
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Mathias Rønning

Deep Procedural Generation of 3D
Objects Using Real-World Data

Masteroppgave i Datateknologi
Veileder: Bart Iver van Blokland
Juni 2023

Mathias Rønning

Deep Procedural Generation of 3D
Objects Using Real-World Data

Masteroppgave i Datateknologi
Veileder: Bart Iver van Blokland
Juni 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Abstract
3D object recognition algorithms are used in various fields including virtual
reality, autonomous vehicles, and robotics to determine useful information
about a 3D scene such as object positions, poses, and classes. The evalu-
ation of such algorithms relies on a large number of 3D objects from a wide
range of categories. Currently, no genuinely large and diverse dataset of
3D objects exists, making the task of evaluating 3D recognition algorithms
difficult. The main reason behind the absence of large and diverse 3D
datasets is the time and resource intensive process of creating 3D objects.
As such, this thesis explores an alternative approach to 3D object dataset
creation by procedurally generating the objects using deep learning, which
can greatly reduce the time required to generate a large 3D object dataset.

The thesis focuses specifically on deep procedural generation of 3D
objects using real-world image data for training, with the rationale that
real-world data is easier to acquire and can produce more realistic results.
Accordingly, a state-of-the-art 3D generative deep model is trained using
two different real-world image datasets, and the resulting generated objects
are evaluated through different evaluation metrics. While the results
obtained suggest that the proposed method is not capable of generating a
novel 3D object dataset of adequate quality, a foundation is laid for future
works to improve on.

i

Sammendrag
Algoritmer for 3D-objektgjenkjenning brukes i diverse felter som virtuell
virkelighet, selvkjørende biler og robotikk for å innhente nyttig informasjon
i tredimensjonelle systemer som posisjoner, positurer og klasser til objekter.
Å evaluere slike algoritmer krever en stor mengde 3D-objekter fra et bredt
spekter av kategorier. For øyeblikket eksisterer det ikke noe virkelig stort
og mangfoldig datasett av 3D-objekter, som gjør å evaluere algoritmer for
3D-objektgjenkjenning til en vanskelig oppgave. Hovedgrunnen til manglen
på et slikt datasett er at det krever mye tid og ressurser å lage 3D-objekter.
Derfor utforsker denne oppgaven en alternativ fremgangsmåte for å lage
et 3D-objektdatasett ved å prosedyrisk generere objektene ved bruk av
dyp læring. Hensikten er å kunne drastisk redusere tiden som kreves for å
generere et stort 3D-objektdatasett.

Oppgaven fokuserer spesifikt på dyp prosedyrisk generering av 3D-
objekter ved å trene med reell bilde-data, med begrunnelse at reell data er
enklere å anskaffe og kan produsere mer realistiske resultater. Følgelig blir
en aktuell tredimensjonell dyp generativ model trent med to forskjellige
reelle bilde-datasett, og resultatene blir evaluert med forskjellige evaluer-
ingsmetoder. Selv om de oppnådde resultatene tilsier at den foreslåtte
metoden ikke er tilstrekkelig for å generere et nytt datasett av 3D-objekter,
blir et grunnlag lagt som fremtidige metoder kan forbedre.

ii

Preface
This thesis is part of the Master of Science degree in Computer Science a the
Norwegian University of Science and Technology (NTNU) in Trondheim,
Norway, and was written during the spring of 2023. The thesis is supervised
by Bart Iver van Blokland within the Visual Computing Group at the
Department of Computer Science.

I would like to thank my supervisor Bart van Blokland for the support
and feedback during the duration of the thesis. Additionally, I would like
to thank everyone who participated in the user survey for helping make
the thesis possible.

Mathias Rønning
Trondheim, 10th June 2023

iii

Contents
Abstract i

Sammendrag ii

Preface iii

List of Figures x

List of Tables xi

Acronyms xiii

1. Introduction 1
1.1. Background and Motivation 1
1.2. Goals and Research Questions 3
1.3. Thesis Structure . 4
1.4. Disclaimer . 4

2. Background Theory 5
2.1. 3D Data Representations 5

2.1.1. Voxels . 6
2.1.2. Point clouds . 7
2.1.3. Meshes . 8
2.1.4. Signed Distance Fields 8

2.2. 3D Rendering . 9
2.2.1. Pinhole Camera Model 9
2.2.2. Extrinsic Parameters 11
2.2.3. Rasterization and Shading 12

2.3. Generative Deep Learning 12
2.3.1. Generative Adversarial Networks 13
2.3.2. 3D-aware Image Synthesis 14

v

Contents

2.3.3. Neural Radiance Fields 15
2.3.4. Diffusion . 16

3. Related Work 19
3.1. 3D Object Datasets . 19
3.2. Deep 3D Generative Models 22

3.2.1. GAN Based Methods 22
3.2.2. Transformer Based Methods 24
3.2.3. Diffusion Based Methods 25

4. Method 27
4.1. Architecture . 27

4.1.1. Unused Architectures 27
4.1.2. Evaluating the State-of-the-Art 29

Model Evaluation . 30
Evaluation Setup . 32
Evaluation Results 32

4.2. Datasets . 36
4.2.1. Common Objects in 3D 36
4.2.2. Objectron . 37

4.3. Data preparation . 38
4.3.1. CO3D . 39
4.3.2. Objectron . 42

4.4. Training GET3D . 43

5. Experiments 45
5.1. Experimental Plan . 45
5.2. Experiment evaluation . 46

5.2.1. Fréchet Inception Distance 46
5.2.2. PointNet 3D classification 46
5.2.3. User study . 47

5.3. Experimental Setup . 47
5.3.1. CO3D Pre-Processing 47
5.3.2. Objectron Pre-Processing 48
5.3.3. GET3D . 48

5.4. Experimental Results . 49
5.4.1. Book generation . 49

vi

Contents

5.4.2. Chair generation . 50
5.4.3. FID scores . 52
5.4.4. User study . 54
5.4.5. Training Loss and Gamma Parameter 55

6. Discussion 59
Intrinsic Parameters 59
Extrinsic Parameters 60
Lighting . 60
Segmentation Masks 61
Dataset Differences 61
Dataset Size . 62

7. Conclusion and Future Work 63
7.1. Conclusion . 63
7.2. Future Work . 64

Bibliography 67

Appendices 73

A. Additional State-of-the-Art Evaluation Results 75
A.1. PolyGen . 75
A.2. GET3D . 76

B. Additional Real-World Data Results 79

vii

List of Figures
2.1. The voxel representation as a three-dimensional cell grid . . 6
2.2. A point cloud showing an airplane model of 1024 points.

Figure generated using1. 7
2.3. The monkey mesh from Blender 8
2.4. The pinhole camera model 10
2.5. The y′ coordinate can be obtained by applying the similar

triangles rule to these triangles 11
2.6. Transformation from the world reference frame to the camera

reference frame . 12

3.1. Examples of ModelNet40 3D objects from the chair category.
The objects have been scale adjusted. 19

3.2. Examples of ShapeNet 3D objects from the chair category
with textures removed. 20

3.3. Examples of poor quality and unrealistic models (without
their textures) from the Objaverse chair category. 21

3.4. The GET3D model architecture. Figure adapted from Gao
et al. (2022) . 23

4.1. Objects generated from single RGB images using Pixel2Mesh. 28
4.2. Objects generated from single RGB images of chairs using

Pix2Vox. 29
4.3. The object evaluation process using PointNet. 31
4.4. Generation results from the three models. 33
4.5. Jagged edges on the GET3D generated objects. 34
4.6. The CO3D category distribution. Figure adapted from

Reizenstein et al. (2021). 37
4.7. The camera rotation and elevation angles. Here α corres-

ponds to the rotation and β to the elevation. 39
4.8. The binarization process using Otsu’s global binary threshold. 40

ix

List of Figures

4.9. Object and cameras before and after gravity alignment. . . 41
4.10. Here it is illustrated that even for the same camera angles,

the rotation may still be incorrect due to the orientation of
the object. 41

4.11. Examples of poor segmentation masks and wrongly identified
objects. 43

5.1. Generated book objects using CO3D trained model 50
5.2. Results after training on Objectron book category 50
5.3. Generation results using the different models on the chair

category . 51
5.4. FID scores recorded every 204-205 iterations 53
5.5. Generated results after iteration 0 with randomly initialized

weights on the CO3D book category. Both the rendered
object and the segmentation mask is included. 54

5.6. Discriminator and Generator loss each iteration 56
5.7. Discriminator and Generator loss for different gamma values 57
5.8. Generated results after 2048 iteration using different gamma

parameters. 58

6.1. Discontinous segmentation masks from Objectron book cat-
egory . 62

A.1. Chair Category . 75
A.2. Table Category . 76
A.3. Chair Category . 76
A.4. Table Category . 77

B.1. CO3D Chair . 80
B.2. CO3D Book . 81
B.3. Objectron Book . 82
B.4. Objectron Chair . 83

x

List of Tables
4.1. PointNet classification results of the three models in com-

parison to the ShapeNet baseline. 34
4.2. Objectron object category distribution 38

5.1. The datasets and categories used for the user study 47
5.2. The number of dataset objects per category used for training

the GET3D model after pre-processing. 49
5.3. PointNet classification results 52
5.4. FID scores . 53
5.5. The results of the user study on each dataset and catagory 55

xi

Acronyms
CNN Convolutional Neural Network.

CO3D Common Objects in 3D.

FID Fréchet Inception Distance.

GAN Generative Adversarial Network.

NeRF Neural Radiance Field.

SDF Signed Distance Field.

xiii

1. Introduction
Procedural generation of 3D objects is a technique often used in video games
and animated movies to generate 3D shapes algorithmically rather than
relying on manual creation. By developing algorithms that can generate
3D objects with little human intervention, the time and resources spent on
3D modeling can be greatly reduced. Traditional methods for procedural
generation are typically rule-based, with L-systems (Lindenmayer, 1968)
and fractals (Carpenter, 1980) being examples of such methods. These
methods have proven successful in generating organic shapes such as
terrains or trees, but generation of human-made objects is generally more
difficult (Freiknecht and Effelsberg, 2017). In recent years deep learning has
emerged as a significant field of research, and deep generative methods have
proven to be successful in generating various forms of content, including
images (Rombach et al., 2022; Karras et al., 2019). However, using deep
learning for 3D object generation is still in its early stages of development.
As such, this thesis explores the state-of-the art of deep 3D procedural
generation, and how it may be used to generate 3D objects.

This chapter explains the motivation behind the thesis, and introduces
the goal and research questions proposed to achieve the thesis goal.

1.1. Background and Motivation

The field of 3D object recognition has since its inception evolved to become
an active area of research. 3D object recognition algorithms solve the
problem of inferring useful information about a 3D scene such as object
poses and categories, and are used in fields such as augmented reality,
virtual reality, autonomous vehicles, medical imaging, and robotics (Qi
et al., 2021). Traditional algorithms achieve this through the use of various
techniques, including 3D descriptors and sliding windows. In more recent
years however, deep learning has been introduced to the field of 3D object

1

1. Introduction

recognition (Su et al., 2015; Qi et al., 2016), and shown to outperform
traditional methods.

In order to evaluate 3D object recognition algorithms, as well as training
deep learning based methods, a large amount of 3D objects are required.
Current algorithms are typically evaluated using the ShapeNet (Chang
et al., 2015) and ModelNet (Wu et al., 2014) datasets that consist of
several thousand objects from various categories. While these datasets are
currently used to evaluate algorithms, they are lacking in terms of both
diversity and scale. There is thus a need for a large-scale, diverse dataset
of 3D objects. 3D objects are however difficult to acquire, requiring either
manual creation by a skilled 3D artist or acquisition from the real-world
using 3D scanners or photogrammetry, all of which are time and resource
intensive processes.

As an alternative to manual acquisition of 3D objects, procedural gen-
eration techniques provide a less time-consuming and resource-intensive
method of generating them. By creating an algorithm that can automatic-
ally generate 3D objects on the fly, the time and cost of creating a large
dataset may be greatly reduced. A diverse, large-scale dataset of 3D objects
may thus more easily be obtained through procedural generation than
manual acquisition.

Recent work in procedural generation has utilized deep learning to
generate 3D objects and shown promising results (Nash et al., 2020; Gao
et al., 2022; Poole et al., 2022). In addition to being more efficient in
generating novel objects, a deep neural network model is also significantly
smaller in size than a large-scale dataset, and can be used to generate
objects on the fly. However, existing methods usually require training on
pre-existing 3D datasets. As such, the generated objects do not significantly
diverge from those present in the datasets. With current datasets being
limited in diversity and scale, employing a deep model trained on these is
not a viable approach to generate a novel dataset.

Little research have been done on generating 3D objects from real-
world image data, excluding reconstruction algorithms that do not aim to
generate novel objects (Mildenhall et al., 2020; Müller et al., 2022), instead
reconstructing existing ones. The advantages of using real-world image
data is its higher degree of accuracy in representing reality, in addition
to being easier to acquire in large quantities. By using real-world data to

2

1.2. Goals and Research Questions

train a deep 3D generative model, realistic and diverse 3D objects may be
obtained. Accordingly, this thesis explores the possibility of generating a
novel dataset of 3D objects using a deep procedural 3D model trained on
real-world image data.

Though the use of real-world image data for 3D object generation offers
the aforementioned advantages, it also presents significant challenges in
comparison to synthetic data. Real-world image datasets typically lack or
have algorithmically generated annotations such as camera information
and segmentation masks that are commonly required by deep procedural
3D models. When using synthetic data in the form of rendered images of
3D objects these can be generated perfectly, while for real-world data the
results may be imperfect and subject to noise.

1.2. Goals and Research Questions

Based on the thesis motivation presented in section 1.1, the goal of the
thesis can be formulated as the following:

Goal Explore the possibility of generating a large-scale dataset of 3D objects
using a deep learning model trained on real-world data.

In order to achieve this goal, a number of research questions are proposed
to aid in the research process. Firstly, to be able to use a deep model for
3D procedural generation with real-world image data, the current state-
of-the-art in deep 3D procedural generation must be evaluated. The first
research question is thus as follows:

Research question 1 To which degree can current deep learning methods
generate 3D objects of high quality?

To evaluate the current state-of-the-art deep 3D procedural generation
models, it is first necessary to find a method to evaluate the similarity of
the generated objects to their real-world counterparts. The second research
question is thus as follows:

Research question 2 How can the similarity of 3D objects to their real-
world counterparts be objectively evaluated?

3

1. Introduction

Lastly, the state-of-the-art must be evaluated with regards to their
ability to use real-world data for procedural generation. The final research
question then becomes:

Research question 3 To which degree are current deep 3D procedural mod-
els able to use real-world data for training?

1.3. Thesis Structure
• Chapter 1 introduces the thesis topic and the motivation behind it,

in addition to bringing forward the goal and research questions.

• Chapter 2 presents the background theory discussed throughout
the thesis.

• Chapter 3 discusses the current state-of-the-art 3D object datasets
and deep 3D procedural models.

• Chapter 4 presents the method used to evaluate the thesis research
goal and research questions.

• Chapter 5 presents the experiments conducted and the correspond-
ing results.

• Chapter 6 discusses the results in relation with the research ques-
tions and thesis goal.

• Chapter 7 concludes the thesis.

1.4. Disclaimer
Parts of this thesis have been adapted from the specialization report
conducted in the fall semester. These sections have been rewritten and
altered to accommodate this thesis. The affected sections are 2.1.2, 2.1.3,
2.1.4, and 2.3.1.

4

2. Background Theory
This chapter covers the relevant background theory that the thesis builds
upon. First the relevant background is given on how 3D data can be repres-
ented, which affects the performance and architecture of three-dimensional
neural networks. Then a background is given on how computers render
images using virtual 3D cameras, which is relevant to deep 3D procedural
generation using image data. Lastly, the background theory regarding
generative deep learning techniques is given as a basis for later architectural
choices.

2.1. 3D Data Representations

There exist multiple methods for representing 3D information, each exhib-
iting its respective advantages and disadvantages. With regards to deep
procedural generation, there are three main factors that influence their
effectiveness. These are the memory footprint of the representation, com-
patibility with convolutional neural networks (CNNs), and their capability
to be represented as a multi-layer perceptron.

The memory footprint affects the training time of the neural network,
with high memory footprint representations requiring longer training times.
This thus also affects the feasible resolution of the representation when used
in a neural networks, which again influences the quality of the generated
objects.

A representation being compatible with CNNs enables the transfer of
the demonstrated advantages of two-dimensional CNNs (O’Shea and Nash,
2015) into three dimensions.

Representations that can be represented by a multi-layer perceptron
(MLP) can be directly incorporated in a neural network, enabling the
training of the representation in conjunction with the rest of the network.

This section gives a theoretic background on the more prevalent 3D

5

2. Background Theory

representations used with deep neural networks in order to clarify their
advantages and disadvantages, and provides a basis for later architectural
choices. The representations covered are voxels, point clouds, meshes, and
signed distance fields (SDFs).

2.1.1. Voxels

x

y
z

Figure 2.1.: The voxel representation as a three-dimensional cell grid

The voxel representation represents 3D information as a binary, three-
dimensional occupancy grid of size x× y × z as illustrated in Figure 2.1,
where each cell is either occupied or non-occupied. When used with neural
networks, the voxel dimensions are commonly set uniform at n × n × n
where n = [64, 256] (Wu et al., 2016; Wang et al., 2018a; Ibing et al., 2021).
Due to the uniform grid structure of voxels, which can be considered a
three-dimensional extension of a binary image, traditional CNNs have been
adapted for use with the voxel representation (Wu et al., 2016; Xie et al.,
2019). This allows for neural networks using the voxel representation to
benefit from the demonstrated advantages of CNNs. However, due to the
redundant information stored in non-occupied cells and cells inside the
object surface, in addition to the representation growing cubically with size,
the memory footprint of voxels is high. This results in low resolution 3D
objects when used for deep 3D procedural generation on modern hardware.

6

2.1. 3D Data Representations

2.1.2. Point clouds

Figure 2.2.: A point cloud showing an airplane model of 1024 points. Figure
generated using1.

Point clouds are the standard representation used by 3D data acquisition
devices such as the Kinect, LiDARs and phone depth cameras. Because of
this, they are also frequently used by 3D recognition algorithms (Qi et al.,
2016; Liu et al., 2019). A point cloud can be defined as an unordered set
of 3D points X = {x1, x2, ..., xn}, xi ∈ R3 as illustrated in Figure 2.2. A
colored point cloud additionally contains color information for each point.
Since only points on the objects’ surfaces are stored, the memory footprint
of point clouds is small. However, due to their non-uniformity, 2D CNNs
cannot be easily extended for use with point clouds. Specific convolution
operations for point clouds have nonetheless been developed (Thomas et al.,
2019; Wu et al., 2020) that allow for the creation of point cloud CNNs.

1https://github.com/salehjg/pointcloud_to_tikz_converter

7

https://github.com/salehjg/pointcloud_to_tikz_converter

2. Background Theory

2.1.3. Meshes

Figure 2.3.: The monkey mesh from Blender

Meshes are the predominant 3D representation used in computer graphics.
A mesh is defined as a collection of vertices V and polygon faces F and
an example of a mesh is illustrated in Figure 2.3. Each vertex v ∈ V is a
3D point and each face f ∈ F is a collection of co-planar vertices. Each
vertex in the mesh can contain additional information such as normals and
texture coordinates. Faces are typically limited to consist of 3 vertices,
giving a triangle mesh, however n-gon meshes containing arbitrarily sized
faces are also possible. Meshes generally have a slightly higher memory
footprint than point clouds due to the topological information stored in the
faces, though this depends on the point cloud resolution and the number
of points needed to accurately represent the surface. Similarly to point
clouds, meshes are non-trifvial to use with CNNs due to their non-uniform
structure. However, specific mesh CNNs have been developed, such as
MeshCNN (Hanocka et al., 2019).

2.1.4. Signed Distance Fields

Signed Distance Fields (SDFs) represent 3D data as a continuous function
that for a given point x outputs the signed distance s to that point from
its closest surface point, where the sign signifies whether the point is inside

8

2.2. 3D Rendering

or outside the surface:

SDF (x) = s : x ∈ R3, s ∈ R

As such, the surface of the object is represented by SDF (·) = 0. A discrete
version of the function can be obtained by sub-dividing the 3D space into a
grid and sampling the function at each grid point. The main advantage of
the SDF representation is that the function can be expressed by an MLP
and is therefore suited for use in an artificial neural network. Additionally,
a 3D mesh can be obtained from the representation using the marching
cubes algorithm (Lorensen and Cline, 1987). However, due to the use of a
3D grid, the memory footprint is similar to that of the voxel representation.

2.2. 3D Rendering
In order for a deep neural network to generate 3D objects by training the
network on image data, a function that describes the relationship between
the 3D data and the image is required. This function is commonly the
rendering function, that maps 3D data to an image using a virtual camera.
Virtual camera representations are inspired by real-world cameras, and act
in a similar manner by projecting 3D points onto an image surface. This
section covers how virtual cameras can render images from 3D data which
lays a foundation for deep 3D procedural generation from image data.

2.2.1. Pinhole Camera Model

The most simple representation of a perspective camera is known as a
pinhole camera, where the camera is modeled as a box with an infinites-
imally small hole on one side, as illustrated in Figure 2.4. For ease of
representation, the image plane is situated in front of the camera center
instead of behind, which also prevents image inversion. The "pinhole"
in located at Fc, with the optical axis piercing through the image plane
at the principal point. The focal length f is given by the distance from
Fc to the principal point. For a point P = (x, y, z) ∈ R3 in the camera
reference frame, the coordinates of the point projected onto the image
plane P ′ = (x′, y′) are then given by:

x′ = f
x

z
, y′ = f

y

z

9

2. Background Theory

xc

yc

zc

Fc

P = (x, y, z)

u

v

x′

y′z = f

ū
v̄

(u, v)

principal
point

optical
axis

Figure 2.4.: The pinhole camera model

By dividing by the z coordinate, points at a further distance from the
camera are scaled down futher, giving a perspective projection. The
rationale behind the equations can be seen by considering the triangle
displayed in Figure 2.5 showing the y′ coordinate where y

z = y′

f due to the
similar triangles rule. A similar rationale can be made for the x′ coordinate.
The camera reference frame points and image points can be expressed
using homogeneous coordinates, that is P = (x, y, z, 1) and P ′ = (x′, y′, 1).
In this manner the perspective transformation can then be expressed in
matrix form:

M =

f 0 0 0
0 f 0 0
0 0 1 0


In order to obtain the pixel coordinates of the projected point P ′′ =
(u, v, 1), P ′ needs to be translated by u0 and v0 respectively, where (u0, v0)
corresponds to the point in the upper left corner of the image. This is due
to the image reference frame being located at the image center, while the
pixel reference frame is located at the top left corner. The final matrix
then becomes:

M =

f 0 u0 0
0 f v0 0
0 0 1 0

 =

f 0 u0
0 f v0
0 0 1

 [I 0] = K[I 0]

10

2.2. 3D Rendering

Fc

P

y
y′

z

f

Figure 2.5.: The y′ coordinate can be obtained by applying the similar
triangles rule to these triangles

Where M is referred to as the camera matrix and K is referred to as the
intrinsic matrix. As such, the projected pixel point P ′′ can be obtained by
multiplying P with the camera matrix:

P ′′ =

f 0 u0 0
0 f v0 0
0 0 1 0

P
This simplistic model does not take into account effects such as lens

distortion and skew, but acts as a simplistic model for a camera’s intrinsic
parameters.

2.2.2. Extrinsic Parameters

The camera matrix acts upon on points in the camera reference frame. Thus,
in order to apply the matrix on world reference frame points, they first need
to be transformed from the world reference frame to the camera reference
frame, as illustrated in Figure 2.6. This transformation can be represented
by a rotation matrix R along with a translation vector t, and are known
as the extrinsic parameters of the camera. These are commonly combined

into a view matrix V =
[
R t
0 1

]
that can be applied to homogeneous world

11

2. Background Theory

xw

zw

yw

Fw

xc

yc

zc

Fc

Figure 2.6.: Transformation from the world reference frame to the camera
reference frame

coordinates. Thus, for a given world point Pw = (x, y, z, 1) in homogeneous
coordinates, the final image pixel coordinates P ′′ = (u, v, 1) are obtained by
multiplying the point with the intrinsic and extrinsic matrices respectively:

Pw = MV


x
y
z
1



2.2.3. Rasterization and Shading

While the camera model is able to project 3D points to 2D pixel coordinates,
it does not describe how the points should be displayed. This is commonly
done through a rasterization process followed by a shading process. The
rasterization process typically takes 3D meshes as input and uses the
camera matrix to project the mesh vertices to pixel coordinates, before
determining which pixels are contained within the mesh faces. Each pixel is
then output with corresponding vertex data which is interpolated between
the face vertices. The pixels are then shaded according to a shading model,
which uses parameters such as lights and textures in combination with the
vertex data to determine the pixel color.

2.3. Generative Deep Learning
In order to generate 3D objects using deep learning, a generative deep
learning model is required. Generative deep learning models aim to learn

12

2.3. Generative Deep Learning

a data distribution using unsupervised learning in order to generate new
samples that are similar to samples from the same distribution. Different
from discriminative models, that discriminate between decision boundaries
in the data in order to predict labels of new data points by capturing
the conditional probability p(Y |X), generative models capture the joint
probability p(X,Y), where X is the data points and Y the labels. There
exist many approaches to deep generative modeling, and to lay a foundation
for the architectural choices taken in this thesis with regards to deep 3D
procedural generation, this section gives a theoretic background on deep
generative models. The techniques covered are the Generative Adversarial
Network (GAN) architecture for generative modeling, the 3D-aware image
synthesis technique for image generation consistent with 3D data, the
Neural Radiance Field (NeRF) architecture for novel view synthesis, and
the diffusion bases technique for image generation.

2.3.1. Generative Adversarial Networks

The GAN (Goodfellow et al., 2014) architecture is a generative deep learning
architecture that trains two different neural networks simultaneously, a
generator network G and a discriminator network D. The generator G
aims to generate new plausible samples from the data distribution using a
noise vector z as input, though with some variation to those present in the
distribution. Simultaneously, the discriminator D estimates the probability
that a sample comes from the training data or from G. In this manner,
the two networks are playing a two-player minimax game where the gain
of one network is the loss of the other. This game can be represented using
the value function V (G,D), where G aims to minimize the function and
D aims to maximize it:

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x)]+Ez∼pdata(G(z)) [log(1−D(G(z)))]

Where the first addend denotes the log probability of D predicting that
a real sample is genuine, and the second addend denotes the probability
that D predicts a generated sample G(z) to be non-genuine. Intuitively
the game can be thought of as the generator learning to generate samples
that "fool" the discriminator while the discriminator learns to determine
whether a sample is "real" or "fake".

13

2. Background Theory

As a result of the simultaneous training of the two networks, GANs
present significant challenges in the training process and have several
common failure modes. In the case that the discriminator learns faster than
the generator, the generator training can fail due to vanishing gradients.
This is due to the loss for the generator equaling zero when the discriminator
is optimal. Another failure case known as mode collapse can happen when
the generator keeps producing a small number of outputs that are most
plausible to the discriminator, producing little variety in the generated
results. This is due to the discriminator getting stuck in a local minimum
and determining the generated samples as real. GANs may also simply fail
to converge in many cases. There are many approaches to minimize the
GAN failure modes, such as using alternative loss functions like Wasserstein
loss or adding noise to discriminator inputs.

A technique often applied to GANs to minimize failure modes is known
as R1 regularization, with the aim of penalizing large updates to the
discriminator weights when trained on real data. The regulariztion term is
defined as follows:

R1(ψ) = γ

2EpD(x)
[
||∇Dψ(x)||2

]
Where ψ is the discriminator weights, the gamma parameter γ is a

hyperparameter of the GAN model and EpD(x) denotes that the data
is only sampled from the real distribution. As such, by changing the
gamma parameter of the GAN network, one can avoid the discriminator
out-learning the generator and find a common equilibrium.

2.3.2. 3D-aware Image Synthesis

The goal of 3D-aware image synthesis models is to generate images con-
sistent with a 3D model or scene. Contrary to traditional image synthesis
methods, 3D-aware image synthesis methods can generate images from
specific camera angels, and in many cases a 3D object can be extracted.
This is commonly done through the use of an internal 3D representation
that is rendered to an image. In this manner, the deep model can be
trained in image space while producing a 3D shape through the internal
representation. Since most of deep learning methods use first order op-
timization techniques such as gradient descent, this requires the complete

14

2.3. Generative Deep Learning

architecture to be differentiable. As such, at the core of 3D-aware image
synthesis models is a differentiable renderer.

A 3D rendering function R takes as parameters 3D scene information
including geometric shapes, camera parameters, lighting parameters, and
material information and outputs and image I. Thus, by parameterizing
the input geometry, camera, materials, and lights as θG, θC , θM and θL
respectively, the rendering function can be expressed as:

I = R(θG, θC , θM , θL)

In order to make this function differentiable the gradients of the output
image must be found with respect to the input parameters, and are given
by ∂I

∂θ . The steps taken to find each gradient varies between the parameters
and rendering process. Generally, the camera and geometry gradients
can be found by inverting the perspective mapping which is inherently
differentiable. The material and light gradients computation depends on
the shading and lighting model used.

2.3.3. Neural Radiance Fields

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) provide a method
for synthesizing novel views of a 3D scene given a set of input images
of that same scene. The scene is represented by a multilayer perceptron
(MLP), a fully-connected deep neural network without any convolutional
layers. The network takes as input a 5D coordinate (x, y, z, θ, ϕ), where
x = (x, y, z) is a 3D coordinate and d = (θ, ϕ) is a viewing direction which
in practice is expressed as a 3D Cartesian unit vector. Given the input, the
network then outputs an emitted color c = (r, g, b) and a volume density σ.
By employing a volumetric renderer that is naturally differentiable, images
can be rendered by shooting a ray for each image pixel and sampling the
output values c and σ along the ray, before integrating over the values.
More formally, given an image position x and viewing direction d, a ray
origin o can be found at each image pixel, assuming the camera extrinsic
parameters are known. By denoting the ray timesteps as t, the ray can
be expressed as a function of time given by r(t) = o + td. The expected
outputted color C(r) is then given by the following integral:

C(r) =
∫ tf

tn
T (t)σ(r(t))c(r(t),d)dt

15

2. Background Theory

Where tn and tf are the near and far bounds of the ray and T (t) is the
accumulated transmittance given by:

T (t) = exp
(

−
∫ t

tn
σ(r(s))ds

)
The network can be trained by shooting a ray for each image pixel of the

dataset images and recording the outputted color c and volume density σ,
which can then be used to find the L2 loss ||c − cgt||2, where cgt denotes
the ground truth pixel value. A 3D mesh can be extracted from the NeRF
by sampling it and using the marching cubes algorithm.

Since NeRFs represent a 3D scene within an MLP, a separate neural
network must be trained for each scene. The original NeRF paper states
that the training time for a single scene takes about 1-2 days on a single
NVIDIA V100 GPU (Mildenhall et al., 2020). As such, NeRFs require a
significant amount of processing power in order to generate a large amount
of objects. Newer implementations aim to improve on this (Müller et al.,
2022) by reducing the neural network size and applying an input encoding.

2.3.4. Diffusion

Diffusion based generative models have gained popularity in text-to-image
synthesis, and shown to outperform GAN based methods in many cases
(Rombach et al., 2022). A generative diffusion model adds Gaussian noise to
the data points step-wise, and then learns to reverse the diffusion process in
order to generate new samples. More formally, given a data point sampled
from a data distribution x0 ∼ q(x), the forward diffusion process can be
defined as:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI)

Where t ∈ [0, T] is the time step and {βt ∈ [0, 1]}Tt=1 is the variance
schedule that describes the amount of noise to add at each time step. It is
possible to find xt of a given timestep using:

xt =
√

ātx0 +
√

1 − ātϵ (2.1)

Where āt =
∏t
s=0 1 − βt and ϵ ∼ N (0, I). As T → ∞, xT approaches an

isotropic Gaussian distribution. The reverse diffusion process is then to

16

2.3. Generative Deep Learning

learn the joint distribution pθ(x0 : T) given by:

pθ(x0 : T) := p(xT)ΠT
t=1pθ(xt−1|xt) := p(xT)ΠT

t=1N (xt−1; µθ(xt, t),Σθ(xt, t))

This can then be used to generate new samples from Gaussian noise, by
gradually de-noising the input.

17

3. Related Work
This chapter presents the related work with regards to procedural gen-
eration of 3D objects using deep learning. First an overview of current
3D object datasets is given, and then the current state-of-the-art in deep
procedural 3D generation is given.

3.1. 3D Object Datasets

Figure 3.1.: Examples of ModelNet40 3D objects from the chair category.
The objects have been scale adjusted.

While the availability of large-scale 3D object datasets is limited, there
do exist several datasets of a smaller size. ModelNet (Wu et al., 2014) is a
dataset consisting of 127,915 3D CAD models from 662 categories, and is
commonly used for 3D object classification and retrieval benchmarking (Qi
et al., 2016; Wu et al., 2016). While the full dataset consists of 127,915
CAD objects, they are not cleaned or pose aligned and are thus of varying
quality. For this reason, two separate splits of the dataset have been created,
namely ModelNet10 and ModelNet40. These splits contain fewer objects
from less categories, but have been manually cleaned. The ModelNet10
split contains in total 4,899 objects from 10 categories that have been

19

3. Related Work

manually cleaned and pose aligned, while the ModelNet40 split contains
12,311 objects that have been manually cleaned but not pose aligned. This
dataset has not been used extensively for deep 3D object generation due
to its size generally being a limitation for producing high-quality objects.
However, the ModelNet40 and ModelNet10 datasets are widely used for
3D classification and retrieval tasks, with benchmark results available on
the ModelNet website1. Some examples of ModelNet40 objects from the
chair category are displayed in Figure 3.1.

Figure 3.2.: Examples of ShapeNet 3D objects from the chair category with
textures removed.

ShapeNet (Chang et al., 2015) is another 3D object dataset used extens-
ively in computer graphics, computer vision, and robotics research. The
objects are collected from a multitude of online 3D repositories before being
annotated. While the full original dataset consists of roughly 3,000,000
objects, it is not publicly available. Instead, the publicly available dataset
consists of two different subsets; ShapeNetCore with about 51,300 cleaned
objects from 55 different categories and ShapeNetSem with 12,000 objects
from 270 categories that are annotated with information such as real-
world dimensions, material properties, and volume and weight estimates.
ShapeNet has been used to evaluate a variety of methods for different tasks,
including 3D object recognition (Qi et al., 2016) and shape reconstruction
(Xie et al., 2019), in addition to commonly being used to evaluate deep 3D
procedural generation models (Gao et al., 2022; Wu et al., 2016). While
deep 3D procedural neural networks trained on the ShapeNet dataset are
able to generate novel objects, the dataset size and categories is still a

1https://modelnet.cs.princeton.edu/

20

https://modelnet.cs.princeton.edu/

3.1. 3D Object Datasets

limitation for producing high-quality, varied 3D objects. Additionally, since
ShapeNet objects are collected from online 3D repositories, the realism
of the objects can vary significantly. Some examples of ShapeNet objects
from the chair category are displayed in Figure 3.2.

Figure 3.3.: Examples of poor quality and unrealistic models (without their
textures) from the Objaverse chair category.

Objaverse (Deitke et al., 2022) is a recently published dataset of 3D ob-
jects with over 800,000 annotated 3D objects. With its extensive collection
of objects, it can be argued to be the only dataset currently available that
is genuinely large-scale. The objects present in the dataset are sourced
from SketchFab2, a web-based platform for 3D model sharing, where the
models collected are created by over 100,000 different artists. As such,
the models are of varying quality and realism, with a few examples of
poor quality and unrealistic objects from the chair category displayed in
Figure 3.3. Additionally, the annotation categories are broad in nature,
including categories such as "architecture" and "science-technology". This
makes retrieval of objects of a specific category difficult. A subset of the
dataset is provided with annotated LVIS (Gupta et al., 2019) categories,
though this consists of only 47,000 objects which is less than ShapeNet. As
such, the Objaverse dataset is still limited for deep procedural 3D object
generation of specific categories.

2https://sketchfab.com

21

https://sketchfab.com

3. Related Work

3.2. Deep 3D Generative Models

Procedural generation of 3D objects using deep learning has become a
prevalent field of research in recent years. With many different industries
requiring a large amount of 3D objects, for purposes such as creating
large 3D virtual worlds, deep 3D generative models have been proposed to
automate the process of object generation. Multiple approaches have been
suggested, and this section provides an overview of several methods using
different approaches.

3.2.1. GAN Based Methods

Several methods have been proposed for using the GAN architecture for
procedural 3D object generation. 3D-GAN (Wu et al., 2016) is an early
approach that utilizes the voxel representation with a 3D convolutional
neural network in order to generate novel 3D objects. The generator G
maps a randomly sampled latent vector z ∈ R200 to a 64 × 64 × 64 voxel
representation through the convolutional network, and the discriminator
D gives a confidence value D(x) of whether the 3D object x is real or fake.
By training the model on single ShapeNet categories, it is able to generate
novel objects, though at a low quality and low 64 × 64 × 64 resolution.
Other more recent approaches have expanded on the architecture (Wang
et al., 2018a), but are generally limited by the feasible resolution of the
voxel representation.

Shu et al. (2019) propose a GAN for generating 3D point clouds called
tree-GAN. By representing the point clouds using a tree structure and
using a tree-structured graph convolution network called TreeCGN, new
samples can be generated from a noise vector z. Different from other
methods, tree-GAN can generate point clouds from different categories
without training on each category separately. However, the model still
requires 3D data for training, with ShapeNet being used to evaluate the
model. Additionally, the generated point clouds consist of only 2048 points,
resulting in lower resolution objects that lack finer details.

GET3D (Gao et al., 2022) is a deep generative model developed by
NVIDIA to generate textured 3D objects. It utilizes the SDF based
hybrid 3D representation DMTet (Shen et al., 2021) in combination with
a differential renderer (Laine et al., 2020) and StyleGAN (Karras et al.,

22

3.2. Deep 3D Generative Models

Figure 3.4.: The GET3D model architecture. Figure adapted from Gao
et al. (2022)

2019). The generative network architecture is split in two, with a geometry
generator and a texture generator. Given a Gaussian distributed variable
z ∈ N (0, I), the model aims to generate a mesh M with a corresponding
texture T . The model architecture is illustrated in Figure 3.4. This
figure includes the improved generator architecture from the GET3D paper
apendix, which combines the texture and geometry generator into the same
backbone. For simplicity, the architecture covered in this section is the
architecture proposed in the main paper, which separates the texture and
geometry generators.

The GET3D geometry generator takes as input a Gaussian variable z1
that is mapped to a latent vector w1 ∈ R512 through a mapping network.
w1 is further mapped to SDF values through a series of 3D convolutional
layers. The convolutional layers output an SDF value si ∈ R and a vertex
deformation ∆vi for each vertex vi ∈ VT on a tetrahedral grid T . These
are then passed into DMTet which uses a differential marching tetrahedra
algorithm to extract a 3D mesh. By using a deformable tetrahedral grid,
the mesh can be extracted more efficiently than through marching cubes
using a cubical grid.

The texture generator works in a similar manner, taking a Gaussian
variable z2 as input that is mapped to a latent vector w2. The concatenated
latent vector w1 ⊕ w2 is then used to generate a 3D texture field through
the use of a conditional 2D convolutional network. 3D texture fields are a
texture representation introduced by Oechsle et al. (2019) that maps a 3D
point p ∈ R3 to an RGB color c ∈ R3.

23

3. Related Work

Using the generated mesh and texture field, the object is rendered to a
2D image and segmentation mask using a differentiable renderer given a
camera rotation and elevation angle. These are then passed to two separate
StyleGAN discriminators that determine whether they are real or fake. As
such, the GET3D model can be trained using 2D images of single objects
in combination with their corresponding segmentation masks and camera
angles. In order to generate novel objects using the trained model, the
variables z1 and z2 can be randomly sampled and provided to the network.

The paper presents results after training the model on synthetic images.
These images are generated by rendering 3D objects of a specific category
using Blender, using camera angles evenly distributed along a hemisphere.
The results presented shows that the model achieves state-of-the art per-
formance, outperforming existing 3D-aware image synthesis methods such
as GRAF(Schwarz et al., 2021) and EG3D(Chan et al., 2022).

3.2.2. Transformer Based Methods

Transformers are a neural network architecture first proposed in 2017
(Vaswani et al., 2017) by Google researchers. Originally proposed for
sequential data, the transformer architecture aims to solve issues related
to recurrent neural networks, including computational complexity and the
inability to retain long-term information. The transformer architecture has
later been used with inherently non-sequential data such as images and 3D
objects. PolyGen (Nash et al., 2020) uses the transformer architecture with
a 3D mesh representation by representing the meshes sequentially. This is
done by first ordering the vertices V in order of their z, y and x coordinates,
and then ordering the faces F in order of their respective vertices. The
model is evaluated on the ShapeNet dataset, where the model is trained
on the whole dataset using different conditioning variables, including class
labels, images, and voxels. Log-likelihood is used as the evaluation metric,
that is stated to correlate well with the sample quality. The results show
that the model is able to produce high-quality objects, particularly on
high-frequency categories of the ShapeNet dataset, though the model is
dependent on 3D data for training. As such, due to the limited prevalence
of objects of specific categories, the generated results on such categories
are inferior.

Octree Transformer (Ibing et al., 2021) is another proposed transformer

24

3.2. Deep 3D Generative Models

based method for 3D object synthesis. The 3D data is represented sequen-
tially using an octree of voxels, which reduces the memory footprint in
comparison to rudimentary voxels. The model is evaluated on a voxelized
version of the ShapeNet dataset, and is demostrated to outperform other
voxel based models such as 3DGAN. It is still however limited by being
trained on 3D data in addition to having a high memory footprint despite
using octrees.

3.2.3. Diffusion Based Methods

DreamFusion (Poole et al., 2022) proposes a method for text-to-3D synthesis
by employing the diffusion text-to-image synthesis model Imagen (Saharia
et al., 2022) in combination with NeRFs. Given a text prompt, a NeRF
is randomly initialized and then rendered to an image using a random
lighting direction and normals computed using the NeRF volume density
gradients. The rendered image is then diffused using the forward diffusion
process and reconstructed using the Imagen model. The reconstructed
image is then used to update the NeRF weights. Since a separate NeRF
must be trained for each text prompt, and a single NeRF contains only a
single object, the time required to generate a multitude of objects is long,
with the paper stating that training a single NeRF takes 1.5 hours on a
TPUv4 machine. As such, using DreamFusion to generate a novel dataset
of 3D objects would be substantially time and resource intensive.

Magic3D (Lin et al., 2023) aims to reduce the DreamFusion training
time and increase the object resolution. The training time is reduced by
employing a hash encoding from Instant NGP (Müller et al., 2022) to
represent the NeRF at a lower computational cost. Additionally, Magic3D
employs a coarse-to-fine optimization approach, first optimizing using a
low resolution diffusion prior before fine-tuning at a higher resolution. The
paper states that Magic3D can generate objects in 40 minutes, and that
user studies showed that 61.7% preferred the Magic3D-generated objects
over DreamFusion ones. However, for the purpose of generating a large
dataset of 3D objects, Magic3D is still significantly time and resource
intensive.

Point-E (Nichol et al., 2022b) proposes a diffusion based method for
generating 3D point clouds from a single text prompt. A text-to-image
model is paired with an image-to-3D model such that a 3D object can be

25

3. Related Work

produced by first sampling an image and then a 3D object. The models
are trained using a non-public dataset of 3D objects, where the objects are
rendered into RGBAD images from 20 random camera angles and point
clouds produced from the images. A GLIDE (Nichol et al., 2022a) model is
fine-tuned using a mixture of its original dataset and the generated dataset
of 3D renderings to produce the text-to-image model. For the image-to-3D
model, each point cloud is represented as a K× 6 tensor, with K being the
number of points and (x, y, z, R,G,B) being the point vectors containing
position and color. A transformer based model is used to predict t, ϵ, the
variance Σ of pθ(xt−1|xt), and xt from 2.1 in order to denoise random point
cloud noise of shape K×6 and generate a point cloud. The model performs
worse than other state-of-the-art text-to-3D models such as DreamFusion,
however is able to generate objects in a much shorter time period at a
number of seconds.

26

4. Method
This chapter aims to arrive at a method for generating 3D objects using
real-world image data, to evaluate the thesis goal of generating a novel
3D dataset. Real-world data is used with the intent that the generated
objects will resemble realistic objects to a greater degree. Additionally,
acquisition of real-world image data is considerably less time-consuming
than acquiring 3D data directly. As such, by certifying that the method
is reliable, future works can acquire real-world image data to a greater
degree to increase the quality and diversity of generated objects. In order
to arrive at the method, several state-of-the-art 3D generative models are
tested and evaluated to find a suitable architecture. After arriving at an
architecture, the datasets used for training can be determined.

4.1. Architecture

This section presents the chosen architecture for deep 3D procedural
generation with real-world image data and covers the steps taken to arrive
at this architecture. While it would be possible to develop a specific
architecture for this task, it would require a significant effort and expertise,
thus surpassing the scope of this thesis. As such, this thesis instead focuses
on using an existing architecture with real-world data.

4.1.1. Unused Architectures

The first research question of this thesis is as follows:

Research question 1 To which degree can current deep learning methods
generate 3D objects of high quality?

To aid in answering this question and arrive at candidates for suitable
architectures, several deep 3D generative models were considered and

27

4. Method

tested. Some of the architectures were abandoned due to poor generation
results.

Figure 4.1.: Objects generated from single RGB images using Pixel2Mesh.

Initially, the image-to-3D model Pixel2Mesh (Wang et al., 2018b) was
tested. This model can generate 3D meshes from a single RGB image.
While the model is trained on rendered images of ShapeNet objects from
13 categories, it can be conditioned on arbitrary images from the same
categories. As such, the model was tested using conditioning on real-world
images. The results are displayed in Figure 4.1. As can be seen from the
results, the model was not able to generate 3D objects of a satisfactory
quality in any of the cases. As such, it was disregarded as a candidate for
a suitable architecture.

The image-to-3D model Pix2Vox (Xie et al., 2019) was also considered
and tested. Similarly to Pixel2Mesh, this model can generate 3D objects
from a single RGB image, though it uses a voxel representation as opposed
to meshes. It is similarly trained on rendered images of ShapeNet objects
from 13 categories. To facilitate the testing on custom images, the official
implementation was forked and modified, and is available on Github1.
The results after conditioning the model on real-world images from the

1https://github.com/Maro1/Pix2Vox

28

https://github.com/Maro1/Pix2Vox

4.1. Architecture

Figure 4.2.: Objects generated from single RGB images of chairs using
Pix2Vox.

chair category are displayed in Figure 4.2. Since the chair category is the
ShapeNet category with the highest number of samples, and the generated
results are not of a high quality, Pix2Vox was disregarded as a candidate
for a suitable architecture.

4.1.2. Evaluating the State-of-the-Art

Additional architectures were considered as potential candidates for 3D
procedural generation using real-world data. These architectures produced
better initial results, and were thus further evaluated. Firstly, PolyGen
(Nash et al., 2020) was chosen due to its efficient generation on multiple
categories and high log-likelihood score. It can additionally be conditioned
on image data. Secondly, DreamFusion (Poole et al., 2022) was chosen
due to being conditioned on text and thus being able to generate from
an abundance of categories, in addition to outperforming several similar
models. While Magic3D is stated to outperform DreamFusion, it does
not have a public implementation and can thus not be evaluated. Lastly,
GET3D was chosen because of its ability to produce high quality objects
from image data in addition to outperforming related methods. The
three models all use three different deep generative modeling approaches,
namely Transformers, Diffusion, and GANs, and thus provide a diverse
representation of the current state-of-the-art. As such, they lay a foundation
for answering research question 1.

29

4. Method

Model Evaluation

The second research question of this thesis considers the evaluation of the
resemblance of 3D objects to their real-world counterparts:

Research question 2 How can the similarity of 3D objects to their real-
world counterparts be objectively evaluated?

Evaluating the quality of 3D objects is a difficult problem, and there does
not exist an established evaluation metric. Existing metrics typically rely
on comparing the generated results to a ground-truth. Chamfer distance
is an example of such a metric that calculates the distance between two
point clouds by taking each point into account. This however requires a
ground-truth point cloud to compare against, and since two of the models
use image data for training it would be impractical to use. Similarly,
an evaluation metric acting on images would be impractical to use since
PolyGen is trained on 3D data.

Since the approach of comparing the generated results to a ground-truth
is not applicable between the three chosen models, a different approach is
taken by using a 3D classification network to classify the generated objects
of each model. In this manner, the resemblance of the generated objects to
the category they were conditioned on can be assessed. While this method
does not evaluate the particular object’s quality, and only its resemblance
to a category, it serves as an objective evaluation metric regardless of the
ground-truth and is thus deemed adequate for evaluation purposes.

To arrive at a suitable 3D classification network, the ModelNet40 clas-
sification benchmark (Wu et al., 2014) was reviewed. Since several of
the models achieve a similar classification percentage at about 90%, the
availability and simplicity of public implementations were also taken into
account. This concluded with the PointNet model being chosen due to
achieving a competitive benchmark score in addition to having several
public implementations.

PointNet is a network architecture for classification and segmentation
of point clouds. The baseline model achieves an accuracy of 89.2% on
the ModelNet40 benchmark, which is a moderate score in comparison to
the other listed algorithms. However, a PyTorch implementation available
on Github2 is used due to its simplicity in addition to containing code

2https://github.com/yanx27/Pointnet_Pointnet2_pytorch

30

https://github.com/yanx27/Pointnet_Pointnet2_pytorch

4.1. Architecture

Figure 4.3.: The object evaluation process using PointNet.

for training on the ModelNet (Wu et al., 2014) and ShapeNet (Chang
et al., 2015) datasets. This implementation includes the improved PointNet
network model PointNet++ (Qi et al., 2017) that is stated to reach an
accuracy of 92.8% for the PointNet2_MSG (Pytorch with normal) model.
This is the model used for the evaluation and it is trained on the ModelNet40
dataset following the README.

Since the PointNet model takes point clouds as input while the models
used output obj mesh files, a Python script is created to convert the obj
files into point clouds. The script samples points evenly on the surface
and outputs a point cloud containing 8192 points. This number of points
was deemed sufficient to accurately model the mesh surface while still not
impacting performance. PointNet is then run with each point cloud as
input and the predicted class is recorded. The process is illustrated in
Figure 4.3.

To evaluate the models, 100 objects are generated using the PolyGen
and GET3D models on two different categories; chairs and tables. This is
due to these two categories being the only two ShapeNet categories where
GET3D provides pre-trained weights, and are thus common among all
the models. Since the DreamFusion inference time is substantial due to
having to train the model for each new object, only 10 objects of each
category were generated using it. Additionally, ShapeNet is used as a
baseline by sampling 100 objects from the two categories. The objects are
then classified using the PointNet model.

31

4. Method

Evaluation Setup

All the evaluations are run on NTNU’s HPC cluster Idun3, using NVIDIA
V100 GPUs.

For the PolyGen model, the official implementation available on Github4

is used, with its corresponding pre-trained weights from training on the
ShapeNet dataset. The model is run on a single NDIVIA V100 GPU.
The generation code is taken from the Colab example5, using the default
parameters.

Since the official DreamFusion implementation is not publically available,
an alternative implementation using Stable Diffusion (Rombach et al., 2022)
as the text-to-image model is used, which is available on Github6. This
implementation is stated to produce slightly worse results than the official
DreamFusion implementation, but since Imagen is not publicly available
it is the only accessible implementation. The generation is performed by
training the model on the prompts "a chair" and "a table" respectively, and
running each instance on a separate NVIDIA V100 GPU.

The official implementation of the GET3D model7 is used for object
generation. The pre-trained model weights for the ShapeNet chair and
table categories are used and run on a single NVIDIA V100 GPU.

Evaluation Results

Figure 4.4 displays 5 of the generated objects from each category using the
three models. For continuity, and since textures are not relevant for the
task of 3D object recognition, the textures have been removed from the
DreamFusion and GET3D generated objects.

As can be seen from Figure 4.4a, the PolyGen model is able to generate
chair and table objects successfully in many cases. However, some of the
objects lack essential parts, such as chairs missing the seat and tables
missing the tabletop. Additionally, some of the objects have extra parts
and incontinuities. Nonetheless, due to the mesh representation used by

3https://www.hpc.ntnu.no/idun/
4https://github.com/deepmind/deepmind-research/tree/master/polygen
5https://colab.research.google.com/github/deepmind/deepmind-research/

blob/master/polygen/sample-pretrained.ipynb
6https://github.com/ashawkey/stable-dreamfusion
7https://github.com/nv-tlabs/GET3D

32

https://www.hpc.ntnu.no/idun/
https://github.com/deepmind/deepmind-research/tree/master/polygen
https://colab.research.google.com/github/deepmind/deepmind-research/blob/master/polygen/sample-pretrained.ipynb
https://colab.research.google.com/github/deepmind/deepmind-research/blob/master/polygen/sample-pretrained.ipynb
https://github.com/ashawkey/stable-dreamfusion
https://github.com/nv-tlabs/GET3D

4.1. Architecture

(a) PolyGen generated chairs and tables

(b) DreamFusion generated chairs and tables

(c) GET3D generated chairs and tables

Figure 4.4.: Generation results from the three models.

PolyGen the objects have a low polygon count and model hard surfaces
well.

The DreamFusion generated results shown in Figure 4.4b show that
the model is able to generate chair and table objects successfully in most
instances. However, in some cases there is noise contained within the
mesh in addition to the object. Additionally, there are cases where the
model is not able to generate chair objects successfully, and cases where
the orientation of the various parts are mis-matched or legs are missing.

Figure 4.4c demonstrates that the GET3D model is able to successfully
generate chair and table objects. The generated objects are coherent and

33

4. Method

Figure 4.5.: Jagged edges on the GET3D generated objects.

do not have any evident artifacts. It is also able to model thin structures
accurately, as can be seen from the chair legs in particular. However, by
closely examining the meshes it is apparent that some of the edges and flat
surfaces are jagged and and a triangular pattern is visible, as displayed in
Figure 4.5. This is likely due to GET3D’s use of a tetrahedral grid and
marching tetrahedra for mesh extraction, and does not particularly lower
the mesh quality.

Model Classification Percentage Average Percentage
GET3D Chair 53% 72%GET3D Table 91%
PolyGen Chair 95% 55%PolyGen Table 15%

DreamFusion Chair 30% 65%DreamFusion Table 100%
ShapeNet Chair 46% 62%ShapeNet Table 78%

Table 4.1.: PointNet classification results of the three models in comparison
to the ShapeNet baseline.

34

4.1. Architecture

The results of the PointNet classification are displayed in Table 4.1. For
the chair category, both the "chair" and "stool" categories were accepted
as correct identification, as they represent nearly identical objects. The
"stool" category is also only present in the ModelNet40 dataset and not
ShapeNet. Note that the DreamFusion percentage is only based on 10
objects for each category, while the GET3D and PolyGen percentage is
based on 100 objects. As such, the classification percentage achieved by
DreamFusion may not be regarded as equally accurate. Since PolyGen and
ShapeNet output n-gon meshes, they are first triangulated using a blender
script in order to convert them to point clouds. As can be seen from the
results, the classification percentage varies greatly between the models and
categories, with only the GET3D model achieving above 50% for both
categories. GET3D achieved the highest average classification percentage
on the two categories, even outperforming the ShapeNet baseline used to
train the model.

Based on the evaluation results, GET3D performs the best out of all
the three models. While PolyGen achieves a high percentage on the chair
category and can be conditioned on image data, it is trained on 3D data in
the form of ShapeNet. As such, though using real-world data to condition
the model is possible, the sampled objects will still be from the ShapeNet
trained distribution and the benefits of conditioning using real-world data
is thus limited. While the GET3D models evaluated are trained on the
ShapeNet dataset, it uses rendered images and can thus be trained using
real-world data. DreamFusion achieves a high percentage on the table
category, however the inference time is substantial and thus impractical
for the task of generating a large amount of objects. Accordingly, due to
its evaluation performance in addition to being trained on image data,
GET3D is deemed the leading option for generating a large amount of 3D
objects from real-world image data.

Additionally, while the GET3D paper does not present results from
training on real-world data, the appendix demonstrates an experiment
conducted using GANverse3D (Zhang et al., 2021) generated multi-view
images of cars that resemble real images. GANverse3D is a GAN-based
model that can generate realistic multi-view images of specific categories.
Since GANverse3D does not output segmentation masks and camera poses,
these are generated algorithmically and are are thus imperfect. Still, the

35

4. Method

generated results when trained on this dataset are promising, and show
the potential for use of the model with real-world data.

4.2. Datasets
In order to generate 3D objects from image data, a large, labeled dataset
of images is required. To infer 3D information from the images, having
multiple images of the same object from various viewing angles is highly
advantageous. The GET3D model also requires the following input:

• Multi-view RGB images of object from several angles

• Camera extrinsic information for each image

• Segmentation mask for each image

As such, two multi-view image datasets are chosen as the basis for deep 3D
procedural generation with real-world data. The datasets presented are the
largest multi-view image datasets currently available, based on thorough
search. They are still smaller with regards to number of unique objects
when compared to the 3D datasets ShapeNet and ModelNet. However,
they are deemed adequate for evaluating the potential of using real-world
data with a deep 3D generative model. This is due to the number of
objects in the more populated categories of the two datasets being similar
to several of the ShapeNet and ModelNet categories.

4.2.1. Common Objects in 3D

The Common Objects in 3D (CO3D) (Reizenstein et al., 2021) dataset
is a large-scale, multi-view image dataset of objects from 50 different
categories. It contains in total 1.5 million multi-view images of nearly
19,000 different objects. The images are acquired by crowd-sourcing the
task to Amazon Mechanical Turk and having the participants place an
object on a solid surface and capture a video of it while circling around
it. Each image is annotated with a segmentation mask generated by the
PointRend (Kirillov et al., 2020) image segmentation network in addition
to camera extrinsic information generated by the Structure-from-Motion
framework COLMAP (Schönberger and Frahm, 2016). Additionally, the

36

4.2. Datasets

dataset provides COLMAP generated 3D point clouds for some of the
objects, where poor reconstructions are filtered out. Each image set is
stated to cover a full 360 degree range of the objects.

The distribution of the objects’ categories are shown in Figure 4.6. As
can be seen from the category distribution, several of the categories contain
at least 600 objects with accurate camera annotations. However, some
of the categories contain only a small number of samples, making them
unsuitable for training a deep model on single categories.

Figure 4.6.: The CO3D category distribution. Figure adapted from Reizen-
stein et al. (2021).

When compared to ShapeNet, it is evident that CO3D is a smaller dataset
with fewer category samples on average. However, the CO3D dataset is
deemed as well suited for evaluating the potential of using real-world data
for deep 3D procedural generation by using the categories with the highest
amount of samples, including the chair and book categories. GET3D is
demonstrated to be able to generate high-quality objects when trained on
a minimal set of 337 unique objects, indicating that the size of CO3D is
still adequate for use with the model. Additionally, real-world image data
is generally more uncomplicated to acquire than 3D data, meaning future
methods could acquire real-world image data to a greater degree.

4.2.2. Objectron

Objectron (Ahmadyan et al., 2020) is a large-scale dataset containing multi-
view images of objects from 9 unique categories. The paper states that
the dataset contains in total 4 million images of 14,819 different objects,
however the official release on Github8 only contains 14,588 objects, of

8https://github.com/google-research-datasets/Objectron

37

https://github.com/google-research-datasets/Objectron

4. Method

which the category distribution is displayed in Table 4.2. As can be
seen, the majority of categories contain around 2000 instances which is
significantly higher than that of CO3D, though with less categories in
total. The Objectron images are annotated with camera poses, manually
annotated object poses through a 3D bounding box, in addition to a
reconstructed point cloud. However, unlike CO3D, segmentation masks
are not provided for the images. Additionally, the image sets do not cover
a full 360 degree range of the objects in all cases.

category objects
bike 476
book 2024
bottle 1928
camera 815

cereal box 1609
chair 1943
cup 2204

laptop 1473
shoe 2116

Table 4.2.: Objectron object category distribution

Though Objectron provides less categories when compared to CO3D,
the larger number of objects per category makes it superior for evaluating
deep 3D procedural generation on single categories.

4.3. Data preparation

In order for the image data from the datasets to be used to train the
GET3D model, it first needs to be pre-processed into a suitable format.
GET3D requires square RGBA images at a power of 2 resolution where the
alpha channel is the segmentation mask containing the object. Additionally,
for each image the extrinsic camera information must be provided in the
form of an elevation angle and a rotation angle as illustrated in figure
4.7. Since the data format of the two datasets is different, they require
individual pre-processing steps to make them suitable for use with GET3D.

38

4.3. Data preparation

Figure 4.7.: The camera rotation and elevation angles. Here α corresponds
to the rotation and β to the elevation.

This section covers the steps taken in order to pre-process the datasets to
be used to train the GET3D model.

4.3.1. CO3D

The CO3D dataset contains segmentation masks generated by PointRend
(Kirillov et al., 2020) that can be used as the alpha channel mask of the
RGBA image to be used with GET3D. However, the segmentation masks
provided are given in 8-bit grayscale where each pixel value corresponds
to the probability that the pixel contains the object (where 0 corresponds
to 0% and 255 corresponds to 100%). As such, the segmentation masks
must be binarized in order to be used as the alpha channel. This is done
using the Otsu’s global binary threshold function available in OpenCV.
The Otsu’s binary threshold algorithm determines a global threshold value
in the interval [0, 255] by separating the image histogram into two clusters.
This threshold is then applied to the original image, such that pixels
with values above the threshold are included and pixels below excludes,
producing a binary image. A global threshold is deemed sufficient since
the masks contain no lighting information and an adaptive method would

39

4. Method

Figure 4.8.: The binarization process using Otsu’s global binary threshold.

be excessive. Figure 4.8 illustrates the binarization process.
While CO3D provides camera annotations for each image, the cameras

are not aligned with gravity. As such, the absolute camera elevation
and rotation angles cannot be found relative to gravity, only relative to
the other images. To overcome this issue, COLMAP is re-run on all the
objects within a category with Manhattan world alignment enabled, which
estimates the gravity direction and main horizontal axis using vanishing
point detection9. The gravity alignment is illustrated in Figure 4.9. While
this ensures the elevation angles are correct (assuming the objects are
always oriented in the same direction vertically), the rotation angles are
not relative to the object’s rotation. As such, even from the same camera
world rotation angle the object may be viewed from different angles as
its world rotation is unknown. This is illustrated in figure 4.10. It is not
possible to find the camera orientation relative to the object orientation
without knowing the object orientation. As such, the resulting camera
rotations after pre-processing of the CO3D dataset are globally incorrect,
which may influence the results after training the GET3D model using it.

9https://colmap.github.io/faq.html#manhattan-world-alignment

40

https://colmap.github.io/faq.html#manhattan-world-alignment

4.3. Data preparation

Figure 4.9.: Object and cameras before and after gravity alignment.

Figure 4.10.: Here it is illustrated that even for the same camera angles,
the rotation may still be incorrect due to the orientation of
the object.

41

4. Method

4.3.2. Objectron

In addition to the camera extrinsic information, Objectron also provides
a manually annotated 3D bounding box for each object which gives the
translation and orientation of the object. This means that, contrary to
CO3D, the camera rotation can be found relative to the object’s rotation
such that the same rotation angle always will display the object from the
same view. Since Objectron provides the object orientation in view space,
it can be used directly to find the camera rotation and elevation. The
assumption used here is that the camera is always directed at the center
of the object, which is approximately the truth for most object images.

The Objectron dataset does not provide segmentation masks for its
objects. As such, these have to be generated for each image. This is done
using PointRend (Kirillov et al., 2020), the same image segmentation neural
network as used by CO3D. However, in some cases PointRend is not able
to find the correct segmentation mask for the object. In certain instances
no segmentation mask or an incorrect one is identified, and in other cases
the wrong category is identified. This is especially evident for the book
category since the books commonly contain cover images containing other
objects.

Since a total of 100 images are used for each object, the instances where
the wrong category is identified are still included. The reasoning behind this
is that among a total of 100 images, small discrepancies in the segmentation
masks are tolerated. Additionally, in some cases the correct segmentation
mask is found but classified as the wrong category. Excluding wrongly
classified masks could thus mean excluding correct ones, as it would not
be possible to detect correct masks that are classified incorrectly without
manual inspection. However, for the instances where no segmentation mask
is identified all the images of that category are excluded. Some examples
of poor and incorrect segmentation masks from the book category are
displayed in Figure 4.11.

Additionally, all the Objectron images are given in a resolution of 480x640
while GET3D expects a square power of 2 resolution. Therefore the images
are cropped to 480x480 before being up-sampled to 512x512. Since most
objects are contained within the 480x480 cropped image, this is deemed
adequate. The up-sampling is performed using the resize() function
available in OpenCV.

42

4.4. Training GET3D

Figure 4.11.: Examples of poor segmentation masks and wrongly identified
objects.

4.4. Training GET3D
To train the GET3D model, 100 images are sampled for each object from
each dataset category before pre-processing. This is the same number of
images per object as used in the GET3D paper on the motorbike category,
which contained few object instances. The sampling is done uniformly in
order to obtain images with camera angles covering the whole object. For
each of the dataset categories, the pre-processed images are split into 3
different splits; 80% training, 10% evaluation and 10% testing.

43

5. Experiments
The third and final research question of this thesis is as follows:

Research question 3 To which degree are current deep 3D procedural mod-
els able to use real-world data for training?

This chapter explains the experiments that were carried out and the
procedure followed to produce the results, with the aim of answering the
research question. All the code is available on Github1 such that the results
can be reproduced.

5.1. Experimental Plan
The objective of the experiments is to evaluate the thesis goal by evaluating
the efficiency of current deep learning techniques in generating 3D objects
using real-world data. As such, the state-of-the-art neural network model
GET3D is used and trained on the two real-word, multi-view, image
datasets CO3D and Objectron. The generated results are evaluated using
3D classification with the PointNet model, FID scores, in addition to a
user study.

For the experiments, two distinct object categories from the CO3D and
Objectron datasets are used to train the GET3D model, namely the book
and chair categories. This is due to both datasets containing a large number
of instances from these two categories. Additionally, the book category can
easily be evaluated due to the simple cuboid geometry of books. The chair
category from the GET3D ShapeNet trained model is already evaluated,
and can act as a baseline for comparison with chair objects generated using
a GET3D model trained on Objectron and CO3D respectively. Finally,
the loss function of the GET3D model can be assessed after training to

1https://github.com/Maro1/master_thesis

45

https://github.com/Maro1/master_thesis

5. Experiments

obtain an indication of the model performance on the datasets, and act as
a suggestion for changing the network hyperparameters.

5.2. Experiment evaluation

In order to evaluate the quality of the generated 3D objects, several
evaluation methods are used. The 3D classification network PointNet (Qi
et al., 2016) is used to classify the objects in addition to FID scores and
a user study. The three evaluations provide different evaluation angles,
where FID scores are mainly an indication of model performance, the 3D
classification acts as an quantitative evaluation of the generated results,
and the user study provides a human perspective on the generated results.

5.2.1. Fréchet Inception Distance

Fréchet inception distance (FID) is an evaluation metric used to assess the
quality of generated images by comparing the generated image distribution
with the ground-truth test set image distribution. It is commonly used for
GAN-based models, and is the main evaluation metric used in the GET3D
paper, where 50,000 images are rendered of generated objects and used for
evaluation. A lower score indicates better performance. While the metric
is useful and gives an indication of the quality of the objects, it also takes
texture into account since it uses rendered images of textured objects. The
metric is still included in the evaluation as it gives an indication of the
performance of the model.

5.2.2. PointNet 3D classification

The evaluation using PointNet is performed by generating 100 obj files
using the model weights of the trained model for the chair category of
each dataset. PointNet is trained on the ModelNet40 dataset, and since
this dataset does not contain the book category, it was omitted from this
evaluation. This evaluation does not take texture into account, and is as
explained in section 4.1.2 deemed an appropriate metric for evaluating the
quality of the generated objects.

46

5.3. Experimental Setup

5.2.3. User study

In addition to the aforementioned evaluations, a user study is conducted
in order to obtain an additional evaluation of the generated objects. By
conducting a user study, a human evaluation can be obtained that acts as
a counterpart to the quantitative evaluations. The user study is performed
by capturing rendered images of 50 objects from each model and asking the
participants to select the images that resemble their respective categories.
Since neither ModelNet40 nor ShapeNet have a book category, the book
objects are only generated from the Objectron and CO3D datasets as
shown in Table 5.1.

Dataset Categories
Objectron Book, Chair

CO3D Book, Chair
ShapeNet (Baseline) Chair

Table 5.1.: The datasets and categories used for the user study

The survey is created as 10 different image-picker questions with 5
questions for each category, where each question contains 10 images from
each model. The participants are asked to identify which images resemble
their respective categories. Each question contains an equal number of
images from each dataset. In total, 16 people participated in the user
study.

5.3. Experimental Setup

All the experiments are run on NTNU’s HPC cluster Idun2. The hardware
and software used differs between the various experiment stages.

5.3.1. CO3D Pre-Processing

Re-running COLMAP on the CO3D images is done by first building the
application from source using the Python build script, before running it as

2https://www.hpc.ntnu.no/idun/

47

https://www.hpc.ntnu.no/idun/

5. Experiments

a slurm array job using a single V100 GPU for each job. The following
commands are used in order to run COLMAP with world alignment:

$ colmap automat ic_reconstructor −−q u a l i t y low . . .
$ colmap mode l_or ientat ion_al igner . . .
$ colmap model_converter −−output_type TXT . . .

Using a low quality setting for the automatic_reconstructor for perform-
ance reasons.

After running COLMAP, the remaining pre-processing of the CO3D
dataset is performed using the Python script running as an array job, with
each instance on a single CPU core.

5.3.2. Objectron Pre-Processing

The Objectron pre-processing stage is performed using a Python script
running on a single CPU core with a single NVIDIA A100 80GB GPU.
The Python script runs a pre-trained PointRend model for each image
to obtain the segmentation masks. The pre-trained model is the COCO
R50-FPN 3x available from the PointRend Github3.

5.3.3. GET3D

Each GET3D model is trained on 4-8 NVIDIA V100 GPUs for 2048
iterations, taking a duration of 24-48 hours. For each dataset object, a
total of 100 images are used. The official GET3D code was modified to
enable the training on datasets not present in the GET3D paper. The
following command is used to train each each model, using an image
resolution of 512x512 and a gamma value of 40:

$ python train_3d . py −−outd i r=<log dir > −−data=<
image path> −−camera_path <camera path> −−gpus=8
−−batch=32 −−gamma=40 −−mani fest_dir <mani f e s t

d ir > −−dmtet_scale 1 .0 −−one_3d_generator 1 −−
fp32 0 −−img_res 512

3https://github.com/facebookresearch/detectron2/tree/main/projects/
PointRend#pretrained-models

48

https://github.com/facebookresearch/detectron2/tree/main/projects/PointRend#pretrained-models
https://github.com/facebookresearch/detectron2/tree/main/projects/PointRend#pretrained-models

5.4. Experimental Results

Additional experiments are conducted using different gamma values and
are presented in section 5.4.5. Before each training the data is split into 3
splits: 10% validation, 10% test and 80% training.

5.4. Experimental Results

This section presents the results obtained for the real-world image data
experiments. Additional results are available in Appendix B. After running
the pre-processing steps, several of the dataset objects were excluded due
to poor segmentation masks or poor COLMAP reconstructions. This is
especially evident for the Objectron objects, as PointRend was not able to
identify segmentation masks in many cases, and they were thus excluded.
As such, even though the datasets originally contained a similar amount of
objects for each of the categories, the resulting objects after pre-processing
are significantly lower for Objectron. The number of objects per dataset
category used for model training compared to the total present in the
dataset is displayed in Table 5.2.

Dataset Category # Objects in Dataset # Objects Used
Objectron Book 2024 462
Objectron Chair 1943 870

CO3D Book 2299 2258
CO3D Chair 1475 1412

Table 5.2.: The number of dataset objects per category used for training
the GET3D model after pre-processing.

5.4.1. Book generation

The first experiments generate objects in the book category, as books have
a simple cuboid geometry that can be easily evaluated. Figure 5.1 displays
the results after generating 5 objects using the CO3D-trained model. As
can be seen, the generated objects somewhat diverge from a cuboid shape.
For a cuboid book shape, the book cover should be parallel with the back
of the book. While some of the generated objects have approximately
parallel surfaces, most of the objects diverge from this. Additionally, books

49

5. Experiments

typically have an indentation between the book cover and pages, a feature
that is not present in the generated objects.

Figure 5.1.: Generated book objects using CO3D trained model

Figure 5.2.: Results after training on Objectron book category

The results after generating 5 objects using the Objectron-trained model
are displayed in Figure 5.2. As can be seen, some of the objects have
a coherent shape, while others are amorphous and scattered, containing
mostly empty space. This is likely due to the segmentation masks for the
Objectron dataset often being incomplete, something further reinforced
by the CO3D generated objects not having the same issue. While some of
the Objectron objects are coherent, they still somewhat diverge from the
cuboid shape associated with books. The long-side object surfaces are not
flat, resulting in the generated objects resembling cylinders to a greater
extent.

5.4.2. Chair generation

Figure 5.3 displays the results after generating 5 objects of the chair
category using the CO3D and Objectron models. The pre-trained ShapeNet
baseline is included for ease of comparison. As is evident from the results,
the CO3D and Objectron generated objects are inferior to the ShapeNet

50

5.4. Experimental Results

(a) Results after training on CO3D chair category

(b) Results after training on Objectron chair category

(c) Results using pre-trained model on the ShapeNet chair category

Figure 5.3.: Generation results using the different models on the chair
category

baseline in terms of quality and diversity. While the Objectron and CO3D
generated objects for the most part contain features that can be regarded
as resembling chair legs, they are not refined and in most cases several
legs are missing. The chair seats, backrests, and potential armrests are not
evidently visible. Similarly to the book category, the Objectron generated
objects contain samples consisting mostly of empty space with no clear
coherence.

For this category, PointNet was used to predict the classes of the gen-
erated results. As a baseline, the ShapeNet chair pre-trained model from
section 4.1.2 is used. The results of the PointNet classification are shown
in Table 5.3. As can be seen from the classification results, the Objectron
and CO3D models perform substantially worse than the ShapeNet baseline

51

5. Experiments

with 14% and 0% prediction percentage respectively on the chair and
stool categories, compared to the pre-trained ShapeNet baseline which
achieved 56%. However, the Objectron percentage of 14% indicates that
the generated objects have some resemblance to chairs. Looking at the
most predicted class for each model, only the ShapeNet baseline has the
chair and stool category. The most predicted class for the CO3D and
Objectron models is the plant category.

PointNet Classification
Model Class Percentage Chair/Stool Percentage

CO3D

cup 2%

0%

curtain 1%
door 1%
monitor 1%
person 31%
piano 2%
plant 56%
radio 1%
vase 2%
xbox 3%

Objectron

bench 6%

14%

person 14%
plant 35%
stool 14%
table 24%
vase 7%

ShapeNet 56%

Table 5.3.: PointNet classification results

5.4.3. FID scores

GET3D outputs a fid50k score every 204-205 iterations, of which the final
score at iteration 2048 is recorded and displayed in Table 5.4. The ShapeNet
chair trained model from the GET3D paper is used as a baseline. As can
be seen from the results, the real-world data models perform substantially

52

5.4. Experimental Results

worse than the ShapeNet baseline. The real-world data trained model that
achieves the best score is the Objectron chair model.

Model FID Score
CO3D Book 226.09
CO3D Chair 228.94

Objectron Book 221.37
Objectron Chair 182.90

ShapeNet Chair (From paper) 22.41

Table 5.4.: FID scores

(a) CO3D book (b) CO3D Chair

(c) Objectron Book (d) Objectron Chair

Figure 5.4.: FID scores recorded every 204-205 iterations

53

5. Experiments

Figure 5.5.: Generated results after iteration 0 with randomly initialized
weights on the CO3D book category. Both the rendered object
and the segmentation mask is included.

Additionally, the FID scores recorded over the complete training period
are displayed in Figure 5.4. It is observable that there is a great variance
in the achieved FID scores, and that the scores do not seem to converge.
In some cases, particularly for the CO3D chair model, the final FID score
does not diverge heavily from the initial FID score. Additionally, for each
model except the Objectron book model, a higher score than the initial is
achieved over the duration of the training period. This can indicate that
the models do not improve significantly over time. However, by observing
the generated CO3D book objects of iteration 0 displayed in Figure 5.5,
where the network weights are randomly initialized, it is evident that the
quality is inferior to those of the final generated objects. As such, it can
be concluded that the FID metric does not predict the sample quality
particularly well in the case of the models used.

5.4.4. User study

The results of the user study are displayed in Table 5.5. Here the identific-
ation percentage corresponds to the average percentage of objects correctly
identified for each dataset and category among all participants. The results
clearly indicate that the ShapeNet chair generated objects are identified in
substantially more cases than those generated from real-world data. The
ShapeNet generated objects are identified as chairs in nearly all the cases
at 95% while the real-world data generated objects are identified correctly
in fewer cases, with the Objectron generated books having the highest

54

5.4. Experimental Results

Category Identification Percentage
CO3D Book 0.24%

Objectron Book 9.5%
CO3D Chair 0%

Objectron Chair 0.12%
ShapeNet Chair 99.5%

Table 5.5.: The results of the user study on each dataset and catagory

percentage at 9.5%. The chair identifications somewhat correlate with
the classification presented in section 5.4.2, in that the ShapeNet model
clearly outperforms the real-world data ones. However, the Objectron chair
classification achieved of 14% is not reflected in the user study results.

5.4.5. Training Loss and Gamma Parameter

The generator and discriminator losses for each model over the duration
of the training are displayed in Figure 5.6. These are the Loss/D/loss
and Loss/G/loss mean values output by the GET3D model each iteration.
Note that since the GET3D model contains two discriminators; one for the
RGB image and one for the segmentation mask, the resulting losses are
calculated from a combination of these. As can be seen, there is a large
discrepancy between the generator and discriminator losses for each model.
While the discriminator loss slowly decreases, the generator loss is increasing
for each iteration. Since the discriminator is approaching optimality, the
generator loses the ability to "fool" the discriminator. Despite the observed
increase in the generator loss, this does not immediately entail that the
generated objects are decreasing in quality. Rather, the loss increase can
signify the discriminators increasing ability to separate real and fake images.
This is however not optimal, and is a common GAN failure mode.

To overcome the issue of the discriminator outperforming the generator,
additional experiments were conducted by changing the gamma parameter
value. By increasing this value, further regularization is added to the
discriminator with the aim of decreasing the rate of which it is able to
correctly discriminate. These experiments were conducted on the Objectron
chair category, using gamma values of 400, 1600, and 3200. The generator

55

5. Experiments

(a) CO3D book (b) CO3D Chair

(c) Objectron Book (d) Objectron Chair

Figure 5.6.: Discriminator and Generator loss each iteration

and discriminator losses are recorded for each experiment and illustrated
in Figure 5.7.

As can be observed from the graphs, increasing the gamma value changes
the generator loss over time. For the gamma values of 1600 and 3200, the
generator loss steadily increases for a period before starting to peak period-
ically. The generator loss peaks seem to correlate with the discriminator,
as the discriminator loss also peaks at the same time. However, increasing
the gamma value does not seem to improve the generator’s ability to "fool"
the discriminator. When observing the generated results at iteration 2048
for the increased gamma value models displayed in Figure 5.8, it is evident
that they are inferior to those generated by the original model, with no
visible resemblance to chairs. Additionally, while the generated textures

56

5.4. Experimental Results

(a) γ = 40 (b) γ = 400

(c) γ = 1600 (d) γ = 3200

Figure 5.7.: Discriminator and Generator loss for different gamma values

are not of importance to 3D object recognition algortihms, and accordingly
not of particular interest, they give an indication of the performance of
the model. As can be seen from the increased gamma parameter results,
the object textures are colorful and incoherent, and seemingly randomly
sampled like the randomly initialized model results from Figure 5.5. This
is in stark contrast to the original model where the textures were more
coherent and less colorful, which is in accordance with the expected texture
of a chair. As such, it is evident that increasing the gamma parameter
does not increase the model performance.

57

5. Experiments

(a) γ = 400

(b) γ = 1600

(c) γ = 3200

Figure 5.8.: Generated results after 2048 iteration using different gamma
parameters.

58

6. Discussion
The task of the GET3D generator can generally be considered more difficult
than that of the two discriminators. While the discriminators have to
determine the genuineness of real and fake samples, the generator needs
to synthetically generate new samples that resemble real ones. Since the
GET3D generator network is complex and includes several different com-
ponents, including the convolutional layers, hybrid DMTet representation,
and differential renderer, the required training for the generator can be
expected to exceed that of the discriminator. However, even when penaliz-
ing the discriminator by increasing the gamma parameter, the generator is
still unable to generalize well and produce acceptable samples.

There are several likely reasons as to why the generator is unable to
synthesize 3D objects of a high quality, all of which are related to the
datsets used to train the model. The resulting poor quality of the generated
results are presumably due to a combination of these factors.

Intrinsic Parameters

Since the Objectron and CO3D dataset images are collected from many
different contributors using phone cameras, the intrinsic parameters of
the cameras vary between the object images. The GET3D model does
not take intrinsic parameters as input for each sample, meaning the same
intrinsic parameters are used by the differential renderer to render each
image. When using synthetic data this is not an issue since the dataset
images can all be rendered using the same intrinsic parameters, though for
real-world data this is difficult to control without using the same camera
to capture all images. A resolution to this issue could be to modify the
GET3D model to take the intrinsic camera parameters as input for each
sample, however this would add additional complexity to the network, in
addition to adding further requirements to the dataset used. Though the
intrinsic parameters may affect the generated results to some degree, it is

59

6. Discussion

likely not a large contributor since the variance between images taken with
different cameras is minor.

Extrinsic Parameters

Another potential contributor to the low-quality results, and an issue with
using real-world data, is that the extrinsic parameters of the cameras used
to capture the images are not coherent between different objects and within
the same object. Since the images from the Objectron and CO3D datasets
are captured by humans circling around the object, the camera will not
always perfectly be directed at the center of the object. Additionally,
the distance from the camera to the object will vary between different
captures and between images of the same object. This is likely to affect
the generator’s ability to generate objects, since the differential renderer
camera is always distanced a fixed amount from the object and directed at
the center. Since the dataset images are captured from different distances,
the resulting scale of the objects is incoherent. Additionally, there is a
discrepancy between the center of the object in the dataset and network
rendered images in the cases where the dataset images are not captured
with the camera directed directly at the center of the object. This may
cause object displacement, and is an issue that is difficult to overcome
without capturing the images using a specific setup to maintain object
distance and camera direction, which would add additional complexity
to data acquisition. While the GET3D paper presents promising results
when training on noisy cameras, the noise is only added to the camera
elevation and rotation angles, while the images and segmentation masks
remain identical. As such, the camera distance remains the same and
always directed at the center.

Lighting

The lighting of the scene also affects the resulting images. When using
synthetic data, the light parameters can be controlled explicitly and be
kept equivalent across different objects, and the same parameters can
be used by the differential renderer of the model. To achieve this with
real-world data, a specific lighting setup must be created to allow the light
to stay identical across different object captures, which is not the case for

60

the Objectron and CO3D datasets. However, the GET3D paper presents
promising results when training on images with different lighting conditions
in the case of the GANverse3D generated data, which indicates that this
is not a large factor. Additionally, this should only affect the texture of
the objects, since the segmentation masks remain identical regardless of
the lighting conditions. As such, this is likely not a large contributor to
the low quality of the generated results.

Segmentation Masks

A likely large contributor to the low quality of the generated results is
the segmentation masks used. The segmentation masks for both datasets
were generated algorithmically using the PointRend segmentation network.
As such, the resulting segmentation masks are not perfect, and in many
cases diverge considerably from the ground-truth. However, the GET3D
paper also presents results when using segmentation masks generated by
PointRend, using the rendered objects with an added background image,
and show only a slight drop in quality. As such, the main factor in the case
of the Objectron experiments is likely the failure of PointRend to classify
the correct category for the segmentation masks. The reason behind the
PointRend failure is unknown, and might be related to the Objectron
dataset itself or the setup used to run the model. When observing some
of the book segmentation masks generated by PointRend displayed in
Figure 6.1, it is also clear that even when the correct category is identified,
some of the masks are discontinuous and low quality. This however is only
an issue related to the Objectron dataset, and should not affect the CO3D
trained models to a large degree.

Dataset Differences

Though the number of CO3D objects used for model training is higher
than that of Objectron due to the exclusion of Objectron objects with poor
segmentation masks, the generated objects are not of a quantifiable higher
quality. The Objectron generated objects perform better on all evaluation
metrics except the user study for the chair category. However, since all
the evaluation metrics show the models trained on both datasets perform
poorly, the small discrepancy between them might not be a clear indication

61

6. Discussion

Figure 6.1.: Discontinous segmentation masks from Objectron book cat-
egory

of variance in quality. Nonetheless, there might be different contributors
to the poor quality results for each of the datasets. Common among them
is the aforementioned issues related to the camera extrinsics, in addition
to the likely smaller factors of camera intrinsics and lighting. The CO3D
dataset also presents an additional likely contributing factor in the form
of the rotation angles not being absolute as explained in 4.3.1. On the
other hand Objectron presents issues related to the PointRend generated
segmentation masks.

Dataset Size

The combination of the aforementioned factors in combination with the
small size of the datasets is likely the main contributing factor to the low
quality of the generated results. The GET3D paper presents promising
results when training on few data samples, with the motorbike category
used to train the model only containing 337 objects. However, in that
case the model was trained on synthetic data containing accurate camera
parameters and segmentation masks. When using inaccurate annotations
with real-world data, the small size of the datasets likely contribute to the
generator not being able to generalize well over the training data.

62

7. Conclusion and Future
Work

This chapter concludes the thesis and provides suggestions for future work.

7.1. Conclusion
This thesis has explored the possibility of generating a novel dataset of
3D objects through deep 3D procedural generation using real-world data.
Existing state-of-the-art models were tested and evaluated before arriving at
a method for deep generation using two distinct real-world image datasets.

The first thesis research question was as follows:

Research question 1 To which degree can current deep learning methods
generate 3D objects of high quality?

The state-of-the-art evaluation performed suggested that current meth-
ods can generate 3D objects of high quality when trained on 3D data.
Most methods still have drawbacks such as artifacts, uneven surfaces and
substantial generation time.

The second thesis research question considered the evaluation of 3D
objects:

Research question 2 How can the similarity of 3D objects to their real-
world counterparts be objectively evaluated?

This was achieved through the use of a 3D classification network that
could predict the generated object classes. Since this evaluation acts on
the generated objects alone, it can be used regardless of the data format
used to train the models.

The final research question was aimed at current deep procedural 3D
models’ ability to use real-world data for training:

63

7. Conclusion and Future Work

Research question 3 To which degree are current deep 3D procedural mod-
els able to use real-world data for training?

This was evaluated using two real-world image datasets with the GET3D
model. The experiments conducted suggest that using real-world image
data is not currently a viable approach and produces significantly worse
results than synthetic data.

The end goal of the thesis was the following:

Goal Explore the possibility of generating a large-scale dataset of 3D objects
using a deep learning model trained on real-world data.

The results obtained show that the method presented is not a viable
approach for generating a novel 3D object dataset. While the model is
able to generate coherent objects, they are of a low quality and do not
resemble their respective categories to a satisfying degree. Issues related
to camera extrinsics, segmentation masks for the Objectron dataset, and
camera angles for the CO3D datasets are likely contributors to the low
quality results. Alleviating the issues with regards to the camera extrinsic
parameters would require a specialized acquisition setup, and might remove
the advantage of real-world data being easier to acquire than manually
creating 3D objects due to the additional complexity. Additionally, obtain-
ing the objects’ orientation as is done for the Objectron dataset requires
manual annotation, which adds additional complexity.

7.2. Future Work

Future works may try and overcome the issues presented in this thesis.
Current multi-view image datasets are not larger in scale than existing 3D
datasets, though their acquisition is less time-consuming. By acquiring
multi-view images at a truly large scale, the model might be able to gener-
alize better regardless of the camera and segmentation mask annotations
being imperfect. Alternatively, a specialized setup for acquiring the images
may be attempted, using a camera rig and monochrome background to
obtain correctly annotated images without requiring the use of algorithmic
methods for acquiring the annotations.

64

7.2. Future Work

Additionally, since the 3D object recognition task is independent of tex-
ture, experiments using depth images as the training data and a differential
renderer producing depth images could be conducted. By narrowing the
model to only generate geometry, improved results can be expected.

65

Bibliography
Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom Ablavatski, and

Matthias Grundmann. Objectron: A large scale dataset of object-centric
videos in the wild with pose annotations, 2020.

Loren C. Carpenter. Computer rendering of fractal curves and surfaces.
SIGGRAPH Comput. Graph., 14(3):109, jul 1980. ISSN 0097-8930.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan,
Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay,
Sameh Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3d generative adversarial networks, 2022.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,
Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,
Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-
Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Technological
Institute at Chicago, 2015.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel,
Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi,
and Ali Farhadi. Objaverse: A universe of annotated 3d objects, 2022.

Jonas Freiknecht and Wolfgang Effelsberg. A survey on the procedural
generation of virtual worlds. Multimodal Technologies and Interaction, 1
(4), 2017. ISSN 2414-4088.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin,
Daiqing Li, Or Litany, Zan Gojcic, and Sanja Fidler. Get3d: A generative
model of high quality 3d textured shapes learned from images, 2022.

67

Bibliography

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

Agrim Gupta, Piotr Dollár, and Ross Girshick. Lvis: A dataset for large
vocabulary instance segmentation, 2019.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman,
and Daniel Cohen-Or. MeshCNN. ACM Transactions on Graphics, 38
(4):1–12, jul 2019.

Moritz Ibing, Gregor Kobsik, and Leif Kobbelt. Octree transformer: Autore-
gressive 3d shape generation on hierarchically structured sequences, 2021.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator
architecture for generative adversarial networks, 2019.

Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend:
Image segmentation as rendering, 2020.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen,
and Timo Aila. Modular primitives for high-performance differentiable
rendering, 2020.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng,
Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi
Lin. Magic3d: High-resolution text-to-3d content creation, 2023.

Aristid Lindenmayer. Mathematical models for cellular interactions in
development i. filaments with one-sided inputs. Journal of Theoretical
Biology, 18(3):280–299, 1968. ISSN 0022-5193.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-
shape convolutional neural network for point cloud analysis, 2019.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87, page 163–169, New York, NY, USA, 1987. Association
for Computing Machinery. ISBN 0897912276.

68

Bibliography

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural
radiance fields for view synthesis, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller.
Instant neural graphics primitives with a multiresolution hash encoding.
ACM Transactions on Graphics, 41(4):1–15, jul 2022.

Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia.
Polygen: An autoregressive generative model of 3d meshes, 2020.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela
Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards
photorealistic image generation and editing with text-guided diffusion
models, 2022a.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark
Chen. Point-e: A system for generating 3d point clouds from complex
prompts, 2022b.

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and
Andreas Geiger. Texture fields: Learning texture representations in
function space, 2019.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks, 2015.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfu-
sion: Text-to-3d using 2d diffusion, 2022.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification and segmenta-
tion. CoRR, abs/1612.00593, 2016.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric
space. CoRR, abs/1706.02413, 2017.

Shaohua Qi, Xin Ning, Guowei Yang, Liping Zhang, Peng Long, Weiwei
Cai, and Weijun Li. Review of multi-view 3d object recognition methods
based on deep learning. Displays, 69:102053, 2021. ISSN 0141-9382.

69

Bibliography

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone,
Patrick Labatut, and David Novotny. Common objects in 3d: Large-scale
learning and evaluation of real-life 3d category reconstruction, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion
models, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang,
Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan,
S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho,
David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022.

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-
Motion Revisited. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf:
Generative radiance fields for 3d-aware image synthesis, 2021.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler.
Deep marching tetrahedra: a hybrid representation for high-resolution
3d shape synthesis, 2021.

Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d point cloud gen-
erative adversarial network based on tree structured graph convolutions,
2019.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
Multi-view convolutional neural networks for 3d shape recognition, 2015.

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Mar-
cotegui, François Goulette, and Leonidas J. Guibas. Kpconv: Flexible
and deformable convolution for point clouds, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all
you need, 2017.

70

Bibliography

Hao Wang, Nadav Schor, Ruizhen Hu, Haibin Huang, Daniel Cohen-Or,
and Hui Huang. Global-to-local generative model for 3d shapes. ACM
Trans. Graph., 37(6), dec 2018a. ISSN 0730-0301.

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-
Gang Jiang. Pixel2mesh: Generating 3d mesh models from single rgb
images, 2018b.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and
Joshua B Tenenbaum. Learning a probabilistic latent space of object
shapes via 3d generative-adversarial modeling. In Advances in Neural
Information Processing Systems, pages 82–90, 2016.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional
networks on 3d point clouds, 2020.

Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets for 2.5d object recognition and next-best-view
prediction. CoRR, abs/1406.5670, 2014.

Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping
Zhang. Pix2vox: Context-aware 3d reconstruction from single and multi-
view images. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). IEEE, oct 2019.

Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang,
Antonio Torralba, and Sanja Fidler. Image gans meet differentiable
rendering for inverse graphics and interpretable 3d neural rendering,
2021.

71

Appendices

73

A. Additional
State-of-the-Art
Evaluation Results

This appendix presents additional results for the PolyGen and GET3D
models of the state-of-the-art evaluation. DreamFusion is excluded due to
the long training time to produce results.

A.1. PolyGen

Figure A.1.: Chair Category

75

A. Additional State-of-the-Art Evaluation Results

Figure A.2.: Table Category

A.2. GET3D

Figure A.3.: Chair Category

76

A.2. GET3D

Figure A.4.: Table Category

77

B. Additional Real-World
Data Results

This appendix presents additional results for the real-world data exper-
iments. For each model, the output generated by GET3D for each 512
iterations is provided, including the generated segmentation masks.

79

B. Additional Real-World Data Results

(a) Iteration 512

(b) Iteration 1024

(c) Iteration 1536

(d) Iteration 2048

Figure B.1.: CO3D Chair

80

(a) Iteration 512

(b) Iteration 1024

(c) Iteration 1536

(d) Iteration 2048

Figure B.2.: CO3D Book

81

B. Additional Real-World Data Results

(a) Iteration 512

(b) Iteration 1024

(c) Iteration 1536

(d) Iteration 2048

Figure B.3.: Objectron Book

82

(a) Iteration 512

(b) Iteration 1024

(c) Iteration 1536

(d) Iteration 2048

Figure B.4.: Objectron Chair

83

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background and Motivation
	Goals and Research Questions
	Thesis Structure
	Disclaimer

	Background Theory
	3D Data Representations
	Voxels
	Point clouds
	Meshes
	Signed Distance Fields

	3D Rendering
	Pinhole Camera Model
	Extrinsic Parameters
	Rasterization and Shading

	Generative Deep Learning
	Generative Adversarial Networks
	3D-aware Image Synthesis
	Neural Radiance Fields
	Diffusion

	Related Work
	3D Object Datasets
	Deep 3D Generative Models
	GAN Based Methods
	Transformer Based Methods
	Diffusion Based Methods

	Method
	Architecture
	Unused Architectures
	Evaluating the State-of-the-Art
	Model Evaluation
	Evaluation Setup
	Evaluation Results

	Datasets
	Common Objects in 3D
	Objectron

	Data preparation
	CO3D
	Objectron

	Training GET3D

	Experiments
	Experimental Plan
	Experiment evaluation
	Fréchet Inception Distance
	PointNet 3D classification
	User study

	Experimental Setup
	CO3D Pre-Processing
	Objectron Pre-Processing
	GET3D

	Experimental Results
	Book generation
	Chair generation
	FID scores
	User study
	Training Loss and Gamma Parameter

	Discussion
	Intrinsic Parameters
	Extrinsic Parameters
	Lighting
	Segmentation Masks
	Dataset Differences
	Dataset Size

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Additional State-of-the-Art Evaluation Results
	PolyGen
	GET3D

	Additional Real-World Data Results

