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Abstract

Motivated by the recent interest in Cuprates high-temperature superconductors we study
the interplay between two of its symmetry-breaking phases, superconductivity and charge
density wave. Starting with a microscopic theory, we derived an e↵ective bosonic action
by integrating over the fermionic degrees of freedom. By using the functional integral
formalism we derived self-consistent equations for the order parameters and extrapolated
the theory to include fluctuations around its normal state. This resulted in a Ginzburg-
Landau theory describing a system with charge density waves and superconductivity.
There are three main points in our results. Firstly, the phases do not co-exist in the
model we have used. Secondly, our calculations showed that charge density waves are
more resistant to spacial fluctuations than superconductivity. Lastly, the coe�cients in
the Ginzburg-Landau theory were mostly the same for the bare charge density wave terms
and the bare superconductivity terms.
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Sammendrag

Motivert av den økende interessen for Cuprate-høytemperatur-superledere, tar denne opp-
gaven for seg samspillet mellom to av dens symmetribrytende faser, superledning og lad-
ningstetthetsbølger. Fra en mikroskopisk teori utledet vi en e↵ektiv bosonisk teori ved å
integrere ut de fermioniske frihetsgradene. Ved å bruke funksjonal-integral-metoder har
vi utledet selvkonsistente ligninger for ordensparameterne og deretter utvidet teorien til
å inkludere fluktuasjoner. Dette resulterte i en Ginzburg-Landau-teori som beskriver et
system med ladningstetthetsbølger og superledning. Oppgavens resultater kan oppsum-
meres i tre hovedpoeng. For det første er det ingen koeksistens av fasene i modellen vi har
undersøkt. For det andre viser v̊are beregninger at ladningstetthetsbølger er mer mot-
standsdyktige mot romlige fluktuasjoner, sammenlignet med superledning. Avslutnignsvis
fant vi ut at koe�sientene i Ginzburg-Landau-teorien deler den samme strukturen for
ladningstetthetsbølge-ordensparameteren og superlednings-ordensparameteren.
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Chapter 1

Introduction

1.1 Background

In 1955, Peierls’ theoretical work showed that the instability of a half-filled one-dimensional
chain induces a charge density wave (CDW) [1]. Since then, the CDW phase has been
an active field of research. In terms of applications, researchers have studied bulk layered
CDW materials, which are useful in super-capacitors [2], oscillators [3], sensors [4], and
spin-electronic devices [5]. The CDW state is also interesting due to its interplay with
other phases, such as superconductivity. 1

Superconductivity (SC) was discovered in 1911 by a Dutch physicist, Heike Kamerlingh
Onnes [7]. Onnes’s research showed a sudden drop in resistivity when cooling Mercury to
⇠ 4 K. It took 22 years before another important property of superconductivity was dis-
covered, the Meissner e↵ect [8]. The e↵ect is that a superconductor will repel a magnetic
field. Superconductors are useful in high-power transmission lines [9], MR [10], quantum
computers [11], and spintronics [12].

Materials that can host the CDW and SC state are usually characterized by reduced di-
mensionality of their electronic and structural properties. Such materials include copper-
oxide (cuprate) high-temperature superconductors [13], one-dimensional organic chains
[14], single-element actinide ↵ uranium [15] and layered transition-metal chalcogenides
[16–19]. In 2013 Geim stated that di↵erent materials can be used as building blocks
to make new materials with desired properties [20]. Recently, new fields of applications
for layered systems (2D), such as transition-metal dichalcogenides, have been discovered
[21]. Another highly interesting material is the cuprate high-temperature superconduc-
tors, discovered by Bednorz and Müller in 1986 [22, 23]. The properties of these materials
have been heavily researched in the last decades [24–28]. They are susceptible to dif-
ferent types of ordering; superconductivity, charge density waves, spin density waves,
anti-ferromagnetism, and a pseudo-gap phase [25, 29]. According to da Silva Neto et al.
[30], understanding the mechanism of superconductivity and its interplay with other possi-
ble spin or charge orderings in high–transition temperature (TC) cuprate superconductors
remains one of the greatest challenges in condensed matter physics. The interplay that

1
Some of the introduction is from the Specialization project by Roheim and Ekrheim [6]
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we are interested in here, is the one between CDWs and SC. They both are symmetry-
breaking phases where their order parameters also describe their energy gaps [24, 31, 32].
Several experimental and theoretical results show that they are competing phases [33, 34].
However, several papers show evidence for co-existence between CDWs and SC [35–40]

We will derive a theory for the interplay between these phases using the functional field
integral method. In the 1970s, non-perturbative problems received more and more at-
tention, and the need for a new way to solve them arose. Up until then, many problems
in condensed matter physics were solved in a perturbative manner, which means adding
small perturbations to solvable systems. The functional integral method gave the re-
searchers new theoretical insight into problems beyond perturbation theory. This method
was originally developed for high-energy physics but was also applicable in condensed
matter physics. Non-perturbative problems are present in various contexts, for example
in strongly correlated electron systems, quantum magnetism, and phase transitions. A
common factor for these systems is that they exhibit emergent phenomena and that they
have a collective behavior that can not be described by perturbative methods alone.

By using the strength of the functional field integrals we can develop a Ginzburg-Landau
theory from a stationary point of the order parameters in our system. The Ginzburg-
Landau theory was proposed by Ginzburg in 1950 [41] for superconductivity. The theory
was based on the work of Landau for superfluidity from 1941 [42]. Some years later, the
microscopic theory for superconductivity by Bardeen, Cooper, and Schrie↵er (BCS) (1957)
was published [43], which gave the physicist a better understanding of the superconducting
phase.

1.2 Structure of the thesis

The following section will introduce the essential building blocks of the theory that will be
used throughout the thesis. This includes the formalism of the functional integral, with
its most important underlying derivations. Following this theory, we will in section 3 use
the functional integral formalism to describe the CDW state. During the section, we will
derive its mean-field equation and the critical temperature of the phase transition from a
microscopic model. Finally, from this, we will derive a Ginzburg-Landau theory describing
the CDW state. The thesis’s next section will answer the question of whether CDWs and
SC can co-exist in the system we are looking at. In order to answer this question, we will
derive a Ginzburg-Landau theory for a system with CDWs and SC. Following the main
part of the thesis is the summary and outlook, where we will summarize our results.

2



Chapter 2

Preliminaries

In this chapter, we will establish the foundation of a theory that will answer the question of
whether charge density waves and superconductivity can coexist in the presented model.
The theory in the preliminaries’ is built upon the following books, Condensed matter

field theory by Altlands and Simons’ [44], Quantum Many-Particle Systems by Negele
and Orland [45], and the unpublished lecture notes from the course Functional Integral

Methods in Condensed Matter Physics by professor Asle Sudbø at NTNU [46].

2.1 Conventions

First, we want to establish some of the notations and conventions that will be used
throughout this thesis. Firstly, we use bold font to write vectors, k, and k̂ for the unit
vector. Later on, we will use a four-vector, which we will write as k = (k,!). For
an operator, we will use hat-notations, where the reader will be able to distinguish the
operator from the unit vector by context. Plancks constant ~, and the Boltzmann constant
kB, will be set to unity throughout the thesis. The convention we use for the Fourier
transformation is

f(k) =
1p
N

Z 1

�1
e�ikr

f(r) (2.1.1)

where N is the number of lattice sites.

2.2 Second quantization

In many-body quantum theory for identical particles, the operators can be defined as
a matrix element in a N -dimensional Hilbert space, which is the direct product of the
one-particle Hilbert space

HN ⌘ H⌦ · · ·⌦H| {z }
N copies

. (2.2.1)

We are interested in the subset FN ⇢ HN which defines the physical N -body Hilbert
space1. By describing the system of particles in the occupation number representation,

1
Alexander Altland and Ben Simons Condensed Matter Field Theory p.42 (2010) [44]
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every state can be represented by |n1, n2, ...i, where ni is the occupation number of particle
i in the state. From this, we have that every state in FN can be represented by a state
vector | i on the form

| i =
X

n1,n2,...

cn1,n2,...|n1, n2, ...i, (2.2.2)

where cn1,n2,... are complex coe�cients. In order to have a theory that can be used in the
Grand Canonical ensemble, with an unknown number of particles, we define the relevant
Fock space as

F =
1M

N=0

FN
. (2.2.3)

Here, F defines the principal arena of quantum many-body theory. The vacuum space,
F0, has one normalized basis state, the vacuum state |0i, which contains no particles. By
introducing the operator a†

i
: F ! F , which raises the occupation number for particle i

by one, we have the tools needed to construct every state from the vacuum state

|n1, n2, ...i =
Y

i

1

(ni!)1/2
(a†

i
)ni |0i. (2.2.4)

To complete the picture we also need the opposite operator, the annihilation operator ai.
This operator decreases the occupation number for particle i by one. The commutation
relations for the annihilation and creation operators for bosons are

[ai, a
†
j
] = �ij, [ai, aj] = 0, [a†

i
, a

†
j
] = 0, (2.2.5)

where the commutator is defined as [A,B] = AB � BA. For fermions we have that

{ai, a†j} = �ij, {ai, aj} = 0, {a†
i
, a

†
j
} = 0, (2.2.6)

where the anti-commutator is defined as {A,B} = AB + BA. The di↵erence is due to
the Pauli principle for fermions, which says that there can only be one fermion per state.
For bosons, there are no limitations on the number of particles per state.

2.3 Coherent states

The following section will state some of the most important results in chapter 4.1 of
the book Condensed matter field theory [44]. The aim is to continue the derivation of a
theory for many-body Hamiltonians. Motivated by the section about second quantization,
the next step is to present the eigenstates for the annihilation operator, called coherent

states. The coherent state representation is an elegant formalism that makes it possible to
establish a general structure for both fermions and bosons. This might be surprising since
there are, as we will see, significant di↵erences in their algebraic structure. By the Pauli
principle, we know that the eigenvalues for fermions need to anticommute. In order to
fulfill this condition we need to introduce something called Grassmann numbers2. First,
we will present the coherent states for bosons where the eigenvalues can be represented
by complex numbers.

2
Named after the German mathematician Hermann Günther Grassmann (1809-1877). Credited with

inventing what is now called exterior algebra.
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2.3.1 Bosons

We want to look at the eigenstates of the bosonic Fock-space, and as we have just seen in
equation (2.2.4), every state can be expressed by using creation operators on the vacuum
state. One could therefore think that it would have been possible to find an eigenstate to
this operator. However, the creation operator increases the minimum number of particles
with one, and therefore can not have an eigenstate. The annihilation operator on the
other hand, decreases the maximum number of particles in the state by one, which makes
it possible to have an eigenstate. Moving forward, let us assume that we have been able
to find an eigenstate |�i for the annihilation operator, with a consisting eigenvalue �i.
This gives us the eigenvalue equation

ai|�i = �i|�i, (2.3.1)

which is true for all i. The eigenstates |�i are called bosonic coherent states and can be
expressed as

|�i ⌘ exp
⇣X

i

�ia
†
i

⌘
|0i, (2.3.2)

where � = {�i} is a set of complex numbers. By taking the hermitian conjugate of the
eigenvalue equation (2.3.1) we get the left eigenstates of the creation operators

h�|a†
i
= h�|�̄i, (2.3.3)

where h�| = h0| exp(
P

i
�̄iai) and �̄ is the complex conjugate of �. From equation (2.3.2),

we can see that the derivative, of the eigenstate |�i, with respect to the eigenvalue gives
the creation operator acting on the eigenstate. The same argument applies to the left
eigenstate of the annihilation operator,

a
†
i
|�i = @�i |�i, h�|ai = @�̄ih�|. (2.3.4)

The next step is to find the overlap between two coherent states. We have that h�|✓i =
h0|e

P
i �̄iai |✓i = e

P
i �̄i✓ih0|✓i. This allows us to write the overlap and the norm of a state

as

h�|✓i = exp
⇣X

i

�̄i✓i

⌘
, h�|�i = exp

⇣X

i

�̄i�i

⌘
, (2.3.5)

respectively. The coherent states form an overcomplete set of states in Fock space and
the unity operator 1F is

1F =

Z Y

i

d�̄id�i

2⇡i
e�

P
�̄i�i |�ih�|, (2.3.6)

where d�̄id�i = dRe�idIm�i. This finishes the coherent states for bosons, and next up we
will present the coherent states of fermions.

5
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2.3.2 Fermions

As pointed out earlier, the eigenvalues of the fermionic operators must anticommute.
Hence, before proceeding, we need to introduce ”numbers” that anti-commute, Grass-
mann numbers.

A complete treatment of Grassmann algebra is given in The method of second quanti-

zation by Berezin [47], we will only introduce the properties needed to present the theory
of the coherent state for fermions. Grassmann algebra is defined by a set of generators
{⇠↵} where ↵ = 1, ..., n. The first thing to note is that Grassmann numbers anti-commute

⇠↵⇠� = �⇠�⇠↵, (2.3.7)

which is the desired property. This property essentially gives us that ⇠2
↵
= 0. Due to

the anti-commutation, functions of Grassmann numbers can be defined by their Taylor
expansion with a finite number of terms

f(⇠1, . . . , ⇠k) =
1X

n=0

kX

i1,...,in=1

1

n!

@
n
f

@⇠i1 · · · @⇠in

�����
⇠=0

⇠in · · · ⇠i1 , (2.3.8)

where ⇠1, . . . , ⇠k are Grassmann numbers. Any function which depends on only one vari-
able can be written as

f(⇠) = f(0) + f
0(⇠)
��
⇠=0

⇠. (2.3.9)

Due to the properties of Grassmann numbers, both derivatives and integration are di↵er-
ent from what we are used to from real and complex numbers. For Grassmann numbers
these operations are defined as

@

@⇠
⇠ = 1,

Z
d⇠1 = 0,

Z
d⇠⇠ = 1. (2.3.10)

This shows us that the integration and derivation of Grassmann variables are essentially
the same. For instance, the integration of a function of one Grassmann variable gives

Z
d⇠f(⇠) =

Z
d⇠

h
f(0) + f

0(⇠)
��
⇠=0

⇠

i
= f

0(⇠)
��
⇠=0

, (2.3.11)

which is the same answer as for derivation, @⇠f(⇠) = f
0(⇠)
��
⇠=0

. Now, being more familiar
with Grassmann numbers, we are ready to proceed to the derivation of coherent states
for fermions.

To create coherent states for fermions we need to expand the relevant Fock-space. We in-
troduce a generator ⇠↵ to every annihilation operator a↵ and another generator ⇠̄↵ to every
creation operator, a†

↵
. This allows us to expand every vector in this general Fock-space

| i =
X

↵

⇠↵|⇠↵i, (2.3.12)

6
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where the generators, ⇠↵ are Grassmann numbers and |⇠↵i are vectors in the Fock space.
We will later see that these are the eigenvalues and eigenvectors of the annihilation op-
erator. The anti-commutation relations between the operators and their generators are
defined as

{⇠, a} = 0, {⇠̄, a†} = 0. (2.3.13)

The next important definition is the e↵ect of a dagger, (⇠a)† = ⇠̄a
†. The significant

di↵erence from the bosonic case is that ⇠ and ⇠̄ are independent of each other. Moreover,
despite the sign-change in the exponent, we can write the fermion coherent state in the
same way as for the bosonic case

|⇠i = exp
�
�
X

↵

⇠↵a
†
↵

�
|0i, (2.3.14)

where the minus is due to the eigenvalue-equation

a↵|⇠i = ⇠↵|⇠i. (2.3.15)

The proof for this is shown in appendix A. Due to the similarities to the structure of the
bosonic coherent states, we will only list the results

h⇠| = h0| exp
�X

↵

⇠̄↵a↵

�
, h⇠|a†

↵
= h⇠|⇠̄↵, (2.3.16)

a
†
↵
|⇠i = �@⇠↵ |⇠i, h⇠|a↵ = @⇠̄↵h⇠|. (2.3.17)

From this, we can find that the overlap between two coherent states is

h⇠|⌘i = h0|e
P

↵ ⇠̄↵a↵e�
P

↵ ⌘↵a
†
↵ |0i = h0|

Y

↵

(1 + ⇠̄↵a↵)(1� ⌘↵a
†
↵
)|0i (2.3.18)

=
Y

↵

(1 + ⇠̄↵⌘↵) = e
P

↵ ⇠̄↵⌘↵ . (2.3.19)

From this, we can find the unit operator in the fermionic Fock space

1F =

Z Y

↵

d⇠̄↵d⇠↵e
�

P
↵ ⇠̄↵⇠↵ |⇠ih⇠|. (2.3.20)

Finally, we define a Grassmann coherent state representation

| i =
Z Y

↵

d⇠̄↵d⇠↵e
�

P
↵ ⇠̄↵⇠↵ (⇠̄)|⇠i, (2.3.21)

where  (⇠̄) = h⇠| i.

Before moving on we want to state some of the mathematical and physical di↵erences
between fermionic and bosonic coherent states. Mathematically there are two notably
important di↵erences besides some sign changes. Firstly, as we have already mentioned,
the Grassmann numbers ⇠ and ⇠̄ are completely independent of each other. Secondly,

7
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Summary of the coherent states for bosons and fermions

Eigenstate |⇠i = exp
�
⇣
P

↵
⇠↵a

†
↵

�
|0i

Annihilation operator a↵|⇠i = ⇠↵|⇠i, h⇠|a↵ = @

@⇠̄↵
h⇠|

Creation operator a
†
↵
|⇠i = ⇣

@

@⇠↵
|⇠i, h⇠|a†

↵
= h⇠|⇠̄↵

Matrix Element h⇠|A(a†
↵
, a↵)|⇠0i = exp

�P
↵
⇠̄↵⇠

0
↵

�
A(⇠̄↵, ⇠↵)

Resolution of identity 1F =
R
D⇠ exp

�
�
P

↵
⇠̄↵⇠↵

�
|⇠ih⇠|

Trace trA =
R
D⇠ exp

�
�
P

↵
⇠̄↵⇠↵

�
h⇣⇠|A|⇠i

Vector in Fock Space | i =
R
D⇠ exp

�
�
P

↵
⇠̄↵⇠↵

�
 (⇠̄↵)|⇠i

Coherent state representation  (⇠̄) = h⇠| i

Matrix element of creation op. h⇠|a†
↵
| i = ⇠̄↵ (⇠̄)

Matrix element of annihilation op. h⇠|a↵| i = @

@⇠̄↵
 (⇠̄)

D⇠ = 1
N
Q

↵
d⇠̄↵d⇠↵, N =

(
2⇡i for bosons

1 for fermions

Table 2.1: Summary of the coherent states for bosons (⇣ = 1) and fermions (⇣ = �1)

unlike the integral over complex numbers, the Grassmann version of the Gaussian inte-
gral does not involve the factor 2⇡i. The structure of the coherent states for fermions
and bosons is summarized in table 2.1. The coherent states of fermions are not physical
states but are useful in formulating many-fermion and many-boson theories. Due to the
termination of the series expansion of Grassmann variables, every function will be linear,
and the stationary point equation makes no sense for coherent fermionic states. A way to
solve this is to integrate over the fermionic degree of freedom to get an e↵ective theory.
On the other hand, coherent states for bosons are physical states. For example, a classical
electromagnetic field can be viewed as a coherent state of photons.

2.4 Gaussian integrals

In the formulation of the functional integral method, it is useful to establish a set of
Gaussian integrals that will help us with the derivation of the formalism. We start out by
presenting multiple Gaussian integrals over complex variables, which we will use in the
formulation of functional integrals for bosons. The integral we want to evaluate is

Iboson =
Y

k

Z
dx̄kdxk

2⇡i
e�x̄iAijxj+xjJ̄j+x̄iJi (2.4.1)

8
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where we sum over repeated indices. We have that Aij is a positive definite, symmetric
matrix with det(A) > 0 and xi and Ji are vectors. It is shown in appendix B.1 that by
performing the integrals we get

Iboson =
1

det(A)
eJ̄iA

�1
ij Jj . (2.4.2)

For fermions, the integration variables ⇠k, are Grassmann variables. As we have seen in
section 2.3, the integration over Grassmann variables is di↵erent. Hence, the integral we
want to look at now is

Ifermion =
Y

k

Z
d⇠̄kd⇠ke

�⇠̄iAij⇠j+⇠iJ̄i+⇠̄jJj , (2.4.3)

where the J ’s are vectors of Grassmann-variables, and Aij must fulfull the same contidi-
tions as for bosons. As shown in appendix B.2, this integral also has an elegant answer

Ifermion = det(A)eJ̄iA
�1
ij Jj = eJ̄iA

�1
ij Jj+tr ln(A)

, (2.4.4)

where the last transition follows from the identity, detA = etr lnA. We can see that the
determinant is now in the numerator compared to equation (2.4.2), where it was in the
denominator. This is due to the expansion of the exponential function, which will ter-
minate after only two terms. Physically this corresponds to the restriction of the Pauli
principle. The last integral is specifically useful because it will allow us to integrate over
the fermionic degrees of freedom. This means that we can work with an e↵ective bosonic
theory where it is possible to look for expansions from a stationary value of the free energy.

In this thesis, we will also work with bigger systems, where we structure parts of the
system in a matrix with four indices Ai,j ! A

i,j

k,k0 . The integral we need to calculate is

Ĩfermion =
Y

n

Z
d⇠̄nd⇠ne

�
P

k,k0
P

i,j ⇠̄
i
kA

ij
kk0⇠

j
k0+⇠

i
kJ̄

i
k+⇠̄

j
kJ

j
k . (2.4.5)

By generalizing the result from appendix B.2, we get

Ĩfermion = e
P

k ⇠
i
kJ̄

i
k+⇠̄

j
kJ

j
k eTr log[A] (2.4.6)

where the trace with a capital T is defined as

Tr[A] =
X

k

tr[A]kk =
X

k

X

i

A
ii

kk
, (2.4.7)

where Tr is the trace in both upper and lower indices and tr is only for one of them.

2.5 Feynman path integral

The goal of this section is to formulate the many-particle partition function in the coherent
state basis. To make the derivation clearer we will first introduce the Feynman path

9
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integral to express the partition function for a single particle in the position basis. To
start o↵ we consider the matrix element of the evolution operator of the system

U(xf , tf ; xi, ti) = hxf |e�
i
~ Ĥ(tf�ti)|xii, (2.5.1)

where |xii and hxf | are the initial and final eigenstates of the position operator respectively,
and Ĥ is the Hamiltonian of the system. In this expression, we have kept ~ to show
the structure of the evolution operator, but will further set it to 1. In general, precise
calculations of a physical system over a finite time interval are often not possible. However,
we can divide the time interval (ti, tf ) intoM numbers of infinitesimal time intervals. This
makes it possible to evaluate each interval separately, where each interval is characterized
by a stepsize ✏ = tf�ti

M
. By applying this approach, we can express the matrix element

U(xf , tf ; xi, ti) as follows

U(xf , tf ; xi, ti) = hxf |
�
e�iĤ✏

�M |xii. (2.5.2)

The way to solve this is to divide the matrix element into separate elements for each
timestep. In order to do this we insert the completeness relation for xi, 1 =

R
dxi|xiihxi|,

M � 1 times between each factor e�iH✏. Using this, the evolution operator is

U(xf , tf ; xi, ti) =

Z M�1Y

k=1

dxkhxM |ei✏Ĥ |xM�1ihxM�1|ei✏Ĥ |xM�2ihxM�2|

⇥ · · · ei✏Ĥ |x1ihx1|ei✏Ĥ |x0i, (2.5.3)

where we renamed xi to x0 and xf to xM to make it consistent with the notation of the
inserted states. The current formulation of the matrix element U , makes it clear that
it is a summation over the entire ensemble of possible paths that a particle may take,
originating from the initial position x0 and terminating at the end-point xM . That is why
it is called a path integral.

Up to this point, the obtained result remains exact. However, in order to proceed, it
is necessary to make approximations to the matrix element. We start out by evaluating
a single matrix element

hxk|e�i✏Ĥ |xk�1i =
Z

dpkhxk|pkihpk|e�i✏Ĥ |xk�1i, (2.5.4)

where we inserted the completeness relation for pk. To be able to proceed with the matrix
element hpk|e�i✏H(p,x)|xk�1i we need to arrange the position operators to the right of all
the momentum operators, which is called normal ordering. It can be shown that the
exponential can be expressed as a series expansion, where the first term contains the
normal ordered Hamiltonian3

e�i✏H(p̂,x̂) =: e�i✏H(p̂,x̂) : � (✏)2
1X

n=0

(�i✏)n

(n+ 2)!

⇣
H(p̂, x̂)n+2� : [H(p̂, x̂)]n+2 :

⌘
, (2.5.5)

3
Negele, Quantum Many-Particle Systems, 1988, page 59 [45]

10
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where the notation : A : is the normal ordering of A. The first approximation is to let
M ! 1, which makes the step size small ✏⌧ 1. Expanding to first order in ✏ gives

ei✏H(p̂,x̂) ⇡: ei✏H(p̂,x̂) : . (2.5.6)

To make the derivation clearer, we will specify the Hamiltonian to be a single particle in
a potential, Ĥ(p̂, x̂) = p̂

2

2m + V (x̂). Using this, plus the fact that hxk|pki = 1p
2⇡
eipkxk and

hpk|xk�1i = 1p
2⇡
e�ipkxk�1 , we obtain

hxk|e�i✏Ĥ |xk�1i =
Z

dpk
1p
2⇡

eipkxke�i✏H(pk,xk�1)
1p
2⇡

e�ipkxk�1 +O(✏2)

=

r
m

2⇡i✏
ei✏[

m
2✏2

(xk�xk�1)2�V (xk�1)] +O(✏2). (2.5.7)

Next, we introduce the following

lim
✏!0

xk � xk�1

✏
! dx

dt
, lim

M!1
✏

M�1X

k=1

!
Z

tf

ti

,

lim
M!1

Z  M�1Y

k=1

dxk

r
m

2⇡i✏

!
!
Z

xf ,tf

xi,ti

D[x(t)].

By using these approximations the expression for U is simplified

U(xf tf , xiti) =

Z
xf ,tf

xi,ti

D[x(t)]eiS[x(t)], (2.5.8)

where the action S[x(t)] and the Lagrangian L[x(t)] is

S[x(t)] =
Z

tf

ti

L[x(t)], L[x(t)] =
1

2
m

⇣
dx

dt

⌘2
� V (x(t)). (2.5.9)

In this calculation, we have assumed a one-dimensional system. Still, it can also easily be

generalized to n dimension by writing limM!1
R ⇣Q

M�1
k=1 dxk(

m

2⇡i✏)
n
2

⌘
!
R

xf ,tf

xi,ti
D[x(t)].

Partition function Next, we will use this to find an expression for the partition func-
tion for a general Hamiltonian. From statistical mechanics, we know that we can write
the partition function as

Z = tr(e��Ĥ) =

Z
dxhx|e��Ĥ |xi. (2.5.10)

The integrand has the same form as the evolution operator, where xi = xf = x and
� = i(tf � ti). By introducing the imaginary time ⌧ ⌘ it, we have that

dt = �id⌧,
d

dt
= i

d

d⌧
, x(t) ! x(⌧), (2.5.11)

which allows us to use the results from earlier. This gives the partition function formulated
as a path integral

Z =

Z
dxhx|e��Ĥ |xi =

Z

x(0)=x(�)

D[x(⌧)]e�
R �
0 d⌧H[x(⌧)]

. (2.5.12)

Furthermore, it can be generalized to a many-particle system.
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2.6 Functional integral over coherent states

For a single-particle Hamiltonian, it is convenient to express the eigenstates in the po-
sition or momentum basis, but for a many-particle system, the Hamiltonian is typically
expressed by annihilation and creation operators. Consequently, we want to express the
partition function for the many-particle system in the eigenstates of the annihilation op-
erator, which were introduced in section 2.3. The derivation has the same starting point
as for the path integral for a single particle, but now in the coherent state basis

U(�̄↵,f tf ,�↵,f ti) = h�f |e�iĤ(tf�ti)|�ii. (2.6.1)

Here, we have that |�ii is the initial coherent state with components �↵,i and h�f | is the
final state with components �̄↵,f . We use the same technique as in the section above and
divide the finite time interval (ti, tf ) into M infinitesimal time intervals, ✏ = tf�ti

M
. Next,

we insert the resolution of identity from table 2.1 between each factor

U(�̄↵,f tf ,�↵,f ti)

= lim
M!1

Z M�1Y

k=1

Y

↵

d�̄↵,kd�↵,k

N e�
PM�1

k=1

P
↵ �̄↵,k�↵,k

MY

k=1

h�k| : e�i✏H(a†↵,a↵) : +O(✏2)|�k�1i,

(2.6.2)

where N = 1 for fermions and N = 2⇡i for bosons. Note that there is an additional
exponential factor due to the closure relation of coherent states. It can be shown that

h�k| : e�i✏H(a†↵,a↵) : |�k�1i = e
P

↵ �̄↵,k�↵,k�1�i✏H(�̄↵,k,�↵,k). (2.6.3)

Now, U is

lim
M!1

Z M�1Y

k=1

Y

↵

d�̄↵,kd�↵,k

N e�
PM�1

k=1

P
↵ �̄↵,k�↵,ke

PM
k=1(

P
↵ �̄↵,k�↵,k�1�i✏H(�̄↵,k,�↵,k). (2.6.4)

Next, we introduce a trajectory �↵(t) to represent the set {�↵,1,�↵,2, ...,�↵,M} and let
✏! 0 which gives us

lim
✏!0

✓
�̄↵,k

�↵,k � �↵,k�1

✏

◆
⌘ �̄↵(t)@t�↵(t). (2.6.5)

Using this notation, the Hamiltonian can be written as

H(�̄↵,k,�↵,k) ⌘ H
�
�̄↵(t),�↵(t)

�
. (2.6.6)

Finally, the expression for U is

U(�̄↵,f , tf ;�↵,i, ti) =
Z

�̄↵(tf )

�↵(ti)

D[�̄↵(t),�↵(t)]e
P

↵ �̄↵(tf )�↵(ti)+i
R tf
ti

dtL[�̄↵(t),�↵(t)]
, (2.6.7)
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where L is the Lagrangrian

L[�̄↵(t),�↵(t)] =
X

↵

i�̄↵(t)@t�↵(t)�H
�
�̄↵(t),�↵(t)

�
(2.6.8)

and

D[�̄↵(t),�↵(t)] = lim
M!1

M�1Y

k=1

Y

↵

d�̄↵,kd�↵,k

N . (2.6.9)

Having found the formulation of the evolution operator in the coherent state basis, we
proceed to the partition function.

Partition function in the coherent state basis

By following the same approach as for the single particle Hamiltonian, we start out with
the partition function. The di↵erence is that we will take the trace in the coherent state
basis, and that our Hamiltonian is a many-particle Hamiltonian formulated by annihila-
tion and creation operators

Z = tr
⇥
e��(H�µN)

⇤
=

Z Y

↵

d�̄↵d�↵

N e�
P

↵ �̄↵�↵h⇣�|e��(Ĥ�µN̂)|�i, (2.6.10)

where ⇣ = 1 for bosons and ⇣ = �1 for fermions. As for the position basis, we can use the
result for the evolution operator to rewrite the partition function. By doing so we have
that

�↵,i = �↵, �̄↵,f = ⇣�̄↵, i(tf � ti) = �,

⌧ = �, dt = �id⌧, �(t) ! �(⌧),

where we again introduced ⌧ as an imaginary time. The partition function can now be
written as

Z =

Z

�↵(�)=⇣�↵(0)

D[�̄↵(⌧),�↵(⌧)]e
�S(�̄↵,�↵), (2.6.11)

where the integral limits are di↵erent for bosons and fermions. For bosons the limits are
periodic, but for fermions they are anti-periodic. The action in the exponent is

S(�̄↵,�↵) =

Z
�

0

d⌧

X

↵

�̄↵(⌧) (@⌧ � µ)�↵(⌧) +H
�
�̄↵(⌧),�↵(⌧)

��
, (2.6.12)

which is the action in the time representation. To get rid of the derivative in the exponent,
the Fourier conjugate representation of �↵(⌧) is introduced,

�(⌧) =
1p
�

X

!n

�ne
�i!n⌧ , !n =

(
2n⇡T bosons

(2n+ 1)⇡T fermions
, n 2 Z. (2.6.13)

where !n are called Matsubara frequencies. Using this gives us the action

S(�̄↵,�↵) =
X

n

X

↵

�̄↵,n

⇣
� i!n � µ

⌘
�↵,n +H

�
�̄↵,n,�↵,n

��
. (2.6.14)

This is the frequency representation of the action, and the representation we will use
throughout this thesis.
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2.7 Hubbard-Stratonovich decoupling

In this thesis, we will make use of actions with a non-interacting part S0 and an interacting
part Sint

S = S0 + Sint. (2.7.1)

The aim of this section is to derive the decoupling of the interaction term. The decoupling
results in integrals that are quadratic in the fermionic field variables. Hence, the integrals
can be solved using the theory from section 2.4 about Gaussian integrals. Consider an
interaction operator for two fermions

Sint = V↵��� ̄↵ � ̄� � (2.7.2)

where  ̄ and  are fermionic field variables. The indices ↵, �, �, � refer to an undefined
set of quantum numbers, Matsubara frequencies, etc. The interaction matrix element
is V↵�,��. Introducing composite operators ⇢̂↵� ⌘  ̄↵ �, one can rewrite the action as
⇢̂mVmn⇢̂n, where m = (↵, �) and n = (�, �). To reduce the action to be quadratic in  ’s,
we introduce the auxiliary bosonic field � and insert unity for the new field. We can now
write

e⇢̂mVmn⇢̂n =

Z
D�e�

1
4�mV

�1
mn�ne�⇢̂mVmn⇢̂n . (2.7.3)

Next, we shift the bosonic fields (�m ! �m + 2iVmn⇢̂n) to decouple the interaction term

e⇢̂mVmn⇢̂n =

Z
D�e�

1
4�mV

�1
mn�ne�i�m⇢̂m . (2.7.4)

We have now traded the quartic term in  ’s interaction term with a bilinear term coupled
with an auxiliary bosonic field, which is called Hubbard-Stratonovich decoupling. This
might seem more complicated, but the reason why we do this is that we can integrate
over the quadratic fermionic term to get an e↵ective bosonic theory. From this, we can
find the stationary point conditions. Expanding from this we can find a Ginzburg Landau
theory for the fluctuating fields. Above we decoupled in the direct channel, other choices
for the decoupling are in the exchange channel and in the Cooper channel, shown in figure
2.1. The calculation remains exact regardless of the decoupling channel. However, once
we approximate the integral in any way, the choice of the decoupling channel becomes
crucial. To make the decoupling in the di↵erent channels clearer, we will look at the
electron-electron interaction

Sint =
1

2

X

�,�0

Z
d⌧

Z
d
d
rd

d
r
0
 ̄�(r, ⌧) �(r

0
, ⌧)V��0(r� r0) ̄�0(r0, ⌧) �0(r, ⌧) (2.7.5)

where ↵ = � = (r, ⌧, �) and � = � = (r0, ⌧, �0). Next, we consider the interaction term in
momentum-space

Sint[ ̄, ] =
1

2

X

�,�0

X

k1,...,k4

 ̄�,k1 ̄�0,k3V (k1 � k2) �0,k4 �,k2�k1�k2+k3�k4 , (2.7.6)
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α β

γ δ

α β

γ δ

α β

γ δ

(X)(D) (C)

Figure 2.1: Decoupling of the interaction term where ↵, �, �, � refer to an unspecified set
of quantum numbers, Matsubara frequencies, etc. The decoupling is in the direct channel
(D), the exchange channel (X), and the Cooper channel (C)

where ki = (ki,!i) are four-momentum consisting of the spacial momentum and the
Matsubara frequencies. The summation over the four-momentum includes the sum over
Matsubara frequencies and the spacial momentum,

P
k
=
P

n2Z
P

k. As stated in Con-

densed matter field theory [44], the physics that tends to be the most interesting, typically
arises from processes in which one of the three unbounded momenta involved in the in-
teraction vertex is small. Consequently, we break down the full momentum summation
to a restricted summation over the small-momenta (q) sublayers

Sint[ ̄, ] ⇠=
1

2

X

k,k0,q

�
�  ̄�,k �0,k+qV (k0 � k) ̄�0,k0+q �,k0

+ ̄�,k �,k+qV (q) ̄�0,k0 �0,k0�q �  ̄�,k ̄�0,�k+qV (k0 � k) �,k0 �0,�k0+q

�
, (2.7.7)

where |q| ⌧ |k|, |k0|. It is now clearer that the decoupling in the di↵erent channels is

⇢̂D,q ⇠
X

k

 ̄�(k) �(k + q) The Direct Channel (D) , (2.7.8)

⇢̂X,�,�0,q ⇠
X

k

 ̄�(k) �0(k + q) The Exchange Channel (X), (2.7.9)

⇢̂C,�,�0,q ⇠
X

k

 ̄�(k) ̄�0(�k + q) The Cooper Channel (C). (2.7.10)

In chapter 3 we will look at an action to describe the charge density wave. This describes
modulations of the charge density in the system. Hence, we want to decouple in the
particle-hole channel, also called the direct channel. In chapter 4 we will include super-
conductivity in the system. This is described by a particle-pair, therefore, we need the
decoupling to be in the particle-particle channel, the Cooper channel.
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Figure 2.2: Electron energy with equally
spaced ions at half-filling, where t = 1
is used as the energy-scale. The energies
of the electrons is here defined as ✏k =
�2t cos(ka)

Figure 2.3: Electron energy when every
second ion is displaced by the same amount
in the same direction. A gap is induced at
ka = ±⇡

2 .

2.8 Peierls instablity

Before starting on the main part of this thesis we want to establish a theory for CDWs
in one dimension. In 1955 a German-British theoretical physicist Rudolf E. Peierls [1]
derived the first known theory of this phenomenon. He stated that in a partially filled one-
dimensional metal, the regular chain can never be stable. Assuming half-filling (2kF =
⇡/a), the argument goes as follows: by translating every second atom the same amount in
the same direction, a new periodicity in the chain is introduced, a ! 2a, and the Brillouin
zone is reduced to � ⇡

2a < k <
⇡

2a . This induces an energy gap at the new zone boundaries,
kF = ⇡

2a as shown in figure 2.3, which lowers the energy of each occupied state. In one
dimension the decrease in electron energy is always smaller than the energy the ions gain
by the distortion. This is why a 2kF distortion occurs in the positions of the ions, which
also induces a static charge density wave with the same periodicity. According to Pouget,
the argument that Peierls gave for a half-filled band can easily be generalized to other
fillings [48].
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Chapter 3

Charge Density Waves in the
Functional Integral Approach

In this chapter, the goal is to derive a Ginzburg-Landau theory for a system exhibiting
a CDW phase. The theory will be derived using the formalism introduced in the pre-
liminaries and follows the structure of Lundemo’s specialization thesis[49]. Firstly, we
will find an expression for the e↵ective, bosonic action. Secondly, we will do a stationary
phase analysis to find the mean-field state. As a next step, we will calculate the critical
temperature of the system. Lastly, we will look at fluctuations around the mean field to
derive a Ginzburg-Landau theory of the free energy for the system.

3.1 E↵ective action

We will start by introducing a general many-body Hamiltonian with a two-body interac-
tion term. The Hamiltonian reads

H =
X

i,�

(✏i � µ)c†
i,�
ci,� +

1

4

X

↵,�

X

i,j

V
↵,�

i,j
ni,↵nj,�, (3.1.1)

where ni,↵ ⌘ c
†
i,↵
ci,↵ is the number operator for fermions at position ri and with spin

↵. The kinetic energy for a fermion at position ri is denoted as ✏i, and µ is the chemical
potential in the system. The potential V ↵,�

i,j
describes the interaction between two fermions

where one of them is at position ri with spin ↵, and the other one at rj with spin �. We will
assume that this potential is spin-independent, V ↵,�

i,j
= Vi,j. Moving on, we will express

the Hamiltonian in Fourier space. In section 2.7 we stated that the physics of the CDW
is best described with a decoupling of the interaction term in the particle-hole channel.
Following the theory from this section, we rewrite the Hamiltonian in momentum space
in the following way

H =
X

k,�

(✏k � µ)c†k,�ck,� +
1

4

X

k,k0
,q

�,�
0

V (q)c†k+q/2,�ck�q/2,�c
†
k0�q/2,�0ck0+q/2,�0 (3.1.2)

where k � q/2 is the inertial momentum of the first fermion, k0 + q/2 is the inertial
momentum of the second fermion and q is the exchanged momentum of the interaction.
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The interaction term is shown in terms of a Feynmann diagram in figure 3.1. The full
calculation of the Fourier transformation is shown in appendix C. Continuing, we will

k� q/2, �

k+ q/2, �
V (q)

k0 � q/2, �0

k0 + q/2, �0

Figure 3.1: The interaction term illustrated by a Feynmann-diagram

need the action of the system

S[ ̄, ] =
X

k,�

 ̄k,�[�i!n + ⇠k] k,� �
1

4

X

�,�0

X

q,k,k0

V (q) ̄k+q/2,� k�q/2,� ̄k0�q/2,�0 k0+q/2,�0 ,

(3.1.3)

where  is a Grassmann field, !n the Matsubara frequency and ⇠k = ✏k � µ is the
kinetic energy minus the chemical potential. The spatial momentum and the Matsubara
frequency are written in terms of the compact notation, k = (k,!n). The next step is to
use the theory we introduced in the preliminaries and express the partition function as a
functional integral,

Z =

Z
D ̄D e�S[ ̄, ]

. (3.1.4)

Proceeding, we will decouple the interaction term in equation (3.1.3). In order to do this,
we introduce the auxiliary field, . The first thing to note is that we assume that  is only
dependent on the relative momentum q in the interaction term1. Secondly, we assume 
to be a real field. It can be shown that by starting with a complex auxiliary field, the
result will e↵ectively be a real field coupled to the fermionic field operators. The field 
is in fact the order parameter of the charge density wave phase transition. According to
the phenomenological theory by Landau [50] we have that an order parameter for a phase
transition is defined as a quantity that vanishes in the disordered phase and is non-zero
in the ordered phase. Hence, the order parameter is a quantity that measures ordering
in a system below its critical temperature. Having established the properties of the order
parameter , we introduce the measure

1 =

Z
D exp

 
�
X

q

(q)(�q)

V (q)

!
. (3.1.5)

1
By starting with a field dependent on both the relative momentum and the center of mass momentum,

�(k, q), it can be shown that the center of mass momentum can be summed over, (q) =
P

k �(k, q).
Thus, we are left with a field only dependent on the relative momentum, (q).
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k+ q/2

k� q/2

(q)

Figure 3.2: The incoming fermion with momentum k+q/2 and outgoing k�q/2 and an
auxiliary field (q) which decouples quartic the interaction.

Since  is real, it can also be shown that it is symmetric around zero in momentum space,
(�q) = (q). We will keep the signs in the bosonic term to shift the fields in such a way,
that the quartic term in the action cancels. The shift is as follows

(q) ! ̃(q) ⌘ (q)� 1

2
V (q)

X

k,�

 ̄k+q/2,� k�q/2,�. (3.1.6)

Inserting the shifted measure into equation (3.1.4) gives the partition function with the
decoupled action

Z =

Z
D ̄D 

Z
D[]e�S̃[ ̄, ,]

, (3.1.7)

where the decoupled action S̃ reads

S̃[ ̄, ,] =
X

k,�

 ̄k,�[�G�1
0 (k)] k,� +

X

q

(q)(q)

V (q)
�
X

k,q,�

(q) ̄k�q/2,� k+q/2,�. (3.1.8)

The action contains three di↵erent terms. The first term is the non-interacting energy
for the fermions, where we have defined the bare Greens function G�1

0 (k) ⌘ i!n � ⇠k.
The second term is the non-interacting boson energy, and the last term is fermionic fields
coupled to a bosonic field, which is illustrated with a Feynmann diagram in figure 3.2.
The next step is to integrate over the fermionic fields. This is calculated in equation
(2.4.4) in the preliminaries. Thus, we first want to structure the fermionic action as,

Sf [ ̄, ,] =
X

�

X

k1,k2

 ̄k1,�[�(Ĝ�1)k1,k2 ] k2,�, (3.1.9)

where we defined the dressed Greens function as Ĝ�1 = Ĝ�1
0 + ̂. Note that Ĝ�1

, Ĝ�1
0 and ̂

are now defined as operators in momentum space. The bare Green function G�1
0 is diagonal

in momentum space, and the elements are defined as (Ĝ0)k,k0 ⌘ G0(k)�k,k0 . Whereas, the
elements of the bosonic field operator are o↵-diagonal and defined as (̂)k,k0 ⌘ (k0 � k)
and we have that (0) = 0. Moving on, we integrate over the fermionic fields

Z
D ̄D e�

P
k,q,�  ̄k�q/2,� [�(Ĝ�1)k�q/2,k+q/2] k+q/2,� = det(�Ĝ�1). (3.1.10)
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The e↵ective action can be written as

Se↵[] =
X

q

(q)(q)

V (q)
� tr ln(��Ĝ�1), (3.1.11)

where we used the identity introduced in preliminaries, detA = e
tr lnA. Note that we

have multiplied the dressed Greens function with � to make the argument in the trace-log
dimensionless. Another thing to note is that the trace is in the momentum space and

spin space. We have now found an expression for the e↵ective action and are ready to
proceed to the stationary phase analysis.

3.2 Stationary phase analysis

In this section, we want to derive a self-consistent equation for the mean field of ̂. Peierls
stated in 1955 [1] that charge density waves in one dimension are expected to arise at
q = 2kF . In higher dimensions, one of the theories for CDWs is given by Fermi surface
nesting [51]. These are also characterized by q = 2kF . Hong Yao et. al. [52] studied
a quasi-two-dimensional system with q = (2kF , 2kF ), which described CDWs formed as
stripes. In light of this, we fix the momentum at 2kF to find an equation for the mean
field of the CDW order parameter. In this analysis, we are not interested in the dynamics
of the order parameter and therefore set the respective Matsuabara frequency to zero,
!v = 0. To find a self-consistent equation for the mean field, we di↵erentiate the action
with respect to (2kF ). We introduce the four-vector 2kF ⌘ (2kF , 0) to simplify the
notation. The equation for the mean field is

0
!
=

�Se↵

�(2kF )
= 2V �1(2kF )(2kF )�

�

�(2kF )
tr ln(��Ĝ�1), (3.2.1)

where �(2kF )Se↵ is the functional di↵erentiation of the e↵ective action. Moving on, we
will look closer at the last term. Due to the trace, we can treat the operator as a function
when di↵erentiating2. This allows us to write the last term as

�

�(2kF )
tr ln(��Ĝ�1) = tr

h
Ĝ �Ĝ�1

�(2kF )

i
. (3.2.2)

Calculating the trace gives us

tr
h
Ĝ �Ĝ�1

�(2kF )

i
= 2

X

k

h
Ĝ �Ĝ�1

�(2kF )

i

k,k

= 2
X

k,k1

Ĝk,k1

h
�̂

�(2kF )

i

k1,k

, (3.2.3)

2
Having an operator Â(x) depending on a parameter x and an arbitrary function f(Â) we can write

�xtr[f(Â)] = �x
X

n

f (n)
(0)

n!
tr(Ân

) =

X

n

f(n)(0)

n!
tr[(�xÂ)Ân�1

+ Â(�xÂ)Ân�2
+ ...+ Ân�1�xÂ]

=

X

n

n

n!
f (n)

(0)tr[Â(n�1)
(�xÂ)] = tr[f 0

(Â)�xÂ]
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where the factor 2 comes from the spin-summation in the trace. Before proceeding,
we want to emphasize how the di↵erentiation of ̂ is done. The first thing to note is
that ̂ is an operator which can be written as a matrix. The matrix elements of  are
(̂)k,k0 = (k0 � k), as defined earlier. Therefore, the derivative with respect to (2kF )
will give a matrix with 1 wherever k0� k = 2kF , and zero otherwise. Hence, we have thath

�̂

�(2kF ,!v=0)

i

k1,k

= �2kF ,k�k1�!n,!n1
. This gives

tr
h
Ĝ �Ĝ�1

�(2kF )

i
= 2

X

k,k1

Ĝk,k1�2kF ,k�k1 = 2
X

k

X

!n

Ĝk,k�2kF . (3.2.4)

The stationary phase condition for ̂ can be found by plugging this back into equation
(3.2.1)

2(2kF ) = 2V (2kF )
X

k

Ĝk,k�2kF . (3.2.5)

One solution to the equation is that (2kF ) = 0, because we have that Ĝ�1 = [Ĝ�1
0 + ̂]�1,

and G0 is diagonal in momentum space. Next, we are interested to look at solutions for
�(2kF ) 6= 0 to equation (3.2.5).

From the definition of Ĝ we can derive a Dyson-like equation. We can use Feynmann
diagrams to illustrate the equation, with the following symbols

 = , Ĝ = , G0 = .

The Dyson-like equation for the dressed Greens-function is

= + . (3.2.6)

Critical temperature In addition to the mean field, we can derive the critical tem-
perature from the stationary phase equation (3.2.5). Before we explain how the critical
temperature is defined we will expand the dressed Greens function in . This is due to
the fact that close to the critical temperature, we assume that the order parameter is
approaching zero. The expansion to first order reads

Ĝk,k�2kF =
�
[1 + Ĝ0̂]

�1Ĝ0

�
k,k�2kF

= (Ĝ0)k,k�2kF � [Ĝ0̂Ĝ0]k,k�2kF +O
�
̂
3
�
. (3.2.7)

Since Ĝ0 is diagonal in k, the first term is zero, and we have that

(2kF ) = �V (2kF )
X

k

G0(k)(2kF )G0(k � 2kF ) +O(3). (3.2.8)

Dividing by (2kF ) gives

1 = �V (2kF )
X

k

G0(k)G0(k � 2kF ) +O(2). (3.2.9)
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From this equation, we can find an expression for the critical temperature. It is defined as
the temperature which makes the charge density (Lindhard) susceptibility diverge. The
susceptibility for particle-hole fluctuations is proportional to [1+V (2kF )

P
k
G0(k)G0(k�

2kF )]�1.

Remark By including particle-hole fluctuations we can find an expression for an
e↵ective potential. This potential is defined as Veff = �V0, where � is defined as the
susceptibility. To find an expression for �, we can illustrate the e↵ective potential
in terms of a series of Feynmann diagrams

= + + + · · ·, (3.2.10)

where the double wiggly line is the e↵ective potential Ve↵, the single wiggly line is
the bare potential V and the bubble is particle-hole bubble K. We have focused
on only the simple bubbles, which is an approximation but will quantitatively give
the correct result. Pulling out a factor of the bare potential we can see that it is a
geometric series, which can be expressed as

=

 
1 + + + · · ·

!
=

1�
. (3.2.11)

From this, we can identify an expression for how easy pair fluctuations can arise.
This known as the susceptibility, �ph = [1� V K]�1.

For this system, we have that �ph / [1 + V (2kF )
P

k
G0(k)G0(k � 2kF )]�1. To derive an

expression for the critical temperature we will perform the k-summations over the bare
Greens functions. The sum can be written as

X

k

G0(k)G0(k � 2kF ) =
X

k

1

(i!n � ⇠k)

1

(i!n � ⇠k�2kF )
(3.2.12)

Rewriting this, and summing over the Matsubara frequencies, we get

X

k

G0(k)G0(k � 2kF ) =
X

k

1

⇠k � ⇠k�2kF

X

n


1

i!n � ⇠k
� 1

i!n � ⇠k�2kF

�
(3.2.13)

= �

X

k

1

⇠k � ⇠k�2kF


1

1 + e�⇠k
� 1

1 + e�⇠k�2kF

�
. (3.2.14)

The calculation of the sum over the Matsubara frequencies is shown in appendix D. To
proceed, we will linearize the energies

✏k = ✏F + vF (k� kF ) +O(k2). (3.2.15)
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Using this we can find the linearization of ⇠k and ⇠k�2kF

⇠k = ✏k � µ ⇡ vF (k� kF ) (3.2.16)

⇠k�2kF = ✏k � µ+ 2✏F � 2vFk ⇡ �vF (k� kF ) ⇡ �⇠k, (3.2.17)

where we can see that ⇠k�2kF ⇡ �⇠k. Before proceeding, we must emphasize that the
last transition in equation (3.2.17) is only valid for the energies close to the fermi level,
which is ensured by a cut-o↵ of the integral. Inserting this back into the expression for
the particle-hole bubble (3.2.14), we get

X

k

G0(k)G0(k � 2kF ) ⇡ �

X

k

1

2⇠k


1

1 + e�⇠k
� 1

1 + e��⇠k

�

⇡ �2�DF

Z
!c

0

d⇠
tanh

�
�⇠

2

�

2⇠
, (3.2.18)

where !C is the upper limit for where the linearization is valid. We have approximated the
k-summation to an energy integral. In the transition to an energy integral, we have used
that

P
k f(⇠k) =

R
d⇠D(⇠)f(⇠). The density of states is defined as D(⇠) = 1

Vsys

P
k
�(⇠ �

⇠k), where Vsys is the volume of the system. By using this, the calculation will still be
exact, but we will approximate the density of states by its value on the fermi-surface,
D(⇠) ⇡ DF . This gives

1 = V (2kF )�DF

Z
!c

0

d⇠
tanh

�
�⇠

2

�

⇠
. (3.2.19)

We will write the �- and N -dependence in the potential explicitly and define the potential
at 2kF as V (2kF ) = (N�)�1

V2kF . The factor (N�)�1 comes from Fourier transforms. In
order to make the equation explicitly independent of the system size, we can write the
density of states as DF = NF/V . This gives

1 = V2kFNF

Z
!c

0

d⇠
tanh

�
�⇠

2

�

⇠
. (3.2.20)

We can observe that this is the same equation as for the critical temperature for the BCS
superconductor. This might be surprising as they are critical phenomena in two di↵erent
channels. CDWs happen in the particle-hole channel and SC in the particle-particle
channel. Proceeding, we will assume that the critical temperature is small. Hence, the
integral will be

Z
!c

0

d⇠
tanh

�
�⇠

2

�

⇠
=

Z �!c
2

0

d⇠
tanh(x)

x
⇡ ln

✓
�!C

2C

◆
, (3.2.21)

where C = ⇡

4 e
�� and � is the Euler-Mascheroni constant3. The critical temperature can

be expressed as

kBTC =
2!C

⇡
e�e�

1
� , (3.2.22)

3
Euler-Mascheroni constant, � = limn!1

Pn
k=1

�
1
k � lnn

�
⇡ 0.577215 . . .
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where � = V (2kF )�DF . From this, we can observe that with a positive potential, the
critical temperature converges logarithmic to zero when the magnitude of the potential
increases. The expression for the critical temperature has the same form as in the BCS
theory. According to Plakida, this points to a purely Coloumb nature of the particle-hole
interaction [53].

3.3 Ginzburg-Landau theory for fluctuations

Next, we want to look at how the system behaves for small fluctuations around the mean
field. The idea is that there is a static charge density wave at q = 2kF , and in addition
to this, there is now a slowly varying field. Therefore, we define (q) as the sum of the
mean field plus a fluctuating field. Hence, we have that

(2kF � q) = MF(2kF ) + ⌘(2kF � q)
T!TC= ⌘(q0), (3.3.1)

where we defined q
0 = (2kF � q, 0) as the argument in ⌘. We have used that the mean-

field value approaches zero as T ! TC from below. Note that we are aiming for a time-
independent theory, and therefore only look at fluctuations in the spacial momentum.
The main principle of the Ginzburg-Landau theory is to expand the free energy around
the system’s normal state. Following this theory, this system’s free energy can be modeled
as

�F [⌘]� �FMF =

Z
d
d
r
⇥
↵1|⌘|2 + �|r⌘|2 + ↵2|⌘|4 + · · ·

⇤
, (3.3.2)

where ↵i and � are phenomenological constants, and ⌘ is the order parameter. In this sec-
tion, we assume that the spatial fluctuations are small, and therefore neglect higher-order
gradient terms. The phenomenological constants contain information about the system,
and for this reason, the main goal of this section is to give an explicit expression for ↵1,↵2,
and �. In general, we could have odd powers of the order parameter in the free energy.
This would mean that F [⌘] 6= F [�⌘], which in turn indicates that a spatial translation
of the charge density wave would change the free energy. In addition to this argument,
we will later show that this also holds mathematically. At the end of this section, we will
show that the higher-order terms are negligible.

The partition function can generally4 be written as Z =
P

n
e��Fn , where we sum over

all possible states n. By comparing this with the partition function expressed in terms of
the action, we can write

Se↵ = SMF + �F [⌘]. (3.3.3)

The mean-field action will be SMF ⌘ �tr ln
⇥
� �Ĝ�1

0

⇤
, and does not provide any relevant

information for us in this consideration. This is because we are only interested in the
physics of the fluctuating fields. To separate the mean-field action from the terms that
we are interested in, we make use of the fact that tr ln[��(Ĝ�1

0 + ⌘̂)] = tr ln[��Ĝ�1
0 ] +

4
From thermodynamics we have that the partition function can be written as Zg = e�pV . We also

have that pV = G� F = µN � F , which for our case will be pV = F .
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tr ln[1 + Ĝ0⌘̂]. This gives us that the free energy for ⌘ is

�F [⌘] =
X

q0

V
�1(q0)⌘(q0)⌘(q0)� tr

h
ln
�
1 + Ĝ0⌘̂)

i
(3.3.4)

using the action from equation (3.1.11). To proceed, we will use the assumption that ⌘ is
su�ciently small. This allows us to expand the last term using the following expansion

ln(1 + x) = �
1X

k=1

(�1)k

k
x
k for |x| < 1. (3.3.5)

Using this, the expansion of the trace-log can be written as

�tr

"
�

1X

k=1

(�1)k

k

✓
Ĝ0⌘̂

◆k
#
= �tr[Ĝ0⌘̂] +

1

2
tr[Ĝ0⌘̂Ĝ0⌘̂] +O(⌘3). (3.3.6)

3.3.1 First order

Starting o↵ with the first-order term, we have that

�tr[Ĝ0⌘̂] = �
X

k

[Ĝ0⌘̂]k,k = �
X

k,k1

(Ĝ0)k,k1(⌘̂)k1,k = 0 (3.3.7)

Using that Ĝ0 is a diagonal matrix and that ⌘ only contains o↵-diagonal matrix elements,
we see that this term is zero.

3.3.2 Second order

For the second-order term, we will do a similar calculation

1

2
tr[Ĝ0⌘̂Ĝ0⌘̂] =

1

2

X

k1,k2
k3,k4

(Ĝ0)k1,k2(⌘̂)k2,k3(Ĝ0)k3,k4(⌘̂)k4,k1

=
1

2

X

k,q0

G0(k)⌘(q
0)G0(k � q

0)⌘(q0). (3.3.8)

Here, we used that (Ĝ0)k,k0 = G0(k)�k,k0 , ⌘̂k,k0 = ⌘(k0 � k), and renamed the summation
momenta to be on the desired form. This gives us the expression for the free energy to
second order in ⌘

�F [⌘] =
X

q0

V
�1(q0)⌘(q0)⌘(q0) +

X

k,q0

G0(k)⌘(q
0)G0(k � q

0)⌘(q0). (3.3.9)
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For each q we can express the last term with a Feynmann diagram

X

k

G0(k)⌘(q
0)G0(k � q

0)⌘(q0) =
q
0

k

q
0

k � q
0

(3.3.10)

where the wiggly line represents the bosonic field, and the straight line the bare Greens
function. The bubble is commonly referred to as a particle-hole-bubble, where we can see
that it transfers the momentum q

0. We want to remind the reader that the momentum q
0

is the momentum of the static CDW minus a small momentum q. To proceed with our
calculation we will assume that q is small, which means that we only have long-waved
fluctuations deviating from the static CDW.

Expansion in q

To derive an expression for the phenomenological constant we will do an expansion of
the bare Greens function. Since the theory is time-independent, we only expand in the
spatial part. We have that q

0 = (2kF � q, 0), and the expansion will therefore be in q.
Expanding ⇠k�q0 , gives

⇠k�q0 = ⇠k�2kF+q = ⇠k�2kF +
2(k� 2kF )q

2m⇤ +O(q2) ⇡ �⇠k + ṽ · q, (3.3.11)

where ṽ = k
m⇤ � 2vF , m⇤ is an e↵ective mass and we used the linearization from equation

(3.2.17). We emphasize that the last transition is only valid as long as the linearization
of the energy ✏k is valid. To derive the expression for the coe�cients ↵1 and � we start
by rewriting the following expression

X

k

G0(k)G0(k � 2kF + q) =
X

k

✓
1

i!n � ⇠k

◆✓
1

i!n + ⇠k � ṽ · q

◆

=
X

k

1

2⇠k � ṽ · q


1

i!n � ⇠k
� 1

i!n + ⇠k � ṽ · q

�
. (3.3.12)

Expanding the Greens functions to second order in ṽ · q, gives

X

k

G0(k)G0(k � 2kF + q) ⇡
X

k

(
1

2⇠k

✓
1

i!n � ⇠k
� 1

i!n + ⇠k

◆

+ṽ · q


1

4⇠2k

✓
1

i!n � ⇠k
� 1

i!n + ⇠k

◆
� 1

2⇠k

1

(i!n + ⇠k)2

�

+(ṽ · q)2


1

8⇠3k

✓
1
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Moving on, we will calculate the Matsubara frequency sums. An elegant formula for
calculating the sum over (i!n � ⇠)�m for fermions is given in appendix D. The formula is

X

n2Z

1

(i!n � ⇠)m
=

�

(m� 1)!
@
m�1
⇠

f(⇠), (3.3.14)

where f(⇠) = 1
exp(�⇠)+1 is the Fermi-Dirac distribution. The Matsubara sums we need are

X

n

1

i!n ± ⇠k
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�
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, (3.3.15)
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), (3.3.16)
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2
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Proceeding, we will first evaluate the term that is independent of q. This is in fact the
same integral as we had in equation (3.2.18) in the stationary phase analysis. Hence,

↵1 =
X

k

1

2⇠k


1

i!n � ⇠k
� 1

i!n + ⇠k

�
=
X

k

�

2⇠k


1

e�⇠k + 1
� 1

e��⇠k + 1

�

= �
X

k

�

2⇠k
tanh

✓
�⇠k

2

◆
= �DF�

Z
!C

0

tanh
�
�⇠

2

�

⇠
. (3.3.18)

The next term we want to calculate is the term linear in q. This needs a bit more
consideration due to the dot product. First, we calculate the Matsubara sum,
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Next, we want to change the k-sum to an energy integral. Before doing so, we will need
to perform the angular integral over k̂. We have that ṽ = k

2m⇤ � 2vF . We therefore only

integrate over k̂, which gives qiki
R

d⌦
4⇡ k̂i = 0. Hence, equation (3.3.19) is now
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◆
= 0, (3.3.20)

which is zero because of the anti-symmetric integrand.

The next term will be the quadratic them in q. Using the Matsubara sums (3.3.15),
(3.3.16) and (3.3.17) we get the following result
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The angular integral over k reads,
Z

d⌦

4⇡
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(k� 2kF ) · q
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= kikjqiqj
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, (3.3.22)

where the cross-term will be zero when doing the angular integral. This gives
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(3.3.23)

We will now look closer at the expression
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The term multiplied by ⇠k is zero due to the anti-symmetry of the total integrand. We
are then left with
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v
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The integral is not possible to solve analytically, but numerically we can see that it is
positive. The expression for the free energy to second order in ⌘ is

�F [⌘] ⇡
X
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↵1⌘(2kF � q)⌘(2kF � q) + �q2
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where the coe�cients ↵1 and � are given by
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We have used the fact that the potential is a constant for small q, V (2kF � q) ⇡
(N�)�1

V2kF . Note that we can evaluate the integrals in the coe�cients at low tem-
peratures. This is already done for ↵1 in the section 3.2, about the stationary phase
analysis. For �, we will let !C ! 1 and solve the two integrals separately [49]
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where ⇣ is the Riemann Zeta function[54]. The resulting coe�cient we will get for � is

� = v
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DF�
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⇣(3, 1/2). (3.3.31)
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This tells us that at low temperatures � is proportional to T
�3. Furthermore, we can see

that at the critical temperature, ↵1 will change sign. We can therefore solve the equation
↵1 = 0 to find this temperature, which will be the same equation as we found for TC

in the stationary phase analysis. The potential can be expressed in terms of the critical
temperature using equation (3.2.22). Inserting this into ↵1, we get
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We will next assume that T is close to the critical temperature TC
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We will therefore write ↵1 = ↵
0
1(T � TC). Whenever T < TC , ↵1 is negative, and it is

favorable to create CDWs in the system. Hence, we have an unstable system. To ensure
stability below TC , we need to include higher-order terms.

3.3.3 Third order

The third order of the expansion will be
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We will assume that qi ⌧ k, and the Greens functions will just depend on k. The
coe�cient of the third-order term is
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When doing the k-summation, it can be shown that it will be zero due to the symmetry
of the Green function.

3.3.4 Fourth order

The calculation of the trace is done in the same manner as for the second and third order.
Thus, we will just state the result
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where we have used that ⌘ is symmetric in its argument. Since q is assumed to be small
compared to k and kF , we have that G0(k � 2kF � qi) ⇡ G0(k � 2kF ). The fourth-order
term is

⇡ 1

2
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where we changed back to the q
0 notation, q0 = (2kF � q, 0), to make the equations more

compact. Moving on, we will approximate ⇠k�2kF in the same way as we did for the
second-order term, which gives the
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Summing over the Matsubara frequencies
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where we have used that
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This can not be solved analytically, but it can be shown that it is positive. We can
notice, that this is the same integral as calculated in (3.3.29), which means that the
low-temperature limit is

↵2 =
�
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8⇡2
DF ⇣(3, 1/2) (3.3.40)

Due to the positive coe�cient, the fourth-order term counterbalances the second-order
term and ensures the stability of the system, as long as the higher-order terms are su�-
ciently small or positive.

3.3.5 Higher order

Following the same arguments as for the first and third-order terms, it follows that all
odd terms will be zero. However, for the even terms, the 2lth-power term is given as,
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Figure 3.3: The coe�cients, � (left) and ↵2 (right) (solid line), for the gradient term and
the fourth order term, respectively, in the Ginzburg-Landau free energy for CDWs, with
the low-temperature limit (dotted line)
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We can see that the coe�cients will decrease in magnitude for higher values of l. Since
the first term converges, the subsequent terms will also converge and become smaller due
to the increasing power of the denominator, as l increases. By knowing this, combined
with the fact that the fourth-order term ensures the stability of the system, it is enough
to only consider the two first coe�cients, ↵1 and ↵2.

3.3.6 Summary of the Ginzburg-Landau theory

In our derivation of the Ginzburg-Landau theory, we found expressions for the phenomeno-
logical constants in equation (3.3.2). The coe�cients, together with their low-temperature
limits are shown in figure 3.3. We found the critical temperature for the CDW by solving
↵1 = 0, which coincides with the results from section 3.2. Below this temperature, it is
favorable to create CDWs and we need the fourth-order term to be positive, ↵2 > 0, to
ensure the stability of the system. Above this critical temperature, it will be energetically
costly to make CDWs, and the system will be stable. The positive coe�cient in front of
the gradient term tells us that spatial fluctuations of the CDWs are not favorable. More-
over, we can see that this coe�cient is in line with what we would expect from a classical
Ginzburg-Landau theory, � ⇠ v

2
F
/T

3 [44]. As a final consideration, we want to look at
the system without spatial fluctuations, setting the gradient term to zero. By finding the
extremum of the free energy we have that ⌘(2↵1+4↵2⌘

2) = 0. From this, we can see that
above TC there is only one solution, ⌘ = 0. Below TC the mean-field order parameter can

be written as ⌘ =
q

� ↵1
2↵2

=
q

↵
0
1

2↵2

p
TC � T . This dependence of TC � T is exactly what

we would have expected for a mean-field order parameter.
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Chapter 4

Charge Density Waves and
Superconductivity in the Functional
Integral Approach

In this chapter, we want to study the interplay between SC and CDWs. It is particularly
interesting to see if it is energetically favorable to have a coexistence of the two phases.

4.1 E↵ective action

The structure of the derivation will be similar to what we did in chapter 3. In addition to
the Hamiltonian we had in equation (3.1.1), we will add the potential V�,�̄, which couples
fermions of di↵erent spins. This will be the potential that can give rise to a SC state in
our system. The Hamiltonian that we will add to the CDW system, will be

HSC =
1

2

X

�

X

i,j

V�,�̄(ri � rj)c
†
i,�
ci,�c

†
j,�̄
cj,�̄. (4.1.1)

By applying a Fourier transformation to the SC interaction term, and adding the terms
from equation 3.1.1, we have that the total Hamiltonian in momentum space is
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�k+q/2,#c�k0+q/2,#, (4.1.2)

where we have defined the spin-independent potential �(k0�k) ⌘ V�,�̄(k0�k). The Fourier
transformation of the interaction term is found in appendix C. From the Hamiltonian, we
can find the action of the system
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Furthermore, we will decouple the interaction terms and rearrange the fields in such a
way that we can integrate over the fermionic fields. Firstly, we will decouple the quartic
fermion terms. The decoupling of the CDW term will be the same as in chapter 3. For
the SC interaction term, we introduce the auxiliary fields � and its complex conjugate
�̄. The combined measure for the CDWs and the SC decoupling is

1 =

Z
D[, �̄,�] exp
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X
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�(k0 � k)

!
, (4.1.4)

where we have used that the SC decoupling field is complex. From section 2.7 we stated
that the SC interaction term is supposed to be decoupled in the particle-particle channel,
while the CDWs decouples in the particle-hole channel. This can be written in terms of
the following shifts

�(k, q) ! �(k, q)�
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Next, we insert these shifts into the measure (4.1.4), and use that
P
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0)�(k0 �
k
00) = �k,k00 . When doing so, we trade the interaction terms with quadratic fermion terms

coupled to bosonic auxiliary fields. The partition function reads
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with the decoupled action
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The next step is to structure the interaction terms in a matrix such that we can integrate
over the fermionic fields. To do this, we introduce the Nambu spinors

 ̄k =
⇥
 ̄k,"  ̄k,#  �k,"  �k,#

⇤
,  k =
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Using these spinors and rearranging the fermionic action, we can write the total action as

S̃[ ̄, ,, �̄,�]

=
X

q

(q)(�q)

V (q)
+
X

k,k
0
,q

�̄(k0
, q)�(k, q)

�(k0 � k)
+
X

k1,k2

 ̄k1 [�
1

2
F̂�1

k1,k2
] k2,, (4.1.9)

where we simplified the notation by relabeling the momenta as k1 = k � q/2 and k2 =
k + q/2. Following this, we have that F̂�1 is
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where the matrix-elements in F̂�1 are operators in momentum space. Owing to the
discreteness of the momentum, these can be structured as matrices, and their matrix
elements are defined as
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0 ]�1
k,k0 = G�1

0 (�k)�k,k0 , (4.1.10)

(̂)k,k0 = (k0 � k), (4.1.11)
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where [Ĝ(p)
0 ]�1 and [Ĝ(h)

0 ]�1 are the non-interacting Greens functions of the particle and
hole, respectively [44]. In the rearrangement of the operators, we assumed that � and �̄
are even in their relative momenta, k. Integrating over the fermion fields yields

Se↵ =
X

q

(q)(q)

V (q)
+
X

k,k
0
,q

�̄(k0
, q)�(k, q)

�(k0 � k)
� 1

2
Tr ln

⇣
��F̂�1

⌘
. (4.1.13)

This is the e↵ective bosonic action of the theory. The next step is to find the mean-field
configuration of the bosonic field through a stationary phase analysis.

4.2 Stationary phase analysis

Before developing a Ginzburg-Landau theory of the system, we want to do a stationary
phase analysis to derive the mean-field configurations of  and �. In order to derive this
we will assume that the small momentum1 of �, will be set to zero, �(k, 0) ! �(k).
Following the same procedure as in chapter 3, we will therefore di↵erentiate the e↵ective
action (4.1.13) with respect to (2kF ) and �̄(k).

1
See section 2.7 on the Hubbard-Stratonovich decoupling
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4.2.1 Charge density waves

Starting with the order parameter for CDW, we will di↵erentiate the e↵ective action with
respect to (2kF )

0
!
=

�Se↵

�(2kF )
= 2V �1(2kF )(2kF )�

1

2
Tr
⇣
F̂ �F̂�1

�(2kF )

⌘
, (4.2.1)

following the same steps as in section 3.2. To proceed, we need to calculate the inverse
of F̂�1 and di↵erentiate F�1 with respect to the CDW order parameter. These are

F̂ = D̂�1

2

6664

[Ĝ(h)
0 ]�1 + ̂ 0 0 ��̂

0 [Ĝ(h)
0 ]�1 + ̂ �̂ 0

0 ˆ̄� �[Ĝ(p)
0 ]�1 � ̂ 0

� ˆ̄� 0 0 �[Ĝ(p)
0 ]�1 � ̂

3

7775
, (4.2.2)

�F̂�1

�(2kF )
= diag(1, 1,�1,�1)

�̂

�(2kF )
, (4.2.3)

where we defined the common denominator D̂ =
⇣
[Ĝ(p)

0 ]�1 + ̂

⌘⇣
[Ĝ(h)

0 ]�1 + ̂

⌘
+ ˆ̄��̂. The

last term of equation (4.2.1) will be

Tr

"
F̂ �F̂�1

�(2kF )

#
=

Tr

0

BBB@
D̂�1

2

6664

[Ĝ(h)
0 ]�1 + ̂ 0 0 ��̂

0 [Ĝ(h)
0 ]�1 + ̂ �̂ 0

0 ˆ̄� [Ĝ(p)
0 ]�1 + ̂ 0

� ˆ̄� 0 0 [Ĝ(p)
0 ]�1 + ̂

3

7775
�̂

�(2kF )

1

CCCA
.

(4.2.4)

Moving on, we take the trace in Nambu and momentum space,

Tr
⇣
F̂ �F̂�1

�(2kF )

⌘
= 2

X

k1,k2

h
D̂�1(2̂+ [Ĝ(p)

0 ]�1 + [Ĝ(h)
0 ]�1)

i

k1,k2


�̂

�(2kF )

�

k2,k1

. (4.2.5)

When di↵erentiating ̂, we used that
h

�̂

�(2kF )

i

k2,k1

= �k1�k2,2kF . Thus, the stationary

phase condition is

(2kF ) = V (2kF )
X

k

(Ĝ)k,k�2kF , (4.2.6)

where we defined Ĝ =
h
D̂�1(̂+ 1

2 [Ĝ
(p)
0 ]�1 + 1

2 [Ĝ
(h)
0 ]�1)

i
as the propagator.

To confirm that this result is in line with the result we found for the system in section
3.2, we set � = 0 and assume ⌧ 1

1 = �V (2kF )
X

k

G0(k)G0(k � 2kF ). (4.2.7)
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4.2.2 Superconductivity

To derive the self-consistent equation for the mean-field order parameter for SC, we will
di↵erentiate the e↵ective action with respect to �̄(k)

0
!
=

�Se↵

��̄(k)
=
X

k0

�(k0)��1(k � k
0)� �

��̄(k)

✓
1

2
Tr ln

h
��F̂�1

i◆
. (4.2.8)

By performing the di↵erentiating in the same way as for the CDW case, we get

Tr

 
F̂ �F̂�1

��̄(k)

!
= Tr

0

BBB@
D̂�1

2

6664

�̂ 0 0 0
0 �̂ 0 0

0 �[Ĝ(p)
0 ]�1 � ̂ 0 0

[Ĝ(p)
0 ]�1 + ̂ 0 0 0

3

7775
�
ˆ̄�

��̄(k)

1

CCCA
. (4.2.9)

The next step is to take the trace in Nambu and momentum space

Tr

 
F̂ �F̂�1

��̄(k)

!
= 2

X

k1,k2

⇣
D̂�1�̂

⌘

k1,k2

 
�
ˆ̄�

��̄(k)

!

k2,k1

, (4.2.10)

where we have that
⇣

�
ˆ̄�

��̄(k)

⌘

k2,k1

= �k1,k2 . Inserting this back into equation (4.2.8), gives

X

k0

�(k0)��1(k � k
0) =

⇣
D̂�1�̂

⌘

k,k

. (4.2.11)

Eventually, we want an expression for �(k). To achieve that, we will multiply by the
potential �(k00 � k) and sum over k on both sides

X

k0

X

k

�(k0)�(k00 � k)��1(k � k
0) =

X

k

�(k00 � k)
⇣
D̂�1�̂

⌘

k,k

. (4.2.12)

By using that
P

k
�(k00 � k)��1(k � k

0) = �k0,k00 , we get the stationary phase equation for
the SC order parameter

�(k) =
X

k0

�(k � k
0)(F̂)k0,k0 , (4.2.13)

with the propagator

F̂k,k = (D̂�1�̂)k,k =
h⇣

[Ĝ(p)
0 ]�1 + ̂

⌘⇣
[Ĝ(h)

0 ]�1 + ̂

⌘
+ �̂ ˆ̄�

i�1

k,k

�(k) (4.2.14)

and we assumed that �̂ is diagonal in k-space in this consideration. Further, we will focus
on the solution where �(k) 6= 0.
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To check if our calculations are consistent with the existing theory, we will set ̂ = 0, and
assume � and �̄ to be small. The right-hand side of equation (4.2.13) can be written as

X

k0

�(k � k
0)
h
[Ĝ(p)

0 ]�1[Ĝ(h)
0 ]�1 + �̂ ˆ̄�

i�1

k0,k0
�(k0)

⇡
X

k0

�(k � k
0)G0(k

0)G0(�k
0)�(k0). (4.2.15)

Next, we put the expansion back into equation (4.2.13), and get the following expression

�(k) =
X

k0

�(k � k
0)G0(k

0)G0(�k
0)�(k0), (4.2.16)

which is the linearized gap equation. In the following equations, we assume a s-wave SC,
�(k � k

0) = �

N�
. By assuming that �(k) is independent of the Matsubara frequency, we

can perform this frequency summation

�(k) =
1

N

X

k0

�

2⇠k0
tanh

✓
�⇠k0

2

◆
�(k0). (4.2.17)

This equation has the same structure as the gap equation in the BCS model [43]. Pro-
ceeding, we will assume that � is a constant and use the general form of the potential

�0 =
X

k0

�(k � k
0)G0(k

0)G0(�k
0)�0, (4.2.18)

1 =
X

k0

�(k � k
0)G0(k

0)G0(�k
0). (4.2.19)

From this, we can derive an equation for the critical temperature, and it can be shown
that it will be the same as for the BCS case. The pair-susceptibility is �pp / [1�

P
k0 �(k�

k
0)G0(k0)G0(�k

0)]�1. Hence, the critical temperature will lead to a divergence in the sus-
ceptibility and we can therefore conclude that � is indeed a suitable order parameter for
the SC phase transition.

4.2.3 Mean-field equations

In the stationary phase analysis, we have found the mean-field equations for the order
parameters. To summarize, we found that both of the order parameters can be written
as their respective potential multiplied by a propagator. The mean-field equations are

�(k) =
X

k0

�(k � k
0)(F̂)k0,k0 , (4.2.20)

2(2kF ) = V (2kF )
X

k

(Ĝ)k,k�2kF , (4.2.21)
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where the propagators are

F̂ =
h⇣

[Ĝ(p)
0 ]�1 + ̂

⌘⇣
[Ĝ(h)

0 ]�1 + ̂

⌘
+ ˆ̄��̂

i�1

�̂, (4.2.22)

Ĝ =
h⇣

[Ĝ(p)
0 ]�1 + ̂

⌘⇣
[Ĝ(h)

0 ]�1 + ̂

⌘
+ ˆ̄��̂

i�1 ⇣
2̂+ [Ĝ(p)

0 ]�1 + [Ĝ(h)
0 ]�1

⌘
. (4.2.23)

This finishes the stationary phase analysis and the next step is to derive a Ginzburg-
Landau theory of the system.

4.3 Ginzburg-Landau theory for fluctuations

The following section involves the derivation of a Ginzburg-Landau theory to describe
the interplay between superconductivity and charge density waves. Eventually, we want
to derive the phenomenological constant for the coupled term between SC and CDWs to
see if it is energetically favorable for them to coexist. Just as for the system with only
CDWs, we want to look at small fluctuations around the mean-field value

̂ = ̂MF + ⌘̂ = ⌘̂, �̂ = �̂MF + ⌫̂ = ⌫̂,
ˆ̄� = ˆ̄�MF + ˆ̄⌫ = ˆ̄⌫. (4.3.1)

From section 3.3 we have that the e↵ective action can be written as Se↵ = SMF + �F .
The mean-field action of this system will be SMF = �F�1

0 . We expect the free energy to
be

F = FC + FS + FC,S, (4.3.2)

FC =

Z
d
d
r
�
↵1 (⌘(r))

2 + �C (r⌘(r))2 + ↵2 (⌘(r))
4 + . . .

�
, (4.3.3)

FS =

Z
d
d
r
�
�1|⌫(r)|2 + �S|r⌫(r)|2 + �2|⌫(r)|4 + . . .

�
, (4.3.4)

FC,S =

Z
d
d
r
�
⇢ (⌘(r))2 |⌫(r)|2 + . . .

�
, (4.3.5)

where FC is the free energy only for the CDW order parameter, FS for the SC order
parameter, and FC,S for the interplay between them. The coe�cient that we are most
interested in is the coupling coe�cient ⇢. This coe�cient will tell us if it is energetically
favorable to have the states coexisting or if they are competing states. To be able to
calculate the coe�cient in the Ginzburg-Landau theory we must first find an expression
for the expansion of Tr ln(1 + F̂0B̂), from the action in equation (4.1.13). We have that
the total free energy F is

�F =
X

q

⌘(q)⌘(q)

V (q)
+
X

k,k
0
,q

⌫̄(k0
, q)⌫(k, q)

�(k0 � k)
� 1

2
Tr ln(1 + F̂0B̂). (4.3.6)

We assume that the fluctuations are small, and we can expand the last term as

�1

2
Tr ln(1 + F̂0B̂) =

1

2
Tr

 
X

k

(�1)k

k
(F̂0B̂)k

!
. (4.3.7)

The next step is to calculate the coe�cients for the di↵erent orders of the expansion, to
find an expression for the coe�cients ↵1, ↵2, �1, �2, �S, �C and ⇢.
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4.3.1 First order

The first term of the expansion in the equation (4.3.7) is

�1

2
Tr(F̂0B̂) = �1

2
Tr

2

6664
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0 ⌘̂ 0 0 �Ĝ(p)

0 ⌫̂
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0 �Ĝ(h)
0
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ˆ̄⌫ 0 0 Ĝ(h)
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h
Ĝ(p)
0 ⌘̂

i

k,k

�
X

k

h
Ĝ(h)
0 ⌘̂

i

k,k

(4.3.8)

We have that G0 is diagonal in k-space and ⌘̂ has only o↵-diagonal elements, leading to
the term being zero.

4.3.2 Second order

Furthermore, we can derive the coe�cients for the second-order term

1

2
Tr

✓
1

2
F̂0B̂F̂0B̂

◆
=
X

k

h
Ĝ(p)
0 ⌘̂Ĝ(p)

0 ⌘̂ � Ĝ(p)
0 ⌫̂Ĝ(h)

0
ˆ̄⌫
i

k,k

=
X

k,q

G0(k)G0(k � 2kF + q)⌘(2kF � q)⌘(2kF � q)

�
X

k,q

G(k + q/2)G(�k + q/2)⌫(k,�q)⌫̄(k, q). (4.3.9)

We will start by deriving an expression for the SC second-order term. In order to derive
expressions for the coe�cients, we have to assume that the fluctuation of the supercon-
ductive order parameter is independent of k (relative momentum), ⌫(k, q) ! ⌫(q). The
k-summation over the Greens functions can be written as

X

k

G0(k + q/2)G0(q/2� k) ⇡
X

k,q

1

i!n � ⇠k � q/2 · v
1
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2⇠k


1

i!n + ⇠k � q/2 · v � 1

i!n � ⇠k � q/2 · v

�
. (4.3.10)

To proceed, we expand the expression for q ⌧ 1

X

k

G0(k + q/2)G0(q/2� k) ⇡ 1

2

X

k

1

⇠k

⇢
1
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� 1
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+
q · v
2

h 1

(i! + ⇠k)2
� 1
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i
+

(q · v)2
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� 1
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i�
(4.3.11)
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As earlier, we start by performing the Matsuabara frequency sums using the results from
appendix D. The sums we need are

X

n

1

i!n ± ⇠k
=

�

e⌥�⇠k + 1
, (4.3.12)

X

n

1

(i!n ± ⇠k)2
= ��

2

4
sech2(

�⇠k

2
), (4.3.13)

X

n

1

(i!n ± ⇠k)3
= ⌥�

3

8
tanh(

�⇠k

2
)sech2(

�⇠k

2
). (4.3.14)

From this, we see that the linear term in q will be zero. Moving on, we will first look at
the term independent of q

X

k

�

2⇠k


1

e��⇠k + 1
� 1

e�⇠k + 1
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Z
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⇠
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⇣
�⇠

2

⌘
. (4.3.15)

This integral is not possible to solve analytically, but it can be shown that it is positive.
Next, we look at the term that is quadratic in q,

�S =
X
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(q · v)2
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�
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8⇠k
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⇣
�⇠k

2

⌘
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= q2
µ
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⇣
�⇠
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⌘
sech2

✓
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2

◆
. (4.3.17)

In equation (4.3.16) the ⇠-term in the parenthesis will be zero due to the anti-symmetry
of the total integrand. Like in the previous case, the integral can be shown to be positive,
but it is not possible to solve it analytically. Having derived an expression for the integrals
for the second-order coe�cients for SC, we can write the free energy to second order as

�F [⌘, ⌫, ⌫̄] ⇡
X

q

↵1⌘(2kF � q)⌘(2kF � q) + �1⌫(q)⌫̄(q)+

�Cq
2
⌘(2kF � q)⌘(2kF � q) + �Sq

2
⌫(q)⌫̄(q). (4.3.18)
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The coe�cients in front of the CDW order parameter, ↵1 and �C, are the same as in
equation (3.3.27) and (3.3.28). All of the coe�cients are listed under

↵1 =
N�

V2kF

� �DF

Z
!C

0

d⇠
tanh

�
�⇠

2

�

⇠
, (4.3.19)
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� �DF

Z
!c

0

d⇠

⇠
tanh

⇣
�⇠

2

⌘
, (4.3.20)
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⌘
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✓
�⇠
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◆
. (4.3.22)

We can observe that the second-order terms in ↵1 and �1 are the same, but they have
di↵erent potentials in their first terms. Hence, the critical temperatures of the two states
will be di↵erent. By following the same scheme as in section 3.3, we can write the
coe�cient �1 in terms of the deviation from the critical temperature for the SC state.
Hence, the two coe�cients in terms of their critical temperature are

↵1 ⇡ ↵
0
1(T � T

CDW
C

), (4.3.23)

�1 ⇡ �
0
1(T � T

SC
C

). (4.3.24)

Note that, in this approximation ↵0
1 = �

0
1.

Considering the low-temperature limit in �S, the integral in the equation (4.3.22) may
be evaluated analytically. Note that it will be the same as �1 in equation (3.3.30). Thus,
in the low-temperature limit, the coe�cient for the gradient term in SC is

�S = v
2
F

�
3

96
DF

1

⇡2
⇣(3, 1/2). (4.3.25)

4.3.3 Third order

The terms for the third-order expansion are

(Ĝ(p)
0 ⌘̂)3, (Ĝ(p)

0
¯̂⌘)3, Ĝ(p)

0 ⌘̂Ĝ(p)
0 ⌫̂Ĝ(h)

0
ˆ̄⌫, Ĝ(h)

0 ⌘̂Ĝ(h)
0

ˆ̄⌫Ĝ(p)
0 ⌫̂. (4.3.26)

It can be shown that the coe�cients of these terms will be zero. This is due to the

anti-symmetric integrands in the energy integrals when calculating
P

k

h
G(p/h)
0

i3
.

4.3.4 Fourth order

The fourth-order terms consist of three di↵erent types of terms, the bare CDW term, the
bare SC term, and the cross-term. We will derive the coe�cients for these terms. The
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derivation starts with multiplying the matrices together and taking the traces
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For the fourth-order terms, we will assume that q ⌧ k so that the bare Greens function
is only dependent on k. The first two terms are equivalent, which can be seen by letting
�k ! k in the sums. These terms will be the same as the fourth-order terms in section
3.3. Hence we will just state the result
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where we know from the section about CDWs that ↵2 in equation (3.3.39), is positive.

The next term is the quartic term for the SC order parameter
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where ⌫q ⌘ ⌫(�q) and ⌫̄q ⌘ ⌫̄(q). This coe�cient will be exactly as the coe�cient for the
quartic CDW term, ↵2 (3.3.39). Hence, we have that
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which we know is positive.

Having established the fourth-order terms for the bare SC and CDW terms, we will
move on to the cross-terms. The first term to evaluate is
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where
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In the last transition, we linearized the kinetic energy, as we did in section 3.3. We can
see that this is the same integral as in the coe�cient calculated for the quartic CDW term
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(3.3.39), which gives us the relation ⇢1 = 2↵2 .

For the next cross-term we see that by letting �k ! k in the summation, we end up
with the same coe�cient as for the first cross-term
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By taking the traces of the last cross-term, we get
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where the last cross-term coe�cient is
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We will follow the same procedure as for the previous coe�cients, and first rewrite the
expression and do the matsubara summations
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This gives us the last part of the cross-term coe�cient, which will be
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By adding the three cross-terms together we can see that the total coe�cient is
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(4.3.38)

This gives us that the total coe�cient for the cross-term ⇢ is positive. Hence, the co-
existence between CDWs and SC is not energetically favorable. Like with the other
coe�cients, it is possible to find a solution to the integral in the low-temperature regime.
By using the calculation we did in section 3.3, we see that the cross-term coe�cient is
⇢ = �DF

8 (�3�1 + ��2) = �
3
DF

5
16⇡2 ⇣(3, 1/2).
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Figure 4.1: The left plot shows the gradient-square term coe�cients in the Ginzburg-
Landau theory (solid), with its low-temperature limits (dotted). The right plot shows
the cross-term coe�cient between CDWs and SC (solid) and the low-temperature limit
(dotted) of this coe�cient.

The total fourth-order term is
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We get that all the coe�cients are positive, which ensures the stability of the system as
long as the higher-order coe�cients are small, positive, or both.

4.3.5 Higher order

We can use the same arguments as we did in subsection 3.3.5. Namely, by assuming
that the bare Greens function does not depend on the momentum q, eventually, the same
arguments apply to these coe�cients.

4.3.6 Summary of the Ginzburg-Landau theory

In this section, we have derived expressions for the coe�cients in the Ginzburg-Landau
theory for CDWs and SC. We have included terms up to the fourth order and the quadratic
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order of the gradient term. Remarkably, most of the coe�cients turn out to be very similar
for the CDW terms and the SC terms, but with a few exceptions. We can note that in
the quadratic terms, the di↵erence lies in the di↵erent potentials. Assuming that these
potentials are not the same, this will give two di↵erent critical temperatures for the two
states, as we would expect for two di↵erent phases. By doing the same low-temperature
analysis as in 3.3.6, we have that ⌘ = C

p
TCCDW � T and |⌫| = C

p
TCSC � T , with the

same constant C. The second thing to note is the di↵erence in the gradient term. It turns
out that the ratio between the gradient term for the CDWs and SC is 26, which can be
seen on the left plot in figure 4.1. This tells us that the CDW state is more resistant to
spacial deformations than the SC state. Regardless of the di↵erence in magnitude, also
the SC gradient coe�cient is proportional to vF�

3, just like it is in the case for CDWs.
The last thing to note is that we have a positive coe�cient in the cross-term between the
two states. This tells us that it is not energetically favorable to have co-existence in the
system. The coe�cient together with the low-temperature limit is shown on the right in
figure 4.1.
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Chapter 5

Summary and Outlook

In this thesis, our primary goal was to develop a Ginzburg-Landau theory for a system
that could exhibit both CDWs and SC. We were particularly interested in the interplay
between these phases. The preliminaries, chapter 2, contain an overview of the main
concepts of the functional integral method. In chapter 3, we started with a microscopic
theory that could describe a system with CDWs. From this, we derived an e↵ective
bosonic theory from which we could do a stationary phase analysis. This analysis re-
sulted in a mean-field equation for the order parameter and an expression for the critical
temperature. The critical temperature for CDWs had the same structure as TC in the
BCS theory for a superconductor [43]. This points to a purely Coloumb-driven potential
in the interaction [53]. In addition to this, we derived an expression for the Lindhard
susceptibility and showed its divergence at TC .

From this, we extrapolated the theory from the normal state, such that it included a
small, fluctuating field. This resulted in a Ginzburg-Landau theory of the system. The
theory exhibited a familiar structure [44], where the second-order coe�cient changes sign
at the critical temperature, and the gradient term and the fourth-order term are positive
for all T , ensuring the stability of the system. Moreover, we also showed that the tem-
perature dependence was in line with the existing theory [43]. We also stated that the
higher-order terms are negligible.

In chapter 4 we added a potential that couples fermions of di↵erent spins, to the to-
tal action. This resulted in a system exhibiting both CDWs and SC. Furthermore, we did
a stationary phase analysis for this system, where we derived self-consistent equations of
the mean-field configurations for the two order parameters. Deriving the equations for
the critical temperatures, we saw that they behave similarly, where the only di↵erence
lies in the potentials of the interactions. Moreover, we derived an expression for the pair
susceptibility and showed its divergence at the critical temperature.

The last part of the thesis contained a derivation of a Ginzburg-Landau theory for the
system with CDWs and SC. The model exhibited some interesting results. Firstly, the
second-order terms were almost identical for the CDW and SC terms. The only di↵erence
was in the potentials (critical temperature) for the two interactions. Secondly, we de-
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rived an expression for the modulus of the order parameter in the low-temperature limit.
We showed for both phases it was proportional to

p
T � TC . The coe�cients for the

gradient terms showed that the CDW state was 26 times more resistant to spatial defor-
mations than the SC state. These results are intriguing due to the contrasting nature of
the phases. Specifically, the superconductor breaks the electromagnetic gauge symmetry,
while the CDW (charge density wave) state breaks translational symmetry. However, it
is noteworthy that they exhibit the same structure in the Ginzburg-Landau coe�cients.
Lastly, we showed that the coexistence between SC and CDWs is not favorable in this
model.

For a deeper understanding of the system, a natural next step would be to use the
renormalization group theory on the Ginzburg-Landau model we constructed within the
framework of this thesis. This will give an insight into how the system behaves around a
critical point. Additionally, this will make the model more capable to be experimentally
validated.
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Appendix A

Coherent State for Fermions

To prove that the state
|⇠i = exp

�
�
X

↵

⇠↵a
†
↵

�
|0i (A.0.1)

fulfills the eigenvalue equation
a↵|⇠i = ⇠↵|⇠i, (A.0.2)

we note that
a↵e

�⇠↵a†↵ |0i = a↵(1� ⇠↵a
†
↵
)|0i (A.0.3)

because of the anti-commutation of Grassmann numbers the Taylor expansion terminates
after two terms. Next, we use the commutation rules for ⇠↵ and a↵

= ⇠↵a↵a
†
↵
|0i = ⇠↵|0i. (A.0.4)

Further, we note that ⇠2
↵
= 0, which allows us to write

= ⇠↵(1� ⇠↵a
†
↵
)|0i = ⇠↵e

�⇠↵a†↵ |0i (A.0.5)

and we get that the fermionic coherent state fulfills the eigenvalue-equation. This is easier
to prove than for the bosons due to the termination of the Taylor expansion.
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Appendix B

Gaussian Integrals

In this section, we will first calculate a Gaussian integral for complex variables and then
for Grassmann variables.

B.1 Complex variables

We start out with a multiple integral over complex numbers

Iboson =
Y

k

Z
Dx̄Dxe

�x̄iAijxj+xjJ̄j+x̄iJi , (B.1.1)

where we sum over repeated indices, Aij is a symmetric matrix with det(A) > 0, xi and Ji

are vectors. We have also defined, Dx̄Dx = dx̄kdxk
2⇡i . First, we look closer at the exponent

and want to re-write it as a square of a new variable, depended on x

�x̄iAijxj + xjJ̄j + x̄iJi = (x̄i � A
�1
ij
J̄j)Aij(xj � A

�1
ji
Ji) + J̄iA

�1
ij
Jj. (B.1.2)

Next, we introduce zi = xi � A
�1
ij
Jj anduse that Dz̄Dz = Dx̄Dx to write

Iboson =

Z
Dz̄Dze

�z̄iAijzj+J̄iA
�1
ij Jj . (B.1.3)

By introducing a new basis we can diagonalize the system by a unitary transformation

Iboson = e
J̄iA

�1
ij Jj

Z
D ˜̄zDz̃e

�
P

n �n
¯̃znz̃n , (B.1.4)

where �n is the eigenvalues for the matrix A. Further, we write z̃ =
p
u2 + v2e

i✓ and

D ˜̄zDz̃ =
Y

k

d¯̃zdz̃

2⇡i
=
Y

n

dudv

⇡
= DvDu, (B.1.5)

where the change in the denominator is due to the change from complex to real integration
variables.

Iboson = e
J̄iA

�1
ij Jj

Z
DvDue

�
P

n �n(u
2+v

2)
, (B.1.6)

which is

Iboson =
1

det(A)
e
J̄iA

�1
ij Jj (B.1.7)
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B.2 Grassmann variables

In this appendix, we will calculate the Gaussian integral over Grassmann variables. This
corresponds to integrating over the fermionic degree of freedom. We start out with a
similar integral

Ifermion =

Z
D⇠̄D⇠e�⇠̄iAij⇠j+⇠iJ̄i+⇠̄jJj , (B.2.1)

where J and ⇠ are Grassmann-variables, and Aij need to fulfill the same criteria as for the
complex-variable case. For Grassmann variable we defineD⇠̄D⇠ =

Q
k
d⇠̄kd⇠k. Completing

the square in the integration variable, and introducing the new variable ⇠̃ = ⇠ + JjA
�1
ji

gives
Z

D ˜̄
⇠D⇠̃e�

¯̃
⇠iAij ⇠̃j+J̄iA

�1
ij Jj (B.2.2)

= e
J̄iA

�1
ij Jj

Z
D ˜̄
⇠D⇠̃e�

¯̃
⇠iAij ⇠̃j (B.2.3)

For Grassmann variables, we have that
Z

d⇠̄d⇠e
�⇠̄a⇠ =

Z
d⇠̄d⇠(1� ⇠̄a⇠) = a, (B.2.4)

where we have used that
R
d⇠⇠̄⇠ = �⇠̄. This allows us to write

Z
D ˜̄
⇠D⇠̃e�

¯̃
⇠iAij ⇠̃j (B.2.5)

=

Z
D⌘̄D⌘e�

P
n �n⌘̄n⌘n (B.2.6)

=

Z
D⌘̄D⌘(1�

X

n

�n⌘̄n⌘n) (B.2.7)

=
Y

n

�n = det(A) (B.2.8)

which gives us that

Ifermion =

Z
D⇠̄D⇠e�⇠̄iAij⇠j+⇠iJ̄i+⇠̄jJj (B.2.9)

= det(A)eJ̄iA
�1
ij Jj . (B.2.10)

where we can observe that the determinant is now in the numerator and not in the
denominator as for the bosonic case.
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Appendix C

Fourier Transforms

First we define the Fourier transform for the fermion operator as

ci,� =
1p
N�

X

k

ck,�e
ik·ri . (C.0.1)

The volume of the four-momentum space is N�, hence, the factor (
p
N�)�1. The electron-

electron-interaction we want to Fourier transform

Hint =
X

�,�0

X

i,j

V�,�0(ri � rj)c
†
i�
ci,�c

†
j,�0cj,�0 . (C.0.2)

Inserting the Fourier transforms for the fermionic operators gives

Hint =
1

(N�)2

X

i,j

�,�
0

X

k1,k2
k3,k4

V�,�0(ri � rj)c
†
k1,�

e
�ik1·rick2,�e

ik2·ric
†
k3,�

0e
�ik3·rjck4,�0e

ik4·rj (C.0.3)

Next, we redefine the position ri an rj to be relative position r and center of mass position
R

R =
ri + rj

2
, r = ri � rj. (C.0.4)

When performing the sum over the center of mass position, we get

Hint =
1

N�

X

r,�,�0

X

k1,k2
k3,k4

V�,�0(r)c†
k1,�

ck2,�c
†
k3,�

0ck4,�0e
�i(k1�k2�k3+k4)·r/2�(�k1 + k2 � k3 + k4).

(C.0.5)
where we used that 1

N�

P
R
e
i(�k1+k2�k3+k4)·R = �(�k1 + k2 � k3 + k4), which gives that

k1 � k2 = �(k3 � k4). (C.0.6)

We will now look at two di↵erent ways to index the creation and annihilation operators.
The first one corresponds to the term we use for the CDW interaction and the second one
for the SC interaction.
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k � q/2, �

k + q/2, � V�,�0(q) k
0 � q/2, �0

k
0 + q/2, �0

k
0 + q/2, �

k + q/2, � V�,�0(k0 � k) �k + q/2, �0

�k
0 + q/2, �0

Figure C.1: Two representations of a Feynmann diagram for an electron-electron interac-
tion, with a potential V .

First alternative We define the center of mass momentum, k and k
0, and the relative

momentum, q as

k =
k1 + k2

2
, k

0 =
k3 + k4

2
, q = k1 � k2. (C.0.7)

Inserting the new definitions into the Hamiltonian gives us

Hint =
1

N�

X

q,k,k0

X

r

V�,�0(r)e�ir·q
c
†
k+q/2,�ck�q/2,�c

†
k0�q/2,�0ck0+q/2,�0 . (C.0.8)

Next, we define

V�,�0(q) ⌘ 1

N�

X

r

V�,�0(r)e�ir·q
, (C.0.9)

which leaves us with the final expression for the Fourier-transformed interaction-term

Hint =
X

q,k,k0

X

�,�0

V�,�0(q)c†
k+q/2,�ck�q/2,�c

†
k0�q/2,�0ck0+q/2,�0 , (C.0.10)

where q is the exchanged momentum in the interaction, k + q/2 is the initial momentum
of the left fermion in figure C.1 and k� q/2 the outgoing momentum of the left fermion.

Second alternative An alternative way of renaming the momenta is

k =
k1 � k3

2
, k

0 =
k2 � k4

2
, (C.0.11a)

q = k1 + k3 = k2 + k4. (C.0.11b)

This gives us a Hamiltonian on the form

Hint =
X

q,k,k0

V�,�0(k0 � k)c†
k+q/2,�ck0+q/2,�c

†
�k+q/2,�0c�k0+q/2,�0 , (C.0.12)

where

V�,�0(k0 � k) ⌘ 1

N�

X

r

V�,�0(r)eir·(k
0�k)

. (C.0.13)

This interaction is shown as a Feynmann diagram on the right in figure C.1.
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Appendix D

General Formula for Matsubara
Summation

This appendix will follow the lecture notes from Lecture Notes in Functional Integral
Methods in Condensed Matter Physics by Asle Sudbø [46]. First, we want to perform the
following sums

X

!n

1

i!n � ⇠k
=

�

1 + e�⇠k
. (D.0.1)

To do this we will use Cauchy’s residue theorem. We will use the Fermi distribution is
given by

f(z) =
1

1 + e�z
, (D.0.2)

We can see that it has poles in i!n. The Cauchy�s residue theorem tells us that

I
dzg(z) = 2⇡i

X

i

Res
z!z0

[g(zi)]. (D.0.3)

By integrating over the Fermi distribution and using the theorem, we have

I
dzf(z) = 2⇡i lim

z!i!n

[(z � i!n)f(z)] = 2⇡i lim
z!i!n

z � i!n

1 + e�z
(D.0.4)

= 2⇡i lim
z!i!n

z � i!n

1 + e�(z�i!n+i!n)
= 2⇡i lim

z!i!n

z � i!n

1� e�(z�i!n)
(D.0.5)

= 2⇡i lim
z!i!n

z � i!n

1� (1 + �(z � i!n) + ...)
⇡ 2⇡i lim

z!i!n

z � i!n

��(z � i!n)
= �2⇡i

�
(D.0.6)

where we have used that !n = (2n+1)⇡
�

. Integrating over a curve C that encloses all the

poles of f(z), but non of the poles in g(z) = 1
z�⇠k

, we have that

X

i!n

g(i!n) = � �

2⇡i

I

C

dzg(z)f(z). (D.0.7)

The deformation of the curve must be such that it is covering the poles of f(z) and not

XIII



Ginzburg-Landau Theory for Charge Density Waves and Superconductivity

= =

Figure D.1: Deformation of the curve C

the poles of g(z). We will use the deformation in D.1. The integral is

�

2⇡i

I

C

dzg(z)f(z) =
�

2⇡i

Z 1

�1
d✏


f(✏+ i�)

✏+ i� � ⇠k
� f(✏� i�)

✏� i� � ⇠k

�
. (D.0.8)

Since f(x) is continuous we can write this as

�

2⇡i

Z 1

�1
d✏f(✏)


1

✏+ i� � ⇠k
� 1

✏� i� � ⇠k

�
. (D.0.9)

Next, we want to divide the integral into tree parts, namely for ✏ > ⇠k + i�, ⇠k � i� < ✏ <

⇠k + i� and ✏ < ⇠k + i�

Z 1

�1
=

Z
R

�1
+

Z

�±

+

Z 1

R

, (D.0.10)

where �± is the upper/lower circle around the pole of g(x). The integral will now be

�

2⇡i

"Z
R

�1
d✏

f(✏)

✏+ i� � ⇠k
+

Z

�+

d✏
f(✏)

✏+ i� � ⇠k
+

Z 1

R

d✏
f(✏)

✏+ i� � ⇠k
(D.0.11)

�
Z

R

�1
d✏

f(✏)

✏� i� � ⇠k
�
Z

��

d✏
f(✏)

✏� i� � ⇠k
�
Z 1

R

d✏
f(✏)

✏� i� � ⇠k

#
(D.0.12)

=
�

2⇡i

Z

�+

d✏
f(✏)

✏+ i� � ⇠k
�
Z

��

d✏
f(✏)

✏� i� � ⇠k

�
. (D.0.13)

For the integrals where the curve is not over the pole, we can remove ±i�. Using Cauchy
principal value we get I

C

dzg(z)f(z) = � �

2⇡i
2⇡if(⇠k). (D.0.14)

Going back to equation (D.0.7), we see that

X

!n

g(i!n) =
�

1 + e⇠k�
, (D.0.15)
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which is what we wanted to prove.

Higher-powers Next, we want to give a general formula for higher powers of the de-
nominator in the sum. We want to prove that

X

n

1

(i!n � ⇠)m
=

�

(m� 1)!
@
m�1
⇠

f(⇠). (D.0.16)

We will make use of the following expression for the derivative

@
m

⇠

1

i!n � ⇠
=

m!

(i!n � ⇠)m+1
. (D.0.17)

By inserting this into (D.0.16), we get

X

n

1

(i!n � ⇠)m
=
X

n

1

(m� 1)!
@
m�1
⇠

1

i!n � ⇠
(D.0.18)

=
1

(m� 1)!
@
m�1
⇠

X

n

1

i!n � ⇠
=

1

(m� 1)!
@
m�1
⇠

�f(⇠), (D.0.19)

which gives us the desired result.
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