other techniques, the performance of DMCAP is commendable (96%
of prediction rate against maximum uncertainty rate). On the other hand, CRLR produces
optimal prediction and security benefits against OETN and SMC. As CRLR has channel-
aware RL engines in each node, the impact shows on better results (92%). At the same
time, the existing techniques such as SMC and OETN are not efficient against malicious
events under uncertain wireless networks. SMC and OETN are the good procedure for
analyzing the channel metrics under limited channel assumptions with minimal rate of
dynamic network conditions. However, the development of multi-channel assessment and
reactive route selection are primary goals for next generation networks. On the scope, the
proposed DMCAP is performing uniquely compared with other techniques.

DMCAP maintains the link quality prediction rate between 99.8% and 96.6% against
raising uncertainty rate. The uncertainty rate of each link denotes the overall signal
interruptions produced as noise, interference, link failures, node failures, and intruder
activities on the channel. Likewise, DMCAP holds 99.7% to 97% of link quality prediction
rate against malicious events (Figure 9).

Correspondingly, the proposed DMCAP achieves a better link prediction rate at the
optimal time complexity (milliseconds) as illustrated in Table 4. As shown in Table 4, the
time complexity of DMCAP for initiating reactive transmission falls between 328 and 489
milliseconds.
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Table 4. Time complexity.

Number of
Active Links DMCAP (ms) SMC (ms) CRLR (ms) OETN (ms)

1000 328 444 399 456
1200 356 558 446 567
1400 389 720 478 787
1600 435 780 498 810
1800 468 897 525 940
2000 489 1116 578 1208

The measurements are huge for existing techniques compared with the proposed
model. The time complexity denoted in Table 4 is calculated in milliseconds (time taken
to complete the operations). Each channel has multiple links between source node and
destination node. In this experiment, the number of channel links are varied from 1000 to
2000. As proposed, DMCAP uses suitable nonlinear regression models and multi-channel
ensemble classifiers, channel assessment operations taken in each sensor node are evenly
balanced. Consequently, the time taken to complete channel assessment procedures is
minimized (328 ms to 489 ms) compared with other works.

In this evaluation, SMC and OETN struggle to analyze the real-time channel data
using conventional approaches. Hence these existing techniques are consuming more time
to obtain classified attributes of multiple channels (1116 ms and 1208 ms, respectively).
At the same time, the precision rate of these systems are not optimal. On the other side,
the CRLR is consuming procedure operational time between 399 ms and 578 ms which is
comparably closer to the proposed method. In this case, the proposed method utilizes the
efficiency of multi-channel classifiers (ensemble) over reinforcement procedures to reduce
the time complexity around the network.

Figure 10 and Table 5 show the average routing delay (ms) and reactive link establish-
ment rate (%) against channel uncertainties, respectively. As provided in Figure 10, the
routing delay for each channel shall be reduced with proposed active channel assessment
and reactive channel handling policies. Initiating the reactive data transmission in the
network is impossible when the channel assessment system is not reactive and inefficient
against channel interruptions. At this moment, the existing techniques produce 280 ms to
220 ms of routing delay for each channel.

Table 5. Reactive link establishment rate (%).

e(τ) DMCAP SMC CRLR OETN

20 97.1 79.1 86.3 78.4
40 97.5 79.7 86.9 78.5
60 98.2 80.6 87.8 78.9
80 98.9 81.7 88.2 79.2

100 99.4 82.4 90.2 80.1
120 99.7 83.2 90.8 82.3

Significantly, the routing delay is directly proportional to the reactive link establish-
ment rate during node or link failures on the channel. As indicated in Figure 10, the routing
delay of the proposed model is minimal compared with other techniques for various it-
erations (10 iterative experiments). This can be related to Table 5 results of the proposed
model. The results provided in Table 5 show the successful link establishment rate during
failures.
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Against the performance of existing techniques, the proposed model shows limited
routing delay as it is predicting the channel uncertainties actively. On the same way,
Table 5 provides the ability of successful link establishment rate among uncertain channel
problems and link disabilities. As the number of epochs increases, the proposed DMCAP
model updates reactive channel management quality by obtaining the channel assessment
attributes. This mechanism works better than other systems and DMCAP obtains 99.7%
of reactive link establishment rate. At the same time, CRLR is the only existing technique
producing average routing delay (210 ms as minimum) and better link establishment rate
(90.8%) compared with other existing techniques.

The reinforcement learning system of CRLR is the reason for optimal performance. In
contrast, SMC and OETN are evenly generating more routing delay as they are not deeply
understanding the channel behaviors through crucial learning and classification principles.
Thus, they are attaining maximum routing delays of 230 ms and 240 ms, respectively.
Similarly, the performance is not optimal for link recreation phase as provided in Table 5.

Figure 11 and Table 6 illustrate closely related performance metrics such as secure
throughput achievement rate and retransmission reduction rate for each channel. Never-
theless, secure throughput rate shows the amount of successful data transmission against
malicious interruptions. The secure throughput of each channel is ensured and obtained
with VGAN-IDS engine installed in each sensor node. In this experiment, the proposed
DMCAP achieves secure throughput from 17.2 Kilobits Per Seconds (Kbps) to 23.9 Kbps
when the number of training epochs are increasing gradually. Moreover, the throughput
of CRLR obtains better states compared with OETN and SMC. OETN and SMC maintain
only nominal security against malicious event (15.6 Kbps and 13.1 Kbps). This experiment
reveals that the proposed technique securely manages the data transmission under VGAN-
IDS initiatives and alert systems. Due to the immense experiment-based observations, the
number of retransmissions initiated at each link is crucially reduced in WUGSN (DMCAP).
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Table 6. Retransmission reduction rate (%).

e(τ) DMCAP

20 90.1
40 96.7
60 97.3
80 97.9

100 98.9
120 99.5

Table 6 shows the observed results for the DMCAP system’s retransmission reduction
rate. The rate of retransmission is reduced as the number of epochs increases. The retrans-
mission reduction rate is defined as the number of retransmissions required at each sensor
node against environmental interrupts and malicious interrupts on the link. As illustrated
in Table 6, the proposed system reduces the retransmission rate (%) from 90.1% to 99.5%
successfully. This indicates that the energy and lifetime of each sensor node on the link is
saved with the benefit of proposed DMCAP procedures.

As per the theoretical and experimental clarifications, the proposed system was im-
plemented as distributed multi-channel assessment and activation protocol in each sensor
node. The proposed DMCAP is a light-weight protocol installed in both underground and
surface sensor nodes for ensuring reliable data communication under uncertain WUGSN
conditions. This protocol is fast and reactive in the uncertain channel environment. Particu-
larly, DMCAP uses ensemble multi-channel attribute assessment procedures (ENLSVM)
and VGAN-IDS engines as sensor internal procedures. Thus, the proposed DMCAP
overcomes data communication problems that happen due to nonlinear productions and
channel uncertainty issues optimally compared with other techniques (SMC, CRLR, and
OETN). Notably, the proposed model effectively detects and predicts the channel attributes
for managing the quality of wireless communication. The contributions and advantages of
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the proposed DMCAP model was illustrated through various testbed experiments against
channel uncertainties.

To achieve significant benefits from proposed channel assessment policies, the testbed
was configured with dual-link characteristics to meet the conditions of underground
channel assumptions and surface level channel assumptions. The configuration of classified
channel configuration parameters helps to observe the crucial and real-time performance
of proposed DMCAP model (Tables 2 and 3). However, these dual-link configuration
properties are not used in existing techniques. On the realistic testbed, experiments are
taken to illustrate the real-time uncertainty conditions of WUGSN using the measured
quantities of noise distortion rate, retransmission rate, channel interference rate, data rate,
and other uncertainties (link and node failures).

Figures 5 and 6 infer the dynamic nature of the WUGSN setup. On the simulation
platform, the performance metrics such as link quality prediction rate, system precision
rate, average routing delay, and secure throughput rate are measured for the proposed
model and the existing models (SMC, CRLR, and OETN). In addition, the reactive link
establishment rate and retransmission reduction rate are considered as crucial factors for
ensuring the stability and efficiency of proposed DMCAP model against exiting techniques.

Reactive Retransmission Rate =
DMNR_t

UTt
∗ 100 (30)

• DMNRt¯Number of Retransmission taken at one iteration by DMCAP;
• UTt¯Number of network or link failures happens at one iteration.

Retransmission Reduction Rate =
DMNR_t

NRTt
∗ 100 (31)

• NRTt¯Total number of retransmissions taken without proposed DMCAP.

Equations (30) and (31) illustrate the importance of the growth shown in Tables 5 and 6
for the proposed DMCAP model. As discussed, the proposed model uses more unique
multi-channel modelling schemes for differentiating the characteristics of each wireless
channel (air medium or acoustic medium). In addition, the combination of channel distor-
tion analysis and malicious turbulences over the channel are taken seriously to predict the
link stability to initiate multi-path transmission in WUGSN. The detailed channel analysis
and attribute assessment schemes improve the data throughput over uncertain channels.

Consequently, Table 7 illustrates the energy optimization rate achieved through the
reduction in retransmission rate. Furthermore, this article found the coverage problems
during wireless communication in the WUGSN and near ground sensor networks. Likewise,
a few notable works are considered under this technical scope [50,51]. As the uncertain
channel qualities and coverage irregularities create crucial network problems, these are
expected to be considered as major parts under any research cases [52].

Table 7. Energy optimization rate.

e(τ) DMCAP

20 0.21
40 0.26
60 0.29
80 0.32

100 0.36
120 0.39

5. Conclusions

Generally, WSNs and WUGSN are massively applied at defense, industrial, medical,
and environmental monitoring conditions. The existence and the deployment condition of
WUGSNs create more channel interruptions. WUGSNs maintains both deep underground
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medium and air medium to lead multi-hop wireless links. According to the link nature,
the channel configuration parameters change from one link to another link in the same
channel. Correspondingly, the impact of underground channel distortions and surface
channel distortions create major problems for WUGSN communication. The channel is
disturbed due to underground noise, interference, and malicious interactions. The rate
of channel interruptions is not common for surface transmission with widely varying
uncertainty rates [53–55].

Against the significant problems, the proposed DMCAP model was developed as a
distributed sensor agent. The DMCAP model contained multi-channel signaling models,
EMLP, ENLSVM, and VGAN-IDS procedures for providing reactive data transmission
against critical channel distortions. The procedures developed inside the sensor node initi-
ated channel attribute evaluation functions, reactive channel activation functions, malicious
event monitoring functions, and reactive channel estimator functions. The proposed novel
functions and complex data analysis models guarantee the channel protection and reliable
communication [56–58]. Consequently, the proposed DMCAP commits the reduction in the
retransmission rate, time complexity, and routing delay as illustrated in Section 4 against
the existing systems such as CRLR, OETN, and SMC. Consequently, the DMCAP saves
overall network energy and lifetime under uncertain channel conditions [59]. However, the
proposed DMCAP procedures are lacking lightweight encryption mechanisms to enable
data confidentiality and channel masking facilities. Additionally, this proposed model was
not evaluated for multiple sensor nodes applied in WUGSNs. These are considered as
the limitations of this proposed article. In future, the secure DMCAP is estimated to be
designed and implemented for WUGSNs.
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47. Akkaş, M.A.; Sokullu, R. Wireless Underground Sensor Networks: Channel Modeling and Operation Analysis in the Terahertz
Band. Int. J. Antennas Propag. 2015, 2015, 780235. [CrossRef]

48. Ali, F.; Habib, U.; Muhammad, F.; Khan, Y.; Armghan, A.; Alenezi, F.; Abbas, Z.H.; Ali, A.; Qamar, M.S. Alleviation of nonlinear
channel effects in long-haul and high-capacity optical transmission networks. Int. J. Commun. Syst. 2021, 35, e5050. [CrossRef]

49. Nourani, V.; Kheiri, A.; Behfar, N. Multi-station artificial intelligence based ensemble modeling of suspended sediment load.
Water Supply 2021, 22, 707–733. [CrossRef]

50. García, L.; Parra-Boronat, L.; Jimenez, J.M.; Lloret, J.; Abouaissa, A.; Lorenz, P. Internet of Underground Things ESP8266 WiFi
Coverage Study. In Proceedings of the INNOV 2019, The Eighth International Conference on Communications, Computation,
Networks and Technologies, Valencia, Spain, 29 November 2019; IARIA XPS Press: Lisbon, Portugal, 2019; pp. 1–6.

51. Botella-Campos, M.; Parra, L.; Sendra, S.; Lloret, J. WLAN IEEE 802.11 b/g/n Coverage Study for Rural Areas. In Proceedings of
the 2020 International Conference on Control, Automation and Diagnosis (ICCAD), Paris, France, 7–9 October 2020; IEEE: New
York, NY, USA, 2020; pp. 1–6.

52. Botella-Campos, M.; Jimenez, J.M.; Sendra, S.; Lloret, J. Near-Ground Wireless Coverage Design in Rural Environments. In
Proceedings of the ALLSENSORS 2020, The Fifth International Conference on Advances in Sensors, Actuators, Metering and
Sensing, Valencia, Spain, 21–25 November 2020; IARIA XPS Press: Lisbon, Portugal, 2020; pp. 14–19.

53. Mao, J.; Zhao, Y.; Xia, Y.; Yang, Z.; Xu, C.; Liu, W.; Huang, D. Revisiting Link Quality Metrics and Models for Multichannel
Low-Power Lossy Networks. Sensors 2023, 23, 1303. [CrossRef]

54. Wang, Z.; Wei, S.; Zou, L.; Liao, F.; Lang, W.; Li, Y. Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-
Evaluation in Multiple-Channel Models. Information 2023, 14, 98. [CrossRef]

55. Weedage, L.; Stegehuis, C.; Bayhan, S. Impact of Multi-connectivity on Channel Capacity and Outage Probability in Wireless
Networks. IEEE Trans. Veh. Technol. 2023, 1–14. [CrossRef]

56. Kim, W.; Ahn, Y.; Kim, J.; Shim, B. Towards deep learning-aided wireless channel estimation and channel state information
feedback for 6G. J. Commun. Netw. 2023, 1–15. [CrossRef]

57. Hu, C.-H.; Chen, Z.; Larsson, E.G.; Larsson, E.G. Scheduling and Aggregation Design for Asynchronous Federated Learning over
Wireless Networks. IEEE J. Selected Areas Commun. 2023, 1. [CrossRef]

58. Sui, J.-Y.; Liao, S.-Y.; Li, B.; Zhang, H.-F. High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect.
Opt. Lett. 2022, 47, 6065. [CrossRef]

59. Wan, B.-F.; Zhou, Z.-W.; Xu, Y.; Zhang, H.-F. A Theoretical Proposal for a Refractive Index and Angle Sensor Based on One-
Dimensional Photonic Crystals. IEEE Sens. J. 2020, 21, 331–338. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1186/s40537-021-00558-z
http://doi.org/10.1002/spe.3020
http://doi.org/10.1145/3448737
http://doi.org/10.1007/s00779-020-01443-x
http://doi.org/10.1007/s12652-020-02137-1
http://doi.org/10.1155/2021/9635958
https://www.walmart.com/ip/Wireless-Sensor-Networks-Design-Deployment-and-Applications-Hardcover-9781838809096/785806007
https://www.walmart.com/ip/Wireless-Sensor-Networks-Design-Deployment-and-Applications-Hardcover-9781838809096/785806007
http://doi.org/10.5772/intechopen.94500
http://doi.org/10.1109/ACCESS.2021.3127941
http://doi.org/10.1002/wcm.1101
http://doi.org/10.1155/2015/780235
http://doi.org/10.1002/dac.5050
http://doi.org/10.2166/ws.2021.243
http://doi.org/10.3390/s23031303
http://doi.org/10.3390/info14020098
http://doi.org/10.1109/TVT.2023.3242358
http://doi.org/10.23919/JCN.2022.000037
http://doi.org/10.1109/JSAC.2023.3242719
http://doi.org/10.1364/OL.476048
http://doi.org/10.1109/JSEN.2020.3013289

	Introduction 
	Related Works 
	DMCAP System 
	Signaling and Channeling Models 
	Multi-Channel Ensemble Model and Channel Attribute Classification Model 
	SNIR Distribution and Analysis Using Multi-Channel Nonlinear Regression Model 
	Channel Quality Distortions Due to Malicious Events 

	Experiments and Results 
	Conclusions 
	References

