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Abstract
In recent years, Diffusion Models (DMs) have undergone rapid advancements, surpassing
renowned deep generative models on image synthesis, and demonstrating that photoreal-
ism is achievable with text-to-image applications. Inspired by thermodynamics, DMs
learn to gradually recover data that has undergone diffusion. Starting from pure noise,
coherent data can be synthesized.

The impressive performance and perceived novelty of DMs have led to several contri-
butions in the field. Found to be the most influential work is the Denoising Diffusion
Probabilistic Model (DDPM) framework, serving as the basis for many improvements
implemented in today’s large-scale DMs. Second to that, the Denoising Diffusion Implicit
Model (DDIM) is a reformulation of the sampling procedure that allows for deterministic
and more efficient generation.

As with other deep generative models, DMs lack interpretability on the rationale that
affects data synthesis. However, the mapping between noise and the data distribution
learned by DDIM has been found to align with the optimal transport map. In essence,
changes to individual dimensions on the path from pure noise to clean data are minimized
by the model, giving a certain degree of predictability in the data generation process.

Experiments on both low- and high-dimensional data show that optimal transport
serves as a valuable interpretation of the behavior of DMs, enabling control of the sampling
process. This allows for manipulating certain features through a scheme this thesis terms
latent manipulation. In one experiment, groups of latent dimensions are translated toward
specific color intensities that coincide with the desired feature, increasing the likelihood
for it to appear. Through another experiment, latent information is copied from one
sample to another for a targeted feature to emerge. Latent manipulation allows local and
global contexts to interweave and does not require retraining, making it a more flexible
alternative to existing editing methods, such as inpainting.
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Sammendrag
I løpet av de siste årene har diffusjonsmodeller (DMer) gjennomgått en rekke forbedringer,
som har ført til bedre resultater enn andre anerkjente dype generative modeller innen
bildesyntese. Modellene har også demonstrert at syntetisert fotorealisme er oppnåelig
gjennom tekst-til-bilde anvendelser. DMer tar inspirasjon fra termodynamikk, ved at
de lærer seg å gradvis gjenopprette data som er påvirket av støy. Når denne prosessen
startes fra komplett støy, kan realistiske data bli syntetisert.

De imponerende resultatene har ført til flere bidrag til feltet. “Denoising Diffusion
Probabilistic Model" (DDPM) anses å være det mest innflytelsesrike rammeverket, og
danner grunnlaget for mange av forbedringene man ser i dagens storskala DMer. Videre er
“Denoising Diffusion Implicit Model" (DDIM) en omformulering av genereringsprosessen,
som tillater deterministisk og mer effektiv generering av data.

I likhet med andre dype generative modeller, er det en mangel på verktøy til bruk i
tolkning av DMer for å avdekke logikken som inngår i generering av data. Imidlertid har
det blitt oppdaget at DDIM lærer en transformasjon mellom støy og data som samsvarer
med den optimale transportruten. I praksis betyr det at modellen forsøker å minimere
endringene i de individuelle dimensjonene på veien fra støy til data, noe som gir en viss
forutsigbarhet i genereringsprosessen.

Eksperimenter på både lav- og høydimensjonale data antyder at optimal transport
gir verdifull innsikt i hvordan DMer fungerer, og tillater bedre kontroll over genererings-
prosessen. Dette muliggjør manipulasjon av bestemte egenskaper ved dataen gjennom
en metode denne masteroppgaven kaller “latent manipulasjon". I et eksperiment blir
grupper av latente dimensjoner flyttet mot bestemte fargeintensiteter som samsvarer
med den ønskede egenskapen, for å øke sannsynligheten for at den oppstår. I et annet
eksperiment kopieres latent informasjon fra et datapunkt til et annet for å få frem en
bestemt egenskap. “Latent manipulasjon" muligjør en flyt mellom lokale og globale
kontekster, og krever ikke finjustering eller trening av en ny modell. Dette gjør det til et
fleksibelt alternativ til eksisterende redigeringsmetoder, som for eksempel “inpainting".
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Chapter 1

Introduction
Diffusion Models (DMs) have over the past few years demonstrated its superiority as a
state of the art (SOTA) deep generative model, surpassing the performance of generative
adversarial networks (GANs) on image synthesis (Dhariwal and Nichol, 2021). This novel
and flexible generative model has garnered significant attention in Machine Learning
(ML) research, as well as in the media. Section 1.1 aims to provide an introduction
to DMs, emphasizing the unique attributes that set them apart from other generative
models. Following that, section 1.2 presents the goals and research questions that serve
as the foundation for the research conducted in this thesis towards learning about and
understanding DMs. Lastly, an overview of the thesis structure is given in section 1.3.

1.1 Background and Motivation
From thermodynamics, diffusion refers to the process where particles flow from an area
of high concentration to an area of lower concentration until they reach an equilibrium
(Cengel and Boles, 2005). The particles start at a state where they form a distinct
structure. Over time, it is slowly broken down into a more uniform and dispersed
configuration where entropy is increased.

Figure 1.1 demonstrates the dynamics of a probability distribution (left panel) that
undergoes diffusion. This distribution is analogous to groups of highly concentrated
particles, as it has a complex structure. As time passes, the complexity of the distribution
vanishes. Particles that were once separated by low-density regions, become intermixed

Data Diffusion process → Noise

Figure 1.1: A diffusion process depicted on a complex probability distribution.
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Chapter 1 Introduction

(a) (b) (c)

Figure 1.2: Samples from Midjourney. (a) “Geoffrey Hinton as a sushi chef". (b) “Link
from The Legend of Zelda, Breath of the Wild, photorealistic, hyperdetailed,
landscape, vibrant, sunny". (c) “The Gaussian Galaxy".

(middle panel). Towards the end, a simpler distribution (right panel) is obtained,
representing the equilibrium. What was once clean data has become pure noise.

DMs learn to reverse the diffusion process (Sohl-Dickstein et al., 2015), allowing data to
be recovered from noise corruption. The middle panel of fig. 1.1 depicts the intermediate
states a one-dimensional DM learns to model. When sufficiently trained, the DM can
accurately predict the previous state of any partially diffused data point. To synthesize
new data that fits with the data distribution, the model starts from pure noise and
iteratively denoises it until realistic data emerge.

The excellence of DMs has best been demonstrated in text-conditional image generation.
Due to their helpfulness in creative workflows such as image manipulation and asset
generation, a multitude of large-scale models has become available to the public as
commercial services. At the time of writing, Midjourney1 represents the pinnacle of DMs,
capable of producing images nearly indistinguishable from reality. Figure 1.2 shows three
samples, demonstrating its ability to synthesize well-known concepts with flexibility in
terms of style.

As the performance of deep generative models improves, the necessity to understand
their reasoning grows larger. However, being part of unsupervised learning, the unavail-
ability of labels in the training data makes them more challenging to interpret than
supervised ones. Renowned deep generative models such as variational autoencoders
(VAEs) and GANs are designed to learn compressed encodings of the training data,
thereby capturing the underlying independent data characteristics in the latent space.
These are called generative factors. Ideally, the latent dimensions become disentangled,
such that each is in control of its own independent generative factor (Bengio et al.,
2014). While forcing the model to generalize over the training data, it has the added
benefit of providing an interpretative scheme. Studying how the output changes when
adjusting individual latent dimensions gives insight into the rationale that data generation
undergoes.

The notion of latents for DMs differs from that of VAEs and GANs. By convention,
1Link to home-page: midjourney.com
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1.2 Goals and Research Questions

the latent space refers to the space where fully corrupted data reside, which is not inside
any intermediate layers of the neural network (Ho et al., 2020; Song et al., 2022). This
is an effect of the iterative approach that goes into generating data. Consequently, the
latent space has the same number of dimensions as the data space. When dealing with
images of high resolutions, the pursuit of disentangled factors loses its significance as
the model is discouraged from learning dimension-independent encodings. DMs must
therefore be treated differently.

Some recent efforts have been made to understand DMs and interpret the latent
space to gain control of the generation process. Yang et al. (2023b) aim to construct
a DM-compatible disentanglement framework that enables control over independent
generative factors. Kwon et al. (2022b) adjust the intermediate network activations
of a DM to impel it towards generating specific features. The research by Tang et al.
(2022) focuses on analyzing the open-sourced text-conditional model known as Stable
Diffusion (Rombach et al., 2022). They study the relationship between the text encoder
and the image-generating layers to create pixel-based heat maps for each token in the text
condition. Their results bring clarity to how the model distributes conceptual knowledge
from the text prompt into the output image.

Each of the aforementioned approaches has one disadvantage; they either rely on
training new models on top of the DM to achieve control, or on extensions of the
minimal unconditional DM. For the former, they do not explain its inherent behavior and
relationship with the latent space. Arguably, if they were to be used for interpretations,
the supplementing models that are trained by Yang et al. (2023b) and Kwon et al. (2022b)
would also be in need of interpretation. For the latter, the core mechanisms of a DM are
altered.

On the other hand, Khrulkov et al. (2022) present a noteworthy observation on how
the transformation from noise to data appears to coincide with the optimal transport
map. Furthermore, their studies do not rely on extensions of basal DMs, except for one
that enables deterministic sampling. Nevertheless, this extension has become widely
accepted as a fundamental aspect of DMs. In addition to going deep into the theory of
DMs, this thesis also aims to build upon the findings of Khrulkov et al. (2022) to uncover
suitable interpretations.

1.2 Goals and Research Questions
Guiding the research for this thesis are two goals and three research questions.

Goal 1 Provide an accessible and thorough survey of the theoretical foundations surround-
ing DMs.

DMs are relatively new and currently receiving a substantial amount of attention in
the ML field. Many researchers strive to find generalizations and improvements, some
potentially overstating their contributions to the theoretical foundation. Moreover, the
research domain is possibly influenced by commercial entities pursuing improvements
tailored for entertainment purposes.

3



Chapter 1 Introduction

Research question 1 What scholarly works contribute to defining the theoretical founda-
tions of DMs?

Due to the rapid advancement and inherent complexity, there are likely numerous separate
contributions that have led to the perceived foundation. Some may offer formulations
that bring out desirable properties, while others may establish mathematical frameworks.

Gaining knowledge about the foundational theory has the potential to widen the
possibilities of finding suitable interpretations. This thesis not only aims to learn about
the theory, but also what mechanisms drive the behavior of a DM.

Goal 2 Uncover meaningful interpretations of DMs and their latent space.

As mentioned in section 1.1, the iterative nature of the generation process gives rise to a
latent space independent of any intermediate layers in the network architecture. Further-
more, typical DMs architectures do not enforce dimensionality reductions comparable
to that of VAEs and GANs. Methods such as disentanglement analysis are therefore
incompatible, calling the need for new techniques.

Research question 2 Can insight be gained regarding the behavior of DMs when studied
from the perspective of optimal transport?

Intuition on optimal transport arises from observing its practical applications in low
dimensions, such as the distribution of goods from factories to retail stores. In higher
dimensions, the theory becomes more abstract and creating compact visual representations
is a challenge. Therefore, experiments designed from the perspective of optimal transport
must be conducted to reveal behavioral elements of a DM, with the focus of constructing
a bridge allowing the flow of low-dimensional intuition to higher dimensions.

Research question 3 Can optimal transport be utilized to encourage the generation of
specific features?

Knowledge attained on the relationship between optimal transport and the generative
process of a DM may be leveraged to gain control of features that appear in samples.
Such a control scheme can potentially aid in designing interpretations that align with
disentanglement in VAEs and GANs.

1.3 Thesis Structure
Chapter 1 is the introduction, where research motivation and goals are presented. Follow-
ing is chapter 2, background theory, where mostly necessary elements from probability
theory are provided. The SOTA surrounding DMs and relevant preliminaries are presen-
ted in chapter 3. Details on implementation and architecture are given in chapter 4,
highlighting relevant models trained for use in this thesis. These are put to use in the
experiments presented in chapter 5, with discussions of the results. Chapter 6 concludes
the thesis, mentioning some valuable directions for future work.

4



1.3 Thesis Structure

Some figures presented throughout this thesis are made using results from trained
DMs. Table 4.4 in section 4.3 provides an overview of where models are used. The code
accompanying this thesis is available at github.com/willdalh/diffusion-ot.
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Chapter 2

Background Theory
The purpose of this chapter is to establish the notation and present the mathematical
theory that DMs are based on. Most of the theory revolves around probability theory,
and its presentation is primarily based on the works of Bishop (2006), Wasserman (2004)
and Goodfellow et al. (2016). Section 2.6 is based on Goodfellow et al. (2016). Section 2.2
is an extensive rework of a similar section from Dalheim (2022).

2.1 Random variables and distributions
Probability theory deals with random variables, for example, x, which describe uncertain
quantities that take on different values from a set Ω, called the sample space. This
thesis focuses on continuous distributions, describing random variables whose sample
space is an uncountable set of real numbers. The height of a random subject in a
population of humans is an example of a continuous random variable, as the measured
quantity falls on the real number line R. The tendency of x to take on specific values is
defined by a probability distribution p(x), described through the relationship x ∼ p(x).
A specific realization of the random variable is a value x ∈ Ω. In the case where the
measure is a vector quantity, it is type-faced in bold, such that x ∼ p(x) is a multivariate
random variable following the distribution p(x). x = (x1, x2, . . . , xn) is then a collection
of univariate random variables with the possibility of them being correlated.

Throughout this thesis, the word distribution will be used repeatedly. In some cases,
the random variable x will not be stated as it is implied by the presence of a distribution.
For ease of notation, often only the letter denoting the distribution will be stated, for
example, p. When several distributions are presented by their letters only, it is assumed
that they define a distribution of the same random variable. Additionally, vectors
generalize collections of scalars and give no restriction on the number of elements. This
implies that a collection can be of one element, representing a single scalar. Some of the
theory will be presented with scalar values x when necessary, while in most cases it will
be generalized to vectors x.

The relationship between two random variables x and y is defined through the two
fundamental rules of probability theory. The first is the sum rule, whose name originates
from discrete random variables where the integral is replaced by a sum. It is given by

p(x) =
∫

Ωy
p(x, y) dy, (2.1)

7



Chapter 2 Background Theory

where p(x, y) is the joint distribution defining the probability for pairs of values occurring.
The process of integrating the joint distribution over a set of random variables to get a
distribution with less variables is called marginalization, hence the resulting distribution
p(x) is often referred to as the marginal distribution over x. The second rule is the
product rule,

p(x, y) = p(y|x)p(x), (2.2)

where p(y|x) is the conditional probability of y given x. It defines how y behaves given
observations of x. The product rule is symmetric, meaning that p(x, y) can also be
calculated through p(x|y)p(y). Equating the two expressions for the joint distribution
and solving for either of the conditionals give rise to Bayes’ rule

p(y|x) = p(x|y)p(y)
p(x) ⇔ p(x|y) = p(y|x)p(x)

p(y) , (2.3)

which has an important role in variational inference, helping to infer properties about
unknown variables with knowledge about the observed ones. Therefore, Bayes’ rule will
return in section 3.2 where each distribution part of the equation is labeled for that
context.

The probability density function (PDF), here denoted p(x), is a continuous function
defined over the sample space of a continuous random variable. For it to be a true
probability density, it must satisfy

p(x) ≥ 0, (2.4)∫
Ω

p(x) dx = 1, (2.5)

being the requirements of non-negativity and integrability over the whole sample space
that sums up to a total density of 1. Instead of talking about probabilities of specific
observations x occurring, it is more relevant to state the probability of the quantity
falling inside some subspace A ⊆ Ω. The probability is given by the definite integral

p(x ∈ A) =
∫

A
p(x) dx.

The probability that the random variable takes on a value on the interval ⟨−∞, a] is
given by

F (a) = p(x ≤ a) =
∫ a

−∞
p(x)dx,

where the cumulative distribution function (CDF) F of x is evaluated at the point a. The
CDFs relevant for this thesis are monotonically increasing and continuous, implying the
existence of an inverse. For univariate distributions, the inverse CDF, denoted F −1(q), is
called the quantile function defined for q ∈ ⟨0, 1⟩ mapping cumulative probabilities back
to the sample space, such that F (x) = q.

The expectation of a random variable states the value that it is centered around.
Consider a data set D = {x(i)}ni=1 of n samples from a random variable x. An assumption
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2.2 Gaussian Distribution

often made about the data set is that its elements are independently sampled and
identically distributed, a property often abbreviated as i.i.d. This means that each x(i)

was sampled from the same distribution p(x), and in isolation from the others. From the
data set, the sample average of the random variable is found through

µ̂ = 1
n

n∑
i=1

x(i).

On the limit n→∞, the sample average converges to the expected value. In the presence
of the PDF p(x) for x, the true mean is calculated by weighting all samples with their
corresponding probabilities and integrating over the sample space, giving

E[x] =
∫

Ω
p(x) x dx.

The expected value can also be computed for transformations of the random variable,
defined through a function f(x) such that

Ep(x)[f ] =
∫

Ω
p(x)f(x) dx, (2.6)

where the subscript of E[·] denotes which distribution is used to weight the function.
This subscript also specifies where samples x originate from, proving its usefulness when
encountering expectations taken over functions consisting of multiple random variables.

A conditional expectation is taken with respect to a conditional distribution, expressed
as

Ep(x|y)[f |y] =
∫

Ω
p(x|y)f(x) dx, (2.7)

where y is a realization of one or multiple random variables.
The variance Varp(x)[f(x)] is the expected, or average, squared deviation of a function

from the mean of the same function. Formally, it is given by

Varp(x)[f(x)] = Ep(x)
[
(f(x)− Ep(x)[f(x)])2

]
. (2.8)

When f(x) = x, the quantity is the variance of the random variable x. The variance
and standard deviation are useful as they provide information about how uncertain a
distribution is.

2.2 Gaussian Distribution
The Gaussian distribution, also called the normal distribution, plays an important role in
generative modeling, as it is often used as prior knowledge on some complex structures
to be modeled. A univariate Gaussian is defined by two scalar parameters, the mean and
the variance, denoted by µ and σ2 respectively. When µ = 0 and σ2 = 1, the Gaussian is
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Figure 2.1: Gaussian PDFs. (a) Three univariate Gaussians with different parameters.
(b) Standard bivariate Gaussian.

origin-centered and known as a standard normal distribution or standard Gaussian. The
PDF of the Gaussian is given by

p(x) = 1
σ
√

2π
e− 1

2σ2 (x−µ)2
, (2.9)

plotted for three different sets of parameters in fig. 2.1a. The PDF of a Gaussian is
commonly written as p(x) = 1

σ
√

2π
exp

{
− 1

2σ2 (x− µ)2
}

, and will be used when a compact
representation is necessary.

A random variable distributed according to a Gaussian distribution is written as
x ∼ N (µ, σ2). In some cases, the sampling variable will be emphasized by writing the
Gaussian as N (x; µ, σ2).

For easier notation and decomposition of stochasticity, a reparameterization can be
performed on N (µ, σ2) that extracts the parameters µ and σ2. The stochasticity is then
introduced through the variable ϵ following the standard normal distribution, as follows

x = µ + σ · ϵ where ϵ ∼ N (0, 1). (2.10)

Given n independent Gaussians, such that xi ∼ N (µi, σ2
i ), the sum over all random

variables is distributed according to
n∑

xi ∼ N
(

n∑
µi,

n∑
σ2

i

)
. (2.11)

Extending the Gaussian distribution to multiple dimensions requires modifying the
parameters into vectors and matrices. In d dimensions, the mean is a vector denoted by
µ ∈ Rd, and the variances are given by the covariance matrix Σ ∈ Rd×d specifying the
dependence between dimensions. The PDF for a multivariate Gaussian is given by

p(x) = 1√
(2π)d det(Σ)

e− 1
2 (x−µ)⊺Σ−1(x−µ), (2.12)
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where det(·) is the determinant of a square matrix, and ⊺ represents the transpose
operation. Figure 2.1b visualizes the PDF for a standard bivariate Gaussian.

Similar to the univariate case, a vector random variable distributed as a Gaussian is
indicated through as x ∼ N (µ, Σ). The reparameterization in equation 2.10 applies in
the multivariate case,

x = µ + Σ× ϵ where ϵ ∼ N (0, I). (2.13)

When Σ = Iβ for some variance vector β, the covariance matrix is diagonal, meaning
that all dimensions are independent. In this thesis, most focus will be on multivariate
Gaussians that have diagonal covariance matrices where the elements of σ are all equal.
This simplifies to Σ = σ2I, where σ2 is a scalar denoting the shared variance across all
dimensions. Equation (2.12) consequently simplifies to

p(x) = 1√
(2π)d det(σ2I)

e− 1
2 (x−µ)⊺(σ2I)−1(x−µ)

= 1√
(2πσ2)d

e− 1
2σ2 (x−µ)⊺(x−µ). (2.14)

Under the same assumptions, given n independent multivariate Gaussians such that
xi ∼ N (µi, Σi), the sum is given by

n∑
xi ∼ N

(
n∑

µi,

(
n∑

σ2
i

)
I
)

. (2.15)

2.3 Likelihood
Assume a distribution pθ(x), for example a Gaussian, where θ = (µ, Σ) denotes the
parameters. For this scenario, the parameters are known, meaning that the PDF pθ(x)
can be evaluated. Further, assume a generated i.i.d. data set D = {x(i)}ni=1 suspected
to not originate from pθ(x). The concept of likelihood is useful for testing this. The
PDF evaluates a sample to a value that, relative to other inputs, signifies how likely it is
under the distribution. As such, high values of the PDF indicate that x-values are more
likely, and similarly, low values indicate unlikely samples. This is realized through the
likelihood function L(θ|x), which measures how well the parameters of the distribution
fit with a specific data point x using the PDF pθ(x). A likelihood estimate L(θ|D) is
the total likelihood that the data set falls under the distribution. Since D is i.i.d., the
likelihood estimate is the product of all x(i), each evaluated by the PDF, giving

L(θ|D) = L
(
θ|x(1), x(2), . . . , x(n)

)
(2.16)

= pθ

(
x(1)

)
· pθ

(
x(2)

)
· . . . · pθ

(
x(n)

)
(2.17)

=
n∏

i=1
pθ

(
x(i)

)
. (2.18)
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A computational problem related to the evaluation of eq. (2.18) is that floating point
arithmetic has a limit in terms of precision. This can potentially lead to challenges for
the numerical representation of the likelihood estimate if it approaches a small value.
A solution is to work with the log-likelihood log L(θ|D) instead. The logarithm is a
monotonically increasing function, meaning that the optimum of L(θ|D) is located at
the same parameters as for log L(θ|D). The log-likelihood estimate becomes

log L(θ|D) = log
(
pθ

(
x(1)

)
· pθ

(
x(2)

)
· . . . · pθ

(
x(n)

))
=

n∑
i=1

log pθ

(
x(i)

)
. (2.19)

2.4 KL Divergence
The Kullback-Leibler (KL) divergence is a similarity measure between two probability
distributions. Given two distributions p and q, it is calculated as

DKL(p || q) =
∫ ∞

−∞
p(x) log p(x)

q(x)dx (2.20)

= Ep(x)

[
log p(x)

q(x)

]
. (2.21)

A property of the KL divergence that will become useful when approximating the
likelihood estimate later, is its non-negativity. The lowest possible value is zero, which is
the case when p and q are identical.

Given the PDFs of p and q, it is not immediately intuitive why eq. (2.21) is a similarity
measure. At its core lies the log-fraction log p(x)

q(x) . Due to the quotient logarithmic identity,
this corresponds to the difference log p(x)− log q(x). In order to evaluate this expression
to a single value, the expectation is calculated with respect to the distribution in the
numerator. As such, the focus will be on samples from one of the distributions. The KL
divergence is therefore not symmetric, meaning that DKL(p || q) ̸= DKL(q || p). Satisfying
the triangle equality is a desirable property for similarity measures. It is expressed as
∆(p, r) ≤ ∆(p, q) + ∆(q, r), where p, r, and q are probability distributions, and ∆ is a
similarity measure. The KL divergence does not satisfy this property, indicating that it
is not considered a distance measure.

Figure 2.2 visualizes the KL divergence as the shaded area for two Gaussians with
varying degrees of similarity. The left figure displays two Gaussians with different
variances and means offset by 1 unit, thus giving a high KL divergence. In contrast, the
right figure depicts two Gaussians of higher similarity, resulting in a lower KL divergence.

For the case when the distributions are multivariate Gaussians, meaning p(x) and q(x)
with means µ1 and µ2, covariance matrices Σ1 and Σ2, the KL divergence (Duchi, 2014)
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Figure 2.2: The KL divergence (shaded area) visualized for two arbitrary univariate
Gaussians (blue and red). The green curve plots the integrand in eq. (2.20).
(a) large divergence. (b) smaller divergence.

x1 x2 · · · xi · · · xn

Figure 2.3: A Markov chain of n random variables, modeling how the same entity changes
over time.

is given by

DKL(q || p) = DKL(N (µ1, Σ1)) || N (µ2, Σ2))

= 1
2

[
tr(Σ−1

2 Σ1)− d + (µ2 − µ1)⊺Σ−1
2 (µ2 − µ1) + log

(
det Σ2

det Σ1

)]
, (2.22)

where tr(·) is the trace-operation summing the elements along the diagonal and d is the
dimensionality of x.

2.5 Markov Chains
A Markov chain models how a dynamic system moves between states. It consists of
random variables forming a sequence of events x1, x2, . . . , xn, where xn denotes either
the current state in the case of unbounded chains or the end for bounded chains. The
random variables quantify the same entity at separate instances of time. An important
characteristic of Markov chains, named the Markov property, is that each variable is only
conditioned on the previous variable. A system satisfying

p(xi+1|x1:i) = p(xi+1|xi) (2.23)

retains the Markov property, where x1:i denotes the set of variables {x1, x2, . . . , xi}.
The stochastic movement between the states is specified by the conditional distribution
p(xi+1|xi), which provides probabilities of the proceeding variable taking on some value
based on the current one.
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A Markov chain can be considered a special case of a Bayesian network where the
variables appear chronologically, as seen in fig. 2.3. The figure illustrates how each random
variable is only conditioned on the previous one, indicated by the arrow connecting them.
A specific sequence of realizations of the random variables, x1, x2, . . . , xn, is termed a
trajectory. The first variable x1 follows some initial distribution p(x1) that is sampled
from to start the chain.

2.6 Deep Learning
Deep neural networks are functions fθ built up of several layers of neurons connected by
weight parameters θ. They define a mapping ŷ = fθ(x), where x is an input vector and
ŷ is the output vector. Figure 2.4 depicts a simple neural network architecture called
the multilayer perceptron. In this case, it has two layers f

(1)
θ and f

(2)
θ . Following each

transformation is an activation function g, as highlighted by the dashed boxes around the
middle and output neurons. These introduce non-linearity into fθ, and are typically not
learnable. The neurons represent the values that result from each intermediate function.

With a data set D = {(x(i), y(i))}ni=1 of data points x(i) and target values y(i), the
model’s performance is evaluated through a loss function L. The loss function compares
the predictions ŷ with the ground truth target values y. A low value of the loss over
a data set indicates that the model is familiar with the underlying relation between x
and y. The gradient ∇θL(ŷ, y) can be used to modify the parameters such that the loss
function is minimized. This process is called gradient descent.
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Chapter 3

State of the Art
This chapter provides a thorough survey of the theoretical underpinnings of modern DMs.
It starts with deep generative modeling in section 3.1 before proceeding to variational
inference in section 3.2. These sections serve as a catalyst for the subsequent theoretical
discussion on DMs given in sections 3.3 to 3.5, followed by section 3.6 connecting them
to optimal transport.

3.1 Deep Generative Modeling
Generative modeling differs from discriminative modeling in what distribution the model
is trained to learn. Data sets used in ML commonly consist of data x containing a
set of features, and target values y categorizing the data or relating it to some other
space. Models trained to infer y from x do so-called supervised learning, learning the
distribution pθ(y|x) by optimizing the parameters θ. Generative modeling, on the other
hand, aims to learn pθ(x), which represents a distribution over the data itself (Ng and
Jordan, 2002). There are two main ways of modeling pθ(x) (Doersch, 2021): Either, the
model can take the data x as input, and output the likelihood of said data belonging to
a learned distribution. Or, one can train a model on input data x to generate new data
points from the learned distribution. This thesis focuses on the latter.

Modeling pθ(x) is part of unsupervised learning, as the model learns to understand the
underlying structure of the data without explicitly knowing what it represents (Kingma
and Welling, 2019). For clarity, learning pθ(x|y) still constitutes a generative model, but
now having some overlap with supervised learning. This is called a conditional generative
model, synthesizing data x that fits with the queried label y. For example, the images in
fig. 1.2 were generated by Midjourney, a text-conditional generative model.

Any statistical model that can synthesize data is generative, an example being a
Gaussian. However, when statistical models incorporate neural networks, they are
specifically known as deep generative models. Architectures such as VAEs and GANs
place significant importance on the concept of latent representations. The following
sections aim to provide a thorough explanation of the role of latent representations in
ML. The word latent refers to mainly two concepts, the first being a data representation
not directly observed in the training data set, a topic for discussion in this section. The
latter regards them as random variables and will be discussed in section 3.2.
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Figure 3.1: A simplified representation learning model where the linear layers successively
reduce the dimensionality to obtain class probabilities. The hidden layer
outputs unobserved data. Activation functions are omitted.

3.1.1 Learning latent representations

Consider the discriminative animal classifier in fig. 3.1. The first and last set of neurons
have dimensionality corresponding to that of the data set, the first being the pixels of
the input image x ∈ X , and the last being the class assignment y ∈ Y. The latent
representation z ∈ Z in the middle of the network has values not present in the data set,
but inferred by the model through training. The layer between the input neurons and
this unobserved representation is therefore often referred to as a hidden layer (Goodfellow
et al., 2016).

The model has optimized z such that features relevant for determining y from x are
encoded in z, ultimately minimizing the loss. As such, parts of the network constitute
a representation learning model. At the end of a forward pass, a vector of conditional
probabilities over all classes given the input is obtained. This representation can be
regarded as a highly compressed version of the input image, representing only the degree
to which it resembles each class. This means that the final representation is not useful
for describing features specific to each class, although it solves the goal of the classifier.
For some tasks, the representation is desired to be less reduced and capture necessary
factors such as fur color, the shape of the nose, and age.

Representation learning models have some connection with data compression algorithms.
Huffman coding compresses data sequences by identifying the frequency of symbols, util-
izing these when creating an alternative representation. Symbols that occur infrequently
are assigned long binary codes, while common symbols are identified by shorter ones.
The data is then compressed by substituting the original symbols with these binary
codes, leading to a compact version (Li et al., 2021). While Huffman coding is a lossless
compression algorithm, meaning that the original input can be reconstructed with perfect
accuracy, this is rarely the case for representation learning models. The reason is that
features found not to contribute towards minimizing the loss function will be discarded
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Figure 3.2: A simple deep generative model called the autoencoder. The encoder takes in
data x, and produces latents z from which the decoder attempts to reconstruct
the input data. The decoder can act as a generative model by using random
latent vectors z as input.

in the transformation from the input to the latent representation. Taking the forward
pass in fig. 3.1 as an example, the background color has little correlation with the animal
type, so one can expect the hidden layer not to extract this information.

Figure 3.1 illustrates the forward pass of a discriminative model, yet this thesis is
focused on deep generative models. A relevant question is what input data such an
architecture should take. Within the image data set of cats and dogs, there are many
dependencies between high-level features (Doersch, 2021). For example, a Siamese cat
does not have the ears of a Golden Retriever. To relieve the model of having to decide
upon what features to generate in the middle of a forward pass, they are decided through
an external process prior to the model being queried. This is achieved by first sampling
a random vector in some latent space Z understood by the model, and using it as input.

3.1.2 The Autoencoder: A naïve Deep Generative Model

With some minor modifications, the network architecture in fig. 3.1 can become a
generative model. The hidden layer extracts relevant information for the proceeding
layer to use, making it advisable to retain it as part of the architecture. A generative
model is required to output vectors in the same space as the data being modeled. For
this case, instead of outputting the class probabilities, the model should output an image.
Figure 3.2 reflects these changes, now taking some data as input and reconstructing it.
This architecture is referred to as an autoencoder (Goodfellow et al., 2016). The hidden
layer acts as a bottleneck, where the model must carefully choose what information to
preserve. While background information was not relevant for the classifier, it is necessary
for the generative model to reconstruct those parts. The first component of the model is
referred to as an encoder. The layers going from the latent space to the generated data
are referred to as a decoder.

Training an autoencoder is performed by minimizing the mean squared error across the
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pixels between data samples and their corresponding reconstructions. Upon completion,
the decoder can be repurposed as a generative model, mapping randomly sampled vectors
z to generated outputs instead of reconstructions. Unfortunately, interpreting these
latent inputs is challenging. While the decoder will induce progressive changes in the
final output from adjustments on the dimensions of z, there is little statistical knowledge
about them. It raises the issue of determining the distribution from which to sample z.
With the described naïve implementation, there are many factors that could affect how
the model perceives the latent space, like training data skewness, initial weights, and mini
batch sampling order. The VAE, a topic of discussion in section 3.2.2, overcomes this
obstacle by forcing a distribution on the latents. Here, the more sophisticated perspective
on latents emerges, regarding them as random variables.

3.2 Variational inference
In this section, the focus is on modeling complex probability distributions, describing data
on the level of high-quality images such as human faces or animals. Simple distributions
are not sufficient by themselves to describe such data. For example, the covariance
matrix of a single multivariate Gaussian does not provide enough flexibility in defining
the complex dependencies that exist between pixels. Furthermore, the outlined Gaussian
has only one maximum, meaning it lacks the capacity to represent multi-modal data,
such as cats and dogs together. It is clear that more sophisticated methods must be used.

The goal is to find a distribution pθ(x) that most closely matches the true data
distribution pdata(x) from where the data set originates from. To obtain flexibility, the
learned distribution will be in the form of a neural network with parameters θ. After
having discussed the autoencoder in section 3.1.2, introducing latent representations
seems promising. For that, the posterior distribution pθ(z|x) is required to infer latents
from observed data. Turning to Bayes’ rule, eq. (2.3) states that pθ(z|x) = pθ(x|z)pθ(z)

pθ(x) .
While useful for seeing how the latent variables are related to the observed variables,
it does not allow for a tractable solution for the posterior due to pθ(x) being in the
denominator. Before addressing this issue, the following is an overview of each distribution
present in Bayes’ rule:

The posterior pθ(z|x): The distribution needed to infer the underlying structure of the
data. It defines how the latent variable is structured given the observed variables.

The likelihood pθ(x|z): Defines how the data is generated from some latent. Can be
thought of how likely a data point is in accordance to the latents.

The evidence pθ(x): Oftentimes called the marginal likelihood, it is the distribution
over the observed data. The end goal is to model this distribution.

The prior pθ(z): Some knowledge that is forced upon the latent variable, regardless of
what the data set of observations contains.

Variational inference deals with approximating the posterior by redefining the problem
of inferring z in the presence of x as an optimization problem (Goodfellow et al., 2016;
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Bishop, 2006). For this approach, a surrogate posterior qϕ(z|x) is introduced, defined
by the parameters ϕ, not relying on θ. This approximate distribution is tractable and
allows for estimating samples z given data x.

3.2.1 The Evidence Lower Bound

To incorporate the approximate posterior into an optimization scheme (Kingma and
Welling, 2022), the likelihood function is rewritten as:

log L(θ|x) = log pθ(x)

= log pθ(x)
∫

qϕ(z|x)dz

∣∣∣∣ ∫ qϕ(z|x)dz = 1

=
∫

qϕ(z|x) · (log pθ(x))dz

= Eqϕ(z|x) [log pθ(x)]
∣∣∣∣ Using eq. (2.7)

= Eqϕ(z|x)

[
log pθ(x, z)

pθ(z|x)

] ∣∣∣∣ Using eq. (2.2)

= Eqϕ(z|x)

[
log pθ(x, z)qϕ(z|x)

pθ(z|x)qϕ(z|x)

]

= Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
+ Eqϕ(z|x)

[
log qϕ(z|x)

pθ(z|x)

]

= Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
+ DKL(qϕ(z|x) || pθ(z|x)) (3.1)

≥ Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
(3.2)

The KL divergence in eq. (3.1) compares the approximate posterior qϕ(z|x) with the
ground truth posterior pθ(z|x). The latter is not available, making the term challenging
to evaluate. Taking advantage of its non-negativity, it is removed in eq. (3.2), turning
the expression into a variational lower bound on the log-likelihood of the evidence. The
term on the right-hand side is therefore called the Evidence Lower Bound (ELBO).
Importantly, the left-hand side of this lower bound does not depend on the parameters ϕ
subject for optimization. In other words, it is a constant. In eq. (3.1), the two terms add
to this constant value. As such, maximizing the ELBO is equivalent to minimizing the
KL divergence.

3.2.2 The Variational Autoencoder

The VAE was introduced by Kingma and Welling (2022), applying methods from vari-
ational inference to develop a probabilistic model that learns latent representations of
data through a bottlenecking scheme. Although the name suggests that the VAE might
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Figure 3.3: The reparameterization technique shown in a simplified computation graph.
The figure is inspired by Kingma and Welling (2019). (a) The stochastic vector
z blocks the loss gradient from reaching ϕ. (b) Extracting the stochastic
component ϵ from z permits gradient flow.

be an extension of autoencoders, the mathematical foundation differs greatly. Still, their
connection is relevant for this thesis due to their similarity in terms of architecture.
The connection also demonstrates the perspective of latent representations as random
variables.

To optimize pθ(x), Kingma and Welling (2022) maximize the ELBO from eq. (3.2),
but in its current form, it is not immediately clear how. To see exactly what constraints
need to be fulfilled for a VAE, the ELBO can be decomposed into

Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
= Eqϕ(z|x)

[
log pθ(x|z)p(z)

qϕ(z|x)

]

= Eqϕ(z|x) [log pθ(x|z)]− Eqϕ(z|x)

[
log qϕ(z|x)

p(z)

]
= Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

reconstruction term

−DKL(qϕ(z|x) || p(z))︸ ︷︷ ︸
prior matching term

. (3.3)

What has emerged through the reconstruction term is a decoder pθ(x|z) measuring the
likelihood of x appearing from a latent z. The reconstruction term is completed by
sampling from the posterior (the encoder) given a data sample x and measuring the
ability of the decoder to reconstruct it, typically through a mean squared error. The prior
matching term ensures that the encoder generates latent values that fit with the prior
distribution. In the case of VAEs, the prior p(z) is typically set to a standard Gaussian.
As a result, the prior has no learnable parameters, hence no θ in the subscript.

In contrast to the autoencoder discussed in section 3.1.2, reconstructing the input
data is now a stochastic procedure since the components are represented by distributions
(Kingma and Welling, 2019). This makes the encoder a function that is challenging to
differentiate. Figure 3.3a shows a simplified view of the computation graph where the
stochastic vector (teal node) blocks the gradient of the loss function L from reaching the
parameters ϕ that should be optimized. The solution, as shown in fig. 3.3b, is to extract
the stochastic component from z and define it as its own random variable ϵ ∼ N (0, I)
not parameterized by learnable parameters. The latent variable is now a transformation
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on the input data x and ϵ using a function gϕ such that z ∼ gϕ(x, ϵ) (Goodfellow et al.,
2016).

The reparameterization technique has a more mathematical rationalization (Kingma
and Welling, 2019). The PDF of qϕ(z|x) is not available, making it infeasible to evaluate
the ELBO in eq. (3.3) analytically. As such, sample averaging is used to approximate
the expectation. To express the challenge that arises when performing gradient descent
on this expectation, assume a function fϕ(z) and a distribution pϕ(z) over the random
variable z. Both the function and the distribution are parameterized by ϕ. Computing
the gradient with respect to ϕ of an expectation taken with respect to a distribution
dependent on the same ϕ leads to a problem:

∇ϕEpϕ(z)[fϕ(z)] = ∇ϕ

∫
pϕ(z) · fϕ(z) dz

=
∫
∇ϕ(pϕ(z) · fϕ(z)) dz (3.4)

=
∫
∇ϕpϕ(z) · fϕ(z) dz +

∫
pϕ(z) · ∇ϕfϕ(z) dz (3.5)

=
∫
∇ϕpϕ(z) · fϕ(z) dz + Epϕ(z)[∇ϕfϕ(z)]. (3.6)

In eq. (3.4), the Leibniz integral rule is used to change the order of the integral and the
gradient operation. Subsequently, the product rule of differentiation is used in eq. (3.5) to
find the gradient of the product of the two functions. Neither of the functions inside the
integral in the first term in eq. (3.6) are necessarily PDFs, making sample averaging the
gradient of Epϕ(z)[fϕ(z)] inaccurate. Using a function gϕ(ϵ) ∼ pϕ(z) such that z = gϕ(ϵ)
is determined deterministically, the expectation can be formulated to not be taken with
respect to a distribution that is dependent on the parameters ϕ that are subject to
optimization. It holds that

∇ϕEpϕ(z)[fϕ(z)] = ∇ϕEp(ϵ)[fϕ(gϕ(ϵ))]
= Ep(ϵ)[∇ϕfϕ(gϕ(ϵ))], (3.7)

and consequently, the parameters can be optimized through stochastic gradient descent,
where the gradients are estimated with sample averaging. In eq. (3.3), the expectations are
part of the loss function that is minimized during training. Using the reparameterization
technique as shown in eq. (3.7) ensures that the parameters can be optimized reliably.

The final element is to fit the reparameterization technique with the network architec-
ture. The computation graph in fig. 3.3b leaves out some details on how x is transformed
and combined with ϵ. A reasonable approach, as the prior is a Gaussian, is to have
the encoder output parameters forming a Gaussian distribution, as shown in fig. 3.4.
Essentially, the encoder is now the stochastic function qϕ(z|x) = N (z; µϕ(x), Σϕ(x)).
The prior matching term then acts as a regularization on the outputted parameters,
ensuring that they model a standard Gaussian. Analogously to the simple autoencoder,
new data can be generated by using a random vector in the latent space Z as input to
the decoder. Fortunately, the distribution from which to sample this is now explicitly
defined, being the prior p(z) = N (0, I).
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Figure 3.4: A simple VAE architecture utilizing the reparameterization technique to allow
gradient flow to the encoder. The latent space is simplified to one dimension
to highlight the mechanism of the reparameterization technique.

For a cleaner presentation, the displayed VAE in fig. 3.4 has only one dimension
in the latent space. Typically, there are multiple dimensions, with a pair of µ and σ
accompanying each. An important convention illustrated in the figure, is that despite
the decoder being a stochastic function in eq. (3.3), it is usually implemented as a
deterministic mapping from a latent z to data x.

3.3 Diffusion Models
Sohl-Dickstein et al. (2015) had the idea of training a generative model by gradually
recovering data from noise corruption. Their goal was to develop a flexible method for
modeling complex probability distributions that are computationally tractable to learn
and perform sampling from. Inspired by diffusion processes from thermodynamics, data
is iteratively diffused with varying amounts of Gaussian noise until all information is
lost. The model is taught to restore data by reversing the diffusion process, making up a
generative model that is capable of synthesizing new data by starting from pure Gaussian
noise.

Formally, a DM works on a set of random variables x0:T making up a Markov chain.
q(x0) denotes the initial distribution over clean data x0, assumed to be where data set
samples x0 originate from. Previously, pdata(x) was used to denote this distribution, but
with the appearance of a Markov chain, it is more reasonable to denote it as q(x0). The
random variables following x0 in the chain, x1:T , are samples perturbed with Gaussian
noise. From the perspective of DMs, all of these are addressed as latent variables. The
noising process, called the forward process, involves starting from a clean data set instance
x0, and gradually perturbing it to xT over T time steps, arriving at pure Gaussian noise.
The transition distribution at any time step t is denoted by q(xt|xt−1), and is fixed,
meaning it contains no learnable parameters. It represents a stochastic function of how
much noisier xt will get compared to xt−1. The reverse of this transition, q(xt−1|xt),
involves removing noise from the perturbed instances. Unfortunately, transitioning in

22



3.4 Denoising Diffusion Probabilistic Models

· · · · · ·
q(xt|xt−1)

pθ(xt−1|xt) - learnable

q(xt−1|xt) - intractable

x0 xt−1 xt xT

Forward process → ← Reverse process

Figure 3.5: The forward and reverse process of a DM depicted on an instance from
CelebA. The variables x0:T form a Markov chain with gradual amounts of
noise added for increasing t.

this direction is analytically intractable. The solution is to approximate it using an
auxiliary distribution pθ(xt−1|xt) parameterized by neural network parameters θ. This
is a stochastic function computing the distribution of a less noised sample xt−1 given a
noisier sample xt.

An example trajectory of the Markov chain is shown in fig. 3.5 to accentuate the
dynamics of the diffusion process, where an instance x0 from the CelebA data set is
gradually noised. The gray box highlights the interplay between two arbitrary neighboring
latents xt−1 and xt. Seen from left to right, the figure reflects diffusion, where information
gradually vanishes and entropy is increased. Conversely, from right to left, it depicts
a generative process where small amounts of noise are removed at each time step to
reveal realistic data. Although there are multiple latents present, a network evaluation
conditions on one latent xt at a time.

Figure 3.5 illustrates an important detail about DMs, namely that all latents share the
same dimensionality with the input data. In contrast to the VAE, there is no bottleneck
forcing the model to extract the most important features into the latent space. The
latent space instead resides outside of the model architecture. As such, the notion of
latents differs from VAEs.

3.4 Denoising Diffusion Probabilistic Models
Building upon the works of Sohl-Dickstein et al. (2015), the Denoising Diffusion Prob-
abilistic Model (DDPM) framework was introduced by Ho et al. (2020), highlighting
important implementation details and providing insight on the potential such models
have in synthesizing high-quality images. Since then, this framework has become the
foundation that several influential papers have based their improvements on. The follow-
ing examples motivate this claim. Song et al. (2022) study a trade-off between sample
quality and efficiency by only taking into account a subset of the chained variables
x1:T −1, essentially disregarding many of the latents when generating data. Dhariwal
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and Nichol (2021) and Ho and Salimans (2022) achieve conditional sampling with their
respective methods called classifier-based guidance and classifier-free guidance. The first
utilizes knowledge from an independently trained classifier to guide the noise-removal
process towards desired modes of the target distribution. Interestingly, this approach
is compatible with any existing unconditional DM. The second incorporates the class
knowledge into the model during training, ending up with a class-conditional model.
Saharia et al. (2022) and Rombach et al. (2022) demonstrate the superior performance
of DMs when conditioning on text descriptions and training them on large data sets,
obtaining a model that is capable of visualizing a diverse range of objects and scenes.
Additionally, Rombach et al. (2022) turns the DDPM framework to the latent space of a
VAE, in order to reduce computational requirements for sampling.

On the path of gaining a solid understanding of the mechanisms behind DMs, the
mentioned articles demonstrate that the DDPM framework is a good starting point.
Therefore it will be used as the basis for this thesis as well. Fortunately, much of the
notation and terminology is used consistently throughout the literature, meaning that
ideas not covered here can be grasped by readers interested in further reading. In the
following discussions, DDPM refers to the base framework, while DM refers to the family
of generative models encompassing DDPM and those extending it.

3.4.1 Forward process

The forward process is a fixed Markov chain over T time steps. As previously mentioned,
it starts with data x0 ∼ q(x0), which it iteratively corrupts with Gaussian noise up to xT ,
becoming indistinguishable from pure noise. xt denotes an intermediate latent, being a
blend of pure data and noise. A variance vector β ∈ ⟨0, 1⟩ of scalars β1, β2, . . . , βT defines
how much noise is introduced when transitioning from a state to the next. Specifically,
βt determines the amount of noise added to latent xt−1 to produce xt. In the context
of DMs, all details surrounding β are referred to as the variance schedule. Throughout
the literature, several ways of specifying this schedule are presented. Among the simpler
ones, as used by Ho et al. (2020), is to define the endpoints and interpolate βt linearly
between these, hence the name linear schedule. Understanding the effects of the variance
schedule is crucial for understanding the system as a whole, thus more details will be
given in section 3.4.3.

One step of the forward process is defined as the conditional Gaussian distribution

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (3.8)

being a stochastic linear transformation on xt−1. Due to the Markov property, the joint
conditional on the starting point x0 is given by

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1). (3.9)

To more explicitly show the linear transformation, the reparameterization in eq. (2.13)
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can be used to rewrite the Markov transition as

xt =
√

1− βtxt−1 +
√

βtϵ, where ϵ ∼ N (0, I). (3.10)

Ho et al. (2020) highlight a property of the forward process utilized to compute the
outcome of the iterative process from 0 to t in closed form, leading to a drastic reduction
in complexity during training. This is possible due to q(xt|x0) also being a Gaussian,
which can be proved by starting from eq. (3.10) and substituting in solutions from
previous time steps until x0 explicitly appears as a factor in the mean. For this purpose,
each ϵ is distinguished using the relative time step from xt in the subscript. For algebraic
relief, a counterpart to the variance schedule, αt = 1− βt, is used to show that

xt =
√

1− βtxt−1 +
√

βtϵt−1
∣∣∣ See eq. (3.10)

=
√

αtxt−1 +
√

1− αtϵt−1

=
√

αt(
√

αt−1xt−2 +
√

1− αt−1ϵt−2) +
√

1− αtϵt−1
∣∣ xt−1 is eq. (3.10) with t

shifted by −1
= √αtαt−1xt−2 +

√
αt − αtαt−1ϵt−2 +

√
1− αtϵt−1 (3.11)

= √αtαt−1xt−2 +
√

(
√

αt − αtαt−1)2 + (
√

1− αt)2ϵ̄t−2

= √αtαt−1xt−2 +
√

αt − αtαt−1 + 1− αtϵ̄t−2

= √αtαt−1xt−2 +
√

1− αtαt−1ϵ̄t−2 (3.12)
= . . .

= √αtαt−1 · · ·αt−kxt−k +
√

1− αtαt−2 · · ·αt−kϵ̄t−k (3.13)
= √αtαt−1 · · ·αt−kxt−k + (0 +

√
1− αtαt−2 · · ·αt−kϵ̄t−k) (3.14)

= . . .

= √αtαt−1 · · ·α2α1x0 +
√

1− αtαt−1 · · ·α2α1ϵ̄0. (3.15)

In eq. (3.11),
√

1− αtϵt−1 is distributed by N (0, (1 − αt)I), and √αt − αtαt−1ϵt−2 by
N (0, (αt−αtαt−1)I). From eq. (2.15), their sum gives the distributionN (0, (1−αtαt−1)I),
which

√
1− αtαt−1ϵ̄t−2 in eq. (3.12) follows (Luo, 2022).

Inserting xt−k, as seen in eq. (3.13), it is revealed that
√

1− αtαt−1 · · ·αt−kϵ̄t−k is
distributed in accordance with N (0, (1− αtαt−1 · · ·αt−k)I) for k = 2, . . . , t. Using the
reparameterization technique (eq. (2.13)), eq. (3.14) shows that ϵ̄t−k follows a standard
Gaussian.

This proves that q(xt|x0) is also a Gaussian, as seen in eq. (3.15), where the mean
is proportional to the square root of the cumulative product of αt, and the standard
deviation is scaled by the square root of the complement of the same cumulative product.
From this, Ho et al. (2020) define ᾱt =

∏t
i=1 αi, used in the closed form expression for

the forward process at an arbitrary time step t,

xt =
√

ᾱtx0 +
√

1− ᾱtϵ where ϵ ∼ N (0, I), (3.16)
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giving the multistep transition distribution

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I). (3.17)

The scaling factor ᾱT for the mean in eq. (3.16) when computing xT is made up of
several multiplications of non-negative numbers restricted to the range ⟨0, 1⟩, resulting in
a small number. Stated mathematically, limT →∞ ᾱT = 0. As a consequence,

q(xT |x0) ≈ N (xT ;
√

0x0, (1− 0)I)
= N (xT ; 0, I), (3.18)
= q(xT ),

which converges to a standard Gaussian independent of the conditioning variable x0
under ideal conditions of the variance schedule and large T .

3.4.2 Reverse process

Section 3.4.1 demonstrated the corruption of data through a Markov chain, with the
transition distribution being a conditional Gaussian q(xt|xt−1). To obtain a generative
model following the distribution q(x0), the Markov transition must be reversed, meaning
going from xt to xt−1. As previously mentioned, q(xt−1|xt) does not have a tractable
solution. A remedy is to approximate this transition with a neural network that defines
pθ(xt−1|xt).

To reverse the chain and sample new data, the initial distribution p(xT ) must be
defined. Equation (3.18) states that q(xT ) is reminiscent of a standard Gaussian. As
such, Ho et al. (2020) define the prior as p(xT ) = N (0, I). Similar to the VAE, this
distribution is not parameterized by any learnable parameters, hence no subscript. The
joint distribution of the reverse process is then

pθ(x0:T ) = p(xT )
T∏

t=1
pθ(xt−1|xt), (3.19)

utilizing the fact that the Markov property is also relevant in the reverse direction. The
joint defines a Markov chain going from xT to x0, often termed the generative or denoising
process. Synthesizing new data begins by sampling a xT from p(xT ), and iteratively
denoising it by sampling from pθ(xt−1|xt) until x0 is obtained.

3.4.3 The variance schedule

Both βt and ᾱt are used to determine the amount of noise to be added, but while the
former facilitates the local change between two neighboring latents, the latter determines
the difference between a latent xt and clean data x0. Ho et al. (2020) use β1 = 10−4

and βT = 0.02, linearly interpolating β2:T −1 between these for T = 1000 time steps.
Figure 3.6a shows how ᾱt behaves under these conditions, together with its square root
used in eq. (3.16).

√
ᾱt illustrates the level of cleanliness in the data over time. For
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ᾱt

(a)

1 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0
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Figure 3.6: ᾱt and
√

ᾱt plotted for all time steps 1 through T for a (a) viable schedule
and (b) an unviable schedule.

example, x1 will be almost indistinguishable from x0 as
√

ᾱ1 ≈ 1. The plot also highlights
the desirable property that xT will be approximately distributed by a standard Gaussian
since

√
ᾱT converges to 0.

A critical concern has been left out of the discussion up until now. Diffusing data
encompasses a simple linear transformation with Gaussian noise added (eq. (3.10)).
Is the denoising operation expected to follow the same distributional family? On the
macroscopic level with large step sizes, this is not the case. Looking at a shape undergoing
diffusion, one cannot expect the reverse operation to have the same simple form as the
noising procedure. The variance schedule has the role of alleviating this concern: If βt is
set to a large value, xt and xt−1 will deviate too much, making the task of translating
between them difficult for the model. Conversely, a small value means they are almost
identically distributed. In the limit of small βt, the reverse transition has the same
functional form as the forward transition (Sohl-Dickstein et al., 2015; Feller, 1949).

Subsequently, the chosen value for T must be balanced together with βt for the variance
schedule to be ideal. Figure 3.6b illustrates this requirement. Although smaller values are
chosen for βt compared to fig. 3.6a, it leads to an unviable schedule since q(xT |x0) fails
to reach a standard Gaussian. A possible fix to this problematic schedule is to increase
T , letting ᾱT and

√
ᾱt converge to 0.

3.4.4 Determining the objective

Ho et al. (2020) derive the training objective from the ELBO. To make it clear why
this lower bound applies to this case, the same procedure is followed as in section 3.2.1,
now replacing the joint pθ(x, z) with the generative process pθ(x0:T ), and the posterior
qϕ(z|x) with the forward process q(x1:T |x0). Starting from the marginal log-likelihood,
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it holds that

log L(θ|x0) = log pθ(x0)

=
∫

q(x1:T |x0) · (log pθ(x0))dx1:T

= Eq(x1:T |x0) [log pθ(x0)]
∣∣ Using eq. (2.7)

= Eq(x1:T |x0)

[
log pθ(x0:T )

pθ(x1:T |x0)

] ∣∣∣∣ Using eq. (2.2)

= Eq(x1:T |x0)

[
log pθ(x0:T )q(x1:T |x0)

pθ(x1:T |x0)q(x1:T |x0)

]
= Eq(x1:T |x0)

[
log pθ(x0:T )

q(x1:T |x0)

]
+ Eq(x1:T |x0)

[
log q(x1:T |x0)

pθ(x1:T |x0)

]
= Eq(x1:T |x0)

[
log pθ(x0:T )

q(x1:T |x0)

]
+ DKL(q(x1:T |x0) || pθ(x1:T |x0)) (3.20)

≥ Eq(x1:T |x0)

[
log pθ(x0:T )

q(x1:T |x0)

]
. (3.21)

Similarly to the VAE, the KL term in eq. (3.20) measures the variation between two
posteriors, one unobtainable through analytical means. The solution is again to construct
a variational lower bound on the log-likelihood of the data. This ELBO must also be
decomposed in order to arrive at the conditions that must be met when maximizing it.

3.4.4.1 Decomposing the ELBO

The Markov property states that xt is only based on xt−1 during the forward process.
Including x0 as a condition leads to no changes in the mean function of the forward
transition, meaning that q(xt|xt−1) = q(xt|xt−1, x0). This does not change the fact that
the reverse transition must be approximated, since the ground truth x0 is not available
when sampling. Using Bayes’ rule (eq. (2.3)), the forward transition conditioned on x0
can be formulated as

q(xt|xt−1, x0) = q(xt−1|xt, x0)q(xt|x0)
q(xt−1|x0) . (3.22)

When decomposing the ELBO, this reformulation will lead to an expectation representing
the training objective taken with regards to fewer variables (Luo, 2022). With these
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tools, the ELBO becomes

log pθ(x0)

≥ Eq(x1:T |x0)

[
log pθ(x0:T )

q(x1:T |x0)

]
= Eq(x1:T |x0)

[
log

p(xT )
∏T

t=1 pθ(xt−1|xt)∏T
t=1 q(xt|xt−1, x0)

]

= Eq(x1:T |x0)

[
log

p(xT )pθ(x0|x1)
∏T

t=2 pθ(xt−1|xt)
q(x1|x0)

∏T
t=2 q(xt|xt−1)

]
(3.23)

= Eq(x1:T |x0)

[
log

p(xT )pθ(x0|x1)
∏T

t=2 pθ(xt−1|xt)
q(x1|x0)

∏T
t=2 q(xt|xt−1, x0)

]

= Eq(x1:T |x0)

[
log p(xT )pθ(x0|x1)

q(x1|x0) + log
T∏

t=2

pθ(xt−1|xt)
q(xt|xt−1, x0)

]

= Eq(x1:T |x0)

log p(xT )pθ(x0|x1)
q(x1|x0) + log

T∏
t=2

pθ(xt−1|xt)
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)

 (3.24)

= Eq(x1:T |x0)

[
log p(xT )pθ(x0|x1)

q(x1|x0) + log
T∏

t=2

q(xt−1|x0)
q(xt|x0)︸ ︷︷ ︸

Telescoping product

+ log
T∏

t=2

pθ(xt−1|xt)
q(xt−1|xt, x0)

]
(3.25)

= Eq(x1:T |x0)

[
log p(xT )pθ(x0|x1)

����q(x1|x0) + log ����q(x1|x0)
q(xT |x0) + log

T∏
t=2

pθ(xt−1|xt)
q(xt−1|xt, x0)

]

= Eq(x1:T |x0)

[
log p(xT )pθ(x0|x1)

q(xT |x0) +
T∑

t=2
log pθ(xt−1|xt)

q(xt−1|xt, x0)

]

= Eq(x1:T |x0)[log pθ(x0|x1)] + Eq(x1:T |x0)

[
log p(xT )

q(xT |x0)

]
+

T∑
t=2

Eq(x1:T |x0)

[
log pθ(xt−1|xt)

q(xt−1|xt, x0)

]
= Eq(x1|x0)[log pθ(x0|x1)] + Eq(xT |x0)

[
log p(xT )

q(xT |x0)

]
+

T∑
t=2

Eq(xt|x0)

[
Eq(xt−1|xt,x0)

[
log pθ(xt−1|xt)

q(xt−1|xt, x0)

]] (3.26)

= Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
reconstruction term L0

−DKL(q(xT |x0) || p(xT ))︸ ︷︷ ︸
prior matching term LT

−
T∑

t=2
Eq(xt|x0) [DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)]︸ ︷︷ ︸

denoising matching term Lt−1

.
(3.27)

In eq. (3.25), a product of fractions has been extracted which constitutes a telescoping
product, evaluating to the term q(x1|x0)

q(xT |x0) when expanded. Equation (3.26) applies a
reduction of variables in the distributions that the expectations are being taken with
respect to. Proof and further details around this is given in appendix A. The three terms
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in eq. (3.27) that make up a lower bound of the log-likelihood of the observed data have
their own interpretations and names:

Reconstruction term (L0): This term emerged in eq. (3.23) when changing the initial-
ization of the products from t = 1 to t = 2. It differs from the other two by not
measuring any similarity through the KL divergence. Instead, it is an expectation
over the transition from x1 to x0. When synthesizing new data, the L0 term is
satisfied by not adding noise correction during the last sample step.

Prior matching term (LT ): This term measures the similarity between q(xT |x0) and
p(xT ). Equation (3.18) made it clear that the former converges towards a standard
Gaussian. In section 3.4.2, it was decided that p(xT ) is equal to a standard Gaussian.
Therefore, under the desired conditions of the variance schedule, LT will be constant
and can be disregarded while optimizing the model.

Denoising matching term (Lt−1): Part of the set L1:T −1, this term measures the ability
of the approximative distribution to match the ground truth denoising step from
t to t− 1. The ground truth denoising step q(xt−1|xt, x0) is tractable due to the
condition on x0.

3.4.4.2 Deriving the form for the ground truth denoising step

The ground truth denoising step q(xt−1|xt, x0) in Lt−1 is a conditional Gaussian in the
limit of infinitesimal step sizes. To evaluate it, its PDF must be found. Bayes’ rule
reveals which distributions are needed to solve for the reverse transition:

q(xt−1|xt, x0) = q(xt|xt−1, x0)q(xt−1|x0)
q(xt|x0) (3.28)

Expressions for the factors in eq. (3.28) are found using the formulas presented in
section 3.4.1:

q(xt|xt−1, x0) = q(xt|xt−1) = N (xt;
√

αtxt−1, (1− αt)I)
q(xt−1|x0) = N (xt−1;

√
ᾱt−1x0, (1− ᾱt−1)I)

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I)

Equation (2.14) states that the PDF for a multivariate Gaussian with scaled diagonal
covariance matrix σ2I is given by p(x) = 1√

(2πσ2)d
e− 1

2σ2 (x−µ)⊺(x−µ). The exponent

contains both the variance scaling factor σ2 and the mean µ. As such, the exponent of
the product of density functions in eq. (3.28) can be studied to determine the functional
form of the ground truth denoising step. In the following derivation, the notation x2

is used as shorthand to denote the inner product x⊺x, where x is an expression that
encompasses one or multiple vectors. Additionally, for two arbitrary vectors a and b
such that x⊺x = (a− b)⊺(a− b), its expansion a⊺a− a⊺b− b⊺a + b⊺b will be written as
a2 − 2ab + b2. It holds that
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q(xt−1|xt, x0) =
N (xt;

√
αtxt−1, (1− αt)I) N (xt−1;

√
ᾱt−1x0, (1− ᾱt−1)I)

N (xt;
√

ᾱtx0, (1− ᾱt)I)
,

whose PDF is proportional to

∝ exp
{
−
[

(xt −
√

αtxt−1)2

2(1− αt)
+ (xt−1 −

√
ᾱt−1x0)2

2(1− ᾱt−1) − (xt −
√

ᾱtx0)2

2(1− ᾱt)

]}
= exp

{
−1

2

[
x2

t − 2√αtxtxt−1 + αtx
2
t−1

1− αt
+

x2
t−1 − 2

√
ᾱt−1xt−1x0 + ᾱt−1x2

0
1− ᾱt−1

− (xt −
√

ᾱtx0)2

2(1− ᾱt)

]}
= exp

{
−1

2

[
αtx

2
t−1

1− αt
+

x2
t−1

1− ᾱt−1
−

2√αtxtxt−1

1− αt
− 2
√

ᾱt−1xt−1x0

1− ᾱt−1

+ x2
t

1− αt
+ ᾱt−1x2

0
1− ᾱt−1

− (xt −
√

ᾱtx0)2

2(1− ᾱt)

]}
.

(3.29)

The last three terms in eq. (3.29) are not dependent on the sample variable xt−1. Since
the exponent in eq. (2.14) is a square, these are proportional to µ⊺µ. The mean resides
in the remaining part of the square, x⊺x− x⊺µ− µ⊺x, so the three terms in eq. (3.29)
can be set aside. Their sum will be denoted by C(x0, xt, t). Further simplifying eq. (3.29)
gives

= exp
{
−1

2

[(
αt

1− αt
+ 1

1− ᾱt−1

)
x2

t−1 − 2
(√

αtxt

1− αt
+
√

ᾱt−1x0

1− ᾱt−1

)
xt−1 + C(x0, xt, t)

]}
= exp

{
−1

2

[(
αt(1− ᾱt−1) + 1− αt

(1− αt)(1− ᾱt−1)

)
x2

t−1 − 2
(√

αtxt

1− αt
+
√

ᾱt−1x0

1− ᾱt−1

)
xt−1 + C(x0, xt, t)

]}
= exp

{
−1

2

[(
1− ᾱt

(1− αt)(1− ᾱt−1)

)
x2

t−1 − 2
(√

αtxt

1− αt
+
√

ᾱt−1x0

1− ᾱt−1

)
xt−1 + C(x0, xt, t)

]}
.

(3.30)

Here, αtᾱt−1 = ᾱt is used. For compactness, β̃t = (1−αt)(1−ᾱt−1)
1−ᾱt

is employed when
continuing from eq. (3.30) to show that

= exp

−
1

2β̃t

x2
t−1 − 2

(√
αtxt

1−αt
+
√

ᾱt−1x0

1−ᾱt−1

)
(

1−ᾱt

(1−αt)(1−ᾱt−1)

) xt−1 + β̃tC(x0, xt, t)




= exp

−
1

2β̃t

x2
t−1 − 2

(√
αtxt

1−αt
+
√

ᾱt−1x0

1−ᾱt−1

)
(1− αt)(1− ᾱt−1)

(1− ᾱt)
xt−1 + β̃tC(x0, xt, t)




= exp
{
− 1

2β̃t

[
x2

t−1 − 2
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x0

(1− ᾱt)
xt−1 + β̃tC(x0, xt, t)

]}
(3.31)

The expression is now reminiscent of the expansion of the square (x − µ)⊺(x − µ) =
x⊺x − x⊺µ − µ⊺x − µ⊺µ in the exponent of eq. (2.14). x⊺x coincides with x2

t−1,
being the sampling variable. Similarly, −2

√
αt(1−ᾱt−1)xt+

√
ᾱt−1(1−αt)x0

(1−ᾱt) xt−1 coincides with
−x⊺µ − µ⊺x, being a mix of the sampling variable and the conditioning variables.
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The term β̃tC(x0, xt, t) is used to complete the square, and ensures that q(xt−1|xt, x0)
integrates to 1, a requirement specified for PDFs in eq. (2.5). Equation (3.31) is therefore
proportional to the PDF of

∝ N
(

xt−1;
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x0

1− ᾱt
,

(1− αt)(1− ᾱt−1)
1− ᾱt

I
)

(3.32)

= N (xt−1; µ̃t(xt, x0), Σ̃t).

In conclusion, the ground truth reverse transition is a conditional Gaussian with mean
and variance

µ̃t(xt, x0) =
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x0
1− ᾱt

(3.33)

Σ̃t = β̃tI = (1− αt)(1− ᾱt−1)
1− ᾱt

I. (3.34)

The goal is for the learnable reverse transition to maintain as much similarity with
the ground truth reverse transition, making it necessary to model it as a conditional
Gaussian. Ho et al. (2020) decide for the variance to not be parameterized, yielding
the one shown in eq. (3.34). That leaves a learnable mean function µθ conditioning
on xt and t, as the ground truth x0 is not available after training. This results in
pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σ̃t). To obtain the form Ho et al. (2020) arrive at, one
can instead parameterize a x̂0,θ(xt, t) as a replacement for the mean (Luo, 2022), such
that

µθ(xt, t) =
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x̂0,θ(xt, t)
1− ᾱt

. (3.35)

Having a network that predicts clean data given an arbitrary latent sounds intriguing, as
it gives insight into where the denoising procedure is headed. This idea deserves more
thought and will be revisited in section 3.5. Returning to the problem of deriving a
parameterization: There exists another formulation for the mean. Recalling the closed
form solution for the forward process, eq. (3.16), x0 can be expressed as

xt =
√

ᾱtx0 +
√

1− ᾱtϵ where ϵ ∼ N (0, I)
∣∣ Repetition of eq. (3.16)

√
ᾱtx0 = xt −

√
1− ᾱtϵ

x0 = xt −
√

1− ᾱtϵ√
ᾱt

. (3.36)

Interestingly yet expected, the linear noising transformation is invertible, meaning x0 can
be computed from a latent, its corresponding time step, and the noise that was added.
When training on a data set of x0, both xt and ϵ are known. Outside of training, only xt

is known. As a consequence, learning x̂0,θ(xt, t) would mean implicitly learning the noise
ϵ that influenced an x0. Utilizing this insight, the focus can be shifted from predicting
pure data towards learning the noise, expressed mathematically as

x̂0,θ(xt, t) = xt −
√

1− ᾱtϵθ(xt, t)√
ᾱt

. (3.37)
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Inserting this equation into eq. (3.35), the expression for the predicted mean in the
reverse transition can be formulated as

µθ(xt, t) =
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)xt−
√

1−ᾱtϵθ(xt,t)√
ᾱt

1− ᾱt

=
√

αt(1− ᾱt−1)xt

1− ᾱt
+
√

ᾱt−1(1− αt)(xt −
√

1− ᾱtϵθ(xt, t))
(1− ᾱt)

√
ᾱt

∣∣∣∣ √ᾱt−1√
ᾱt

= 1
√

αt

=
√

αt(1− ᾱt−1)xt

1− ᾱt
+ (1− αt)(xt −

√
1− ᾱtϵθ(xt, t))

(1− ᾱt)
√

αt

= αt(1− ᾱt−1)xt

(1− ᾱt)
√

αt
+ (1− αt)xt

(1− ᾱt)
√

αt
− (1− αt)

√
1− ᾱtϵθ(xt, t)

(1− ᾱt)
√

αt

∣∣∣∣ αtᾱt−1 = ᾱt

= αt − ᾱt

(1− ᾱt)
√

αt
xt + 1− αt

(1− ᾱt)
√

αt
xt −

1− αt√
1− ᾱt

√
αt

ϵθ(xt, t)

= αt − ᾱt + 1− αt

(1− ᾱt)
√

αt
xt −

1− αt√
1− ᾱt

√
αt

ϵθ(xt, t)

= 1− ᾱt

(1− ᾱt)
√

αt
xt −

1− αt√
1− ᾱt

√
αt

ϵθ(xt, t)

= 1
√

αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)

, (3.38)

which will be of great relevance to the sampling algorithm. More details surrounding
this will be given in section 3.4.6.

So far, parameterizations for three separate variables, all of which are used to model
the reverse transition, have been derived. They are linearly related in the presence of any
xt, meaning that any can be calculated given one of them and the time step t. Ho et al.
(2020) derive the loss function with respect to ϵθ(xt, t), and will therefore be mainly
attended to in this thesis. It should be noted that in some cases, there is still interest
in calculating the predicted mean or a prediction of x0. Appropriately, µθ(xt, t) and
x̂0,θ(xt, t) will be used as functions that at their core employs ϵθ(xt, t). With these forms
in mind, the loss function can be derived.

3.4.4.3 Deriving the loss function

Knowing that both q(xt−1|xt, x0) and pθ(xt−1|xt) are multivariate Gaussians, the KL
divergence term in Lt−1 can be simplified using eq. (2.22). Additionally, the distributions
share the variance Σ̃t, making the KL divergence more convenient to evaluate. For
compactness, the shorthands µ̃ and µθ are defined for µ̃t(xt, x0) = Eq[xt−1|xt, x0] and
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µθ(xt, t) = Epθ
[xt−1|xt] respectively. It follows that

Lt−1 = Eq(xt|x0) [DKL(q(xt−1|xt, x0) || pθ(xt−1|xt))]

= Eq(xt|x0)
[
DKL(N (xt−1; µ̃t, Σ̃t) || N (xt−1; µθ, Σ̃t))

]
= Eq(xt|x0)

[
1
2

[
tr(Σ̃−1

t Σ̃t)− d + (µθ − µ̃t)⊺Σ̃−1
t (µθ − µ̃t) + log

(
|Σ̃t|
|Σ̃t|

)]]

= Eq(xt|x0)

[1
2
[
tr(I)− d + (µθ − µ̃t)⊺(β̃tI)−1(µθ − µ̃t) + log 1

]]
= Eq(xt|x0)

[ 1
2β̃t

[d− d + (µθ − µ̃t)⊺(µθ − µ̃t)]
]

= Eq(xt|x0)

[ 1
2β̃t

[(µθ − µ̃t)⊺(µθ − µ̃t)]
]

= Eq(xt|x0)

[ 1
2β̃t

[
∥µθ − µ̃t∥22

]]
, (3.39)

being the squared L2-norm between the predicted mean and the actual mean. Previously
it was shown that µθ learns to predict a transformed x0, allowing the reformulation

Lt−1 = Eq(xt|x0)

[ 1
2β̃t

[
∥µθ − µ̃t∥22

]]

= Eq(xt|x0)

[
1

2β̃t

[∥∥∥∥√αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x̂0,θ(xt, t)
1− ᾱt

−
√

αt(1− ᾱt−1)xt +
√

ᾱt−1(1− αt)x0
1− ᾱt

∥∥∥∥2

2

]]

= Eq(xt|x0)

 1
2β̃t

∥∥∥∥∥
√

ᾱt−1(1− αt)x̂0,θ(xt, t)−
√

ᾱt−1(1− αt)x0
1− ᾱt

∥∥∥∥∥
2

2


= Eq(xt|x0)

[
ᾱt−1(1− αt)2

2β̃t(1− ᾱt)2

[
∥x̂0,θ(xt, t)− x0∥22

]]
. (3.40)

The objective is identical to measuring the dissimilarity between the predicted pure data
and the pure data itself.

Equation (3.37) states that x̂0,θ(xt, t) = xt−
√

1−ᾱtϵθ(xt,t)√
ᾱt

, suggesting a formulation of
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the objective comparing the noise and predicted noise:

Lt−1 = Eq(xt|x0)

[
ᾱt−1(1− αt)2

2β̃t(1− ᾱt)2

[
∥x̂0,θ(xt, t)− x0∥22

]]

= Eq(xt|x0)

 ᾱt−1(1− αt)2

2β̃t(1− ᾱt)2

∥∥∥∥∥xt −
√

1− ᾱtϵθ(xt, t)√
ᾱt

− xt −
√

1− ᾱtϵ√
ᾱt

∥∥∥∥∥
2

2


= Eq(xt|x0)

[
ᾱt−1(1− αt)2(1− ᾱt)

2β̃t(1− ᾱt)2

[∥∥∥∥ϵθ(xt, t)− ϵ√
ᾱt

∥∥∥∥2

2

]] ∣∣∣∣∣ ᾱt−1
(
√

ᾱt)2 = 1
αt

= Eq(xt|x0)

[
(1− αt)2

2β̃t(1− ᾱt)αt

[
∥ϵθ(xt, t)− ϵ∥22

]]
. (3.41)

Effectively, the denoising matching term Lt−1 compares the predicted and ground truth
noise through the squared L2 norm. The function ϵθ(xt, t) will for the remainder of this
thesis be referred to as the noise predictor.

Ho et al. (2020) go one step further in the simplifications of the learning objective by
replacing the scaling factor residing outside the L2-norm in eq. (3.41) with the scalar value
1. Although there is no theoretical motivation for this, the authors found it to improve
sampling quality through empirical studies. They refer to this re-weighted objective as
Lsimple, while this thesis denotes it as

L1
t−1 = Eq(xt|x0)

[
1
[
∥ϵθ(xt, t)− ϵ∥22

]]
. (3.42)

3.4.5 Training

The noise predictor ϵθ serves as the foundation for the mean function in pθ(xt−1|xt),
predicting the noise that distinguishes xt−1 from xt. To obtain a useful model pθ(x0), it
must be trained towards this purpose. L0 and LT are irrelevant during training, as the
former must be satisfied during sampling, and the latter is already satisfied under the
assumptions of an ideal variance schedule. The training algorithm will thus focus on Lt−1.
Recalling from eq. (3.21), to minimize the divergence between the forward and modeled
posterior, the ELBO must be maximized. L1:T −1 contributes a negative value, totalling
multiple KL divergences in eq. (3.27). This means each Lt−1 should be minimized.

Algorithm 1 shows the general approach of training a DDPM (Ho et al., 2020). From
eq. (3.17), xt is sampled directly instead of doing the forward process iteratively from 1
through t. Lt−1 depends only on the data-conditioned marginal q(xt|x0), meaning it can
be optimized independently from all other denoising matching terms. Ho et al. (2020)
implements the squared L2-norm as the mean-squared error over vector elements.

3.4.6 Sampling

Once the noise predictor ϵθ is trained, the Markov chain can be reversed. The general
procedure for sampling using a DDPM is presented in algorithm 2. L0 is satisfied
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Algorithm 1 Training procedure of DDPMs
1: Input: Noise predictor ϵθ, data set distribution q(x0)
2: repeat
3: x0 ∼ q(x0)
4: t ∼ Uniform({1, ..., T})
5: ϵ ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

7: Update θ on ∇θ∥ϵ− ϵθ(xt, t)∥22
8: until converged

by setting the noise correction to 0 at t = 1. Line 6 then becomes reminiscent of
computing the expectation of pθ(x0|x1). Ho et al. (2020) found the choice of either
β̃t = (1−αt)(1−ᾱt−1)

1−ᾱt
or βt as the variance to give similar results, hence the only justification

for this thesis choosing the latter being its simplicity. Figure 3.7 visualizes subsets of
four sampled trajectories from the generative chain pθ(x0:T ). The latent xT is presented
in the leftmost column, and the generated x0 is farthest to the right. The samples are
generated with one of the DMs trained for this thesis. Details on all models are given in
section 4.3.

Algorithm 2 Sampling procedure for DDPMs
1: Input: Noise predictor ϵθ

2: xT ∼ N (0, I)
3: for t = T, ..., 1 do
4: z ∼ N (0, I) if t > 1, else z← 0
5: µt−1 ← 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
eq. (3.38)

6: xt−1 ← µt−1 +
√

βtz
7: end for
8: return x0

A limitation of algorithm 2 is that generating a single sample requires T evaluations
of the noise predictor. The models used in figs. 3.7 and 3.8 are trained with T = 1000,
corresponding to 1000 neural network evaluations. Compared to VAEs and GANs,
needing only one forward pass, it is clear such a generative model is much less efficient.

From the discussion about the deep generative models and the VAE in sections 3.1.1
and 3.2.2, the importance of deterministic mappings between the latents z and observed
data x was discussed. In the case of DDPMs, a starting latent xT will not map to the
same x0 because of the noise vector z introduced in line 4 in algorithm 2. Since the
generative process of the DDPM reverses the forward process, which is a Markov chain
with stochastic transitions, this is no surprise.

Figure 3.8 illustrates the significant impact of the stochastic component when sampling
from a DDPM where the target distribution is a univariate mixture of Gaussians (depicted
on the right). The latent xT = 0 is fixed for several runs through lines 3 - 8 in algorithm 2.
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x1000 x900 x800 x700 x600 x500 x400 x300 x200 x100 x0

Figure 3.7: Subsamples from the generative process of a DDPM trained on the CelebA
data set downscaled to 64× 64 with T = 1000. x1000 is the latent sampled
from the prior p(xT ) and x0 is the generated data. A subset of the latent
states xt for t ∈ [1, 1000] is shown.

Plotted are the sampled trajectories x0:T −1. The figure effectively demonstrates that,
from the perspective of a DDPM, the latents xT contain little to no information about the
resulting x0. One single latent is capable of covering the whole target distribution. This
can be regarded as a shortcoming for a generative model, as it weakens its interpretability,
especially for this thesis aiming to find suitable interpretations of the latent space.
Fortunately, there exists a solution that alleviates this, as well as the problem of requiring
T network evaluations.

Figure 3.8: 400 sampling trajectories from a one-dimensional DDPM starting from the
same latent xT = 0.
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x4000 x3200 x2400 x1600 x800 x0

x̂4000
0 x̂3200

0 x̂2400
0 x̂1600

0 x̂800
0

Figure 3.9: Using x̂0,θ from eq. (3.37) to predict where the reverse process is headed. x̂t
0

is used to denote x̂0,θ(xt, t). The model is trained with T = 4000.

3.5 Denoising Diffusion Implicit Models
While the noise predictor takes part in modeling the reverse of a stochastic diffusion
process, it is not responsible for introducing noise when sampling. Remember that the
noise predictor serves as a building block for the mean µθ(xt, t) in the Gaussian reverse
pθ(xt−1|xt) = N (xt−1; µθ(xt, t), βtI). Therefore, it is reasonable to conclude that the
noise predictor has a deterministic stance on exactly what data should emerge from
a latent xt. This fact was previously stated mathematically in eq. (3.37), which is a
formula for predicting x0 from anywhere in the chain. It is important to emphasize that
this formula is not meant as a replacement for the sampling algorithm given for DDPMs.
This claim is further strengthened by fig. 3.9, where some predictions from a subset of the
latents are shown for a model trained with T = 4000. Predictions done for high values of
t lack low-level details, appearing blurry and obscure. The more pure data is revealed in
the latent, the easier the task becomes. Interestingly, x̂0,θ(x800, 800) strongly resembles
the final sample x0. The figure demonstrates the importance of iteratively refining the
data during sampling, giving the model the ability to correct previous mistakes and add
detail.

Denoising Diffusion Implicit Models (DDIMs) were introduced by Song et al. (2022) as
a direct follow-up to Ho et al. (2020), with their main goal being to increase sampling
efficiency while retaining as much output quality as possible. To achieve this, they exploit
the ability of the noise predictor to do deterministic predictions from latents to data.
This way, they also achieve fully deterministic sampling trajectories.

3.5.1 Alternative forward processes

DDPMs learn the reverse of the forward process, which itself is stochastic. Song et al.
(2022) therefore suggest rethinking the forward process to achieve deterministic and faster
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sampling. Importantly, they are motivated to find a formulation that is compatible with
a noise predictor trained through the DDPM framework.

A notable observation, is that the DDPM objective, L1
t−1, is solely dependent on the

conditional marginal q(xt|x0) as seen in eq. (3.42). This distribution is utilized in line 6
from algorithm 1 to generate the training data for the noise predictor. As long as its
functional forms stay the same after the reformulation of the forward process, there
will be no requirement for retraining the noise predictor, and the same objective can be
utilized for training. They reformulate the forward process as

qσ(x1:T |x0) = qσ(xT |x0)
T∏

t=2
qσ(xt−1|xt, x0), (3.43)

where σ is a vector of elements σ1, σ2, . . . , σT , indexing a family Q of forward processes
over x0:T . Although qσ bears similarity with the notation for the learnable distribution
pθ, σ does not represent learnable parameters, and qσ remains a fixed noising process.
The role of σ will become clear when DDIM sampling is presented.

Recall that for the DDPM framework, Ho et al. (2020) defined q(xt|xt−1, x0) =
q(xt|xt−1) and used Bayes’ rule to find the reverse q(xt−1|xt, x0). Song et al. (2022) take
a contrasting approach by defining the reverse transition directly as

qσ(xt−1|xt, x0) = N
(

xt−1;
√

ᾱt−1x0 +
√

1− ᾱt−1 − σ2
t

xt −
√

ᾱtx0√
1− ᾱt

, σ2
t I
)

, (3.44)

where the mean function is chosen such that qσ(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I) =
q(xt|x0). As such, it matches the conditional marginal for DDPMs. Although the forward
process qσ(xt|xt−1, x0) can be found with Bayes’ rule, qσ(xt|x0) is the only requirement for
the training objective, and its presence makes the derivation of qσ(xt|xt−1, x0) unnecessary.
The stochasticity of the reverse transition is controlled by σt. As σt → 0, the distribution
becomes degenerate and given any xt and x0, xt−1 is fully deterministic.

The objective for DDIMs is determined from the ELBO (Song et al., 2022), and can
be decomposed. The derivation differs only slightly from the DDPM case, and leads to
the same decomposition, except that the new forward process is indexed by σ. The full
derivation is given in appendix B, and shows that

log pθ(x0) ≥ Eqσ(x1:T |x0)

[
log pθ(x0:T )

qσ(x1:T |x0)

]
= Eqσ(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸

reconstruction term J0

−DKL(qσ(xT |x0) || p(xT ))︸ ︷︷ ︸
prior matching term JT

−
T∑

t=2
Eqσ(xt|x0) [DKL(qσ(xt−1|xt, x0) || pθ(xt−1|xt))]︸ ︷︷ ︸

denoising matching term Jt−1

(3.45)

Similarly to the DDPM case, there is a reconstruction term J0 that is satisfied by
computing x0 noiselessly from x1 during sampling. The prior matching term JT is
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satisfied with an ideal variance schedule. Lastly, the denoising matching term is a sum
over terms similar to Lt−1, hence it is referred to as Jt−1. The form of qσ(xt−1|xt, x0) is
known (eq. (3.44)), making it again necessary to assign an identical form to pθ(xt−1|xt).
As a consequence, simplifying the KL divergence in Jt−1 when the variance is shared,
leads to a scaled L2-norm between the mean functions

Jt−1 = Eqσ(xt|x0) [DKL (qσ(xt−1|xt, x0) || pθ(xt−1|xt)))]

= Eqσ(xt|x0) =
[ 1

2σ2
t

[
∥µσ

θ − µσ
t ∥

2
2

]]
, (3.46)

where σ in the superscript highlights the alternative formulation proposed by Song et al.
(2022). With identical forms, the two means will further simplify to a comparison between
the predicted and ground truth noise, with a different scaling factor compared to DDPM.
Song et al. (2022) show that the reformulated Jt−1 = Lγ

t−1 + C, for some values of γ
and a constant C, where γ denotes the reweighting of the original Lt−1 objective. When
performing gradient operations on this objective, the constant C is disregarded. Recall
from eq. (3.42) that Ho et al. (2020) define γ = 1 when training DDPMs. Fascinatingly,
for this value of γ, it holds that a model optimizing the DDPM objective (eq. (3.42)),
will also optimize the DDIM objective (eq. (3.46)). The consequence is that the DDPM
training algorithm, algorithm 1, can be used to train the noise predictor but enables
rethinking in light of eq. (3.44) how to use it. This is discussed next.

3.5.2 Sampling

The variance σ is a function of a scalar parameter η ≥ 0 (Song et al., 2022), shown
through

σt(η) = η

√
1− ᾱt−1
1− ᾱt

√
1− αt. (3.47)

When η = 0, sampling becomes fully deterministic. For the case of η = 1, the authors
state that the forward process becomes stochastic, and the generative process pθ(x0:T )
resolves to a DDPM. Although used as a term for a deterministic DMs, DDIM also
generalizes to DDPM because of this property. Conveniently, this generalization still
allows for accelerated sampling, meaning efficient stochastic sampling is enabled. Using
η ∈ ⟨0, 1⟩ resolves to stochastic outputs, but allows for a degree of consistency and
variation from when η = 0. This case is not used for this thesis.

Song et al. (2022) point out an additional effect of the L1
t−1 objective not relying on

an iterative scheme, but instead only on q(xt|x0). It enables the forward process to also
be defined on a subset {xτ1 , . . . , xτn} of the latent variables, where τ1:n is any increasing
sequence of values from the set {0, . . . , T}. In a similar fashion where data x0 can be
predicted from xt, the reformulation of the reverse transition allows for predicting a
latent xτi−1 from xτi . Their empirical studies indicate that DDIM allows for generating
data through 20 to 100 steps without decreasing the quality of the generated sample.
This is a 10× to 50× speed-up compared to the base DDPM algorithm, which typically
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Figure 3.10: DDIM trajectories when η = 0.

uses T = 1000. Algorithm 3 illustrates DDIM sampling, where the variance vector σ is
controlled by η through eq. (3.47).

Algorithm 3 Sampling procedure for DDIM
1: Input: Noise predictor ϵθ, stochasticity parameter η, decreasing sequence of time

steps T = τn > τn−1 > · · · > τ1 = 0
2: xτn ∼ N (0, I)
3: for i = n, . . . , 2 do
4: z ∼ N (0, I) if i = 2, else z← 0

5: στi ← η

√
1−ᾱτi−1

1−ᾱτi

√1− ατi

6: ϵ̂← ϵθ(xτi , τi)
7: x̂0 ← 1√

ᾱτi

(xτi −
√1− ᾱτi ϵ̂)

8: ϵ̂←
√

1− ᾱτi−1 − σ2
τi
· ϵ̂ if i = 2, else ϵ̂← 0

9: xτi−1 ←
√

ᾱτi−1 x̂0 + ϵ̂ + στiz
10: end for
11: return x0

Song et al. (2022) state that “samples are uniquely determined from latent variables",
meaning that deterministic DDIM sampling is an injective function. Figure 3.10 visualizes
some trajectories that emerge when sampling with η = 0 on one-dimensional data.
The starting latents xT are positioned evenly in Gaussian space, and their mappings
manifest that DDIM generates a distribution that aligns with the target distribution.
Furthermore, no trajectories intersect. If two trajectories were to intersect at time step t,
the deterministic property would ensure that they were mapped to the same point x0,
confirming the injective property.

The reformulation of the mean function in the denoising transition pθ(xt−1|xt) makes
the model able to perform denoising even in the case where the variance is set to 0, as
is the case when η = 0. If attempted to set the variance to 0 during DDPM sampling,
it would fail to cover the target distribution. Appendix C demonstrates this case when
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Figure 3.11: (a) A dirt pile (teal) and multiple dirt pits (red). (b) Optimal transport
mapping using the CDF and its inverse.

sampling from the same latents as in fig. 3.10.
The non-intersecting DDIM trajectories in the one-dimensional case imply that the

order of latents coincides with the order of data. In practical terms, the model performs
the minimum amount of change to each latent on its path to the target distribution.
Khrulkov et al. (2022) study this exact ability, tying the DDIM map to the optimal
transport map.

3.6 Optimal Transport
Consider some flat terrain represented by a one-dimensional line at elevation y(x) = 0,
as illustrated in fig. 3.11a. On this field are some dirt pits (red) that need to be filled.
Behind it is a dirt pile (teal), assumed to have a total area equal to the empty area in the
pits. What is the most efficient way to distribute the dirt from the pile into the pits? The
elevation indicates differences in probability mass, or density, at specific points. Points
of higher density are more expensive to transport, so optimally, the distance moved for
these should be minimized.

Optimal transport is a field in mathematics concerned with finding the most efficient
way of distributing mass from one probability distribution to another (Villani, 2008).
There exist many transport plans, and most of them are inefficient. Optimality is achieved
if it minimizes a total cost C. The cost can be influenced by several factors, however,
this thesis only considers cost functions related to distance metrics, referred to as d(a, b)
where a is a point in the sample space of the first distribution, and b for the second.

The concept is best demonstrated in one dimension as there exists an elegant approach
using standard tools from probability theory. Assume two univariate distributions ω and
ν with their respective PDFs ω(x) and ν(x), and CDFs Fω(x) and Fν(x), with sample
spaces Ωω and Ων . This situation can be viewed through the dirt pit analogy, and the
task remains to distribute density from one to the other, in this case from ω to ν. As
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3.6 Optimal Transport

such, the two distributions in fig. 3.11a are suitable reference points.
At the median point x′

ω where Fω(x′
ω) = 0.5, ω is divided into two halves. This means

that its PDF has an equal amount of density on the left as on the right of x′
ω. Similarly,

the median point x′
ν of ν gives an equivalent scenario. By intuition, density on the left

of x′
ω should be transported to the corresponding left side of x′

ν . If done the other way
around, meaning density in the left partition of ω is moved to the right partition of ν, a
greater distance would be traveled for both groups of densities. In the discrete case with
only two quantiles, this illustrates the optimal transport map.

Consider the case where the distributions are divided into four quantiles. Again, each
quantile has an equal amount of density contained within it. Starting from the first
quantile of ω, referred to as Q1ω, its optimal transportation is to Q1ν . Regarding this as
a recursive problem, there remain three quantiles to transport, and Q2ω is best matched
with Q2ν . As such, optimal transport in the one-dimensional case preserves the order of
quantiles.

This approach applies to the general case with n quantiles, visualized in fig. 3.11b.
Since each quantile in both distributions encompasses an equivalent amount of mass, it
follows that Fω(a) = Fν(b) where a and b represent the matching quantile boundary in
terms of order. The point that a maps to is obtained through the CDF of ω and the
quantile function of ν, such that

b = F −1
ν (Fω(a)). (3.48)

The distance traversed is calculated as |b− a| for that specific point. In one dimension,
the total transportation cost can be calculated either from the viewpoint of the CDF, or
the quantile function

C(ω, ν) =
∫

Ωω

|Fω(x)− Fν(x)|dx =
∫ 1

0

∣∣∣F −1
ω (q)− F −1

ν (q)
∣∣∣ dq, (3.49)

where dq is an infinitesimal quantile, and assuming Ωω = Ων .
Figure 3.12a visualizes the optimal transport map defined through eq. (3.48), as a

continuous function for all points in the sample space. More specifically, this is the
Monge-formulation, defining an injective function M : Ωω → Ων , mapping atomic points
between two distributions (Peyré and Cuturi, 2020).

The optimal transport problem is generalized through the Wasserstein distance, whose
minimization results in the optimal transport map. It is often called the Earth Mover’s
distance since the dirt pit analogy is commonly used when exemplifying it. For the
n-dimensional case, it is given by

Wp(ω, ν) = min
M

(∫
Ωω

d(x, M(x))p ω(x) dx

) 1
p

, (3.50)

where p defines the Wasserstein order. Equation (3.49) is then the W1 distance, with the
cost function being the absolute difference between two sample points (Peyré and Cuturi,
2020).
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Figure 3.12: Optimal transport maps (a) found through analytical means, and (b) learned
by DDIM.

Khrulkov et al. (2022) suggest that DDIM learns the optimal transport map between
the prior and the data distribution it trains on by indirectly minimizing the W2 distance.
They conducted experiments in 2, 3, and 7 dimensions, comparing the Wasserstein
distance calculated from DDIM with the empirical Wasserstein distance found using
the Python Optimal Transport library. For all cases, they obtain errors at the level of
machine precision. To support their claim, fig. 3.12b shows the DDIM map when trained
on the distribution in the upper panel. The prior is depicted in the left panel. The two
maps presented in fig. 3.12 are highly similar.
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Chapter 4

Architecture and Implementation
This chapter provides details about the data sets used for training and the implementation
of the models in this thesis. Section 4.1 explains the typical neural network architecture
used for DMs modeling images. Section 4.2 provides an overview of the data sets used.
Section 4.3 details the hyperparameters for the models used in the experiments, which
also include those utilized for figures presented outside the experiments. A common
theme for all sections is the separation between low- and high-dimensional data, where
low refers to data in one or two dimensions, and high refers to images.

4.1 Architecture
In regards to the network architecture, the only requirement for the noise predictor
ϵθ(xt, t) is that the dimensionality of the output vector is the same as the input xt.
Consequently, it allows for flexibility when designing the layers that fall between. The
network also requires information about which time step t the input xt is corrupted at,
such that xt−1 is correctly modeled.

Ho et al. (2020) employ the U-Net for their experiments, an architecture originally
used to segment biomedical images (Ronneberger et al., 2015). As the name suggests,
its structure forms the letter ‘U’. From the start, the input to the neural network is
incrementally reduced along the spatial dimensions through a series of down-sampling
blocks. Simultaneously, the number of channels is increased. The bottom of the ‘U’ –
corresponding to the middle layer – represents a bottleneck, where the spatial dimensions
reach a minimum and the channel dimension a maximum. Following the bottleneck
is a series of up-sampling blocks, essentially mirroring the down-sampling part of the
network. Importantly, the U-Net has skip connections between the down-sampling and
up-sampling of the same spatial resolutions across the bottleneck. The first convolution
in each up-sampling block therefore works on a concatenation of the current activation
and the one from the corresponding down-sampling block. The number of down-sampling
blocks in the U-Net specifies the number of levels.

An illustration of the original architecture is presented in fig. 4.1. Although the specific
details shown in the figure do not perfectly align with the implementation used in this
thesis, it serves as a point of reference.

To incorporate knowledge about the time step into the U-net, Ho et al. (2020) propose
the use of sinusoidal embeddings as first introduced by Vaswani et al. (2017) for use in the
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Figure 4.1: The U-Net as illustrated by Ronneberger et al. (2015).

Transformer architecture to specify token positions. The work done for this thesis used a
U-Net architecture inspired by dome272 on GitHub1. Here, the sinusoidal embeddings
undergo a learnable transformation before they are added to the final activation of each
down- and up-sampling block. Ho et al. (2020) employ self-attention layers on some
blocks. However, empirical studies done in this thesis found it not to be necessary, and it
is therefore not implemented.

The U-Net is only relevant for high-dimensional data such as images. When modeling
low-dimensional data, a simple multi-layer perceptron was found to be sufficient. The
time step is fed as an additional input neuron to the first layer. All models use the same
architecture, where the linear layers are followed by Leaky Rectified Linear Unit (ReLU)
activation functions.

As mentioned in section 3.4.3, the variance schedule proposed by Ho et al. (2020)
is a linear interpolation between β1 = 10−4 and βT = 0.02. This approach has been
criticized for not balancing noise and data well (Nichol and Dhariwal, 2021). As such,
the field has seen many variants. Actively used for this thesis is one commonly known
as the scaled linear schedule used by Rombach et al. (2022) for the first public release
of Stable Diffusion2. This schedule interpolates linearly between the square root of the
endpoints before squaring the whole sequence. Given input endpoints β1 and βT , β̃ is a
linearly increasing sequence going from

√
β1 to

√
βT . To obtain the variance schedule,

each element is squared such that β = β̃ ⊙ β̃, where ⊙ is element-wise multiplication.
Consequently, ᾱ becomes less steep and data is corrupted at a more stable rate.

1Link to the repository: github.com/dome272/Diffusion-Models-pytorch
2Link to code snippet: github.com/CompVis/stable-diffusion/ldm/modules/diffusionmodules/util.py
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4.2 Data sets

4.2 Data sets
In the case of low dimensions, data sets are dynamically generated at the initiation
of each training session. To obtain complex distributions, such as the S-curve, the
datasets module from scikit-learn (Pedregosa et al., 2011) is utilized. Furthermore, the
distributions module from PyTorch (Paszke et al., 2019) is employed for generating
mixtures of Gaussians in arbitrary dimensions. Exact generation procedures are provided
in the get_datasets-module available in this thesis’s repository.

For high dimensions, only computer vision data sets a used. Following is a list of the
data sets, with details on who collected them and where they were downloaded from:

Animal Faces High Quality (AFHQ): Consisting of 16 130 images of cats, dogs, and
wild felines, AFHQ was collected by Choi et al. (2020). A download script available
on their project repository was utilized3.

CelebFaces Attributes (CelebA): The CelebA data set consists of 202 599 human faces
and is collected by Liu et al. (2015). It was downloaded through the datasets
module from TorchVision4.

CelebA High Quality (CelebA-HQ): As the name suggests, CelebA-HQ is an upscaled
version of CelebA created by Karras et al. (2018). Appendix C of their publication
gives details on how it was generated. CelebA-HQ contains the 30 000 best
upscalings at a resolution of 1024 × 1024. A re-sampled edition to 256 × 256
available on Kaggle5 was used for this thesis.

4.3 Models
This section aims to present an overview of the models used in this thesis. The inclusion
of hyperparameter details makes it valuable for readers interested in training their own
DM. Training of models operating on low-dimensional data was conducted on a mid-range
laptop from 2018. These training sessions typically achieved acceptable performance
after around 10 minutes, but were trained more to ensure stability. For high dimensional
data, models were trained on the IDUN cluster, maintained by the Norwegian University
of Science and Technology (Själander et al., 2019). Training duration for these models
was on the magnitude of weeks, not exceeding one month.

Tables 4.1 and 4.2 display training hyperparameters for high- and low-dimensional
models, respectively. The arrows in the tables indicate modifications made during training.
The majority of hyperparameter choices are based on the experiments by Ho et al. (2020).
Table 4.3 specifies the parameters used for the variance schedule, and table 4.4 provides
an overview of where in this thesis the models have been used. Details on parameters for
the U-Net, as well as instructions for training the models, are provided in this thesis’s
repository at github.com/willdalh/diffusion-ot.

3Link to the download script: github.com/clovaai/stargan-v2/blob/master/download.sh
4Link to the module: pytorch.org/vision/stable/datasets.html
5Data set link: kaggle.com/datasets/badasstechie/celebahq-resized-256x256
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Model name Data set Epochs Batch size LR
Celeb256 CelebA-HQ 4540 32→ 64 2 · 10−5

Celeb64 CelebA 320 128 0.8 · 10−4

AFHQ256 AFHQ 4500 32 0.0002→ 2 · 10−5 → 4 · 10−6

AFHQ256Exp1 AFHQ 1100 16 0.8 · 10−4

AFHQ256Exp2 AFHQ 1820 32 0.8 · 10−4

Table 4.1: Training hyperparameters for models trained on high-dimensional data.

Model name Data set Epochs Batch size LR
Low1DMix Mixture of Gaussians 90 1024 0.0003
Low2DSymMix Mixture of Gaussians 75 1024 0.0003
Low2DSymMix Mixture of Gaussians 70 1024 0.001
Low2DUnimodal Gaussian 20 1024 0.003
Low2DBimodal Mixture of Gaussians 75 1024 0.001
Low2DSCurve Transformed S-curve 35 1024 0.0003

Table 4.2: Training hyperparameters for models trained on low-dimensional data.

Model name(s) Schedule T β1 βT

Celeb256 and AFHQ256 Scaled linear 4000 0.00085 0.012
Celeb64 Linear 1000 0.0001 0.02
AFHQ256Exp(1|2) Linear 4000 0.0001 0.02
Low1DMix Scaled linear 1000 2.5 · 10−5 0.005
Low2DSymMix, Low2DAsymMix,
Low2DUnimodal, and Low2DBimodal

Scaled linear 1000 0.0001 0.02

Low2DSCurve Linear 1000 0.0001 0.02

Table 4.3: Variance schedule parameters.

Model name(s) Usage references
Celeb256 Experiment group H.2, figs. 3.9 and 5.1, and appendix E
Celeb64 Figure 3.7
AFHQ256 Exp. H.1b and figs. 3.1, 3.2 and 3.4
AFHQ256Exp(1|2) Exp. H.1a
Low1DMix Figures 3.8, 3.10 and 3.12b. Variance schedule used for fig. 1.1
Low2DSymMix Exp. L.1a
Low2DASymMix Exp. L.1b
Low2DUnimodal Exp. L.2a
Low2DBimodal Exp. L.2b
Low2DSCurve Exp. L.2c and appendix D

Table 4.4: Usage of models in experiments and figures.
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Experiments and Results
Through section 3.6, it was established that sufficient training leads to an alignment
between the DDIM map and the optimal transport map from the prior to the target
distribution. This chapter investigates the implications of this empirical finding for various
data sets. Section 5.1 describes the prerequisites needed for performing the experiments,
while section 5.2 provides details on the experimental setup and the assumptions made
for the experiments.

5.1 Experimental Plan
DMs are compatible with any data representable in vector form, regardless of the size. To
study how optimal transport relates to DMs, a reasonable plan is to separate experiments
based on their dimensionality since it determines how results are best presented and
what understanding can be formed. In lower dimensions, observations are more verifiable
from theory and can provide insight and, potentially, intuition on how optimal transport
is transferable to higher dimensions. Additionally, experiments that are of interest
in higher dimensions may not be relevant in lower dimensions, and vice versa. An
example is studying the effect of using the same initial latent across models, where the
information richness in high-dimensional data allows for more discussion, compared to a
two-dimensional point.

5.2 Experimental Setup
As stated in section 3.5, DDIM is a generalization over both stochastic and deterministic
sampling. As it provides accelerated sampling for both cases, drastically reducing
necessary computation resources, it will be used exclusively for all experiments. Song
et al. (2022) state that the case when η = 1 is equivalent to DDPM sampling, meaning
all observations and conclusions on accelerated DDPM sampling applies to the original
case. For clarity, when used in the context of generating data, DDIM refers to accelerated
deterministic sampling with η = 0, and DDPM refers to accelerated stochastic sampling
with η = 1.

This leaves a question on the number of time steps to be used. Song et al. (2022)
provided insight into how the number of sampling steps affects output quality. They mostly
observed it to affect the level of detail, where larger latent skips lead to blurry results.
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Figure 5.1: DDIM output for fixed latents (rows) with different number of sampling steps
(columns).

For this thesis, empirical studies uncovered additional unwanted effects when adjusting
the step size. Figure 5.1 demonstrates how output varies depending on the number
of sampling steps. The same latent maps to different outputs, where even significant
features like gender are altered. This poses a threat to the desirable determinism. To
cope with this, the results presented in each atomic experiment use the same number of
time steps, typically in the 20-40 range.

To presentably separate the experiments, a prefix will be used on the numbering
system to denote whether they are done on low- or high-dimensional data. For the
former, the letter ‘L’ is used, all contained in section 5.3. Correspondingly, the letter ‘H’
denotes experiments on high dimensionality and are presented in section 5.4. Each section
contains two groups of experiments. For instance, L.1 refers to a group of experiments on
low-dimensional data. Contained within is for example L.1a. Table 4.4 specifies which
models are used for the experiments.

5.3 Experiments on Optimal Transport: Low dimensionality
Experiment group L.1 studies how a model must balance finding shortest paths and
distributing probability mass correctly, followed by experiment group L.2, studying the
transformations that make up the optimal transport map.

Experiment group L.1 - Minimization of Euclidean distance

An important aspect of optimal transport is moving mass in the least costly manner, in
this case measured as the smallest total Euclidean distance, determined through empirical
studies by Khrulkov et al. (2022). To study this in isolation, a suitable target distribution
is one where there is little ambiguity regarding how mass should be dispersed from the
prior across all modes.
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Figure 5.2: Samples from the prior (middle cluster) and DDIM (four outer clusters). The
assigned colors denote from where in the prior the samples emerged. Shown
is a (a) symmetric target and an (b) asymmetric target.

Experiment L.1a - Symmetric mixture of Gaussians

This experiment uses a model trained on a data distribution that is symmetric along
both its two dimensions. More specifically, it is a bivariate mixture of Gaussians with
four modes positioned in their own quadrant, sharing the covariance matrix Σ = 0.1 · I.

Hypothesis 1. Samples in each mode will originate from latents positioned in the same
quadrant.

Backing the hypothesis is the fact that the prior is centered around the origin, such
that an equal amount of latents are expected to reside in each quadrant. Figure 5.2a
shows five clusters of points. The largest one and located in the middle is the prior.
The remaining four clusters make up the symmetric mixture of Gaussians, that is, the
target distribution. The color assigned to each point signifies from where in the prior it
originates. For example, the red points in the prior were transported to the red points in
the target distribution.

Upon immediate observation, it becomes evident that the colors are separated by the
faint gray lines representing the x- and y-axis, supporting hypothesis 1. There are some
instances where points appear in unexpected quadrants, which can be argued to be a
consequence of suboptimal training. It should be noted that there is no interplay between
latents during the sampling process. Each point is sampled in an i.i.d. manner, meaning
that, for example, the presence of blue points in the latents does not affect where the
orange points will end up. This experiment simultaneously verifies from the sample
counts given in the figure that DDIM is roughly able to distribute the points evenly from
the prior to the data distribution.
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Experiment L.1b - Asymmetric mixture of Gaussians

The results from the symmetric setup in exp. L.1a align with the intuitive notion of the
shortest path from any given latent to the target distribution. An interesting case of
study is how a model behaves when the target distribution is asymmetric, leading to the
following hypothesis:

Hypothesis 2. The model will learn an optimal transport map that leverages the closeness
of the upper right mode.

To investigate this, a model is trained on a variant of the data set where the mode
in the upper right quadrant is positioned closer to the origin. Results are presented in
fig. 5.2b. Although hard to distinguish, this model distributes the latents in accordance
with a different plan than in exp. L.1a. It exploits the closeness of data density by
reaching deeper into the center of the prior when gathering latents to transport to the
upper right mode. This way, the model is able to move points from the densest area with
a lower cost, reinforcing hypothesis 2.

An asymmetric target distribution leads to an asymmetric division in the prior, no
longer following the faint gray lines. Upon initial observation, it appears that the model
tends to overlook paths that are short. For example, certain red latents situated in
the upper right quadrant are closer to the green mode. Despite this, the model has
erroneously assigned those to the mode in the lower right quadrant. Recalling from
fig. 3.10, DDIM was shown to model a distribution that, to its fullest extent, follows
the target distribution. This property is observed in this experiment by how it strives
for all modes to receive an equal number of points since they are all of equal density.
The model has not fully attained this, as indicated by the imbalanced sample counts.
Again, this outcome could be attributed to insufficient training conditions. Now that the
model transports more latents from the center of the prior to the upper right mode, it is
expected that some prior outliers in the upper right quadrant become available for other
modes.

Evaluation

Exp. L.1a verifies that DDIM satisfies the property of learning the shortest path, matching
the intuitive notion when done on the symmetric setup. Experiments L.1a and L.1b
uncover another important aspect of optimal transport, showing how DDIM must balance
minimizing Euclidean distance and distributing latents correctly. The optimal transport
map learned in each experiment depicts different sets of transformations, a topic that
will be explored further in experiment group L.2.

Experiment group L.2 - Density transportation

This set of experiments studies the transformations that make up the optimal transport
map, achieved by masking parts of the prior to observe their destination.

52



5.3 Experiments on Optimal Transport: Low dimensionality

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

(a)

−2.5 0.0 2.5 5.0 7.5 10.0 12.5
−4

−2

0

2

4

(b)

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

(c)

Figure 5.3: An x-shifted variant of the prior (orange) generated by a DM from the
prior (blue). (a) DDIM samples from the prior. (b) DDPM samples from
outliers. (c) DDIM matches densities such that outliers become outliers.
Some trajectories are shown.

Experiment L.2a - Shifted prior

While not resulting in any exciting sample perceived in isolation, one can train a DM
on a shifted variant of the prior. This is particularly useful as it provides insight into
how certain densities are transported, becoming easier to analyze when the densities are
highly similar.

Hypothesis 3. The DDIM optimal transport map will be a translation when trained on
a shifted prior.

The hypothesis is based on the fact that the target distribution and the prior have the
same relative densities, but are positioned differently. This experiment uses a model
trained on a bivariate standard Gaussian with shifted mean of 10 units along the x-axis.
The prior and target are depicted in fig. 5.3a, being the left and right clusters respectively.

Figure 3.8 demonstrated that DDPM is stochastic to the degree that a single latent
is capable of covering the entire target distribution when sampled from multiple times.
The same effect presents itself in fig. 5.3b, where outliers of the prior further than one
standard deviation from the mean are sampled from, still resulting in full coverage of the
target distribution. This information serves as a prerequisite for interpreting the next
case. When sampling on the same subset of latents using DDIM, as shown in fig. 5.3c, the
densities are fully matched, to the extent that one can notice direct mappings between
certain points upon close inspection. Some trajectories are highlighted to support this.

The results are better analyzed after reflecting on what the optimal transport map
would be. The mean of the target distribution is located to the right of the prior, but at
the same height. Since the cost function is related to the Euclidean distance, a reasonable
plan is to keep the y-coordinate fixed throughout transportation. As a consequence,
outliers located at the highest point in the prior will not be moved to the area of the
greatest density. If this was the plan, one would have to compensate by filling outliers
in the target distribution with points originating from denser areas in the prior. As
such, data is only transported along the x-axis, verifying the hypothesis. The outliers
from the prior that was used as latents are transported to become outliers in the target
distribution. The transformation observed is affine, preserving parallel lines. It also
preserves distances, a statement that supports hypothesis 3.
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Figure 5.4: A bivariate symmetric mixture of Gaussians (orange) generated from the
prior (blue) by DDIM. (a) The complete distribution. (b) Outliers sampled.

Experiment L.2b - Symmetric bimodal mixture of Gaussians

The transformation demonstrated in exp. L.2a raises questions about the behavior of a
model when applied on a multimodal Gaussian. Concretely, the target distribution in
this experiment is a bimodal Gaussian where the modes enclose the prior on the x-axis.
This bivariate mixture is illustrated by the orange points in fig. 5.4a along with the blue
points for the prior.

Hypothesis 4. An outlier in the prior does not necessarily map to an outlier in the
target distribution.

In exp. L.2a, densities in the target distribution match exactly with the prior’s densities.
This will not be the case for this experiment, since the model will have to distribute
the prior between the two Gaussians. This setup is symmetric, and knowledge from
experiment group L.1 can be applied to infer a division on the prior along the vertical
line x(y) = 0, separating the latents based on what mode they will be transported to.
For consistency, again only latents that lie at least one standard deviation away from the
mean are sampled from. The results are shown in fig. 5.4b.

The pattern that emerges when sampling from outliers is different from the one in
fig. 5.3c, indicating a non-linear map and strengthens hypothesis 4. Figure 5.5a provides a
closer look at the pattern for the right mode. All orange points originate from latents with
positive x-values, a fact that proves useful when attempting to explain how the densities
are transported. The right half of the prior can, for the purpose of this discussion, be
regarded as a new distribution seen in isolation from the left half. Consequently, this
cluster of points is no longer reminiscent of a Gaussian, and the densities no longer
match. A high-density area in the full prior is not bounded by the same coordinates as
a high-density area in the right half. Points residing in the center of the full prior are
outliers in the right half, explaining why the pattern of omission includes outliers in the
data distribution.

For the figures discussed up until now, the omission pattern was achieved by removing
specific points from the latents. To better make sense of where high-density areas in
the target were mapped from, a better perspective is from the data distribution. The
orange points in fig. 5.5b are outliers in the right mode distanced one standard deviation
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Figure 5.5: Samples from the right half of the prior. Shown are latent and data pairs,
with points one standard deviation away from the center of (a) the latents
and (b) the target.

away from the sampled cluster center. Paired with the data points are the corresponding
latents (in blue) they were mapped from. This gives rise to a new pattern in the right half
of the prior, better reflecting where the area of highest density is located when considered
in isolation.

Experiment L.2c - Extending CDF-mapping to higher dimensions

Section 3.6 gave an overview of how the CDF relates to the optimal transport map
between two univariate distributions. Specifically, fig. 3.11b illustrated how accumu-
lated probability mass is preserved throughout transportation, due to non-intersecting
trajectories. Now, the question arises: Is this intuitive approach applicable to higher
dimensions? This is a difficult problem due to no evident way of ordering quantiles in
two dimensions. However, acknowledging that the prior has no internal dependencies
serves as motivation for mapping accumulated probability mass across each dimension
independently.

Hypothesis 5. The CDF approach extends to higher dimensions for DMs due to the
independence between the random variables making up the prior.

To make this experiment more reflect high-dimensional data, a target distribution is used
where the CDF is not explicitly defined.

Figure 5.6a shows the prior distribution, along with an arbitrary latent xT = (x̃, ỹ)
located where the marginal Fprior(x̃) = 0.10 and Fprior(ỹ) = 0.76. Notably, Fprior(x) is
constant along the marked vertical line, and Fprior(y) along the horizontal line. The target
distribution, represented by several points, is shown in fig. 5.6b. The color map indicates a
point’s relative position along the x-axis, giving rise to the marginal empirical distribution
function (EDF) F̂data(x). To find the optimal transport mapping along the x-axis, recall
that preservation of accumulated probability mass implies Fprior(x̃) = Fdata(x̂), where x̂
is the mapping of interest. This value is obtained by indexing the sorted list with the
integer ⌊n · Fprior(x̃)⌋, where n is the number of data points.
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Figure 5.6: Extending CDF-mapping to higher dimensions. (a) Latent positioned at
where the independent marginal CDFs intersect. (b) Target distribution
sorted to obtain the marginal EDF along the x-axis. (c) Tolerable points
sorted to obtain the marginal EDF along the y-axis. × is the CDF-mapping,
and ⋆ is a DDIM-mapping.

Knowing x̂, points within the interval [x̂− δ, x̂ + δ] are suitable for the conditional
EDF F̂data(y|x̂), where δ is the tolerance for deviating from the optimal mapping along
the x-axis. Figure 5.6c displays the distribution again, now highlighting the m extracted
points sorted along the y-axis with δ = 0.1. Accordingly, the optimal transport mapping
from ỹ is found by indexing ⌊m ·Fprior(ỹ)⌋, yielding ŷ. Marked with the cross, is the CDF-
mapped point x̂ = (x̂, ŷ). As a verification of the result, the star marks the point where
DDIM maps the latent xT , matching the CDF-mapping and consequently supporting
hypothesis 5. Additional CDF and DDIM mappings are provided in appendix D.

Under the assumption that DDIMs learn the optimal transport map, the following
conjecture can act as an interpretative framework for how they map noise to data in
higher dimensions:

Conjecture 1. For a high-dimensional latent space, the DDIM optimal transport map
approximately preserves accumulated probability mass for each dimension in the prior.

To more explicitly observe the interplay between the dimensions throughout transport-
ation, fig. 5.7 shows how two orthogonal masks in the prior are mapped to the target
distribution by DDIM. The horizontal mask is bent to follow the local curvature, similar
to the vertical mask, which is also broken up to take into account the gaps. The figure
demonstrates how moving a latent along one axis while keeping the rest constant will
propagate changes to the other dimensions in the data distribution. For instance, if the
vertical line was positioned further towards negative x-values, keeping the y-value of the
prior intersection constant, the resulting target intersection would obtain a lower y-value.
In other words, the latent space is entangled.
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Figure 5.7: DDIM mapping orthogonal subsets of the prior to the data distribution.

Evaluation

The learned transformations depend on the target distribution. Exp. L.2a shows that it
can be affine, and exp. L.2b shows that it is capable of being more complex than that.
These led up to exp. L.2c, studying how CDF-mappings extend to higher dimensions.
The more dimensions, the more sparse the data sets become. For instance, the Euclidean
distance between two high-quality images is typically larger than between two points in
the S-curve. As such, the tolerance δ is required to be large. Moreover, the experiment
does not investigate the amplification of error as dimensionality increases. It is anticipated
that the error associated with the CDF-method will grow larger as more dimensions are
involved. Consequently, conjecture 1 should not be drawn conclusions from, but rather
be viewed as a means of providing additional perspective.

5.4 Experiments on Optimal Transport: High
dimensionality

As seen in section 5.3, experiments on optimal transport in lower dimensions can be
illustrated compactly and sometimes verified solely by visual inspection. Now, we are also
interested in observing the consequences of optimal transport when applied to data of
higher dimensions. Exploring the transformations demonstrated in experiment group L.2
can prove challenging since clusters of high-dimensional data are difficult to visualize
without resolving to dimensionality reduction methods, potentially leading to loss of
valuable information. Consequently, the following experiments are limited to studying a
relatively small number of samples in isolation.

Experiment group H.1 - Identical initial latents

The study on high-dimensional data starts by conducting experiments where identical
latents xT are used as input for various models. Employing the same latent for different
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Figure 5.8: Samples from two separately trained models (rows), AFHQ256Exp1 and
AFHQ256Exp2, using the same fixed latents (columns). The models are
trained on the same data set.

purposes can lead to several points of reference to collectively assess multiple models’
abilities to efficiently transport noise to the data distribution.

Experiment H.1a - Identical data set

We start the analysis by sampling from two models that have been trained separately on
the same data set. While the training data is identical, the instances are fed into the
models at random, meaning no seeding is used. To make this experiment more conclusive,
the models are distinguished by their number of parameters and their training time.

Hypothesis 6. Fixed latent inputs to two different models trained on the same data set
will produce data with high pixel similarities.

Due to the fact that DDIM is deterministic and learns the optimal transport map, it is
anticipated that there will be high similarities in the images produced by the two models.
Results from denoising the same set of latents are shown in fig. 5.8. The first model (top
row) is a U-Net of 4 levels made up of 22 million parameters and was trained for 1100
epochs. The second model (bottom row) is also a U-Net, but of 5 levels and containing
89 million parameters trained for 1820 epochs.

Without further context, one could believe that the two rows in fig. 5.8 are meant
to highlight how output quality improves throughout training a single DM. Although
each column pair contains samples from different models, high-level features such as
background color, fur color, and animal type are similar. Oftentimes, even low-level
features like the position of eyes and fur pattern are similar. Some samples appear obscure
due to limited training time and sub-optimal choices of hyperparameters. Interestingly,
the two separately trained models have created similar representations of the latent space,
and one can expect them to converge further towards a mutual representation given more
training resources. This can be understood from the perspective of optimal transport, as
the models were on the path of learning the minimum amount of change required for
each pixel channel to make them collectively fit the target distribution. In conclusion,
the results support hypothesis 6.
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Figure 5.9: Samples from two separately trained models (rows), Celeb256 and AFHQ256,
using the same fixed latents (columns). The models are trained on different
data sets.

Experiment H.1b - Different data sets

In exp. H.1a, the models are trained on the same data set, leading to the convergence
of similar transport maps. Khrulkov et al. (2022) conducted an experiment involving
fixed latent inputs to models trained on disparate data sets. However, they limited
the experiment to comparing outputs within the same overall class. For instance, they
compared cats with dogs, where the shared class was animal, and portraits of humans
with paintings of humans, with human as the shared class. In addition to verifying their
results, this experiment serves as an extension by comparing model outputs with highly
contrasting data sets.

Hypothesis 7. Two models trained on different data sets will output pixel-similar images
with fixed latent input.

The top row in fig. 5.9 displays samples from Celeb256 and the bottom row from
AFHQ256 with fixed latent inputs. As expected, the pairs do not exhibit similarities to the
degree as seen in exp. H.1a. However, features like background and color tint are shared.
In some cases, even low-level features appear to be shared, but upon closer inspection
are groups of pixels that have gotten similar colors. For example, the background for
the human sample in the second column from the right has some darker area positioned
below the left ear. The animal model inferred this area to be a darker patch of fur on
the cat. These features are similar only on the pixel level, making hypothesis 7 valid.

Evaluation

The findings from experiments H.1a and H.1b are undeniably intriguing. By feeding the
same latent across different models, the impact of optimal transport becomes apparent.
In the case of different data sets, the modalities in the two target distributions are
arguably dissimilar. Still, there is some degree of pixel similarity, an example being the
patch of fur on the cat and the background graphic for the man in the second column
from the right. This suggests that there is some overlap in the high-dimensional PDFs.
Although it is difficult to picture such PDFs, conjecture 1 supports the suggestion, such
that the marginal CDFs matches between the samples from each model.
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An example of a feature not consistently overlapping in the high-dimensional PDFs is
the background color. This stems from a bias in the data set: As animals are commonly
photographed in the wild, the background tends to have greener values as compared to
human portraits. This can be observed in the first and sixth column pairs from the right
in fig. 5.8.

Experiment group H.2 - Latent manipulation

As mentioned in chapter 1, when exploring the latent space of a VAE or a GAN, one
typically traverses a single dimension while keeping the rest static to observe how the
sample changes. This is doable as there is a strict bottleneck on the latent space, which
forces the models to capture the necessary characteristics into independent generative
factors. Due to the high dimensionality of DMs, independent factors are not expected to
be captured by each dimension in xT . As such, the traversal approach is not relevant.
This group of experiments looks into alternative ways of exploring the latent space, ideally
hoping for an intuitive interpretation.

Experiment H.2a - Intensity modification

When comparing model outputs from fixed latents in experiment group H.1, a common
observation was correlation on color balances. This aspect can be explored further by
observing how a sample is altered when the latent is modified by a constant value across
channel dimensions.

Hypothesis 8. Brighter latents lead to brighter images, and darker latents lead to darker
images.

Specifically, this experiment focuses on uncovering if the intensity of an image can be
changed to bring out samples where desired lighting conditions are met. For the setup,
various latents x̃T = xT +λ1 are sampled from, where λ is a constant scalar value linearly
interpolated between [−0.02, 0.02]. The denoised latents x̃0 are shown in fig. 5.10. From
the middle column, where λ = 0, the intensities of the latents are decreased towards
the left, and increased going to the right. Interestingly, not only are lighting conditions
altered, but also features like ethnicity and hair color. Additionally, some x̃0 portray
men at λ = 0, while increased intensities change the portrayed subjects to women. From
the endpoints, it can be argued that the samples will become increasingly obscure with
increasing values of λ values. The more unlikely x̃T is under the prior, the more difficult
it will be to map it to the target distribution.

An overall observation is that linear changes in the latent do not correspond to linear
changes in data. Although the requirement of dimmed or brightened images is met, the
model adapts itself to latent changes by targeting modes in the underlying distribution
of closer vicinity. The third row exemplifies this as λ approaches negative values. With
darker areas, the model becomes attracted to features that are reasonable under the new
conditions, in this case, suiting the subject with dark sunglasses. The three last panels
in the top row, going towards positive values of λ, are examples where the model must
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λ = −0.02 λ = 0 λ = 0.02

Figure 5.10: Four instances of x̃0 generated from x̃T = xT + λ1 where λ is a scalar value.

overlook the aspect of finding the shortest distance to still match the target distribution.
As the latent is brightened, more makeup is applied. Interestingly, this leads to darker
eyeshadow. A possible explanation is that lighter skin and the amount of visible makeup
are positively correlated features in the data set.

For completeness, a study on how the model adapts to changes along separate color
channels is provided. Each row in fig. 5.11 contains samples from x̃T = xT + λm, where
m is a mask targeting a color channel, and matches the dimensionality of xT .

The results indicate that the model can be forced to generate data that is highly
unlikely under the target distribution. It is reasonable to assume that the data set does
not contain a multitude of data points with color tints as extreme as the ones in the
left-most column of fig. 5.11. Although the latents are translated in a way that makes
them less likely under the prior, the presented images are still coherent and visually
plausible. Both results propose that hypothesis 8 holds.

This experiment has been restricted to studying global modifications to latents, meaning
all pixels in the same channel have undergone the same changes. Still, they provide one
important finding: While exp. H.1b indicated color correlations across model outputs
from fixed inputs, this experiment shows that the latents themselves also partake in this
correlation. This insight enables a certain degree of predictability on the overall visuals
of the sample prior to querying the model.

Experiment H.2b - Partial intensity modification

As pointed out in exp. H.2a, global dimming leads to sunglasses appearing. Is it possible to
encourage the appearance of this feature without large changes in the values of irrelevant
pixels residing outside the area where sunglasses are expected to appear? Recalling from
exp. L.2a, DDIM will minimize changes to latent dimensions that already align with the
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λ = −0.02 λ = 0 λ = 0.02

Figure 5.11: x̃0 generated from x̃T = xT + λm, where m masks a color channel and λ
is a scalar value. Each row uses a different m to target the R, G, and B
channel respectively.

target distribution. In the high-dimensional case, it is possible that a dark area in the
latent is more likely to map to sunglasses due to its dark appearance. This motivates
an experiment where specific groups of pixels are targeted in an attempt to bring out
desired features.

Hypothesis 9. Modifying a subset of latent dimensions will enforce both local and global
changes.

Global changes are hypothesized to emerge due to the effect observed in two dimensions in
fig. 5.7, where DDIM entangles the independent latent dimensions during transportation
to the target distribution. To answer the hypothesis, a mask m will be used to target
and modify specific areas in the latents such that x̃T = xT + λm. In the case where
specific results are referenced, λ and its value will be specified in superscript.

Figure 5.12a demonstrates the effect of translating a subset of latent dimensions,
specifically the region around the eyes, towards negative values. The mask m is visualized
as the red box on the sample x̃λ=0

0 . Not only do two of the subjects obtain sunglasses,
but there is also a multitude of changes to other areas positioned in latent areas that
were not modified. The rows are addressed in order.

As λ decreases for the top row, the overall skin color becomes darker while the
background color stays constant. Notably, many of the facial expressions undergo
changes. When the sunglasses appear, the smile loses some of its strength, and the
nasolabial folds diminish. While the jowl appears with a constant level of darkness
throughout all values for λ, the last panel depicts this area with a texture reminiscent
of a beard. The second row shows some unwanted effects of the outlined approach.
From x̃λ=−0.011

0 and onwards, the gender is changed. In the last two panels, the model
inferred that darker areas around the eyes in the latent maps to a shadow. To reason
with this, it changes the hair into a hat. Despite faint lines, one could argue that the
last panel displays some form of eyewear. The last row depicts a similar story to that
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λ = 0.0 λ = −0.011 λ = −0.022 λ = −0.033

(a)

λ = 0.00 λ = −0.02 λ = −0.04 λ = −0.06

(b)

Figure 5.12: Decreasing the intensity of specific latent dimensions. The images are
sampled from x̃T = xT + λm, where m is a mask for the red box targeting
(a) the periorbital region and (b) the mouth.

of the first, where both expressions and colors are changed to match the presence of
sunglasses. Unexpectedly, at x̃λ=−0.022

0 , the subject temporarily switches gender. The
model seems to have found it feasible to map the darker areas to eyes with eyeshadow
applied. A reasonable explanation is that most subjects in the data set wearing makeup
portrays women. Note that the mask is positioned at the same coordinates for all rows.
Although the heads have different orientations, the model is still able to rotate the
eyewear correctly.

The same experiment of decreasing the intensity is done with another latent mask,
shown in fig. 5.12b, now around the mouth. In the top and bottom rows, the teeth
become less visible as the subject smiles less. Again, facial expressions and skin tones
are modified as a result of the local change. The eyes, which were once gleaming, now
appear more fatigued. Notably, also age has seemed to change. For the middle row,
x̃λ=0

0 does not display any teeth. Still, darkening the latent parts mapping to the mouth
resulted in an open mouth. This area in the last panel, x̃λ=−0.06

0 , still has an overall
darker appearance, now with a stronger color on the lips.

Until now, only negative translations on latent groups have been studied. Some features
may require groups to be shifted in the positive direction to appear. The results in
fig. 5.13 are obtained through the same procedure as the ones shown in the previous
figure, employing a mask on specific areas, with the difference being that λ is increased.
In fig. 5.13a, the masked area is the mouth. As λ goes from 0 to 0.033, all subjects show
teeth. Except for the middle row, the same person is depicted. A possible explanation
for the gender alteration could be attributed to the influence on latent areas associated
with dark facial hair when the mouth is targeted. As these latent pixels are increased in
brightness, they lose their representation as incipient mustache growth. Once again, the
change in global facial expressions reflects the emerged feature, examples being raised
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λ = 0.000 λ = 0.011 λ = 0.022 λ = 0.033

(a)

λ = 0.0000 λ = 0.0017 λ = 0.0033 λ = 0.0050

(b)

Figure 5.13: Increasing the intensity of specific latent dimensions. The images are sampled
from x̃T = xT + λm, where m is a mask for the red box targeting (a) the
mouth and (b) the hair.

eyebrows, more defined jaws, and gleaming eyes.
Figure 5.13b shows results obtained by increasing λ when the mask covers the hair.

For all subjects, the hair becomes brighter with small adjustments. Since the mask avoids
most of the face, there are few changes in facial expressions. However, the skin tones
are changed, and the woman in the bottom row even switches ethnicity. In conclusion,
hypothesis 9 is valid.

Experiment H.2c - Feature transfer through latent transfer

The results from exp. H.2b suggest that groups of latent pixels encode features that
will appear at the same coordinates, with some interplay with global factors. Can this
knowledge be leveraged to transfer features between samples?

Hypothesis 10. By selectively copying dimensions from one latent to another, the
corresponding area in the mapping of the latter incorporates the feature present in the
mapping of the former.

The approach used in this experiment is termed feature transfer through latent transfer
and can be seen as one specific approach of doing partial latent manipulation.

The two samples x1
0 (left image) and x2

0 (middle image) shown in fig. 5.14 are generated
from independent latents x1

T and x2
T . The first subject smiles, while the second does not.

This feature is of interest and is therefore highlighted with the red box. In an attempt to
transfer it to the second subject, the area in the latent corresponding to the area bounded
by the red box is copied from x1

T to the corresponding position in x2
T . With a mask m

targeting the enclosed area, a modified latent is given as x̃2
T = m⊙ x1

T + (1−m)⊙ x2
T ,

where ⊙ is element-wise multiplication between two vectors. This modified latent maps
to the sample x̃2

0 (right image).
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x1
0 x2

0 x̃2
0

Figure 5.14: Transferring a feature from x1
0 to x2

0 by copying the masked latent pixels
(highlighted by the red box) from x1

T into x2
T , resulting in x̃2

T , from which
x̃2

0 is sampled.

x1
0 x2

0 x̃2
0

(a)

x1
0 x2

0 x̃2
0

(b)

Figure 5.15: Additional examples of performing feature transfer through latent transfer,
with the feature being (a) the smile and (b) sunglasses.

The targeted feature was successfully transferred. Also shown in exp. H.2b, the model
is capable of utilizing the new information to make it sensible in regards to the data
distribution. Humans that smile typically reflect this facial expression in other areas
as well, as seen by how the cheeks are more tightened and the nose is more stretched
horizontally. When one part of the latent suggests a smile, the model does not restrict
itself to using that knowledge for the corresponding area only, but allows this information
to flow out to other areas as well. More concretely, local changes lead to global effects.

This experiment demonstrates another important property, which is that the exact
same smile is not pasted, but a variation of it that fits with the global characteristics
of the original subject. The lip color of x2

0 is more saturated compared to x1
0. Even

after the feature transfer, the lip color stays the same. This means that surrounding and
untouched latent pixels encode information that affects the area around the mouth, and
that the model allows for information to flow from surrounding areas to local areas. As
such, global information affects local areas. These results are remarkable and strengthen
hypothesis 10 since the feature is incorporated in both a global and local manner.

Figure 5.15 presents two additional cases of this experiment, where the desired feature is
also successfully transferred and made to fit with the surrounding context. For example,
the subject in fig. 5.15a appears younger and has narrowed eyes when smiling. In
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fig. 5.15b, the subject appears older when the sunglasses are copied over. Similar to
fig. 5.14, global factors also affect the targeted area, as seen by the difference between
the source sunglasses and the transferred sunglasses.

From the perspective of optimal transport, the best assumption is that the group of
latent pixels was positioned close to a group of pixels rendering the specific feature. Take
fig. 5.15b as an example: Although the values in the red box in the corresponding latent
were randomly sampled, they happened to be less intense and therefore lead to dark
sunglasses.

Evaluation

Exp. H.2a demonstrated how it is possible to manipulate the color composition of images.
Since a latent is sampled from a multivariate standard Gaussians, the mean of the
dimensions is expected to be 0, which has the highest relative likelihood. When the latent
dimensions are shifted by a constant value, the mean is expected to be that scalar shift,
consequently becoming less likely. In the context of the CDF, the latents are shifted away
from the median value, potentially towards more unlikely modes. Using conjecture 1 to
state that the marginal CDFs are matched is a plausible explanation for why DDIM is
forced to map unlikely latents to unlikely data.

For partial intensity modification in exp. H.2b, local changes lead to global effects.
This has some impractical consequences as, occasionally, unforeseen and undesirable
features may appear. Sometimes it even fails to deliver the intended feature. An example
is the middle row in fig. 5.12a, where a hat emerges, while the sunglasses are too faint.
Moreover, the interval for λ is defined over varied magnitudes, suggesting that numerous
conditions must be met for the model to behave deliberately. For each desired feature,
this range must be optimized manually. On top of that, despite working for one specific
sample, there is no guarantee for it to work with another.

Transferring features through latent transfer, as shown in exp. H.2c, is also a method
that cannot be consistently relied upon. If two samples diverge in terms of overall
lighting conditions, an area considered dark in the first sample may not be perceived
as dark in the other, despite them having matching numerical values. When sampling,
the model uses the surrounding latent pixels to determine specific pixel values. If the
surrounding lighting conditions are relatively dim compared to the area around the
eyes, the threshold for adding sunglasses will be increased. This is due to the fact that
sunglasses in photographs tend to be highly contrasting in terms of color and brightness
compared to other areas. In conclusion, features are more likely to be transferred if two
samples are balanced color-wise.

The data sets used have been edited to ensure consistency across instances. For
example, eyes are positioned at roughly the same y-coordinates in the CelebA data set.
If trained on more general data where such consistency is not present, it is necessary to
identify regions manually for each sample when performing partial latent manipulation.
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Discussion and Conclusion
DMs mark an exciting direction for data synthesis with its flexible techniques and
superior performance compared to other deep generative models. Discovering tools to
interpret and comprehend the mechanisms of DMs will prove vital for understanding
their limitations and facilitating improvements. This chapter concludes the thesis with
section 6.1 summarizing all findings, and section 6.2 stating the contributions that have
been made. Following these is section 6.3, discussing possible directions for future work.

6.1 Discussion
The results from exp. H.1a give rise to a remarkable interpretation of the latent space.
Referring to an entity as optimal, implies the global optimum. In the case of finding an
optimal transport map, its connection to fundamental mathematical laws renders the
solution dependent solely on the underlying data distribution. As such, one can think of
the mapping from latents to data as an intrinsic aspect of nature, existing independently
of the discovery and implementation of any DDIM. Since the noise predictor bases itself
on this determinism, one can argue that its loss space has fewer local minima, making
convergence more efficient and reliable. This can point towards an explanation as to why
DMs have achieved such impressive performance.

Through the experiments on latent manipulation, many of the features that appear
can be pointed toward biases in the data set. For instance, in exp. H.2a, all subjects
become women as latent brightness is increased (with additional samples in appendix E).
Furthermore, when subjects undergo their change to wearing sunglasses in exp. H.2b,
their skin tone becomes tawnier. On top of that, as subjects are forced to smile less,
their age seems to increase. Common for these observations, is that they coincide well
with how the world operates. Female celebrities appear in brighter environments during
photoshoots, to emphasize youthfulness. People wearing sunglasses have been exposed to
the sun, leading to browner skin. Older celebrities often find photoshoots more tedious
than exciting, and thus exhibit a more serious demeanor that results in weak or no smiles.
These observations should also be explained from the perspective of how the model
adapts its mappings when the latents become less likely. As was seen in exp. H.2a when
modifying the color intensity of the latents, the model can be forced to produce images
that are highly unlikely in the data set. The incidental features may be an artifact of
the model working on increasingly unlikely latents. Still, the color-tinted images may
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reflect well how humans appear in colorful environments. As such, using a DM as a tool
for feature exploration on large-scale data sets can prove valuable when attempting to
uncover biases.

Sohl-Dickstein et al. (2015) experimented with a method called inpainting. It allows
modifying regions of an existing image x0 by sampling as usual, but at each step, the
area desired to be kept is replaced by the corresponding area sampled from q(xt|x0).
They found the model successful at filling in regions such that they seem relevant to
the static parts. Nichol et al. (2022) mentioned some weaknesses of this approach
when using text conditions to guide the inpainting process. They observed unwanted
artifacts that led them to fine-tune the DM with a mask channel as additional input.
Another disadvantage is that the model is limited to information flow from global to
local contexts only. When painting in an object, the overall surrounding context will not
reflect the added information. Partial latent manipulation, proposed in experiments H.2b
and H.2c, alleviates both problems. It does not require retraining, as it bases itself on
the deterministic and optimal mappings between latents and data. It also allows for
information to flow out from the masked area and affect global features, resulting in data
that aligns more with the underlying data distribution. An example is that overall facial
expressions are altered as a consequence of modifications in the area around the mouth.

The partial latent manipulation method bears some resemblance to how other deep
generative models are explored. For DMs, each latent dimension does not have an
explicit responsibility for its mapping, but is instead heavily influenced by all other
dimensions. As such, they are better studied in groups. To some extent, a group of
latent dimensions can be regarded as its own generative factor, although they are far
from being disentangled. This is a weak interpretation considering the vast number of
permutations from the set of dimensions. Even so, with DMs being in its infancy in
the ML field, the interpretation may not be far off. The method that it bases itself on,
partial latent manipulation, has a theoretical connection to optimal transport. It reveals
how features occur in tandem with each other, occasionally uncovering data set biases.
As demonstrated, DDIM was also able to produce coherent images in between feature
encouragements, further strengthening this interpretation. Finally, it does not require
any supplemental model, instead rooting itself to the capabilities provided by the base
framework, DDPM. Although weak compared to VAEs, partial latent manipulation still
justifies itself as a powerful tool for gaining insight into the model’s reasoning process,
and how it perceives the latent space.

There is still some limitation regarding the exploration of the latent space with the
methods proposed. Some features are more abstract and not concretely tied to textural
details. For example, there are few evident areas that can be modified to guarantee a
specific gender. This challenge is emphasized by the two middle samples, x̃λ=−0.011

0 and
x̃λ=−0.022

0 , in the bottom row of fig. 5.12. Both give the same visual impression and
undeniably have a high pixel similarity, which can be attributed to the close proximity
of their respective latents. Nonetheless, they depict different genders. Because of the
similarity in the latents, it gives an indication the model exhibits highly sensitive and
impulsive decision-making. It is also reasonable to assume that there are other areas
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that, when modified, could lead to a similar outcome. This behavior is difficult to gain
control over, suggesting that there is still much work to be done on understanding the
reasoning process that DDIM uses for data generation.

6.2 Contributions
The first goal of this thesis was to provide the essential theory surrounding DMs as a
survey. Importantly, it was intended to be accessible, meaning some preliminary theory
had to be included. This survey was given in chapter 3. The first research question guided
the survey in discerning what scholarly works contributed the most to the theoretical
foundations of DMs. Sections 3.3 to 3.5 highlight the work by Sohl-Dickstein et al. (2015),
Ho et al. (2020), and Song et al. (2022) respectively.

The second goal was to uncover meaningful interpretations of the latent space of DMs,
attempted through the experiments in chapter 5. The second research question inquired
about the possibility of gaining insight into the behavior of DMs on the basis of their
connection to optimal transport. Starting with low-dimensional data, the experiments
verified the connection, showing how optimal transport affects deterministic sampling.
These lead to the interpretative framework defined through conjecture 1, the usefulness
of which was apparent when analyzing the results on high-dimensional data. Overall, the
experiments consistently support the notion that the behavior of DMs can be adequately
explained by the principles of optimal transport.

The last research question probed the plausibility of harnessing optimal transport
to gain control of features that are generated. All results in experiment group H.2
demonstrate that this is possible, whether it is to modify color conditions, or to bring
forth features that are color-consistent such as smiles and sunglasses.

The determinism offered by DDIM has garnered attention in the research field. However,
in the commercial landscape, DDIM is merely seen as one way to sample data, lost in
the crowd of numerous other algorithms aiming to improve efficiency, sampling quality,
or to impose specific styles. This thesis has illuminated the broader value of DDIM
beyond research, demonstrating its potential as a tool for data editing and data set bias
identification. An example is partial latent manipulation as an alternative to inpainting.
Like inpainting, it allows the global context to affect the masked area. However, it also
allows global effects to occur from local enforcement.

6.3 Future Work
Within the field, DMs have been subject to alternative mathematical formulations,
generalizations, and applications in other domains. However, during the research for
this thesis, it was necessary to focus on specific aspects and refrain from the many
breakthroughs that emerged along the way. This leaves a multitude of directions to
pursue when solidifying the understanding of DMs and gaining insight into their perception
of the latent space.
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While Khrulkov et al. (2022) suggest that DDIM minimizes the Wasserstein distance
between the prior and the target distribution, Kwon et al. (2022a) propose that DDPMs
in general minimizes the Wasserstein distance between the target and the synthesized
distribution. These perspectives describe two different scenarios. The first studies
the sampling process, while the second focuses on the training process. In the Lt−1
objective, the KL divergence is minimized between the reverse transitions q(xt−1|xt, x0)
and pθ(xt−1|xt). This similarity measure lacks certain desirable properties, as discussed
in section 2.4. What Kwon et al. (2022a) imply, is that hidden beneath the ELBO
objective is a concurrent minimization of the Wasserstein distance between q(x0) and
pθ(x0). In the context of GANs, modifying the loss function to obtain what are termed
Wasserstein GANs was found to improve stability and alleviate mode collapse (Arjovsky
et al., 2017), which is a common problem. This possibly explains why DDPMs are so
robust out of the box. Nonetheless, if two instances of Wasserstein minimization occur in
the DDPM framework, it is worth studying the connection between them. Both describe
a relationship that DMs have with optimal transport theory.

Quantile matching is a great interpretation for DDIM in one dimension. However,
when extending this concept to two dimensions, as attempted in exp. L.2c, the notion of
quantile order becomes nonsensical. To develop a more robust and accurate interpretative
model than conjecture 1, it may prove beneficial to delve deeper into optimal transport
theory in the search for more established theoretical constructs compatible with DMs.

Prior to the work by Ho et al. (2020), Song and Ermon (2020) proposed noise conditional
score networks (NCSNs). Because of their notable resemblance to DMs, they have since
been generalized into a unified framework based on differential equations (Song et al.,
2021). Principally, the DMs outlined in this thesis are discrete solutions to differential
equations, and its theoretical foundation may possess tools that have value towards
interpretation, regardless of whether they are related to optimal transport.

The idea of guiding DMs has been instrumental to their success, especially when
applied to text-conditioning tasks. At the core, these methods alter the unconditional
direction the noise predictor proposes, forcing it to point more towards a desired mode.
In their study of optimal transport, Khrulkov et al. (2022), touched upon the effect of
fixing latents while varying the class condition for a DM trained on ImageNet. Their
results (fig. 5) show images with shared high-level features, demonstrating how DDIM
is able to design optimal transport maps for each class that bears high similarities.
Although guiding was out of scope for this thesis, it is an area deserving of attention. The
experiments in section 5.3 on low-dimensional data would certainly be more complete if
the concept of guiding was incorporated. Examples of interesting studies would be to
examine how the prior is divided when conditioning on specific modes, or how densities
are transported when only one of multiple modes is targeted. Such experiments would
be an extension of the already existing analytic solutions to optimal transport problems.

Subsequent to the work by Khrulkov et al. (2022), parameters for the text-conditional
model, Stable Diffusion, were made public. This model allows for interesting experiments,
such as studying how it reacts to a prompt suggesting a particular dominant color while
latent pixels are more positive for another color. With such a general and high-capacity
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model, there are many aspects worth exploring.
Exp. H.1a showed that two models trained on matching data sets converged to a

similar optimal transport map. The results spark curiosity about how this applies to
large-scale models. Stable Diffusion is the de facto open-source text-conditional DM,
with few established alternatives, except fine-tuned versions on specific visual styles. New
and separate models will inevitably be released to the public, opening up the possibility
of comparing their DDIM maps. An interesting case of study is to input the same text
prompt and latent xT , and observe the similarities between the DDIM samples. This
approach can potentially provide an unbiased benchmark for DMs. Since the sampling
conditions are identical for both models, their performance can be compared by assessing
whose samples are of greater quality. A requirement is that both models target a similar
data distribution. For example, comparing two models where one is trained on medical
images and the second on natural images serves little value except for examining local
pixel similarities.

Latent manipulation holds potential in data editing tasks where a certain feature, and
a global reflection of said feature, are desired. However, the experiments demonstrated
situations where the global factors were excessively modified. A potential reason is
the infeasible masks employed. In most cases, the mask covered additional areas that
magnified the unwanted extra features. To alleviate this problem, a more sophisticated
segmentation tool could be utilized to target the relevant areas more precisely.

Section 6.1 compared partial latent manipulation to inpainting. For the usual inpainting
approach, the model is free to fill in whatever it sees fit since the area being filled in is
initialized with random noise. A fact not taken advantage of in this thesis, is that the
noise which separates xT and x0 is known. This allows samples from the degenerate
distribution q(xt|xT , x0) to replace parts of the latent undergoing denoising, giving the
ability to restrict certain areas from changing. Such an extension would make it bear
more resemblance to inpainting, except that the area being inpainted is more controlled.
Out of scope for this thesis is a technique called DDIM inversion, where data is mapped
back to the latent space, effectively enabling encodings of real data. Latent manipulation
coupled with DDIM inversion could prove itself as a powerful technique for generating
controlled variations of the same image.

This thesis was limited to studying DMs in the domain of Computer Vision. In-
triguingly, they have also shown potential in other domains such as decision-making
(Ajay et al., 2022), protein design (Watson et al., 2022), audio synthesis, and natural
language generation to name a few (Yang et al., 2023a). Although data is nevertheless
generalized to vector form, each domain poses unique constraints, precipitating interesting
interpretations on how DDIM relates the latent space to the target distribution.
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Appendix A

Marginalizing irrelevant variables
The following proof is heavily inspired by Inga Strümke (2023). Assume we are interested
in the expectation of a function f(xa:b) with respect to a distribution q(x0:T ) where
1 ≤ a ≤ b ≤ T , meaning that xa:b defines a subset chain of the full Markov chain from 0
to T . We show that

Eq(x0:T )[f(xa:b)] =
∫

x0:T
q(x0:T ) · f(xa:b)dx0:T

=
∫

x0:T
q(x0:a−1,b+1:T |xa:b) · q(xa:b) · f(xa:b) dx0:T (A.1)

=
∫

xa:b
q(xa:b) · f(xa:b)

∫
x0:a−1,b+1:T

q(x0:a−1,b+1:T |xa:b) dx0:a−1,b+1:T︸ ︷︷ ︸
Inner integral equals 1

dxa:b

=
∫

xa:b
q(xa:b) · f(xa:b) dxa:b

= Eq(xa:b)[f(xa:b)],

ultimately reducing itself to the expectation over the same function but with respect
to a distribution defined over the relevant variables. From the chain rule of probability,
we have that two random variables x and y for an arbitrary distribution p, are related
through p(x, y) = p(x|y) · p(y). In eq. (A.1), we can regard x0:T as the pair of subsets
(x, y), where x represents x0:a−1,b+1:T and y represents the remaining xa:b.

81





Appendix B

DDIM ELBO derivation

log pθ(x0) ≥ Eqσ(x1:T |x0)

[
log pθ(x0:T )

qσ(x1:T |x0)

]
= Eqσ(x1:T |x0) [log pθ(x0:T )− log qσ(x1:T |x0)]

= Eqσ(x1:T |x0)

[
log p(xT ) +

T∑
t=1

log pθ(xt−1|xt)︸ ︷︷ ︸
From eq. (3.19)

−

(
log qσ(xT |x0) +

T∑
t=2

log qσ(xt−1|xt, x0)
)

︸ ︷︷ ︸
From eq. (3.43)

]

= Eqσ(x1:T |x0)

[
log pθ(x0|x1) + log p(xT )− log qσ(xT |x0) +

T∑
t=2

log pθ(xt−1|xt)

−
T∑

t=2
log qσ(xt−1|xt, x0)

]

= Eqσ(x1:T |x0)

[
log pθ(x0|x1) + log p(xT )

qσ(xT |x0) +
T∑

t=2
log pθ(xt−1|xt)

qσ(xt−1|xt, x0)

]

= Eqσ(x1:T |x0) [log pθ(x0|x1)] + Eqσ(x1:T |x0)

[
log p(xT )

qσ(xT |x0)

]
+ Eqσ(x1:T |x0)

[
T∑

t=2
log pθ(xt−1|xt)

qσ(xt−1|xt, x0)

]

= Eqσ(x1|x0) [log pθ(x0|x1)] + Eqσ(x1:T |x0)

[
log p(xT )

qσ(xT |x0)

]
+

T∑
t=2

Eqσ(xt|x0)

[
Eqσ(xt−1|xt,x0)

[
log pθ(xt−1|xt)

qσ(xt−1|xt, x0)

]]
= Eqσ(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸

reconstruction term J0

−DKL(qσ(xT |x0) || p(xT ))︸ ︷︷ ︸
prior matching term JT

−
T∑

t=2
Eqσ(xt|x0) [DKL(qσ(xt−1|xt, x0) || pθ(xt−1|xt))]︸ ︷︷ ︸

denoising matching term Jt−1

(B.1)
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Appendix C

DDPM sampling with no noise

02004006008001000

−2
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Figure C.1: Sampling from latents evenly positioned in Gaussian space with algorithm 2
and setting the noise vector z to 0 for all steps. The consequence is that
DDPM fails to cover the entire target distribution.
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Appendix D

Additional mappings for
Experiment L.2c

−2 −1 0 1 2

−2

−1

0

1

2

CDF DDIM CDF to DDIM

Figure D.1: Additional mappings for exp. L.2c. Crosses are CDF-mappings from latents
(not shown), and stars are DDIM-mappings from the same latents. Crosses
and stars are connected to highlight that they originated from the same
latent point.

87





Appendix E

Additional samples for Experiment
H.2a

λ = −0.02

λ = 0

λ = 0.02

Figure E.1: Additional samples for exp. H.2a.
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