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ئىز 

، بىز       چىققاندا ئاتلىنىپ سەپەرگە ئۇزۇن ئىدۇق ياش
. نەۋرىمىز       ئەنە قالدى بولۇپ مىنگۈدەك ئاتقا ئەمدى
، بىز       چىققاندا ئاتلىنىپ سەپەرگە مۈشكۈل ئىدۇق ئاز
. ئىز       چۆللەردە قالدۇرۇپ ئاتالدۇق كارۋان چوڭ ئەمدى

، يەنە       داۋانلاردا گاھى ئارا، چۆللەر ئىز قالدى
.  - قەۋرىسىز     چۆلدە دەشتى ئارسىلانلار نى نى قالدى

، دالىدا       قىزارغان يۇلغۇن ، دېمەڭ قالدى قەۋرىسىز
. قەۋرىمىز-     باھاردا تاڭنا پۈركىنەر چېچەككە گۈل

، ھەممىسى       يىراقتا قالدى مەنزىل، قالدى ئىز، قالدى
. ئىزىمىز       كۈمۈلمەس ھەم قۇملار، كۆچسە بوران، چىقسا

، ئورۇق       بەك ئاتلار گەرچە يولىدىن كارۋان توختىماس
. ئەۋرىمىز        يا نەۋرىمىز ئىزنى بۇ بولمىسا ھىچ تاپقۇسى

ئۆتكۈر   ئابدۇرېھىم

This is a poem titled ”Trace” written by the Uyghur poet Abdurehim
Otkur around the year 1985. It is about leaving traces while traversing
the journey of life. I used to recite this poem all the time as a child, and
now that I am older, I have finally started to grasp the meaning behind
it. I have been a part of the research in academia which builds upon
the traces left behind by the others, and albeit small, I have attempted
to leave traces of my own with the works in this thesis.
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Abstract
Porous media research has widespread applications in a variety of

fields including biology, medicine, and geology. Notably, it can be used
to mitigate the effects of climate change through methods of carbon
capture and storage. Fundamental to all disciplines of porous media re-
search is understanding how fluids move through pores under different
conditions. In many cases, it involves the movement of multiple fluids
rather than a single fluid. An example is the displacement of brine in
aquifers with carbon dioxide during carbon sequestration processes.
When fluids are immiscible, that is when they do not form a homoge-
neous mixture, various phenomena arise that can influence the flow.
For example, the interfaces between the fluids create capillary pressure
barriers that depend on the interfacial tensions, the radii of the pores,
and the wetting angles. Due to these barriers, different amount of
force is needed to push through different pores. A porous medium
can have varying radii and wettability and hence varying capillary
pressure barriers along its body. As a result, when being subjected
to an externally applied pressure, depending on the magnitude of the
pressure, certain regions of the porous medium might become active
while others remain dormant. This effect can cause the volumetric
flow rate as a function of the applied pressure to deviate from the linear
Darcy’s law in certain pressure regimes.
There are various ways to model immiscible fluid flow in porous

media. The models can range from a simple capillary tube to a bundle
of capillary tubes to a network of interconnected tubes. One way to
model a dynamic pore network is through tracking and moving the
interfaces. The procedure at every time step involves calculating the
pressure field and thereafter the flow rates and moving the interfaces
accordingly while abiding by a set of rules that makes that system
more realistic.

The work in this thesis aims to contribute to a better understanding
of immiscible two-phase flow in rigid porous media. The main body of
work consists of 4 research papers that mostly use a numerical dynamic
pore network model, and also capillary tube models. A focus was
placed on steady-state non-linear dynamics in terms of the volumetric
flow rate as a function of the global pressure difference. Other topics
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considered in this work include local statistics of porous media, critical
phenomena in porous media, and the effects of compressibility.
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1Introduction

1.1 Background motivation

Porous media are solids filled with holes, and they can be found ev-
erywhere. It might be easy to overlook the vastness of this category.
Starting with ourselves, the human body is a trove of examples of
porous media with different degrees of elasticity. To mention a few,
arteries and veins are porous vessels that have the vital role of trans-
porting blood [1]. Human skin transports fluids in and out through
its pores, for example, by secreting sweat to regulate body tempera-
ture [2] and by absorbing topical medication or cosmetic products [3].
Bones are also porous materials that transport fluid and they make up
the skeletal framework of the body [4, 5]. Looking outside of the hu-
man body and into the room you probably find yourself in, you might
once again find several examples of porous materials. The porosity
of papers determines their absorption ability [6]. The porous proper-
ties of ceramics influence their thermal and fracture properties [7, 8].
The strength of the cement in the walls is also a function of the pore
structure [9, 10].
Porous media research can also be relevant at an even larger scale,

namely the global scale. Arguably the biggest global challenge the
world is facing right now is climate change. As described by the United
Nations [11], climate change brings severe consequences to humankind
and to all other life forms on earth. One example is an increase in
heavy precipitation and rising sea levels which can cause flooding and
landslides [12, 13]. The effects of such events have been deadly and
economically costly [14]. Another example is the thawing of frozen
soils i.e. permafrost [12]. There are large quantities of greenhouse
gases, carbon dioxide (CO2) and methane, trapped in the permafrost
in regions around the Arctic [15, 16]. With thawing in these regions,
these greenhouse gases get released and with that, a positive feedback
loop is created that accelerates climate change. Yet another example is
droughts that result from increases in temperature [12], which further
increases the need for procuring clean drinkable water. One way to
help mitigate the effects of drought is with desalination, i.e. removing
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salt from seawater and thereby making it drinkable. Desalination
can be done through the method of reverse osmosis with the use of
membranes [17, 18].
In all of these three examples, there is a need to understand the

transport of fluids, liquids and also gases in the case of permafrost
thawing, through various porous media such as soils and membranes.
In other words, porous media research can be utilized to adapt to
certain consequences of climate change. In addition to the aim of
adaptation, porous media research can also be useful in preventing
and reversing damages done to the environment and the atmosphere.
Porousmaterials and transportation of fluids through porousmedia can
be used in the processes of CO2 sequestration. The idea is to separate
and capture CO2 from industrial sources instead of releasing it into
the air, and thereafter store it in geological formations such as deep
saline aquifers that are porous rock formations that are deep under the
seabed [12, 19–25]. This task requires knowledge from porous media
research regarding the transport of two fluid phases, water and gas,
simultaneously through porous media.
The goal of the present thesis is to use theoretical and numerical

methods to contribute to a better understanding of transport in porous
media. Specifically, the work done in this thesis is focused on, but
not limited to, steady-state non-linear dynamics of immiscible two-
phase flow in rigid porous media. This is a central topic in papers I
and II which examine disorder in wettability in porous media as a
source of non-linearity. The non-linear dynamics refers to the non-
linear relation between the global pressure difference and the total
volumetric flow rate. Two fluids are immiscible if they do not mix
into a homogeneous mixture. Unlike these papers where both fluids
are incompressible and flow through porous media with connected
pores, the model in paper IV is of a capillary tube with one of the fluids
compressible. There, one can also see a weak non-linearity between
the flow rate and the pressure drop. A different aspect of porous media
is investigated in paper III, namely the local statistics and the reservoir
independence of porous media. Some of the earlier works regarding
non-linear dynamics are briefly summarised in section 1.2 and the
outline of the thesis is given in section 1.3.
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1.2 Earlier works on non-linearity

The relation between the externally applied global pressure 𝛥𝑃 and
the total volumetric flow rate 𝑄 can be written as

𝑄 ∝ (|𝛥𝑃| − 𝑃𝑡)𝛽, (1.1)

where 𝑃𝑡 is the minimum threshold pressure required to have a non-
zero flow and 𝛽 is an exponent. The widely used Darcy’s law states
that 𝑄 is related linearly to 𝛥𝑃. Darcy’s law is often valid for single-
phase flow in porous media, but with multiple fluid phases present,
the system could end up having 𝛽 > 1 for certain pressure regimes.
The explanation behind how and why different systems can produce
different 𝛽 is left for a later chapter. The short review here focuses on
the earlier works regarding 𝛽 > 1.

In 2009, Tallakstad et al. [26, 27] carried out an experimental study
using a two-dimensional Hele-Shaw cell with glass beads, filled with
air and a mixture of glycerin and water. They reported on a power-
law of the form |𝛥𝑃| ∝ Ca0.54±0.08 where Ca is the capillary number
that is the ratio of viscous to capillary forces. The relation Ca = 𝜇𝑄

𝜎𝐴
,

where 𝜎 is the interfacial tension and 𝐴 is the area, and propagation
of uncertainty means that the power law they discovered gives 𝛽 =
1.85 ± 0.27. Two years later, in 2011, Rassi et al. [28] used nuclear
magnetic resonance to study bead packs filled with water and air
and measured an exponent corresponding to 𝛽 between 2.2 and 3.3.
Using Hele-Shaw cell with a water-glycerol solution and a commercial
food grade rapeseed oil, Aursjø et al. [29] in 2014 created a film flow
dominated flow where they measured 𝛽 that is 1.50 ± 0.11 or 1.35 ± 0.09
depending on the fractional flow rates. In more recent years, the group
associated with Martin J. Blunt in Imperial College London has used
methods such as X-ray microtomography to observe the non-linear
behavior experimentally [30–32].
In paper I in this thesis, theoretical calculations were done to un-

derstand the non-linear behavior better. Dynamic network models
were used in papers I and II and capillary tube models were used in
papers I and IV to investigate the wide range of porous media and
fluid combinations that can yield a 𝛽 > 1. There have been several
other theoretical and numerical works throughout the years that have
also supported the existence of the non-linearity relating 𝑄 and 𝛥𝑃

3



and reported on exponents 𝛽 similar to the experimentally observed
values [33–41]. The commonly used numerical models are network
models [35–37], capillary tube or fiber models [38, 39, 41] and lattice
Boltzmann models [40].

1.3 Outline of the thesis

The chapters of this thesis aim to provide derivations and explanations
for the equations, methods, theories and models used in the papers.
The thesis begins with a study of the forces at the scale of the interfaces
in chapter 2. Various forms of the equation for the volumetric flow
rate in a capillary tube are derived and explained in chapter 3. This
includes a general form that holds for an arbitrary number of interfaces,
number of fluid phases in the tube, interface curvatures, and types
of fluids. The contents of chapters 2 and 3 are relevant for all of the
papers I–IV. For porous media with many connected pores, the relation
between the global pressure difference and the total volumetric flow
rate at steady state is discussed in chapter 4, which is a central topic
for papers I and II. Explanations concerning percolation and critical
behavior in porous media that are relevant for paper II are covered in
chapter 5. A short review regarding the statistical mechanical theory
of porous media which is relevant for paper III is given in chapter 6.
Most of the work in this thesis, papers I–III, was performed using
a dynamic pore network model, and its workings are explained in
detail in chapter 7. Selected highlights from papers I–IV are presented
in chapter 8. Finally, the contents of the chapters of the thesis are
summarized in chapter 9.
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2Interface properties

Imagine yourself walking outside with your friend who was clever
enough to bring a raincoat. After a short while, it starts raining and you
regret not listening to your friend’s warning about the unpredictable
Norwegian weather. All the while, you become increasingly aware of
how the raindrops are promptly getting absorbed into your favorite
cotton shirt while just gliding off of your friend’s raincoat. The origin of
these kinds of fascinating interactions can be understood by studying
the variety of forces that act on the interface boundaries between
different substances. This chapter examines situations involving two
immiscible fluids and a solid.

2.1 Two immiscible fluids in contact with a solid

Consider a scenario where a drop of a fluid is submerged in another
fluid and they are immiscible. The molecules of the droplet will expe-
rience a stronger pull by the molecules of the same phase than by the
molecules from the other phase. This results in two types of forces
acting on the interface. Firstly, there will be a net force pulling the
surface molecules inwards toward the molecules of the same phase.
This in turn creates a pressure build-up inside the droplet, balancing
the forces in the orthogonal direction to the surface. Secondly, the
attractive forces between the surface molecules of the same phase act
tangentially to the surface, and this is termed interfacial tensions 𝜎,
which is in the units of force per unit length. The net effect of these
two forces will cause the droplet to form a spherical shape, minimizing
the surface area to volume ratio.
Naturally, the same physical principles apply when there are two

immiscible fluids in contact with a solid as illustrated in figure 2.1. The
fluid that wets the solid surface the most, and hence has the smallest
wetting angle 𝜃, can be referred to as the wetting (w) fluid. The other
fluid that is resting on the solid as a droplet in figure 2.1 is more non-
wetting and can therefore be referred to as the non-wetting (nw) fluid.
The wetting angle 𝜃 through the nw fluid is larger than 90∘. The same
type of forces as in the previous example act across and along the
interfaces. In figure 2.1, 𝜎, 𝜎w and 𝜎nw are, respectively, the interfacial
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tension on the interfaces between the two fluids, between the w fluid
and the solid, and between the nw fluid and the solid. A balance
of the forces originating from these three interfaces determines the
wettability and, with that, the angle 𝜃. Horizontal force balance at the
point where the three interfaces meet gives

𝜎 cos 𝜃 = 𝜎nw − 𝜎w. (2.1)

The vertical component of 𝜎 is equilibrated by the attractive forces the
fluid molecules have with the solid.

𝜎w 𝜃

𝜎
𝜎nw

solid

non-wetting fluid

wetting fluid

Figure 2.1: A sketch of two fluids on a solid surface. The inter-
face between the two fluids makes a wetting angle 𝜃 with the
solid. The symbols 𝜎, 𝜎w and 𝜎nw are, respectively, the interfacial
tension between the two fluids, between the wetting fluid and the
solid and between the non-wetting fluid and the solid.

In the next step, let us look at a scenario where two immiscible fluids
are flowing in a cylindrical solid tube with radius 𝑟, as illustrated in
figure 2.2. Let the interface between the two fluids cover the entire
cross-section of the tube. Thew fluid has a pressure 𝑝w and the nw fluid
has a pressure 𝑝nw. The capillary pressure 𝑝𝑐 is conventionally defined
as the difference between these as 𝑝𝑐 = 𝑝nw − 𝑝w and pushes from the
nw fluid into the w fluid. Here, it is assumed that 𝑝𝑐 is constant across
the interface. In order to balance the forces on the interface between
the fluids and understand the factors that determine the interface’s
shape, it is useful to examine different portions of figure 2.2(a) in
figure 2.2(b–d).
Shown in figure 2.2(b) is a piece of the two-fluid interface that

touches the solid wall, with dimensions d ̃𝑟 in the radial direction and
𝑟 d𝛼 along the wall where d𝛼 is a small angle. Figure 2.2(b.1) is the side
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𝜎w
𝜃

𝑝nw𝑝w

2𝑟

𝜎

𝜎nw

solid

2 ̃𝑟

d ̃𝑟

(a)
(b.1) Side view

𝐹wall
(b.2) Top view

d ̃𝑟

𝑟 d𝛼

(c) (d) 𝐹wall

𝐹wall
𝜎

𝜎
𝜎w 𝜎nw

𝜎w 𝜎nw

𝑝𝑐 𝑝𝑐

𝑝𝑐

̃𝜃 𝜃2𝑟

Figure 2.2: (a) A sketch of two immiscible fluids in a solid cylin-
drical tube with inner radius 𝑟. (b–d) show the forces acting
on different portions of the interface between the two fluids.
The capillary pressure 𝑝𝑐 is the difference in pressure in the
non-wetting fluid 𝑝nw and the wetting fluid 𝑝w and pushes into
the wetting fluid. The symbols 𝜎, 𝜎w and 𝜎nw are, respectively,
the interfacial tension between the two fluids, between the
wetting fluid and the solid, and between the non-wetting fluid
and the solid. The two-fluid interface makes a wetting angle 𝜃
with the solid through the wetting fluid. The wall pulls on the
interface with a force 𝐹wall. (b) shows a piece of the interface that
touches the solid wall, with dimensions d ̃𝑟 in the radial direction
and 𝑟 d𝛼 along the wall. (b.1) is the side view that is the same
view as in (a) and (b.2) shows the view from the left in (a). (c)
shows the central part of the interface between the two fluids
that covers a radius ̃𝑟 of the pore space and makes an angle ̃𝜃
with the horizontal axis. (d) shows the entire interface.
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view of the piece that is the same view as in (a) while figure 2.2(b.2)
shows the view that is seen from the left in (a). The rest of the two-
fluid interface pulls on this piece with 𝜎 and its vertical component
𝜎 sin 𝜃 is balanced by the force from the wall 𝐹wall. When it comes to
the horizontal force balance, the contributions of all three interfacial
tensions and the capillary pressure need to be considered. For small d ̃𝑟 ,
the cross-sectional area of the piece is approximately 𝑟 d𝛼 d ̃𝑟 , meaning
𝑝𝑐 is pushing from the right in figure 2.2(b.1) with a force 𝑝𝑐𝑟 d𝛼 d ̃𝑟 . The
length on which the interfacial tensions are acting is 𝑟 d𝛼 . Assuming
that there is no acceleration, the horizontal force balance is then

𝑝𝑐𝑟 d𝛼 d ̃𝑟 +𝜎w𝑟 d𝛼 +𝜎 cos 𝜃𝑟 d𝛼 −𝜎nw𝑟 d𝛼 = 0, (2.2)

which when d ̃𝑟 → 0 becomes the same as equation (2.1), namely

𝜎 cos 𝜃 = 𝜎nw − 𝜎w. (2.3)

Figure 2.2(c) shows the central part of the interface between the
two fluids that covers a radius ̃𝑟 of the pore space. At a radius ̃𝑟 from
the center axis of the tube, the two-fluid interface makes an angle ̃𝜃
with the horizontal axis such that lim

̃𝑟→𝑟
̃𝜃 = 𝜃. The rest of the interface

pulls on the portion in figure 2.2(c) with a force 𝜎 that acts on the
circumference 2𝜋 ̃𝑟. In addition, there will be a force from 𝑝𝑐 pushing
from the right in figure 2.2(c). Together, the horizontal force balance
is

𝜋 ̃𝑟2𝑝𝑐 = 2𝜋 ̃𝑟𝜎 cos ̃𝜃 (2.4a)

⟹ 𝑝𝑐 =
2𝜎 cos ̃𝜃

̃𝑟
. (2.4b)

From equation (2.4b), if 𝑝𝑐 and 𝜎 are known, one can map out the entire
shape of the interface between the two fluids by calculating ̃𝜃 at every
̃𝑟.
Figure 2.2(d) shows the entire two-fluid interface. The forces that

are acting on the edge of this interface are no longer the pull from
the rest of the interface as in figure 2.2(c) since there is none. Instead,
the forces are from the wall 𝐹wall and from the other two interface 𝜎w
and 𝜎nw. The pressure difference between the fluids 𝑝𝑐 is, as before,
pushing from the right in the sketch. A horizontal force balance gives

𝜋𝑟2𝑝𝑐 = 2𝜋𝑟 (𝜎nw − 𝜎w) . (2.5)
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Inserting equation (2.3) into equation (2.5) results in the Young-Laplace
equation that is commonly seen in the literature [42]

𝑝𝑐 =
2𝜎 cos 𝜃

𝑟
, (2.6)

which is also what equation (2.4b) goes towards in the limit ̃𝑟 → 𝑟.
It should be mentioned that instead of looking at the force balance

as was done here, the fluid configurations and pressures in the pore
space can equivalently be studied through the concept of conservation
of energy, see for example the book by Blunt (2017) [42].

2.2 Simplifications

In the real world, the scenarios involving two fluids in a pore can have
various other elements influencing the configuration and the flow than
what is considered in the chapters of this thesis and in papers I–IV.
For example, the wettability of a certain material can alter over time
due to exposure to different substances [43, 44]. In this thesis, spatial
variation in wettability is one of the main investigation points and the
time frames of the studies are assumed to be short enough to not alter
the local wettability.
Furthermore, real pores can have shapes that are highly irregular

with, for instance, surface roughness that can influence the wetting
angle [45]. At the molecular level, the intrinsic wetting angle should be
the same as for a smooth surface, but depending on the local geometry
it can be hard to discern which of the two fluids is wetting or non-
wetting. Since roughness can make it hard for both fluids to pass
through, the solid surface can appear to be non-wetting for both fluids
during the initial exposure. The wetting fluid phase normally tends
to reside in the corners and crevices. Therefore, during the initial
encounter, the wetting fluid can fill up the irregularities, which can
make the surface appear more wetting afterward. The wetting fluid on
the edges can connect and carry flow through those layers and films
while not having to displace the non-wetting fluid. Film flow has been
a topic of interest in several studies [46, 47]. It is hard to quantify the
exact effect of roughness, but an overall effective wetting angle can
be defined, for example through the pressure needed for a non-zero
displacement [42]. The roughness can also be directional, meaning the
effect of roughness can vary depending on the flow direction.

9



The pores considered in the analytical calculations and the numerical
simulations in this thesis are simplified structures as in figure 2.2 with
cylindrical symmetry around a center axis and with an unchanging
wetting angle. A certain degree of spatial disorder in shape is still
included in the models by giving the pores a sinusoidal shape, meaning
the radii of the pores vary with the position along the center axis.
Furthermore, only a piston-like flow where the interfaces span the
entire cross-section of the pore as in figure 2.2(a) is considered in this
thesis, as that is often the way the fluids are transporten [42].
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3Flow through a capillary tube

This chapter concerns flow through a single capillary tube, which is
a topic relevant for all of the papers I–IV. It starts with the case with one
incompressible fluid in section 3.1 before moving on to how multiple
incompressible fluids flow together in section 3.2. More specifically,
the end goal is to derive the expression for the volumetric flow rate in
a tube, 𝑞, for any number of different fluid phases with any number of
interfaces between them. Thereafter, some smaller topics are addressed
briefly, such as how to find time-averaged flow in section 3.3, the effects
of compressibility in section 3.4, as well as, capillary bundle models in
section 3.5.

3.1 Single-phase flow

Applying Newton’s second law to an incompressible fluid results in
the Navier-Stokes equation [48]

𝜇∇2𝒗 = 𝜌 (
∂𝒗
∂𝑡

+ 𝒗 ⋅ ∇𝒗) + ∇𝑝 − 𝜌𝒈, (3.1)

that describes the velocity 𝒗 of the fluid. There are three different forces
per unit volume in this equation that causes the fluid with density 𝜌 to
accelerate with a total acceleration d𝒗/d𝑡 = ∂𝒗/∂𝑡 +𝒗 ⋅∇𝒗where 𝑡 is the
time. The fluid with viscosity 𝜇 resists flow with a force described by
the first term, and the gradient in the pressure 𝑝 and the gravitational
acceleration 𝒈 drives the flow as described by the third and the fourth
terms.
Consider a thin capillary tube with small variations in the radius

and with a center axis 𝒙. Since the velocity 𝒗 close to the tube wall
will be in the 𝑥-direction and the tube is narrow, 𝒗 in the entire tube
will be

𝒗 ≈ 𝑣( ̃𝑟) 𝑥̂ (3.2)

where 𝑥̂ is a unit vector along 𝒙. The direction of 𝒈 is the vertical
direction 𝒚 with unit vector 𝑦̂. If the tube is placed horizontally, such
that

𝒈 ⋅ 𝒗 = 𝑔𝑦̂ ⋅ 𝑣𝑥̂ = 0, (3.3)
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the 𝑦 component of equation (3.1) would mean that

∂𝑝
∂𝑦

𝑦̂ − 𝜌𝒈 = 𝟎. (3.4)

Inserting equation (3.4) into equation (3.1) results in

𝜇∇2𝒗 = 𝜌 (
∂𝒗
∂𝑡

+ 𝒗 ⋅ ∇𝒗) +
∂𝑝
∂𝑥

𝑥̂. (3.5)

Another equation that is useful at this point is the conservation of
mass [48]

∫
∂𝜌
∂𝑡

d𝑉 = ∫𝜌𝒗 ⋅ 𝑛̂ d𝑆 (3.6)

which states that the total rate of change of mass with time inside
a volume 𝑉 must be equal to the rate at which mass crosses the sur-
face 𝑆 of that volume with normal vector 𝑛̂. The right hand side of
equation (3.6) can be rewritten using Gauss’ theorem [49] to give

∫
∂𝜌
∂𝑡

d𝑉 = ∫∇ ⋅ (𝜌𝒗) d𝑉, (3.7)

Since equation (3.7) should hold for any 𝑉, the integrands must be
equal, meaning

∂𝜌
∂𝑡

= ∇ ⋅ (𝜌𝒗). (3.8)

For an incompressible fluid whose density is constant in time and
space, equation (3.8) is reduced to

∇ ⋅ 𝒗 = 0. (3.9)

With equation (3.2), equation (3.9) becomes

∂𝑣
∂𝑥

≈ 0 (3.10)

which further makes

𝒗 ⋅ ∇𝒗 = 𝑣
∂𝑣
∂𝑥

𝑥̂ ≈ 𝟎. (3.11)
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Equation (3.2) can also be used to get

∇2𝒗 ≈
1
̃𝑟
∂
∂ ̃𝑟

( ̃𝑟
∂𝑣
∂ ̃𝑟

) 𝑥̂ . (3.12)

Furthermore, assuming that the system is in a steady state where the
velocity is unchanging with time makes

∂𝒗
∂𝑡

≈ 𝟎. (3.13)

Finally, inserting equations (3.11)–(3.13) into equation (3.5) gives

𝜇
̃𝑟
∂
∂ ̃𝑟

( ̃𝑟
∂𝑣
∂ ̃𝑟

) =
∂𝑝
∂𝑥

. (3.14)

The solution to this equation is

𝑣 =
̃𝑟2

4𝜇
∂𝑝
∂𝑥

+ 𝑐1 ln ̃𝑟 + 𝑐2 (3.15)

where 𝑐1 and 𝑐2 are integration constants. For 𝑣 to be finite at ̃𝑟 = 0, it
must be that 𝑐1 = 0. In addition, using a no-slip boundary condition,
i.e. requiring 𝑣 to be zero at ̃𝑟 = 𝑟, gives the value for 𝑐2, such that

𝑣 =
̃𝑟2 − 𝑟2

4𝜇
∂𝑝
∂𝑥

. (3.16)

Integrating this expression for 𝑣 over a cross-section of the tube gives
the total volumetric flow rate 𝑞 through a single tube as

𝑞 = ∫
𝑟

0
2𝜋 ̃𝑟𝑣 d ̃𝑟 = −

𝜋𝑟4

8𝜇
∂𝑝
∂𝑥

, (3.17)

which is called Poiseuille flow [48].

3.2 Multi-phase flow

In this section, the results from section 3.1 regarding a single fluid
are built upon to study multiple incompressible and immiscible fluid
phases flowing in a cylindrical tube with approximately constant radius
along its length. The derived equations hold for arbitrary curvature
and direction of the curvature of the interfaces and arbitrary types
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of fluids. The studies begin in section 3.2.1 with a case with only one
interface in a tube. Thereafter, in section 3.2.2, proof by induction
is used to derive the general expression for the volumetric flow rate
when having any number of interfaces between any number of fluid
phases in a tube. In section 3.2.3, the role of the interface curvature is
addressed by relating the results derived in section 3.2.2 to those from
chapter 2.

3.2.1 One interface between two fluids

The sketch in figure 3.1 shows two fluids with an interface between
them that covers the cross-section of the tube. Since the derivations of
this section hold regardless of the wettability of the fluids with respect
to the solid and the curvature of the interface, they are not specified
here and the interface is represented by a dotted line in figure 3.1. The
tube has a length 𝑙 and the fluids are numbered 1 and 2. The pressure
𝑝 at the inlet and the outlet of the tube are, respectively, 𝑝in and 𝑝out.
Immediately to the left and to the right of the interface at 𝑥𝑘, 𝑝 is
respectively 𝑝 (𝑥−𝑘 ) and 𝑝 (𝑥+𝑘 ).

𝑝 (𝑥+𝑘 )

𝑥
𝑥𝑘

𝑝in 𝑝out

𝑙

𝑝 (𝑥−𝑘 )
1 2

Figure 3.1: A sketch of two immiscible fluids in a cylindrical
tube with an interface between them at position 𝑥𝑘 along the
center axis 𝑥 of the tube. The tube has a length 𝑙 and the fluids
are numbered 1 and 2. The pressure at the inlet and the outlet are
𝑝in and 𝑝out, respectively. The pressure immediately to the right
of the interface is 𝑝(𝑥+𝑘 ) and immediately to the left is 𝑝(𝑥−𝑘 ).

The derivations in section 3.1 hold true when considering either side
of the interface in figure 3.1 separately. That is, both the Navier-Stokes
equation in equation (3.1) and the mass balance in equation (3.6), hence
also the expression for 𝑞 in equation (3.17) that followed based on the
assumptions should hold for either side of the interface.
Within each fluid phase, 𝑝 varies linearly given that 𝑟 is approx-

imately constant. The reason for this is that 𝑞 in equation (3.17) is
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constant along the tube due to the incompressibility of the fluids,
which further makes the pressure gradient ∂𝑝/∂𝑥 constant. At the
interface positions 𝑥𝑘, 𝑝 experiences a jump. To the left of the interface
in figure 3.1

(
∂𝑝
∂𝑥

)
left

=
𝑝 (𝑥−𝑘 ) − 𝑝in

𝑥𝑘
, (3.18)

and to the right

(
∂𝑝
∂𝑥

)
right

=
𝑝out − 𝑝 (𝑥+𝑘 )

𝑙 − 𝑥𝑘
. (3.19)

Inserting equations (3.18) and (3.19) into equation (3.17) gives

(𝑞)left = −
𝜋𝑟4

8𝜇1

𝑝 (𝑥−𝑘 ) − 𝑝in
𝑥𝑘

(3.20)

at the left side of the interface and

(𝑞)right = −
𝜋𝑟4

8𝜇2

𝑝out − 𝑝 (𝑥+𝑘 )
𝑙 − 𝑥𝑘

(3.21)

at the right side of the interface, where 𝜇1 and 𝜇2 are the viscosities
of the left fluid numbered 1 the right fluid numbered 2, respectively.
Due to the conservation of volume, 𝑞 must be the same over the entire
tube, i.e. equation (3.20) and equation (3.21) must be equal

𝑝 (𝑥−𝑘 ) − 𝑝in
𝜇1𝑥𝑘

=
𝑝out − 𝑝 (𝑥+𝑘 )
𝜇2(𝑙 − 𝑥𝑘)

. (3.22)

A useful quantity to introduce now is the difference in pressure across
the interface

𝛿𝑘𝑝 = 𝑝 (𝑥+𝑘 ) − 𝑝 (𝑥−𝑘 ) . (3.23)

The relation between 𝛿𝑘𝑝 and the capillary pressure 𝑝𝑐 introduced in
chapter 2, as well as, the direction of the curvature of the interface are
to be explained in section 3.2.3. Using equation (3.23) and doing some
algebra on equation (3.22) results in

𝑝 (𝑥−𝑘 ) =
𝜇1𝑥𝑘 (𝑝out − 𝛿𝑘𝑝) + 𝜇2(𝑙 − 𝑥𝑘)𝑝in

𝜇1𝑥𝑘 + 𝜇2(𝑙 − 𝑥𝑘)
. (3.24)
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This can be inserted into equation (3.20) to get

𝑞 = −
𝜋𝑟4

8𝜇1𝑥𝑘
(
𝜇1𝑥𝑘 (𝑝out − 𝛿𝑘𝑝) + 𝜇2(𝑙 − 𝑥𝑘)𝑝in

𝜇1𝑥𝑘 + 𝜇2(𝑙 − 𝑥𝑘)
− 𝑝in) (3.25a)

= −
𝜋𝑟4

8 (𝜇1𝑥𝑘 + 𝜇2(𝑙 − 𝑥𝑘))
(𝑝out − 𝑝in − 𝛿𝑘𝑝) . (3.25b)

Let the pressure difference between the outlet and the inlet of the tube
be denoted by

𝛥𝑝 = 𝑝out − 𝑝in, (3.26)

and the effective viscosity be denoted by

𝜇eff =
𝑛+1
∑
𝑖=1

𝜇𝑖𝑠𝑖. (3.27)

In equation (3.27), the total number of fluids in the system is 𝑛 + 1, and
for fluid number 𝑖, 𝜇𝑖 is the viscosity and 𝑠𝑖 is the saturation in that
tube. The saturation is

𝑠𝑖 =
𝑉𝑖
𝑉

(3.28)

where 𝑉𝑖 is the total volume of fluid number 𝑖 and 𝑉 is the volume of
the tube. Since the cross-sectional area along the tube is assumed to
be approximately constant, the saturation can be written as

𝑠𝑖 =
𝑙𝑖
𝑙
, (3.29)

where 𝑙𝑖 is the total length of the tube covered by fluid number 𝑖. With
equations (3.27) and (3.29), the case illustrated in figure 3.1 has

𝜇eff𝑙 = (𝜇1𝑠1 + 𝜇2𝑠2) ⋅ 𝑙 = 𝜇1𝑥𝑘 + 𝜇2(𝑙 − 𝑥𝑘). (3.30)

Finally, inserting equations (3.26) and (3.30) into equation (3.25b) gives

𝑞 = −
𝜋𝑟4

8𝜇eff𝑙
(𝛥𝑝 − 𝛿𝑘𝑝) (3.31)

which is a variant of the Washburn equation [50].
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3.2.2 Multiple interfaces between multiple fluids

The sketch in figure 3.2 shows 𝑛 interfaces separating 𝑛+1 fluid portions.
The fluids are incompressible. As in section 3.2.1, the derivations in this
section are also independent of the type of the fluids, the number of
different fluid types, and the curvature of the interfaces. Therefore, the
interfaces in figure 3.2 are also represented by dotted lines to symbolize
that they can bend in any direction with any wetting angle, and the
compositions of the fluid portions are not specified. Note that there is
no restriction saying that some or all of the 𝑛 + 1 fluid portions cannot
be of the same type of fluid.

𝑥
𝑥𝑛−1

𝑝in 𝑝out

𝑙

1 2 𝑛 𝑛 + 1

𝑥𝑛𝑥2𝑥1

Part I Part II

Figure 3.2: A sketch of a cylindrical tube containing shows 𝑛
interfaces separating a total of 𝑛 + 1 fluid portions. The interfaces
are positioned at 𝑥𝑘 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛} along the center axis 𝑥 of the
tube. The tube has a length 𝑙. The pressure at the inlet and the
outlet are 𝑝in and 𝑝out, respectively.

I will now use the method of mathematical induction [49] to prove
that the general expression for the volumetric flow rate in a tube with
𝑛 interfaces separating 𝑛 + 1 fluid portions is

𝑞 = −
𝜋𝑟4

8𝜇eff𝑙
(𝛥𝑝 −

𝑛
∑
𝑘=1

𝛿𝑘𝑝) . (3.32)

If 𝑛 = 1, equation (3.32) becomes equation (3.31) derived in section 3.2.1
for one interface. With this, the first step of the proof is completed. In
the next step, it must be proven that if equation (3.32) is true when the
total number of interfaces is 𝑛 − 1 for any integer 𝑛, then it is also true
when the total number of interfaces is 𝑛. Since the base case with 𝑛 = 1
is already proven, completing the next step will prove the ultimate
validity of equation (3.32).

Part I in figure 3.2 has 𝑛 − 1 number of interfaces inside and has an
outlet pressure of 𝑝(𝑥−𝑛 )which is the pressure at the immediate left side
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of the interface positioned at 𝑥𝑛. Based on the induction assumption
that equation (3.32) is true for 𝑛 − 1 number of interfaces, the flow
through part I can be written as

𝑞 = −
𝜋𝑟4

8𝜇𝑛eff𝑙
(𝑝(𝑥−𝑛 ) − 𝑝in −

𝑛−1
∑
𝑘=1

𝛿𝑘𝑝) , (3.33)

where 𝜇𝑛eff = ∑𝑛
𝑖=1 𝜇𝑖𝑠𝑖 from equation (3.27). Based on equation (3.17),

part II in figure 3.2 consisting of only one type of fluid with viscosity
𝜇𝑛+1 has

𝑞 = −
𝜋𝑟4

8𝜇𝑛+1

𝑝out − 𝑝 (𝑥+𝑛 )
𝑙 − 𝑥𝑛

. (3.34)

Due to conservation of volume, 𝑞 through part I in equation (3.33) and
through part II in equation (3.34) must be equal, which means

1
𝜇𝑛eff𝑙

(𝑝(𝑥−𝑛 ) − 𝑝in −
𝑛−1
∑
𝑘=1

𝛿𝑘𝑝) =
1

𝜇𝑛+1

𝑝out − 𝑝 (𝑥+𝑛 )
𝑙 − 𝑥𝑛

. (3.35)

Rewriting this using equation (3.23) gives

𝑝 (𝑥−𝑛 ) =
𝜇𝑛eff𝑙 (𝑝out − 𝛿𝑛𝑝) + 𝜇𝑛+1(𝑙 − 𝑥𝑛) (𝑝in + ∑𝑛−1

𝑘=1 𝛿𝑘𝑝)
𝜇𝑛eff𝑙 + 𝜇𝑛+1(𝑙 − 𝑥𝑛)

. (3.36)

Inserting this into equation (3.33) and moving things around results in

𝑞 = −
𝜋𝑟4

8 (𝜇𝑛eff𝑙 + 𝜇𝑛+1(𝑙 − 𝑥𝑛))
(𝑝out − 𝛿𝑛𝑝 − 𝑝in −

𝑛−1
∑
𝑘=1

𝛿𝑘𝑝) . (3.37)

From equation (3.27),

𝜇eff𝑙 = 𝑙 ⋅
𝑛+1
∑
𝑖=1

𝜇𝑖𝑠𝑖 = 𝜇𝑛eff𝑙 + 𝜇𝑛+1(𝑙 − 𝑥𝑛), (3.38)

which inserted into equation (3.37) gives

𝑞 = −
𝜋𝑟4

8𝜇eff𝑙
((𝑝out − 𝑝in) − (𝛿𝑛𝑝 +

𝑛−1
∑
𝑘=1

𝛿𝑘𝑝)) . (3.39)

Inserting the definition of 𝛥𝑝 from equation (3.26) into this expression
and using that ∑𝑛

𝑘=1 𝛿𝑘𝑝 = 𝛿𝑛𝑝 + ∑𝑛−1
𝑘=1 𝛿𝑘𝑝, one ends up with the

final expression that is equation (3.32). This completes the proof of
equation (3.32).
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3.2.3 Interface curvature between two fluids

The papers in this thesis consider flow of two immiscible fluids in
porous media. Two of them, papers I and II, focus on the disorder
in wettability and there arises the need to measure the wetting angle
𝜃 consistently though the same fluid. In this section, I address how
equation (3.32) can be specialized when there are only two fluids in the
system and the interfaces have an angle 𝜃 through one of the fluids.
Firstly, it should be mentioned that 𝜃 is conventionally measured

through the wetting fluid which makes the capillary pressure 𝑝𝑐 =
(2𝜎 cos 𝜃)/𝑟 (equation (2.6)) always positive. However, when working
with a wide range of 𝜃, both above and below 90∘, the fluid through
which it is measured will sometimes be the non-wetting fluid and
sometimes be the wetting fluid, which means 𝑝𝑐 can be positive or
negative.
To understand the problem at hand, let us look at some examples

shown in figure 3.3. The examples show two immiscible fluids num-
bered 1 and 2 in cylindrical tubes with an interface between them
at position 𝑥𝑘 along the center axis 𝒙 of the tube with length 𝑙. The
wetting angle 𝜃 is consistently measured through fluid 1. The bottom
figures in (a)–(c) show the pressure 𝑝 profile along those tubes in the
examples. As before, 𝑝in and 𝑝out are the pressures at the inlet and the
outlet, respectively, and the pressure immediately to the right of the
interface is 𝑝(𝑥+𝑘 ) and immediately to the left is 𝑝(𝑥−𝑘 ).
In figure 3.3(a) and (b), 𝜃 which is measured through fluid 1 (the

darker fluid) is the same and hence would give the same value of 𝑝𝑐
when inserted into equation (2.6). This is true for 𝜃 both larger or
smaller than 90∘. Since 𝑝𝑐 is completely the same for both cases, it
alone does not contain information regarding the sign of the pressure
gradient across the interface 𝛿𝑘𝑝 = 𝑝 (𝑥+𝑘 ) − 𝑝 (𝑥

−
𝑘 ) (equation (3.23)). In

figure 3.3(a), 𝛿𝑘𝑝 < 0, while in figure 3.3(b), 𝛿𝑘𝑝 > 0.
To solve this problem, I introduce a unit vector ̂𝐽 that lies along 𝒙

and always points from fluid 1 to 2, see figure 3.3. ̂𝐽 is then a function
of the interface positions 𝑥𝑘. The dot product between ̂𝐽 and the unit
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vector 𝑥̂ can be used to express 𝛿𝑘𝑝 as a function of 𝑝𝑐 as

𝛿𝑘𝑝 = 𝑝𝑐 ̂𝐽 (𝑥𝑘) ⋅ 𝑥̂ (3.40a)

=
2𝜎 cos 𝜃

𝑟
̂𝐽 (𝑥𝑘) ⋅ 𝑥̂ . (3.40b)

In figure 3.3(a), ̂𝐽 (𝑥𝑘) ⋅ 𝑥̂ = 1 and cos 𝜃 < 0 which from equation (3.40b)
correctly gives 𝛿𝑘𝑝 < 0. In figure 3.3(b), ̂𝐽 (𝑥𝑘) ⋅ 𝑥̂ = −1 and cos 𝜃 < 0
which from equation (3.40b) correctly gives 𝛿𝑘𝑝 > 0. In figure 3.3(c),
̂𝐽 (𝑥𝑘) ⋅ 𝑥̂ = 1 and cos 𝜃 > 0 which from equation (3.40b) correctly gives

𝛿𝑘𝑝 > 0. With equation (3.40b), the correct pressure gradient will
always be measured.
Finally, inserting equation (3.40) into equation (3.32) gives an ex-

pression for 𝑞 of immiscible two-phase flow in a tube with wetting
angle 𝜃 through one of the fluids,

𝑞 = −
𝜋𝑟4

8𝜇eff𝑙
(𝛥𝑝 −

𝑛
∑
𝑘=1

𝑝𝑐 ̂𝐽 (𝑥𝑘) ⋅ 𝑥̂) (3.41a)

= −
𝜋𝑟4

8𝜇eff𝑙
(𝛥𝑝 −

𝑛
∑
𝑘=1

2𝜎 cos 𝜃
𝑟

̂𝐽 (𝑥𝑘) ⋅ 𝑥̂) . (3.41b)

Note that if 𝑟 and 𝜃 are constant, one would get pairwise canceling
terms in the sum.
Having 𝑟 or 𝜃 of the tube vary with position 𝑥, makes the capillary

pressure position dependent. In paper I and paper IV, the capillary
tubes were sinusoidal and hence had position-dependent 𝑟. As the
position-dependent 𝑟 of a tube is assumed to not deviate too much from
its average value ̄𝑟, the flow 𝑞 through the tube can be approximated
based on equation (3.41b) as

𝑞 = −
𝜋 ̄𝑟4

8𝜇eff𝑙
(𝛥𝑝 −

𝑛
∑
𝑘=1

2𝜎 cos 𝜃(𝑥𝑘)
𝑟(𝑥𝑘)

̂𝐽 (𝑥𝑘) ⋅ 𝑥̂) . (3.42)

3.3 Average flow

During numerical simulations of immiscible and incompressible fluids
in capillary tubes, equations (3.32) and (3.41b) derived above can be used
directly at each time step together with the information regarding the
positions of the interfaces and how they move depending on the forces
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Figure 3.3: The top drawings in (a)–(c) depict two immiscible
fluids numbered 1 and 2 in cylindrical tubes with an interface
between them at position 𝑥𝑘 along the center axis 𝑥 of the tube.
The tube has a length 𝑙. The wetting angle 𝜃 is consistently
measured through fluid 1 and the unit vector ̂𝐽 lies along 𝒙 and
points from fluid 1 to 2. The bottom figures in (a)–(c) show
the pressure 𝑝 profile along the tube where 𝑝in and 𝑝out are the
pressure at the inlet and the outlet, respectively. The pressure
immediately to the right of the interface is 𝑝(𝑥+𝑘 ) and immediately
to the left is 𝑝(𝑥−𝑘 ).
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in play. In certain cases, it can be of interest to have an expression for
the time-averaged flow, for instance, for theoretical studies as in parts
of paper I. This section will briefly sketch a possible way to find the
average volumetric flow rate 𝑞 of incompressible two-phase flow in
a capillary tube with varying radius 𝑟 and wetting angle 𝜃 along its
center axis 𝒙.
In the effective one-dimensional description in equation (3.42), the

fluids move with a speed that is

d𝑥
d𝑡

≈
𝑞
𝜋 ̄𝑟2

. (3.43)

Due to the incompressibility of the fluids,
d𝑥
d𝑡

is approximately constant
in space along 𝒙. However, it is not constant in time as the configura-
tion of the interfaces in the tube changes with time. The time-averaged
speed can be estimated as

⟨
d𝑥
d𝑡

⟩ =
𝑙

∫𝑙0 (
d𝑥
d𝑡
)
−1

d𝑥
, (3.44)

where the numerator is the length of the tube and the denominator is
the approximate time it takes to travel the entire length of the tube.
Equation (3.44) can be computed using equations (3.42) and (3.43).
Thereafter, the result can be used to find the expression for the time-
averaged 𝑞, which based on equation (3.43) is

⟨𝑞⟩ = 𝜋 ̄𝑟2 ⟨
d𝑥
d𝑡

⟩ . (3.45)

3.4 Two-phase flow with compressibility

Different properties can be attributed to the fluids inside a capillary
tube, and these can influence the overall flow in different ways. In
paper IV, one of the two immiscible fluids in a tube is allowed to be
compressible. A brief description of the consequences of this is given
here.

Having one of the fluids compressible means some of the fluid por-
tions in figure 3.2 are allowed to change volume depending on the
pressure, for example, through the ideal gas law. In this scenario, the
distance between the two adjacent interfaces, e.g. 𝑥𝑘+1−𝑥𝑘, can change

22



unlike in the case with two incompressible fluids traveling through a
tube.

In the calculations in sections 3.2.1 and 3.2.2, the fact that 𝑞 was con-
stant through the entire tube was used several times. This is no longer
true with a compressible fluid. Equation (3.17) can nonetheless be
used with compressibility considered. The compressible fluid portions
expand as they move from a higher pressure region at the inlet toward
a lower pressure region at the outlet. Due to the incompressibility of
the other fluid, its portions will retain the same volume. The combined
effect will be increased volume transported per unit time, in other
words, increased 𝑞 towards the outlet.

3.5 Capillary bundle models

One of the simplest models of porous media must be those with one
or many parallel capillary tubes [38, 51–53]. Due to their simplicity,
theoretical calculations can be performed on these models, as in paper I,
aiding the understanding of the origin of the observed phenomena.
Furthermore, when entering uncharted territory in porous media re-
search with properties that are not yet widely understood, these simple
models can be a useful starting point.
Placing many capillary tubes in parallel creates a simple form of

porous media. To have disorder, the radii 𝑟 [52] or the wetting angle 𝜃
of the tubes in the bundle can be set to be different from each other.
In paper I, where the disorder in 𝜃 was of interest, 𝜃 of the tubes
were chosen randomly from various mathematical distributions. With
disorder, the tubes will have varying resistances to flow in terms of
the total capillary pressure barriers.
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4Flow through porous media

The content in this section moves up in scale to porous media with
multiple connected pores, and the focus is placed on the relation be-
tween the global pressure difference across the porous media and the
total volumetric flow rate in steady state. The commonly used Darcy’s
law connecting these two quantities, for both single and two-phase
flow, is described in section 4.1. The situations where the flow behavior
can deviate from the linear Darcy’s law are described and explained in
section 4.2, which is relevant for papers I and II.

4.1 Darcy’s law

Based on the derived expression in equation (3.17), the total volumetric
flow rate 𝑞 through a tube depends linearly on the pressure gradi-
ent across the tube. This implies that 𝑞 also depends linearly on the
pressure difference across the tube 𝛥𝑝 in equation (3.26), when the
pressure gradient is uniform along the tube. When there is a collection
of many equally contributing tubes that all behave linearly according
to equation (3.17), it is a reasonable hypothesis that increasing the
total pressure across the entire collection may cause the total volu-
metric flow rate of the collections to increase linearly as well. This is
the essence of Darcy’s law for single-phase flow in a porous medium,
which is an empirical relationship introduced by Henry Darcy [54].

A collection of many individual pores that are interconnected consti-
tutes a porousmedium. Darcy’s law, as formulated by e.g.Wyckoff et al.
[55], can be written as

𝑄𝑖 = −
𝐾𝑖𝑗𝐴𝑖
𝜇

(
∂𝑃
∂𝑥𝑗

− 𝜌𝑔𝑗) . (4.1)

Here, 𝑄𝑖 is the total volumetric flow rate in the 𝑖 direction over an
area 𝐴𝑖 with a normal vector also in the 𝑖 direction. It relates linearly
to ∂𝑃/∂𝑥𝑗 which is the spatial derivative of the pressure 𝑃 in the 𝑗
direction. Furthermore, 𝐾𝑖𝑗 is the second-order permeability tensor, 𝜇
is the viscosity and 𝜌 is the density of the fluid and 𝑔𝑗 is the gravitational
acceleration in the 𝑖 direction.
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In the papers presented in this thesis, the global pressure across a
porous medium 𝛥𝑃 is in the same direction as the total volumetric
flow rate 𝑄. With 𝐿 being the system length, the pressure gradient is
then approximately 𝛥𝑃/𝐿. In addition, the systems are considered to
be unaffected by the gravitational acceleration, which can be the case
if the system is for example placed on a flat surface orthogonal to the
gravitational acceleration. With these considerations, equation (4.1)
can be written as

𝑄 = −
𝐾𝐴
𝜇𝐿

𝛥𝑃. (4.2)

In this expression, 𝐾 is the permeability that quantifies the ability of
a material to transport fluids, and it can be calculated by exposing
the material containing a fluid with 𝜇 to a known 𝛥𝑃 and measuring
𝑄 [56].
When there are multiple immiscible fluid phases flowing simulta-

neously in a porous media, each fluid experiences resistance from the
presence of the other fluids in addition to the porous material itself.
This leads to a modification of the permeability in equation (4.2) from
𝐾 to 𝑘𝑟𝑓𝐾. The relative permeability 𝑘𝑟𝑓 for fluid 𝑓 here accounts for
the amount by which the flow of that fluid is restricted by the other
fluids. This is a quantity that is measured experimentally. Furthermore,
instead of having a single 𝜇 as in equation (4.2), each fluid will have its
own viscosity. Incorporating these ideas together with an assumption
that the linear relationship between 𝑄 and 𝛥𝑃 still holds, the modified
Darcy’s law for each of these fluids, indexed 𝑓, is written as [42, 57]

𝑄𝑓 = −
𝑘𝑟𝑓𝐾𝐴
𝜇𝑓𝐿

𝛥𝑃. (4.3)

The total volumetric flow rate summed over all the fluids in the system,
𝑄 = ∑𝑓 𝑄𝑓, is then

𝑄 = −
𝐾𝐴𝛥𝑃

𝐿
∑
𝑓

𝑘𝑟𝑓
𝜇𝑓

. (4.4)

4.2 Non-linear behavior

Both the single-phase formulation of Darcy’s law in equation (4.2)
and the multi-phase formulation in equation (4.4) relate 𝑄 linearly to
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𝛥𝑃. The linearity of the empirical Darcy’s law has its origin in the
assumption that all the pores that are capable of carrying flow are
active and are contributing to the flow. While this is often true for
single-phase flow, this is not always the case when there are multiple
fluids present. The presence of the capillary pressure 𝑝𝑐 barriers at the
interfaces between the fluids, introduced in chapter 2, breaks down the
linearity at certain pressure regimes. More generally, one can write 𝑄
as a function of the effective pressure difference |𝛥𝑃| − 𝑃𝑡 as

𝑄 ∝ (|𝛥𝑃| − 𝑃𝑡)𝛽. (4.5)

Equation (4.5) can be Darcy-like with 𝛽 = 1, but can also be non-
linear with 𝛽 > 1. The cases that can result in either of these will be
explained in this section. Due to the complexity of a porous medium
and the capillary barrier contributions from all of the pores, the porous
medium itself can develop an overall threshold pressure 𝑃𝑡 that resists
𝛥𝑃. Note that the presence of 𝑃𝑡 is relevant for the cases where the
porous medium contains many fluid-fluid interfaces in its pores prior
to being exposed to 𝛥𝑃, since 𝑃𝑡 originates in the 𝑝𝑐 barriers created
by such interfaces. 𝑃𝑡 can be of a positive finite size or around zero,
and the latter can happen even in the presence of the interfaces.

For immiscible two-phase flow in a porous medium, the linear Darcy-
like behavior with 𝛽 = 1 in equation (4.5) occurs if the flow carrying
paths are unchanging with small changes in 𝛥𝑃. As given in the argu-
ments for Darcy’s law at the beginning of section 4.1, linear flow rate
contributions from all the individual pores (equation (3.41b)) combine
to give a total flow 𝑄 which is also linear as a function of the effective
pressure .¹ There are two ways in which the flow-carrying paths can
be approximately unchanging. The most obvious way is if the entire
porous medium is active. This happens when |𝛥𝑃| is large enough
that essentially all the pores of the medium are actively transporting
fluids. The second way is if the structure of the porous medium is such
that it contains certain paths that provide significantly easier passage
than everywhere else in the medium. The flow will then mainly be
transported through those easy paths for a certain range of low |𝛥𝑃|.

1. Strictly speaking, the flow through an individual pore is an affine function of
the pressure difference. If the capillary barriers of individual pores differ, it is
not necessarily true that the total flow is exactly linear.
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The non-linear and non-Darcy-like behavior with 𝛽 > 1 in equa-
tion (4.5) can be expected when the pressure differences over the indi-
vidual pores are comparable in size to the capilarry presure barriers.
A porous medium is made up of many different pores, and with two
immiscible fluids flowing, the pores will contain different numbers
of interfaces at each instance in time. Based on equation (3.41b) for
flow 𝑞 in a pore, when the force from the pressure |𝛥𝑝| is pushing
in a direction, it must overcome the total 𝑝𝑐 due to all the interfaces
in that pore in order to have a positive 𝑞 in the same direction. A
small increase in |𝛥𝑃| across a porous medium leads to small increases
in |𝛥𝑝| across the pores of the medium. In certain situations, those
increased |𝛥𝑝|manage to exceed the resistance of the capillary barriers
in several more pores than the ones that were already active. This
effect of increasing flow in the previously active pores in addition to
opening new ones may be the reason 𝑄 is raised more than linearly
with increased effective pressure.

When gradually increasing |𝛥𝑃| from zero across a porous medium,
𝑄 can alternate between being linear and non-linear in the effective
pressure difference, with 𝛽 = 1 and 𝛽 > 1, respectively. This alternation
can happen as many times as the porous structure dictates. For exam-
ple, with the systems examined in paper I, as soon as |𝛥𝑃| exceeded 𝑃𝑡,
it was observed that 𝛽 > 1, and as the |𝛥𝑃| increased to a value large
enough to activate the entire porous medium, the flow transitioned
into a regime with 𝛽 = 1. On the other hand, with the systems exam-
ined in paper II, several easy paths dominated the flow for the lowest
possible |𝛥𝑃| and hence causing 𝛽 = 1. Increasing |𝛥𝑃| further led to
the opening of new paths after a while, giving 𝛽 > 1. Then, similar
to the other paper, when |𝛥𝑃| was large enough to activate the entire
porous medium, the flow re-entered the linear regime.
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5Critical behavior in porous media

In paper II, a dynamic pore network model is used to simulate porous
media made up of solid grains with certain wetting properties. This
chapter focuses on one of the topics that are relevant for paper II,
namely, critical behavior related to flow in porous media. The spe-
cific design of the model exhibits certain similarities with the Random
Resistor Network (RRN) models that are widely used to study perco-
lation problems. Due to their similarities, the critical phenomenon
that is present in the RRN models was hypothesized to exist in the
model used in paper II as well. RRN and its associated criticality are
explained in brief terms in section 5.1. Thereafter, in section 5.2, the
design of the porous network from paper II is explained. Note that this
short explanation covers only the design of the network in paper II,
the actual workings of the dynamic pore network model itself will be
explained in a later chapter, chapter 7. Thereafter in section 5.3, the
porous model’s similarities and differences with RRN and how that
may or may not result in any critical behavior are discussed.

5.1 RRN model

A random resistor network (RRN), as the name suggests, is a network
of resistors that can have different resistances against the transport of
the electric current. The resistors can, for instance, be chosen to have
one of two resistances based on a probability and the most commonly
studied case is with resistance being either infinite or zero [58, 59].
This is the case considered in this chapter and the probability with
which one of these resistances is chosen will be called ̄𝑝𝐺.

The quantity of interest in an RRN is the conductivity 𝐺 that mea-
sures the material’s ability to transport electric current. In the limit
where RRN size is infinitely large, there exists a critical threshold
probability ̄𝑝𝐺,𝑐 above which there are connected conducting paths
of infinite extent [58, 59]. In this scenario, the overall conductivity of
RRN goes as [59, 60]

𝐺 ∝ ( ̄𝑝𝐺 − ̄𝑝𝐺,𝑐)𝑡
′

(5.1)
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as ̄𝑝𝐺 approaches ̄𝑝𝐺,𝑐 from above. Since an infinite RRN starts con-
ducting only for ̄𝑝𝐺 ≥ ̄𝑝𝐺,𝑐 in an infinitely large system, 𝐺 is zero
for ̄𝑝𝐺 ≤ ̄𝑝𝐺,𝑐. Equation (5.1) describes the critical behavior and the
critical exponent 𝑡′ have been found to be approximately 1.3 for two
dimensional RRN [58, 59].

5.2 RRN inspired porous network model

The design of the porous network from paper II is such that it models
porous media made up of two types of randomly distributed grains that
have wettability that is either fully wetting (w) or fully non-wetting
(nw). The grains are chosen to be nw based on an occupation prob-
ability ̄𝑝, and the rest of the grains are set to be w. Wettabilities are
consistently defined with respect to the same one of the two fluids. To
the right of figure 5.1, the rules to assign wettability to the links of the
network are illustrated. A pore space, or a link, lying between two
w grains, is naturally also fully wetting and gets assigned 0∘ wetting
angle in the network. Oppositely, a link between two nw grains is
assigned nw property with 180∘ wetting angle. The capillary forces in
the w and the nw links point in opposite directions. For a link placed
between two opposite grain types, the capillary forces average to zero,
hence a neutral wettability is assumed in those links in the network.
To the left in figure 5.1, two examples of networks are shown with

nw grain occupation probabilities ̄𝑝 = 0.25 and 0.45. As expected, the
neutrally wet (black) links lie on the borderlines between the regions
saturated with w (blue) and nw (pink) links. The network with ̄𝑝 = 0.45
contains a more equal concentration of the w and nw grains. Therefore,
in this network, there exist paths that are made up of only neutrally
wet links that connect and loop over the entire system. Such paths can
be called “connected paths”. The network with ̄𝑝 = 0.25, on the other
hand, does not have connected paths.

The connected paths with their complete neutral wettability do not
have any capillary resistance. Therefore, when a very low |𝛥𝑃| is
applied across the network, only such connected paths will be able
to carry flow. The existence of connected paths together with their
conductance at very low |𝛥𝑃| is a percolation problem. As seen in the
examples in figure 5.1, not all ̄𝑝 results in a network with connected
paths. The investigations in paper II showed that there is a range
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̄𝑝 = 0.25 ̄𝑝 = 0.45
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𝜃
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Figure 5.1: The maps of wetting angles 𝜃 of the links in pore
network models with non-wetting grain occupation probabilities
̄𝑝. To the right, one can see the rules for assigning 𝜃 to the links:

𝜃 is 180∘ (fully non-wetting (nw)), 0∘ (fully wetting (w)) or 90∘

(neutrally wetting), respectively, for links between two nw grains,
between two w grains or between a nw and a w grain.

1 − ̄𝑝𝑐 ≤ ̄𝑝 ≤ ̄𝑝𝑐 symmetric around ̄𝑝 = 0.5 that has close to one
probability of having connected paths, and the same probability drops
to zero outside of that range. Thismeans, at very low |𝛥𝑃|, the transport
of fluids is close to zero outside of the critical range limited by the
critical probability threshold ̄𝑝𝑐, but gets larger than zero 𝑄 once ̄𝑝 is
inside the critical range. This transition from zero to non-zero flow is
a step function for an infinitely large system.
From paper II, the value of ̄𝑝𝑐 for this model seems to lie close

to the site-percolation probability threshold for a two-dimensional
square lattice which is 0.5927… [61, 62]. The reason for this can be
understood by looking at the grains in the present model as the sites in
a regular two-dimensional percolation model. Consider an infinitely
large system. Below the critical range, as in the case with ̄𝑝 = 0.25 in
figure 5.1, due to the high concentration of w grains, they are connected
to each other and span the entire length of the network. In other words,
the w grains percolate for 0 ≤ ̄𝑝 ≤ 1 − ̄𝑝𝑐 where ̄𝑝𝑐 ≈ 0.5927… . For all
1 − ̄𝑝𝑐 < ̄𝑝, the concentration of nw grains is large enough to break
off the connected w grains into smaller clusters. See the example
with ̄𝑝 = 0.45 in figure 5.1. On the opposite end of the spectrum of
̄𝑝, the opposite is true where the nw and w grains exchange roles.

That is, nw grains dominate and percolate for ̄𝑝𝑐 ≤ ̄𝑝 ≤ 1 and cease
percolating if ̄𝑝 < ̄𝑝𝑐. The percolation behavior should be independent
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of the direction. The connected paths require there to be different
grain types on its two sides. Therefore, since any path of links will be
cut off by a percolating cluster of grains outside of the critical range
1 − ̄𝑝𝑐 < ̄𝑝 < ̄𝑝𝑐, there cannot exist any connected path outside of this
range in the limit of infinite system size.
In porous media, the concept analogous to the conductivity 𝐺 in

RRNs is the mobility 𝑀. The mobility 𝑀 relates 𝑄 and |𝛥𝑃| − 𝑃𝑡 and
indicates how much the porous medium is conducting, and is the
proportionality constant in equation (4.5),

𝑄 = 𝑀(|𝛥𝑃| − 𝑃𝑡)𝛽. (5.2)

Due to the similarities between 𝐺 and 𝑀, which will be further dis-
cussed in section 5.3, one can suspect the critical behavior associated
with 𝐺 (equation (5.1)) to also be present for 𝑀 at very low |𝛥𝑃|. The
reason for considering the lowest possible |𝛥𝑃| here is because the
dependence of 𝑀 on the occupation probability ̄𝑝 disappears with
larger |𝛥𝑃|. This is due to the pressures across the pores becoming
much larger than the capillary barriers within. With this, one can
hypothesize for the model in paper II at very low |𝛥𝑃| that

𝑀 ∝ {
( ̄𝑝 − (1 − ̄𝑝𝑐))𝑡

′
for ̄𝑝 → (1 − ̄𝑝𝑐)+ ,

( ̄𝑝𝑐 − ̄𝑝)𝑡
′

for ̄𝑝 → ( ̄𝑝𝑐)− ,
(5.3)

where the symmetry of the system has been taken into consideration.
Here, ̄𝑝 → (1 − ̄𝑝𝑐)+ means ̄𝑝 approaches 1 − ̄𝑝𝑐 from above and
̄𝑝 → ( ̄𝑝𝑐)− means ̄𝑝 approaches ̄𝑝𝑐 from below. This can be rewritten

in terms of the correlation length 𝜉. It is the distance over which the
fluctuations are correlated in the thermodynamic limit with infinite
system size and goes as

𝜉 ∝ | ̄𝑝 − (critical probability)|−𝜈 (5.4)

for ̄𝑝 close to the critical point [60, 63]. The critical points are 1 − ̄𝑝𝑐
and ̄𝑝𝑐 in this case. The correlation critical exponent is roughly 𝜈 = 4/3
in two dimensions [64]. In finite-sized systems characterized by a size
𝐿, the biggest 𝜉 can be is limited by 𝐿. Therefore at the critical points
where 𝜉 diverges, one can write the finite size scaling law [63]

𝐿 ∝ | ̄𝑝 − (critical probability)|−𝜈 , (5.5)
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where the symmetry of the system has been taken into consideration.
equation (5.5) can be inserted into equation (5.3) to get

𝑀 ∝ 𝐿−𝑡
′/𝜈 (5.6)

close to the critical probabilities. To examine the possibility that 𝑀
might exhibit critical behavior at low |𝛥𝑃|, equation (5.6) was investi-
gated in paper II and the results revealed an unexpectedly large value
of 𝑡′ that is around 5.7. This aroused the suspicion that the system
might not be critical and that the criticality might have been smeared
out. This is the topic of discussion in section 5.3.

5.3 The presence of criticality

The porous network model has both similarities and differences with
the RRN model, and considering these can give hints as to whether
the system is critical. Firstly, in both models, resistance properties are
allocated based on an occupation probability. In RRN, the occupation
probability ̄𝑝𝐺 is applied directly to the links of the network, while in
the porous model, the occupation probability ̄𝑝 is applied to the grains
and thereafter translated into the attributes of the links. This difference
is merely a conversion of the probabilities and by itself should not
alter the presence of criticality of the porous network. However, this
difference could potentially give rise to a difference in the critical
exponent.

The links in RRN have either zero or infinite resistance, resulting in a
sharp transition from non-conducting to conducting when the critical
threshold is reached. The links in the porous network have either
zero resistance stemming from neutral wettability or a finite amount
of resistance stemming from wetting or non-wetting conditions. The
non-zero resistances are not large enough to resist flow completely
regardless of the pressure. This is different from the infinite-resistance
links in RRN which resist current completely. To have the same effect,
the pressure experienced by the links in the porous network must be
so small that only the zero-resistance links can be passed through. The
smallest possible |𝛥𝑃| used in paper II were the ones that could be
simulated within reasonable computational time. It could be that even
those |𝛥𝑃| were not small enough for the finite resistance to have a
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significant impact. This could have partially contributed to smoothing
out of the criticality.
In paper II, the biggest suspect for the obstruction of criticality is

argued to be the links that do not contain any interfaces. The resistance
of a certain link at a certain time stems from the capillary barriers
from the fluid-fluid interfaces it contains at that time. The number
of interfaces in a link can change in every time step and can at times
be zero due to only having one type of fluid inside. When a link
contains no interface within, it is indistinguishable from the neutrally
wet links in the model and hence contributes to the flow in the same
way. This is a special property of this porous model that does not
have an equivalent in the design of RRN. This immediately blurs out
the difference between the zero-resistance links and the non-zero-
resistance links in the porous model and can possibly smear out the
critical behavior.
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6Statistical mechanics of porous media

The flow of multiple immiscible fluids through macroscale porous
media that is several orders of magnitude larger than the pore scale
was the topic in chapter 4. For practical applications, when study-
ing the general behavior of the flow in macroscale porous media, the
interest lies in the overarching large-scale behaviors rather than the
detailed description of every single pore. To this end, macroscale
descriptions of the immiscible multiphase flow are in demand. As
Dr. Blunt writes in his book [42], when taking a train from one sta-
tion to another, it is much more useful with a simple map showing
only the stations and the connections rather than a high-resolution
seismic image of the ground. In section 4.1, the phenomenological
approach to relate total volumetric flow rate 𝑄 to the global pressure
drop 𝛥𝑃 through the experimentally measured relative permeabilities
was mentioned. Although such phenomenological theories are often
accurate in describing the physics, their domain of validity can be dif-
ficult to determine. This is in contrast to microscopic theories, where
the underlying assumptions are typically easier to keep track of. It
can be hard to pinpoint the physical origin of the observations at the
macroscale that can stem from behaviors at the pore scale. In contrast,
theories that utilize pore scale constituents provide the possibility to
implement different interactions at the pore scale which may influence
the final scaled-up description in various ways.

Oneway of developingmacroscale descriptions is through a category
of methods that have the commonality of deriving averaged models.
Examples of such methods are the volume averaging method [65–69],
the homogenization technique [70–72] and the thermodynamically
constrained averaging theory [73–76]. The general idea is to average
the local quantities describing the microscale behavior, such as mass
and momentum balances or thermodynamic equations, over a suitable
volume to obtain effective macroscale field descriptions [77]. The suit-
able volume is referred to as representative elementary volume (REV)
and if the averaging region is an area rather than a volume, it is referred
to as representative elementary area (REA) [78]. A REV characterizes
and represents a physical point in the macroscopic field. It needs to be

35



large enough to cover the rapid microscale fluctuations but be smaller
than the characteristic length of the macroscale inhomogeneities [77,
78]. To quantitatively estimate the acceptable size of REV, statistical
methods such as direct visual observation [79], standard deviation
analysis [80], relative gradient error criterions [79, 81] and regression
modelling [82] can be used.
A different kind of upscaling technique is statistical mechanics.

Hansen et al. [83] developed statistical mechanics for immiscible
two-phase flow in porous media. Their theory that led to a formal-
ism resembling thermodynamics builds on the information theoretical
statistical mechanics of Jaynes [84]. This was done for steady-state
flow at the macroscopic level where macroscopic variables describing
the flow remain constant or fluctuate around well-defined averages
while the fluid configurations at the pore level are dynamic. One of the
important assumptions used in that paper is investigated in paper III.
The discussions here will start with a summary of the idea behind the
Jaynes’ theory before moving on to describing how it was used in the
paper by Hansen et al. [83].
In his work [84], Jaynes started with the concept of Shannon en-

tropy [85] as ameasure of the amount of uncertainty, where the entropy
is increased with uncertainty, reaching a maximum at the most uncer-
tain state where all the outcomes are equally likely [86]. In a realistic
situation, one often has some information about the outcomes. Jaynes
incorporated this additional information as constraints into his theory
and proposed to maximize entropy under these constraints through the
use of Lagrangemultipliers, thereby successfully incorporating into the
theory what information is known. This provides an alternative way
to derive for example probability distributions of a canonical or grand
canonical ensemble compared to deriving them from a microcanonical
ensemble.
Inspired by this, Hansen et al. [83] formulated the flow entropy

associated with the macroscale movements of the fluid clusters as

𝛴 = −∫ d𝑋 ̃𝑃(𝑋) ln ̃𝑃 (𝑋 ). (6.1)

The constituents of equation (6.1) can be explained using figure 6.1.
Figure 6.1 is meant to represent flow through a porous medium where
a mixture of two immiscible fluids is injected from the bottom with
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a total volumetric flow rate 𝑄. The value of 𝑄 remains the same
along the average flow direction 𝑧. Figure 6.1 also shows a cross-
sectional plane orthogonal to 𝑧 inside which there is a REA marked
with hatching. In accordance with the definition of REA above, the
REA here is large enough for the variables describing the properties
of the medium itself and the fluids passing through it to have well-
defined averages. The integral in equation (6.1) is over all the physically
possible fluid configurations 𝑋 in a plane as the one in figure 6.1, and
̃𝑃 (𝑋 ) is the probability density for these configurations. The flow

entropy, 𝛴, is the Shannon entropy and not a molecular entropy of
regular thermodynamics. When the fluids are in motion through the
porous medium, thermodynamical entropy is produced due to work
done during irreversible processes such as viscous dissipation. The
flow entropy 𝛴, on the other hand, describes what we know about the
possible fluid structures and patterns during the steady state, and since
this information does not change, 𝛴 is constant in the steady state.

𝑧

planeREA

𝑄

𝑄

Figure 6.1: Sketch of a porous medium where fluids are injected
from the bottom with a total volumetric flow rate 𝑄 which re-
mains the same along the average flow direction 𝑧. The drawing
shows a plane orthogonal to 𝑧 within which a representative
elementary area (REA), with hatched markings, is located. The
part of the plane that is not REA is called the reservoir.
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The flow configurations 𝑋 in a plane in figure 6.1, is the union of the
configurations inside the REA, 𝑋𝑝, and the configurations in the rest
of the plane excluding the REA which can be called the reservoir, 𝑋𝑟,

𝑋 = 𝑋𝑝 ∪ 𝑋𝑟. (6.2)

The first assumption Hansen et al. [83] employed is that 𝑋𝑝 and 𝑋𝑟
are independent such that ̃𝑃 (𝑋 ) becomes the product of the configura-
tional probability density for the REA ̃𝑃𝑝(𝑋𝑝) and the configurational
probability density for the reservoir ̃𝑃𝑟(𝑋𝑟),

̃𝑃 (𝑋 ) = ̃𝑃𝑝(𝑋𝑝) ̃𝑃𝑟(𝑋𝑟). (6.3)

Inserting equation (6.3) into equation (6.1) and using the properties

∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) = 1 (6.4)

and

∫ d𝑋𝑟 ̃𝑃𝑟(𝑋𝑟) = 1, (6.5)

one gets

𝛴 = −∫ d𝑋𝑟 ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ̃𝑃𝑟(𝑋𝑟) ln ( ̃𝑃𝑝(𝑋𝑝) ̃𝑃𝑟(𝑋𝑟)) (6.6a)

= −∫ d𝑋𝑟 ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ̃𝑃𝑟(𝑋𝑟) (ln ̃𝑃𝑝(𝑋𝑝) + ln ̃𝑃𝑟(𝑋𝑟)) (6.6b)

= −∫ d𝑋𝑟 ̃𝑃𝑟(𝑋𝑟) ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ln ̃𝑃𝑝(𝑋𝑝)

− ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ∫ d𝑋𝑟 ̃𝑃𝑟(𝑋𝑟) ln ̃𝑃𝑟(𝑋𝑟) (6.6c)

= −∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ln ̃𝑃𝑝(𝑋𝑝) − ∫ d𝑋𝑟 ̃𝑃𝑟(𝑋𝑟) ln ̃𝑃𝑟(𝑋𝑟) (6.6d)

= 𝛴𝑝 + 𝛴𝑟. (6.6e)

The last step, equation (6.6d) to equation (6.6e), defines the flow entropy
in the REA

𝛴𝑝 = −∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ln ̃𝑃𝑝(𝑋𝑝) (6.7)
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and the flow entropy in the reservoir 𝛴𝑟 which is the rest of equa-
tion (6.6d).
The second assumption Hansen et al. [83] used, following Jaynes,

is that ̃𝑃𝑝(𝑋𝑝) is such that 𝛴𝑝 in equation (6.7) is maximized under
the known constraints. REA can be characterized by three variables
measured inside it, the volumetric flow rate 𝑄𝑝, the pore area 𝐴𝑝,
and the pore area that is covered by the wetting fluid 𝐴𝑤,𝑝. These
three variables depend on the configurations 𝑋𝑝 inside REA and hence
contain information regarding the characteristics of a porous medium
and the fluids, such as the interfacial curvatures. The averages of these
variables are then

𝑄𝑝 = ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝)𝑄𝑝(𝑋𝑝), (6.8a)

𝐴𝑝 = ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝)𝐴𝑝(𝑋𝑝), (6.8b)

𝐴𝑤,𝑝 = ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝)𝐴𝑤,𝑝(𝑋𝑝). (6.8c)

To find ̃𝑃𝑝 that maximizes equation (6.7) subject to the constraints in
equations (6.4) and (6.8), one needs to maximized the Lagrangian

ℒ = − ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ln ̃𝑃𝑝(𝑋𝑝)

+ 𝛬 (1 − ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝))

+ 𝜆𝑄𝑝 (𝑄𝑝 − ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝)𝑄𝑝(𝑋𝑝))

+ 𝜆𝐴𝑝 (𝐴𝑝 − ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝)𝐴𝑝(𝑋𝑝))

+ 𝜆𝐴𝑤,𝑝 (𝐴𝑤,𝑝 − ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝)𝐴𝑤,𝑝(𝑋𝑝)) . (6.9a)
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ℒ should be maximized with respect to ̃𝑃𝑝 as well as the Lagrange
multipliers 𝛬, 𝜆𝑄𝑝 , 𝜆𝐴𝑝 and 𝜆𝐴𝑤,𝑝 . This means that,

𝛿ℒ
𝛿 ̃𝑃𝑝

= 0, (6.10a)

∂ℒ
∂𝛬

= 0, (6.10b)

∂ℒ
∂𝜆𝑄𝑝

= 0, (6.10c)

∂ℒ
∂𝜆𝐴𝑝

= 0, (6.10d)

∂ℒ
∂𝜆𝐴𝑤,𝑝

= 0, (6.10e)

where equation (6.10a) is a functional derivative while the rest are
regular derivatives corresponding to the constraints in equations (6.4)
and (6.8). Equation (6.10a) gives

− ln ̃𝑃𝑝(𝑋𝑝) − 1 − 𝛬 − 𝜆𝑄𝑝𝑄𝑝(𝑋𝑝) − 𝜆𝐴𝑝𝐴𝑝(𝑋𝑝) − 𝜆𝐴𝑤,𝑝𝐴𝑤,𝑝(𝑋𝑝) = 0.
(6.11)

Furthermore, Hansen et al. [83] defined three variables ¹

𝜃 =
1
𝜆𝑄𝑝

, (6.12a)

𝜋 = −
𝜆𝐴𝑝

𝜆𝑄𝑝

, (6.12b)

𝜇 = −
𝜆𝐴𝑤,𝑝

𝜆𝑄𝑝

. (6.12c)

These variables, together with equation (6.11), gives

̃𝑃𝑝(𝑋𝑝) =
1
𝑍
exp (−

𝑄𝑝(𝑋𝑝)
𝜃

+
𝜋𝐴𝑝(𝑋𝑝)

𝜃
+
𝜇𝐴𝑤,𝑝(𝑋𝑝)

𝜃
) , (6.13)

with the partition function

𝑍 = e1+𝛬 = ∫ d𝑋𝑝 exp (−
𝑄𝑝(𝑋𝑝)

𝜃
+
𝜋𝐴𝑝(𝑋𝑝)

𝜃
+
𝜇𝐴𝑤,𝑝(𝑋𝑝)

𝜃
) ,

1. These letters have different meanings outside of this chapter.
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(6.14)

so that equation (6.10b) is satisfied.
Inserting equation (6.13) into equation (6.7), and using equations (6.10c)–(6.10e),

leads to the expression for the flow entropy

𝛴𝑝 = − ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) ln(
exp (−

𝑄𝑝(𝑋𝑝)
𝜃

+
𝜋𝐴𝑝(𝑋𝑝)

𝜃
+

𝜇𝐴𝑤,𝑝(𝑋𝑝)
𝜃

)

𝑍
)

(6.15a)

= − ln (
1
𝑍
)

− ∫ d𝑋𝑝 ̃𝑃𝑝(𝑋𝑝) (−
𝑄𝑝(𝑋𝑝)

𝜃
+
𝜋𝐴𝑝(𝑋𝑝)

𝜃
+
𝜇𝐴𝑤,𝑝(𝑋𝑝)

𝜃
) ,

(6.15b)

which after the integration becomes

𝛴𝑝 = ln𝑍 +
𝑄𝑝

𝜃
−
𝜋𝐴𝑝

𝜃
−
𝜇𝐴𝑤,𝑝

𝜃
. (6.16)

The quantity 𝜃 resembles temperature in ordinary thermodynamics if
it is an intensive quantity in area. This is the case when the constraints
are given in terms of extensive quantities, given that the Shannon
entropy and 𝛬 are extensive. Next, Hansen et al. [83] define a new
variable 𝑄𝐺 that correspond to a free energy in ordinary thermody-
namics,

𝑍 = e
−𝑄𝐺
𝜃 . (6.17)

From equation (6.16), 𝑄𝐺 is then

𝑄𝐺 = 𝑄𝑝 − 𝛴𝑝𝜃 − 𝜋𝐴𝑝 − 𝜇𝐴𝑤,𝑝. (6.18)

Starting with equation (6.13) for the REA configurational probability
density ̃𝑃𝑝, which led to for example the expression for 𝑄𝐺 in equa-
tion (6.18), one can derive many useful relations describing the flow.
For example, relations between various effective fluid velocities and
saturation [83]. In paper III, a fundamental assumption used in the
process of finding ̃𝑃𝑝 is tested, namely equation (6.3) claiming inde-
pendence between ̃𝑃𝑝 for the REA and ̃𝑃𝑟 for the reservoir. Under
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the validity of this assumption, the distributions of 𝑄𝑝 and saturation
𝑆𝑤,𝑝 = 𝐴𝑤,𝑝/𝐴𝑝 in REA, averaged over the motion of the fluids and
the disorder of the porous medium itself, should be independent of
the size of the reservoir. On the other hand, if equation (6.3) is not
true, then one should not expect the distributions of 𝑄𝑝 and 𝑆𝑤,𝑝 to
be independent of the reservoir size. The results in paper III show
that the distributions are indeed independent of the reservoir size, for
sufficiently large reservoirs, indicating the validity of equation (6.3).
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7Dynamic pore network model

There are many ways to model porous media numerically and a rep-
resentative simplified model can often be more useful than an overly
explicit model. Network modeling of porous media embraces this idea
by attempting to partition the space in a way that approximately emu-
lates the connectivity and other useful geometric features of real porous
media [87, 88]. This is done by representing larger pore bodies as nodes
and connecting them using narrower links acting as pore throats. The
nodes and links in a network model often take on simplified forms, e.g.
spheres for nodes and cylinders for links. By compromising on the
details, one can be able to simulate larger systems using these network
models and hence be able to predict macroscale transport properties
and flow behavior. As with the capillary bundle models in section 3.5,
the constituents of the network models can be assigned properties
as needed for the investigation. Examples of such properties are the
distribution of the radii and the wetting angles of the network itself
and the viscosity and compressibility of the fluids within.

Two-phase flow in a porousmedium under very slow flow conditions
can be approximated as being quasi-static with intermittent motions
that fill a whole pore at the time [89]. These kinds of models are called
quasi-static models where, in every time step, one fluid displaces the
other fluid completely in the pores that are subjected to the largest
displacing forces. Due to very slow flow rates, the capillary forces
dominate while the viscous forces can be neglected. During imbibition,
where the wetting fluid displaces the non-wetting fluid, the smallest
pores are invaded first due to their high capillary pressures. For the
same reason, during drainage, where the non-wetting fluid displaces
the wetting fluid, the largest pores are invaded first. Quasi-static
models are used to study equilibrium behaviors where incremental
global pressure changes can be applied to go from one equilibrium to
another [87].
At higher flow rates, one needs to consider dynamic flow where

both the viscous and the capillary forces are relevant. Dynamic net-
work models are a group of models that are applicable under these
conditions. In these models, invasion of a pore is determined by the
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total capillary pressure, and the flow rate is proportional to the differ-
ence between the total pressure difference over the pore and the total
capillary pressure. The basis of the algorithms used in the dynamic
pore network models in papers I–III is based on the work by Sinha et al.
[90] where an interface-tracking approach is used. There have been
several predecessors to these interface-tracking algorithms [35, 91–95].
In comparison to those, the model by Sinha et al. [90] is more general
in several aspects. The model can be used to simulate both transient
and steady-state flow conditions. The driving force can be set to be a
constant global pressure drop or a constant total volumetric flow rate.
Different network geometries with different boundary conditions can
be modeled. Furthermore, one of the most important features of this
model is the clever collection and distribution of the fluids at the nodes
while conserving the volumes of each fluid.

The dynamic pore network models used in papers I–III have a com-
mon basic structure and flow-transportation rules. In the following,
the mutual initialization steps of these networks are described in sec-
tion 7.1. After the initialization, the fluids get propagated through the
network based on a certain set of rules and methods. The process at
each time step can be divided into three parts. First, the pressure field
is calculated using the conjugate gradient method, which is explained
in detail in section 7.2. Second, the flow rates in the links are calculated,
and are then used to propagate the fluids forward based on a set of
rules. This is explained in section 7.3. At the end of each time step,
one can measure and save the relevant quantities and move on to the
next time step.

7.1 Initialization

The dynamic pore networks used in papers I–III are shaped similarly
to the example in figure 7.1. The example has 4 × 4 nodes marked with
black circles that are connected by 8×4 links marked with blue lines. In
general, the networks can have any size. The networks are considered
to model horizontal two-dimensional flow where the gravity effects
are neglected. The nodes do not retain any fluid during the simulation
but are there to mediate the collection and distribution of the fluids
from and to the links. The desired disorder can be assigned to the links

44



at the initialization stage as well. In papers I–III, the length of the links
was kept the same while their radii and wetting angles could vary.

The pressure difference between the first (bottom) and the last (top)
rows of the nodes defines the global pressure drop 𝛥𝑃 which is the
driving force. The total volumetric flow rate 𝑄 is defined over a cross-
section orthogonal to the average flow. If a network has a periodic
boundary condition (PBC) in the flow direction, the links connecting
the first and the last rows, i.e. the bottom row of links in figure 7.1,
will have pressure difference 𝛥𝑃 with magnitude equal to the global
pressure difference, as will be explained below.

𝛥𝑃

𝑄

45∘

PBC

PBC

Figure 7.1: An example of the dynamic pore network model with
4 × 4 nodes marked with black circles that are connected by 8 × 4
links marked with blue lines. The links are oriented 45∘ from
the average flow direction. The global pressure drop 𝛥𝑃 is the
driving force giving a total volumetric flow rate 𝑄. The network
can have periodic boundary conditions (PBCs) in both directions.

In figure 7.1, each node in the network connects to four links where
the links are positioned 45∘ from the average flow direction. This is
the connectivity used in papers I–III, but can be altered if needed. At
the initialization step, the information regarding all the connections
between the nodes and the links should be stored in arrays so that they
can be easily accessed during the distribution and transportation of
the fluids.

In papers I–III, the steady-state behavior of the flow was of interest.
There are two ways boundary conditions can be adjusted to accommo-
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date for this. The first way, which is the way that can be done in the
experiments, is to inject two fluids simultaneously through alternate
inlets. The downside of this approach is that it creates boundary effects,
resulting in a small region with homogeneous steady-state properties.
To avoid this, one can instead use periodic boundary conditions as in
figure 7.1, which is the approach used in the networks in papers I–III.
This can be achieved by prefilling the links in the network with two
fluids and then connecting the inlet and the outlet links of the network
so the network becomes a closed system. After many rounds of circu-
lation, the entire system can approach steady state with no boundary
effects, in contrast to the first method. With this, one can use smaller
systems compared to the first method, decreasing the computational
cost. The downside of the second method is that it can generally not be
done in experiments. It may, nonetheless, be the preferred numerical
method due to it being more computationally efficient and being able
to give similar steady-state statistics as the first method.

For a network that is twice periodic and thus closed, the saturation
of the fluids inside the network is conserved in time. Therefore, the
saturation of the network is an initialization parameter. There are
several ways a certain saturation can be achieved. One can, for example,
start by filling a fraction of the network in the flow direction completely
with one of the two fluids and the rest with the other fluid depending
on the chosen saturation. One can also fill entire links at a time with
one of the fluids until the desired saturation is reached and fill the rest
of the links with the other fluid. The way it was done in papers I–III
was that each link in the network got filled with the desired saturation
amount at the beginning of the simulation. This method facilitates a
better mixture of the two fluids from the start and with it a shorter
time to approach steady state.

7.2 Calculating the pressure field

7.2.1 Building the equations

At each time step, the pressure field, i.e. the local pressures at the nodes
of the network, needs to be calculated. The equations that need to be
solved for this purpose come from Kirchhoff’s junction rule, stating
that the algebraic sum of the currents into any junction is zero [96].
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In the network, the sum of the volumetric flow rates 𝑞 that come into
a node must be equal to those that go out from the same node during
the same time step. In other words, at each node 𝑖, the net volumetric
flow rate at each time step is zero,

∑
ℎ

𝑞ℎ𝐶𝑖,ℎ = 0 (7.1)

where the sum is over all the links ℎ that connect directly to node 𝑖. In
equation (7.1), since 𝑞ℎ is in the direction of the total flow 𝑄 which can
be called the upward direction, then 𝐶𝑖,ℎ is

𝐶𝑖,ℎ = {
1 if link ℎ is below node 𝑖,
−1 if link ℎ is above node 𝑖.

(7.2)

In the networks used in papers I–III, ℎ in equation (7.1) goes from 1 to
4.

Inserting the expression for 𝑞 from equation (3.42) into equation (7.1)
gives

∑
ℎ

−
𝜋 ̄𝑟4ℎ

8𝜇eff,ℎ𝑙
(𝛥𝑝ℎ −

𝑛
∑
𝑘=1

2𝜎 cos 𝜃ℎ(𝑥𝑘)
𝑟ℎ(𝑥𝑘)

̂𝐽 (𝑥𝑘) ⋅ 𝑥̂) 𝐶𝑖,ℎ = 0. (7.3)

Here, the second sum over interfaces 𝑘 that are within link ℎ is the
total capillary pressure in that link,

𝑝tot𝑐,ℎ = −
𝑛
∑
𝑘=1

2𝜎 cos 𝜃ℎ(𝑥𝑘)
𝑟ℎ(𝑥𝑘)

̂𝐽 (𝑥𝑘) ⋅ 𝑥̂ . (7.4)

The link mobility can be defined as

𝑚ℎ =
𝜋 ̄𝑟4ℎ

8𝜇eff,ℎ𝑙
. (7.5)

With equations (7.4) and (7.5), one can write equation (7.3) more com-
pactly as

∑
ℎ

𝑚ℎ𝛥𝑝ℎ𝐶𝑖,ℎ = ∑
ℎ

𝑚ℎ𝑝tot𝑐,ℎ𝐶𝑖,ℎ. (7.6)

Everywhere except at the inlet and the outlet, the pressure difference
𝛥𝑝 in equation (7.6) is the difference between the pressure at the node
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that lies above the link across which it is defined in the direction of the
flow 𝑄, denoted as 𝑝up, and the node that lies in the opposite direction,
denoted as 𝑝down. As described in section 7.1, the networks used in
papers I–III have periodic boundary conditions. The driving force
comes from enforcing a jump in the pressure |𝛥𝑃| across the links that
connect the inlet and the outlet nodes. What this means is that always
when calculating 𝑞 over these links, |𝛥𝑃| must be added to the node
pressures in a way such that when looking down from the bottom inlet
nodes, one should see a pressure that is |𝛥𝑃| more than the pressure
at the outlet nodes. Similarly, when looking up from the top outlet
nodes, one should see a pressure that is |𝛥𝑃| less than the pressure
at the inlet nodes. With these factors combined, one can write 𝛥𝑝ℎ
across the links as

𝛥𝑝ℎ =
⎧

⎨
⎩

𝑝up,ℎ − (𝑝down,ℎ + |𝛥𝑃|) below the bottom nodes,

(𝑝up,ℎ − |𝛥𝑃|) − 𝑝down,ℎ above the top nodes,

𝑝up,ℎ − 𝑝down,ℎ across others.

(7.7)

Combining equation (7.6) for all the nodes gives a system of linear
equation

𝐴𝒑 = 𝒃 (7.8)

for the pressure vector

𝒑 =
⎛
⎜
⎜
⎝

𝑝1
𝑝2
⋮
𝑝𝑁

⎞
⎟
⎟
⎠

(7.9)

with components corresponding to the pressures at the nodes and 𝑁
being the total number of nodes. The matrix 𝐴 in equation (7.8) has
dimensions𝑁 ×𝑁 and is symmetric. The left-hand side of equation (7.8),
𝐴𝒑, contains all the terms that are linearly dependent on the node
pressures in equation (7.6) for all the nodes, while the rest is in 𝒃. The𝑁
dimensional vector 𝒃 is made up of the right-hand side of equation (7.6)
with the capillary pressures, as well as, the boundary terms with 𝛥𝑃
from equation (7.7), for all the nodes.
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Properties of the matrix 𝐴

The goal is to solve equation (7.8) to find 𝒑. One way to solve it is
by using the conjugate gradient method, which requires that 𝐴 is
symmetric and positive definite [97–100]. The matrix 𝐴 is positive
definite if

⟨𝒑, 𝒑⟩𝐴 = 𝒑𝖳𝐴𝒑 > 0 for all 𝒑 ∈ ℝ𝑁 ⧵ {𝟎}, (7.10)

where 𝖳 is the transpose, ℝ𝑁 is 𝑁 dimensional real space, and “⧵{𝟎}”
means that the zero vector is excluded. A symmetric matrix is positive
definite if and only if it only has positive eigenvalues. The matrix
𝐴 is symmetric by definition, but not positive definite as one of its
eigenvalues is zero. This stems from the fact that equation (7.8) does
not specify 𝒑 uniquely. Specifically, adding a constant pressure 𝑐𝑝 at
all the nodes,

𝒑 → 𝒑 +
⎛
⎜
⎜
⎝

𝑐𝑝
𝑐𝑝
⋮
𝑐𝑝

⎞
⎟
⎟
⎠

, (7.11)

leaves all the volumetric flow rates through the links invariant. With

𝒖0 = (𝑐𝑝, 𝑐𝑝, … , 𝑐𝑝)
𝖳
, this implies that

𝐴𝒑 − 𝒃 = 𝐴 (𝒑 + 𝒖0) − 𝒃 ⟹ 𝐴𝒖0 = 0, (7.12)

meaning that 𝐴 has an eigenvector 𝒖0 with eigenvalue 0 which further
indicates that 𝐴 can at best be positive semidefinite.

The problem can be solved by removing one degree of freedom that
corresponds to the eigenvalue 𝜆 = 0. First, it needs to be shown that all
other eigenvalues of 𝐴 are positive and that the geometric multiplicity
of 𝜆 = 0 is 1, meaning that all the other eigenvectors of 𝐴 that are not
parallel to 𝒖0 have 𝜆 > 0. This can be done by using a method inspired
by the proof of the Gershgorin circle theorem [101, 102].

All eigenvectors of 𝐴 can be made orthogonal since 𝐴 is symmetric.
Let 𝒖 be an eigenvector orthogonal to 𝒖0, which means that the ele-
ments of 𝒖 are not all the same. As a result, there must exist at least
one node where the magnitude of 𝒖 is larger than or equal to all of its
neighbors and strictly larger than at least one. Let the value at this
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node be 𝑢1, and let the values at the four connected nodes be 𝑢2, 𝑢3,
𝑢4 and 𝑢5. Let the mobilities of the corresponding links be 𝑚2, 𝑚3, 𝑚4
and 𝑚5. Because 𝒖 is an eigenvector, it satisfies

𝐴𝒖 = 𝜆𝒖 (7.13)

for some eigenvalue 𝜆. The row of this equation corresponding to four
connected nodes with 𝑢1 at its center is

(𝑚2 +𝑚3 +𝑚4 +𝑚5)𝑢1 −𝑚2𝑢2 −𝑚3𝑢3 −𝑚4𝑢4 −𝑚5𝑢5 = 𝜆𝑢1. (7.14)

Rewriting this equation while dividing by 𝑢1 gives
5
∑
𝑖=2

𝑚𝑖 − 𝜆 =
5
∑
𝑖=2

𝑚𝑖
𝑢𝑖
𝑢1

. (7.15)

The conditions |𝑢𝑖/𝑢1| ≤ 1 for all 𝑖 ∈ {2, 3, 4, 5} and |𝑢𝑖/𝑢1| < 1 for at

least one 𝑖 ∈ {2, 3, 4, 5} mean that ∑5
𝑖=2 |𝑚𝑖|

|||
𝑢𝑖
𝑢1
||| < ∑5

𝑖=2 |𝑚𝑖|. Using this
on equation (7.15), one can see that

|
|
|

5
∑
𝑖=2

𝑚𝑖 − 𝜆
|
|
|
<

5
∑
𝑖=2

|𝑚𝑖|. (7.16)

Hence, 𝜆 > 0 and 𝜆 < 2∑5
𝑖=2 |𝑚𝑖|. This shows that all the eigenvalues

corresponding to eigenvectors that are orthogonal to 𝒖1 are positive.
To use the conjugate gradientmethod that requires a positive definite

symmetric matrix, one can reduce the dimensionality of 𝐴 and 𝒑 and
consider only 𝒑 in the subspace orthogonal to 𝒖0. This means to
consider only the pressure fields with zero average since

𝒑 ⋅ 𝒖0 =
𝑁
∑
𝑖=1

𝑝𝑖𝑢0,𝑖 = 𝑐𝑁𝑝
𝑁
∑
𝑖=1

𝑝𝑖 = 0. (7.17)

In practice, it does not matter what the average is, and a more practical
approach can be to simply fix one component of 𝒑, such as 𝑝𝑁 = 0. This
gives a physically equivalent system while fixing the average value of
the pressure field. Hence, a well-defined problem can be obtained by
defining 𝒑𝑟 = (𝑝1, 𝑝2, … , 𝑝𝑁−1)

𝖳, 𝒃𝑟 = (𝑏1, 𝑏2, … , 𝑏𝑁−1)
𝖳 and

𝐴𝑟 = (
𝐴11 … 𝐴1(𝑁−1)
⋮ ⋱ ⋮

𝐴(𝑁−1)1 … 𝐴(𝑁−1)(𝑁−1)

) , (7.18)
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as can be seen in the following. The task is then to solve

𝐴𝑟𝒑𝑟 = 𝒃𝑟. (7.19)

The positive definitiveness of 𝐴𝑟 follows from the positive semidefi-
niteness of 𝐴. Let {𝒖1, … , 𝒖𝑁−1} be the orthogonal eigenvectors of 𝐴
with positive eigenvalues {𝜆1, … , 𝜆𝑁−1}. For any 𝒑𝑟 ≠ 𝟎, one can write

𝒑 = (
𝒑𝑟
0 ) = 𝑎0𝒖0 +

𝑁−1
∑
𝑖=1

𝑎𝑖𝒖𝑖, (7.20)

with 𝑎𝑖 ≠ 0 for at least one 𝑖 ∈ {1, … , 𝑁 − 1} due to the requirement
that 𝒑𝑟 ≠ 𝟎. Therefore,

𝒑𝖳𝑟 𝐴𝑟𝒑𝑟 = (𝒑𝖳𝑟 0)𝐴 (
𝒑𝑟
0 ) (7.21a)

= (𝑎0𝒖𝖳0 +
𝑁−1
∑
𝑗=1

𝑎𝑗𝒖𝖳𝑗 )𝐴(𝑎0𝒖0 +
𝑁−1
∑
𝑖=1

𝑎𝑖𝒖𝑖) (7.21b)

=
𝑁−1
∑
𝑗=1

𝑁−1
∑
𝑖=1

𝑎𝑗𝑎𝑖𝜆𝑖𝛿𝑖,𝑗 (7.21c)

=
𝑁−1
∑
𝑖=1

𝑎2𝑖 𝜆𝑖 > 0 (7.21d)

for all 𝒑𝑟 ≠ 𝟎, where 𝛿𝑖,𝑗 is the Kronecker-delta

𝛿𝑖,𝑗 = {
1 if 𝑖 = 𝑗,
0 if 𝑖 ≠ 𝑗.

(7.22)

Therefore, 𝐴𝑟 is positive definite.
The subscript 𝑟 in 𝐴, 𝒑 and 𝒃 is dropped below.

7.2.2 Conjugate gradient method

The minimizing function and the other definitions

Solving equation (7.19) is be equivalent to extremizing a function 𝑓 (𝒑)
that has the gradient

∇𝑓 (𝒑) = 𝐴𝒑 − 𝒃. (7.23)
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A function 𝑓 that satisfies this is

𝑓 (𝒑) =
1
2
𝒑𝖳𝐴𝒑 − 𝒑𝖳𝒃. (7.24)

The solution 𝒑 of equation (7.19) minimizes 𝑓 (𝒑) and makes ∇𝑓 (𝒑) = 0.
To see that the gradient of equation (7.24) is equation (7.23), start by
writing 𝑓 (𝒑) in the component form

𝑓 (𝒑) =
1
2
∑
𝑖𝑗

𝑝𝑖𝐴𝑖𝑗𝑝𝑗 −∑
𝑖
𝑝𝑖𝑏𝑖. (7.25)

Differentiating this with respect to 𝑝𝜂 gives the component 𝜂 of ∇𝑓 (𝒑),

∂𝑓
∂𝑝𝜂

=
1
2
∑
𝑖𝑗

(𝛿𝑖𝜂𝐴𝑖𝑗𝑝𝑗 + 𝑝𝑖𝐴𝑖𝑗𝛿𝑗𝜂) −∑
𝑖
𝛿𝑖𝜂𝑏𝑖. (7.26)

Using equation (7.22) and that the matrix 𝐴 is symmetric, i.e. 𝐴𝜂𝑖 = 𝐴𝑖𝜂,
equation (7.26) can be written as

∂𝑓
∂𝑝𝜂

=
1
2
∑
𝑖
(𝐴𝜂𝑖 + 𝐴𝑖𝜂) 𝑝𝑖 − 𝑏𝜂 (7.27a)

= ∑
𝑖
𝐴𝜂𝑖𝑝𝑖 − 𝑏𝜂 (7.27b)

= (𝐴𝒑 − 𝒃)𝜂. (7.27c)

This shows that equation (7.23) is indeed the gradient of equation (7.24).
One way to find the minimum of 𝑓 (𝒑) is through the method of

steepest descent. At each step in this method, one moves in the di-
rection in which 𝑓 (𝒑) decreases most rapidly, which is the direction
of the negative gradient −∇𝑓 (𝒑). The process is repeated until the
minimum is reached. The gradients that arise during the iterations
can sometimes be similar, making the rate of convergence slow. This
problem is overcome with the method of conjugate gradient where the
directions 𝒖 along which 𝒑 is propagated are orthogonal to each other
in the inner-product space defined by 𝐴.

Two vectors 𝒖𝑖 and 𝒖𝑗 are conjugate with respect to 𝐴 if

⟨𝒖𝑖, 𝒖𝑗⟩𝐴 = 𝒖𝖳𝑖 𝐴𝒖𝑗 = 0 for all 𝑖 ≠ 𝑗, (7.28)
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where ⟨𝒖𝑖, 𝒖𝑗⟩𝐴 = 𝒖𝖳𝑖 𝐴𝒖𝑗 denotes the inner product defined by 𝐴.
A positive definite 𝐴 is needed for this inner product and the inner
product space (ℝ𝑁, ⟨⋅, ⋅⟩𝐴) to be well defined. This can be seen in the
following. Another equivalent definition of a positive definite 𝐴 than
what is mentioned before is that there exists an invertible matrix 𝐵
such that

𝐴 = 𝐵𝖳𝐵. (7.29)

Inserting equation (7.29) into the inner product given in equation (7.28)
and defining a vector 𝒖̃ = 𝐵𝒖, one gets

⟨𝒖𝑖, 𝒖𝑗⟩𝐴 = 𝒖𝖳𝑖 𝐵𝖳𝐵𝒖𝑗 = 𝒖̃𝖳𝑖 𝒖̃𝑗 = ⟨𝒖̃𝑖, 𝒖̃𝑗⟩ . (7.30)

This shows that an inner product in 𝐴, that is ⟨⋅, ⋅⟩𝐴, can be mapped
onto a regular inner product ⟨⋅, ⋅⟩ and hence be well-defined given that
𝐴 is positive definite.

A set of𝑁mutually conjugate vectorswith respect to𝐴, {𝒖0, 𝒖1, … , 𝒖𝑁−1},
mutually fulfill equation (7.28). This set then forms a basis in ℝ𝑁, i.e.
span {𝒖0, 𝒖1, … , 𝒖𝑁−1} = ℝ𝑁. The linear span, span {… }, of a set of vec-
tors is the set of all linear combinations of those vectors. The solution
to equation (7.19) can be expressed in this basis as

𝒑 =
𝑁−1
∑
𝑖=0

𝛼𝑖𝒖𝑖. (7.31)

To determine the expression for the coefficients 𝛼, one can multiply
equation (7.19) with 𝒖𝖳𝑡 ,

𝒖𝖳𝑡 𝐴𝒑 = 𝒖𝖳𝑡 𝒃. (7.32)
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Using equation (7.31) and equation (7.28), the left hand side of equa-
tion (7.32) becomes

𝒖𝖳𝑡 𝐴𝒑 = 𝒖𝖳𝑡 𝐴
𝑁−1
∑
𝑖=0

𝛼𝑖𝒖𝑖 (7.33a)

=
𝑁−1
∑
𝑖=0

𝛼𝑖𝒖𝖳𝑡 𝐴𝒖𝑖 (7.33b)

=
𝑁−1
∑
𝑖=0

𝛼𝑖 ⟨𝒖𝑡, 𝒖𝑖⟩𝐴 (7.33c)

= ⟨𝒖𝑡, 𝒖𝑡⟩𝐴
𝑁−1
∑
𝑖=0

𝛼𝑖𝛿𝑖𝑡 (7.33d)

= 𝛼𝑡 ⟨𝒖𝑡, 𝒖𝑡⟩𝐴 . (7.33e)

This equates to the right-hand side of equation (7.32) that is

𝒖𝖳𝑡 𝒃 = ⟨𝒖𝑡, 𝒃⟩ , (7.34)

and give

𝛼𝑡 =
⟨𝒖𝑡, 𝒃⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

. (7.35)

As a direct method, one can start with a full set of conjugate di-
rections {𝒖0, 𝒖1, … , 𝒖𝑁−1}, and then compute the coefficients 𝛼 using
equation (7.35) and get the solution 𝒑 to equation (7.19) by inserting
them into equation (7.31).

An iterative approach

With an iterative approachwhere the directions 𝒖 are cleverly chosen,
it is possible to approximate the solution within a set tolerance without
having to use all 𝑁 vectors in the basis set. In this method, 𝒖𝑡 at each
step 𝑡 is chosen such that it follows along the direction of −∇𝑓 (𝒑𝑡)
(equation (7.23)) as close as possible while being conjugate with respect
to𝐴 to all the previous directions 𝒖{𝑖<𝑡}. This is achieved by subtracting
from −∇𝑓 (𝒑𝑡) the projections of −∇𝑓 (𝒑𝑡) on all 𝒖{𝑖<𝑡} in the inner-
product space defined by 𝐴 i.e. (ℝ𝑁, ⟨⋅, ⋅⟩𝐴). The expression this gives
is

𝒖𝑡 = −∇𝑓 (𝒑𝑡) −
𝑡−1
∑
𝑖=0

⟨𝒖𝑖, −∇𝑓 (𝒑𝑡)⟩𝐴
⟨𝒖𝑖, 𝒖𝑖⟩𝐴

𝒖𝑖. (7.36)
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This is a Gram-Schmidt orthonormalization that produces vectors that
are mutually orthogonal in (ℝ𝑁, ⟨⋅, ⋅⟩𝐴).

The idea behind the conjugate gradient algorithm is to gradually
build up the basis set {𝒖0, 𝒖1, … , 𝒖𝑁−1} using equation (7.36) and check
at every step 𝑡 if the residual

𝒓𝑡 = 𝒃 − 𝐴𝒑𝑡 (7.37)

is sufficiently small, and return 𝒑𝑡 as the approximated solution if it
is. The convergence to the solution happens in at most 𝑁 steps, see
equation (7.31). Comparing equation (7.37) with equation (7.23), it is
apparent that

𝒓𝑡 = −∇𝑓 (𝒑𝑡). (7.38)

Inserting this into equation (7.36) gives a cleaner expression that is

𝒖𝑡 = 𝒓𝑡 −
𝑡−1
∑
𝑖=0

⟨𝒖𝑖, 𝒓𝑡⟩𝐴
⟨𝒖𝑖, 𝒖𝑖⟩𝐴

𝒖𝑖. (7.39)

Before presenting the algorithm in its entirety, each of its compo-
nents needs to be derived and explained. Starting with the initial
guess, following the idea of choosing the directions as close as possible
to the steepest descent direction, the first direction should naturally
be

𝒖0 = −∇𝑓 (𝒑0) = 𝒃 − 𝐴𝒑0. (7.40)

The initial guess 𝒑0 has to be 𝟎 in order to determine the coefficients
𝛼 through equation (7.35). Alternatively, if one wishes to choose 𝒑0 ≠ 𝟎
as the initial guess, one can redefine the equations. Instead of solving
for 𝒑 in 𝐴𝒑 = 𝒃 (equation (7.19)), solve for 𝒑∗ in

𝐴𝒑∗ = 𝒃 − 𝐴𝒑0 (7.41)

with initial guess 𝒑∗,0 = 𝟎, where 𝒑∗ is defined through

𝒑 = 𝒑0 + 𝒑∗ (7.42a)

= 𝒑0 +
𝑁−1
∑
𝑖=0

𝛼𝑖𝒖𝑖. (7.42b)
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Note that if 𝒑0 = 𝟎, the expressions return to their original forms.
The updated expression of the coefficients 𝛼 that accommodates for

both 𝒑0 = 𝟎 and 𝒑0 ≠ 𝟎 can be derived in the same way as was done
for equation (7.35), and the end result is

𝛼𝑡 =
⟨𝒖𝑡, 𝒃 − 𝐴𝒑0⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

. (7.43)

This expression can be used in the final algorithm in its current form.
However, an alternative form can make the algorithm more compu-
tationally efficient. The rewriting-technique is one that reappears in
the derivations of the other components of the algorithm further on.
From equation (7.42b), the approximate solution at step 𝑡 is

𝒑𝑡 = 𝒑0 +
𝑡−1
∑
𝑖=0

𝛼𝑖𝒖𝑖 (7.44)

which makes

⟨𝒖𝑡, 𝐴𝒑𝑡⟩ = ⟨𝒖𝑡, 𝐴𝒑0⟩ +
𝑡−1
∑
𝑖=0

𝛼𝑖 ⟨𝒖𝑡, 𝐴𝒖𝑖⟩ (7.45a)

= ⟨𝒖𝑡, 𝐴𝒑0⟩ , (7.45b)

where the summation term disappears in the last line due to equa-
tion (7.28). Using this and equation (7.37), equation (7.43) can be rewrit-
ten as

𝛼𝑡 =
⟨𝒖𝑡, 𝒃 − 𝐴𝒑𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

(7.46a)

=
⟨𝒖𝑡, 𝒓𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

. (7.46b)

From equation (7.44),

𝒑𝑡+1 = 𝒑𝑡 + 𝛼𝑡𝒖𝑡. (7.47)

Inserting this into equation (7.37) gives

𝒓𝑡+1 = 𝒃 − 𝐴 (𝒑𝑡 + 𝛼𝑡𝒖𝑡) (7.48a)

= 𝒓𝑡 − 𝛼𝑡𝐴𝒖𝑡. (7.48b)
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Further modifications

One last step remains before the algorithm can be presented in its
simplest and most efficient form. This is to modify the expressions in
equations (7.39) and (7.46b) further. To do this, two statements need to
first be proven by the method of induction [49], a method that was
also used in section 3.2.2. These two statements can then be combined
to produce a third useful statement at the end.

The first statement that needs to be proven is

⟨𝒓𝑡+1, 𝒖𝑖⟩ = 0 for 𝑖 ≤ 𝑡. (7.49)

That is, the residual obtained in the conjugate gradient method is
orthogonal to all previous step directions. With equations (7.46b)
and (7.48b), this equation can be written into an alternative form that
can aid in the upcoming proof,

⟨𝒓𝑡+1, 𝒖𝑖⟩ = ⟨𝒓𝑡, 𝒖𝑖⟩ − 𝛼𝑡 ⟨𝐴𝒖𝑡, 𝒖𝑖⟩ (7.50a)

= ⟨𝒓𝑡, 𝒖𝑖⟩ −
⟨𝒓𝑡, 𝒖𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

⟨𝒖𝑡, 𝒖𝑖⟩𝐴 . (7.50b)

In the first step of the proof, look at the case 𝑡 = 0. This is satisfied
because

⟨𝒓1, 𝒖0⟩ = ⟨𝒓0, 𝒖0⟩ −
⟨𝒓0, 𝒖0⟩
⟨𝒖0, 𝒖0⟩𝐴

⟨𝒖0, 𝒖0⟩𝐴 = 0. (7.51)

In the second step of the proof, given the assumption that

⟨𝒓𝑡, 𝒖𝑖⟩ = 0 for 𝑖 ≤ 𝑡 − 1 (7.52)

is true, one must check that equation (7.49) holds. The condition for
equation (7.49), 𝑖 ≤ 𝑡, can be split into 𝑖 = 𝑡 and 𝑖 < 𝑡. When 𝑖 = 𝑡,
equation (7.50b) gives

⟨𝒓𝑡+1, 𝒖𝑡⟩ = ⟨𝒓𝑡, 𝒖𝑡⟩ −
⟨𝒓𝑡, 𝒖𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

⟨𝒖𝑡, 𝒖𝑡⟩𝐴 = 0. (7.53)

When 𝑖 < 𝑡, the first term of equation (7.50b), ⟨𝒓𝑡, 𝒖𝑖⟩ is zero due to the
assumption in equation (7.52). The second term of equation (7.50b)
contains ⟨𝒖𝑡, 𝒖𝑖⟩𝐴 which is zero for 𝑖 < 𝑡 due to equation (7.28). This
concludes the proof of equation (7.49).
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Equation (7.49) can now be used to rewrite equation (7.46b). Inserting
equation (7.39) into equation (7.46b),

𝛼𝑡 =
⟨𝒖𝑡, 𝒓𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

(7.54a)

=
⟨𝒓𝑡 − ∑𝑡−1

𝑖=0
⟨𝒖𝑖,𝒓𝑡⟩𝐴
⟨𝒖𝑖,𝒖𝑖⟩𝐴

𝒖𝑖, 𝒓𝑡⟩

⟨𝒖𝑡, 𝒖𝑡⟩𝐴
(7.54b)

=
⟨𝒓𝑡, 𝒓𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

−
∑𝑡−1

𝑖=0
⟨𝒖𝑖,𝒓𝑡⟩𝐴
⟨𝒖𝑖,𝒖𝑖⟩𝐴

⟨𝒖𝑖, 𝒓𝑡⟩

⟨𝒖𝑡, 𝒖𝑡⟩𝐴
. (7.54c)

The last term here is zero due to equation (7.49), which leaves

𝛼𝑡 =
⟨𝒓𝑡, 𝒓𝑡⟩
⟨𝒖𝑡, 𝒖𝑡⟩𝐴

. (7.55)

This is the form that will be used in the final algorithm.
In the next step, the method of proof by induction will be used once

more to prove another statement that is

span {𝒓0, 𝒓1, … , 𝒓𝑡} = span {𝒖0, 𝒖1, … , 𝒖𝑡} . (7.56)

The first step in proving that the linear spans of these two sets are the
same is to start with the sets containing only the first vectors {𝒓0} and
{𝒖0}. From equation (7.37) and equation (7.40) one can see that 𝒓0 = 𝒖0,
which completes step one of the proof. In step two, equation (7.56)
where the index of the vectors in the sets goes up to 𝑡 must be shown
to hold given the assumption that it holds when the index goes up to
𝑡 − 1, i.e. given that

span {𝒓0, 𝒓1, … , 𝒓𝑡−1} = span {𝒖0, 𝒖1, … , 𝒖𝑡−1} . (7.57)

Due to equation (7.39) relating 𝒖 to 𝒓, the right-hand side of equa-
tion (7.56) is

span {𝒖0, 𝒖1, … , 𝒖𝑡−1, 𝒖𝑡} = span {𝒖0, 𝒖1, … , 𝒖𝑡−1, 𝒓𝑡} . (7.58)

Inserting equation (7.57) into the right-hand side of this returns equa-
tion (7.56), thus completing step two. The two steps combined prove
the validity of equation (7.56) by induction.
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To summarize, two statements have been proven using the method
of induction. The first statement in equation (7.49) means 𝒓𝑡+1 is
orthogonal to all 𝒖𝑖 for 𝑖 ≤ 𝑡. The second statement in equation (7.56)
means all vectors that are orthogonal to all 𝒖𝑖 for 𝑖 ≤ 𝑡, also have to be
orthogonal to all 𝒓𝑖 for 𝑖 ≤ 𝑡. The combination of these two statements
means that 𝒓𝑡+1 is orthogonal to all 𝒓𝑖 for 𝑖 ≤ 𝑡. This results in a third
statement

⟨𝒓𝑖, 𝒓𝑗⟩ = 0 for all 𝑖 ≠ 𝑗, (7.59)

namely that the 𝒓 vectors in the conjugate gradient method are mutu-
ally orthogonal. Equation (7.59) can be used to rewrite equation (7.39).

Due to the symmetry of 𝐴, equation (7.39) can also be written as

𝒖𝑡+1 = 𝒓𝑡+1 −
𝑡
∑
𝑖=0

⟨𝐴𝒖𝑖, 𝒓𝑡+1⟩
⟨𝒖𝑖, 𝐴𝒖𝑖⟩

𝒖𝑖. (7.60)

From equation (7.48b),

⟨𝐴𝒖𝑖, 𝒓𝑡+1⟩ = ⟨
𝒓𝑖 − 𝒓𝑖+1

𝛼𝑖
, 𝒓𝑡+1⟩ (7.61)

which from equation (7.59) is zero for all 𝑖 ≤ 𝑡 − 1. With this, only the
last term in the sum in equation (7.60) remains, leaving

𝒖𝑡+1 = 𝒓𝑡+1 −
⟨𝐴𝒖𝑡, 𝒓𝑡+1⟩
⟨𝒖𝑡, 𝐴𝒖𝑡⟩

𝒖𝑡. (7.62)

The numerator in the second term of equation (7.62) can be rewritten
as

⟨𝐴𝒖𝑡, 𝒓𝑡+1⟩ = ⟨𝒓𝑡+1, 𝐴𝒖𝑡⟩ (7.63a)

= 𝒓𝖳𝑡+1𝐴𝒖𝑡 (7.63b)

= 𝒓𝖳𝑡+1
𝒓𝑡 − 𝒓𝑡+1

𝛼𝑡
(7.63c)

= −
𝒓𝖳𝑡+1𝒓𝑡+1

𝛼𝑡
, (7.63d)

where the symmetry of 𝐴was used in equation (7.63a), equation (7.48b)
was used in equation (7.63c) and equation (7.59) was used in equa-
tion (7.63d). The denominator in the second term of equation (7.62)
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can be rewritten as

⟨𝒖𝑡, 𝐴𝒖𝑡⟩ = (𝒓𝑡 −
⟨𝐴𝒖𝑡−1, 𝒓𝑡⟩
⟨𝒖𝑡−1, 𝐴𝒖𝑡−1⟩

𝒖𝑡−1)
𝖳
𝐴𝒖𝑡 (7.64a)

=
𝒓𝖳𝑡 (𝒓𝑡 − 𝒓𝑡+1)

𝛼𝑡
−

⟨𝐴𝒖𝑡−1, 𝒓𝑡⟩
⟨𝒖𝑡−1, 𝐴𝒖𝑡−1⟩

𝒖𝖳𝑡−1𝐴𝒖𝑡 (7.64b)

=
𝒓𝖳𝑡 𝒓𝑡
𝛼𝑡

, (7.64c)

where equation (7.62) was used in equation (7.64a), equation (7.48b)
was used in the first term in equation (7.64b). The second term of equa-
tion (7.64b) is zero due to equation (7.28) and the first term reduces to
equation (7.64c) with equation (7.59). Finally, inserting equations (7.63d)
and (7.64c) into equation (7.62) gives

𝒖𝑡+1 = 𝒓𝑡+1 +
𝒓𝖳𝑡+1𝒓𝑡+1
𝒓𝖳𝑡 𝒓𝑡

𝒖𝑡. (7.65)

The advantage of equation (7.65) is that it only has dot-products be-
tween vectors, an 𝒪(𝑁 ) operation, which is considerably faster than
matrix multiplications, an 𝒪 (𝑁 2) operation.

The algorithm

Putting together all of the derived equations, equations (7.38), (7.40),
(7.47), (7.48b), (7.55) and (7.65), an iterative algorithm for the conjugate
gradient method can be constructed as in algorithm 1.
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Algorithm 1 An algorithm for the conjugate gradient method

Input 𝒑0, 𝒃, 𝐴 and tolerance
𝒖0 = 𝒃 − 𝐴𝒑0
𝒓0 = 𝒖0
𝑡 = 0
while (|𝒓𝑡| > tolerance) do

𝛼𝑡 =
𝒓𝖳𝑡 𝒓𝑡
𝒖𝖳𝑡 𝐴𝒖𝑡𝒑𝑡+1 = 𝒑𝑡 + 𝛼𝑡𝒖𝑡

𝒓𝑡+1 = 𝒓𝑡 − 𝛼𝑡𝐴𝒖𝑡
𝒖𝑡+1 = 𝒓𝑡+1 +

𝒓𝖳𝑡+1𝒓𝑡+1
𝒓𝖳𝑡 𝒓𝑡

𝒖𝑡
𝑡 = 𝑡 + 1

end while
return 𝒑𝑡+1

7.3 Propagating forward in time

The local pressures at the nodes of the network found using the pro-
cedure described in section 7.2 are in the next step used to find the
local volumetric flow rate 𝑞 through the links. Additionally, the global
pressure |𝛥𝑃| must be added to the node pressures according to equa-
tion (7.7). The expression for 𝑞 in equation (3.42) is then

𝑞 = {
−𝑚 (𝑝up − 𝑝down − |𝛥𝑃| + 𝑝tot𝑐 ) |𝛥𝑃|-links,
−𝑚 (𝑝up − 𝑝down + 𝑝tot𝑐 ) others.

(7.66)

where the |𝛥𝑃|-links refer to those links that are below the bottom
nodes or equivalently above the top nodes. Furthermore, 𝑚 is the
link mobility in equation (7.5) and 𝑝tot𝑐 is the total capillary pressure in
equation (7.4). As in section 7.2.1, the expression for 𝑞 is in the direction
of the total flow𝑄which is referred to as the upward direction. For each
link, the pressure at the node that lies above the link in the direction of
the total flow 𝑄 is 𝑝up, and the node that lies in the opposite direction
is 𝑝down.
For the time evolution of the system from the current time step

to the next that is 𝛥𝑡 seconds away, a suitable time interval 𝛥𝑡 must
be identified. The time interval 𝛥𝑡 can be chosen based on the 𝑞
calculated from equation (7.66), such that even the fastest movements
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are accounted for. In the network algorithm, small amounts of fluids
from the injecting links are collected into the nodes at every time step
and are distributed further into the links with outgoing flow. For this
purpose, it is essential that the total length traveled by the fluids is well
below the length of a single link. In the networks in papers I–III, 𝛥𝑡 at
each time step is chosen such that any meniscus or interface inside any
link does not move more than 10% of the link length 𝑙. The average
speed in each link is the quotient of 𝑞 in that link and the average
cross-sectional area 𝑎 of that link. The minimum time it takes to move
a distance 0.1𝑙 in any link is then chosen as the universal 𝛥𝑡 for that
time step, i.e.

𝛥𝑡 = (
0.1𝑙
𝑞/𝑎

)
min

. (7.67)

The essence of the algorithm is to record the position of all the
interfaces in the network and move them according to 𝑞 and 𝛥𝑡 at each
time step following a set of rules. Every link injects into and receives
from its neighboring nodes depending on the sign of 𝑞 in that link.
The nodes only act as a collecting and distributing medium rather than
a physical pore space. If 𝑞 > 0 the flow is upwards and the link injects
into the node that is above it in the direction of the total 𝑄 and receives
from the node that is in the opposite direction. If 𝑞 < 0 the flow is
downwards and the link injects downwards and receives from above.
The algorithm is such that the links first inject and then receive fluids,
in that order.

In the beginning, the interfaces in every link are moved by a length
𝑞𝛥𝑡/𝑎, which means the positions 𝑥 of the interfaces are updated to

𝑥 +
𝑞𝛥𝑡
𝑎

. (7.68)

When interface positions exceed the length of the link in either direc-
tion, > 𝑙 or < 0, the volume (length times the average area 𝑎) of fluids
that have moved outside of the link is stored in the receiving nodes.
The excess volume of the wetting (w) fluid 𝑉w and the non-wetting
(nw) fluid 𝑉nw are calculated separately and stored in the receiving
nodes. The positions of the interfaces that end up outside the link are
deleted.
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After calculating 𝑉w and 𝑉nw for every node, these volumes get
distributed further into the links during the same time step. When
injecting, one option is to alternate between whether the w or nw
fluid is injected first at consecutive time steps. The injected amount
should naturally depend on the receiving rate, in other words, 𝑞 of
the receiving link. From the total amount 𝑞𝑗𝛥𝑡 that is injected into a
receiving link 𝑗 from an injecting node 𝑖, the amount of the w and the
nw fluids should respectively be

(𝑞𝑗𝛥𝑡)
𝑉w,𝑖

𝑉w,𝑖 + 𝑉nw,𝑖
and (𝑞𝑗𝛥𝑡)

𝑉nw,𝑖
𝑉w,𝑖 + 𝑉nw,𝑖

. (7.69)

Volume is conserved with this method of distribution since the volume
that comes into a node at a time step equals the volume that goes out
from that node in the same time step per equation (7.1).
One last task remains before moving on to the next time step. To

create a more realistic scenario, the interfaces that lie closer to each
other than a preset tolerance are merged. Thereafter, if there is a
maximum limit for the number of interfaces in each link, the closest
lying interfaces are merged until the desired maximum number is
achieved. In the models in papers I–III, the merging algorithm aims
to preserve the center of mass except when handling interfaces at the
two ends of the link. The idea is illustrated in figure 7.2. The dashed
lines are the original position of the interfaces while the solid lines
are after the merging algorithms have been performed. In both cases,
the darker-colored fluid, which can be either nw or w, is in two pieces
with widths 𝛥𝑥1 and 𝛥𝑥2. The separation of these two fluid pieces,
measured by the distance d𝑙 between the interfaces numbered 2 and
3, is shorter than a tolerance thus they need to be merged. In case 2,
one of the darker fluid pieces is too close to the end of the link, while
this is not the case in case 1, which is the reason they are processed
differently. When merging in case 1, interfaces 2 and 3 are deleted.
Thereafter, preserving the center of mass, interfaces 1 and 4 are moved
distances

𝛥𝑥1 d𝑙
𝛥𝑥1 + 𝛥𝑥2

and
𝛥𝑥2 d𝑙

𝛥𝑥1 + 𝛥𝑥2
(7.70)

respectively, ending up at positions 5 and 6 in figure 7.2. In case 2,
interfaces 2 and 3 are deleted and interface 4 is moved a distance d𝑙 to
position 5.
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d𝑙 𝛥𝑥2𝛥𝑥1
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Case 1

Case 2

3 4

( 𝛥𝑥1 d𝑙

𝛥𝑥1+𝛥𝑥2
) ( 𝛥𝑥2 d𝑙

𝛥𝑥1+𝛥𝑥2
)

d𝑙 𝛥𝑥2𝛥𝑥1

5

41 2 3

d𝑙

Figure 7.2: The rules for merging of the interfaces are illustrated
through two examples. The dashed lines are the original position
of the interfaces while the solid lines are after the merging.
Interfaces are numbered. The darker-colored fluid is in two
pieces with widths 𝛥𝑥1 and 𝛥𝑥2 that are separated a distance d𝑙 .
In case 1, the merging preserves the center of mass. In case 2, due
to one of the fluid pieces being close to the end of the link, the
merging is done by moving the other fluid piece only.
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This concludes the procedures performed at every time step. After
measuring and saving the quantities of interest, one can move on to
the next time step by repeating the calculation of the pressure field
(section 7.2) and propagate forward in time (section 7.3).
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8Research highlights

Most of the work I have done for my doctoral degree during the
past few years is contained in the publications. In this chapter, I will
present selected highlights from these papers without going into detail.
This is because the papers are included in their entirety at the end of
this thesis and the relevant explanations have also been given in the
earlier chapters of this thesis.

A central topic in several of the papers is the expression relating the
global applied pressure 𝛥𝑃 to the total volumetric flow rate,

𝑄 ∝ (|𝛥𝑃| − 𝑃𝑡)𝛽 (8.1)

where 𝛽 may vary depending on the situation as discussed in chap-
ter 4. The factors that can contribute to this expression becoming
non-linear with 𝛽 > 1 include having multiple immiscible fluids and
having disorders in the porous media. In papers I and II, the varying
wettability of the pores was investigated as a source of disorder that
causes non-linearity.

Porousmedia in nature can havewettability that alters along its body.
Furthermore, the range of variation in wettability can be of different
magnitude. The wetting condition of a porous medium has a major
influence on the location, the flow, and the distribution of fluids [103].
Towards the goal of studying non-uniform wettability’s influence on
the rheology of two-phase immiscible flow, the work in paper I isolates
the effect in terms of the mean wetting angle and the spread of the
wetting angles of the pore spaces. The effect of varying the saturation
of the fluids is also considered. An example of the results of paper I
is shown in figure 8.1 where the wetting angle distribution’s mean is
̄𝜃 = 60∘ and the standard deviation is 𝛿𝜃 = 30∘, and saturation of one

of the two fluids is 𝑆𝐴 = 0.5. At high |𝛥𝑃|, figure 8.1 shows a linear
dependence of 𝑄 on (|𝛥𝑃| − 𝑃𝑡) with 𝛽 = 1. Out of this high-pressure
limit, non-linearity occurs with 𝛽 > 1. With variation in the parameters
̄𝜃, 𝛿𝜃 and 𝑆𝐴, 𝛽 at the high-pressure regime stayed around 1 while out

of this limit, the results demonstrate a more complicated behavior. The
values of 𝛽 at the lower pressure limit at different combinations of
̄𝜃, 𝛿𝜃 and 𝑆𝐴 are shown in figure 8.2. It can be seen here that 𝛽 is a
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quantity that depends on the wettability distribution condition and the
saturation and can take on values anywhere in the interval [1.0, 1.8].
The values of 𝛽 in figure 8.2 are highest for saturations approaching 0.5.
Plotting 𝛽 at 𝑆𝐴 = 0.5 against ̄𝜃 and 𝛿𝜃 in figure 8.3, one can see that 𝛽
is generally higher when the difference in wettability of the two fluids
are larger and when this difference is present for a larger fraction of
the porous network. The findings from paper I all together show that
the immiscible two-phase flow in porous media is affected not only by
the mean wetting angle but also by the spread of the wetting angles.

linear fit

β = 1

β >
1

Figure 8.1: Taken from paper I. An example of the results that
relate the total volumetric flow rate 𝑄 to the difference between
the global pressure difference 𝛥𝑃 and the threshold pressure 𝑃𝑡.
The wetting angle distribution’s mean is ̄𝜃 = 60∘, and standard
deviation is 𝛿𝜃 = 30∘. The saturation of one of the two fluids is
𝑆𝐴 = 0.5. Here, 𝛥𝑃 = |𝛥𝑃|. 𝛽 is the slope.

The effect of wettability is studied in a different way in paper II than
in paper I where the wetting angles were assigned directly to the pores.
A large class of porous media consists of solid grains, and the work
in paper II investigates immiscible two-phase flow in porous media
consisting of random mixtures of grains. These grains are assigned
one of the two types of wettability based on a probability 𝑝+. The
wetting angle in a pore between two grains of the same type is the
opposite of that between two grains of the other type, and between
two opposite types of grains the wettability averages to neutral. With
this design, some of the systems developed a non-zero 𝑃𝑡 as in paper I,
and the results from these systems are shown in figure 8.4a. As in
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figure 8.1 from paper I, there are two regimes in figure 8.4a. There is a
linear regime with 𝛽 = 1 at high pressures and a non-linear regime at
lower pressures where 𝛽 is around 2.2-2.3 for the cases tested. For a
range of 𝑝+, the system had 𝑃𝑡 = 0 and the results from these systems
are shown in figure 8.4b. Unlike before, the results here show three
regimes instead of two. With decreasing |𝛥𝑃|, 𝛽 goes from being 1 to a
value around 2.56 then to 1 again. The lower linear regime is due to
the unique zero-resistance paths in this model.
The studies in papers I and II combined show that the wettability

distribution of the porous media is an important factor that has a
significant influence on immiscible two-phase flow in porous media. In
order to fully characterize the flow it is in general insufficient to assume
a uniform wettability. Future work may study spatial correlation in the
wettability distributions, for instancewith certain regions with uniform
wettability surrounded by the rest with non-uniform wettability.

Paper III addresses a different topic with regards to immiscible two-
phase flow in porous media, namely the local statistics. Specifically,
the main goal of this paper is to test the condition stating that the
configurational probability densities for the system and the reservoir
are independent. This condition is needed in creating a statistical
mechanical description of porous media that can further be used to
derive equations reminiscent of thermodynamics, see chapter 6. If the
said condition is met, the distributions of the averaged local quantities
in the system should be independent of the reservoir size 𝐿𝑥. The
local quantities classifying the system are the system saturation 𝑆𝑤,𝑝,
whose distributions are shown in figure 8.5, and the system volumetric
flow rate per unit system length 𝑄𝑝/𝑙𝑝, whose distributions are shown
in figure 8.6. The results combine to show that the independence
condition seems to be valid for large enough reservoir sizes 𝐿𝑥.
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Figure 8.2: Taken from paper I. Figures showing the dependence
of 𝛽 in the low-pressure limit on the saturation of one of the
fluids 𝑆𝐴 when the distributions of the wetting angles 𝜌(𝜃) is a
uniform distribution with 𝜃 ∈ [0∘, 180∘] (uppermost) and normal
distributions with means ̄𝜃 ∈ {0∘, 30∘, 60∘, 90∘} and standard
deviations 𝛿𝜃 ∈ {0∘, 30∘, 60∘}.
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Figure 8.3: Taken from paper I. The values of the exponent 𝛽
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the standard deviation 𝛿𝜃 of the wetting angle distribution.
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Figure 8.5: Taken from paper III. Normalized histograms of the
system wetting fluid saturation 𝑆𝑤,𝑝. The reservoir size 𝐿𝑥 is close
to the system size in (a) and is much larger in (b).
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Figure 8.6: Taken from paper III. Normalized histograms of the
system volumetric flow rate per link 𝑄𝑝/𝑙𝑝. The reservoir size 𝐿𝑥
is close to the system size in (a) and is much larger in (b).
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9Conclusions

The main goal of this work has been to contribute to the understand-
ing of immiscible two-phase flow in rigid porous media. An emphasis
has been placed on steady-state non-linear dynamics in terms of the
volumetric flow rate as a function of the global pressure difference.
Additionally, local statistics of porous media were studied. There are
many equations, theories and models that were used in the papers with-
out having the luxury of space to explain their origin. The contents
in the chapters of this thesis rectify this by providing more thorough
derivations and explanations where suitable.
The scale of the interfaces was addressed in chapter 2. There, the

equation for the capillary pressure was derived by balancing the forces
that act on different interfaces as well as on different portions of the in-
terfaces. The resulting equations are relevant for all of the papers I–IV.

Various forms of the equation for volumetric flow rate in a capillary
tube were used in papers I–IV. They have been derived and explained
in chapter 3. Firstly, Poiseuille flow equation for the volumetric flow
rate of single-phase flow was derived through manipulations of the
Navier-Stokes equation together with the mass conservation equa-
tion. Building on this knowledge, the study was extended to the case
with multiple incompressible and immiscible fluid phases flowing in a
cylindrical tube. The method of proof by induction was used to derive
an expression for the volumetric flow rate that holds for an arbitrary
number of interfaces, number of fluid phases in the tube, interface cur-
vatures, and types of fluids. Several smaller topics were subsequently
addressed, and they were the role of interface curvature in the form
of capillary pressure, ideas behind finding time-averaged volumetric
flow rate, effects of compressibility, as well as, some ideas for capillary
bundle models.

The content in chapter 4 moved up in scale to larger porous media
made up of many connected pore spaces. The focus of this chapter
was the relation between the global pressure difference across the
porous medium and the total volumetric flow rate at steady state, a
topic relevant for papers I and II. A description of the commonly used
Darcy’s law was given for both single and two-phase flows. This was
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followed by the explanations of the cases where the flow deviates from
Darcy’s law.
The model in paper II had a percolation-type design that has the

potential to exhibit critical behavior related to the flow in porous media.
The inspiration behind the model and the design of the model was
described in chapter 5. This was followed by the explanation of the
hypothesized criticality in the model, as well as, the arguments for and
against the existence of the criticality.
Paper III was about testing the porous systems’ reservoir indepen-

dence, a condition that is needed in creating a statistical mechanical
description of porous media. Explanation regarding the concerning
statistical mechanical theory and the role of the tested condition in
that theory were reviewed briefly in chapter 6.
Most of the work in this thesis was done using a dynamic pore

network model. In papers I–III, different properties that were suitable
for and demanded by each study were implemented into the model.
The models in these papers all had a common basic structure and flow-
transportation rules. These were covered in detail in chapter 7. The
algorithm was explained chronologically, starting with the initializa-
tion step followed by the procedures performed at every time step:
calculating the pressure field with the conjugate gradient method and
using it to find the flow rates, and then transporting the fluids through
the network with the calculated flow rates based on a certain set of
rules. Both the derivation and the algorithm of the conjugate gradient
method as well as the transportation rules were explained thoroughly
in this chapter.

The flow patterns in the dynamic pore networkmodel are potentially
influenced by how the fluids are distributed from the nodes. In this
thesis, the wetting and the non-wetting fluids are distributed approxi-
mately the same from the nodes into the links. This can be reasonable
for porous media with rigorous mixing in the nodes. However, this is
not necessarily always the case. In future works, it could be of interest
to study other rules for fluid distribution from nodes. For example, the
distribution process could take into consideration which links would
prefer which type of fluid. The pore sizes and the wettabilities are
among the factors that would influence this. Another possibility is to
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take into consideration the momentum directions when distributing
from the nodes.

All in all, the chapters in this thesis were aimed to complement the
contents of papers I–IV. In addition to presenting a wider background
and motivation for the research field in chapter 1, chapters 2–7 provide
derivations and explanations for the equations, methods, theories and
models used in the papers. Furthermore, some highlights from the
papers are summarized in chapter 8.
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Abstract
Immiscible two-phase flow in porous media with mixed wet conditions was examined 
using a capillary fiber bundle model, which is analytically solvable, and a dynamic pore 
network model. The mixed wettability was implemented in the models by allowing each 
tube or link to have a different wetting angle chosen randomly from a given distribution. 
Both models showed that mixed wettability can have significant influence on the rheol-
ogy in terms of the dependence of the global volumetric flow rate on the global pressure 
drop. In the capillary fiber bundle model, for small pressure drops when only a small frac-
tion of the tubes were open, it was found that the volumetric flow rate depended on the 
excess pressure drop as a power law with an exponent equal to 3/2 or 2 depending on the 
minimum pressure drop necessary for flow. When all the tubes were open due to a high 
pressure drop, the volumetric flow rate depended linearly on the pressure drop, independ-
ent of the wettability. In the transition region in between where most of the tubes opened, 
the volumetric flow depended more sensitively on the wetting angle distribution function 
and was in general not a simple power law. The dynamic pore network model results also 
showed a linear dependence of the flow rate on the pressure drop when the pressure drop 
is large. However, out of this limit the dynamic pore network model demonstrated a more 
complicated behavior that depended on the mixed wettability condition and the saturation. 
In particular, the exponent relating volumetric flow rate to the excess pressure drop could 
take on values anywhere between 1.0 and 1.8. The values of the exponent were highest for 
saturations approaching 0.5, also, the exponent generally increased when the difference in 
wettability of the two fluids were larger and when this difference was present for a larger 
fraction of the porous network.
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1  Introduction

The study of rheology of two-phase flow in porous media is pivotal for many disciplines, 
and the wettability conditions of the system is an important factor that directly affects the 
rheology. Examples for relevant disciplines include drug delivery in biology (Vafai 2010), 
studies of human skin behavior relevant for cosmetic and medical sectors  (Elkhyat et al. 
2001), creation of self-cleaning and fluid repelling materials relevant for textile indus-
try (Li et al. 2017) and oil recovery (Kovscek et al. 1993) and carbon dioxide sequestra-
tion (Krevor et al. 2015) in geophysics (Blunt 2017; Marle 1981). All of these examples, 
dealing with different kinds of porous media, will benefit from a better understanding of 
two-phase flow under different wetting conditions. Two-phase flow means simultaneous 
flow of two fluids in the same space. When an immiscible fluid is injected into a porous 
medium filled with another fluid, different transient flow mechanisms occur depending on 
the flow conditions, such as capillary fingering  (Lenormand and Zarcone 1989), viscous 
fingering (Toussaint et al. 2005; Måløy et al. 1985; Løvoll et al. 2004) and stable displace-
ment (Frette et al. 1997; Méheust et al. 2002). After the transient flow mechanisms have 
surpassed, steady state sets in, which is the regime in which the rheology of two-phase flow 
under different wetting conditions is examined in this work.

Darcy’s law is widely used to describe the flow of fluids through a porous medium 
which states that the volume of fluid flowing per unit area per unit time depends linearly 
on the applied pressure drop across a representative elementary volume in that porous 
medium  (Blunt 2017). That is indeed the case for large applied pressures; however, the 
linearity gets modified into a power law at the low pressure limit. For the flow to start, 
the applied pressure has to overcome the disordered capillary barriers (Sinha and Hansen 
2012). When the applied pressure is so small that it exceeds the capillary barriers in only 
parts of the porous medium, the capillary forces will be comparable to the viscous forces. 
In this case, the volumetric flow rate scales nonlinearly with the pressure drop due to the 
fact that increasing the pressure drop by a small amount creates new connecting paths in 
addition to increase the flow in the previously connected paths. Earlier works (Roy et al. 
2019; Sinha et al. 2021; Tallakstad et al. 2009a; Rassi et al. 2011; Tallakstad et al. 2009b; 
Aursjø et al. 2014; Gao et al. 2020a; Zhang et al. 2021) have provided experimental, theo-
retical and numerical evidences for this phenomena in porous media under uniform wetting 
conditions. Instead of assuming uniform wetting conditions, we here investigate the same 
phenomena using non-uniform wetting conditions, theoretically and numerically.

The wetting condition of a porous medium is a major factor controlling the location, 
flow and distribution of fluids (Anderson 1986), and is a result of the interplay between 
the attractive forces on the surface of the adjoining materials. When two immiscible 
fluids flow in a porous medium, the relative values of the surface tensions between each 
pair of the three phases, namely the fluids and the solid, determine the wetting angle 
and hence the equilibrium configuration of the fluids. In nature, the wettability of a 
porous medium tends to alter along the system and results in a range of different wet-
ting angles. For instance, the internal surface of reservoir rocks is composed of many 
minerals with different surface chemistry and absorption properties, which can cause 
wettability variations  (Anderson 1986). There are different types of non-uniform wet-
ting conditions depending on the degree of non-uniformity as well as the geometrical 
and topological distribution of regions with different wettability. The examples include 
fractional wettability where grains with same type of wettability are packed together in 
different proportions or mixed wettability where there are continuous paths with one 
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type of wettability (Anderson 1986; Salathiel 1973). It is often useful to make these dis-
tinctions because the physical processes which create non-uniform wetting conditions 
can result in different forms of connectedness. In this work, we want to study how the 
deviation from uniform wetting conditions affect the rheology. Hence, it is desirable to 
isolate the effect of non-uniform wettability in terms of the mean wetting angle and the 
spread of the wetting angles. To this end, we use mathematical models with wetting 
angles determined from various distributions. We use the term mixed wet to denote the 
resulting non-uniform wetting conditions, but note that this term can also imply geo-
metrical effects mentioned above which are not considered here. We leave for future 
work the problem of how other types of non-uniform wetting conditions can affect the 
rheology further. A mechanism for a correlated wettability distribution for pore-network 
modeling, where the wettability depends on the connected oil paths, was demonstrated 
previously by some of the authors of this manuscript (Flovik et al. 2015) and may be 
adopted in future.

Several works in the past have investigated multiphase flow in mixed wet porous media, 
and discovered clear discrepancies in the fluid behavior in uniform wet systems and in 
mixed wet systems. Experimental studies have found that the main determinant of the fill-
ing sequence in a porous medium is the wettability rather than the pore size  (Scanziani 
et al. 2020; Gao et al. 2020b). There were also findings from experimental studies indicat-
ing that the processes where it is necessary to allow the flow of both fluids favor mixed 
wetting conditions  (AlRatrout et  al. 2018; Alhammadi et  al. 2017), such as oil recovery 
or fluid transport through membranes or in biological tissue. These experimental findings 
show the importance of understanding the effect of wettability even further, which is easier 
to do through analytical and numerical studies where large range of wetting conditions can 
be examined in short time. In the papers by Sinha et al. (2011) and Flovik et al. (2015), 
pore network models similar to the one used in the present article were used to investigate 
the effect of wettability alteration due to changes in salinity in oil-brine mixtures. The wet-
tability alterations were done by changing between either complete wetting and complete 
non-wetting conditions in the first article (Sinha et al. 2011), and by changing the wetting 
angles continuously between two limits depending on the cumulative flow of the wetting 
phase in the second article (Flovik et al. 2015). The results from both show that local alter-
ations of the wettability introduce qualitative changes in the flow patterns by destabilizing 
the trapped clusters. While such past numerical studies provide important insight into the 
behaviors of mixed wet porous media and support the usefulness of mixed wettability, they 
consider limited cases of the wetting angle conditions and do not consider the effect of the 
applied pressure on the flow. In the present work, we conduct a systematic analysis of the 
effect of mixed wetting conditions, both in terms of a wide range of different mean wetting 
angles as well as different spread of the wetting angles. In doing so we manage to perform 
a direct study of the relation between the total volumetric flow rate and the pressure drop 
across the system as influenced by the mixed wettability.

Stated more in detail, the investigations in this work have been carried out by, firstly, 
calculating the total volumetric flow rate in a model consisting of a bundle of capillary 
tubes with mixed wet properties (Roy et al. 2019; Sinha et al. 2013). Thereafter, case stud-
ies with various specific wetting angle distribution have been performed through numerical 
calculations which confirmed the analytical results in addition to providing a holistic pic-
ture. Secondly, mixed wetting conditions have been implemented into a dynamic network 
model (Sinha et al. 2021) where the motion of the fluid interfaces are followed through the 
porous medium. The results confirm that the volumetric flow rate Q indeed depends on the 
applied pressure drop �P as
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where Pt is the minimum pressure drop necessary for flow. The exponent 𝛽 > 1 in the 
low pressure limit and � = 1 in the high pressure limit. More specifically in the low pres-
sure limit, the capillary fiber bundle model considering a simple system gives � = 2 and 
� = 3∕2 , while the dynamic pore network model considering a more sophisticated system 
gives values varying anywhere between � ∈ [1.0, 1.8] depending on the system wettability 
configuration.

The models and the wetting condition implementing methods, as well as previously 
existing relevant theories, are explained in Sect. 2. The theoretical and numerical results 
are presented and discussed in Sect. 3, and a conclusion summarizing the findings is given 
in Sect. 4.

2 � Methodology

2.1 � The Capillary Fiber Bundle Model Description

The first model that is used to investigate immiscible two phase flow in mixed wet porous 
media is a capillary fiber bundle (CFB) model (Roy et al. 2019; Sinha et al. 2013). This 
model consists of a bundle of parallel capillary tubes, disconnected from each other, each 
carrying the two immiscible fluids. A typical porous medium normally has a varying radius 
for the links in the system, which is a factor that contributes to the capillary pressure being 
position dependent. To emulate this effect, sinusoidal shaped tubes have been used in this 
model. A sketch of the model is shown in Fig. 1.

As the main goal of this work is to examine the effect of mixed wettability, each one of 
the tubes in the CFB model has been given a wetting angle � chosen randomly from a cer-
tain predefined distribution �(�) . This means that each tube has the same assigned wetting 
angle over its entire length. The flow is driven by applying a global pressure drop �P over 
the system. The total global volumetric flow rate Q of the bundle of tubes is then calculated 

(1)Q ∝
(|�P| − |Pt|

)�
,

Fig. 1   Capillary fiber bundle 
(CFB) model consists of a bundle 
of parallel sinusoidally shaped 
capillary tubes with period l. A 
global pressure drop �P drives 
the flow with volumetric flow 
rate qi in each tube i which 
combine to produces a total 
volumetric flow rate Q 
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by considering the contributions to the flow given by each tube. This calculation has been 
carried out both analytically and numerically.

2.2 � The Dynamic Pore Network Model Description

The second model that is used for the investigations in this work is a dynamic pore network 
(DPN) model, a complex numerical model which is not analytically solvable (Sinha et al. 
2021; Aker et al. 1998; Knudsen et al. 2002; Tørå et al. 2012; Gjennestad et al. 2018). A 
sketch of the network used in the model is given in Fig. 2 and a short description will be 
given here. In this two-dimensional (2D) simulation, a porous network is modeled through 
a combination of links oriented with the same angle ( 45◦ ) from the flow direction and 
nodes connecting those links. The movement of the two immiscible fluids are modeled 
through tracking of their interfaces at each instant in time. The fluids get distributed to 
the neighboring links when they reach a node at the end of the link in which they have 
been traveling. The nodes themselves retain no volume. Embracing the concept of varying 
radius of the typical porous media, similar to what has been done in the CFB model, the 
links in this model is made to be hourglass shaped as shown with a zoomed in sketch in 
Fig. 2.

The mixed wettability has been implemented into the DPN model by randomly choos-
ing a wetting angle � for each one of the links in the network from a certain predefined wet-
ting angle distribution �(�) . As in the case with the first model, the flow in the DPN model 
is driven by a pressure drop �P over the system. When using periodic boundary conditions, 
�P is defined across a period of the system. The total volumetric flow rate Q is constant 
over all the cross sections normal to the direction of the overall flow, as the one illustrated 
with a horizontal line in Fig. 2.

2.3 � Commonalities

There are several commonalities in the two models. The smallest computational unit, which 
will be denoted SCU for ease of reference, in the CFB model is a single tube and that in 
the DPN model is a single link. Even though each SCU in the two models has uniform wet-
tability, the entire system consisting of various such entities together describes a mixed wet 
porous media. In both models, the radius of each SCU i, with cylindrical symmetry around 
the center axis � has the form

Fig. 2   Two-dimensional dynamic pore network (DPN) model consists of hourglass-shaped links with same 
length l oriented with the same angle (45◦) from the flow direction. A global pressure drop �P drives the 
flow. The total volumetric flow rate Q is constant over all the cross sections normal to the direction of the 
overall flow. Each link i has a local flow rate qi , length l and a pressure drop �pi over it
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where r0,i is a constant and a is the amplitude of the periodic variation. In the DPN model, 
l in Eq. (2) is the length of the links, since the shape of the links covers only one period of 
oscillation, giving an hourglass form as shown in Fig. 2. In the CFB model, l in Eq. (2) is 
the wavelength of the shape of the tubes, as shown in Fig. 1.

The flow within SCUs are governed by the following equations. In SCU i, the capillary 
pressure pc,i(x) across an interface between the two immiscible fluids with wetting angle �i 
can be derived from the Young–Laplace equation to be (Blunt 2017)

where � is the surface tension. For each SCU with length l′ experiencing a pressure drop 
�p across its body, the fluid within it is forced to move due to the force exerted by the total 
effective pressure. Total effective pressure is the difference between �p and the total capil-
lary pressure 

∑
k pc(xk) due to all the interfaces with positions xk ∈ [0, l�] . Assuming that 

the radius does not deviate too much from its average value r̄i , the volumetric flow rate qi in 
SCU i is given by (Sinha et al. 2021; Washburn 1921)

where �i is the saturation weighted viscosity of the fluids given by

Here, sA,i = l�
A,i
∕l� and sB,i = l�

B,i
∕l� are saturations of the two fluids A and B with viscosities 

�A and �B and lengths l′
A,i

 and l′
B,i

 . In the DPN model, l′ is the same as l from Eq. (2). In the 
CFB model, l′ is the length of the whole tube. The capillary number Ca , which is the ratio 
of viscous to capillary forces, is related to qi through Ca = �Q∕(��) where Q is the sum of 
all qi through a cross sectional area α (Sinha et al. 2021).

Note that due to the incompressible nature of the fluids examined in this work, q given 
by Eq. (4) is the same for any position along a single SCU. Also note that all � in this work 
are defined through fluid A, as shown in Fig. 3, which means the wetting angles of fluid B 
are 180◦ − � . The fluid that makes the smallest angle with the solid wall is the wetting fluid 
in that region of the pore space and the other fluid is the non-wetting fluid.

(2)ri(x) =
r0,i

1 − a cos
(

2�x

l

) ,

(3)pc,i(x) =
2� cos �i

ri(x)
,

(4)qi = −
𝜋r̄4

i

8𝜇il
�

(
𝛥pi −

∑
k

pc,i(xk)

)

(5)�i = sA,i�A + sB,i�B.

Fig. 3   Wetting angles � in this work are defined through fluid A. The fluid that makes the smallest angle 
with the solid wall is the wetting fluid while the other one is the non-wetting fluid
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3 � Results

3.1 � The Capillary Fiber Bundle Model Results

The analysis of flow in a single tube is presented in Subsect. 3.1.1. The theory is extended 
to a bundle of tubes with non-uniform wettability in Subsect.  3.1.2. The results from 
numerically solving the equations derived in Subsect. 3.1.2 give a holistic picture of the 
system. They are presented in Subsect.  3.1.3 and agree with the theoretical calculations 
from Subsect. 3.1.2. A further explanation of the results is given in Subsect. 3.1.4.

3.1.1 � A Single Tube

In the paper by Sinha et al. (2013), they calculate the flow properties in a capillary tube 
with cos(�) = 1 . Here, for a single tube, we will follow their calculations while keeping � 
as a variable as it is needed for the rest of the work. The parameters r0 , � , l, � , a, l′ and �p , 
as given in Eqs. (2) to (5), are kept constant for all the tubes. All the tubes have the same 
length l� = L and global applied pressure �p = �P.

We start by considering a capillary tube with N bubbles. A “bubble” is one type of fluid 
restricted on two sides by the other fluid. Each bubble j has the center of mass position xj 
and a width �xj . From Eqs.  (2) to (5), we find that the volumetric flow rate through one 
tube is

where �xj = xj − x0 . Due to the incompressible nature of the fluids, the veloc-
ity of the bubbles is approximately constant along the axis of flow and equal to 
dx0∕ dt ≈ dxj∕ dt ≈ q∕(𝜋r̄2) . In addition, the effect of the variation in �xj and �xj can be 
assumed to be small. With this, Eq. (6) can be rewritten as

where

and

With algebraic manipulations, Eq. (7) can be rewritten as

where x = x0 + [arctan(�c∕�s) + �]l∕2� . Defining

(6)q = −
𝜋r̄4

8𝜇L

[
𝛥P +

N−1∑
j=0

cos 𝜃
4a𝜎

r0
sin

(
𝜋𝛥xj

l

)
sin

(
2𝜋

l
(x0 + 𝛿xj)

)]
,

(7)
dx0

dt
= −

r̄2

8𝜇L

[
𝛥P + cos 𝜃

(
𝛤s sin

(
2𝜋x0

l

)
+ 𝛤c cos

(
2𝜋x0

l

))]
,

(8)�s =

N−1∑
j=0

4a�

r0
sin

(
��xj

l

)
cos

(
2��xj

l

)

(9)�c =

N−1∑
j=0

4a�

r0
sin

(
��xj

l

)
sin

(
2��xj

l

)
.

(10)
dx

dt
= −

r̄2

8𝜇L

[
𝛥P − cos 𝜃

√
𝛤 2
s
+ 𝛤 2

c
sin

(
2𝜋x

l

)]
,
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with

write Eq. (10) as

We wish to calculate the average velocity of the bubbles as they travel from one end to the 
other end of a tube segment with length l using a time T,

T can be calculated by using the equation of motion in Eq. (13),

Inserting the result in Eq. (15) into Eq. (14) and using the relation dx∕ dt ≈ q∕(𝜋r̄2) gives 
the average volumetric flux equation

where � is the Heaviside step function. From Eq. (16), we see that on average, the direc-
tion of flow is opposite to the pressure drop, as expected. Additionally, we see that for a 
nonzero flow, �P needs to exceed a certain threshold � that is specific for the tube.

3.1.2 � A Bundle of Tubes

In the CFB model, the global volumetric flow rate Q of a bundle of tubes is the sum of 
the time-averaged individual volumetric flow rates ⟨q⟩ of all the tubes that carry flow. As 
remarked at the end of Subsect. 3.1.1, the tubes that carry flow are those that have a thresh-
old � that satisfies the requirement |𝛥P| > |𝛾| . We will define a quantity Pt which is the 
minimum possible � a tube can have. This means that the first active path across the entire 
system occurs once �P exceeds Pt . Let us also define �max as the maximum possible � a 
tube can have, for later use. The factors that determine � can be seen from Eq. (11). Among 
those, � is the only variable that varies from tube to tube, while the other quantities are set 
to be universal. Under a constant �P , what determines which tubes in the bundle will con-
duct flow, while others do not is therefore their � . Using Eq. (11) and that � ∈ [0◦, 180◦] , 
the requirement for flow to happen in a tube can be rewritten as

(11)� = k� cos �

(12)k� =

√
� 2
s
+ � 2

c
,

(13)
dx

dt
= −

r̄2

8𝜇L

[
𝛥P − 𝛾 sin

(
2𝜋x

l

)]
.

(14)
⟨
dx

dt

⟩
=

l

T
.

(15)

T = ∫
l

0

�
dx

dt

�−1

dx

= −
8𝜇L

𝛾 r̄2 ∫
l

0

1

𝛥P

𝛾
− sin

�
2𝜋x

l

� dx

= −
8𝜇Ll

r̄2

sgn(𝛥P)√
𝛥P2 − 𝛾2

.

(16)⟨q⟩ = −
𝜋r̄4

8𝜇L
sgn(𝛥P)𝛩(�𝛥P� − �𝛾�)√𝛥P2 − 𝛾2,
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with

Note that �+
Pt
= �−

Pt
 when ||Pt

|| = 0.
Since the flow requirement in Eq.  (17) indicates the range of � that give the system a 

nonzero flow, Q can be expressed as a function of the probability distribution �(�) of the wet-
ting angles through

Inserting Eq. (16) into Eq. (21) gives

Case studies with several different forms of �(�) will be done numerically in Subsect. 3.1.3. 
Here, we will solve Eq. (22) for a general �(�) and show that the exponent � in

is

Here, ||�max
|| is the maximum possible threshold pressure a tube can have.

Case 1:   |𝛥P| − ||Pt
|| ≫ ||𝛾max

||
Using that |�P| is large in this case, we can write

Inserting Eq. (25) into Eq. (22) and using that the distribution �(�) is normalized to 1, gives

(17)𝜃a < 𝜃 < 𝜃+
Pt

and 𝜃−
Pt
< 𝜃 < 𝜃b,

(18)�a = arccos

(
min

(
1,

|�P|
k�

))
,

(19)�b = arccos

(
max

(
−1,−

|�P|
k�

))
= 180◦ − �a,

(20)�±
Pt
= arccos

(
±
||Pt

||
k�

)
.

(21)Q = ∫
�+
Pt

�a

⟨q⟩�(�) d� + ∫
�b

�−
Pt

⟨q⟩�(�) d�.

(22)Q = −
𝜋r̄4sgn(𝛥P)

8𝜇L

�
∫

𝜃+
Pt

𝜃a

√
𝛥P2 − 𝛾2𝜌(𝜃) d𝜃 + ∫

𝜃b

𝜃−
Pt

√
𝛥P2 − 𝛾2𝜌(𝜃) d𝜃

�
.

(23)Q ∝ (|�P| − ||Pt
||)�

(24)𝛽 =

⎧⎪⎨⎪⎩

1, for �𝛥P� − ��Pt
�� ≫ ��𝛾max

�� (case 1),

2, for ��Pt
�� ≪ �𝛥P� − ��Pt

�� ≪ ��𝛾max
�� (case 2),

1.5, for �𝛥P� − ��Pt
�� ≪ ��Pt

�� (case 3).

(25)
√
�P2 − �2 ≈ ��P�.

(26)Q ≈ −
𝜋r̄4sgn(𝛥P)

8𝜇L
|𝛥P| ≈ −

𝜋r̄4sgn(𝛥P)

8𝜇L

(|𝛥P| − ||Pt
||
)
.
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In the last step, we have used that ||Pt
|| which is the minimum |�P| needed to achieve 

Q > 0 , is a much smaller number than |�P| . For the equations derived for all three cases in 
Eq. (24), we wish to express Q in terms of |�P| − ||Pt

|| for ease of comparison with Eq. (23). 
Comparing Eq. (26) with Eq. (23), one gets � = 1 for case 1.

Common for Case 2 and Case 3:
Equation  (24) states that the effective pressure obeys |𝛥P| − ||Pt

|| ≪ ||𝛾max
|| in case 2, 

while it obeys |𝛥P| − ||Pt
|| ≪ ||Pt

|| in case 3. From Eq. (11), the threshold pressure � is so 
that |�| ≤ k� . This criterion should also be followed by the maximum possible |�| which 
is ||�max

|| and the minimum possible |�| which is ||Pt
|| . Combining these information, a 

common requirement for cases 2 and 3 should be

Equation (18) then becomes

where Eq. (27) was used in the last step.
Next, based on Eq. (27), Taylor expanding the integrands of Eq. (22) with respect to 

� around �±
Pt

 gives

Performing this integrations using the integration limits given in Eqs.  (20) and (28) and 
that �b = 180◦ − �a (Eq. (19)) gives

Equation (30) holds true for both cases 2 and 3.
Case 2:   ||Pt

|| ≪ |𝛥P| − ||Pt
|| ≪ ||𝛾max

||
The part of the criterion for this case that says ||Pt

|| ≪ |𝛥P| − ||Pt
|| makes it so that ((|�P| − ||Pt

||
)
+ 2||Pt

||
)1∕2

≈
(|�P| − ||Pt

||
)1∕2 which can be used to write Eq. (30) as

(27)|𝛥P| − ||Pt
|| ≪ k𝛾 .

(28)

�a = arccos

(|�P|
k�

)
,

= arccos

(|�P| − ||Pt
|| + ||Pt

||
k�

)
,

≈ arccos

(||Pt
||

k�

)
−

|�P| − ||Pt
||√

k2
�
− P2

t

.

(29)

Q ≈ −
𝜋r̄4sgn(𝛥P)

8𝜇L

[
∫

𝜃+
Pt

𝜃a

√
𝛥P2 − P2

t 𝜌

(
𝜃+
Pt

)
d𝜃

]

−
𝜋r̄4sgn(𝛥P)

8𝜇L

[
∫

𝜃b

𝜃−
Pt

√
𝛥P2 − P2

t 𝜌

(
𝜃−
Pt

)
d𝜃

]
.

(30)
Q ≈ −

⎡
⎢⎢⎢⎣

𝜋r̄4sgn(𝛥P)

8𝜇L

𝜌

�
𝜃+
Pt

�
+ 𝜌

�
𝜃−
Pt

�
�

k2
𝛾
− P2

t

⎤
⎥⎥⎥⎦

×
��𝛥P� − ��Pt

��
�3∕2���𝛥P� − ��Pt

��
�
+ 2��Pt

��
�1∕2

.
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Comparing Eq. (31) to Eq. (23) gives � = 2 for case 2.
Case 3:   |𝛥P| − ||Pt

|| ≪ ||Pt
||

The criterion for this case makes it so that 
((|�P| − ||Pt

||
)
+ 2||Pt

||
)1∕2

≈

√
2||Pt

|| which 
can be used to write Eq. (30) as

Comparing Eq. (32) to Eq. (23) gives � = 3∕2 for case 3.
In the transition region between case 1 and cases 2 and 3, where |�P| − ||Pt

|| ≈ k� , the 
volumetric flow depends more sensitively on the wetting angle distribution function �(�) , 
and is in general not a simple power law. Nevertheless, we can use the analysis presented 
here to compute the height of that transition region. Taking the logarithm of Q, we find that

where � is a constant that is the same for all the three cases. Evaluating this at 
|�P| − ||Pt

|| = k� we see that the height difference between case 2 and case 1 in a logarith-
mically scaled plot is

and the height difference between case 3 and case 1 is

(31)Q ≈ −

⎡
⎢⎢⎢⎣

𝜋r̄4sgn(𝛥P)

8𝜇L

𝜌

�
𝜃+
Pt

�
+ 𝜌

�
𝜃−
Pt

�
�

k2
𝛾
− P2

t

⎤
⎥⎥⎥⎦

��𝛥P� − ��Pt
��
�2
.

(32)Q ≈ −

⎡⎢⎢⎢⎣

𝜋r̄4sgn(𝛥P)

8𝜇L

𝜌

�
𝜃+
Pt

�
+ 𝜌

�
𝜃−
Pt

�
�

k2
𝛾
− P2

t

�
2��Pt

��
⎤⎥⎥⎥⎦

��𝛥P� − ��Pt
��
�3∕2

.

(33)log(Q) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

� + log
� ��P�

k�
−

���
k�

�
for case 1,

� + 2 log
� ��P�

k�
−

���
k�

�
+ log

�
�

�
�+
Pt

�
+�

�
�−
Pt

�
√

1−(Pt∕k� )
2

�
for case 2,

� + 1.5 log

���P�
k�

−
���
k�

�
+ log

⎛⎜⎜⎜⎝

�

�
�+
Pt

�
+ �

�
�−
Pt

�
�

1 − (Pt∕k� )
2

⎞⎟⎟⎟⎠
+ log

⎛⎜⎜⎝

�
2��Pt

��
k�

⎞⎟⎟⎠

for case 3,

(34)h = log

⎛⎜⎜⎜⎝

�

�
�+
Pt

�
+ �

�
�−
Pt

�
�

1 − (Pt∕k� )
2

⎞⎟⎟⎟⎠
,
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⎛⎜⎜⎜⎝

�

�
�+
Pt

�
+ �

�
�−
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�
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⎞⎟⎟⎟⎠
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⎛⎜⎜⎝

�
2��Pt
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⎞⎟⎟⎠
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This is shown in Fig.  4. It is assumed in the above analysis that 
𝜌

(
𝜃+
Pt

)
+ 𝜌

(
𝜃−
Pt

)
<

√
1 − (Pt∕k𝛾 )

2 , since �(�) is a normalized probability distribution. 
Hence, h < 0 , which means that the � in the transition region must be larger than outside 
the transition region.

3.1.3 � Numerical Results

Here, we study numerically the volumetric flow rate Q’s response to a wide range of an 
applied pressures �P . In addition to verify the analytical results from Subsect.  3.1.2, 
this numerical study allows us to probe the transition region where �P is the same order 
of magnitude as �max . We present results with three different normal and uniform distri-
butions of � , and note that we find similar results also for many other distributions.

First, consider �(�) to be a uniform distribution,

The results from when � is uniformly distributed between [�a = 0◦, �b = 90◦] , 
[�a = 0◦, �b = 89◦] and [�a = 0◦, �b = 60◦] are shown in Fig. 5a. These results confirm the 
analytical calculations performed in Subsect.  3.1.2. When |𝛥P| − ||Pt

|| ≫ ||𝛾max
|| , case 1, 

all three examples do indeed satisfy � = 1 , reflecting linear Darcy flow. The region where 
||Pt

|| ≪ |𝛥P| − ||Pt
|| ≪ ||𝛾max

|| resulting in � = 2 , case 2, covers the rest of the plot for �(�) 
with � ∈ [0◦, 90◦] , since in this case Pt = 0 . For �(�) with � ∈ [0◦, 89◦] however, that same 
region is approximately only the center part of the plot (−1 < log((𝛥P − Pt)∕k𝛾 ) < 0) while 
the rest belongs to the regime where � = 1.5 . The region |𝛥P| − ||Pt

|| ≪ ||Pt
|| , case 3, that 

gives � = 1.5 is dominating in the case with � ∈ [0◦, 60◦] . For this distribution, the transi-
tion from � = 1 to � = 1.5 happens quickly due to ||Pt

|| = k� cos(60
◦) being a larger number 

than in the other two cases, rendering the region where the applied pressure can satisfy the 
requirement for � = 2 , namely ||Pt

|| ≪ |𝛥P| − ||Pt
|| ≪ ||𝛾max

|| , very small.
The CFB model has also been numerically tested with �(�) being normal distribution 

with mean 𝜃̄ and standard deviation �� given by

(36)𝜌(𝜃) =

{
1

𝜃b−𝜃a
, for 𝜃 ∈ [𝜃a, 𝜃b] with 0

◦ < (𝜃a, 𝜃b) < 180◦,

0, otherwise .

Fig. 4   Height h of the transition 
region is defined as the distance 
between the two lines that are 
extrapolations of the linear parts 
of the curve at �P − Pt = k� . 
Here, Q is the volumetric flow 
rate and �P − Pt is the excess 
pressure



503Rheology of Immiscible Two‑phase Flow in Mixed Wet Porous Media:…

1 3

The results from when � is normally distributed with (𝜃̄ = 40◦, 𝛿𝜃 = 10◦) , 
(𝜃̄ = 40◦, 𝛿𝜃 = 30◦) and (𝜃̄ = 90◦, 𝛿𝜃 = 30◦) are shown in Fig.  5b. These results once 
again confirm the analytical calculations performed in Subsect. 3.1.2. Toward the right in 
Fig.  5b where |𝛥P| − ||Pt

|| ≫ ||𝛾max
|| , case 1, all three examples follow � = 1 . Toward the 

left in Fig. 5b where ||Pt
|| ≪ |𝛥P| − ||Pt

|| ≪ ||𝛾max
|| , the results follow � = 2 , case 2. Notice 

that Pt = 0 for all these three cases. Since a nonzero Q occurs only when |𝛥P| > ||Pt
|| , the 

requirement for � = 1.5 , namely |𝛥P| − ||Pt
|| ≪ ||Pt

|| , case 3, is not satisfied here. In Fig. 5b, 
the transition region between when � = 1 and when � = 2 exhibits a gradient 𝛽 > 2 , in 
accordance with the analysis above. The same effect can also slightly be seen in Fig. 5a, 
but is much more apparent in Fig. 5b. One can also see from Fig. 5b that � is larger for 
smaller �� and means 𝜃̄ further away from 90◦ . This can be understood from Eq. (34), since 
smaller �� and larger ||𝜃̄ − 90◦|| implies smaller �(90◦) . From Eq. (34), we see that smaller 
�(90◦) implies a larger height difference h. Physically, this can be understood from the fact 
that a smaller �(90◦) means that a smaller fraction of the total number of tubes are active in 
the low pressure regime.

3.1.4 � The Origin of ˇ

We can write volumetric flow rate as Q = Nq̄ , where N is the number of open tubes and 
q̄ is the average flow per open tube. Put differently, q̄ is the average of ⟨q⟩ for all the open 
tubes. We propose that � can be understood from how each of these factors change with 
applied pressure �P . Suppose that increasing the pressure difference from ||�P0

|| − ||Pt
|| to 

|𝛥P| − ||Pt
|| = x̄

(||𝛥P0
|| − ||Pt

||
)
 transforms the number of open tubes and the flow per tube 

(37)𝜌(𝜃) =

exp

{
−

1

2

(
𝜃−𝜃̄

𝛿𝜃

)2
}

∫ 180◦

0◦
exp

{
−

1

2

(
𝜃−𝜃̄

𝛿𝜃

)2
}

d𝜃

for 𝜃 ∈ [0◦, 180◦].

(a) (b)

Fig. 5   Relation between the total volumetric flow rate Q and the excess pressure �P − Pt for wetting angles 
� (a) uniformly distributed between [0◦, 90◦] , [0◦, 89◦] and [0◦, 60◦] , and (b) normally distributed with 
(𝜃̄ = 40◦, 𝛿𝜃 = 40◦) , (𝜃̄ = 40◦, 𝛿𝜃 = 40◦) and (𝜃̄ = 40◦, 𝛿𝜃 = 40◦) where 𝜃̄ is the mean and �� is the stand-
ard deviation. Here, �P is the applied pressure and Pt is the minimum threshold pressure. The flow rates 
have been normalized with Q0 = −(𝜋r̄4sgn(𝛥P)k𝛾 )∕(8𝜇L) and the pressures have been normalized with k� . 
Straight lines with gradients � has been added
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according to N0 → x̄āN0 and q̄0 → x̄b̄q̄0 , respectively. In this case, we see that the volumet-
ric flow change from Q0 = N0q̄0 to

so 𝛽 = ā + b̄.
Consider first q̄ . From Eq.  (16), we know that the volumetric flow for a tube with 

threshold pressure � is ⟨q⟩ ∝ √
�P2 − �2 =

√
(�P − �)(�P − � + 2�) . Thus, we see that 

⟨q⟩ ∝ (�P − �)1∕2 if (𝛥P − 𝛾) ≪ 𝛾 and ⟨q⟩ ∝ (�P − �)1 if (𝛥P − 𝛾) ≫ 𝛾 . Hence, if most 
of the active tubes have threshold pressure just below the applied pressure (case 3), then 
ā = 1∕2 . On the other hand, if most of the active tubes have threshold pressure well-below 
the applied pressure (cases 1 and 2), then ā = 1.

Next, consider the number of active tubes transporting fluid, N. This is given by

where Nmax is the total number of tubes in the system. When the applied pressure is larger 
than the maximal threshold pressure �max , then all the tubes are active and N = Nmax . Thus, 
for case 1, we have b̄ = 0 and consequently 𝛽 = ā + b̄ = 1 . On the other hand, when 
|𝛥P| − ||Pt

|| ≪ ||𝛾max
|| , then 𝜃+

Pt
− 𝜃a = 𝜃b − 𝜃−

Pt
=
(|𝛥P| − ||Pt

||
)
∕
√

k2
𝛾
− P2

t ≪ 1 , as seen 
from Eq. (28). Thus,

so b̄ = 1 . Combining this with the result for ā we see that in case 2, we get 𝛽 = ā + b̄ = 2 
, and in case 3, we get 𝛽 = ā + b̄ = 1.5 . This explains why � ∈ {1, 1.5, 2} when either all 
tubes are active (case 1) or only a small fraction is active (cases 2 and 3).

3.2 � The Dynamic Pore Network Model Results

3.2.1 � Data Collecting and Processing Procedures

Using the method described in Subsect. 2.2, numerical simulations of the DPN model have 
been performed. The following factors and parameters have been kept constant during all 
simulations. The 2D network used was made of 64 × 64 links and had periodic boundary 
conditions in all directions. All the links had length l = 1 mm, average radii r̄ ∈ [0.1l, 0.4l] 
and amplitude of the periodic variation a = 1  mm, see Eq.  (2). The viscosities of the 
fluids A and B were �A = �B = 0.01  Pa⋅ s, see Eq.  (5). The surface tension between the 
fluids were 0.03  N/m, see Eq.  (3). In this closed network system, the control parameter 
was the saturation of one of the fluids in the whole system, which was tested for values 
SA ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The distributions of the wetting angles, �(�) , have firstly been tested for a uni-
form distribution with � ∈ [0◦, 180◦] . Secondly, normal distributions with means 

(38)Q =

( |𝛥P| − ||Pt
||

||𝛥P0
|| − ||Pt

||

)ā+b̄

Q0,

(39)N = Nmax

[
∫

�+
Pt

�a

�(�) d� + ∫
�b

�−
Pt

�(�) d�

]
,

(40)N =
Nmax(�(�a) + �(�b))√

k2
�
− P2

t

(|�P| − ||Pt
||
)
,
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𝜃̄ ∈ {0◦, 30◦, 60◦, 90◦} and, with each mean, standard deviations �� ∈ {0◦, 30◦, 60◦} 
were also tested. The �(�) mentioned until now were implemented into the network with 
all of the above-mentioned values of SA . In addition to this, at SA = 0.5 , several more 
normally distributed � were examined. They were with means 𝜃̄ ∈ {0◦, 30◦, 60◦, 90◦} 
and, with each mean, standard deviations �� ∈ {15◦, 45◦, 75◦} , as well as, with means 
𝜃̄ ∈ {15◦, 45◦, 75◦} and, with each mean, standard deviations �� ∈ {0◦, 30◦, 60◦} . Note 
that the normally distributed � could go outside the interval [0◦, 180◦] , which is equiva-
lent to a slightly increased weight around 0◦ or 180◦ because the angle only comes in 
through cos � , as seen in Eq.  (3). Another thing to note is that only distributions with 
𝜃̄ ≤ 90◦ have been considered. This is because since the fluids have the same viscosity, 
a symmetry is in place where the case with mean 𝜃̄ and saturation SA is the same as the 
case with mean 180◦ − 𝜃̄ and saturation 1 − SA.

For each SA , the system was driven by various different Q, and for each Q, 20 differ-
ent realizations of the network were performed and averaged over. The global applied 
pressure �P in the direction of the flow was measured, and was calculated by averaging 
over the fluctuations after the system had reached a steady state. After obtaining a set of 
Q and �P for every �(�) at every SA , data analysis had to be performed to determine the 
global threshold pressure Pt below which there is no flow through the whole system, as 
well as the exponent � in Q ∝

(|�P| − |Pt|
)� . Note that similar to the CFB model, the 

first active path across the entire system in DPN occurs once �P exceeds Pt.
The process of determining Pt and � started with deciding the indices of the data 

points that belonged to the linear and power law regimes through visual examination. 
As shown with an example in Fig. 6, this meant deciding the indices of the datapoints 
that lied between nstart

�≈1
 to nend

�≈1
 and belonged to the region with � ≈ 1 , as well as the indi-

ces between nstart
𝛽>1

 to nend
𝛽>1

 that belonged to the region with 𝛽 > 1 . The error bars were cal-
culated as the absolute values of the difference between the results and the results that 
would have been if the range of data points included from each region were reduced. 
The next step was to perform linear fitting of Q1∕� against �P on the data points from 
nstart
𝛽>1

 to nend
𝛽>1

 . The linear fitting was of the form c1Q1∕� + c2 with c1 and c2 real numbers. 
Due to the definition that Pt = �P exactly when Q1∕� becomes nonzero, Pt = c2 . This 
procedure was repeated for a range of different � s, and the Pt that gave the least root-
mean-square error was chosen as the final candidate. Thereafter, linear fitting log(Q) 
versus log(�P − Pt) separately for the data points from index nstart

�≈1
 to nend

�≈1
 and data points 

from index nstart
𝛽>1

 to nend
𝛽>1

 gave the values of � in those regions.

Fig. 6   Linear fitting the data 
points from index nstart

�≈1
 to nend

�≈1
 

and data points from index nstart
𝛽>1

 
to nend

𝛽>1
 separately gives � in those 

regions
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3.2.2 � Simulation Results

All of the simulations performed, using the parameters and the different wetting angle 
distributions �(�) described in Subsect. 3.2.1, resulted in a Darcy-like flow with � ≈ 1 in 
the high pressure limit where most of the links were active. The transition region with 
𝛽 > 2 flow, as in the case with the CFB model, was not observed with the DPN model. 
Note that the DPN model, compared to the CFB model, simulates a porous medium 
that has a more complex interplay of the fluids in the links which separate and rejoin. 
It could be speculated that this advanced behavior of the network eliminates the transi-
tion region originally observed in the CFB model, in other words, the transition region 
may be an artifact of the CFB model. In the low pressure limit result of the DPN model, 
the exponent � shows dependence on the saturation and the wettability properties of the 
network. This is also the case with the threshold pressure of the network Pt . A closer 
exploration of the latter two factors will now be presented.

The results for � in the low pressure limit are shown in Fig. 7 and takes on various 
values in the range � ∈ [1.00 ± 0.05, 1.82 ± 0.05] . The phenomenon with 𝛽 > 1 origi-
nates from that many links in the network are not yet opened in the low pressure regime, 
which means increasing �P increases the number of active links in addition to increas-
ing the flow within each active link. The overall combined effect of these allows the vol-
ume of fluid transported to rise much more than if all the links were already open. This 
is the same as in the capillary fiber bundle model, but here � takes on a larger range of 
values depending on the saturation and the wetting conditions.

The results for Pt are shown in Fig.  8. The exponents � in Fig.  7, as well as, the 
minimum threshold pressures Pt in Fig. 8 have a tendency to be largest for saturations 
around 0.5 and decrease steadily with increasing saturation of either one of the fluids. 
The reason is that when one of the fluids dominates the system, SA → 0.1 or 0.9, it is 
easy for that dominating fluid to create an active flow-path through the system. This is 
because those connected links that contain the same fluid will not experience a inter-
facial capillary pressure barrier. This decreases the overall threshold Pt of the system, 
which is the cumulative effect of the interfacial capillary barriers in the network. There 
will be few new links to become active as �P increases under these circumstances which 
will further make Q less reactive toward changes in �P , meaning a decreased � . In con-
trast, when there are comparable amounts of the fluids A and B in the system, SA → 0.5 , 
�P has to overcome the cumulative capillary pressure barrier created by the large num-
ber of interfaces between A and B. This naturally has an increasing effect on Pt . When 
�P is increased under such conditions, the requirement for non-zero flow for many links 
are satisfied at once, causing a drastic increase in Q as a response, which increases � . 
Lastly regarding the effect of saturation, in the three middle rows in Fig. 8, the maxima 
of the Pt plots are skewed to the left of SA = 0.5 . In those cases, � is concentrated around 
a 𝜃̄ < 90◦ , which makes fluid A is the most wetting fluid while B is the most non-wetting 
fluid. It is easier for the wetting fluid to get transported in a porous medium, meaning 
when the saturation of the wetting fluid is lower, SA < 0.5 , the system will require a 
higher applied pressure to achieve a nonzero flow making the system’s Pt higher. 

The variations in � for different �(�) are more subtle than in the case with Pt . To get 
a clear overview of the differences, the maximum values, �(SA = 0.5) , have been plotted 
as functions of 𝜃̄ and �� in Fig. 9a and 9b, respectively. Both the exponents � in Fig. 9a 
and 9b and the minimum threshold pressure Pt in Fig. 8 vary with 𝜃̄ and �� of the nor-
mal distributions. The interfacial capillary pressures, given by Eq. (3), increase with the 
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distance between the wetting angles and 90◦ . This happens with increasing �� for wet-
ting angles with mean around 𝜃̄ ≈ 90◦ , or with decreasing �� for 𝜃̄ deviating from 90◦ . 
Note that a larger �� means that the wettability is allowed to deviate more from 𝜃̄ . This 
reflects in the values of Pt in Fig. 8 where the peaks of the plots in row 2 and 3 decrease 
from left to right, while the peaks in row 5 increase from left to right, and the peaks 
decrease from top to bottom. The same effect also creates the trend of decreasing � as 
𝜃̄ → 90◦ in Fig. 9a. When links have a wetting angle � close to 90◦ , many links will open 

Fig. 7   Dependence of � in the low pressure limit on the saturation of one of the fluids SA when the distribu-
tions of the wetting angles �(�) is uniform distribution with � ∈ [0◦, 180◦] (uppermost) and normal distribu-
tions with means 𝜃̄ ∈ {0◦, 30◦, 60◦, 90◦} and standard deviations �� ∈ {0◦, 30◦, 60◦}
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at very small pressure �P , which means increasing �P in the typical low pressure limit 
does not open many new links, hence raises Q with a small � . Figure 9b also supports 
this phenomena. Figure 9b, in addition, shows the expected result that as �� increases, 
� for the various normal distributions approach a value close to that of the uniform dis-
tribution with � ∈ [0◦, 180◦] . Instead of having a small range of wetting angles around a 
𝜃̄ , uniform distribution provides wetting angles anywhere between 0◦ to 180◦ with equal 
probability. Therefore, it makes sense that uniform distribution results in � and Pt values 

Fig. 8   Dependence of the threshold pressures Pt on the saturation of one of the fluids SA when the distribu-
tions of the wetting angles �(�) is uniform distribution with � ∈ [0◦, 180◦] (uppermost) and normal distribu-
tions with means 𝜃̄ ∈ {0◦, 30◦, 60◦, 90◦} and standard deviations �� ∈ {0◦, 30◦, 60◦}
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most similar to those of normal distributions with largest �� which have the most varia-
tion in the wetting angles.

From the results presented here we see that both Pt and � depend on the wetting angle 
distribution �(�) . In particular, they are affected not only by the mean wetting angle, but 
also by the spread of wetting angles. Thus, in order to fully characterize the flow through a 
porous media, it is in general insufficient to assume a uniform wettability.

4 � Conclusion

We studied systematically the effect of mixed wetting conditions on the effective rheology 
of two-phase flow in porous media by using the capillary fiber bundle (CFB) model and the 
dynamic pore network (DPN) model. Although the two models are not quantitatively com-
parable, they are qualitatively similar. Both models show that mixed wettability conditions 
can have significant influence on the rheology in terms of the dependence of the global 
volumetric flow rate Q on the global pressure drop �P . In the CFB model, the effect of 
mixed wettability, in other words the shape of the wetting angle distribution, plays the most 
significant role in the transition regime between low and high �P limit where most of the 
tubes open. In the DPN model, the whole process leading up to opening of all the possible 
links produces a Q that depends on the wettability of the system. Hence, the studies car-
ried out in this work show that the behavior of immiscible two-phase flow in porous media 
changes when we move from uniform to mixed wet conditions. The wettability distribution 
of the porous media is therefore an important factor that should be taken into account when 
studying the rheology in porous media. Future works may study spatial correlation in the 
wettability distributions, as well as, the effect of varying viscosities of the fluids, which 
have not been done in this study.

From the CFB model, we found that the exponent � in Q ∝
(|�P| − ||Pt

||
)� is 1, 2 and 

3/2 in the high, low and very low effective pressure limits, respectively. The numerical 
solutions in addition revealed the 𝛽 > 2 behavior in the transition region between these 
extreme limits, which was due to the rapid opening of tubes in that pressure range. In this 
model, the functional form of the wetting angle distribution �(�) has the largest effect in the 
transition region, since this is the region where most tubes become active.

(a) (b)

Fig. 9   Values of � at SA = 0.5 as functions of (a) the mean 𝜃̄ and (b) the standard deviation �� of the wet-
ting angle distribution. � ∈ [0◦, 180◦] in (b) indicates uniformly distributed wetting angles
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In the DPN model, on the other hand, we found that �(�) is influential for the behav-
ior at all pressure drops below the Darcy regime. The transition region with 𝛽 > 2 flow 
could not be observed with the DPN model, leading to the speculation that the transition 
region could have been an artifact of the CFB model. In the low pressure limit, � had val-
ues varying anywhere between � ∈ [1.00 ± 0.05, 1.82 ± 0.05] . Both � in this pressure limit 
and the threshold pressure Pt showed the tendency to be largest for saturations around 0.5 
and decrease steadily with increasing saturation of either one of the fluids. The reason 
is that when there is comparable amount of both fluids in the system, there will be large 
number of interfaces in the system giving large interfacial capillary pressure for the link. 
This works to increase Pt as well as making Q more reactive toward changes in �P , which 
increases � . Finally, we found that � generally increases when the difference in wettability 
of the two fluids is larger, and when this difference is present for a larger fraction of the 
porous network. This is because a larger difference in wettability, meaning that the wetting 
angle is further away from 90◦ , gives rise to a larger interfacial capillary pressure and the 
overall threshold pressure. This in turn makes the effect of opening new pathways more 
prominent.

Author Contributions  HF developed the theory, performed the analytical and numerical calculations of the 
CFB model, contributed to editing of the code of the DPN model, ran the simulations and analyzed the data 
of the DPN model and wrote the first draft. SS suggested the idea of the problem and developed the code for 
the DPN model. SR sketched the initial calculation related to the CFB model and helped in data analysis. 
All the authors contributed in developing the theory and writing the manuscript to its final form.

Funding  Open access funding provided by NTNU Norwegian University of Science and Technology (incl 
St. Olavs Hospital - Trondheim University Hospital). This work was partly supported by the Research Coun-
cil of Norway through its Center of Excellence funding scheme, project number 262644. SS was partially 
supported by the National Natural Science Foundation of China under grant number 11750110430.

Declaration 

Conflicts of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aker, E., Måløy, K.J., Hansen, A., Batrouni, G.G.: A two-dimensional network simulator for two-phase flow 
in porous media. Transp. Porous Med. 32(2), 163–186 (1998). https://​doi.​org/​10.​1023/A:​10065​10106​
194

Alhammadi, A.M., AlRatrout, A., Singh, K., Bijeljic, B., Blunt, M.J.: In  situ characterization of mixed-
wettability in a reservoir rock at subsurface conditions. Sci. Rep. 7(1), 1–9 (2017). https://​doi.​org/​10.​
1038/​s41598-​017-​10992-w



511Rheology of Immiscible Two‑phase Flow in Mixed Wet Porous Media:…

1 3

AlRatrout, A., Blunt, M.J., Bijeljic, B.: Wettability in complex porous materials, the mixed-wet state, and its 
relationship to surface roughness. Proceedings of the National Academy of Sciences 115(36), 8901–
8906 (2018). https://​doi.​org/​10.​1073/​pnas.​18037​34115

Anderson, W.G.: Wettability literature survey-part 1: rock/oil/brine interactions and the effects of core han-
dling on wettability. J. Petrol. Technol. 38(10), 1125–1144 (1986). https://​doi.​org/​10.​2118/​13932-​PA

Aursjø, O., Erpelding, M., Tallakstad, K.T., Flekkøy, E.G., Hansen, A., Måløy, K.J.: Film flow dominated 
simultaneous flow of two viscous incompressible fluids through a porous medium. Front. Phys. 2, 63 
(2014). https://​doi.​org/​10.​3389/​fphy.​2014.​00063

Blunt, M.J.: Multiphase flow in permeable media: A pore-scale perspective. Cambridge University Press, 
Cambridge (2017). https://​doi.​org/​10.​1017/​97813​16145​098

Elkhyat, A., Agache, P., Zahouani, H., Humbert, P.: A new method to measure in vivo human skin hydro-
phobia. Int. J. Cosmetic Sci. 23(6), 347–352 (2001). https://​doi.​org/​10.​1046/j.​0412-​5463.​2001.​00108.x

Flovik, V., Sinha, S., Hansen, A.: Dynamic wettability alteration in immiscible two-phase flow in porous 
media: effect on transport properties and critical slowing down. Front. Phys. 3, 86 (2015). https://​
doi.​org/​10.​3389/​fphy.​2015.​00086

Frette, O.I., Måløy, K.J., Schmittbuhl, J., Hansen, A.: Immiscible displacement of viscosity-matched 
fluids in two-dimensional porous media. Phys. Rev. E 55(3), 2969 (1997). https://​doi.​org/​10.​1103/​
PhysR​evE.​55.​2969

Gao, Y., Lin, Q., Bijeljic, B., Blunt, M.J.: Pore-scale dynamics and the multiphase darcy law. Phys. Rev. 
Fluids 5(1), 013801 (2020a). https://​doi.​org/​10.​1103/​PhysR​evFlu​ids.5.​013801

Gao, Y., Raeini, A.Q., Selem, A.M., Bondino, I., Blunt, M.J., Bijeljic, B.: Pore-scale imaging with meas-
urement of relative permeability and capillary pressure on the same reservoir sandstone sample 
under water-wet and mixed-wet conditions. Adv. Water Resour. 146, 103786 (2020b). https://​doi.​
org/​10.​1016/j.​advwa​tres.​2020.​103786

Gjennestad, M.A., Vassvik, M., Kjelstrup, S., Hansen, A.: Stable and efficient time integration of a 
dynamic pore network model for two-phase flow in porous media. Front. Phys. 6, 56 (2018). https://​
doi.​org/​10.​3389/​fphy.​2018.​0005

Knudsen, H.A., Aker, E., Hansen, A.: Bulk flow regimes and fractional flow in 2d porous media by 
numerical simulations. Transp. Porous Media 47, 99–121 (2002). https://​doi.​org/​10.​1023/A:​10150​
39503​551

Kovscek, A., Wong, H., Radke, C.: A pore-level scenario for the development of mixed wettability in oil 
reservoirs. AIChE J 39(6), 1072–1085 (1993). https://​doi.​org/​10.​1002/​aic.​69039​0616

Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B.: Capillary 
trapping for geologic carbon dioxide storage - from pore scale physics to field scale implications. 
Int. J. Greenhouse Gas Control 40, 221–237 (2015). https://​doi.​org/​10.​1016/j.​ijggc.​2015.​04.​006

Lenormand, R., Zarcone, C.: Capillary fingering: percolation and fractal dimension. Transp. Porous 
Media 4(6), 599–612 (1989). https://​doi.​org/​10.​1007/​BF002​23630

Li, S., Huang, J., Chen, Z., Chen, G., Lai, Y.: A review on special wettability textiles: theoretical models, 
fabrication technologies and multifunctional applications. J. Mater. Chem. A 5(1), 31–55 (2017). 
https://​doi.​org/​10.​1039/​c6ta0​7984a

Løvoll, G., Méheust, Y., Toussaint, R., Schmittbuhl, J., Måløy, K.J.: Growth activity during fingering in 
a porous hele-shaw cell. Phys. Rev. E 70(2), 026301 (2004). https://​doi.​org/​10.​1103/​PhysR​evE.​70.​
026301

Måløy, K.J., Feder, J., Jøssang, T.: Viscous fingering fractals in porous media. Phys. Rev. Lett. 55(24), 
2688 (1985). https://​doi.​org/​10.​1103/​PhysR​evLett.​55.​2688

Marle, C.: Multiphase flow in porous media. Éditions technip (1981)
Méheust, Y., Løvoll, G., Måløy, K.J., Schmittbuhl, J.: Interface scaling in a two-dimensional porous 

medium under combined viscous, gravity, and capillary effects. Phys. Rev. E 66(5), 051603 (2002). 
https://​doi.​org/​10.​1103/​PhysR​evE.​66.​051603

Rassi, E.M., Codd, S.L., Seymour, J.D.: Nuclear magnetic resonance characterization of the station-
ary dynamics of partially saturated media during steady-state infiltration flow. New J. Phys. 13(1), 
015007 (2011). https://​doi.​org/​10.​1088/​1367-​2630/​13/1/​015007

Roy, S., Hansen, A., Sinha, S.: Effective rheology of two-phase flow in a capillary fiber bundle model. 
Front. Phys. (2019). https://​doi.​org/​10.​3389/​fphy.​2019.​00092

Salathiel, R.: Oil recovery by surface film drainage in mixed-wettability rocks. J. Petrol. Technol. 25(10), 
1216–1224 (1973). https://​doi.​org/​10.​2118/​4104-​PA

Scanziani, A., Lin, Q., Alhosani, A., Blunt, M.J., Bijeljic, B.: Dynamics of fluid displacement in mixed-
wet porous media. Proceedings of the Royal Society A 476(2240), 20200040 (2020). https://​doi.​
org/​10.​1098/​rspa.​2020.​0040



512	 H. Fyhn et al.

1 3

Sinha, S., Hansen, A.: Effective rheology of immiscible two-phase flow in porous media. EPL (Euro-
phys. Lett.) 99(4), 44004 (2012). https://​doi.​org/​10.​1209/​0295-​5075/​99/​44004

Sinha, S., Grøva, M., Ødegården, T.B., Skjetne, E., Hansen, A.: Local wettability reversal during steady-
state two-phase flow in porous media. Phys. Rev. E 84(3), 037303 (2011). https://​doi.​org/​10.​1103/​
PhysR​evE.​84.​037303

Sinha, S., Hansen, A., Bedeaux, D., Kjelstrup, S.: Effective rheology of bubbles moving in a capillary 
tube. Phys. Rev. E 87(2), 025001 (2013). https://​doi.​org/​10.​1103/​PhysR​evE.​87.​025001

Sinha, S., Gjennestad, M.A., Vassvik, M., Hansen, A.: Fluid meniscus algorithms for dynamic pore-net-
work modeling of immiscible two-phase flow in porous media. Front. Phys. 8, 567 (2021). https://​
doi.​org/​10.​3389/​fphy.​2020.​548497. (ISSN 2296-424X)

Tallakstad, K.T., Knudsen, H.A., Ramstad, T., Løvoll, G., Måløy, K.J., Toussaint, R., Flekkøy, E.G.: 
Steady-state two-phase flow in porous media: statistics and transport properties. Phys. Rev. Lett. 
102(7), 074502 (2009a). https://​doi.​org/​10.​1103/​PhysR​evLett.​102.​074502

Tallakstad, K.T., Løvoll, G., Knudsen, H.A., Ramstad, T., Flekkøy, E.G., Måløy, K.J.: Steady-state, simul-
taneous two-phase flow in porous media: an experimental study. Phys. Rev. E 80(3), 036308 (2009b). 
https://​doi.​org/​10.​1103/​PhysR​evE.​80.​036308

Tørå, G., Øren, P.-E., Hansen, A.: A dynamic network model for two-phase flow in porous media. Transp. 
Porous Media 92(1), 145–164 (2012). https://​doi.​org/​10.​1007/​s11242-​011-​9895-6

Toussaint, R., Løvoll, G., Méheust, Y., Måløy, K.J., Schmittbuhl, J.: Influence of pore-scale disorder on 
viscous fingering during drainage. EPL (Europhys. Lett.) 71(4), 583 (2005). https://​doi.​org/​10.​1209/​
epl/​i2005-​10136-9

Vafai, K.: Porous media: applications in biological systems and biotechnology. CRC Press, USA (2010). 
https://​doi.​org/​10.​1201/​97814​20065​428

Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273 (1921). https://​doi.​org/​10.​1103/​
PhysR​ev.​17.​273

Zhang, Y., Bijeljic, B., Gao, Y., Lin, Q., Blunt, M.J.: Quantification of nonlinear multiphase flow in porous 
media. Geophys. Res. Lett. 48(5), e2020GL090477 (2021). https://​doi.​org/​10.​1029/​2020G​L0904​77

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.



Paper II

119



Reference
Hursanay Fyhn, Santanu Sinha and Alex Hansen,
Effective Rheology of Immiscible Two-Phase Flow in Porous Media
Consisting of Random Mixtures of Grains having Two Types of
Wetting Properties.
Front. Phys. 11:1175426 (2023)
doi: 10.3389/fphy.2023.1175426

Contributions
HF performed the numerical simulations and the data analysis,
and wrote the first draft of the manuscript. HF wrote the code
specific for this project based on algorithms written by SS. AH
and SS suggested the idea of the problem. AH worked out the
relation to percolation theory. All authors contributed to the
article and approved the submitted version.

120

https://dx.doi.org/10.3389/fphy.2023.1175426


Effective rheology of immiscible
two-phase flow in porous media
consisting of random mixtures of
grains having two types of wetting
properties

Hursanay Fyhn1*, Santanu Sinha2 and Alex Hansen1

1PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway,
2PoreLab, Department of Physics, University of Oslo, Oslo, Norway

We consider the effective rheology of immiscible two-phase flow in porous media
consisting of randommixtures of two types of grains having different wetting properties
using a dynamic pore network model under steady-state flow conditions. Two
immiscible fluids, denoted by “A” and “B”, flow through the pores between these
two types of grains denoted by “+” and “−”. Fluid “A” is fully wetting, and “B” is fully non-
wettingwith respect to “+”grains,whereas it is theoppositewith “−”grains. Thedirection
of the capillary forces in the links between two “+” grains is, therefore, opposite
compared to the direction in the links between two “−” grains, whereas the capillary
forces in the linksbetween twoopposite typesofgrains average tozero. For awindowof
grain occupation probability values, a percolating regime appears where there is a high
probability of having connected paths with zero capillary forces. Due to these paths, no
minimum threshold pressure is required to start a flow in this regime. When varying the
pressure drop across the porous medium from low to high in this regime, the relation
between the volumetric flow rate in the steady state and the pressure drop goes from
being linear to a power law with exponent 2.56, and then to linear again. Outside the
percolation regime, there is a thresholdpressurenecessary to start theflowandno linear
regime is observed for low pressure drops. When the pressure drop is high enough for
there to be a flow, we find that the flow rate depends on the excess pressure drop to a
power law with exponents around 2.2–2.3. At even higher excess pressure drops, the
relation becomes linear.We see no change in the exponent for the intermediate regime
at the percolation critical points where the zero-capillary force paths disappear. We
measure themobility at the percolation threshold at low pressure drops so that the flow
rate versus pressure drop is linear. Assuming a power law, themobility is proportional to
the difference between the occupation probability and the critical occupation
probability to a power of around 5.7.

KEYWORDS

porous media, rheology, mixed wettability, two-phase flow, percolation

1 Introduction

It was in 1827 that Ohm published his law stating that electrical current is proportional
to the voltage drop across a conductor [1], meeting fierce resistance from the physics
community in the beginning. Darcy arrived in 1856 at a similar law for single-phase flow in
porous media, i.e., the volumetric flow rate is proportional to the pressure drop across the
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porous medium [2]. Both of these fundamental laws are examples of
there being a linear relationship between current and driving force.
In the case of the Darcy law, the derivation based on pore scale
physics has been a challenge, see e.g., Whitaker’s derivation based on
momentum transfer [3].

The Darcy law for single-phase flow through a porous sample is
given as follows:

Q � −AK
μL

ΔP, (1)

where Q is the volumetric flow rate along the axis of the cylindrical
sample, ΔP is the pressure drop along it in the flow direction, A is the
area of the sample orthogonal to the flow direction, K is the
permeability of the sample, μ is the viscosity of the liquid, and L
is the system length.

In 1936, the Darcy law (1) was generalized to the simultaneous
flow of two immiscible liquids by Wyckoff and Botset by essentially
splitting it into two [4].

Qw � −AKkrw
μwL

ΔP, (2)

Qn � −AKkrn
μnL

ΔP, (3)

where the subscripts w and n refer to the wetting properties of the
two fluids with respect to the matrix; w refers to the more wetting
fluid and n to the less wetting fluid. The idea behind this split is
simple. The wetting fluid will see a pore space reduced by the
presence of the other fluid, leading to a reduction in effective
permeability for the wetting fluid. The reduction parameter is the
wetting relative permeability krw. Completely analogously, the non-
wetting fluid sees an effective reduction of the permeability by a
factor krn, the non-wetting relative permeability. The split was given
physical contents when Wyckoff and Botset assumed that the two
relative permeabilities were functions of the wetting saturation Sw
alone, the wetting saturation being the pore volume occupied by the
wetting fluid divided by the total pore volume and assuming the
fluids are incompressible. Barenblatt et al. [5] have later shown that
this assumption is valid if there exists a local phase equilibrium
between the fluids, a condition that is fulfilled only for slow flows. A
further assumption built into Eqs 2, 3 is that there are no
macroscopic saturation gradients present.

The total volumetric flow rate is given by the sum of the
volumetric flow rates of each fluid as follows

Q � Qw + Qn, (4)
and as a consequence, the generalized Darcy Eqs 2, 3 predict the
following expression:

Q � −AK
L

krw
μw

+ krn
μn

[ ] ΔP, (5)

that is, a total volumetric flow rate being proportional to the
pressure drop.

Eqs 2, 3 assume that there are no macroscopic saturation
gradients. If this is not the case, the pressure is split into one
associated with the non-wetting fluid, Pn, and one associated
with the wetting fluid, Pw. Their difference is equal to the
capillary pressure function, Pn − Pw = Pc(Sw), which is also

assumed to depend only on the Sw. Eqs 2, 3 will then contain
terms of the type ∇Pc = (dPc/dSw)∇Sw, thus setting up the pressure
gradient and the saturation gradient as driving forces. When these
equations are combined with mass conservation, the result is a
closed set of equations that determine how the saturation develops
within the porous medium.

When the saturation changes inhomogeneously in the porous
medium with time, one implicitly assumes that fluid interfaces move
within the porous medium. It was then a surprise when Tallakstad
et al. [6, 7] reported a flow rate Q depending on ΔP as follows:

Q∝ |ΔP|β, (6)
with β ≈ 1.85 for a two-dimensional glass-bead-filled Hele–Shaw cell
filled with a water–glycerol mixture and air in the flow regime where
the generalized Darcy Eqs 2, 3 are supposed to be valid. This study
was followed up by an NMR study of the three-dimensional glass
bead packings by Rassi et al. [8] finding an exponent β varying
between 2.2 and 3.3. Aursjø et al. [9] using the same model porous
medium as Tallakstad et al. [6, 7], but with two incompressible
fluids, found β ≈ 1.5 or 1.35, depending on the fractional flow rates.
Similar results, in the sense that β is considerably larger than one,
have since been observed by a number of groups; see [10–13]. There
has also been a considerable effort to understand these results
theoretically and reproduce them numerically [6, 7, 14–25].

It should be pointed out that the power law behavior seen in Eq.
6 is different from that described by Wilkinson in 1986 [26]. In his
work, Wilkinson used the invasion percolation model to work out
the dependence of the relative permeabilities on the capillary
pressure, which could be linked to the saturation. He found that
the non-wetting relative permeability krn would depend on the
difference between the capillary pressure Pc and a critical
capillary pressure Pc

c related to the percolation critical point,
which is shown as follows:

krn ~ Pc − Pc
c( )t, (7)

where t is the percolation conduction exponent [27]. This is,
however, a very different problem from that giving rise to Eq. 6.
The power law in (7) is a direct reflection of the geometry of the
clusters of the non-wetting fluid in the system after the invasion
process. Hence, it is a static problem. The power law in (6) is, as we
shall see, the result of a dynamic process caused by the motion of the
fluid interfaces.

The power law behavior in Eq. 6 is due to a competition between
the capillary and the viscous forces. It is straightforward to
understand why the flow rate should increase faster than linear
when these forces are in competition. When the pressure difference
across the porous medium is increased, more interfaces begin to
move, leading to a higher effective permeability [28]. The reason
why it should be a power law is less obvious. The best argument was
perhaps already given by Tallakstad et al. [6, 7] through comparing
the pressure drop across fluid clusters with the capillary pressures
holding them in place. Capillary fiber bundle models [29, 30] are
porous media in the form of bundles of capillary fibers, and they are
typically simple enough to be mathematically solvable [16, 19–21,
24, 25]. When the fibers have undulating radii along the long axis,
they show non-linear volumetric flow rate vs. pressure drop; they are
not quite of the form (6) but rather
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Q �
0 if |ΔP|≤Pt,
M |ΔP| − Pt( )β if Pt < |ΔP|<Pmax,
MD |ΔP| − Pt( ) if Pmax ≪ |ΔP|,

⎧⎪⎨⎪⎩ (8)

where Pt is a threshold pressure necessary for the flow to occur, Pmax

is the maximum threshold pressure found in any capillary fiber, and
M and MD are mobilities. A non-zero threshold pressure is in
general necessary in porous media when neither of the two
immiscible fluids percolates when dealing with porous media and
not just the capillary fiber bundle model [10, 15, 21]. The existence of
a non-zero threshold pressure makes the measurement of β much
harder than when it is zero as this implies determining two
parameters simultaneously, (Pt, β), rather than just one, β.

A central unanswered question is whether the exponent β is
universal in the sense that there are classes of systems that all have
the same value, i.e., can one define universality classes? Intuitively, this is
a very appealing idea as one has a diverging length scale, as in
equilibrium critical phenomena as |ΔP| → Pt mentioned previously
[6, 7]. The experimental measurements of β have so far neither given
any indication of the existence of universality classes nor have the
computational efforts due to the difficulties in dealing with two
unknown parameters, Pt and β. Roy et al. [19] found using a
capillary fiber bundle model that β = 2 if the fiber-to-fiber
probability distribution of thresholds includes Pt = 0 with a finite
probability; otherwise, β = 3/2. The fibers here had smoothly undulating
radii along the flow direction. Lanza et al. [24] who studied a non-
Newtonian mixture of immiscible Newtonian and non-Newtonian
fluids in a capillary fiber bundle model found a different value of β
when the radius distribution is jagged from when it is smooth.

Eq. 8, which was derived for the capillary fiber bundle model,
predicts there being a pressure drop |ΔP| = Pt below which the flow rate
Q is zero. This threshold may be zero. Within the capillary fiber bundle
model, this means that some capillary tubes belonging to the bundle
have interfaces that move as soon as there is a pressure difference across
them. There is, however, one important mechanism missing in the
capillary fiber bundle models: in the porous medium, the immiscible
fluids may be percolating. In other words, there are pathways through
the porous medium along which there are no interfaces. In this case,
there will be a linear regime when the pressure drop is low enough so
that the interfaces surrounding the percolating paths do not move.
When the pressure drop is increased sufficiently for them to do so, the
non-linear power law regime sets in.

Recently, Fyhn et al. [21] studied the exponent β and the threshold
pressure Pt in a capillary fiber bundle model and a dynamic pore
network model under mixed wet conditions. In the dynamic pore
network model, each link was given a wetting angle—in the sense
that if there is an interface in the link, this is the angle it will make with
thewalls of the tube—drawn from a given probability distribution. In the
capillary fiber bundle model, each undulating tube is given a wetting
angle from a given probability distribution. In both models, a
constitutive law of the form (8) was found. The capillary fiber
bundlemodel could be solved analytically, giving the following equation:

β �
1 if |ΔP| − Pt ≫Pmax,
2 if Pt ≪ |ΔP| − Pt ≪Pmax,
3/2 if 0< |ΔP| − Pt ≪Pt.

⎧⎪⎨⎪⎩ (9)

The network model studies showed a less clear picture, with β

varying between 1 and 1.8, depending on the saturation and the

wetting angle distribution. It was not possible to resolve whether
there were regions of fixed β or whether it varied continuously with
the parameters of the model. This was due to the non-zero threshold
pressure Pt, which needed to be determined together with β.

We study here a model for immiscible two-phase flow in a
porous medium made from two types of grains that have different
wetting properties with respect to the fluids. The model treats the
interfacial tension between the two fluids similarly to a model
introduced by Irannezhad et al. [31, 32]. We imagine a packing
of two types of grains, say type “+” and type “−.” Two immiscible
fluids, denoted by “A” and “B,” flow through the pores between the
grains denoted by “+” or “−”. Fluid “A” is fully wetting, and “B” is
fully non-wetting with respect to “+” grains, whereas it is the
opposite with respect to “−” grains. The direction of the capillary
forces in the links between two “+” grains is, therefore, opposite
compared to the direction in the links between two “−” grains,
whereas the capillary forces in the links between two opposite types of
grains are zero.

The probability that a grain is of “+” type is p+. A second
parameter is the wetting saturation Sw. There is a rich phase diagram
when plotting the threshold pressure Pt as a function of the two
control variables p+ and Sw, which is illustrated in Figure 1. It should
be noted, in particular, in this phase diagram that there is a region in
the middle where the threshold pressure Pt = 0. This region is limited
by two p+ = constant critical lines. Each line signifies a percolation
transition [27]. The two curved gray lines signify a possible shift of
the two blue transition lines due to the dynamics of the model. There
are also two other lines: one green line marked “hysteretic
transition” and one red line marked “non-hysteretic” transition.
Crossing such a line, one of the two fluids stops moving and we are
essentially dealing with a single-phase flow problem. When the
wetting fluid stops moving, there is no hysteresis. On the other hand,
when the non-wetting fluid stops, there is hysteresis in the sense that

FIGURE 1
Phase diagram showing the exponent β and the threshold
pressure Pt plotted against the occupation probability p+ and the
saturation Sw. The diagram is symmetric about the p+ = 1/2 line. The
two vertical blue lines are critical lines associated with the two
percolation transitions. The lower red line is separating the two-phase
flow from the single-phase flow. There is no hysteresis associatedwith
this line. The upper green line also distinguishes between two-phase
and single-phase flows. However, in this case, there is hysteresis. The
two gray lines represent the transition lines from threshold pressure
Pt = 0 to a non-zero value. The nature of these lines is unknown.
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wetting saturation has to be lowered more to get the non-wetting
fluids moving again [33].

In the region where Pt = 0, while still having two-phase flow, we
observe an exponent β = β3 = 2.56 ± 0.05 for saturation Sw = 0.5. This
value is also seen when setting p+ = pc or p

+ = 1 − pc, where pc ≈
0.5927 is the site percolation threshold for square lattices, i.e., β =
β2 = β3. For p

+ much lower than 1 − pc or p
+ much higher than pc, still

for saturation Sw = 0.5, we see β = β1 = 2.25 ± 0.1. The large
uncertainty in β seen here stems from Pt > 0.

It is surprising that β2 = β3 within the precision we are able to
obtain. The exponent β2 is obtained at the percolation threshold
where the paths where fluid surfaces meet no resistance are fractal
with fractal dimension 4/3 as they are the external perimeters of
percolation clusters [34]. The reason for not seeing the critical
behavior reflected in β comes from there also being other links
that have no interfacial tension in them as they contain no interfaces,
thus driving the system away from criticality. In order to investigate
whether there are any traces at all in the transport properties of the
percolation critical point, we have studied the mobility M at low
pressure drops as p+ approaches a critical value, where we expect it to
vanish with an exponent t′ of the same type as the conductivity
exponent t in ordinary percolation in the vicinity of the critical p+

[27, 35]. We find that t′ ≈ 5.7, indicating that the system is not
critical and M falls off faster than algebraic. We, therefore, expect
there to be two extra transition lines (marked in gray in Figure 1)
that distinguish between Pt = 0 and Pt > 0. The nature of these lines is
unknown.

Weuse a dynamic pore networkmodel [36–40] for this study. It has
been used earlier in the context of modeling-mixed wetting porous
media; see [21, 41, 42]. We describe the model in Section 2 including
our use of the wetting model similar to that introduced by Irannezhad
et al. [31, 32]. Section 3 explains how we identify the paths through the
network that have no capillary forces associated with them and relate
them to a site percolation problem. Section 4 presents the analysis of the
low pressure drop mobility at the percolation critical points. Section 5
constitutes our investigation of the volumetric flow rate Q vs. pressure
dropΔP.We fix the saturation Sw = 0.5 and scan through this line in the

phase diagram in Figure 1 for different values of p+. We also tested
whether there would be hysteresis with respect to increasing or
decreasing the pressure drop, finding none. Section 6 contains a
summary and our conclusions.

2 Dynamic pore network model

A sketch of the dynamic pore network (DPN) model used in this
work is given in Figure 2, showing a square two-dimensional
network with links with the same length tilted 45° from the flow
direction. ΔP across the network drives the flow leading to Q, which
is measured over a cross section of the system normal to the
direction of the overall flow. The zoomed-in sketch to the right
in Figure 2 illustrates the rules for using the wetting properties of the
grains to assign wetting angles θ to the links, where θ is consistently
defined through one of the fluids. In contrast to earlier models [21,
41, 42] that assign the wetting angles to the pores or links directly,
the physical basis for this model is a mixture of grains and the
wettability of the pore space in-between depends on the wettability
of the surrounding grains, similar to the system introduced by
Irannezhad et al. [31, 32]. We assume two types of grains, they
being either fully non-wetting with θ = 180° or fully wetting with θ =
0°. Having fully non-wetting or fully wetting grains maximizes the
difference between the two types of grains in terms of their
wettability and, hence, maximizes any impact on the rheology
that comes as a result of this difference. The grains are denoted
fully non-wetting and assigned a notation “+” with an occupation
probability p+, and the rest of the grains are then fully wetting with a
notation “−”. For each link, θ is determined based on the link’s
adjacent grains. Each grain in the network is connected to four links,
which means each link has two adjacent grains, as shown in Figure 2.
If both of the adjacent grains are assigned “+”, the link will have θ =
180°. If both of the adjacent grains are assigned “−”, then θ = 0°.
Lastly, if one of the adjacent grains is “+” and the other one is “−”,
the link in the middle should be easy to pass through for both fluids,
and the wettability should be neutral with θ = 90°.

FIGURE 2
Dynamic pore network model implemented on a square lattice consists of links oriented 45° from the overall flow direction. The flow is driven by a
global applied pressure ΔP, and the total volumetric flow rateQ is measured over a cross section normal to the direction of the overall flow. The wetting
angle θ of each link is based on its adjacent grains. The grains are assigned “+”with an occupation probability p+, and the rest of the grains are assigned “−”.
If both of the adjacent grains are assigned “+”, θ= 180° (marked pink). If both of the adjacent grains are assigned “−”, θ= 0° (marked blue). Lastly, if one
of the adjacent grains is “+” and the other one is “−”, then θ = 90° (marked black), and hence, there are no capillary forces associated with interfaces in the
link.
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The networks have periodic boundary conditions in both
directions. Two fluids that flow through the network are
immiscible, and their movement is traced through the position of
their interfaces at each instant in time. Whenever the fluids flowing
in a link reach the crossing point with the three other links, namely, a
node, the fluids get distributed into the neighboring links in the same
time step instead of being retained in the node itself [36].

The volumetric flow in each link with length l, pointing along the
link’s center axis x, is given by the following equation:

q � −π�r
4

8μl
Δp − x̂ · ∑

k

pt xk( )Ĵk⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (10)

where it has been assumed that the radius does not deviate too
much from its average value �r [36]. Here, μ = sAμA + sBμB is the
saturation weighted viscosity of the fluids, where sA and sB are
saturations of the two fluids A and B, respectively, with viscosities
μA and μB in the links (in contrast to Sw, which is the average
saturation over the whole network). Figure 3 can be used to further
explain the variables in Eq. 10. The unit vector Ĵ lies along the x-
axis and points in the direction out of the fluid within which θ is
defined. In Figure 3, θ is consistently measured through fluid A in
both examples (a) and (b), regardless of if fluid A is more or less
wetting with respect to the solid. Hence, Ĵ also consistently points
across the interface starting from fluid A toward fluid B. The sum
in Eq. 10 is taken over the interfaces numbered k with varying Ĵk
with positions xk ∈ [0, l] along x. The dot product of this sum with
the unit vector x̂ in the positive x direction is taken afterward to
obtain the total capillary pressure. The capillary pressure across
one interface at position x which has an angle θ with the solid
through fluid A is modeled by using the Young–Laplace
equation [43],

pt x( ) � 2σ cos θ
r x( ) , (11)

where σ is the surface tension and

r x( ) � r0

1 − a cos 2πx
l( ) (12)

is the radius where a is the amplitude of the periodic variation, and
r0/a is randomly chosen from the interval [0.1l, 0.4l]. This way, pt
varies with both the position along a link and from link to link.

For all simulations in the following, the two immiscible fluids
have been given surface tension 3.0 · 10–5 N/mm and viscosity

0.1 Pa·s for both. The overall network saturation is kept constant
at 0.5, meaning there are equal amounts of the two fluids. The links
in the network have length l = 1 mm. In all the figures, the
logarithms are in base 10.

3 Easy links and connected paths

There are three types of links in the model: those that are of the
“++” type, those that are of the “−−” type, and the “+−” = “ − +” type.
We will, in the following, refer to the latter type as “easy links” since
they offer no capillary resistance to interfaces that happen to be in
them. Paths of connected easy links may percolate, i.e., stretch across
the network forming loops as we are implementing bi-periodic
boundary conditions. We will refer to such percolating paths of
easy links as “connected paths”; see Figure 4.

The geometry of the easy links and connected paths may be
mapped onto an ordinary site percolation problem [27]. The links
altogether form a square lattice. The nodes of the dual lattice form
another square lattice [44] and are assigned “+” or “−”. These values
are placed at random. The distribution of neighboring “+” sites in
this dual lattice forms an ordinary site percolation problem. In an
infinitely large lattice, there will be a percolating “+” cluster when
p+ ≥ pc, where pc is the site percolation threshold 0.5927. . .. If we, on
the other hand, focus on the “−” sites, there will be a cluster of such
sites that percolate if p− = 1 − p+ ≥ pc or p

+ ≤ 1 − pc ≈ 0.4073. . . [45].
Hence, if 0 ≤ p+ ≤ 1 − pc, the “−” clusters percolate, if 1 − pc ≤ p+ ≤ pc,
neither the “−” sites nor the “+” sites percolate, and if pc ≤ p+, the “+”
sites percolate. We show in Figure 5 a map of the wetting angles
associated with different values of p+. The easy links are shown in
black.

We note that if neither the “+” sites nor the “−” sites percolate
(1 − pc ≤ p+ ≤ pc), there must be connected paths. We, furthermore,
note that if either of the two site types percolates, there cannot be any
connected paths. At the two thresholds, p+ = 1 − pc and p+ = pc, the
connected paths appear together with the appearance of a
percolating cluster of either “−” or “+” type as the perimeter of
the incipient percolating cluster is a connected path. At the
percolation thresholds, we know that the fractal dimension of the
perimeter, and hence the corresponding connected path, is 4/3 [34].
For values away from the critical points, the connected paths are not
fractal. Hence, the structure of the easy link clusters and the
connected path is very different away from the critical points
while still being in the interval 1 − pc ≤ p+ ≤ pc.

FIGURE 3
Wetting angle θ is consistently measured through fluid A in both examples (A,B), regardless of thewettability situation. The unit vector Ĵ lies along the
center axis x and points in the direction out of the fluid within which θ is measured, which, in this case, is from fluid A to fluid B.
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The probability of finding a connected path as a function of p+ is
investigated by testing 1,000 randomly generated networks with size
L × L for each p+ ∈ {0.3000, 0.3001, 0.3002, . . ., 0.7000}. The results
are shown in Figure 6 for L = 50 links and L = 100 links. We see that
the two curves cross very close to 1 − pc and pc.

4 Mobility

As we will show with the results presented in the following
section, the constitutive law between the volumetric flow rate Q and
the pressure drop |ΔP| can be written as follows:

Q �
M|ΔP| if |ΔP|<Pl,
Mm|ΔP|β3 if Pl < |ΔP|<Pu,
MD|ΔP| if Pu < |ΔP|,

⎧⎪⎨⎪⎩ (13)

in the region 1 − pc ≤ p+ ≤ pc. Here, Pl and Pu are two crossover
pressures. There are three regimes: 1) a linear regime for low pressure

drops, 2) a non-linear regime for intermediate pressure drops, and 3) a
linear regime for high pressure drops. Each regime is characterized by a
mobility, M(p+, Sw), Mm(p

+, Sw), and MD(p
+, Sw), respectively.

If we move to values of p+ where Pt > 0, regime (1) disappears.
Hence, we have that M(p+, Sw) tends to zero as p+ reaches the
boundary between the Pt = 0 region and the Pt > 0 region. We
hypothesize, in the following, that the boundaries of this region are
given by the percolation thresholds 1 − pc and pc.

Expecting that M(p+, Sw) shows similar behavior to the
conductivity in percolation [35], we make the assumption that
the mobility vanishes as

M ~
p+ − 1 − pc( )( )t′ forp+ → 1 − pc( )+,
pc − p+( )t′ forp+ → pc( )−,

⎧⎨⎩ (14)

where t′ is a transport exponent of the same type as the conductivity
exponent t in ordinary percolation, which is 1.303(8) according to
[46]. In Eq. 14, p+ → (1 − pc)+ means p+ approaches 1 − pc from

FIGURE 4
Due to periodic boundary conditions in both directions parallel and orthogonal toQ, it is not enough for a path to connect the bottom to the top of
the network in the direction ofQ to qualify as a connected path; it also has to loop back to itself. We show here four examples of clusters of easy links in an
8 × 8 lattice. Figures (A,B) do not qualify as connected paths, as defined for the networks in this work, while (C,D) do. The cluster of easy links in (A)
connects the top and the bottom of the network but needs one additional link centered at (x, y) = (4, 4) to form a connected path. The cluster of easy
links in (B) forms a closed loop but does not cross the network fully in the flow direction, which is along the y-axis. In (C), the link centered at position (x,
y) = (1, 7) meets the link centered at (x, y) = (6, 8) due to the periodic boundary condition in the y-direction and completes the loop, hencemaking the path
a connected path. The effect of having a periodic boundary condition in the x-direction is apparent in (D), where the link centered at (x, y) = (8, 2) connects
to the link at (x, y) = (1, 3), and similarly, (x, y) = (8, 6) connects to (x, y) = (1, 7) and (x, y) = (4, 8) connects to (x, y) = (5, 1), thus completing the loop.
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above and p+ → (pc)− means p+ approaches pc from below. By using
finite size scaling analysis, we obtain the following equation:

M ~ L−t′/], (15)
where ] is the correlation length exponent in percolation, which is
known to be 4/3 [47].

To investigate the relation given in Eq. 15, we set p+ = 0.5927 ≈ pc
and network-dimensions L × L for L between 50 and 90 links. The
lowest numerically feasible |ΔP| is used in order to stay in the lower
linear regime in Eq. 13, specifically 2.8 Pa/link )|ΔP|/L)5.8 Pa/link.
When operating at low |ΔP|, the flow, which is mainly through the
connected paths, stabilizes quickly and retains approximately a constant

value compared to the fluctuating flow at higher |ΔP|. For these
simulations, the flow is driven for approximately 40 pore volumes of
fluid through the network, where one pore volume is equal to the total
volume of the pore space in the network. The values ofQ are calculated
by averaging over the last 20 pore volumes simulated. Variation in the
connected paths a network can have is covered by averaging the results
over 50 network realizations. The results are shown in Figure 7, where
we get t′/] = 4.3 ± 1.0, giving the following equation:

t′ � 5.7 ± 1.3. (16)
This is a huge value. A possible explanation for the observed

value is that the system is not at a critical point in spite of the

FIGURE 5
At p+ = 0, shown in (A), all the grains are fully wetting grains that are noted as “−” in Figure 2. This means that the pore space between these grains,
namely, the links in DPN, all have θ = 0°. Oppositely at p+ = 1.0, shown in (E), there are only links that have θ = 180°. In these two extreme cases, there is no
easy link in the network with neutral wettability θ = 90°. Moving away from these extremes, when p+ = 0.3 in (B) or when p+ = 0.7 in (D), links with θ = 90°

are present but not enough to create a connected path that crosses the entire system. At the middle point of p+ = 0.5 (C), DPN has half of each type
of grain, creating the highest possible probability for having connected paths with only θ= 90° links. In these examples, p+ = 0.5 (C) is the only one that lies
within the limit 1− pc < p+ < pc, and it is only here we find connected paths.

Frontiers in Physics frontiersin.org07

Fyhn et al. 10.3389/fphy.2023.1175426



geometry of the easy links and the connected paths indicating
this. In our argumentation, we have not taken into account the
empty links, i.e., those links that do not contain any interfaces.
They will be indistinguishable from the easy links with respect
to the dynamics. These empty links drive the system away from
the percolation critical point, and Figure 7 is in reality,
indicative of non-algebraic behavior. We have indicated this
possible shift in transition in the phase diagram shown in
Figure 1.

5 Non-Darcy behavior

In the simulations performed for this section, networks have
dimensions 100 × 100 links2. For each |ΔP|, the flow is driven for
approximately 100 pore volumes of fluid through the network. This
ensures the steady-state flow, and the value ofQ in the steady state is

calculated by averaging over the total flow rate during approximately
the last 25 pore volumes simulated.

5.1 Hysteresis

We pose, here, the question of whether there are any
hysteretic effects from raising and lowering the pressure drop
|ΔP| on the volumetric flow rate Q. The result is shown in
Figure 8. With the passing of time, measuring in terms of
injected pore volumes, |ΔP| applied across a network is raised
and then lowered in steps. The |ΔP| values used, 200 Pa, 266 Pa,
355 Pa, 473 Pa, and 631 Pa, are from the lowest numerically
feasible range. It can be observed from Figure 8 that whenever

FIGURE 6
Probability for having connected paths in systems with non-
wetting grain probability p+ and size L × L, where L is either 50 or
100 links.

FIGURE 7
MobilityM in networks with size L × L. The slope of the linear fit is
−t′/]= −4.3 ± 1.0. The saturation was set to Sw = 0.5 in this calculation.

FIGURE 8
Increasing global pressure difference |ΔP| with the injected pore
volumes raises the volumetric flow rate Q, and subsequently
decreasing |ΔP| returns Q to the original value. Q was measured in
units mm3/s.

FIGURE 9
Total volumetric flow rate Q as a function of global pressure
difference |ΔP| in systemswith different non-wetting grain occupation
probabilities p+. The results of linear fit with slopes β are included in the
plot, where β is the exponent in Q ∝ |ΔP|β. Q was measured in
units mm3/s, and |ΔP| was measured in units Pa. This figure is the basis
for Eq. 13.
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|ΔP| is returned to the same value, Q also quickly stabilizes back
to the previous value it had with the same |ΔP|. This shows that
the steady-state results generated using the DPN model do not
depend on long-term memory [48].

5.2 Volumetric flow rate dependence on
pressure drop

The results relatingQ and |ΔP| in systems with zero Pt and different
values of p+ are shown in Figure 9. We used p+ ∈ {0.42, 0.46, 0.50, 0.54,
0.58, and 0.5927} for the simulations. For each of these p+ values, the
results were averaged over 10 randomly chosen networks that have
connected paths, meaning 10 networks were randomly chosen from a
subset of networks with zero threshold pressure Pt. To assist the

understanding of Figure 9, velocity maps of a network with p+ = 0.5
at various |ΔP| have been plotted in Figure 10. The velocity maps show
the steady-state averaged absolute velocities; in other words, they show
the average speed of the fluid. The velocities are color coded so that those
through neutral links with θ = 90° are in shades of red, and the rest that
are through links with θ ∈ {0°, 180°} are in shades of blue. The results in
Figures 9, 10 show three regimes in terms of β, as indicated in Eq. 13.

The lowest regime in Eq. 13 seems to correspond to log |ΔP|)2.8 in
Figure 9; in other words, |ΔP|/L)6.3 Pa/link. The transition from this
regime to the next ismore gradual for p+ away from0.5 in Figure 9. In this
regimewith very low |ΔP|, we find β = 1.00 ± 0.01. The velocitymaps of a
network with p+ = 0.5 at two different |ΔP| in this regime are shown in
Figures 10A,B, and they indicate that the flow is mainly through the
neutrally wet (red) links. When increasing log |ΔP| from Figure 10A to
Figure 10B, the impactmainlymanifests in the increase of the speed of the

FIGURE 10
Maps of steady-state averaged absolute velocities |vp| at different global pressure differences |ΔP|, where velocities through links with the wetting
angle θ= 90° have shades of red and those through links with θ ∈ {0°, 180°} have shades of blue. The network had non-wetting grain occupation probability
p+ = 0.5. |ΔP| was measured in units Pa.
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fluids rather than the creation of newpaths. Therefore, itmakes sense that
the flow remains Darcy-like with β approximately equal to 1. In the
lowest regime in Figure 9, it is apparent that the mobility M in Eq. 13
decreases when p+ moves away from 0.5 toward pc ≈ 0.5927 and 1 − pc ≈
0.4073. In this regime, the flow is mainly through the connected paths.
The network has more connected-path links and transports more fluid
for the same |ΔP| value, hence resulting in a larger Q value, meaning a
largerM value when p+ moves toward 0.5. For instance, at log |ΔP| ≈ 2.3,
the number of active connected-path links is high at p+ = 0.5, as can be
seen in Figure 10A, slightly lower at p+ = 0.54, as can be seen in
Figure 11A, and significantly lower at p+ = 0.58, as can be seen in
Figure 11B, makingQ at p+ = 0.58 significantly less than in the other two
cases.

The middle regime in Eq. 13 seems to correspond to 3.3) log
|ΔP|)4.1 in Figure 9; in other words, 20.0 Pa/Link)|ΔP|/L)125.9 Pa/
link. Here, the exponent in Eq. 13 is β = β3 = 2.56 ± 0.05, andMm is the
same for all p+ values examined. When log |ΔP| increases from
Figure 10C to Figure 10D in this regime, the velocity maps show that
there is a significant increase in the number of flow carrying links,
meaning Q also increases significantly. The opening of new paths in
addition to the increased flow in the already active paths explains β being
large. At this level of |ΔP|,Mm and β being the same for all p+ examined
makes sense as the connected paths that differentiate networks with
different p+ no longer are the main contributors to the flow.

The highest regime in Eq. 13 seems to correspond to log |ΔP|U
4.5 in Figure 9; in other words, |ΔP|/LU316.2 Pa/link. Here, the
exponent in Eq. 13 is β = 1.00 ± 0.01, and MD is the same for all p+

examined. The velocity maps taken from two different points in this
regime are shown in Figures 10E,F. In both cases, almost all the links
in the network are carrying flow, regardless of their wettability;
hence, increasing |ΔP| does not create new paths. The effect of
capillary barriers in the links becomes insignificant in comparison to
the enormous pressure drop across the links, making all p+ produce
the sameQ at the same |ΔP|. Increasing |ΔP| in this regime increases
Q linearly, which is indicative of Darcy flow.

As the results in Section 3 show, there are very few to zero
connected paths outside of the range 1 − pc ≤ p+ ≤ pc examined in
Figure 9. If p+ was very close to the range examined in Figure 9, the
behavior of β andM would have been expected to be the same as in

Figure 9 since the flow will similarly be carried by the connected
paths. To test p+ further away, simulations have been performed
with p+ = 0.2 and 0.3, and the results are shown in Figure 12. Here, Pt
is not zero, unlike the systems used for Figure 9 and corresponding
constitutive Eq. 13. In this case, we find a constitutive equation

Q �
0 if |ΔP|≤Pt,
Mm |ΔP| − Pt( )β if Pt < |ΔP|<Pu,
MD |ΔP| − Pt( ) if |ΔP|<Pu,

⎧⎪⎨⎪⎩ (17)

where Pu is the crossover pressure between non-linear and Darcy
behavior. By varying Pt from 0.00 Pa to the lowest |ΔP| in the
datasets with an increment of 0.01 Pa, mathematical linear fits
with slopes β were calculated at the lowest pressures to find the
candidate that gave the least root-mean-square error. This gave
β = 2.23 ± 0.05 and Pt � (3.4 ± 0.5) kPa for p+ = 0.2, and β =

FIGURE 11
Maps of steady-state averaged absolute velocities |vp| at log |ΔP| ≈ 2.3, where |ΔP| is the global pressure difference. The velocities through links with
the wetting angle θ = 90° have shades of red, and those through links with θ ∈ {0°, 180°} have shades of blue. p+ is the non-wetting grain occupation
probability.

FIGURE 12
Total volumetric flow rateQ as a function of effective pressure in
systems with different non-wetting grain occupation probabilities p+.
The effective pressure is the difference between the global pressure
difference |ΔP| and the threshold pressure Pt. The results of linear
fit with slopes β are included in the plot, where β is the exponent in
Q∝ (|ΔP| − Pt)β . Q and |ΔP| were measured in the units of mm3/s and
Pa, respectively.

Frontiers in Physics frontiersin.org10

Fyhn et al. 10.3389/fphy.2023.1175426



2.29 ± 0.05 and Pt � (2.0 ± 0.5) kPa for p+ = 0.3. The regime these
β correspond to is the middle regime discussed in Figure 9, where
the behavior was also non-linear due to the capillary barriers
created by the interfaces between the two fluids. Fyhn et al. [21]
have observed β > 1 behavior even in networks with the same
wetting angle everywhere, which would be the same as having p+

→ 0.0 or 1.0 here. Due to the lack of connected paths in systems
with p+ = 0.2 and 0.3, the lowest regime in Figure 9 does not
appear for the results in Figure 12. Lastly, the highest regime
where β ≈ 1 should occur for all where the flow pushes through
almost the entire network and there is almost no influence of p+.
This is indeed what we see in Figure 12 as well.

6 Conclusion

We studied the effect of having porous media consisting of
randomly mixed dual-wettability grains on the immiscible two-phase
flow using a dynamic pore network model. The model treats the
interfacial tension between the two fluids similarly to a model
introduced by Irannezhad et al. [31, 32]. The model has two
parameters, the saturation Sw and the probability p+ to have a grain
of “+” type. The model, which is explained in Figure 2, contains links
(pores) of three types when filled with two immiscible fluids A and B:
links that are wetting with respect to fluid type A, links that are wetting
with respect to fluid type B, and easy links where there are no capillary
forces associated with interfaces. The parameter p+ controls the number
of links generating capillary forces and easy links. The model has a rich
phase diagram, sketched in Figure 1. There is a region 1 − pc ≤ p+ ≤ pc,
where pc is the site percolation threshold, where the easy links form
connected paths across the network. Outside this region, i.e., for p+ ≪
1 − pc or p

+ ≫ pc, easy links do not percolate. We find two classes of
constitutive equations for the volumetric flow rate Q vs. pressure drop
|ΔP|. For 1 − pc ≤ p+ ≤ pc, we observed the constitutive Eq. 13—see
Figure 9—whereas for p+≪ 1 − pc or p

+≫ pc, we observed a constitutive
Equation 17; see Figure 12. The crucial point that distinguishes these is
whether there is a non-zero threshold pressure Pt.

When 1 − pc ≤ p+ ≤ pc, we observed the following: at the regimes
with the lowest and highest |ΔP|, it seems that β = 1.00 ± 0.01 because
there is no significant change in the paths fluids are flowing through,
and increasing |ΔP| only increases the flow in the already active paths.
At the lowest |ΔP|, the flow ismainly through connected paths with zero
resistance. When p+ → 0.5 in this regime, there are more connected
paths, which means more fluid gets transported, making Q hence M
higher. At the highest |ΔP|, almost the entire network is always active.
On the other hand, β > 1 in themiddle regime where an increase in |ΔP|
increases the flow in the active paths and, in addition, opens new
conducting paths. In the middle and the highest regimes, the flow is no
longermainly through the connected paths, and the differences between
the pressures across the links and the capillary barriers in the links are
large. With the diminished role of the connected paths and capillary
barriers at higher pressure drops, Mm and MD do not depend strongly
on p+. The exponent in the middle regime was found to be β = β3 =
2.56 ± 0.05. We saw no systematic dependence of β on p+.

For p+ = 0.2, however, β = 2.23 ± 0.05 and Pt � (3.4 ± 0.5) kPa,
and for p+ = 0.3, β = 2.29 ± 0.05 and Pt � (2.0 ± 0.5) kPa. Due to the
necessity of determining Pt and β simultaneously at these p+ values,
there is more uncertainty associated with the measurements of β. It

is not possible to verify or falsify whether there is a fixed β = β2, or
whether it depends on p+ and Sw.

The existence of connecting paths is a percolation problem. They
disappear when p+ → (1 − pc)+ or p+ → (pc)−. It would, therefore,
be expected that themobilityM defined in Eq. 13would exhibit a critical
behavior similar to the conductance near a critical point. By making the
hypothesis thatM behaves as in Eq. 14 and using finite size scaling, we
determined t′ ≈ 5.7; see Figure 7. This is a huge value and raises the
suspicion that the system is not critical where percolation theory dictates
that it should be. Possible suspects for causing this push away from
criticality are the links that do not contain interfaces. They are not easy
links, but they have precisely the same effect on the dynamics of the flow
as the easy links. If this is so, the transition lines would then be shifted, as
shown in Figure 1.

We have only explored a small part of the phase diagram of this rich
model in this first study. The phase diagram should be investigated in
more detail and over a wider range of parameters. The nature of the
transition lines is as of now unknown and should also be further
investigated. There are percolation transitions in the model. The
question as to where they are and what their properties are as the
transport is not through percolation clusters remains unclear.
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a b s t r a c t

We consider immiscible and incompressible two-phase flow in porous media under
steady-state conditions using a dynamic pore network model. We focus on the fluc-
tuations in a Representative Elementary Area (REA), with the aim to demonstrate that
the statistical distributions of the volumetric flow rate and the saturation within the REA
become independent of the size of the entire model when the model is large enough.
This independence is a necessary condition for developing a local statistical theory for
the flow, which in turn opens for the possibility to formulate a description at scales
large enough for the typical pore size to be negligible using differential equations.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When two or more immiscible fluids compete for space while flowing in a porous medium, we are dealing with
multiphase flow [1–4]. Finding a proper description of multiphase flow at the Darcy scale, which may be orders of
magnitude larger than the pore scale, is a central problem in porous media research. On the Darcy scale, the only practical
approach to the multiphase flow problem is to replace the original porous medium with a continuous medium and then
describe the flow through a set of differential equations relating the fluid velocities to the driving forces, e.g. pressure
gradients, saturation gradients and gravity. The approach dominating any practical applications of immiscible two-phase
flow that today requires calculations is based on relative permeability theory [5]. This is a purely phenomenological theory
essentially stating that the two immiscible fluids get into each other way and therefore reduce the effective permeability
each fluid experiences. Add a capillary pressure function to take into account the capillary forces between the two fluids,
and the theory is complete [6]. This phenomenological approach has the flaw that it provides no path to implement into
it our increasing understanding of the interactions and flow of the fluids at both the pore scale and the molecular scale.

Solving the scale-up problem in immiscible two-phase flow in porous media consists of expressing the flow at the pore
scale in terms of the flow at the molecular scale and then expressing the flow at the Darcy scale in terms of the flow at
the pore scale. The favored approach to the scale-up problem is that of homogenization. That is, start with a description
of the problem on small scale using variables appropriate for that scale. Then average these variables over the large scale,
followed by closure assumptions.

One example of the homogenization approach of scaling up immiscible two-phase flow in porous media starts
from mechanical principles such as momentum conservation to arrive at an effective description of the flow through
homogenization [7–12]. Thermodynamically Constrained Averaging Theory (TCAT) [13–18] is a very different approach
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to the scale-up problem. It is based on volume averages of thermodynamic quantities defined at the sub-pore and pore
scale, together with closure relations at the homogeneous scale as formulated by Whittaker [7]. Another homogenization
approach is that of Kjelstrup et al. [19–21], who use Euler scaling to work out the averages of intensive variables such as
pressure. This approach manages to keep the number of variables down in contrast to other approaches. We also point to
the homogenization approach based on expressing the central thermodynamic potentials in terms of geometric variables
that characterize the porous medium, the fluid interfaces and the contact lines and the Minkowski functionals combined
with powerful theorems from differential geometry [22–25].

These homogenization approaches succeed in taking the description of the flow from the sub-pore scale to scales
just above the pore scale. They do not, however, take into account the fluid structures that appear at even larger scales.
These structures result from the way the fluids arrange themselves within the porous medium, i.e., their cluster structure.
They profoundly affect the flow on the intermediate scales below the Darcy scale — and this must be reflected in the
flow at the Darcy scale. Energetically, these structures are not dominating, and therefore easy to discard in the different
homogenization approaches. However, any scale-up attempt taking the problem from the pore scale to the Darcy scale
needs to take these structures into account. As the structures appear over many length scales, a different approach from
those based on homogenization techniques is needed.

Looking back in history, there is an upscaling technique that is capable of dealing with structures and correlations
that stretch across scales: statistical mechanics [26]. The early developers of thermodynamics constructed their approach
in order to understand heat and its relation to work in parallel to the development of the steam engine. It is based
on conservation laws and symmetries, especially dilation symmetry. It treats the medium as a continuum and provides
the necessary differential equations. Statistical mechanics was developed to understand how the motion of atoms and
molecules leads to the thermodynamic relations, i.e., it provides the scaling up from the molecular scale to the continuum
scale, thus circumventing the necessity to solve the equations of motion for every molecule.

One may therefore get the impression that thermodynamics and statistical mechanics are inextricably linked to atomic
and molecular systems. This is, however, not correct. Jaynes [27] developed a generalized statistical mechanics in the
fifties based on the statistical approach to information developed by Shannon a few years earlier [28]. This approach,
in turn, originates in the principle of sufficient reason formulated by Laplace [29]: If we know nothing about a process
with two outcomes, the optimal choice of probabilities for the two outcomes is 50 % for each. Shannon constructed a
function of ignorance measuring quantitatively what we do not know about a given process having a number of different
outcomes. One of his criteria for this function, called the Shannon entropy, was that it would have its maximum value
when the probabilities for all outcomes would be equal, which is a generalization of the Laplace principle of sufficient
reason. Jaynes took this approach further by adding the criterion that the Shannon entropy is maximum given what is
known about the process. This leads to a set of equations that determine the probabilities for the different outcomes. This
is Jaynes’ generalization of statistical mechanics.

An important caveat in applying the Jaynes maximum entropy approach is that it does not work for driven systems [30].
Immiscible two-phase flow in porous media does represent a driven system where there is production of entropy due to
viscous dissipation and irreversible motion of fluid interfaces and contact lines. Nevertheless, in a recent paper, Hansen
et al. [31] developed a statistical mechanics for immiscible and incompressible two-phase flow in porous media based on
the Jaynes principle of maximum entropy, leading to a formalism resembling thermodynamics that describes the flow at
the continuum level. The trick to make it work was not to consider the molecular entropy which is being produced when
the fluids move, but rather the entropy associated with the flow patterns of the fluids. This entropy is not being produced
under steady-state flow conditions. Furthermore, it is this entropy that properly describes the fluid structures on scales
above the pore scale, whereas the molecular entropy associated with dissipation dominate at scales up to the pore scale.

The Jaynes approach solves the scale-up problem in the same way as it was solved through ordinary statistical
mechanics for atomistic systems. It is the aim of the present paper to investigate numerically a necessary criterion which
was only assumed to be true in [31] for the Jaynes approach to be applicable to immiscible two-phase flow in porous
media: can we partition the porous medium into a ‘‘system’’ in contact with a ‘‘reservoir’’ as in ordinary thermodynamics?
The term ‘‘reservoir’’ has very different meanings in thermodynamics and in porous media research. In this work, the term
is used in a thermodynamical sense, which is that a reservoir is a system large enough so that the variables describing it
do not change when brought into contact with a system small enough for its variables to be affected. The way we answer
the question just posed is this: Based on a numerical model, we record the statistics of key parameters in the system for
different sizes of the reservoir, finding that the statistics is independent of the reservoir size when it is large enough.

We note that there have been earlier attempts at capturing the evolution of retention in unsaturated porous media
subject to quasi-static changes in imposed pressure. Xu and Louge [32] formulate drainage or imbibition through porous
media using an Ising model that predicts the retention curve of saturation vs capillary pressure. This is a very different
approach with different aims from that of Hansen et al. [31] who focus on steady-state flow.

We will in the following relate the concept of a ‘‘system’’ to that of a Representative Elementary Area (REA) [33]. At each
point in the pore space of the porous medium, we may place an area that is orthogonal to the streamline passing through
it. The area qualifies as an REA if it is large enough for the variables describing the properties of the medium itself and
the fluids passing through it to have well-defined averages. To obtain meaningful averages, the length scale of REA must
be larger than the microscopic characteristic length of the porous medium to avoid rapid small-scale fluctuations, and
must also be smaller than the characteristic length of the large-scale inhomogeneities [13,34].
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Fig. 1. A porous medium in the shape of a cylinder. There is a flow of volumetric flow rate Q passing through it. Four planes cutting through the
cylinder orthogonally to the average flow direction, i.e., the z-axis, are shown. The volumetric flow rate Q is the same through each plane. However,
the volumetric flow rate of each fluid, Qw and Qn vary from plane to plane.

The statistical mechanics developed by Hansen et al. for immiscible and incompressible two-phase flow in porous
media [31], leading to a thermodynamics-like formalism for the macroscopic variables describing the flow [35–38], is
reviewed in Section 2. We go into some detail here in order to place the present work in a proper context.

The dynamic pore network model [39,40] used in this work is introduced in Section 3. The model is implemented as
a two-dimensional lattice where the REA is defined as a one-dimensional sub-lattice placed orthogonally to the average
flow direction.

The aim of this paper is to demonstrate that Eq. (4) is valid for our dynamic pore network model. This equation states
that the statistics of the variables characterizing the REA do not depend on the statistics of the reservoir apart from local
interactions. We report on our findings in Section 4. We first investigate how the statistics of the variables we focus on,
the wetting saturation and the Darcy velocity, vary with the size of the sub-lattice we consider, see Section 4.1. This allows
us to determine when the sub-lattice is large enough to act as an REA. We then proceed to study the dependence of the
variable fluctuations on the size of the REA in Section 4.2. Surprisingly, whereas the fluctuations of the wetting saturation,
scale as the inverse of the square root of the size of the REA, the average Darcy flow velocity fluctuations scale as the
inverse of the size of the REA to the power 0.83. Lastly, in Section 4.3 we test whether the statistics measured in the REA
are independent of the size of the reservoir. We do indeed find that this is, thus verifying the validity of Eq. (4) for our
dynamical pore network model.

A pertinent question is, what would happen if the verification of Eq. (4) would have failed? It would invalidate the
statistical mechanics of Ref. [31], but it would also have a negative impact on any attempt at constructing a local theory
for immiscible two-phase flow at the Darcy scale in that all quantities are local. Rather than having the theory represented
in the form of differential equations, they would contain integrals over space. We summarize and discuss this in Section 5
in addition to the other results.

2. Statistical mechanics

We review in the following the statistical mechanics approach to immiscible and incompressible two-phase flow in
porous media of Hansen et al. [31]. Envision a homogeneous cylindrical block of porous medium as shown in Fig. 1,
with a volumetric flow rate Q flowing through it. This flow consists of two immiscible and incompressible fluids which
are well mixed before entering the porous medium. Keeping the flow entering into the porous media constant creates
a steady-state flow within the porous medium. By steady-state flow we mean that the macroscopic variables describing
the flow remain constant or fluctuate around well-defined averages. It is important to note that this does not imply that
the pore scale interfaces between the fluids remain static. Rather, at the scale of the fluid clusters, there may be strong
activity where clusters form and break up. Steady-state flow is a concept that is defined at the macroscopic Darcy level,
not at the pore level. We may split Q into the volumetric flow rate of the more wetting fluid, Qw , and the volumetric flow
rate of the less wetting fluid, Qn, so that

Q = Qw + Qn . (1)

The flow is dissipative and hence molecular entropy is produced. There is viscous dissipation and the motion of fluid
interfaces and contact lines contains a dissipative element [41]. This means that there is a production of entropy as
hydrodynamic motion is converted into thermal motion. The Jaynes maximum entropy principle should therefore not
be applicable [30]. We now explain how we get around this hurdle.

There are three scales that stand out in porous media: the molecular scale, the pore scale and the Darcy scale.
At the sub-pore scale, the dissipation dominates the flow and methods from non-equilibrium thermodynamics are
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Fig. 2. We are illustrating to the left (a) the world lines of molecules in a two-dimensional gas in a space–time diagram. To the right (b), we show
some streamlines of a fluid mixture flowing in a porous medium.

appropriate [19–21]. However, on scales above the pore scale, it is the fluid clusters and how they move that dominate.
One may associate an entropy with these fluid structures.

In order to construct this flow entropy, we imagine a cylindrical porous plug as shown in Fig. 1. There is immiscible
two-phase flow in the direction of the cylinder axis. We now focus on a set of imaginary planes that cut through the
porous plug orthogonal to the cylinder axis as shown in Fig. 1. Imagine each plane is divided into voxels with sufficient
resolution. Each voxel is associated with a number of variables describing the flow through it. To be concrete, suppose
we model the porous medium using the Lattice Boltzmann method (LBM) [42]. The voxels would then be the nodes of
the lattice along the plane used in LBM and the variables would be the LBM variables associated with these nodes. The
configuration in the plane, X , would be the values the voxel variables have at that particular instance in each voxel.
Measuring over many configurations we may define a configurational probability density P(X). This, in turn, defines our
entropy,

Σ = −

∫
dX P(X) ln P(X) , (2)

where the integral is over all physically feasible configurations in the plane. Note the important fact that since the structure
of the porous matrix varies from plane to plane, this quenched disorder must be taken into account.

Before taking the next step, it is useful to think of the following system: We imagine a two-dimensional gas confined
inside a box. The molecules of the gas move around incessantly. At a given moment, the position and velocity of each
molecule will define an instantaneous gas configuration. The aim of statistical mechanics in this context is to provide
the configurational probability density for these instantaneous configurations. There is no production of entropy in this
system from the motion of the molecules. It is in equilibrium. However, we may represent the gas in a three-dimensional
space–time plot, see Fig. 2(a). Then, each molecule is represented by its world line and the configurations represent the
world lines cutting through planes orthogonal to the time axis.

Fig. 2(b) shows the streamlines of a fluid flowing through a porous medium. There is a striking analogy between these
streamlines and the world lines of the molecules in the space–time plot of molecules of the two-dimensional gas, when
we interpret the z-axis in Fig. 2(b) as a ‘‘time’’ axis. Figure 7 in Ref. [43] illustrates this point in more detail. Cuts through
the porous medium as shown in Fig. 1 are then analogous to the snapshots of configurations of the gas molecules taken
at different times. The flow entropy defined in Eq. (2) then corresponds to the entropy of the gas molecules, and as in the
gas, there is no production of this flow entropy along the z-axis.

The volumetric flow rate Q has the same value for all planes orthogonal to the flow axis. Hence, with the flow axis
acting as a ‘‘time’’ axis, Q is a conserved quantity along this axis. We may therefore interpret Q as being analogous to
the internal energy of the two-dimensional gas. Note that neither Qw nor Qn are conserved, only their sum Q (Eq. (1))
is. However, both have well-defined averages. The porous medium block of Fig. 1 may be seen as an analog of a two-
dimensional gas that does not exchange heat with its surroundings. In other words, it is the analog of a microcanonical
system.

Fig. 3 shows one of the planes cutting through the porous medium orthogonally to the flow direction, i.e., the z-axis. A
sub-area of this plane that is large enough to reflect the behavior of the entire plane is chosen. Hence, this area acts as an
REA [33]. We characterize this REA by three variables in addition to its total area A: Qp the volumetric flow rate through
it, Ap which is the area inside the REA covered by pores, and Aw,p which is the part of the pore area that is covered by the
wetting fluid. The configurations within the REA we refer to as Xp. These configurations are a subset of the configurations
X in the entire plane. Denoting Xr as the part of X which excludes the REA gives

X = Xr ∪ Xp . (3)
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Fig. 3. Shows one of the planes cutting through the porous media block orthogonal to the flow direction which is upwards as marked with the
arrows. In the plane, a sub-area that is large enough to reflect the behavior of the entire plane so that it acts as a Representative Elementary Area
(REA) is selected. The REA is characterized by three variables besides its area A: The volumetric flow rate through it, Qp , the area covered by the
pores, Ap , and the area filled with the wetting fluid Aw,p .

We now refer to the discussion in the Introduction (Section 1) and interpret the REA as the system and the plane
excluding the REA as the reservoir . For the Jaynes maximum entropy approach to be applicable, we must have that

P(X) = pr (Xr )p(Xp) , (4)

where pr (Xr ) is the configurational probability for the reservoir and p(Xp) is the configurational probability for the REA.
The significance of this equation is that it ensures that it is possible to consider the REA as an autonomous system that
interacts with the reservoir. Without this property, a local description of the flow at the Darcy scale would then not be
possible.

It is the aim of this paper to verify the validity of Eq. (4). This equation allows us to define a flow entropy for the REA,

Σp = −

∫
dXp p(Xp) ln p(Xp) , (5)

where the integral runs over all physically feasible configurations.
We maximize the entropy with the constraints that the averages of Qp, Ap and Aw,p are known. This gives [31]

p(Xp) =
1
Z

exp
[
−

Qp(Xp)
θ

+
πAp(Xp)

θ
+

µAw,p(Xp)
θ

]
, (6)

where the partition function Z is given by

Z(θ, π, µ) =
∫

dXp e−Qp(Xp)/θ+πAp(Xp)/θ+µAw,p(Xp)/θ . (7)

Here Qp(Xp), Ap(Xp) and Aw,p(Xp) are the variable values for the REA configuration Xp. It is through these three variables
that contact is made with the pore-scale physics since this is where the configuration Xp enters. Three parameters appear
in this equation: 1. the agiture θ which plays a role similar to that of temperature (and we note that the name, which is
a contraction of the words ‘‘agitation’’ and ‘‘temperature’’ has been chosen to emphasize that this is not a temperature),
2. the flow pressure π which is conjugate of the pore area Ap — and hence the porosity, and 3. the flow derivative µ which
plays the role similar to the chemical potential and which is the conjugate to the wetting area Aw,p and hence the wetting
saturation Sw,p = Aw,p/Ap.

Eq. (7) constitutes the scaling up from the microscopic level, in other words the pore level, to the Darcy level, since we
may from it determine the values of the macroscopic variables. We have thus succeeded in turning the scale-up problem
from being a physical one to the mathematical problem of integration in Eq. (7). The macroscopic variables that ensue
from this approach are related through a thermodynamics-like formalism with all its richness [31,35].

In ordinary thermodynamics, one finds a set of general relations between the macroscopic variables. They stem either
from the Euler theorem for homogeneous functions or from the Gibbs relation [44,45]. The same applies to the present
formulation of the two-phase flow problem. We sketch the approach in the following.

We define an average pore velocity vp = Qp/Ap and an entropy density σp = Σp/Ap. The average pore velocity vp
depends on the flow entropy density σp and the wetting saturation Sw,p: vp = vp(σp, Sw,p). With these variables, we may
construct an equivalent to the Gibbs relation,

dvp = θ dσp − µ dSw,p . (8)

We do a Legendre transform of the average flow velocity vp from (σp, Sw,p) to (σp, µ) as control variables, finding

v̂n(σp, µ) = vp(σp, µ)− Sw,p(σp, µ)µ , (9)
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where we have defined the thermodynamic non-wetting velocity [35]

v̂n =

(
∂Qp

∂An,p

)
Aw,p,σ

. (10)

There is also the thermodynamic wetting velocity

v̂w =

(
∂Qp

∂Aw,p

)
An,p,σ

. (11)

The non-wetting area An,p is the area of the REA that is covered by the non-wetting fluid. We furthermore have that

Sw,p = −

(
∂v̂n

∂µ

)
σ

, (12)

and

µ = −

(
∂vp

∂Sw,p

)
σ

. (13)

Eqs. (9) through (13) demonstrate the power of this approach. These relations are far from obvious.
There is one more central aspect that needs to be brought to light. The thermodynamic velocities defined in Eqs. (10)

and (11) are not the pore velocities of the fluids

vw =
Qw,p

Aw,p
, (14)

and

vn =
Qn,p

An,p
, (15)

where Qp = Qw,p + Qn,p in analogy with Eq. (1). Rather, they are related through the two equations [35–37]

vw = v̂w − Sw,pvm , (16)

vn = v̂n + Sn,pvm , (17)

where Sn,p = An,p/Ap = 1− Sw,p and vm is the co-moving velocity. It turns out from experimental and numerical data that
the co-moving velocity is extraordinarily simple [37],

vm = a(σ )+ b(σ )µ , (18)

where a(σ ) and b(σ ) are functions of the flow entropy density. There is no equivalent to the co-moving velocity in ordinary
thermodynamics [38].

Calculating the partition function Z(θ, π, µ) defined in Eq. (7) requires a knowledge of the pore-scale configurations
Xp through the three variables Qp(Xp), Ap(Xp) and Aw,p(Xp). Furthermore, the integral runs only over physically feasible
configurations. As already mentioned, this is where the characteristics of a given porous medium and the fluids enter. It
is here details of the pore scale physics enters, such as interfacial tension gradients and interface curvature at the fluid–
fluid interfaces. This is where contact is made between this theory and the ongoing research on the pore-scale physics of
immiscible two-phase flow.

3. Dynamic pore network model

In order to explore the validity of Eq. (4), we use a dynamic pore network model [40,46] originally developed by Aker
et al. [39] and then further developed in e.g., [47–53], including direct comparison with experimental systems, [54,55]. In
the latter of these two references, the performance of the model is also compared to other models.

We illustrate the model as it is implemented in the context of the present paper in Fig. 4. We use a square lattice
where the links represent single pores, all having the same length l, but with a distribution in their radii. The lattice has
dimensions Lx× Ly measured in units of l, and we implement periodic boundary conditions in both the flow direction and
the transversal direction. The square lattice is oriented at 45◦ angle with respect to the average flow direction.

The links connecting neighboring nodes contain the pore throats. The nodes have no volume associated with them.
The variation in the cross-sectional area of the pore throat and pore bodies are modeled by an hourglass shape so that a
fluid meniscus in link i will generate a capillary pressure according to the Young–Laplace Equation [3]

pc,i(x) =
2γ cos θ

ri(x)
, (19)

where x ∈ [0, l] is the position of the interface along the center axis of the link, having a length l. Here γ is the surface
tension and θ is the wetting angle measured through the wetting fluid which is the fluid that has the smallest angle
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Fig. 4. Two dimensional dynamic pore network model with dimensions Lx × Ly links consists of hourglass shaped links with length l and volumetric
flow rate q passing through them, oriented 45◦ from the average flow direction. The total volumetric flow rate Q is constant over all the cross
sections normal to the average flow direction. An example of a ‘‘system’’ with length lp = 4 links is marked, and the rest of the network surrounding
the system is the ‘‘reservoir’’.

with the solid wall. We note that this expression is only valid under hydrostatic conditions. Hence, using it in a dynamic
setting implies the assumption that the motion of the interfaces is slow. This assumption is difficult to justify during
Haines jumps. We still use it as an approximation that enters together with all the other approximations that the model
requires. We furthermore ignore hysteretic effects associated with the wetting angle with the same justification as for
using the Young–Laplace equation. The variable indicating the shape of the link in Eq. (19) is the radius of the link at
position x, which is given by

ri(x) =
r0,i

1− c · cos
( 2πx

l

) , (20)

where c is the amplitude of the variation and r0/c is randomly chosen from the interval [0.1l, 0.4l], thus creating a disorder
in the properties of the network.

The fluids within a given link are pushed with a force caused by the total effective pressure across it which is the
difference between the pressure drop between the two nodes it is attached to, ∆p, and the total capillary pressure∑

k pc(xk) due to all the interfaces with positions xk ∈ [0, l]. The model has been set to allow up to four interfaces in
each link, and this necessitates merging of the interfaces as described in [40].

The constitutive relation between the volumetric flow rate qi through link i and pressure drop ∆pi across the same
link is [40,56]

qi = −
π r̄4i
8µil

(
∆pi −

∑
k

pc,i(xk)

)
, (21)

where r̄i is the average hydraulic radius along the link. Furthermore, we have that µi = sw,iµw,i+sn,iµn,i is the saturation-
weighted viscosity of the fluids in link i where sw,i = Vw,i/Vi and sn,i = Vn,i/Vi are the saturations of the wetting fluid
and the non-wetting fluid respectively with viscosities µw,i and µn,i, and volumes Vw,i, Vn,i, and Vi = π r̄2i l.

In order to calculate the flow through the links and move the interfaces correspondingly, we solve the Kirchhoff for
the network using a conjugate gradient algorithm [57]. Our numerical precision in determining the flow rates is 10−6.

Using the terminology introduced in the Introduction, we divide the network into a ‘‘system’’, corresponding to the
REA, and a ‘‘reservoir’’ which is the rest of the network. The systems are chosen as illustrated with an example in Fig. 4
where the system is placed orthogonally to the flow direction, i.e., in the same way as in Fig. 3. Systems are made up
of lp number of links, for instance, the system in Fig. 4 has lp = 4 links. The pore area Ap of a system is the sum of the
transverse area, the area orthogonal to the total flow direction, of each link belonging to that system,

Ap =

lp∑
i=1

√
2π (r̄i)2 , (22)

where
√
2 = 1/ cos (45◦) comes from the fact that links in the model are oriented in 45◦ angle from the flow direction.

Similarly, the total wetting fluid pore area of the system Aw,p is the sum of the product of the transverse area and the
wetting fluid saturation in each link,

Aw,p =

lp∑
i=1

√
2π (r̄i)2sw,i . (23)

The volumetric flow rate through a system with lp links is

Qp =

lp∑
i=1

qi , (24)

7
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Fig. 5. Box plots showing the wetting fluid saturation Sw,p in systems with width lp . The model has dimensions 120 × 60 links2 .

and its wetting saturation is

Sw,p =
Aw,p

Ap
. (25)

4. Numerical investigations

The simulations start from a random distribution of fluids within the network. The model is then integrated forwards
in time while monitoring the pressure drop across it. When the pressure drop settles to a well-defined and stable average
value, the model has reached steady-state flow. At this point, 20 system locations are chosen randomly at every 100th
time-iteration, to get measurements that are mostly uncorrelated in time and space. Within each of these systems, the
values of Qp/lp and Sw,p are measured. This procedure ensures averaging not only over the motion of the fluids but
also over the disorder of the porous medium itself. This process is repeated for a time corresponding to the passing
of approximately 25 pore volumes of fluid through the model, where pore volume is the total volume of the links in the
model. We do this for different widths lp for the systems. In addition, the changes in the model size are studied by testing
various model widths Lx while keeping the total length of the model fixed at Ly = 60 links. The links in the model are all
l = 1 mm long. The two immiscible fluids have γ = 3.0 · 10−5 N/ mm, µw = µnw = 0.1 Pa s and θ = 70◦. The overall
wetting saturation for the network is fixed at Sw = 0.5. Due to the periodic boundary conditions, the volume of the fluids
is conserved and the total saturation is constant. The total volumetric flow rate per unit width of the network is fixed
at Q/Lx = 0.7 mm3/(s link). The capillary number can be calculated from Ca = µQ/(γAtot) where Atot is the total cross
sectional area [40], giving Ca ≈ 0.012.

4.1. System variable statistics

Figs. 5 and 6 show box plots of Sw,p and Qp/lp as functions of lp, for a network with dimensions 120 × 60 links2. In
each box plot, the lower edge of the box which we can denote b1, the center line (median) b2 and the upper edge b3
correspond to the 25th, 50th and 75th percentiles of the data, respectively. The lower and upper limits that exclude the
outliers are b1 − 1.5(b3 − b1) and b3 + 1.5(b3 − b1), respectively.

Since the control parameters for the entire network are fixed at Sw = 0.5 and Q/Lx = 0.7 mm3/(s link), the average
values ⟨Sw,p⟩ and ⟨Qp/lp⟩ in the systems will be the same as these values if measured with large enough statistics while
the fluctuations around them will depend on lp. In Figs. 5 and 6, the medians for all system sizes, lp, agree well with these
expected average values. This factor indicates the existence of REAs since the intensive quantities inside REA must have
well-defined averages that are independent of the size of the REA. This agreement is even true for systems as small as
lp = 6 links.

Furthermore, both Figs. 5 and 6 show a steady decrease in the variations in the distributions with increasing lp as
the edges of the boxes approach the medians. This is more prominent for Qp/lp in Fig. 6 than for Sw,p in Fig. 5. This
is a reflection of Q/Lx being constant for any cut through the model orthogonally to the average flow direction, since
Qp/lp → Q/Lx as lp → Lx. On the other hand, Sw,p has no such restrictions and is therefore allowed to fluctuate, even
when lp = Lx. The fact that there is a smaller spread in both distributions with increased lp is another factor that signals
possible REAs.
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Fig. 6. Box plots showing the volumetric flow rate per unit system-width Qp/lp in systems with width lp . The model has dimensions 120 × 60 links2 .

Fig. 7. Standard deviation of the wetting fluid saturation Sw,p in systems with widths lp residing in models having widths Lx and length 60 links.

4.2. Size dependence of fluctuations

One way to quantitatively study the fluctuations in ξ ∈
{
Sw,p,Qp/lp

}
is through their corrected standard deviations

given by [58]

δξ =

√∑N
i (ξi − ⟨ξ ⟩)2

N − 1
(26)

where N is the number of measurements and ⟨ξ⟩ =

(∑N
i ξi

)
/N is the mean. The standard deviations of Sw,p and δQp/lp

as a function of the system width lp are shown in Figs. 7 and 8, respectively.
We note the difference in behavior in Figs. 7 and 8 in that δQp/lp drops off dramatically when lp approaches Lx whereas

no such effect is seen for δSw,p. This is caused by the fact that Q is not fluctuating in the planes orthogonal to the
average flow direction, whereas there is no such constraint for Sw , which is a factor also mentioned earlier. To avoid
the measurements taken inside the systems being affected by the boundary effects, REA needs to be adequately smaller
than the total model.

We also show in Figs. 7 and 8 the results of extrapolation to infinitely large model Lx → ∞. To understand how this
was calculated, start by looking at Fig. 9 where the results from Figs. 7 and 8 have been plotted in a different way. In order
to extrapolate to Lx → ∞, the simulation results used must be from cases where the systems are much smaller than the
model. To comply with this, the extrapolation process was performed for lp ∈ [1, 20] links and Lx ∈ [150, 198] links. For
these values of lp and Lx, Fig. 9 shows that there is a linear relationship between δξ ∈

{
δSw,p, δQp/lp

}
and 1/Lx. Therefore,

linear regression fit of the form

δξ =
c1
Lx

+ δξ∞ , (27)

can be performed for each lp, where c1 and δξ∞ are constants. It can be observed from Eq. (27) that δξ → δξ∞ when
Lx → ∞, hence δξ∞ are the extrapolation results. In Fig. 9, δξ∞ are the intersections the linear fits in Eq. (27) make with
the vertical axis.
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Fig. 8. Standard deviation of the volumetric flow rate per unit system width δQp/lp in systems with widths lp residing in models with widths Lx
and length 60 links.

Fig. 9. Standard deviation of (a) the wetting fluid saturation Sw,p and (b) the volumetric flow rate per unit system width Qp/lp in systems with
widths lp residing in models having widths Lx and length 60 links.

After obtaining estimates for δξ∞ for each lp, we do a power law fit

δξ∞ = c2 l−β
p (28)

to model the relationship between δξ∞ and lp where c2 is a constant and β is an exponent. The result is

lim
Lx→∞

δSw,p ≈ 0.22l−0.48
p (29)
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Fig. 10. Normalized histogram for the wetting fluid saturation Sw,p in systems with width lp = 20 links. The model has length 60 links and widths
Lx that are close to lp in (a) and are much larger than lp in (b).

for Fig. 7 and

lim
Lx→∞

(
δQp

lp

)
≈ 1.23l−0.83

p (30)

for Fig. 8.
Based on the central limit theorem, the standard deviation of the average of lp equally distributed independent variables

is proportional to lp−1/2. The quantities Sw,p and Qp/lp are both intensive quantities representing averages in lp. We note
from Eq. (29) that this is the case with Sw,p, which could indicate that samples are uncorrelated. However, that the
fluctuations δQp/lp in Eq. (30) scales as one over lp to the power 0.83 is a surprise presumably indicative of the samples
being non-zero correlated in such a way that they fall off faster than when there are no correlations. This further means
that the reservoir should be larger than the spatial correlation length for the systems to be not affected by finite-size
effects.

4.3. Reservoir independence

We have now reached the central aim of this paper: Testing the validity of Eq. (4) for our dynamic pore network model.
This is done by keeping lp fixed and varying Lx while monitoring histograms of Sw,p and Qp/lp. If Eq. (4) is valid for this
model, the histograms should be independent of the model size Lx for large enough Lx.

The normalized histograms of Sw,p and Qp/lp, measured for systems of width lp = 20 links, are shown in Figs. 10 and 11
respectively. We have split the two figures into two sub figures each in order to increase readability. Figs. 10(a) and 11(a)
show the normalized histograms for Lx being close to lp, whereas Figs. 10(b) and 11(b) show the normalized histograms
for Lx much larger than lp.

The normalized histograms for Sw,p in Fig. 10 seem to overlap for essentially all values of Lx. This effect can also be
seen in the standard deviations in Fig. 7 where δSw,p approximately follows Eq. (29) regardless of the model size Lx or the
system size lp. This means, in the case of Sw,p, the reservoir independence seems to be satisfied regardless of the difference
between lp and Lx.

On the other hand, the histograms of Qp/lp differ more from each other when Lx is close to lp, see Fig. 11(a), compared
to Lx being much larger than lp where they overlap significantly larger, see Fig. 11(b). This behavior is reflected in the
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Fig. 11. Normalized histogram for the volumetric flow rate per link Qp/lp in systems width lp = 20 links. The model has length 60 links and widths
Lx that are close to lp in (a) and are much larger than lp in (b).

standard deviation results in Fig. 8 as well where δQp/lp following Eq. (30) only when lp is less than Lx. From these findings,
we conclude that Qp/lp is independent of the reservoir size when Lx is sufficiently larger than lp. This difference in behavior
is presumably related to the flow rate Q/Lx being constant in all layers whereas the wetting saturation Sw fluctuates.

The results combined indicate that reservoir independence is valid for our model when the reservoir is adequately
larger than the system.

5. Conclusion

The aim of this paper has been to address the plausibility of a necessary condition for the Jaynes statistical mechanics
formulation [27] to be applicable to immiscible and incompressible two-phase flow in porous media. The condition
demands that a such porous medium can be split into a system, functioning as a Representative Elementary Area (REA),
and a reservoir as in ordinary thermodynamics. This requires the statistics of the system to be independent of the size
of the reservoir. Using dynamic pore network model simulations, we studied this by measuring distributions of key
parameters using systems and reservoirs with different sizes.

First, the results show that there exist systems that can qualify as REAs within which the studied distributions have
small spread and have well defined averages independent of the size of the REAs.

Second, REAs exhibit reservoir independence as demonstrated in Figs. 10 and 11. Hence, the central Eq. (4)

P(X) = pr (Xr )p(Xp) ,

works for the dynamic pore network model.
As was alluded to at the end of the Introduction, the importance of the validity of Eq. (4) goes beyond verifying the

Jaynes statistical mechanics framework [31]. If Eq. (4) would have failed, any attempt at constructing a local theory for
immiscible two-phase flow at the Darcy scale would be in jeopardy. By local we mean that we can define variables that
depend on a given point in the porous medium and the theory then provides relations between these variables depending
only on that point. Relative permeability theory is an example of such a local theory. A failure of Eq. (4) would presumably
necessitate the relations between variables containing integration over space.

When the reservoir size approaches to infinity, as the extrapolation results show, the fluctuations in the wetting fluid
saturation depend on the system size through an exponent of −0.48. The same exponent in the case of volumetric flow
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rate per unit system width is −0.83. The fact that at least one of the fluctuations corresponds to an exponent significantly
different from −1/2 indicates a non-zero spatial correlation between the links in the network, according to the central
limit theorem. We speculate that this may be a consequence of total volumetric flow rate in the planes orthogonal to the
average flow direction being a conserved quantity, whereas saturation in the same planes is not.

The measured distributions of saturation and volumetric flow rate inside systems are more similar when reservoir is
much larger than system than when system and reservoir are closer in size. The cases with similar distributions indicate
that reservoirs in these cases are adequately larger than the spatial correlation length for the systems to be unaffected
by finite-size effects. Reservoir independence can be said to be achieved in these cases.

Our dynamic pore network model is capable of modeling porous media with a large number of pores (links). This
comes at the cost of a simplified description of the structure of the pores and the motion of the fluids. Other models such
as the Lattice Boltzmann Model [42] are capable of modeling the structure of the pores and the motion of the fluids inside
them quite accurately. However, the price for this is the number of pores that may be modeled is limited. Nevertheless,
attempts should be made to test reservoir independence of the systems also within the limits of this model. Another
formidable task would be to analytically derive reservoir independence using hydrodynamics at the pore level.

CRediT authorship contribution statement

Hursanay Fyhn: Numerical simulations, Data analysis, Wrote the code for the model, Developing the theory, Methodol-
ogy, Writing the manuscript. Santanu Sinha: Wrote the code for the model, Developing the theory, Methodology, Writing
the manuscript. Alex Hansen: Developing the theory, Methodology, Writing the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank Carl Fredrik Berg, Eirik G. Flekkøy, Daan Frenkel, Federico Lanza, Håkon Pedersen and Per Arne Slotte
for interesting discussions.

Funding

This work was supported by the Research Council of Norway through its Center of Excellence funding scheme, project
number 262644.

References

[1] J. Bear, Dynamics of Fluids in Porous Media, Dover, Mineola, 1988.
[2] M. Sahimi, Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, Wiley, New York, 2011.
[3] M.J. Blunt, Multiphase Flow in Permeable Media, Cambridge Univ. Press, Cambridge, 2017.
[4] J. Feder, E.G. Flekkøy, A. Hansen, Physics of Flow in Porous Media, Cambridge University Press, Cambridge, 2022.
[5] R.D. Wyckoff, H.G. Botset, The flow of gas-liquid mixtures through unconsolidated sands, Physics 7 (1936) 325, http://dx.doi.org/10.1063/1.

1745402.
[6] M.C. Leverett, Capillary behavior in porous sands, Trans. AIMME 12 (1940) 152, http://dx.doi.org/10.2118/941152-G.
[7] S. Whitaker, Flow in porous media II: The governing equations for immiscible, two-phase flow, Transp. Porous Media 1 (1986) 105,

http://dx.doi.org/10.1007/BF00714688.
[8] J.-L. Auriault, E. Sanchez-Palencia, Remarques sur la loi de Darcy pour les éecoulements biphasiques en milieu poreux, J. Theor. Appl. Mech.

Numér. Spéc. 141 (1986).
[9] J.-L. Auriault, Nonsaturated deformable porous media: quasistatics, Transp. Porous Media 2 (1987) 45, http://dx.doi.org/10.1007/BF00208536.

[10] J.-L. Auriault, O. Lebaigue, G. Bonnet, Dynamics of two immiscible fluids flowing through deformable porous media, Transp. Porous Media 4
(1989) 105, http://dx.doi.org/10.1007/BF00134993.

[11] D. Picchi, I. Battiato, The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media, Water Resour. Res.
54 (2018) 6683, http://dx.doi.org/10.1029/2018WR023172.

[12] D. Lasseux, F.J. Valdés-Parada, A macroscopic model for immiscible two-phase flow in porous media, J. Fluid Mech. 944 (2022) A43,
http://dx.doi.org/10.1017/jfm.2022.487.

[13] M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase systems: 1. Averaging procedure, Adv. Water Resour. 2 (1979)
131, http://dx.doi.org/10.1016/0309-1708(79)90025-3.

[14] S.M. Hassanizadeh, W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water
Resour. 13 (1990) 169, http://dx.doi.org/10.1016/0309-1708(90)90040-B.

[15] S.M. Hassanizadeh, W.G. Gray, Towards an improved description of the physics of two-phase flow, Adv. Water Resour. 16 (1993) 53,
http://dx.doi.org/10.1016/0309-1708(93)90029-F.

13



H. Fyhn, S. Sinha and A. Hansen Physica A 616 (2023) 128626

[16] S.M. Hassanizadeh, W.G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res. 29 (1993) 3389, http:
//dx.doi.org/10.1029/93WR01495.

[17] J. Niessner, S. Berg, S.M. Hassanizadeh, Comparison of two-phase Darcy’s law with a thermodynamically consistent approach, Transp. Porous
Media 88 (2011) 133, http://dx.doi.org/10.1007/s11242-011-9730-0.

[18] W.G. Gray, C.T. Miller, Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems, Springer Verlag,
Berlin, 2014, http://dx.doi.org/10.1007/978-3-319-04010-3.

[19] S. Kjelstrup, D. Bedeaux, A. Hansen, B. Hafskjold, O. Galteland, Non-isothermal transport of multi-phase fluids in porous media. the entropy
production, Front. Phys. 6 (2018) 126, http://dx.doi.org/10.3389/fphy.2018.00126.

[20] S. Kjelstrup, D. Bedeaux, A. Hansen, B. Hafskjold, O. Galteland, Non-isothermal transport of multi-phase fluids in porous media. Constitutive
equations, Front. Phys. 6 (2019) 150, http://dx.doi.org/10.3389/fphy.2018.00150.

[21] D. Bedeaux, S. Kjelstrup, Fluctuation-dissipiation theorems for multiphase flow in porous media, Entropy 24 (2022) 46, http://dx.doi.org/10.
3390/e24010046.

[22] J.E. McClure, R.T. Armstrong, M.A. Berrill, S. Schlüter, S. Berg, W.G. Gray, C.T. Miller, Geometric state function for two-fluid flow in porous
media, Phys. Rev. Fluids 3 (2018) 084306, http://dx.doi.org/10.1103/PhysRevFluids.3.08430.

[23] R.T. Armstrong, J.E. McClure, V. Robins, Z. Liu, C.H. Arns, S. Schlüter, S. Berg, Porous media characterization using Minkowski functionals:
theories, applications and future directions, Transp. Porous Media 130 (2019) 305, http://dx.doi.org/10.1007/s11242-018-1201-4.

[24] J.E. McClure, R.T. Armstrong, S. and Berg, Geometric evolution as a source of discontinuous behavior in soft condensed matter, arXiv:1906.04073,
http://dx.doi.org/10.48550/arXiv.1906.04073.

[25] J.E. McClure, M. Fan, S. Berg, R.T. Armstrong, C.F. Berg, Z. Li, T. Ramstad, Relative permeability as a stationary process: Energy fluctuations in
immiscible displacement, Phys. Fluids 34 (2022) 092011, http://dx.doi.org/10.1063/5.0107149.

[26] F. Ravndal, Scaling and Renormalization Groups, No. INIS-MF–3303, Nordisk Inst. for Teoretisk Atomfysik, 1976.
[27] E.T. Jaynes, Information theory of statistical mechanics, Phys. Rev. 106 (1957) 620, http://dx.doi.org/10.1103/PhysRev.106.620.
[28] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379, http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[29] P.S. de Laplace, A Philosophical Essay on Probabilities, Dover, New York, 1951, p. 3.
[30] L.F. Calazans, R. Dickman, Steady-state entropy: A proposal based on thermodynamic integration, Phys. Rev. E 99 (2019) 032137, http:

//dx.doi.org/10.1103/PhysRevE.99.032137.
[31] A. Hansen, E.G. Flekkøy, S. Sinha, P.A. Slotte, A statistical mechanics for immiscible and incompressible two-phase flow in porous media, Adv.

Water Resour. 171 (2023) 104336, http://dx.doi.org/10.1016/j.advwatres.2022.104336, (Elsevier).
[32] J. Xu, M.Y. Louge, Statistical mechanics of unsaturated porous media, Phys. Rev. E 92 (2015) 062405, http://dx.doi.org/10.1103/PhysRevE.92.

062405.
[33] J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Springer, Berlin, 2012, http://dx.doi.org/10.1007/978-

94-009-1926-6.
[34] O. Rozenbaum, S.R. du Roscoat, Representative elementary volume assessment of three-dimensional x-ray microtomography images of

heterogeneous materials: Application to limestones, Phys. Rev. E 89 (2014) 053304, http://dx.doi.org/10.1103/PhysRevE.89.053304.
[35] A. Hansen, S. Sinha, D. Bedeaux, S. Kjelstrup, M.A. Gjennestad, M. Vassvik, Relations between seepage velocities in immiscible, incompressible

two-phase flow in porous media, Transp. Porous Media 125 (2018) 565, http://dx.doi.org/10.1007/s11242-018-1139-6.
[36] S. Roy, S. Sinha, A. Hansen, Flow-area relations in immiscible two-phase flow in porous media, Front. Phys. 8 (2020) 4, http://dx.doi.org/10.

3389/fphy.2020.00004.
[37] S. Roy, H. Pedersen, S. Sinha, A. Hansen, The co-moving velocity in immiscible two-phase flow in porous media, Transp. Porous Media 143

(2022) 69, http://dx.doi.org/10.1007/s11242-022-01783-7.
[38] H. Pedersen, A. Hansen, Parametrizations of two-phase flow in porous media, 2022, http://dx.doi.org/10.48550/arXiv.2212.07285, arXiv:

2212.07285.
[39] E. Aker, K.J. Måløy, A. Hansen, G.G. Batrouni, A two-dimensional network simulator for two-phase flow in porous media, Transp. Porous Media

32 (1998) 163, http://dx.doi.org/10.1023/A:1006510106194.
[40] S. Sinha, M. Aa Gjennestad, M. Vassvik, A. Hansen, Fluid meniscus algorithms for dynamic pore network modeling of immiscible two-phase

flow in porous media, Front. Phys. 8 (2019) 567, http://dx.doi.org/10.3389/fphy.2020.548497.
[41] N.R. Morrow, Physics and thermodynamics of capillary action in porous media, Ind. Eng. Chem. 62 (1970) 32, http://dx.doi.org/10.1021/

ie50726a006.
[42] T. Ramstad, C.F. Berg, K. Thompson, Pore-scale simulations of single- and two-phase flow in porous media: Approaches and applications, Transp.

Porous Media 130 (2019) 77, http://dx.doi.org/10.1007/s11242-019-01289-9.
[43] M. Souzy, H. Lhuissier, Y. Méheust, T. Le Borgne, B. Metzger, Velocity distributions, dispersion and stretching in three-dimensional porous

media, J. Fluid Mech. 891 (2020) A16, http://dx.doi.org/10.1017/jfm.2020.113.
[44] H.B. Callen, Thermodynamics as a science of symmetry, Found. Phys. 4 (1974) 423, http://dx.doi.org/10.1007/BF00708519.
[45] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, second ed., Wiley, New York, ISBN: 978-0-471-86256-7, 1991.
[46] V. Joekar-Niasar, S.M. Hassanizadeh, Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A

review, Crit. Rev. Environ. Sci. Technol. 42 (2012) 1895, http://dx.doi.org/10.1080/10643389.2011.574101.
[47] H.A. Knudsen, E. Aker, A. Hansen, Bulk flow regimes and fractional flow in 2D porous media by numerical simulations, Transp. Porous Media

47 (2002) 99, http://dx.doi.org/10.1023/A:1015039503551.
[48] T. Ramstad, A. Hansen, Cluster evolution in steady-state two-phase flow in porous media, Phys. Rev. E 73 (2006) 026306, http://dx.doi.org/10.

1103/PhysRevE.73.026306.
[49] G. Tørå, P.E. Øren, A. Hansen, A dynamic network model for two-phase flow in porous media, Transp. Porous Media 92 (2012) 145,

http://dx.doi.org/10.1007/s11242-011-9895-6.
[50] M.Aa. Gjennestad, M. Vassvik, S. Kjelstrup, A. Hansen, Stable and efficient time integration of a dynamic pore network model for two-phase

flow in porous media, Front. Phys. 6 (2018) 56, http://dx.doi.org/10.3389/fphy.2018.00056.
[51] M.Aa. Gjennestad, M. Winkler, A. Hansen, Pore network modeling of the effects of viscosity ratio and pressure gradient on steady-state

incompressible two-phase flow in porous media, Transp. Porous Media 132 (2020) 355, http://dx.doi.org/10.1007/s11242-020-01395-z.
[52] M. Winkler, M.aa. Gjennestad, D. Bedeaux, S. Kjelstrup, R. Cabriolu, A. Hansen, Onsager-symmetry obeyed in athermal mesoscopic systems:

Two-phase flow in porous media, Front. Phys. 8 (2020) 60, http://dx.doi.org/10.3389/fphy.2020.00060.
[53] H. Fyhn, S. Sinha, S. Roy, A. Hansen, Rheology of immiscible two-phase flow in mixed wet porous media: dynamic pore network model and

capillary fiber bundle model results, Transp. Porous Media 139 (2021) 491, http://dx.doi.org/10.1007/s11242-021-01674-3.
[54] S. Sinha, A.T. Bender, M. Danczyk, K. Keepseagle, C.A. Prather, J.M. Bray, L.W. Thrane, J.D. Seymour, S.L. Codd, A. Hansen, Effective rheology of

two-phase flow in three-dimensional porous media: Experiment and simulation, Transp. Porous Media 119 (2017) 77–94, http://dx.doi.org/10.
1007/s11242-017-0874-4.

14



H. Fyhn, S. Sinha and A. Hansen Physica A 616 (2023) 128626

[55] B. Zhao, C.W. MacMinn, B.K. Primkulov, Y. Chen, A.J. Valocchi, J. Zhao, Q. Kang, K. Bruning, J.E. McClure, C.T. Miller, A. Fakhari, D. Bolster,
T. Hiller, M. Brinkmann, L. Cueto-Felgueroso, D.A. Cogswell, R. Verma, M. Prodanovic, J. Maes, S. Geiger, M. Vassvik, A. Hansen, E. Segre, R.
Holtzman, Z. Yang, C. Yuan, B. Chareyre, R. Juanes, Comprehensive comparison of pore-scale models for multiphase flow in porous media, Proc.
Natl. Acad. Sci. 116 (2019) 13799, http://dx.doi.org/10.1073/pnas.1901619116.

[56] E.W. Washburn, The dynamics of capillary flow, Phys. Rev. 17 (1921) 273, http://dx.doi.org/10.1103/PhysRev.17.273.
[57] G.G. Batrouni, A. Hansen, Fourier acceleration of iterative processes in disordered systems, J. Stat. Phys. 52 (1988) 747, http://dx.doi.org/10.

1007/BF01019728.
[58] M. Stroeven, H. Askes, L.J. Sluys, Numerical determination of representative volumes for granular materials, :Comput. Methods Appl. Mech.

Engrg. 193 (2004) 3221, http://dx.doi.org/10.1016/j.cma.2003.09.023.

15





Paper IV

151



Reference
Hyejeong L. Cheon, Hursanay Fyhn, Alex Hansen, Øivind
Wilhelmsen and Santanu Sinha,
Steady-State Two-Phase Flow of Compressible and Incompressible
Fluids in a Capillary Tube of Varying Radius.
Transport in Porous Media 147, 15–33 (2023)
doi: 10.1007/s11242-022-01893-2

Contributions
HF’s specific contribution to this article is in chapter 3.3 where
she performed the data analysis regarding calculations of 𝑃𝑡
and 𝛽 and the related uncertainty analysis. In addition, HF
participated in the discussions of the physics and the revision
of the final manuscript. HC and SS wrote the code and the first
draft, with support from AH and ØW.

152

https://dx.doi.org/10.1007/s11242-022-01893-2


Vol.:(0123456789)

Transport in Porous Media (2023) 147:15–33
https://doi.org/10.1007/s11242-022-01893-2

1 3

Steady‑State Two‑Phase Flow of Compressible 
and Incompressible Fluids in a Capillary Tube of Varying 
Radius

Hyejeong L. Cheon1,2 · Hursanay Fyhn2 · Alex Hansen2 · Øivind Wilhelmsen1 · 
Santanu Sinha3 

Received: 21 July 2022 / Accepted: 14 December 2022 / Published online: 3 January 2023 
© The Author(s) 2023

Abstract
We study immiscible two-phase flow of a compressible and an incompressible fluid inside 
a capillary tube of varying radius under steady-state conditions. The incompressible fluid is 
Newtonian and the compressible fluid is an inviscid ideal gas. The surface tension associ-
ated with the interfaces between the two fluids introduces capillary forces that vary along 
the tube due to the variation in the tube radius. The interplay between effects due to the 
capillary forces and the compressibility results in a set of properties that are different from 
incompressible two-phase flow. As the fluids move towards the outlet, the bubbles of the 
compressible fluid grows in volume due to the decrease in pressure. The volumetric growth 
of the compressible bubbles makes the volumetric flow rate at the outlet higher than at the 
inlet. The growth is not only a function of the pressure drop across the tube, but also of 
the ambient pressure. Furthermore, the capillary forces create an effective threshold below 
which there is no flow. Above the threshold, the system shows a weak nonlinearity between 
the flow rates and the effective pressure drop, where the nonlinearity also depends on the 
absolute pressures across the tube.

Keywords  Two-phase flow · Compressibility · Bubble-growth · Rheology

1  Introduction

Hydrodynamic properties of the flow of multiple immiscible and incompressible flu-
ids, otherwise known as two-phase flow (Bear 1988; Dullien 1992; Blunt 2017; Feder 
et al. 2022), are controlled by a number of different factors: fluid properties such as the 
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viscosity contrast and surface tension between the fluids, driving parameters such as 
the applied pressure drop or the flow rate, and geometrical properties such as the size 
and shape of the space in which the fluids are flowing. The combined effects of these 
factors make two-phase flow different and more complex than single phase flow. The 
dimensionless parameters that play a key role to define the flow properties are the ratio 
between the viscous and capillary forces, referred to as the capillary number, and the 
ratio between the viscosities of the two fluids. Depending on the values of these param-
eters, the flow generates different types of fingering patterns (Chen and Wilkinson 1985; 
Lenormand and Zarcone 1985; Måløy et al. 1985; Løvoll et al. 2004; Zhao et al. 2019) 
or stable displacement fronts (Lenormand and Touboul 1988) during invasion processes 
where one fluid displaces another in a porous medium.

Displacement processes are transient. If one continues to inject after breakthrough, 
the flow enters a steady state characterized by a situation where the macroscopic flow 
properties fluctuate or remain constant around well-defined averages. A more general 
form of steady-state flow can be achieved by continuously injecting both fluids simulta-
neously. In this case, the dynamics at the pore scale might have fluid clusters breaking 
up and forming, while the macroscopic flow parameters still have well-defined averages.

Over the last decade, it has become clear that steady-state flow deviates from the lin-
ear Darcy relationship (Darcy 1856) between the total flow rate and pressure drop over 
a range of parameters. Rather, one finds a power law relationship between pressure drop 
and the volumetric flow rate (Tallakstad et  al. 2009; Rassi et  al. 2011) in that range. 
In terms of the capillary number, this range is intermediary, with linearity appearing 
both for lower and higher values (Sinha et al. 2017; Gao et al. 2020; Zhang et al. 2021). 
Theoretical work to understand the physics behind the nonlinearity has appeared in, 
e.g., Tallakstad et al. (2009); Sinha and Hansen (2012); Zhang et al. (2021), and com-
putational studies have been performed using Lattice Boltzmann simulations (Yiotis 
et  al. 2013) and dynamic pore network modeling (Sinha et  al. 2021, 2017). It is now 
believed that a fundamental mechanism behind this nonlinearity is the capillary barriers 
at the pore throats, which create an effective yield threshold. When the viscous forces 
increase, they overcome the capillary barriers creating new flow paths. This increases 
the effective mobility and thus the nonlinear behavior appears (Roux and Herrmann 
1987). The disorder in the pore-space properties, such as the pore-size distribution (Roy 
et  al., 2021) and the wetting angle distribution (Fyhn et  al., 2021), therefore play key 
roles in determining the value of the exponent relating the volumetric flow rate and the 
pressure drop in the nonlinear regime.

The majority of the analytical and numerical approaches mentioned above consider the 
two fluids to be incompressible, whereas many of the experiments and applications use air 
as one of the fluids. Air is strongly compressible, which can enhance the complex pore-
scale mechanisms such as trapping and coalescence (Leverett 1941; Li and Yortsos 1994). 
Compressibility is relevant to a wide range of applications with liquid and gas transport in 
porous media, for example, CO2 transport and storage (Reynolds and Krevor 2015; Abi-
doye et al. 2015; Iglauer et al. 2019) and the transport in fuel cells (Niblett et al. 2020). 
Another class of applications where the compressibility plays a key role are those involv-
ing phase transitions of the fluids such as boiling and condensation. There are industrial 
applications where such processes are of high importance, for example aerospace vehicle 
thermal protection (Huang et al. 2017), high power electronics cooling systems (Gedupudi 
et al. 2011; Li et al. 2012, 2020) and chemical reactors (Bremer and Sundmacher 2019). 
These applications utilize the high specific surface area of a porous medium with fluid 
flowing inside, which enhances the heat and mass transfer rates (Sapin et  al. 2016; Sun 
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et  al. 2011). There are also natural processes such as drying of soil (Rossi and Nimmo 
1994) where a liquid to gas transition takes place.

In this article, we present a study of two-phase flow of a mixture of compressible and 
incompressible fluids in a capillary tube with varying radius. We consider two fluids, one is 
an incompressible Newtonian fluid obeying Poiseuille flow in the steady state whereas the 
other is a compressible ideal gas, where the viscosity is assumed to be negligible. The flu-
ids flow as a series of bubbles and droplets under a constant pressure drop along the tube.

In case of two-phase flow of two incompressible fluids in a corresponding capillary 
tube, it has been found that the volumetric flow rate (Q) depends on the square root of the 
pressure drop ( ΔP ) along the tube minus a threshold pressure ( Pt ), that is, Q ∼

√
ΔP − Pt 

(Sinha et al. 2013). One primary goal of the present work is to determine how this constitu-
tive equation changes when one of the two fluids is compressible.

A secondary goal of this work is to provide a basis for dynamic pore network modeling 
(Blunt 2001; Meakin and Tartakovsky 2009; Joekar-Niasar and Hassanizadeh 2012; Sinha 
et al. 2021) of compressible-incompressible fluid mixtures. This opens the possibility for 
incorporating thermodynamic effects in such models such as boiling. However, in order to 
explore the effect of compressibility on the rheological properties in general, we consid-
ered a higher range of pressure drops here, whereas some specific applications mentioned 
earlier in this section may need a different range. We also note that the other dominating 
computational model in this context, the Lattice Boltzmann model (Gunstensen et al. 1991; 
Ramstad et al. 2012), can only incorporate fluids that are weakly compressible (Qiu et al. 
2017; Guo et al. 2020).

We describe in Sect. 2.1 the equations that govern the flow through the capillary tube. 
In Sect. 2.2, we introduce the boundary conditions used, i.e., how we inject alternate com-
pressible and incompressible fluid into the tube. Sect.  2.3 describes how the governing 
equations are integrated in time.

Section 3 presents the results of our investigation. Section 3.1 defines what we mean by 
steady-state flow in the context of expanding bubbles. In Sect. 3.2, we investigate how the 
compressible bubbles grow as they advance along the tube, thus increasing the overall flow 
rate of the fluids. Section 3.3 presents the relation between volumetric flow rate and pres-
sure drop at both the inlet and outlet.

We summarize our results in Sect. 4. Section 5 contains the description of the videos 
provided in the electronic supplementary material.

2 � Methodology

The capillary tube considered in this work is filled with an incompressible and a com-
pressible fluid, immiscible to each other, which flow through it. The fluids are separated by 
menisci associated with a surface tension. In order to introduce a variation in the capillary 
forces along the tube, we consider a periodic variation in the radius of the capillary tube 
along the flow direction x. The incompressible fluid is a viscous Newtonian liquid obeying 
Hagen-Poiseuille flow whereas the compressible fluid is an inviscid ideal gas. The flow 
occurs as a plug flow with a series of alternate bubbles and droplets of the two fluids as 
illustrated in Fig. 1. There is no fluid film along the tube walls and therefore no coalescence 
or snap off taking place inside the tube during the flow. We will refer the compressible and 
the incompressible fluid segments as bubbles and droplets, respectively.
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2.1 � Governing Equations

We assume that at a given time the system contains N compressible bubbles denoted by 
i = 1, 2,… ,N from left to right as shown in Fig. 1. The volume Vi and the pressure Pi of 
the ith bubble are connected through the ideal gas law,

where ni is the number of moles of gas present inside the bubble, R is the ideal gas con-
stant and T is the temperature. The volume of an incompressible droplet on the other hand 
will remain constant throughout the flow and the flow rate will depend on the pressures of 
the two compressible bubbles bordering it. The volumetric flow rate of the incompressible 
droplet between i and i + 1 is denoted by Qi , and follows the constitutive equation (Dullien 
1992; Washburn 1921),

where � is the viscosity of the incompressible fluid and Pc(x) is the capillary pressure at x. 
Here we assumed that the variation in the tube radius only affects the capillary pressure Pc 
along the tube and therefore the area A in the above equation is considered to be the aver-
age cross-sectional area of the tube. This is an approximation that is commonly used in 
dynamic pore network models (Sinha et al. 2021). Furthermore, the bubbles are assumed to 
be smaller in size compared to the period of the tube so that the flow of the incompressible 
bubbles in the slowly-changing area can be considered locally as a Poiseuille flow (Panton 
2013). The volume of a compressible bubble is therefore given by, Vi = A(xr

i
− xl

i
) where xl

i
 

and xr
i
 are the positions of the left and right menisci of the ith bubble, respectively.

Here we consider the incompressible fluid to be more wetting with respect to the pore 
walls than the compressible fluid, thus determining the sign of Pc in Equation 2. We model 
Pc by using the Young-Laplace equation (Dullien 1992),

where r(x) is the radius of the tube at x. Here � = � cos(�) where � is the surface tension 
between the fluids and � is the wetting angle of the fluid with respect to the tube wall. The 
variation in the radius of the tube shown in Fig. 1 is modeled by

(1)PiVi = niRT ,

(2)Qi =
A2

8��(xl
i+1

− xr
i
)

[
Pi − Pc(x

r
i
) − Pi+1 + Pc(x

l
i+1

)
]
,

(3)Pc(x) =
2�

r(x)
,

Fig. 1   Illustration of the tube geometry and the indexed variables. The shaded fluid represents the non-wet-
ting compressible gas and the white fluid represents the wetting incompressible liquid. There are N = 6 
bubbles here indicated by the numbers i = 1,… , 6 . The indexed variables Pi , Vi and ni , respectively, cor-
respond to the pressure, volume and moles of the ith bubble whereas Qi corresponds to the flow rate of the 
droplet between ith and (i + 1) th bubbles.
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where L is the tube length, w is the average radius, a is the amplitude of oscillation and h is 
the number of periods.

2.2 � Boundary Conditions

The system is driven by a constant pressure drop ΔP = P0 − PL where P0 and PL are the pres-
sures at the inlet ( x = 0 ) and outlet ( x = L ), respectively. The two fluids are injected alterna-
tively at the inlet. Depending on the fluid that is being injected and the fluid that is leaving the 
tube, there will be different configurations as illustrated in Fig. 2. When a bubble is entering at 
the inlet [Figure 2(a)] or leaving at the outlet [Figure 2(c)], the pressure in that bubble is given 
by P0 or PL , respectively. This is because the compressible fluid has no viscosity and thus the 
pressure inside a bubble is uniform. The pressures inside all other bubbles are calculated using 
Equation 1. When a droplet is entering at the inlet [Figure 2(b) and (c)] or leaving at the outlet 
[Figure 2(a) and (b)], the respective flow rates Q0 and QN are given by,

whereas the flow rates of the remaining droplets are calculated using Equation 2.
The simulation is started with the tube completely filled with the incompressible fluid. The 

two fluids are then injected alternately at the inlet using small time steps. Whenever the injec-
tion is switched to a different fluid, a new menisci is created and the injection is continued for 
that fluid until the bubble or the droplet being injected has reached a given length, bC or bI , 
respectively. For each new bubble or droplet, a new value for bC or bI is determined using the 
following scheme:

where k is chosen from a uniform distribution of random numbers between 0 and 1. FC and 
FI are the tentative values of the fractional flows for the bubbles and droplets, respectively. 

(4)r(x) =
1

2

[
w + 2a cos

(
2h�x

L

)]

(5)

Q0 =
A2

8��xl
1

[
P0 − P1 + Pc(x

l
1
)
]
and

QN =
A2

8��(L − xr
N
)

[
PN − Pc(x

r
N
) − PL

]
,

(6)bC = bmin + kFCbmax and bI = bmin + kFIbmax ,

Fig. 2   Illustration of different configurations where bubbles and droplets are colored as gray and white, 
respectively. In a, a bubble is entering at the inlet and therefore P1 = P0 there. In c, a bubble is leaving at 
the outlet, therefore PN = PL there. A droplet is entering at the inlet in (b) and (c), and leaving at the outlet 
in a and b. The flow rates of such droplets are calculated using Equation 5.
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The two parameters bmax and bmin set the smallest and largest allowed sizes of any bub-
ble or droplet. We consider here bmin = L∕104 and bmax = L∕50 . The parameters bC and bI 
decide the initial sizes of the bubbles and droplets just after they detach from the inlet. For 
the compressible fluid, this determines the number of moles ni inside a bubble,

which remains constant for that bubble throughout the flow after it gets detached from the 
inlet.

2.3 � Updating the Menisci Positions

At any time, the two menisci bordering a droplet inside the tube move with the same veloci-
ties. The velocities of the menisci are calculated from the velocities vi of the droplets using 
Equations 2 and 5,

We solve these ordinary differential equations using an explicit Euler scheme, thus updat-
ing positions of all menisci by choosing a small time step Δt.

Depending on the positions of the menisci and the corresponding capillary pressures, the 
bubbles may compress or expand. If a bubble compresses at any time step, it means the left 
and right interfaces of that bubble approach each other. This necessitates the choice of time 
step Δt to be sufficiently small, as otherwise, the two menisci around that bubble will collapse 
after the time step. We deal with this situation in the following way. First we calculate a time 
Δt1 that is needed to pass one pore-volume of incompressible fluid through the tube,

Next, we check for every bubble i if (vi−1 − vi) > 0 , that is, whether the two menisci bor-
dering the bubble are approaching each other in that time step. If this criterion is found 
to be true for any of the bubbles j, we measure the time it will take for the two menisci to 
collapse,

After calculating Δt1 and Δtj
2
 , we determine a time Δt for that step from,

which means that if there is a possibility for a bubble to collapse during the time step, we 
chose Δt from the minimum of a∗Δt1 and all of b∗Δtj

2
 . If there is no possibility of collapse, 

we use Δt equal to a∗Δt1 . For the simulations presented in this paper, we set a∗ = 10−8 and 
b∗ = 10−6.

(7)ni =
AbCP0

RT
,

(8)
dxr

i

dt
=

dxl
i+1

dt
= vi =

Qi

A
.

(9)Δt1 =
8��L2

A(P0 − PL)
.

(10)Δt
j

2
=

xr
j
− xl

j

vj−1 − vj
.

(11)Δt = min(a∗Δt1, b
∗Δt

j

2
) ,
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3 � Results and Discussions

We perform steady-state simulations considering a tube of length L = 100 cm with 
w = 1 cm , a = 0.25 cm and h = 30 (Equation 4). The viscosity of the incompressible fluid 
is � = 0.001Pa.s , the ideal gas constant is R = 8.31 J∕(mol.K) and the temperature is kept 
fixed throughout the simulation at T = 293K . We fix Fc = 0.4 (Equation 6) which sets the 
volumetric fractional flow of the compressible fluid at the inlet around that value. We per-
form simulations varying the pressure drops ( ΔP = P0 − PL ) as well as the absolute outlet 
pressure with different values of the surface tension, �.

3.1 � Steady‑State Flow

The steady state is defined by the volumetric flow rates of the fluids fluctuating around a 
stable average. Due to the expansion of the compressible fluid, which we will discuss in 
a moment, the volumetric flow rate of the fluids changes as the fluids flow towards the 
outlet. We define the quantities Qi

T
 , Qi

C
 , Qi

I
 as the average steady-state flow rates for the 

total, compressible and incompressible fluids at the inlet and Qo
T
 , Qo

C
 , Qo

I
 as those at the 

outlet. The inlet and outlet flow rates are measured by tracking the displacements of the 
first meniscus nearest to the inlet and the last meniscus near the outlet, which are either the 
left or the right meniscus of the first ( i = 1 ) and the last ( i = N ) bubbles. The instantane-
ous flow rates of the bubbles and droplets are measured as qi

C
= A

∑
Δxr

1
∕
∑

Δt for xl
1
= 0 , 

qi
I
= A

∑
Δxl

1
∕
∑

Δt for xl
1
> 0 and qo

C
= A

∑
Δxl

N
∕
∑

Δt for xl
N
= L , qo

I
= A

∑
Δxr

N
∕
∑

Δt 
for xR

N
< L . This measurement is performed after every 0.05 pore-volumes of fluid are 

injected and the sum is therefore over the time steps in between. The total flow rates are 
therefore given by, qi,o

T
= q

i,o

C
+ q

i,o

I
 . This provides the measurement of the injected and out-

let flow rates as a function of the injected pore volumes or of the time. In Fig. 3, we plot qi
T
 

as a function of the pore-volumes ( Vp ) injected for (a) PL = 1 kPa and (b) PL = 100 kPa . 
The pore-volume Vp is defined as the ratio between the total volume of the inject fluids and 

Fig. 3   Total volumetric flow rate qi
T
 at the inlet as a function of the injected pore volume Vp for the outlet 

pressures (a) PL = 1 kPa and (b) PL = 100 kPa . Here the surface tension � = 0.09N∕m . The steady-state 
values of the flow rates are measured by taking averages in the range of 20 to 40 pore volumes as indicated 
by the dashed lines. Here we only show the data sets corresponding to the pressure drops ΔP = 1, 2, 4 and 
8 kPa in order to keep the clarity, however all the data sets show the similar trend of reaching the steady 
state.
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the volume of the total pore space of the tube, which provides an estimate of how many 
times the pore space was flushed with the fluids. All the plots show that the total flow 
rate qi

T
 increases with time at the beginning of the flow. This increase in qi

T
 is due to the 

decrease in the effective viscosity of the system caused by the injection of inviscid com-
pressible gas into the tube filled with viscous incompressible fluid. After the injection of 
a few pore volumes, qi

T
 fluctuates around a constant average ( Qi

T
 ) shown by the horizontal 

dashed lines which defines the steady state. Notice that, the averages are the same for the 
same values of ΔP for the two different outlet pressures PL , however the fluctuations are 
different. This we will see more in the following, that the outlet pressure PL plays a signifi-
cant role in the flow properties in addition to the pressure drop ΔP . We run our simulations 
for 40 pore volumes of fluid where the steady-state averages are taken after 20 pore vol-
umes injected to ensure that a steady state has been reached.

3.2 � Bubble Growth

As a compressible bubble moves along the tube, the volume of the bubble increases due to 
the decrease in the pressure towards the outlet (Vazquez et al. 2010). The bubble can also 
grow due to other mechanisms, such as the increase in temperature or a phase transition 
between liquid and gas phases (Welch 1998; Kenning et al. 2006), but these phenomena 
are not studied here. A simulation with a single bubble inside a short tube is shown in 
the supplementary material which illustrates that the bubble increases in size as it flows 
towards the outlet. To understand how this growth depends on different flow parameters in 
the steady state, we define the growth function GC(x) by,

where V0 and V(x) are the volume of a given bubble initially after detaching from the 
inlet and when its center is at x. We measure GC by including all the bubbles that are not 
attached to the inlet or outlet and calculate the time average value of (V(x) − V0)∕V0 in the 
investigated time interval, where x is the center of the bubble.

Figure 4 shows the variation of GC(x) along the tube for two different outlet pressures, 
PL = 1 kPa and 100 kPa where we plot the results for the same set of pressure drops ΔP . 
These results are with zero surface tension, � = 0 . There are a few details to note here. 
First, the plots show that GC(x) increases with an increase in ΔP . In addition, GC(x) also 
depends on the absolute pressures at the inlet and outlet, since we can see that the curves 
are nonlinear functions of x for PL = 1 kPa , whereas for PL = 100 kPa , they show linear 
behavior. Furthermore, GC(x) approaches ΔP∕PL at x = L for all the data sets.

To explain the dependency of GC(x) on ΔP and PL , we recall Equation 1 and rewrite 
Equation 12 as,

where P(x) is the pressure inside a bubble at x. For x = L , P(x) = PL and therefore 
GC(L) = ΔP∕PL as observed. In Fig. 5, we plot P(x), averaged over different time steps in 
the steady state, for the two outlet pressures, PL = 1 kPa and 100 kPa . Both of the plots show 
linear variation along x with the slope −ΔP . We therefore have P(x) = −xΔP∕L + PL + ΔP 
and thus,

(12)GC(x) =
V(x) − V0

V0

,

(13)GC(x) =
P0 − P(x)

P(x)
,
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where nP = ΔP∕PL . This leads to

which explains the concave and linear variation of GC as function of x/L observed in Fig. 4 
a and b, respectively. The growth of the bubbles along the tube is therefore a function of 
nP = ΔP∕PL.

In Figure 6, we plot GC∕nP for the two outlet pressures PL with the same sets of values 
of nP for (a) � = 0 and (b) � = 0.3N∕m . The plots show that the results for the same values 
of nP follow the same curves, irrespective of the outlet pressures PL . Furthermore, for the 
non-zero surface tension case in Fig. 6 (b), GC also shows a periodic oscillation along x 

(14)
GC(x)

nP
=

x∕L

1 + nP(1 − x∕L)
,

(15)
GC(x)

nP
∼

⎧
⎪⎨⎪⎩

1

nP

�
1

1 − x∕L
− 1

�
for nP ≫ 1 ,

x∕L for nP ≪ 1 ,

Fig. 4   Plot of the bubble growth GC(x) in the steady state as a function of the scaled position x/L inside the 
tube for zero surface tension, � = 0 . The two plots show the results for the same set of pressure drops ΔP 
with different outlet pressures PL.

Fig. 5   Variation of the pressure P(x) [kPa] inside a compressible bubble along the tube during steady state 
flow. P(x) shows a linear behavior for different values of ΔP and PL.
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when both the nP and PL are small, that is, for PL = 1 kPa and nP ≤ 1 . In addition, there is 
no data point for nP ≤ 0.3 with PL = 1 kPa , as the movement of the bubbles stopped due 
to high capillary barriers. This suggests the existence of an effective threshold pressure, 
below which there will be no flow through the tube. This threshold depends on both � and 
PL , which we will explore more in the following section. We show the different characteris-
tics of flow in the videos provided in electronic supplementary material.

3.3 � Effective Rheology

Equations 1 and 2 resist analytical solutions even in the case when there is only a single 
compressible bubble in the tube. This is due to the pressure in the compressible bubble 
being inversely proportional to the difference in position of the two menisci surrounding 
it, whereas the motion of the two surrounding incompressible fluids is determined by the 
cosine of the positions of the same menisci. These equations, even in this simplest case, are 
therefore highly nonlinear with an essential singularity lurking in the very neighborhood 
where we seek solutions. We therefore stick to numerical analysis in the following.

Due to the volumetric growth of the compressible bubbles during their flow towards the 
outlet, the volumetric flow rate varies along the tube. In addition, this volumetric growth is 
a function of the pressures, making the average saturation and the effective viscosity of the 
two fluids inside the tube pressure dependent. These two mechanisms together control the 
effective rheological behavior of the steady-state flow. In Fig. 7, we show the variation of 
the volumetric flow rates ( Qi,o

T
 , Qi,o

C
 , Qi,o

I
 ) as functions of the pressure drop ΔP for the outlet 

pressure PL = 1 kPa and for different values of the surface tension ( � ). Note the differences 
between the inlet and outlet flow rates for the total and for the each component of flow. For 
the incompressible fluid, there is no increase in the outlet flow rate compared to its inlet 
flow rate (third row in Fig. 7) whereas there is a noticeable increase in the outlet flow rate 
of the compressible fluid (second row in Fig. 7). This increase in Qo

C
 effectively increases 

the total flow rate at the outlet (first row in Fig. 7). The dashed line in Fig. 7 has a slope 
equal to 1. The total flow rates show deviations from this dashed line. For the inlet, Qi

T
 

shows small deviations from the dashed line for 𝛾 > 0 at small ΔP . Whereas at the outlet, 
the deviations are significantly higher due to the increase in the volumetric growth of the 
compressible fluid.

Fig. 6   Variation of the bubble growth GC , scaled with nP = ΔP∕PL , with x/L. Results are plotted for the 
same sets of nP for two different values of PL . The left and right figures correspond to � = 0 and 0.03N∕m , 
respectively. In each plot, the line corresponds to PL = 1 kPa and the symbols correspond to PL = 100 kPa.
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Another point to note in Fig. 7 is that there is a minimum value of ΔP , below which 
there is no data point available. This is due to the existence of a threshold pressure below 
which the flow stops. In the supplementary material we show a simulation video in this 
regime where one can observe that the flow of the bubbles stops at a certain time step. The 
threshold is due to the capillary forces at the menisci between the two fluids that create 
capillary barriers at the narrowest points along the tube. Such threshold was also observed 
in the case of two-phase flow of two incompressible fluids in a tube with variable radius 
(Sinha et  al. 2013). There, it was shown analytically that the average flow rate Q in the 
steady state varies with the applied pressure drop ΔP as, Q ∼

√
ΔP2 − P2

t
 where Pt is the 

Fig. 7   Plot of the flow rates for the total ( Qi,o

T
 ), compressible ( Qi,o

C
 ) and incompressible ( Qi,o

I
 ) fluids at the 

inlet (left column) and at the outlet (right column) for PL = 1 kPa as a function of ΔP . The different sets in 
each plot correspond to different values of the surface tension indicated in the legends. The quantities are 
divided with Q� = 1m3∕s and P� = 1 kPa , respectively, to make them dimensionless. The dashed line in 
each plot has a slope 1.



26	 H. L. Cheon et al.

1 3

effective threshold pressure. When |ΔP| − Pt ≪ Pt , this relationship translates to 
Q ∼

√�ΔP� − Pt , that is, the flow rate varies with the excess pressure drop to the power of 
0.5. The threshold pressure depends on the surface tension and on the configuration of the 
menisci positions inside the tube. If the total capillary barrier is higher than the applied 
pressure drop, the flow stops. This is similar here for the two-phase flow with one of the 
fluids being compressible.

We assume a general relation between the average volumetric flow rates Qi,o

T
 and the 

pressure drop ΔP as,

where �i,o is the corresponding exponent. In order to find both the effective threshold pres-
sure PT and the exponent �i,o from the measurements of Qi,o

T
 , we adopt an error minimiza-

tion technique that was used in earlier studies (Sinha and Hansen 2012; Fyhn et al. 2021). 
There we choose a series of trial values for Pt and calculate the mean square error � for the 
linear least square fit by fitting the data points with log(Q) ∼ log(ΔP − Pt) . Then we select 
the value of Pt that corresponds to the minimum value of � , implying the best fit of the data 
points with Equation 16. This is illustrated in the insets of Fig. 8 (a) and (b). The slope 
for the selected threshold Pt provides the exponent �i,o . The variation of the total inlet and 
outlet flow rates Qi,o

T
 with the excess pressure drop (ΔP − Pt) are plotted in Fig. 8 for the 

two outlet pressures PL = 1 and 100 kPa . The data sets show agreement with Equation 16 
with the selected values of Pt and � . There is a noticeable difference between the slopes for 
the inlet and outlet flow rates for PL = 1 kPa whereas for PL = 100 kPa they are similar. 
For PL = 100 kPa the data points for both Qi

T
 and Qo

T
 follow a slope of ≈ 1.0 whereas for 

PL = 1 kPa , the data points for Qi
T
 and Qo

T
 follow the slopes of ≈ 1.0 and 1.3, respectively. 

These are indicated by the dashed lines in the figures.
The variations of Pt and �i,o with the surface tension � are plotted in Fig. 9. The data 

points were calculated by considering different ranges of ΔP and taking averages over the 
ranges, and the corresponding standard deviations are plotted as error bars. The thresh-
old pressure Pt is zero at � = 0 and then increases gradually with � which shows that the 
threshold appears due to capillary forces. The increase in Pt with � appears to be linear 
here which is similar to the case of two incompressible fluids, where the linear depend-
ence of Pt on the surface tension was shown analytically (Sinha et al. 2013). Additionally 
for the compressible flow here, the thresholds also depend on the outlet pressure PL . For 

(16)Q
i,o

T
∼ (ΔP − Pt)

�i,o

Fig. 8   Plot of the volumetric inlet flow rate Qi

T
 as a function of the excess pressure drop (ΔP − Pt) for 

PL = 1 kPa and 100 kPa , where the values of Pt are obtained from a minimization of the least square fit 
error � . Here Q� = 1m3∕s and P� = 1 kPa . The minimization is illustrated in the insets of a and b for 
� = 0.05N∕m (green) and 0.09N∕m (purple). The dashed lines in a and b have a slope 1 whereas in c, the 
lower and upper dashed lines have slopes 1 and 1.3, respectively.
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the lower outlet pressure PL = 1 kPa , the thresholds are systematically higher compared 
to those for PL = 100 kPa for the whole range of � . Furthermore, the exponents �i,o also 
depend on the outlet pressure as seen from Figs. 9 (b) and (c). The difference is more vis-
ible for the exponents related to the outlet flow rates than the inlet. For the inlet flow rate, 
�i has values around ≈ 0.95 and 1.02 for PL = 1 kPa and 100 kPa , respectively, showing 
almost linear dependence for both the cases. For the outlet flow rates, �o remains close to 
�i for PL = 100 kPa whereas for PL = 1 kPa , �o increases to ≈ 1.3 . This increase in �o com-
pared to �i reflects the dependence of the volumetric growth GC(x) of the bubbles on PL , 
indicating an underlying dependence of the rheological behavior on the absolute inlet or 
outlet pressures. However, at this point we are unable to describe how the two parameters 
Pt and � scale with PL , which needs further study. In addition, we have only considered an 
intermediate volumetric fractional flow FC = 0.4 here, which also controls � and Pt (Roy 
et al. 2021). If the fractional flow or the saturation is made near to either 0 or 1, the system 
will approach single-phase flow and the linearity in the rheology of the Newtonian fluids 
should be retrieved.

Compared to the study of a single capillary tube here, a porous medium is composed of 
many interconnected pores of different sizes. Existing studies of two-phase flow in porous 
media have shown the existence of different power-law regimes for the relation between 
volumetric flow rate and pressure drop. These regimes are characterized by different expo-
nents. The studies involve experiments (Tallakstad et  al. 2009, 2009; Rassi et  al. 2011; 
Sinha et al. 2017; Gao et al. 2020; Zhang et al. 2021), Lattice Boltzmann simulations (Yio-
tis et al. 2013), pore-network modeling (Sinha and Hansen 2012; Sinha et al. 2017) and 
analytical calculations (Tallakstad et  al. 2009; Sinha and Hansen 2012; Roy et  al. 2019; 
Zhang et al. 2021). There are three regimes, an intermediate nonlinear regime where the 
flow rate Q increases at a rate much faster than the applied pressure drop ΔP with a power 
law exponent larger than one and up to around 2.5. There are in addition two linear regimes 
for either smaller (Yiotis et al. 2013; Gao et al. 2020; Zhang et al. 2021) or larger (Yiotis 
et al. 2013; Sinha and Hansen 2012; Sinha et al. 2017) volumetric flow rates than the non-
linear regime. This allows the definition of a lower and upper crossover pressure drop. The 
origin of the power law in a porous network and the crossovers to different regimes, can be 
explained by two dominant factors, the rheology of individual pores and the distribution 
of the threshold pressures in the network (Roy et al. 2019). A simple explanation can be 
drawn from a disordered network of threshold resistors (Roux and Herrmann 1987) where 

Fig. 9   Variation of the threshold pressure Pt and the exponents �i,o as functions of the effective surface 
tension � for PL = 1 and 100 kPa . Pt increases with the increase of � and the values are much higher for 
PL = 1 kPa compared to PL = 100 kPa . The exponent �i for the inlet flow rate are close to 1 for both the val-
ues of PL whereas for the outlet flow rate �o ≈ 1.3 for PL = 1 kPa . For PL = 100 kPa , �o remains close to �i . 
The dashed horizontal lines indicate the value 1.0 of the y axis.
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each resistor has a threshold voltage to start conducting the current. In a network with links 
with a distribution of thresholds, there will be a regime when new conducting paths will 
appear while increasing the global pressure drop. The increase in the flow rate through 
each path together with the increase in the number of paths leads to an effective increase 
in Q faster than ΔP . This results in the nonlinear exponent being higher than 1, the value 
of which depends on the distribution of the thresholds in each link (Roy et al. 2019). The 
linear regime above this nonlinear regime appears from all the available paths being con-
ducting whereas the linear regime below appears from the flow being in single percolating 
channels, which are governed by the rheology of individual pores. According to this expla-
nation, the experimental (Gao et al. 2020; Zhang et al. 2021) and numerical (Yiotis et al. 
2013) observations of two-phase flow in porous media showing linear variation of flow rate 
in the low pressure regime therefore indicate that the flow in the single channels consisting 
of many pores are linear, which is similar to what we have found for the lower outlet pres-
sure in the present compressible/incompressible flow case.

4 � Conclusions

We have studied the flow of alternating compressible bubbles and incompressible droplets 
through a capillary tube with variable radius. The motion of the bubbles was given by the 
model Equations 1 and 2, thus assuming the compressible fluid to be an ideal gas with zero 
viscosity, whereas the incompressible fluid is Newtonian. The incompressible fluid is more 
wetting than the compressible gas, but not to a degree that films form. We switch between 
injecting the compressible and incompressible fluid at intervals so that the fractional flow 
rate is essentially constant at the inlet. We fix the pressure drop along the tube in addition 
to an ambient pressure. This creates steady-state flow conditions in the tube.

The compressible bubbles expand as they move from the higher pressure region at the 
inlet towards the lower pressure at the outlet. This expansion accelerates the incompress-
ible fluid, thus making the volumetric flow rate larger at the outlet than at the inlet. The 
lower the ambient pressure is, the stronger this effect is.

We measure volumetric flow rate at the inlet, finding essentially a linear relationship 
between the volumetric flow rate and the pressure drop. However, there is a threshold pres-
sure that needs to be overcome in order to have flow through the tube. At the outlet, we find 
that the volumetric flow rate is still linear in the excess pressure drop when the ambient 
pressure is low. However, when the ambient pressure is high, the volumetric flow rate at 
the outlet becomes proportional to the excess pressure to a power of around 1.3.

This behavior is very different from that of two incompressible fluids moving through a 
corresponding tube: Here the volumetric flow rate, being the same at the inlet and the out-
let, is proportional to the square root of the excess pressure.

We expected the flow rate-pressure drop constitutive relations to be different in this 
compressible/incompressible case than that of two incompressible fluids. However, that we 
should find linearity was a big surprise. A precise explanation as to why this is so, is still 
lacking.

Besides these surprising results, this work makes a first step in modeling of compressi-
ble/incompressible fluid mixtures in dynamic network models. We may then envision using 
more sophisticated equations of state for the compressible fluid beyond the ideal gas law. 
This allows the consideration of, e.g., phase transitions such as boiling and condensation in 
porous media.
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Finally, we like to point out that we have not considered film-flow or contact line pin-
ning in this study. Pinning of the contact lines will change the relation between the capil-
lary force at the interfaces and the shape of the tube, which is determined by two more 
fixed parameters: the surface tension and the wetting angle. If the pinning is due to surface 
roughness at scales much finer than the variations in the tube radius, this will result in 
an effective wetting angle different from the one expected for smooth surfaces (see Blunt 
2017, pp 11-14). Hence, we do not expect our results to be qualitatively different in this 
case. If, on the other hand, the roughness is on the same scale as the radius variations, we 
are dealing with a tube that essentially has a different shape than the one we are consider-
ing. Even in this case, we do not expect qualitative changes from the results we report. 
However, there will most probability be quantitative changes. Different tube shapes were 
studied by Lanza et al. for an immiscible mixture of a yield stress fluid and a Newtonian 
fluid, finding a quantitative difference between different tube shapes (Lanza et  al. 2022; 
Talon et al. 2014). However, both the fluids were incompressible in that study, therefore a 
possible future extension of both of these studies would be to include a compressible fluid 
together with a non-Newtonian fluid in a capillary.

The film flow on the other hand will introduce parallel components of the two fluids in 
the system whereas in our present problem the two fluid components are always in series 
combination. Depending on the thickness of the films, this may change the effective rela-
tionship between the flow rate and the pressure drop. Film flow can be observed when the 
pores contain rough grain surfaces and corners (Chen et  al. 2018; Cejas et  al. 2018) or 
when a fluid phase is completely wetting (Aursjø et al. 2014), whereas in case of drainage 
dominated flow the film flow may be neglected. Experiments have also shown that grav-
ity plays a role in controlling the active zone of film flow in a porous media (Moura et al. 
2019). Experiments with the same porous media with different types of fluids have shown 
that the nonlinear exponent � was smaller for the fluids that show strong film flow (Aursjø 
et al. 2014) compared to those without film flow (Tallakstad et al. 2009). Fluid wettabilities 
in this context strongly affects the appearance of films as well as the rheological nonlin-
earity in general (Zhang et al. 2022; Fyhn et al. 2021). How the introduction of films or 
changing the wettability of the fluids will affect the results of the present study is therefore 
a question for the future.

5 � Supplementary Material

The electronic supplementary material contains videos showing different flow character-
istics. In these videos we considered a tube with L = 10 cm , w = 1 cm , a = 0.25 cm and 
h = 5 (Equation 4). The simulations were performed for PL = 1 kPa and � = 0.2N∕m . The 
compressible bubbles are colored with magenta whereas the incompressible droplets are 
colored with black. The videos are not in real time. We show four different simulations 
with different values of ΔP : 

(a)	 Flow of a single bubble of compressible gas in incompressible fluid. Here ΔP = 5 kPa . 
The video shows the increase in the volume of the bubble as it approaches the outlet.

(b)	 Injection of multiple compressible bubbles and incompressible droplets at a very low 
pressure drop, ΔP = 0.3 kPa . The flow stops after a certain time when several inter-
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faces appeared in the tube. This shows the existence of a total capillary barrier, which 
is higher than the applied pressure drop here.

(c)	 Two-phase flow of multiple compressible bubbles and incompressible droplets at a 
low pressure drop, ΔP = 0.4 kPa . Here the bubbles speed up and slow down as they 
flow, showing the combined effect of the surface tension and the shape of the tube. The 
bubbles also grow in volume towards the outlet.

(d)	 Two-phase flow of multiple compressible bubbles and incompressible droplets at a 
higher pressure drop, ΔP = 3 kPa . The bubbles do not show any significant slowing 
down in this case, indicating the capillary forces being negligible compared to the 
viscous pressure drop. The volumetric expansion of the compressible bubbles can also 
be observed here.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11242-​022-​01893-2.
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