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ABSTRACT

Deep learning-based object detection has become a major pillar in safety-critical
systems. With this development, solid metrics with which to evaluate the per-
formance of detection models are crucial. For this purpose, widely acknowledged
evaluation metrics such as Average Precision (AP) are commonly applied. How-
ever, when applied in autonomous vehicles, generic metrics fail to consider context
and environmental factors in their evaluations. Specifically, such metrics do not
effectively differentiate the relevance of objects perceived in a driving scene, thus
failing to accurately reflect the significance of particularly important detections.
In recent years, a number of safety-oriented evaluation metrics have been proposed
to address these issues. Building on a systematic literature review identifying such
approaches, this thesis focuses on the analysis and comparison of two particular
metrics for the safety-oriented evaluation of object detectors. These metrics are
based on the Object Criticality Model (OCM) and on Planning-KL Divergence
(PKL). A rigorous experimental approach is proposed and employed for analysing
the characteristics of the two metrics and the relationship between them. First, a
qualitative analysis is performed on metric evaluations for detector predictions in
a specific driving scenario, with and without injecting synthetic faults into predic-
tions. Subsequently, an analysis of the relationship between OCM-related metrics
and PKL is performed, investigating correlation in quantitative metric data. The
sensitivity of the metrics to faults is then analysed. Lastly, a comparative analysis
is performed, investigating the distinctions between safety-oriented and generic
metrics for object detection. The results reveal important characteristics of the
two metrics, and of their relationship. While PKL imposes a more severe penal-
ization on false positive (FP) faults compared to false positive (FN) faults, the
opposite is true for OCM-related metrics. The qualitative analysis further high-
lights the sensitivity of PKL to FP predictions. Furthermore, findings demonstrate
that OCM-related metrics exhibit a higher sensitivity to reflecting prediction faults
as the number of objects in the evaluated scenarios decreases. Again, the oppo-
site is true for PKL. Additionally, examining the correlation between quantitative
metric data, a significant increase in correlation between the metrics is reported
for a decreasing number of objects in the scenarios evaluated. Finally, significant
distinctions between safety-oriented metrics and generic metrics are identified, em-
phasizing the importance of contextual evaluation when assessing the performance
of object detectors in autonomous vehicles. Through the research performed in
this work, an extension of the nuScenes-devkit is developed, implementing use-
ful functionality such as methods for the injection of faults into object detector
prediction.
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SAMMENDRAG

Dyp læring-basert objektdeteksjon har blitt en viktig søyle i sikkerhetskritiske
systemer. Med denne utviklingen er pålitelige metrikker for å evaluere ytelsen
til deteksjonsmodeller avgjørende. For dette formålet anvendes typisk velkjente,
generiske metrikker som Average Precision (AP). Når slike metrikker anvendes i
autonome kjøretøy, tar de imidlertid ikke hensyn til miljøfaktorer og kontekst.
Spesifikt klarer ikke slike metrikker å skille mellom relevansen til ulike objek-
ter som oppfattes i en kjøresituasjon, og reflekterer dermed ikke viktigheten av
enkelte deteksjoner. I de senere årene har det blitt foreslått flere sikkerhetsori-
enterte evalueringsmetrikker for å takle disse problemene. Basert på en system-
atisk litteraturgjennomgang som identifiserte slike tilnærminger, fokuserer denne
oppgaven på analyse og sammenligning av to spesifikke metrikker for sikkerhet-
sorientert evaluering av objektdetektorer. Disse metrikkene er basert på Object
Criticality Model (OCM) og Planning-KL Divergence (PKL). I denne oppgaven
blir en eksperimentell tilnærming foreslått og benyttet til å analysere egenskapene
ved de to metrikkene og forholdet mellom dem. Først utføres en kvalitativ anal-
yse av metrikk-evalueringer for prediksjoner fra en objektdetektor for en spesifikk
kjøresituasjon, med og uten injiserte, syntetiske feil i prediksjonene. Deretter
utføres en analyse av forholdet mellom OCM-relaterte metrikker og PKL, og kor-
relasjonen mellom deres kvantitative metrikk-data undersøkes. Videre analyseres
sensitiviteten til metrikkene for syntetisk injiserte feil. Til slutt gjennomføres
en analyse av forskjellene mellom sikkerhetsorienterte og generiske metrikker for
objektdeteksjon. Resultatene avslører viktige egenskaper ved de to metrikkene
og forholdet mellom dem. Mens PKL straffer falske positive (FP) feil hardere
enn falske negative (FN) deteksjoner, er det motsatte tilfelle for OCM-relaterte
metrikker. Kvalitativ analyse understreker denne sensitiviteten til PKL for FP-
prediksjoner. Videre viser resultater at OCM-relaterte metrikker har en høyere
sensitivitet til feil i prediksjoner når antall objekter i de evaluerte situasjonene
reduseres. Det motsatte er tilfelle for PKL. I tillegg viser resultatene en bety-
delig høyere korrelasjon mellom metrikkene når antallet objekter i de evaluerte
situasjonene reduseres. Til slutt identifiseres betydelige forskjeller mellom sikker-
hetsorienterte og generiske metrikker, som vektlegger viktigheten av kontekstuell
evaluering ved vurdering av ytelsen til objektdetektorer som anvendes i autonome
kjøretøy. Gjennom arbeidet utført i denne oppgaven utvikles en utvidelse av
nuScenes-devkit, som implementerer nyttig funksjonalitet som metoder for in-
jisering av syntetiske feil i objektdetektor-prediksjoner.
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PREFACE

This master thesis presents the results of research conducted through the spring
of 2023 and builds on a preceding literature review conducted in the fall of 2022
[1]. It is written for the Department of Computer Science (IDI) at the Norwegian
University of Science and Technology.

This work focuses on two methods for the safety-oriented evaluation metrics
for object detectors, identified through the aforementioned literature review. As
readers are not expected to be familiar with these works, relevant background
theory is provided in this thesis. Through the research presented in this thesis, a
methodology for the analysis and comparison of safety-oriented evaluation metrics
for object detectors is proposed. Applying this methodology, experimental results
are gathered and scrutinized. All code implemented as a consequence of this
research is provided in an open repository linked in Appendix A, with the hope
that it may be valuable for future research on the subject.

I would like to thank Leonardo Montecchi for supervising this work, and for
useful feedback during our meetings. Additionally, I would like to thank him for
providing all relevant material concerning the safety-oriented evaluation metrics
proposed in the work [2], a collaborative work in which he participated as a co-
author, and for scrutinizing my work and helping compile it into a research paper
[3]. At last, I would like to express gratitude to my wonderful peers for my fantastic
years at NTNU.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

The task of object detection, referring to the prediction of the semantic class and
the location of objects represented in data, has seen much innovation within the
last decade. Much of the progress within the field can be attributed to the in-
troduction of new and increasingly sophisticated approaches within deep learning-
based approaches, made possible by the increasing processing power of modern-day
GPUs [4]. Today, many emerging safety-critical technologies rely on object detec-
tion as a fundamental part of their perceptual interface to the environment, the
most prominent being autonomous vehicles.

When evaluating the performance of object detection models, most accepted
metrics rely on the concepts of precision and recall. The concept of precision is
defined as the number of correct predictions made out of all predictions made,
and recall as the total number of ground truth (GT) objects that are correctly
predicted, respectively. The most commonly used metrics, grounding in precision
and recall, are the various variations of Average Precision [5]. Utilizing precision
and recall as a basis for evaluating the performance of object detectors is often
helpful when considering the basic task of generic object detection, associated
with locating and classifying instances of objects from a number of predefined
categories [6]. However, when such models are applied in specialized and safety-
critical systems, metrics based on the classical concepts of precision and recall
fail to consider the situation in which detections are made. In tasks such as
autonomous driving, it is obvious that the failure to detect certain objects in a
driving scenario will pose more risk to the safety of the agent, its environment, and
its passengers. Furthermore, the incorrect detection of non-existent objects may
cause the planning algorithm of the system to unnecessarily interrupt the driving
task. These differences in the relevance of objects are not reflected in traditional
precision- and recall-based evaluation metrics. Thus, the widely accepted and
acknowledged evaluation metrics utilized for evaluating object detection models
are largely agnostic to the context of the detection scenario.

In recent years, a number of situation-aware metrics have been proposed to
evaluate the performance of object detectors with regard to the safety and relia-
bility of the overall system when such models are applied in safety-critical systems.
Preceding the work presented in this thesis, a literature review was conducted with

1



2 CHAPTER 1. INTRODUCTION

the objective of mapping such approaches [1]. In the aforementioned work, five
such metrics ([7], [8], [9], [2], [10]) were presented, and their characteristics were
mapped and discussed in the context of safety and reliability. Each of these works
introduced novel, task-specific metrics for object detectors applied in autonomous
driving.

Moving forward, it is necessary to assess proposed safety-oriented metrics by
means of experimental work in order to investigate their effectiveness in evaluating
perception models from a safety perspective. The motivation of this thesis and the
corresponding experimental work is thus to provide a basis for the comparison and
assessment of safety-oriented metrics for object detectors and to motivate further
work on establishing solid metrics on which perception models can be evaluated
with regard to safety.

1.2 Research Objective
As discussed in the preceding section, the ever-expanding field of autonomous driv-
ing emphasizes the requirement for metrics that assess perception in self-driving
systems, particularly in terms of the effect of the model’s performance on the
safety and reliability of the system. In the context of the evaluation of object
detectors, the importance of defining the relevance, or criticality, of objects in
different scenarios of the driving task was introduced.

The experimental work of this thesis analyzes and compares two approaches
for establishing safety-oriented metrics for object detectors, namely Planning KL-
divergence [10] and the Object Criticality Model [2]. Building on the work from
a systematic literature review [1], the research objective of the work culminat-
ing in this thesis is to experimentally compare two approaches for the task-specific
evaluation of object detection models with regard to safety and reliability. Further-
more, by examining two different approaches for evaluating detection models from
a safety and reliability perspective, the objective is to contribute to the research on
safety-oriented, task-specific methods for the evaluation of object detectors when
applied in autonomous vehicles. To guide the efforts of the experimental work
of assessing the two task-specific approaches to evaluating object detectors, three
research questions were formulated:

Research Question 1. In what manner do the suggested metrics deviate from
conventional, generalized metrics utilized in object detection, as well as from
one another?

Research Question 2. Examining quantitative data, is there any measurable
correlation between the metric evaluation results for the two approaches
examined?

Research Question 3. How do the proposed metrics penalize detections that
represent scenarios where the safety or reliability of the system is compro-
mised? Does quantitative metric data exhibit indications that the metrics
penalize detections that cause potential safety- or reliability issues differ-
ently?

Building on the experimental work elaborated in Chapter 4 and Chapter 6, answers
to the stated research questions are discussed in Chapter 7.
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1.3 Contributions
Preceding the work culminating in this thesis, a systematic literature review was
performed [1], mapping proposed safety-oriented and task-specific evaluation met-
rics for object detectors when applied in autonomous systems. Considering the
recency of the identified publications on this topic, there is limited experimental
work performed validating the corresponding, proposed methods for evaluating
the safety of detections in such systems. Furthermore, the experimental results
identified analysing the characteristics of these metrics, are largely limited to the
assessment and validation of single metrics.

To establish a basis for validating approaches for the safety-oriented evalua-
tion of object detectors, it is necessary to map proposed approaches and to analyse
their characteristics in relation to one another. This thesis focuses on the analysis
and comparison of two specific metrics, aiming to comprehend the implications of
their unique characteristics when evaluating detection models employed in safety-
critical systems. The experimental work of this thesis thus proposes a methodology
for investigating the properties of safety-oriented metrics, both independently and
in relation to others. This can motivate and guide future research into the con-
sequences of applying different methods for evaluating object detectors applied in
safety-critical systems. Furthermore, the analysis performed in the experimental
work of this thesis provides meaningful insights into the attributes of the specific
metrics examined.

In addition to the contributions attributed to the methodology and results pre-
sented in this thesis, the software implemented to facilitate these can be should be
seen as a standalone contribution. Specifically, the extension of the functionality
provided in the nuScenes devkit1 provides the means of performing similar evalu-
ations with, and analyses of, the metrics examined. This includes the injection of
faults in the predictions of object detection models applied. The codebase for this
extended nuScenes-devkit is provided in the open repository linked in Appendix A.

Lastly, the research conducted in this thesis produced a scientific paper [3] that
is currently submitted at an international conference within the field of Software
Reliability. Further details about this conference are omitted at this stage due to
the double-blind peer review process of the conference.

1The nuScenes devkit is introduced in Section 3.1, and the extended version developed for
the purpose of the experimental work of this thesis is discussed in Section 5.3.
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2.1 Autonomous vehicles

When discussing autonomous driving systems, it is important to consider and
specify the level of automation of the system in question. The Society of Au-
tonomy Engineers (SAE) introduces a classification system based on the level of
human intervention and attentiveness required in an autonomous vehicle [11]. The
aforementioned system consolidates six levels of driving automation ranging from
no automation to full automation. Full automation can be defined as having the
vehicle perform all tasks under all conditions, with no need for human attention
or interaction. Other levels of automation include driver assistance, partial au-
tomation, and conditional automation, all of which require some degree of human
supervision and interaction.

For the remained of this thesis, fully autonomous systems will in this context
be denoted simply as autonomous vehicles. However, the concepts presented and
discussed in this work are applicable to all levels of automation that require a
pipeline that employs systems and algorithms for perception and path planning.
In the context of autonomous systems, the autonomous system in focus is often
denoted as ego, and will be so for the remained of this thesis.

The autonomous system of self-driving vehicles can be divided into the per-
ception system and the decision-making system [12]. The perception system is
responsible for estimating the position of the vehicle and for creating an inter-
nal representation of the environment of the system utilizing data captured from
various on-board sensors. Sensors applied often include visual cameras, LIDARs,
RADARs, and GPS. In modern approaches to self-driving, perception often re-
lies on DNN-based object detection models. Section 2.4 presents the background
theory of such models. An example of a typical architecture for the autonomous
system of a self-driving vehicle is depicted in Figure 2.1.1.

In turn, the decision-making system is responsible for navigating the vehicle to
its intended location, utilizing the internal representation acquired through per-
ception. The decision-making system typically consists of multiple subsystems.
Most important for the scope of this thesis is the path-planning subsystem. The
path planning system of an autonomous vehicle is responsible for computing a set
of paths (i.e. sequences of poses) given the vehicles’ internal representation of the
environment, its location, and the rules of traffic [12]. Hence, the path planning

5
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Figure 2.1.1: Typical architecture of the autonomous system of a self-driving
vehicle.

Source: [12]

system relies on the environment of the vehicle as perceived by the perception
system. This highlights the importance of object detection models (or other per-
ception models) in the autonomous driving pipeline. Many approaches for path
planning have been proposed, including techniques based on graph search and
curve-interpolation [12]. More recently, approaches utilizing implicitly parameter-
ized neural planners have been proposed [10].

2.2 System safety and reliability

When addressing the implications of applying technology in safety-critical sys-
tems, some important concepts and definitions need to be introduced. This allows
for characterizing and analysing scenarios in which the system does not meet re-
quirements and consequently does not provide its intended service. Especially
important regarding perception in autonomous systems are the concepts of safety
and reliability.

The measures of safety and reliability are typically associated with a system. A
system, as defined by Avižienis et al. [13], refers to an entity that can interact with
its environment and other systems. Moreover, a system is designed to implement
a function, namely what the system is intended to do to provide a service to a
user. Furthermore, we can describe the behaviour of the system as the sequence of
actions the system executes to implement its function. In this context, the service
provided can be defined as the system behaviour as perceived by the user.

Considering a system providing a service to a user, a service failure (or sim-
ply failure) occurs when the service delivered deviates from the intended service.
Hence, a failure occurs when the system fails to implement its intended function
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Figure 2.2.1: Attributes of dependability.

Source: [13]

[13]. The adjudged or hypothesized cause of service failure is referred to as a fault.
Although a fault can cause system failure, this is not always the case. If a fault is
not perceived in the service interface of the system, namely the part of the frontier
between the system and its environment where service delivery takes place, it is
denoted as dormant. Conversely, if the fault can be perceived by the user, it is
referred to as active.

The ability of a system to avoid service failures that are more frequent and se-
vere than is acceptable is termed the dependability of a system [13]. Dependability
is a broad definition that encompasses multiple attributes. These attributes are
summarized in Figure 2.2.1. For this thesis, the most important concepts within
dependability are the concepts of safety and reliability. Definitions for these con-
cepts are provided below.

• Reliability: measure of the continuity of correct service in a system.

• Safety: the absence of catastrophic consequences on users and the environ-
ment due to catastrophic failures.

Considering object detection in autonomous vehicles, the concepts of safety
and reliability can serve as indicators of what can be considered good service. It
is evident that the absence of catastrophic consequences and the continuity of cor-
rect service are important factors in what determines good driving. Thus, applying
these concepts for the evaluation of object detection models applied in such sys-
tems can be beneficial in determining how well detectors enable the downstream
task of navigation.

2.3 Deep Learning

Deep learning is a subset of the broader category of machine learning and has seen
many breakthroughs over the last decade. Much of the recent advances in deep
learning can be attributed to the increasing power of modern-day GPUs, allowing
for neural networks to have more trainable parameters that can be trained effi-
ciently. Furthermore, increasing dataset sizes allow for models to learn more mean-
ingful and accurate representations of the underlying data distributions. Deep
learning can be described as the application of deep (multi-layered) neural net-
works (DNNs) to approximate a function by analyzing a set of feature vectors
drawn from the underlying distribution. DNNs have demonstrated great capa-
bilities in extracting deep representations of data from feature vectors. These
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capabilities are especially due to the introduction of convolutional neural net-
works (CNNs) to tasks where the spatial position of the input data structures is
of importance in the approximation of the function represented by the underly-
ing data distribution. Examples of these are image- and video recognition, image
classification, natural language processing and, most relevant to this thesis, object
detection. Deep learning has allowed object detection to become sophisticated
enough to support perception in autonomous vehicles, as well as enabling many
other emerging technologies. This section will cover the background theory of
deep learning-based methods. First, the theory behind NN architectures will be
presented, covering NNs and CNNs in Subsection 2.3.1 and Subsection 2.3.2, re-
spectively. Lastly, the role of data in DNNs will be discussed in Subsection 2.3.3.

2.3.1 Neural networks and Deep Learning

The purpose of a neural network (NN) is, similarly to other learning algorithms,
to approximate a function f(x) based on a set of feature vectors x provided to
the network. Neural networks are organized as a set of layers of connected units
of computation called perceptrons. In an NN with multiple layers, the output of
a perceptron serves as the input of similar perceptrons in the subsequent layer of
the network, depending on its network architecture [14].

A perception, given a set of inputs forming a vector X, applies a linear transfor-
mation to its input and subsequently applies an activation function g to the result
of this transformation. The linear transformation applied to X can be described
by Equation 2.1.

f(X) = g(wX+ b) (2.1)

In the above equation, w represents a vector of weights, where weights are asso-
ciated with the raw inputs to the NN in the case that the perceptron is located
in the first layer of the network or with perceptrons in the preceding layer of the
NN otherwise. Furthermore, b (the bias) is a term added to the sum, providing an
additional degree of freedom to y. Both the weights and the biases of the NN are
real numbers. The activation function g is applied to the result of this operation,
and its output is called the activation of the perceptron. The choice of activation
function is made by the data analyst and is usually a fixed, non-linear function.
The reason for choosing a non-linear function as the activation of the perceptron
is to be able to model non-linear relationships in the underlying data distribution,
allowing the NN to approximate non-linear functions [14]. Apart from the non-
linearity of activation functions, it is desirable for the function to be differentiable
for reasons introduced later in this section. Furthermore, for the stability of train-
ing, it is desirable for the activation function to be bounded. Typically utilized
are the sigmoid function and the ReLU, defined in Equation 2.3 and Equation 2.2,
respectively.

ReLU(x) =

{
x, if x ≥ 0

0, otherwise
(2.2)

σ(x) =
1

1 + e−x
(2.3)
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When perceptrons are organized into more than two layers excluding output
layers, they are referred to as deep neural networks (DNNs). We can define deep
learning as the class of machine learning algorithms that utilize such architectures.
In any NN, the weights and biases corresponding to the nodes of computation rep-
resent the trainable parameters, and their optimal values are approximated in the
process of training the network. The process of training the NN is enabled by
the backpropagation algorithm, first introduced for learning NN-like architectures
by Rumelhart, Hinton and Williams in [15]. The backpropagation algorithm is
typically the algorithm utilized in updating the trainable parameters (weights
and biases) of DNNs. To demonstrate how the backpropagation algorithm en-
ables learning in DNNs by backpropagating derivatives, the critical concept of
an objective function is first introduced. The objective function is the basis for
the optimization criterion of a learning algorithm, and the choice of an objec-
tive function is a crucial part of training the parameters of a learning algorithm.
An objective function is a mathematical function that quantifies the difference
between the predicted output of a machine learning model and the true output,
which is often referred to as the target. The purpose of training an NN is to
minimize or maximize the objective function. Typically used are loss functions,
namely objective functions that are minimized for the algorithm to gain a closer
approximation of the function whose targets are represented by the underlying
data distribution. A loss function L is a differentiable, mathematical function
representing a penalty for the misclassification of input feature vectors for a learn-
ing algorithm making predictions. It typically takes the predicted output of the
network and the target output as input and computes a numeric value that rep-
resents the difference between the two. The choice of a loss function depends on
the specific problem and the nature of the data, with some commonly used loss
functions for the tasks of binary classification and regression, respectively, being
cross-entropy loss (BCE) and Mean Squared Error (MSE) (defined in Equation 2.4
and Equation 2.5, respectively) [14].

L(y, ŷ) = −(y ln ŷ + (1− y) ln(1− ŷ)) (2.4)

L(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi)
2 (2.5)

In our context, y represents the target value and ŷ represents the prediction in
the above equations. For BCE, y and ŷ are binary labels (0 or 1), and for MSE,
y and ŷ are vectors of the same length.

Backpropagation involves computing the gradient of L with respect to each
learnable parameter in the neural network. This is done by applying the chain
rule of calculus to backpropagate partial derivatives through the layers of the
NN until finally differentiating the loss with respect to the input vector. If the
loss function accurately represents the penalty associated with misclassification,
it can then be minimized by means of a gradient optimization algorithm such
as gradient descent. Gradient descent is an optimization problem utilized in the
backpropagation algorithm to update the values of the learnable parameters of
the NN once the gradient has been computed by minimizing the loss function.
The weights and biases are updated in accordance with the update rule defined
in Equation 2.6. The idea is to update each weight such as to take a “step” in
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the direction of the descending gradient of the loss function with regards to that
parameter. Furthermore, another parameter γ is fixed prior to training. This
parameter is called the learning rate and reflects how large steps the algorithm
will take in the direction of the descending gradient when updating the weights.

wij = wij − γ∇wij
L (2.6)

In the above equation, γ is the learning rate, L is the loss function and w is the
single, learnable parameter to be updated.

There are many factors that may affect the efficiency of training in an NN
architecture. One such factor is the value chosen for γ. If the learning rate is too
low, learning will be inefficient. On the contrary, if the learning rate is too high,
loss minimization may be unstable. Other factors such as the choice of the loss
function, the type of activation function utilized and the dataset utilized will have
significance for the stability of the training process.

2.3.2 Convolutional neural networks

There are many possible ways to model the architecture of a DNN. The most basic
architecture is one where each perceptron in every layer shares a weight with each
other perceptron in the preceding and the subsequent layer. Such architectures
are named fully connected neural networks (FCNNs). Although FCNNs are useful
in many applications, they do not provide sufficient efficiency when the number of
layers in the network grows. More specifically, the number of learnable parameters
grows very quickly as we add new layers to an FCNN, making it very computa-
tionally expensive to train the network [14]. Furthermore, in many tasks, the
spatial position of the input data structures is of importance for approximating
the function represented by the underlying data distribution. If we consider the
task of object detection in visual images, it is obvious that the spatial location
of a specific pixel is of importance for the detection task. For the task of object
detection, it should also be obvious that the most important information for a
specific pixel to be processed in the context of its local neighbourhood, rather
than in the context of the full image. An NN architecture that is particularly
well suited for tasks that involve processing 2D-input data structures, such as the
aforementioned, is the convolutional neural network (CNN).

Convolutional neural networks are a class of NN architectures that have con-
volutional layers. CNNs are the most extensively used class of algorithms within
deep learning, being applied in several different fields such as computer vision,
speech processing, and natural language processing [16]. There are several bene-
fits to applying CNNs over fully connected architectures. The three main benefits
of employing a CNN as opposed to an FCNN are, according to Goodfellow et al.
[17], parameter-sharing, sparse interactions and equivariant representations [16].
The two most important of these benefits are presented below.

• Parameter-sharing: Employing convolutional layers allows for weight-sharing
between perceptrons, reducing the number of learnable parameters. In a
CNN, there is a single collection of weights for the whole input, known as
the receptive field. This is in contrast to a traditional fully-connected layer,
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in which each element of the weight matrix is used exactly once when com-
puting the output of a layer [17]. This property reduces the computational
complexity of the model significantly.

• Sparse-interactions: Sparse connectivity between the input and output fea-
tures of a convolutional layer refers to the fact that each input unit of the
layer does not necessarily interact with each output unit. This is accom-
plished by having a smaller amount of learnable parameters for a layer than
the number of inputs to the layer. This property allows for fewer parameters
to be stored in memory, and thus for less computational complexity. Fur-
thermore, it allows for fewer operations to be performed when computing
the output of a layer.

A convolutional layer of a CNN typically consists of a collection of kernels, or
filters (terms are used interchangeably), that represent the learnable parameters
of the layer. Kernels can be defined as a fixed grid of discrete numbers or values,
kernel weights, representing the single collection of learnable parameters for the
layer [16]. The input data structure of the layer is convolved with the kernel,
generating feature maps that are passed as inputs to the next layer of the CNN.
In the process of this convolution, certain features are extracted from the input
data and reflected in the parameters of the kernel. The size of the output data
structures and how features are extracted are decided by the manner in which
the filter interacts with the input data. More specifically, the size of the output
feature vector depends on the size of the filter, its stride over the input vector,
and an optional padding of the input vector. Stride refers to the step size with
which the filter “slides” over the input data during convolution. Padding refers to
redundant information added to the borders of the input vector, so as to preserve
features near the edges of the vectors and obtain a higher dimensional output.
Figure 2.3.1 demonstrates the convolution operations of a 2x2 filter on a simple,
4x4 input vector (image).

Another important type of layer in a CNN architecture is the pooling layer.
A pooling layer performs down-sampling of the input feature vector to a lower
dimension, with the purpose of reducing its dimensionality for further process-
ing. This is done to reduce the number of learnable parameters needed in the
subsequent layer of the NN, and to reduce the computational complexity of the
algorithm. Furthermore, introducing pooling layers to a CNN architecture can
increase the statistical efficiency of the network by hinting that the function ap-
proximated by the NN is invariant to small changes in the input [17]. Typically,
pooling is performed by replacing the input of the layer at a certain location with
a summary statistic of the nearby inputs [17]. Max-pooling and average pooling
are common operations to apply to the feature vectors in a pooling layer. In
max-pooling, a simple max operation is applied as a summary statistic to a region
of the input data. In average pooling, the average of the neighbourhood is the
summary statistic utilized.

For the final classification and/or regression task of a CNN, one or more fully
connected neural layers are often utilized, with the feature maps representing the
extracted features of the initial input in a CNN as inputs to the layers. The
purpose of the other layers is thus to extract sufficiently meaningful features for
the fully connected layers to appropriately classify their input.
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Figure 2.3.1: The convolution of a 2x2 filter with a 4x4 input image.

Source: [14]

2.3.3 The role of data

A DNN is a powerful model for approximating complex functions and relationships
by learning from data. However, the accuracy of a DNN is highly dependent on
the quality and quantity of the data on which it is trained to be representative of
the distribution that they are intended to model. The ability of a learning model
to perform well on previously unobserved input is called generalization. The more
data that is available, and the more representative it is of the underlying function,
the better the model generalizes. While the introduction of algorithms such as
CNN has enabled data to be utilized more effectively and for better representations
to be learned, much progress in DL in the later years can be attributed to gathering
and annotating ever larger amounts of data. George E.P. Box stated that “All
models are wrong, but some are useful” [18] for statistical methods. In the context
of DL models, this statement holds special relevance and highlights the importance
of sizeable and representative datasets for better generalization.

To achieve good performance in its predictions, DNNs (especially CNNs) re-
quire an extensively large amount of data [16]. If the available data for a specific
model is not sufficient for the model to achieve good performance by training a DL
model directly, this can be overcome by different methods. An important method,
especially when CNNs are involved, is transfer learning with fine-tuning. Transfer
learning allows for data gathered from similar tasks to be utilized when training
a model. Especially in the feature extraction stage, the pre-trained weights of
another DL model can provide meaningful extracted features for the new model,
or provide a better starting point for the learnable parameters of the model than
randomly initialized weights [16].

The last few years have seen the release of many major models based on
DNNs, with models such as DALL-E [19]and GPT-3 [20] containing 12B and 175B
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learnable parameters, respectively. Although the utilization of multi-GPU high-
performance computers allows for such models to be trained, annotating datasets
for such sizeable models remains a major bottleneck in building such models. To
overcome this problem, data augmentation techniques can be applied. Performing
augmentations on samples can increase the size of the dataset without changing
the labels of the samples. Furthermore, data augmentation can reduce the risk
of overfitting the model [16]. Data augmentation is extensively applied in visual
image- and NLP tasks. Over the last few years, self-supervised learning [21] tech-
niques have also been developed to relieve the load of large-scale data annotation.

2.4 Object Detection
The task of object detection can be defined as the task of classifying and locating
semantic objects of certain object classes within an input frame. The problem
of object detection is thus two-fold, consisting of both object classification and
object localization in a frame, with the frame being either a 2D visual image or a
3D point cloud.

The output of an object detection model running inference on a frame is a list
of bounding boxes (BBs), their labels and their confidence levels [4]. The label
output of the object detection algorithm is the predicted semantic class of the
object, with possible labels being predefined in the class set. The confidence score
reflects the confidence of the detection model that the detected object belongs to
the predicted semantic class. Bounding boxes can be defined as tightly bound
boxes encompassing objects in the scene, represented in 2D and 3D as rectangles
and cuboids, respectively.

Most modern object detection approaches apply a CNN as a backbone for per-
forming feature extraction on the often large input vectors. The purpose of the
backbone of the network is to extract meaningful features from the original input
[4], reducing the dimensionality of the data as it propagates through the layers
of the CNN. Typically, extracted features from the backbone serve as input to
a prediction head, an architecture in which the last layers are fully connected,
outputting the final predicted location and label of detected objects. More specif-
ically, the prediction head receives high-level features from feature extraction and
is responsible for performing the final regression and classification tasks. Thus,
the prediction head of object detectors can be further divided into the regressor
head and the classifier head, performing these respective tasks. While the specific
architectures of object detection models vary, they are typically grouped into two
methods, namely two-stage detectors and one-stage detectors. Two-stage detectors
generally provide higher accuracy for localization and classification, whereas one-
stage detectors generally achieve higher inference speeds [4]. While high accuracy
is desirable, this trade-off between differing architectures is especially important
to consider when there are time constraints on the application in which object
detection is applied.

2.4.1 Backbone networks

As mentioned, the purpose of the backbone of an object detection model is to func-
tion as the feature extractor of the architecture, producing high-level feature maps
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Figure 2.4.1: The basic architectures of one-stage and two-stage detectors. The
architecture of two-stage detectors is depicted in the uppermost figure and the
architecture of one-stage detectors in the lowermost figure. In the illustration,
“cls” and “loc” refer to classification and regression, respectively.

Source: [4]
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through a series of convolutional- and pooling layers, on which the classification-
and regression tasks can be performed. Towards different applications for object
detectors with different requirements, different backbones can be utilized with re-
gard to the trade-off between accuracy and efficiency [4]. Larger backbones with
more learnable parameters (more densely connected) are typically applied when
the application requires higher degrees of accuracy. Examples of such architec-
tures are ResNet [22], ResNeXt [23] and RegNet-based variations [24], which are
all extensively used as backbone architectures. When the application requires
more efficiency, more lightweight backbones can be utilized [4].

2.4.2 Two-stage detectors

Two-stage detectors can be distinguished by the two stages in which object de-
tection is performed. The first stage is referred to as region proposal, in which
candidate BBs, or regions that might contain objects, are proposed. In Faster-
RCNN [25], arguably the most representative of two-stage detectors, this task is
performed by the region-proposal network (RPN) [4], as opposed to the less effi-
cient selective search performed in Fast-RCNN [26]. An RPN takes as input an
image of arbitrary size and outputs a series of rectangular region proposals (BBs)
with corresponding objectness scores (a measure of probability for membership to
classes in the class set). In Faster-R-CNN, the RPN shares convolutional layers of
the backbone with the Fast R-CNN architecture [26], and region proposals are gen-
erated by sliding a network over the feature maps produced by these layers. More
specifically, the input of the RPN is a spatial window of the input convolutional
feature maps generated by the convolutional layers of the backbone architecture
[25]. Subsequently, to generate proposals, regions are mapped to lower dimen-
sional features that are again fed into two sibling FC layers for box-regression and
box-classification, respectively. In the second stage of Faster-RCNN, a RoI-pooling
layer accepts the convolutional features and the candidate BBs from the RPN as
input, and performs regression and classification on these ROIs to produce the
final predictions [25]. The purpose of the RoI-pooling layer is to perform max-
pooling on input ROIs of non-uniform sizes to obtain fixed-size feature maps on
which the following regression and classification tasks can be performed. A sim-
plified illustration of the modules of two-stage detectors is depicted in the top half
of Figure 2.4.1 and an overview of the Faster-RCNN network in Figure 2.4.2.

2.4.3 One-stage detectors

In contrast to two-stage detectors, one-stage detectors propose predicted BBs from
input frames directly without performing a region-proposal step. This property
allows one-stage detectors to be more time efficient in their inference, and one-
stage detectors are thus often preferred in real-time applications. A simplified
illustration of the modules of generic one-stage detectors is shown in the bottom
half of Figure 2.4.1.
The YOLO [27] object detection model and its variants (e.g. YOLOv3, YOLOv5)
are widely used one-stage detectors. The purpose of YOLO was to propose an OD
model that is time-efficient and simple to optimize by not being overly complex
(and thus simpler to optimize). This was achieved in YOLO by framing detection
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Figure 2.4.2: Overview of the Faster-RCNN two-stage detection network.

Source: [25]

as a regression pipeline, utilizing a unified architecture for extracting features from
input images and performing BB regression directly on these feature maps [4]. For
the YOLO model proposed by Redmond et al. [27], the feature extraction stage
is composed of 24 convolutional layers, pre-trained on the ImageNet 1000-class
competition dataset [28], followed by two FC layers. Despite the fast inference
time of the YOLO model, omitting the Region Proposal stage performed in two-
stage detectors by performing regression directly on feature maps resulting from
a feature extraction performed on input frames introduces limitations with one-
stage. For instance, performing regression on features extracted directly from the
input image, in contrast to refining BBs resulting from a proposal stage, limits the
accuracy of detections and the number of candidate BBs evaluated. For instance,
the YOLO model introduced in Redmond et al. predicts less than 100 BBs per
image as opposed to 2000 region proposals evaluated by the two-stage Fast-RCNN
model [4].

2.5 Evaluation Metrics for Generic Object Detec-
tion

To assess the correctness of bounding boxes predicted by an object detector, a
comparison between predicted BBs and ground truth boxes (GTs) is performed.
For this purpose, widely acknowledged evaluation metrics such as Average Preci-
sion (AP), first presented in [29], are typically applied. With the object detection



CHAPTER 2. BACKGROUND THEORY 17

Figure 2.4.3: Architecture of the feature extraction stage of YOLO.

Source: [27]

scene containing a variety of challenges, competitions and datasets, a variety of
measures for validating the results of object detector inference are applied [5],
with little consensus on an optimal evaluation metric for generic object detection.
This section presents the background theory of some of the widely acknowledged,
traditional performance metrics for ODs.

2.5.1 Precision and recall

As a basis on which to evaluate a set of BBs predicted by an object detection
model, BBs are classified as either correct or incorrect following a comparison
of predicted BBs with GT boxes. The criteria for this classification are based
on the concept of Intersection Over Union (IOU). IOU is based on the Jaccard
Index [30], and is within the scope of object detection a measure of the degree of
similarity between a predicted BB and a GT. More specifically, IOU is the area
of intersection between the boxes divided by the area of their union, as illustrated
in Figure 2.5.1. IOU can be described in mathematical terms by the following
equation:

J(Bp, Bgt) = IOU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
, (2.7)

where J is the Jaccard similarity coefficient, Bp is the predicted BB, and Bgt is the
GT box. An IOU of 0 indicates no overlaps between the boxes, whereas a perfectly
predicted BB (corresponding to the GT location precisely) would exhibit an IOU
of 1.
To classify a predicted BB as correct or incorrect, an IOU threshold is used,
representing the minimum IOU for a BB to be considered a correct detection
of the object represented by the GT. The choice of an IOU threshold allows for
different variations of higher-level metrics such as AP in terms of how restrictive
the metric is on considering detections as correct or incorrect.
In the context of evaluating predicted BBs by measuring their degrees of similarity
to GT boxes, some important concepts can be defined. First, the detector’s output
can be labelled as a “positive” prediction to signify the presence of a predicted
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Figure 2.5.1: Intersection Over Union (IOU) illustrated with two-dimensional
bounding boxes.

Source: [5]

object, and as a “negative” prediction to indicate its absence. From this, the
following definitions can be identified:

• True Positive (TP): The correct detection of a GT box.

• False Positive (FP): An incorrectly predicted BB.

• False Negative (FN): An undetected GT box.

Within the scope of object detection, the concept of a True Negative (TN) does
not apply as there is an infinite amount of BB locations and classifications that
could apply for the prediction of non-defined objects. Building on these underlying
concepts, precision is defined as the amount of correctly predicted BBs divided
by the total amount of predictions for a set of detections. Furthermore, we define
recall as the amount of correctly predicted BBs divided by the total amount of
GTs. If we consider a dataset with G ground truths and an object detection model
that outputs N predicted BBs, of which S are correct (with S ≤ G), then we can
express precision and recall formally as Equation 2.8 and Equation 2.9 [31].

P =

∑S
n=1 TPn∑S

n=1 TPn +
∑N−S

n=1 FPn

(2.8)

R =

∑S
n=1 TPn∑S

n=1 TPn +
∑G−S

n=1 FNn

(2.9)

In the above equations, P denotes precision and R denotes recall. It is desirable
for a model to exhibit high values for both precision and recall, indicating that
the detector successfully predicts a reasonable amount of GTs while limiting FP
predictions. However, there is a trade-off between the two measures of precision
and recall. A model that achieves a significantly high recall score is likely to yield
a lower score for precision, and vice versa. A model that produces a low amount
of predictions, but with high confidence levels, is likely to receive high precision,
but poor recall scores. On the contrary, a model that produces a high amount of
predictions may have high recall, but poor performance with regards to precision.



CHAPTER 2. BACKGROUND THEORY 19

2.5.2 Average precision

As discussed in Section 2.4, the output of an object detection model consists of
a predicted bounding box, a predicted class label, and a confidence score. When
computing precision and recall for a set of predictions, a confidence threshold τ
can be applied to include only detections that have confidence levels higher than
τ . As discussed in the preceding section, there is a trade-off between precision
and recall for a set of predictions made by an object detector. This trade-off can
be demonstrated by applying a confidence threshold to a set of predictions. For
instance, setting a low threshold for confidence would increase recall by including
more low-confidence predictions, as opposed to setting a high value for τ . More
specifically, recall can be defined as a decreasing function of τ , namely R(τ) [31].
However, although one would expect the opposite to be true for precision, this is
not necessarily the case. The reason for this is that if we view both the numerator
and the denominator of Equation 2.8 as functions of τ , which they are in the case
that such a threshold is applied, they are both decreasing functions τ . Conversely,
the numerator of Equation 2.9 is a decreasing function of τ , but the denominator
is constant.
To visualize the trade-off between precision and recall for a specific model, the
precision×recall curve is utilized. The P × R curve plots precision against recall
for a set of confidence intervals. As discussed in the preceding section, a good de-
tector should exhibit good performance in terms of both precision and recall, with
precision remaining high as recall increases [5]. This corresponds to a high area
under the P ×R curve (AUC)1. Due to the non-monotonic behaviour of precision
as a function of τ , the P × R curve is, itself, non-monotonic and non-continuous
due to a discrete sampling of the function values at different confidence thresholds.
This poses a problem with for accurate measurement of AUC, which is normally
overcome by pre-processing the curve with N -point or all-point interpolation [31].
This results in an interpolated curve defined by a continuous function Pinterp(R),
where R defines the recall level, a real value in [0, 1].

In 11-point interpolation, AUC of the P×R curve is estimated by averaging the
maximum precision values at a set of 11 equally spaced recall levels. Considering
a P ×R curve and a set containing 11 equally spaced recall levels, we can compute
AP by Equation 2.10.

AP11 =
1

11

∑
R∈{0,0.1,...,0.9,1}

Pinterp(R) (2.10)

where

Pinterp(R) = max
R̃:R̃≥R

P (R̃) (2.11)

With 11-point interpolation, AP is thus obtained by considering the maximum
value for precision value given by Pinterp whose recall value is greater than R.

1AUC is originally defined as area under the ROC (receiver operating characteristic) curve,
the term stemming from the field of radar engineering [14].
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2.5.3 Variations of Average Precision

As discussed in the preceding sections, different possible thresholds for IOU, as
well as different methods for interpolation of the P ×R curve, results in multiple
possible variations of AP. The typical way of describing the traits of a specific
AP indicator is to suffix the abbreviation with the IOU threshold and state the
interpolation method in the subscript. Hence, AP estimated by applying 11-
point interpolation under an IOU threshold of 0.50 can be expressed as AP5011.
Different variations of AP can be applied to indicate the performance of detectors
in detecting objects of different sizes. For example, the MS COCO Benchmark
applies three variations of the AP metric computed separately to measure the
performance of a detector in detecting objects of small, medium and large sizes,
respectively [4].

2.5.4 Mean Average Precision

When applying AP to evaluate object detectors, this indicator is estimated sep-
arately for each object class. To indicate the performance of the model across
object classes, AP can be averaged over all object classes to compute a score more
descriptive of the overall performance of the model. Considering a total number
of object classes C, with AP-scores estimated for each class, represented by APi

for the i-th class, we can define mAP as

mAP =
1

C

C∑
i=1

APi. (2.12)

2.5.5 F1-Score

Another common metric for the evaluation of object detector predictions is the
F1 score (or F-measure). The F1-score is defined as the harmonic mean of the
precision and recall of a model for a given confidence threshold [31], as shown in
Equation 2.13.

F1 = 2
precision · recall
precision+ recall

(2.13)

While AP evaluates the predictions of a detector at multiple confidence thresh-
olds (Equation 2.10), the F1-score simply assesses the correctness of a specific set
of predictions.

2.5.6 NuScenes Detection Score

When object detection models are applied in specific domains, such as autonomous
driving, datasets may contain metadata that can be utilized in metrics that assess
predictions. The NuScenes Detection Score (NDS) [32] is an example of such a
metric, and is applied as an alternative evaluation measure in the nuScenes detec-
tion task. In the nuScenes dataset, metadata is provided for relevant objects in the
scene, such as velocity, visibility and pose. NDS is designed to take into account
not only detection performance but also the quality of detections in terms of pre-
dictions of such metadata. For extensive information about the nuScenes dataset,
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refer to Section 3.1. For detector predictions on nuScenes data, the different error
types are consolidated into the scalar score NDS as

NDS =
1

10
[5mAP +

∑
mTP∈TP

(1− min(1,mTP))], (2.14)

where mAP is mean Average Precision, and TP is a set of five mean True Positive
metrics quantifying the quality of detections in terms of box location, size, ori-
entation, attributes, and velocity. These measures are Average Translation Error
(ATE), Average Scale Error (ASE), Average Orientation Error (AOE), Average
Velocity Error (AVE), and Average Attribute Error (AAE), respectively, and are
further detailed in [32]. For each of the aforementioned metrics, mTP is computed
as the average of the metric scores over all object classes (C), namely:

mTP =
1

|C|
∑
c∈C

TPc. (2.15)

NDS is an effort to rank the performance of object detectors with regards to the
application in which the models are applied and is an example of a task-specific
metric.

2.6 Safety-Oriented Evaluation Metrics
While the evaluation measures presented thus far indicate the performance of ODs
in terms of their ability to accurately and reliably predict instances of objects,
such metrics do not discriminate between the objects in a specific frame based
on the scenario. In safety-critical applications such as autonomous driving, this
goes against intuition as it is obvious to most that some objects are more critical
than others in a driving scenario. Ensuing advances in the application of object
detectors in autonomous systems, efforts have been made in proposing task-specific
evaluation metrics for assessing the performance of models applied in this domain.
In [9], Volk et al. argue that new methods to verify the safety of a perception
system are needed as objects detected by such systems can be of different impor-
tance, or criticality, depending on parameters such as their velocity, distance and
potential damage caused by a collision. This need for evaluation metrics that con-
sider the relevance of objects is further expressed by Ceccarelli and Montecchi [2].
In [10], Philion et al. argue that a measure for the performance of ODs applied
as part of a perception system in an AV should reflect the impact that predic-
tions made would induce on the downstream task of driving . In the project work
preceding this thesis, proposed task-specific and safety-oriented metrics for object
detectors were mapped in a systematic literature review [1]. For the experimental
work of this thesis, two of these metrics were selected for comparison and analysis.
In this section, these two metrics are introduced, and their methods of assigning
relevance to objects are investigated.

2.6.1 Planning KL-divergence

In [10], Philion et al. argue that the evaluation and analysis of the performance of
perception systems in autonomous vehicles should be aligned with the downstream
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task of trajectory planning. Planning is a crucial part of the autonomous pipeline,
and the best-ranked detection models in terms of performance should thus be the
ones that best enable the planner to compute a trajectory as close as possible
to the trajectory that would be planned with perfect detections (ground truth
detections). The proposed metric, Planning KL-divergence (PKL), is a measure
of the KL-divergence [33] between the probability distribution of future positions
at different time steps for an autonomous vehicle given the semantic observations
(detections) of the detector and the future positions corresponding to ideal obser-
vations (represented by GT objects) [10]. As a measure of divergence, a “perfect”
detection result will receive a PKL score of 0, corresponding to no divergence
between the distributions.

Consider a system of multiple autonomous agents making perceptions (through
detection) at a series of time steps, and let xi

t denote the position of agent i ∈ 1...N
at time t. Furthermore, let oit denote the observation (predictions from detection)
for agent i at time t. The perfect observation, corresponding to detecting all GTs
correctly, will be denoted o∗it . Starting from t = 1, the system state corresponding
to perfect observation by all agents over a set of T time steps can be described by
the probability distribution

P = p(x1
1...x

N
T |o∗11 ...o∗NT ). (2.16)

Consider another distribution Q in which the first agent, x1
t , is considered to

be an agent that does not achieve perfect observation. In this context, the KL
divergence between these probability distributions can be attained to measure the
difference between the system distribution resulting from perfect observation from
our agent and the system in which it its observations of the first agent have a
degree of noise. That is,

DKL(P ||Q) (2.17)
where P is as defined in Equation 2.16 and

Q = p(x1
1...x

N
T |o11...o1T , o∗21 ...o∗NT ). (2.18)

In the above equations, it is assumed that the noise present in the system is
only due to noisy perception. With this assumption, Equation 2.17 represents the
change in the P distribution given the noisy perception in the first agent. It is
assumed that all agents make predictions for the future given their observation only
at t = 1 (agents do not make any new observations in a time horizon of Tsteps).
This assumption is reasonable for a sufficiently short time frame. Furthermore,
it is assumed that the system moves independently at each time step, given its
observations. Under these assumptions, P and Q become products of the marginal
distributions over the future of all agents. The joint probabilities can then be
factorized, becoming

P =
T∏
t=1

N∏
i=1

p(xi
t | o∗i1 ), Q =

T∏
t=1

p(x1
t | o11)

N∏
i=2

p(xi
t | o∗i1 ) (2.19)

Substituting this into (2.16) and (2.18), and taking the KL-divergence, we get

DKL(P || Q) = EP

[
log

∏T
t=1

∏N
i=1 p(x

i
t | o∗i1 )∏T

t=1 p(x
1
t | o11)

∏N
i=2 p(x

i
t | o∗i1 )

]
(2.20)
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= EP

[
log

∏T
t=1 p(x

1
t | o∗11 )∏T

t=1 p(x
1
t | o11)

]
= DKL(P

1 || Q1) (2.21)

Consider a sequence of predicted, semantic objects resulting from the inference
of an object detector model. This sequence of predictions (observations) is denoted
s1, ..., st ∈ S and the corresponding sequence of ground truth objects is denoted
o∗1, ..., o

∗
t ∈ O. Furthermore, let A : S → O be an object detection model predicting

ot conditioned on st, and x1, ..., xt be the sequence of positions corresponding to
the sequences of sensory input and detections made. In this context, Planning
KL-divergence can be defined as

PKL(A) =
∑

0<∆≤T

DKL(pθ(xt+∆ | o∗≤t0
) || pθ(xt+∆ | A(s≤t0))) (2.22)

where pθ(xt+∆ | o∗≤t0
) represents the distribution of ground truth trajectories

in the dataset D,
θ = argmin

θ′

∑
xt∈D

−logpθ′(xt | o∗≤t). (2.23)

Evaluating detectors based on the impact of their predictions on the planned tra-
jectory of the vehicle implicitly ranks the “importance”, or criticality, of detecting
specific objects in the scene. Thus, with the assumption that the planner applied
is sufficiently robust to plan an optimal trajectory with regard to safety, the PKL
evaluation can function as an indicator for the safety and reliability of applying a
specific model in such a system.

2.6.2 Object Criticality Model

In Ceccarelli and Montecchi [2], the authors argue that in evaluating object de-
tection models applied in autonomous vehicles, generic evaluation metrics do not
address the demands of the task to which they are applied. Furthermore, the work
argues that an evaluation metric applied in autonomous systems should discrimi-
nate based on the circumstance, or context, of the environment of the vehicle. To
address these limitations, Ceccarelli and Montecchi propose the Object Criticality
Model (OCM). In the OCM, a value representing the importance, or criticality, is
assigned to each object in a specific scene by considering important factors in the
context. Such a criticality is computed for both the GT objects and the predicted
objects. By considering object criticalities, a measure of the performance of an
object detector can reflect the importance of each detection. In the OCM, such
an evaluation metric is proposed by integrating object criticality values with the
generic measures of precision, recall, and average precision.

As discussed above, environmental factors are considered when computing the
criticality values for objects in a scene. In the OCM, three such factors are con-
sidered, consolidating the final object criticality. The three factors, and thus crit-
icality weights considered are distance, colliding trajectory, and time-to-collision,
namely κd(B), κr(B), and κt(B). Here B represents the object for which critical-
ity is computed. It is intuitive that distance from ego is an important factor when
evaluating the criticality of an object in a traffic scenario. This is considered in
the distance criticality, computed as a function of this distance between ego and
B, denoted degoB. The latter two criticality weights represent the importance of
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the correct detection of an object regarding its likelihood of collision with the ego
vehicle. The process of computing these criticalities thus involves determining the
location of a potential point of collision C between the two vehicles. Here, the
colliding trajectory criticality reflects the relevance of an object considering the
distance between ego and the potential collision point between ego and the object,
denoted degoC . The time-to-collision criticality weight represents the time it would
take for B to reach this point of collision, and is computed as a function of the
distance dBC between B and C. The two latter criticality weights are computed
with regard to the current location, speed and direction of movement for ego and
the object.

κx(B) = max(0,− 1

Z2
x2 + 1) (2.24)

As mentioned, the location of a potential collision point C = (Cx, Cy) is deter-
mined in the process of computing the three criticality weights. Here, C represents
the closest point that can be reached between ego and B. As discussed above, the
location of a potential collision point between ego and the object considered is
computed with regard to the location, speed and direction of movement for the
two. To determine the coordinates for C, the velocity vectors of ego and B are
utilized. From C, the criticality weights κd(B), κr(B), and κt(B) can be computed
from the second degree equation in Equation 2.24. This function is utilized so as
to assign a criticality of 1.0 if the input measure, denoted x in the equation, is 0.
Furthermore Equation 2.24 will decrease towards the value of 0 as x increases. In
Equation 2.24, a constant value Z > 0 is the value for which larger values of x
causes the criticality computed to evaluate to 0.

Considering the distance criticality, the value it takes on is computed by ap-
plying Equation 2.24 with x = degoB. Furthermore, the constant Dmax > 0 is
substituted for Z. Dmax is thus a predetermined constant describing the max-
imum distance from ego at which objects evaluate to positive values for κd(B).
Thus, the distance criticality will evaluate to 1.0 if the degoB = 0, and decrease
with increasing distances.

Similarly, for the collision distance criticality weight, κr(B) is computed by
Equation 2.24, with x = degoC and Z = Rmax. Here, Rmax > 0 and is defined
as the maximum distance from which collision trajectories are considered relevant
for ego.

By estimating the time it takes for B to reach the potential collision point
C, namely ∆t, the collision time criticality weight can be computed. From the
velocity vector of the object B, this can be computed. A similar approach as
for the preceding criticality weights is then applied to compute κt(B). Again
Equation 2.24 is applied, with x = ∆t and Z = Tmax, where the latter is a
constant value that represents the maximum time-to-collision to consider. This
constant is restricted by having Tmax > 0.

κ = 1− (1− κd) · (1− κr) · (1− κt). (2.25)

The final criticality value of an object B can be calculated using Equation
Equation 2.25, which takes into account the three aforementioned criticality weights.
Since all three criticality weights can only take on values in the range [0,1], the
final criticality value (denoted as κ) is also constrained to this interval. It is worth



CHAPTER 2. BACKGROUND THEORY 25

noting that when any of the criticality weights reach the maximum value of 1.0,
indicating high relevance for the object, the final criticality value will also evalu-
ate to 1.0. Moreover, the final criticality value increases as any of the criticality
weights used in its computation increases.

In an object detection scene, the aforementioned criticalities of objects can be
utilized in the evaluation of object detector predictions. To establish criticality-
related metrics for the evaluation of such predictions, the definition of object criti-
calities is integrated with the existing metrics of precision and recall. Hence, in [2],
the definitions of reliability-weighted precision (denoted PR) and safety-weighted
recall (denoted RS) are established. The aforementioned measures are established
considering the importance of safely and reliably detecting objects through per-
ception in an autonomous system. The definitions of safety and reliability in a
system are introduced in Section 2.2.

PR =

∑
B∈TP ∗

κ(B)∑
B∈TP ∗

κ′(B) +
∑

B∈FP ∗
κ′(B)

(2.26)

RS =

∑
B∈TP ∗

κ′(B)∑
B∈TP ∗

κ(B) +
∑

B∈FN∗
κ(B)

(2.27)

In the aforementioned equations, the variable κ′(B) represents the critical-
ity of a predicted object, while κ(B) represents the criticality of a ground truth
object. As a result, the reliability-weighted precision (Equation 2.26) takes into
account the criticalities of predictions in the denominator and the ground truth
criticalities in the numerator. This approach serves to penalize excessively large
predicted criticality values, which could potentially compromise the reliability of
the driving task. In contrast, the safety-weighted recall (Equation 2.27) places the
ground truth criticalities in the denominator and the predicted criticalities in the
numerator. Consequently, RS provides an assessment of the safety of detections
by penalizing low predicted values for criticality.

Similarly to the definitions of generic precision and recall, Equation 2.26 and
Equation 2.27 define PR and RS , respectively. However, in contrast to the generic
measures of precision and recall, the criticalities of objects are utilized in the above
equations. Thus, the relevance of objects as evaluated by the OCM is reflected in
the evaluation of a set of detector predictions.

To comprise the measures of reliability-weighted precision and safety-weighted
recall into a single metric for evaluation, Ceccarelli and Montecchi [2] utilize the
definition of AP to propose a new criticality-related metric, denoted APcrit. This
metric evaluates predictions of an object detector at multiple thresholds for con-
fidence (τ), integrating the measures of PR and RS .
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CHAPTER

THREE

EXPERIMENTAL TOOLS AND RESOURCES

In this section, the tools and resources applied in the experimental work of this
thesis are presented. Here, Section 3.1 introduces the nuScenes dataset [32] and
the corresponding nuScenes detection task and devkit. Subsequently, Section 3.2
introduces the MMDetection3D framework [34], applied for performing object
detector inference upon which metric evaluations are made. Furthermore, this
section introduces the detection models utilized in this thesis.

3.1 nuScenes dataset

The choice of a dataset is paramount when evaluating and training object de-
tection models. The significance of this choice is further accentuated when these
models are applied in safety-critical domains, such as autonomous driving. Recent
years have seen the release of several sophisticated datasets which have played im-
portant roles in the advancement of 3D object detectors in autonomous driving.
Some important examples of such datasets are the KITTI [35], Waymo [36], and
nuScenes [32] datasets. In this section, we will cover the nuScenes dataset, which
is the detection dataset utilized in the experimental work presented in this thesis.

NuScenes [32] was released in 2019 as a multimodal dataset for the task of
training and evaluating perception systems for autonomous driving. The dataset
has received particular acclaim for the range of different sensor types supported
in the dataset. The driver of this focus on data acquisition from multiple sen-
sor types stems from the acknowledgement that different sensors are complemen-
tary in autonomous driving task. For instance, cross-modality methods for 3D
object detection can utilize the advantages of certain sensors to produce better
semantic- and depth representations of the environment [37]. Furthermore, Caesar
et al. [32] point out the lack of multimodal datasets exhibiting the full range of
challenges associated with building autonomous perception systems as one of the
points nuScenes seeks to address. Later expansions of the nuScenes dataset have
seen the addition of spatial map data and further semantic annotation for a more
detailed view of the scenes depicted.
The main contributions of the nuScenes dataset are its large volumes and com-
plexities of data, with 360◦ sensor coverage across all relevant vision and range
sensors including 1x LIDAR, 6x visual cameras (360◦ view), RADAR, GPS and

27
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Figure 3.1.1: Sensor setup on vehicle utilized for acquiring nuScenes data.

Source: [32]

IMU [32]. The sensor setup on the vehicle applied for data acquisition can be seen
in Figure 3.1.1. The dataset comprises 1000 driving scenes of 20s each, acquired in
Boston and Singapore, and contains a wide array of scenes, situations and environ-
mental conditions across a diversity of locations. The 1000 scenes were manually
selected to contain relevant traffic scenarios (i.e. high density traffic, rare object
classes, potentially dangerous scenarios, etc.). For cameras, RADAR and LIDAR,
capture frequencies are at 12Hz, 13Hz and 20Hz, respectively. Highly accurate
annotations are provided with every keyframe, sampled at 2Hz. The 23 object
classes represented in the dataset are each annotated by their semantic category,
bounding box cuboids (modeled as x, y, z, width, length and yaw angles) and
attributes that include visibility, activity and pose. In addition, the dataset in-
cludes all intermediate, non-annotated frames [32]. The frequency of objects of
the pedestrian and car classes are 7 and 20 per keyframe, on average.

The full nuScenes dataset is split into three parts, namely training, validation
and test sets. These subsets consist of 700, 150 and 150 scenes, respectively.
Annotations are only provided for the training and validation sets, as the test
set is utilized for scoring submissions to the nuScenes detection task [32]. Most
relevant for this thesis is the nuScenes “trainval” dataset, comprising the training
and validation set. Along with the publication of the nuScenes dataset, Caesar
et al. [32] provide the nuScenes-devkit, taxonomy, annotator instructions, and
database schema, allowing developers to experiment with the dataset with ease.

For the experimental work presented in this thesis, the nuScenes devkit is uti-
lized extensively. The devkit implements an API for parsing and loading data from
nuScenes, and development functionality related to object detection. Included in
this functionality is the ability to perform metric evaluations of predictions pro-
duced by object detector inference over the nuScenes dataset [32]. For this pur-
pose, the nuScenes devkit implements the metrics mAP, NDS, and the various
TP metrics applied in Equation 2.14. When evaluating detector predictions, these
metrics utilize the 2D center distance on the ground plane as a match criterion
(not IOU). For the center distance, different thresholds can be applied to evaluate
predictions at different match criteria.

The nuScenes devkit is implemented as a Python 3 [38] module (nuscenes-devkit).
In addition, the devkit implements functionality for parsing and loading data from
nuScenes, and development functionality related to object detection such as visu-
alization, reference frame transformations, and more.
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3.2 MMDetection3D Toolbox

MMDetection3D [34] is a part of the open-source object detection toolbox MMDe-
tection [39], implementing a large set of detection methods, modules and compo-
nents related to 3D object detection. MMDetection provides weights for over 200
pre-trained object detection models that can be applied “out of the box”. Fur-
thermore, the corresponding Python3 [38] module provides benchmarks for, and
compatibility with, multiple datasets, including nuScenes.

In the experimental work presented in Chapter 4 and Chapter 6, pre-trained de-
tection models from the MMDetection3D toolbox are utilized. Hence, the weights
provided in the MMDetection3D model zoo [39] are utilized to perform inference
with the selected models. Furthermore, in the process of performing inference
with the aforementioned models over samples from the nuScenes dataset [32], the
mmdetection3d Python3 module is applied. The choice of utilizing the MMDe-
tecion3D framework for the experimental work of this thesis was based on three
factors. Firstly, the toolbox provides a large amount of pre-trained models that
can be applied with ease and benchmarks for these models on multiple datasets,
including nuScenes. Secondly, the components of MMDetection3D provide good
results with regard to performance, speed and memory usage when compared with
other frameworks [39], which is beneficial when performing inference with multiple
models for multiple configurations of nuScenes samples and detection scenarios.
Thirdly, MMDetection3D provides specific integration with the nuScenes dataset
and devkit, the dataset and codebase utilized in the experimental work presented
in this thesis, respectively. In the sections, the specific object detection models
applied in the experimental work of this thesis are introduced.

3.2.1 Pointpillars with FPN backbone

For the purpose of performing object detection on point clouds resulting from
LIDAR scans, Lang et al. [40] propose PointPillars, a novel encoder that learns
features from vertical columns (pillars) of point clouds to predict 3D bounding
boxes corresponding to perceived objects. This approach is an attempt at end-to-
end learning by encoding a point cloud into a format appropriate for a downstream
detection pipeline [40]. The PointPillars architecture consists of three stages: a
feature encoder network to transform a 3D point cloud into a sparse pseudo-
image, a 2D convolutional backbone for extracting high-level features from the
pseudo-image, and a detection head for bounding box classification and regression.
Compared to previous point-cloud models and fusion-based models for 3D object
detection, applying the PointPillars encoder to transform point-clouds into pseudo-
image representations enables faster (real-time) inference [41]. In addition, the
Pointpillars approach performs well in terms of accuracy.

For the experimental work performed in this thesis, the pre-trained PointPillars
model applied utilizes an FPN [42] backbone. This specific model applied in the
subsequent experimental work will be denoted PPT for the remainder of this
thesis.
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3.2.2 SSN with RegNet Backbone

For the task of multiclass, 3D object detection, Zhu et al. [43] propose a framework
that utilizes shape information to discriminate between object classes, thus bene-
fiting the distinguishing of specific classes in such a task. This framework utilizes
two distinct ingredients for this purpose, namely a shape signature objective and
a number of shape-aware grouping heads introduced into the architecture. The
proposed shape signature is designed to be compact and effective, for the purpose
of high inference speed. Furthermore, the shape signature is designed to be ro-
bust to sparsity and noise in the point clouds evaluated, and thus to guide the
learning of discriminative features during training. Shape-aware grouping heads
are applied to adapt DNNs to the concept of learning through shape informa-
tion. These are represented as multiple prediction heads where objects of similar
shape and scale share weights. This is based on the idea that objects of larger
scale should have designated deeper networks for their prediction. The networks
that utilize these two key ingredients to achieve effective, multi-class, 3D object
detection are denoted Shape-Signature Networks (SSNs). The work of Zhu et al.
[43] demonstrate that SSN-based models achieve state-of-the-art results and that
the proposed shape signature achieves good scalability across various backbone
networks.

The specific, pre-trained SSN model applied in this thesis employs a RegNetX-
400MF-SECFPN backbone and neck, based on the architectures RegNetX [24],
SECOND [44], and FPN [42]. This model will simply be denoted SSN for the
remainder of this thesis.
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In this chapter, the methodology applied in the experimental work to analyze
two safety-oriented evaluation metrics for object detectors is described. Applying
this methodology, PKL [32] and OCM-related metrics [2] were analysed on object
detector predictions over the nuScenes dataset [32].

Firstly, this chapter establishes the foundation for comparing and analyzing
these metrics, outlining various methods employed in generating the datasets uti-
lized for quantitative analysis and in aligning the metrics for comparison. Subse-
quently, specific experimental methodologies are provided. To begin, an overview
of the methodology utilized for the qualitative analysis of metric evaluations on
predictions made by two detectors for a single sample from the nuScenes dataset
is provided. The details of this methodology can be found in Section 4.4. Fur-
thermore, the metric data distributions and their correlation across different traffic
scenarios and in the presence of erroneous detections were investigated by applying
the methodology introduced in Section 4.5. The experimental approach applied
to analyze the impact of faults on metric evaluations is presented in Section 4.6.
This methodology encompasses an analysis of the effects of injecting faults into
detector predictions, covering a diverse range of threats to system reliability and
safety. Finally, the methodology applied in the comparative analysis of PKL and
OCM-related metrics with their generic counterparts is described in Section 4.7.
This methodology serves to identify and explore the differences between these
metrics in the context of object detection.

4.1 Aligning metrics
To enable a comparison of PKL with OCM-related metrics on specific sets of BB-
predictions for the samples evaluated (in contrast to evaluating them threshold-
independently), the lower-level metrics proposed in the OCM, namely reliability-
weighted precision (PR) and safety-weighted recall (RS) were in focus. This al-
lowed for evaluating the OCM on a set of BB predictions filtered on a pre-defined
confidence threshold τ . Hence, throughout the experimental methodologies intro-
duced in this chapter, predicted BBs were filtered at a value τ prior to metric
evaluation.

To comprise the OCM variations of precision and recall into a single perfor-
mance indicator for detection at a specific τ , the F1-score was applied together
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with reliability-weighted precision and safety-weighted recall. The resulting metric
is denoted F1crit.

F1crit = 2
PR ·RS

PR +RS
(4.1)

As the high-level metric of the OCM [2], APcrit, is computed in a similar fashion
to AP, detectors are evaluated at multiple confidence thresholds for an evaluation
of the AUC when APcrit is computed. In contrast, PKL evaluates detector pre-
dictions at a specific confidence threshold (τ). These qualities make a comparison
between PKL and APcrit highly sensitive to the specific threshold applied to filter
detections before evaluating with PKL. In [45], Guo et al. propose the use of an
“optimal confidence threshold” for which to evaluate PKL for the purpose of per-
forming a fair comparison between submissions scored in the nuScenes detection
[32] task with regards to both mAP and PKL. This optimal confidence thresh-
old is the threshold at which detector predictions exhibit the highest F1-score.
While a similar method would allow for a more fair comparison between PKL and
APcrit, the examination of the relationship between a threshold-dependent and a
threshold-independent metric is susceptible to a level of ambiguity due to the sen-
sitivity of single-threshold metrics to confidence thresholds. This ambiguity can
hinder the interpretability of the findings. Furthermore, the computation of an op-
timal confidence threshold would require evaluation with PKL to be performed at
a sequence of pre-defined thresholds, and would thus require a significant amount
of computational power. This was not considered feasible considering the limited
time frame of this work.

Another important factor to consider when comparing metric results with the
aforementioned metrics is their methods of evaluation across object classes. The
PR and RS metrics proposed by Ceccarelli and Montecchi [2] are based on precision
and recall, and are thus evaluated for each object class present in the GT sets of
samples separately. In contrast, PKL evaluates to a single value which takes into
consideration all objects present for a sample in the respective GT- and prediction
sets. For the purpose of the comparative analyses proposed in this thesis, it was
thus beneficial to consider only one object class in the subsequently elaborated
experimental work. To evaluate both metrics, only taking into consideration a
single semantic class of objects, the only objects considered in this experimental
work were cars. This was achieved by filtering on the “car” class of the nuScenes
dataset for each sample evaluated. In the experimental results, nuScenes samples
in which no cars are present (i.e. no basis for evaluation) are discarded.
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Alias Injected Fault Class τ Size

RAW_40 None 0.40 894
FP_40 False Positive 0.40 923
FN_40 False Negative 0.40 739

Table 4.2.1: Datasets of metric data over randomly selected samples.

4.2 The datasets

In the experimental work introduced in Section 4.5 and Section 4.7, quantitative
analyses of metric evaluations over single nuScenes samples were performed. These
experiments required the construction of sufficiently large datasets of metric re-
sults for meaningful insights into the relationship of the metrics to be attained.
For a dataset to be sufficiently sizeable to be considered representative of the un-
derlying data distribution, it should comprise as large a number of samples as
possible. However, given the limited time frame of this work, a viable number of
samples were selected as part of this experimental methodology. Hence, for the
main quantitative experiments introduced in Section 4.5 and Section 4.7, 1000
samples were selected at random from the nuScenes “trainval” dataset [32], com-
prising samples from both the training and validation sets1. From predictions of
SSN over the selected samples, three datasets of metric evaluations were created
at confidence threshold τ = 0.40. These datasets comprised metric evaluations
of raw detector predictions over the samples selected, as well as evaluations of
the same predictions modified by FN and FP injection, respectively. Recall that
the injection of an FP entails inserting a bounding box into the prediction set,
whereas the injection of an FN entails removing a correctly predicted box from the
prediction set. For the selected nuScenes samples, evaluation was first performed,
producing metric data for the task-oriented metrics PKL, PR, RS . Subsequently,
F1crit scores were computed from the latter two. Furthermore, evaluation was
performed with the generic metrics of precision, recall, and F1-score.

To generate the metric data of modified predictions containing faults (i.e. FPs
or FNs), an approach utilizing the implemented functionality introduced in Sub-
section 5.3.3 was employed, generating datasets of evaluations over predictions
in which FPs or FNs had been injected. The specific methodology applied in
generating the fault-injected predictions utilized in this approach is elaborated in
Section 4.3.

Recall that in creating the datasets, only cars were considered when evaluating
predictions. Hence, prior to the metric evaluation, all predictions and GT objects
were filtered on the object class “car”. The datasets generated are summarized
in Table 4.2.1. In the table, the individual datasets are given an alias describing
the type of faults injected in predictions prior to evaluation, and the confidence
threshold at which predictions were filtered. In Table 4.2.1, τ thus refers to this
confidence threshold. This choice of confidence threshold is elaborated upon and
discussed in Subsection 7.1.1. Furthermore, “Size” refers to the size of the dataset

1A limitation of this experiment is the processing time requirements for performing an eval-
uation of samples and storing the results, this is elaborated upon in Subsection 7.1.4.
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in terms of the number of samples evaluated (after excluding predictions without
a sufficient basis for evaluation for any of the metrics). As discussed, predictions
without sufficient basis for performing an evaluation were excluded in the datasets
of metric data, hence the varying dataset sizes in Table 4.2.1. An example of this
is samples that do not contain instances of cars. For data analysis purposes,
samples that receive a PKL evaluation of 0.0 were excluded, as the logarithm of 0
is undefined2.

2The negative logarithm of PKL values was utilized as a means of comparison with OCM
metrics in the subsequent analysis.
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4.3 Injection of faults
By the methodologies introduced in Section 4.5 and Section 4.7, an analysis of
quantitative metric results derived from the fault-injected predictions of SSN was
performed. By injecting faults into detector predictions, the sensitivity and re-
sponse of the metrics to faults in detection could be mapped.

To inject faults, i.e. either false negative or false positive predictions, into the
predictions of detection models, a method of generating such misdetections was
required. For this purpose, methodologies for the automatic injection of FP and
FN detections into detector predictions were applied. These methodologies are
detailed in this section. To represent a variety of fault scenarios in the datasets
resulting from the application of these methodologies, a degree of randomness was
introduced when applying the methods for fault injection described in Subsec-
tion 5.3.3.

4.3.1 False positives

When injecting FPs into a set of predictions, i.e. inserting an incorrect prediction
into the prediction set of a detector prior to evaluation by metrics, a series of pa-
rameters describing the properties of the injected “object” must be provided upon
instantiation. An overview of these parameters and their values upon instantiation
is provided in Subsection 5.3.3.

For the purpose of examining metric evaluations across a range of different
scenarios in which an object detector predicts FPs, a degree of randomness was
introduced in the injection of such faults. Specifically, the number of FPs inserted,
as well as the position, size and velocity of individual FP objects inserted into the
prediction set were all determined with different degrees of randomness. The values
these parameters could take on for an arbitrary FP injection into a prediction set
were each drawn from their respective, uniform probability distributions. These
are presented in the following:

Number of FPs: The number n of FPs injected into a given sample was a ran-
dom integer n ∈ {0, 1, 2, 3}. Hence, a minimum of 0 and a maximum of 3
FPs could be inserted into the predictions of a given sample.

Position: For the ego-centric, top-down coordinate frame in which the ego vehicle
is positioned at (xego, yego) = (0, 0), the coordinates (xfp, yfp) of an injected
FP had xfp ∈ [−5, 5] and yfp ∈ [−10, 30].

Size: The size of an injected FP was determined by the variables
(height, length, width), where height ∈ [1.5, 3.0], width ∈ [2.0, 6.0], and
height ∈ [1.5, 3.5].

Velocity: The velocity of the injected FP is set as either 0 or as equal to the ego
velocity, each selected with 50% probability.

4.3.2 False negatives

For the injection of FNs into the prediction sets of samples, i.e. removing a
correctly predicted bounding box from the prediction set of a detector prior to
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evaluation by metrics, the number of (potential) FNs to be injected was determined
in an analogous fashion to the injection of FPs. Furthermore, utilizing the method
for injection described in Subsection 5.3.3, the distance from ego, dist, up to which
objects were considered for removal, could take on values dist ∈ [10, 40], drawn
from a uniform distribution of real numbers. Moreover, for each sample, the
procedure removed all BBs with a Euclidean distance up to dist away from ego
with a 25% probability.
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4.4 Examining single sample metric evaluations
To initiate an analysis of the OCM-related metrics and PKL, a qualitative anal-
ysis was performed on a single sample from the nuScenes dataset [32] and its
corresponding SSN predictions and metric evaluations for PKL and OCM-related
metrics. The experimental results gathered as a consequence of this analysis are
presented in Section 6.1. In this experiment, one sample was selected for analysis.
The process in which this sample was selected for analysis consisted of examining
single, randomly selected samples from the nuScenes dataset. The selection of
this sample was performed by reviewing a selection of 20 randomly drawn sam-
ples from the nuScenes “trainval” dataset and selecting a sample that represented
a dynamic traffic scenario in which the correct prediction of a number of ob-
jects is imperative. This corresponded to selecting a sample where GT objects
of high criticality in terms of the OCM were present. For the sample selected,
the predictions resulting from inference by the two object detection models in-
troduced in Section 3.2 (PPT and SSN) were evaluated by OCM-related metrics
and PKL, and analysis of metric results was performed. Prior to this analysis,
F1crit scores were computed, and predictions by both detectors were filtered at a
confidence threshold of τ = 0.15. This choice of threshold was made to exclude
an unnecessary number of FP predictions present in the prediction set prior to
filtering. For the same sample and corresponding predictions selected for analysis,
an analysis of the metric evaluations resulting from injecting an FP and an FN
into these prediction sets was performed. These injections were performed manu-
ally by utilizing the methods described in Subsection 5.3.3. The objective of this
experiment was to understand qualitatively how the respective metrics evaluate
different traffic scenarios represented in the perception of the system and to as-
sess how misdetections can impact such evaluations. Hence, the aforementioned
experiment addresses Research Question 1.
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4.5 Metric correlation and analysis

Addressing Research Question 2, a quantitative analysis of metric data was per-
formed to assess the relationship between OCM-related metrics and PKL. Specif-
ically, metric values of SSN predictions over a significant number of samples were
subject to analysis. This analysis consisted of metric data visualization and analy-
sis of statistical correlation in the metric data. This was first performed on metric
data over a large, randomly selected set of nuScenes samples. Subsequently, the
impact of erroneous detections on metric evaluations was investigated by inserting
FP and FN detections into SSN predictions over the same, randomly drawn set
of nuScenes samples. Moreover, an analysis of the impact the number of objects
represented in a sample has on metric evaluations was performed.

In this experiment, metric data distributions from the datasets summarized
in Table 4.2.1 were utilized. As mentioned in Table 4.2.1, metric data generated
at a single confidence threshold τ = 0.40 was in focus. The choice of analysing
data at a single confidence threshold was made to reduce the scope of the analysis
performed. In Subsection 7.1.1, the choice of, and reasoning behind the confidence
threshold for this experimental work is elaborated upon.

The following describes the general methodology followed for quantitatively
analysing the datasets utilized.

1. For datasets RAW_40, FP_40 and FN_40, F1crit was computed from PR
and RS , and the frequency of occurrence for values of PKL and F1crit was
visualized. The negative logarithm of PKL results was utilized for the re-
mainder of this analysis to reconcile them with metric scores based on the
OCM.

2. The relationships between the variables represented by the metrics were
analysed by visualising the joint distributions between single sample evalu-
ations for PKL and OCM-related metrics, respectively. Scatter plots were
utilized to plot F1crit, PR, and RS against PKL with the aim of analyz-
ing the behaviour of the joint distributions under different circumstances as
represented by the unmodified and fault-injected datasets.

3. By visualizing and examining the distributions between PKL and the OCM-
related metrics under different levels of constraint on the number of GT
objects in samples considered, the impact of limiting the number of GT
objects considered on the metric distributions was examined. This involved
excluding samples that contained more than a specific number of GT objects
in the datasets examined. In this step, metric distributions were visualized
for arbitrary levels of restriction on the number of objects considered.

4. For a decremental number of GT objects considered in samples evaluated,
an analysis of statistical correlation coefficients indicating the relationship
between the metrics F1crit and PKL was performed. This analysis quantified
the observed change in correlation between the metrics for a decreasing total
number of objects considered in evaluations. Furthermore, indicators of
the statistical significance of the observed correlation coefficient values were
computed and assessed.



CHAPTER 4. METHOD 39

The following sections will elaborate upon the stepwise methodology presented
above by introducing important concepts regarding the overall approach presented.

4.5.1 Step 1 and 2: Analysis of metric distributions

The experimental results corresponding to the application of the subsequent meth-
ods are presented Section 6.2 and Subsection 6.3.1.

For the datasets generated by applying the approach described in Section 4.2,
histograms were employed as a visualization tool to illustrate the frequencies of
occurrence for the metric values of PKL and F1crit across the selected samples.
Specifically, the distributions of metric values were visualized for both unmodi-
fied prediction sets (RAW_40) and prediction sets that had been subjected to
injections (FN_40 and FP_40). This involved grouping the metric values into 15
bins of equal width. The distributions represented by the respective datasets were
subsequently subject to analysis.

For the purpose of examining the relationship between OCM-related metrics
and PKL, scatter plots were employed, visualizing the joint distributions between
PKL and F1crit, PR and RS . For the three datasets in focus, data points were plot-
ted with OCM-related metrics on the x-axis and the negative natural logarithm
of PKL on the y-axis. The joint distributions between PKL and the measures
introduced in the OCM [2] (PR and RS) were visualised to assess the two compo-
nents of F1crit individually. This enabled the subsequent analysis of the specific
reliability- and safety-related components of the OCM for different scenarios.

While PKL by design provides a value indicating its evaluation of detection
performance for single nuScenes samples, the metrics that comprise the OCM were
designed to culminate in computing an average over multiple samples. Although
the indicators PR and RS are applicable to any set of predictions paired with GT
values, the results of their application to smaller sets of predictions (e.g. the sets
corresponding to single nuScenes samples) are to a higher degree sensitive to the
number of objects present in the sets. For instance, consider two samples where one
contains a single car object and the other sample contains two car objects, all with
GT criticalities of 1.0. If a detector successfully predicts the object (i.e. predicts
a TP) for the first sample but mischaracterizes its criticality as 0.9, the safety-
weighted recall would evaluate to RS = 0.9. Suppose for the sample with two cars,
the model predicts two TPs for the cars but correctly predicts the criticality for
one while mischaracterizing the other criticality as 0.9, similar to the first sample.
In this case, the safety-weighted recall would evaluate to RS = 0.95. Hence, the
same degree of error present in two prediction sets can result in different values for
recall, depending on the number of TPs in the sample. This dependence on the
number of TP predictions can also be inferred from Equation 2.27, and a similar
example can be made for PR. This indicates that the evaluations of PR and RS
depend on the total number of TPs in the set. As the PKL metric is implicitly
parametrized, the factors considered in the context of detection upon evaluating
detector predictions can only be determined through experimental work. Hence,
PKL is less interpretable compared to the metrics proposed in the OCM.

Considering the discussion above, analysing the change in metric data distri-
butions when limiting the number of factors considered in the evaluation of object
detector predictions is beneficial for understanding the relationship between the
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metrics. This restricts the number of factors that may be considered in PKL eval-
uation and promotes the interpretability of its metric evaluations. Furthermore,
this enables an analysis of the sensitivity of OCM-related metrics to the num-
ber of predictions and GT objects (and thus TP predictions) considered in the
evaluation. To examine these changes, constrained versions of the datasets from
Section 4.2 were generated by imposing restrictions on the total number of GT ob-
jects in the samples. This allowed for analyzing visual changes in the distributions
and changes in the degree of statistical correlation between the metrics.

If the number of GT objects in a sample i is oi, that number can be computed
from metric results by

oi =
∑
n∈S

TPn +
∑
n∈S

FNn. (4.2)

where S is the set of metric evaluations over detector predictions on the sample
(with a binary definition of TP and FP based on the match criterion specified).

Hence, to constrain a given dataset to the set of samples in which the total
number of GTs is less than or equal to an integer number N , the restriction oi ≤ N
was imposed on each sample in the datasets summarized in Table 4.2.1. Samples
which did not meet this criterion were excluded from the metric results analysed.
The result of applying such a constraint on a dataset is a dataset of a smaller than
or equal size to the original (where samples that do not meet the criterion oi ≤
N are excluded). With the constrained datasets generated, the aforementioned
visualizations were examined for the datasets corresponding to N = 8 and N = 4,
respectively. These choices for N -values on which to visualize constrained datasets
were arbitrary reference points for numbers of objects considered, for which trends
of the change in the distributions can be comprehended and for which it can
be investigated whether there is a change in the level of agreement between the
metrics for different restrictions.

4.5.2 Step 3 and 4: Statistical Analysis

As both PKL and F1crit represent a measure of the performance of an object detec-
tor by considering context, they either explicitly or implicitly rank the importance
of specific detections in a scene. Furthermore, both metrics are influenced to a
degree by the likelihood of objects interfering with the trajectory of ego. Thus,
a degree of correlation between the respective metric scores is expected under
conditions where the evaluation metrics can be aligned. By statistically analyz-
ing the relationship of the metrics under different conditions, the objective was
to investigate under which conditions a relationship between the variables exists.
The experimental results collected as a result of applying this methodology for
statistical analysis of metric correlation are presented in Subsection 6.3.2.

To establish statistical analysis of the change in the joint distributions between
PKL and F1crit for decremental values for N , the correlation coefficients of Spear-
man [46] and Pearson [47], respectively the Pearson product-moment correlation
coefficient (rP ) and Spearman’s rank order correlation coefficient (rS), were ap-
plied. As mentioned in step four of the general methodology presented in this
section, these indicators of correlation were examined for different values of N
in the experiment. Furthermore, the associated p-values and confidence intervals
were analyzed to provide insights into the statistical significance of the findings.
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The Pearson rP gives an indication of the strength of the linear relationship
between two random variables drawn from a population that follows a bivari-
ate normal distribution. In contrast, the Spearman rS indicates the strength of
a monotonic relationship between the variables (i.e. does not assume linearity).
Both of the coefficients range between −1 and 1, with the strength of a positive as-
sociation between the variables being indicated by higher values, and the strength
of a negative relationship being indicated by lower values. A value of 0 indicates no
association between the variables (i.e. no correlation). As the Pearson rP is best
applied when the variables are assumed to follow a bivariate normal distribution,
which cannot be assumed for the datasets of metric data presented in Table 4.2.1,
both coefficients were reported and analyzed to provide depth to the statistical
insights they report. Puth et al. [46] argue that the Pearson coefficient can offer
an effective measure of the linear relationship between variables even when the
assumption of a bivariate normal distribution is violated. However, to explore
both linear and non-linear trends in the data, both measures of correlation are
reported in the experimental results. Furthermore, since rS does not assume any
particular distribution for the variables, this allowed for possible pitfalls due to
misguided statistical analysis to be avoided.

rP and rS can be defined according to Equation 4.3 and Equation 4.4, respec-
tively.

rP =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2
(4.3)

The above equation defines the Pearson coefficient when applied to a sample3,
where xi and yi are datapoints from evaluation over a dataset, and x̄ and ȳ are
means computed over the respective statistical samples. The Spearman’s rank
order correlation coefficient is equivalent to the Pearson coefficient performed on
the ranks of the data rather than on the raw data points [46]. Hence, it can be
defined as

rS =

∑N
i=1 xi,ryi,r√∑N

i=1 x
2
i,r

∑N
i=1 y

2
i,r

, (4.4)

where rS represents the strength of association between the two variables.
For the experimental results presented in Subsection 6.3.2, the p-value for sta-

tistical significance is reported for both correlation coefficients. P-values indicate
the probability of observing test values as least as extreme as the observed val-
ues under the null hypothesis4. In other words, the p-value is an indication of
the likelihood that the results observed are occurring by chance. For relatively
small sample sizes (<500 data points), the use of the p-value is generally not
recommended as the main reported measure for statistical significance. However,
[48] proves that a strong monotonic relationship exists between p-values and their
corresponding correlation coefficients, even for a small sample size (<100 data

3In this context, a sample refers to a statistical sample drawn from the underlying distribu-
tions from which metric results are drawn.

4The null hypothesis is the hypothesis that no relationship exists between the metrics.
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points). Nevertheless, confidence intervals are additionally reported for rP and rS
in the experimental results, computed utilizing the Fisher transformation [49].
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4.6 Analysing the impact of misdetections

In this part of the experimental work, an analysis of the OCM-related metrics
and PKL was performed with regard to their respective evaluations of scenarios
where misdetections (FN or FP predictions) could potentially lead to safety or re-
liability threats for the system. The objective of this experiment was to determine
whether the metrics proposed in the OCM [2] and PKL [10] exhibit similar traits
with regard to penalizing faults, and to investigate to which degree the metrics dis-
criminate between two categories of misdetections, namely false positives and false
negatives. Furthermore, the experiment subsequently introduced aimed to assess
to which degree the aforementioned metrics evaluate the safety and reliability of
perception in an autonomous system. Hence, this experiment addresses Research
Question 3 of this thesis. Experimental results corresponding to the subsequent
methodology are presented in Section 6.4.

To analyze metric results with regard to faults, an analysis of the degree to
which the analysed metrics penalize misdetections was performed by examining
mean metric scores for an increasing number of faults injected into detector pre-
dictions over a set of nuScenes samples. Hence, datasets of evaluations at different
increments for the number of faults injected for a specific set of nuScenes samples
were required.

To construct the aforementioned datasets, 100 nuScenes samples were ran-
domly drawn from the nuScenes “trainval” dataset. From predictions resulting
from inference by SSN over the selected samples, prediction sets were injected
with an incremental number of FP and FN predictions. For each increment of the
two types of fault, datasets were compiled from metric evaluations over the fault-
injected prediction sets, representing evaluations of increasingly modified predic-
tions. This was performed for an incremental number of faults injected, ranging
from 0-5 inserted/removed BBs. Prior to evaluating predictions, BBs from the
prediction set corresponding to each sample were filtered at different confidence
thresholds for FPs and FNs, τFP = 0.15 and τFN = 0.4, respectively. The rea-
son for these choices of confidence thresholds is expanded upon at the end of this
section.

To inject faults into prediction sets, a similar approach to what is described
in Section 4.3 was applied with regard to the randomized properties of the FPs
injected. For the injection of FN predictions, the distance up to which TP pre-
dictions were considered for removal (dist) in the method described in Subsec-
tion 5.3.3 is set to 40 meters. This distance was selected to ensure that enough
predictions were considered for removal to produce an average number of FN injec-
tions similar to the average number of FP injections for the corresponding dataset.
It should be noted that while FP injections will always be executed, the number
of possible FN injections for a set of predictions is limited to the number of ob-
jects correctly predicted by the detector. Therefore, when analyzing quantitative
data, the true number of false negatives injected, on average, can deviate from the
intended number of injections. This deviation is investigated in the experimental
results presented in Section 6.4, and its implications on experimental results are
discussed in Subsection 7.2.3.

Excluding the aforementioned peculiarities for this specific experimental ap-
proach, the injection of faults was performed analogously to the methodology
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presented Section 4.3. The specific methodology applied in the process of compil-
ing datasets representing evaluations of incremental numbers of faults is detailed
in the steps below.

1. 100 samples were drawn at random from the nuScenes “trainval” dataset.

2. Bounding boxes from the prediction set of each sample were filtered at
a different confidence threshold for FP and FN-related injections, namely
τFP = 0.15 and τFN = 0.4, respectively.

3. FPs or FNs were separately injected into the prediction sets of SSN for each
sample, in five rounds. For each round, the number of injections into the
prediction sets was incremented. This was performed for 1-5 faults of both
classes, producing an equal number of different modified prediction sets for
both categories of misdetections.

4. For unmodified predictions of SSN and for all modified prediction sets, met-
ric evaluations were performed with OCM-related metrics and PKL. The
resulting metric data corresponded to five different, fault-injected prediction
sets for both classes of fault.

5. The F1crit score was computed for predictions in all datasets, and the mean
metric values for F1crit, PR, RS , and PKL were computed over the predic-
tions for the 100 samples.

6. Resulting mean values were visualized and analyzed with respect to their
relative differences and changes in mean results.

In the experimental methodology described above, the choice of confidence thresh-
olds on which to filter predicted BB predictions differ for the datasets containing
injected FPs and FNs. When analysing the sensitivity of PKL to specific safety
and reliability-related faults (namely FNs and FPs, respectively), evaluating pre-
dictions that contain both types of faults can lead to ambiguity with regard to
the PKL score. As PKL comprises to a single measure of both reliability and
safety-related factors of detector predictions, it is beneficial to limit the number
of the other class of misdetection when examining the metrics’ penalization of
a specific class of faults. This limits the number of faults of the opposing class
than the one injected, and consequently to more interpretable results with regards
to PKL. Using a higher confidence threshold allows for minimizing the number of
FPs present in the dataset upon evaluation of the penalization of FNs. Conversely,
a low threshold allows for minimising the number of FNs present in the predic-
tion sets prior to analysing the impact of FPs. Hence, a confidence threshold of
τ = 0.15 was enforced for predictions when analyzing the penalization of FPs, and
a threshold of τ = 0.40 was enforced when analyzing the penalization of FNs in
the aforementioned experiment.
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4.7 Comparative analysis of generic metrics with
their safety-oriented adaptations

The OCM-related metrics examined in the experimental work of this thesis are
closely related to their generic counterparts, namely precision, recall, and F1-score.
To understand the relationship between these generic metrics and their safety
and reliability-oriented adaptations, a comparative analysis was performed. As a
comparison to the analyses performed in the preceding experiments, this analysis
comprised methodologies utilized in preceding experiments. Corresponding metric
results are presented in Section 6.5.

Applying the experimental methodology presented in this section, an analysis
of the generic performance measures of precision, recall and F1-score was per-
formed. Contrasting the experimental results presented in the preceding sections
of this chapter, datasets of metric results created over the same samples and pre-
dictions selected in these experiments were visualized and assessed. Specifically,
analogous experiments to those introduced in Subsection 4.5.1 and Section 4.6
were performed utilizing similar datasets of metric results for precision, recall,
and F1-score. Hence, a comparison of the generic metrics with PKL and OCM-
related metrics was performed. In the stepwise methodology presented below, the
approach applied in this process is elaborated upon and described.

1. Utilizing the datasets introduced in Section 4.2, precision, recall, and F1-
score were computed. Furthermore, histograms representing the frequencies
of occurrence for the aforementioned metric values over the datasets were
visualized together with joint distributions between PKL and the metrics.
The results were analyzed in the context of results for safety-oriented metric
adaptions. This approach follows the methodology of Subsection 4.5.1.

2. Similar to the approach described in Subsection 4.5.1, metric distributions
over samples constrained by limiting the total number of GTs present were
analysed, and put in context with results from the aforementioned exper-
iment (by comparison). In this step, the distributions were visualized for
different levels of restriction on the number of GT objects considered. This
was performed for the same levels of restriction as the N -values selected in
Subsection 4.5.1.

3. Following an analogous methodology to the experiment introduced in Sec-
tion 4.6, the impact of injecting an incremental number of faults into SSN
predictions over 100 nuScenes samples was analysed. An equivalent dataset
of samples to the randomly drawn samples analysed in Section 4.6 was uti-
lized.

The objective of this analysis was to understand the relationship between the
generic metrics and their safety-oriented counterparts, namely OCM-related met-
rics and PKL. As the OCM-related metrics examined in the experimental work of
this thesis are closely related to their generic counterparts, namely precision, re-
call, and F1-score, a better understanding of this relationship provides context to
preceding experimental results by means of comparative analysis with widely ac-
knowledged, commonly applied metrics for object detectors applied in autonomous
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vehicles. Furthermore, an analysis of the difference between evaluations by the
aforementioned classes of metrics when compared with PKL evaluations provides
insights into the degree to which PKL and OCM-related metrics assess and re-
flect similar factors in the context of detection. Hence, the experimental work
introduced in this section addresses Research Question 1 of this thesis.
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TECHNICAL SETUP

5.1 Object Criticality Model

Presented in Ceccarelli and Montecchi [2], the OCM, with which a safety metric
is constructed, is implemented on top of the nuScenes devkit. More specifically,
the implementation extends the devkit and provides ease of use by integrating the
computation of low-level and high-level OCM-related metrics with the framework
for the evaluation of generic metrics provided by the nuScenes devkit. Further-
more, the extension of the nuScenes devkit module provided by Ceccarelli and
Montecchi implements functionality for visualizing criticalities of GT- and pre-
dicted objects in nuScenes samples and scripts for evaluating detector predictions
with OCM-related metrics and for visualizing metric results.

The criticality values computed for objects with the OCM are dependent on
three parameters, namely Dmax, Rmax, and Tmax [2]. These three parameters
were introduced in Subsection 2.6.2, and correspond to the maximum distances,
collision distances, and collision times considered, respectively. For the purpose
of the analysis presented in this thesis, these parameters will be set as constant
values as an analysis of different configurations of these parameters has already
been performed in [2], and as it is outside the scope of this project to evaluate the
metric with regards to different configurations. However, it should be noted that
different choices for these parameters will induce different experimental results. In
[2], Ceccarelli and Montecchi present metric results for object detectors across a
range of different configurations for (Dmax, Rmax, Tmax). Thus, the choice of these
values should be considered in any application or experimental work that utilizes
the OCM. The constant values selected for these parameters were Dmax = 30.0,
Rmax = 20.0, and Tmax = 10.0. The choice of these values was based on having
sufficiently high values for the three parameters for considering as many possible
scenarios in which the perceived objects may interfere with ego.

5.2 Planning KL-divergence module

To evaluate detector predictions over nuScenes samples with the PKL metric,
this work utilizes functionality implemented in the planning-centric-metrics
module [10] for Python3. This module provides the means for evaluating detec-

47



48 CHAPTER 5. TECHNICAL SETUP

tions with the PKL metric, as well as useful functionality for visualization and
for training neural planner models for application in evaluation with PKL. In the
experimental work performed and described in this thesis, the model of a neural
planner provided by Philion et al. [10] was utilized for evaluating predictions with
PKL, initialized with default weights provided in the corresponding repository.

5.3 The modified nuScenes devkit
Extending the modified nuScenes devkit module presented in Section 5.1 (imple-
menting the OCM), additional functionality was implemented to accommodate
the requirements of the experimental work performed and presented in this thesis.
In this section, some of the essential functionality implemented as part of this
research and utilized to collect the subsequent experimental results is mapped. In
the experimental work performed, the nuscenes-devkit Python SDK [32] was
utilized. All implemented functionality extending the nuscenes-devkit has been
tested for versions 3.7 and 3.8 of the nuScenes devkit and for version 3.8.3 of
Python [38]. The extended nuScenes devkit module and all implemented software
are linked in Appendix A. As discussed in Section 3.1, the match criteria applied
to discriminate between TP and FP predictions in nuScenes is the 2D center dis-
tance on the ground plane (not IOU). For the experimental work performed, the
match limit for this parameter is set at a constant value, namely d = 2.0. This
implies that predicted BBs with center distances less than 2.0 from a GT are con-
sidered true positive detections. In the following subsections, some of the changes
made to the nuScenes devkit, and some of the functionality implemented, will be
introduced.

5.3.1 Single sample evaluation

For evaluating object detection models, the nuScenes devkit module [32] imple-
ments generic evaluation metrics, including AP and mAP. Additionally, the devkit
provides the means of evaluating the predictions of an object detector with NDS,
presented in Equation 2.14. The aforementioned evaluation metrics enable the
evaluation of detections over quantitative data by accumulating low-level perfor-
mance measures such as the number of TPs, FPs, and FNs. However, as the
experiments of this thesis, introduced in Chapter 4, required computing metric
evaluations for predictions on single samples of the nuScenes dataset, this func-
tionality was implemented in the extended version of nuscenes-devkit. This
entailed implementing an alternative to the main evaluation method provided in
the devkit.

5.3.2 PKL and OCM metrics

The experiments introduced in Chapter 4 apply the nuScenes devkit extensively
for evaluating detector predictions on nuScenes samples with the task-oriented
metrics of OCM and PKL. Thus, it was necessary to incorporate metric evalua-
tion with these metrics into the nuScenes devkit module. In the extended nuScenes
devkit provided by Ceccarelli and Montecchi [2], detector predictions can be eval-
uated with OCM-related metrics by accumulating metric results over multiple
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nuScenes samples (e.g. over the whole nuScenes “trainval” dataset). Building on
this extended version of the devkit, the library provided in Appendix A enables
the evaluation of detector predictions over single nuScenes samples with OCM-
related metrics and with PKL. Hence, for a set of nuScenes samples, single sample
metric evaluations, as well as multiple sample evaluations on accumulated metric
data, can be performed utilizing the implemented functionality.

5.3.3 Injection of faults

A fundamental requirement for the experimental work introduced in the preceding
chapter is the capacity of injecting faults into the prediction sets of object detection
models. This entails modifying these prediction sets by either removing (FN) or
inserting (FP) bounding boxes in detections. In the extended nuscenes-devkit
module, methods are implemented for the removal and insertion of BB in the
prediction set of a detector. In this section, the implementational details of the
methods for injecting faults are described. Furthermore, the Python3 [38] code
implementing these methods are provided in Appendix B.

5.3.3.1 False positives

To inject a false positive detection into the prediction set of an object detection
model, a method is implemented in the nuscenes-devkit module. The code im-
plementing this functionality is provided in Algorithm B.1. This method allows
for the injection of a false positive prediction into the prediction set of an object
detector, subsequent to model inference over single nuScenes samples. As parame-
ters, the method takes the (xfp, yfp) position of the object to be injected relative to
the ego reference frame in which ego is positioned at (xego, yego) = (0, 0). Further-
more, the method takes a parameter describing the size (height, length, width) of
the FP to be injected. This allows the FP to be placed in specific locations and to
have specific sizes based on the experiment performed. Finally, a boolean value is
taken as a parameter describing whether or not to set the velocity of the injected
FP equal to ego velocity or equal to 0 in all directions.

When instantiating a prediction in the nuScenes devkit, a set of parameters
describing the properties of the object is required. As mentioned, some of these
properties are taken as parameters in the method implemented for injection. For
ease of implementation, other properties of the injected object take on predeter-
mined values. These properties, and the values they assume for injected BBs, are
presented below.

Detection score: 0.99

Attribute name: ’vehicle.moving’ if velocity is matching ego velocity, or ’vehi-
cle.stopped’ otherwise.

Detection name: ’car’.

Orientation: set as equal to ego orientation.

Z-coordinate of position: set as equal to ego z-coordinate.
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In the above, the detection score is the confidence level of the detector for the
specific detection. This is initialized to 0.99 to avoid the bounding box being fil-
tered out due to confidence threshold filtering in the experiments. The attribute
name describes attributes for objects in nuScenes, providing additional descrip-
tions of the activities of objects. As the object initialized is a car, this is set to
represent a moving vehicle if the injected object has a non-zero velocity, and to
represent a stopped vehicle otherwise. Furthermore, the detection name corre-
sponds to the object class of the predicted object, which is set to represent a car
for the experiments performed. Most significant in terms of consequences for the
subsequent experimental work, the orientation and z-coordinate correspond to the
global orientation and z-position of the injected BB, respectively. These values
are always set as equivalent to the corresponding properties for the ego vehicle in
the global reference frame, for the specific sample considered. The implications of
the aforementioned implementational choices are discussed in Subsection 7.1.2

5.3.3.2 False negatives

To inject a false negative detection into the prediction set of an object detector,
i.e. removing a correctly predicted BB from the prediction set, a method is imple-
mented in the nuscenes-devkit module. The code implementing this method is
provided in Algorithm B.2. Given a set of bounding boxes predicted by an object
detector over a single nuScenes sample, this method allows removing a single, or
multiple, correctly predicted bounding boxes, i.e. TP predictions. The method
implementing the functionality for injecting FN predictions takes as a parameter
a distance measure, specifying the Euclidean distance from the ego vehicle up to
which correctly predicted BBs are considered for removal. This parameter thus
enables not considering objects that are further away from ego than a specified dis-
tance. Furthermore, another parameter is taken in the method, namely a boolean
value indicating whether to remove one or all TP predictions within the aforemen-
tioned distance from ego. This allows for predictions to be modified to simulate
significant safety hazards in detection. If multiple possible TP predictions are
present within the distance specified upon calling the method described above,
predictions are selected for removal based on their Euclidean distance from ego on
the ground plane. More specifically, the most proximate TP in relation to ego is
removed first. The method described above enables the injection of FNs into the
predictions of an object detector over nuScenes samples.

5.4 IDUN High-Performance Compute Cluster

IDUN [50] is NTNU’s high-performance compute cluster, providing an adminis-
trated and highly available compute platform for students and faculty members.
The IDUN project is a joint effort between a number of faculties and shareholders
at NTNU. At the time of writing, IDUN incorporates 92 designated GPUs, 80 of
which are financed and leveraged by the Department of Computer Science, and
1932 CPU cores.

For the experimental work of this thesis, a VM hosted on IDUN was uti-
lized. This allowed for utilizing a designated amount of storage, CPU, and GPU
resources. These resources included two Tesla P100 PCIe 16GB GPU compute
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nodes, built based on the NVIDIA Pascal GPU architecture, and 950GB of stor-
age. These resources were applied in the experimental work of this thesis by
performing inference with object detection models over the nuScenes dataset and
performing metric evaluations of the resulting detector predictions.
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CHAPTER

SIX

EXPERIMENTS AND RESULTS

Following the methodologies outlined in Chapter 4, experiments were performed
and results were collected. In this chapter, these results are presented and anal-
ysed.

6.1 Examining single sample metric evaluations

This section examines detector predictions and metric evaluations for a selected
nuScenes sample, following the experimental methodology introduced in Section 4.4.
This is performed for both raw detector predictions on the sample, and for predic-
tions that are modified by injecting synthetic faults. For the two object detection
models SSN and PPT, predictions on single samples from the nuScenes dataset
were filtered at confidence threshold τ = 0.15 and visualized. Furthermore, both
GTs and predictions are filtered to only include the “car”-class before evaluation.
The samples examined were selected qualitatively.

Firstly, single nuScenes sample and its corresponding GTs and predictions from
SSN and PPT are examined and analyzed. For these scenarios, the corresponding
evaluations of detector predictions according to PR, RS , F1crit, and PKL are
subsequently assessed. For the repeatability of the experiments performed in this
section, the sample token (the unique identifier for nuScenes samples) of the sample
analyzed is presented below.

Sample token: 6c8d4379e83646d08436f6ec92b35fe5

In Figure 6.1.1, the point cloud resulting from the LIDAR scan is visualized
together with the environment and annotated GTs for the sample. In Figure 6.1.2,
the camera frames corresponding to the sample analysed are depicted. In the given
scenario, the ego vehicle executes a right turn at an intersection while two cars
approach from the right and pass in front of it. One of the vehicles makes a left
turn into the same street from which the ego vehicle came, while the other vehicle
proceeds straight ahead. In this scenario, there is some uncertainty as to the
importance of detecting the two aforementioned vehicles. It can be argued that
the vehicles are important to detect due to their proximity to ego. However, one
could also claim that there is no danger of the vehicles interfering with ego and
that the correct or incorrect detection of the vehicles does not affect ego’s ability
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Figure 6.1.1: LIDAR-scan and environment of the sample.

(a) Left-front camera. (b) Front camera

Figure 6.1.2: Camera frames corresponding to the sample.

to make a right turn. This ambiguity can highlight the difference between the two
task-specific metrics for which results are subsequently examined.

6.1.1 Raw predictions

In Figure 6.1.3, the predictions of SSN and PPT for the sample, as well as GT
objects, are visualized. In the figure, the axes are measured in meters, and the
coordinate system is aligned with the reference frame of the ego vehicle. Fur-
thermore, predicted BBs are visualized in blue and GT objects in green with the
corresponding criticalities for the prediction and the GT annotated next to their
bounding box rectangles. In Figure 6.1.3, it is observed that the two aforemen-
tioned vehicles in proximity to ego both receive criticalities of 1.0. To understand
how the OCM evaluates this criticality, the criticality weights κd, κr, and κt, in-
troduced in Subsection 2.6.2, are considered. It is evident that the closest vehicle
(turning left) is the most important and fruitful object to analyze in this particular
sample. Thus, the criticality weights are discussed for this object. The predicted
BB receives the same criticality as the GT object when rounded to two decimal
points in Figure 6.1.3. Hence, values are only presented for predicted boxes. For
both PPT and SSN, the aforementioned criticality weights evaluate to κd = 0.94,
κr = 0.91, and κt = 1.0. Out of these three values, the collision time criticality
is the highest, evaluating to the maximum criticality of 1.0. This implies that as
evaluated by the OCM, the ego is on a potential collision path with the vehicle. As
discussed in Subsection 2.6.2, the reason for this is that kt is computed only with
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Figure 6.1.3: Predicted objects (blue), GTs (green) and criticalities assigned by
the OCM for PPT (left) and SSN (right) on a single sample.

regards to the current speed and direction of movement of the vehicle evaluated,
and thus exhibits a high criticality due to the velocity vector of ego pointing in
the direction of the incoming vehicle. The same is true for the collision distance
criticality, which evaluates to a value proximate to the maximum.

Metric PPT SSN

PR 0.533 0.915

RS 0.989 0.998

F1crit 0.693 0.955

PKL 0.677 3.673

Table 6.1.1: Metric results on single sample.

Table 6.1.1 presents the metric results corresponding to the BBs predicted by
the PPT and SSN detectors. In the table, metric values are rounded to three
decimal points. It is observed that the main metrics F1crit and PKL rank the pre-
dictions of the two detectors differently. For SSN, F1crit indicates near-perfect de-
tection of objects with positive criticality values, exhibiting a score near 1.0. PKL,
however, suggests a slight divergence from the GT planned path (path planned
with GT predictions), indicated by a value of PKL = 3.67. It is noted, however,
that a PKL value of 3.67 is a good score and that the difference between PKL
evaluations for the two detectors is likely due to a less significant error in the
prediction of the orientation, size or location of an object in the scene. For PPT,
the F1crit-measure evaluates to a lower value. This is due to PR assuming a value
of 0.533, and it is observed in Figure 6.1.3 (left figure) that this is caused by the
detector predicting a number of false positive detections with high criticalities.
Most notably, PPT predicts the presence of two non-existing objects in front of
the vehicle, whose criticalities both evaluate to 1.0. The RS score for the PPT
predictions indicates that all critical objects were correctly predicted. Note that
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Figure 6.1.4: Predicted objects, GTs, and criticalities with injected FP for
PPT (left) and SSN (right).

the confidence threshold at which the detections were filtered at τ = 0.15, giv-
ing high values for safety-weighted recall. For PKL, the predictions by PPT are
evaluated to 0.677, indicating very little deviance from the planned trajectory as
a result of these detections.

6.1.2 Fault injected predictions

In this section, the detector predictions for the sample examined in the previous
section are subject to injection of misdetections. The implications of injecting
faults into the prediction sets of the detectors in the context of evaluation are in-
vestigated. Utilizing the methods for fault injection described in Subsection 5.3.3,
one FN and one FP are injected into the predictions of PPT and SSN. Hence,
through the injection of faults, detections that have the potential to cause safety
hazards or reliability issues in the downstream task of planning are investigated.
This enables a qualitative evaluation of metric results for such scenarios, and thus
an analysis of these results when compared to metric evaluations of predictions
where such faults have not been introduced.

6.1.2.1 Injected false positive

For the injection of a false positive, a bounding box representing a vehicle of object
class “car” was inserted into the prediction sets of both detectors at the position
(x, y) = (3, 5) relative to ego. The size of the injected object was (h, l, w) =
(1.7, 4.0, 2.0), and its velocity was set to 0 in all directions. The FP was injected
at the selected location to directly interfere with the ego trajectory, and thus to
represent a detection that interrupts the service of the autonomous system and in
consequence affects its reliability.

In Figure 6.1.4, the predictions and GT objects, along with the injected FP
are visualized. In the figure, the injected object is located close to the front-right
of ego. Expectedly, a high criticality value of 1.0 is derived for the injected FP for
both detection models. For both PPT and SSN, the criticality weights evaluate
to κd = 0.92, κr = 0.98, and κt = 0.88. Due to the injected object being in such
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close proximity to ego and having a velocity of 0, the perceived object has a short
collision distance and collision time, explaining the high values for the criticality
weights.

Metric PPT SSN

PR 0.466 0.733

RS 0.989 0.998

F1crit 0.633 0.845

PKL 20.74 5.169

Table 6.1.2: Metric results for predictions with one injected FP.

The metric results for the modified prediction sets of PPT and SSN are pre-
sented in Table 6.1.2. Seen in contrast to Table 6.1.1, there is a decreased in the
values for the evaluations of F1crit and PKL for both detectors as a result of in-
jecting an FP. Most notably, the PKL score for the predictions of PPT evaluates
to PKL = 20.74, whereas the PKL score for the SSN predictions is 5.17. For
the detections of PPT, this indicates a divergence from the GT trajectory of ego
caused by the introduction of false positive detection. However, to reason about
the change in PKL-score as a result of the injection of an FP, the other predictions
of the detector must be considered. Examining Figure 6.1.4, this divergence can
be explained by considering the other misdetections present in the prediction set
of PPT. As discussed in the preceding section, the presence of two cars is incor-
rectly predicted by PPT in front of ego. Although these FPs do not sufficiently
impact the planned trajectory of ego to cause a considerable increase in the PKL
evaluation on their own, as seen in Table 6.1.1, they provide important context
to the evaluation performed on the FP-injected predictions. Taking into account
the trajectory planned by the planning algorithm subsequent to the introduction
of the FP, it is likely that the joint presence of the injected FP and the preexist-
ing false positives would induce a more considerable divergence from the planned
path. Considering the OCM measures, the introduction of an FP leads to a de-
crease in PR, and thus to a decrease in F1crit for both PPT predictions and SSN
predictions compared to results presented in the previous section. This decrease is,
however, larger for SSN. This can be explained by considering the number of FPs
with considerable criticalities already present in the predictions for PPT, and the
equation for computing PR, introduced in Subsection 2.6.2. For a larger number
of misdetections present when computing the reliability-weighted precision, the
addition of another FP has a less significant impact on the final score.

6.1.2.2 Injected false negative

For the injection of a false negative detection, a single, correct prediction was
removed from the prediction sets of PPT and SSN. The specific object selected
for removal was the vehicle closest to ego, i.e. the vehicle turning left at the
intersection. Evaluated by a center distance threshold of 2.0, both object detectors
correctly predicted BBs for this object. The vehicle representing this object was
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Figure 6.1.5: Predicted objects, GTs, and criticalities with injected FN for
PPT (left) and SSN (right).

selected due to the high perceived criticality for the vehicle following observations
in the visualization of the sample, i.e. Figure 6.1.1. Note that this high perceived
criticality is not related to criticality as defined by the OCM, but rather on the
perceived importance of the detection viewed in the context of the sample. Thus,
the prediction was chosen for removal with the intent of analyzing the impact of
removing high-criticality objects on metric evaluations. This enables a qualitative
assessment of how the metrics evaluate potentially hazardous detection scenarios
where the safety of the system could be compromised. To inject the FN detection,
the methods introduced in Section 4.3 were utilized.

In Figure 6.1.5, it is observed that the predictions do not contain a correctly
predicted bounding box (plotted in blue) for the selected object. This corresponds
to PPT and SSN failing to detect the GT object the vehicle represents and sim-
ulates a scenario in which the safety of the system is potentially compromised.
Thus, following the injection, an FN detection is reflected in the measures for
performance.

Metric PPT SSN

PR 0.455 0.880

RS 0.717 0.720

F1crit 0.556 0.799

PKL 4.50 3.31

Table 6.1.3: Metric results for predictions with one injected FN.

The metric evaluations of the detectors’ predictions injected with a false negative
are presented in Table 6.1.3. It is observed that OCM-related metrics are impacted
similarly by the introduction of an FN for the two detectors when compared with
metric evaluations of the unmodified predictions (i.e. raw predictions) presented
in Table 6.1.1. In particular, RS sees a decrease of ≈ 0.27 for both detectors.
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In addition, both sets of detections are evaluated approximately equally in terms
of safety-weighted recall. As presented in the previous section, the criticality of
the predicted BB for the removed object evaluates to κ = 1.0 for both detectors.
Furthermore, as discussed in Subsection 6.1.1, the raw predictions for the two
detectors are evaluated approximately equally in terms of RS . Thus, analogous
results for safety-weighted can be expected for the two detectors when this partic-
ular detection is removed from their predictions. For F1crit a similar comparison
can be made, with approximately equivalent decreases in metric values for the two
detectors relative to the metric data for the raw predictions. However, as observed
in the previous section, F1crit is substantially lower, at F1crit = 0.556 for PPT
than for SSN, with F1crit = 0.799. This difference is induced by their disparate
scores for reliability-weighted precision, which is in turn caused by a prevalence of
FPs present in the predictions of PPT. Note that while safety-weighted recall is
not influenced by introducing FP detections into the prediction set, the definition
of reliability-weighted precision allows the value it takes on to be influenced by
removing correct predictions. This explains the change observed in PR for both
detectors, compared to metric data over raw predictions.

Considering PKL, a small increase is seen for PPT following the injection of the
FN detection relative to PKL evaluation over the raw predictions. This indicates
that the removal of the predicted BB causes a slightly larger divergence from the
path planned by considering the GT objects. Interestingly, in the case of SSN,
PKL exhibits a marginally lower value for the fault-injected predictions compared
to the raw predictions. This suggests that the path planned based on FN-injected
predictions assumes a smaller divergence from the path planned by considering
GT objects than to the path planned with raw predictions. More specifically, this
entails that predicting the BB causes a greater divergence from the original path
than not predicting it. Although the difference in PKL values is negligible for
raw predictions and FN-injected predictions, investigating how such a result can
occur is important when analyzing the characteristics of PKL. An explanation of
this result is that the removed BB exhibits some degree of error that causes a
specific divergence, as reflected by PKL. If the properties of the object detected
(i.e. location, speed, direction of movement) are such that the object is not likely to
interfere with ego, then the prediction of it (with some degree of error) may cause
a greater value for Planning KL-divergence than simply not making a prediction
for it.
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6.2 Analysis of metric distributions

In this section, part of the results collected by applying the methodology intro-
duced in Subsection 4.5.1 are presented. Specifically, visualisations forming the
basis for the analysis of metric distributions are presented and analysed. Recall
that metric data utilized in this experiment stem from a single object detector,
namely SSN. Furthermore, scores for PKL are presented on the negative logarith-
mic form (−log PKL) as the PKL value is not bounded for positive values.

6.2.1 Nominal metric data

Following the approach of Subsection 4.5.1, the histograms representing the fre-
quencies of occurrence in the dataset RAW_40 for F1crit and PKL, respectively,
are visualized in 6.2.1.

Figure 6.2.1: Histogram for the metric distributions of RAW_40.

In Figure 6.2.1, metric values are divided into 15 bins of uniform width, where the
frequencies of occurrence for metric values falling into specific bins are visualized
by the height of the bars representing each bin. In the plot, a visual dissimilarity
between the distributions of metric results can be observed, with PKL scores
seemingly being more evenly distributed for the samples evaluated. It should be
noted that for instances with PKL < 1.0, the negative logarithm evaluates to
positive values. Thus, for the right-hand histogram of Figure 6.2.1, the bins larger
than 0 represent PKL scores less than 1 and approaching 0 (i.e. very good scores
for PKL). This suggests that the distributions plotted Figure 6.2.1 represent more
similarity between the metrics than is perceived. This quality of the PKL values
and the fundamental differences of the metrics should thus be considered when
interpreting results.

Figure 6.2.2 shows the joint distributions for metric results between OCM-
related metrics and PKL. As is observed in the histograms depicted in Figure 6.2.1,
a significant number of predictions evaluate to high scores for both OCM-related
metrics and PKL. Considering the individual components of the OCM, higher
values are achieved for PR than for RS on average. This is likely a consequence of
the confidence threshold selected (τ = 0.40) permitting more FN detections than
FP predictions to be present in the prediction sets evaluated.
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Figure 6.2.2: Scatter plot showing the joint distributions between PKL and the
task-oriented metric evaluations represented in RAW_40.

6.2.2 Fault injected metric data

In this section, the distributions of metric data in the fault-injected datasets pre-
sented in Table 4.2.1, namely FN_40 and FP_40, are analyzed. As performed for
the non-injected dataset in the preceding section, the distributions of metric data
for both metrics and datasets are visualized in Figure 6.2.3.
Examining Figure 6.2.3, it is evident that PKL penalizes predictions in which FPs
have been injected more rigorously than F1crit. Specifically, comparing with re-
sults in the RAW_40 dataset analysed in the preceding section, a more significant
left shift is observed for the distribution of PKL values in Figure 6.2.3b than in
Figure 6.2.3a. This indicates lower performance in terms of PKL when considering
predictions injected with FPs. This penalization is more thoroughly investigated
in subsequent experimental results. In Figure 6.2.3, a significant left shift can also
be observed in both distributions of F1crit for the fault-injected datasets when
compared with Figure 6.2.1. Additionally, the distribution of values for F1crit are
more evenly distributed across metric values for the FN_40 dataset.
In Figure 6.2.4, the scatter plots representing the joint distributions between PKL
and F1crit, PR and RS for the two fault-injected datasets are visualized. A no-
ticeable disparity in terms of F1crit is observed for distributions represented in
the two datasets. Specifically, metric values appear to be more evenly distributed
in the FN_40 dataset. It is anticipated for the PR- and RS-based distributions
to exhibit differences for the two types of injected errors in the prediction sets,
illustrated in Figure 6.2.4a and Figure 6.2.4b. This is the consequence of the two
measures being designed to reflect different types of faults in prediction. However,
different distributions for their harmonic means (F1crit) may signify a difference
in the penalization of FNs and FPs as both measures comprising the metric are
reflected equally.
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(a) Histogram for the FN_40 dataset.

(b) Histogram for the FP_40 dataset.

Figure 6.2.3: Figures (a) and (b) show the frequency of occurrence for metric
values in the FN_40 and FP_40 datasets, respectively.
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(a) Scatter plot for metric data over the FN_40 dataset.

(b) Scatter plot for metric data over the FP_40 dataset.

Figure 6.2.4: Figures (a) and (b) visualize the joint distributions between the
task-oriented metric evaluations represented in the FN_40 and FP_40 datasets,
respectively. In comparison with the RAW_40 dataset, the changes in distribu-
tions reflect the types of fault injected.
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6.3 Metric correlation for constrained detections

In this section, part of the results collected by applying the methodology presented
in Section 4.5 are presented. Specifically, the methodologies introduced in Sub-
section 4.5.1 and Subsection 4.5.2 were applied to produce the subsequent results.
These results provide insights into the correlation between OCM-related metrics
and PKL by means of visual analysis of metric distributions and the analysis
of statistical correlation. Furthermore, the results investigate the consequences
of constraining the datasets utilized by restricting the total number of objects
considered in the samples evaluated.

6.3.1 Analysis of metric distributions

In Figure 6.2.2, it can be observed that PKL scores tend to vary over samples
with congruent evaluations for F1crit (i.e. samples that are evaluated similarly
with regards to F1crit). It is difficult to analyze the reason for the disparity of
PKL values for detections that are similarly scored by F1crit due to the environ-
mental factors considered in PKL evaluations being implicitly learned. To enable
an assessment of the relationship between the two metrics, and to analyze the
sensitivity of OCM-related metrics to the number of objects present in samples,
the changes in the distributions examined in the previous section are reviewed for
datasets in which samples are excluded based on the number of GT objects they
represent, as described in Subsection 4.5.1.

Constrained datasets for which samples that have less than or equal to N
objects in their GT set are visualized analogously to the full datasets presented
in the preceding section. More specifically, metric data for the datasets resulting
from the constraint N = 8 (implying oi ≤ 8) and N = 4 are visualized. In the
subsequent analysis, the datasets of reduced size resulting from these constraints
on the number of objects will be referred to as constrained datasets.

For N = 8, Figure 6.3.1 depicts the histograms representing the distributions of
metric data in the constrained datasets. Examining the distribution of PKL results
for the RAW_40 dataset (Figure 6.3.1a), a right skew is observed in the distribu-
tion compared to similar metric results for the unconstrained RAW_40 dataset.
This indicates that the predictions (and samples) disregarded as a consequence of
constraining the dataset with N = 8 performed worse in terms of PKL than the
samples where oi ≤ 8. Similar observations are made for PKL distributions in the
datasets FP_40 and FN_40. The overall increase in PKL as a result of exclud-
ing evaluations for samples with a higher number of objects indicates that PKL
generally exhibits better scores for predictions on samples with a lower number of
objects. Conversely, for F1crit, the distributions depicted in Figure 6.3.1 generally
indicate lower performance for the constrained datasets, in contrast to similar dis-
tributions for the full datasets visualized in presented in Section 6.2. This is most
evident for the distribution of F1crit in the FP_40 dataset. The aforementioned
observations suggest that the means of PKL and F1crit scores over a given dataset
are inversely proportional to the increase and decrease, respectively, of the number
of objects represented in the samples evaluated.

In Figure 6.3.2, the joint distributions between OCM-related metrics and PKL
are visualized through scatter plots. In the histograms provided, it can be observed
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(a) Histogram for the RAW_40 dataset.

(b) Histogram for the FN_40 dataset.

(c) Histogram for the FP_40 dataset.

Figure 6.3.1: Figures (a), (b), and (c) show the marginal metric distributions
for the constrained datasets RAW_40, FN_40, and FP_40, where N = 8.

that over the fault-injected datasets, a smaller fraction of data points correspond-
ing to poor PKL scores are present when constraining the FN_40 and FP_40
datasets with N = 8. Specifically, there is a smaller fraction of data points corre-
sponding to predictions that exhibit high scores for F1crit and low scores for PKL
(compared to the unconstrained sets depicted in Figure 6.2.2 and Figure 6.2.4).
This indicates a higher degree of “agreement” between the two in terms of evaluat-
ing the predictions reflected in the constrained dataset. For F1crit and PKL, there
appears to be a higher degree of correlation between the metrics as a consequence
of the shifts in their distributions. Especially over data from FN_40, the distri-
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(a) Scatter plot for metric data over the RAW_40 dataset.

(b) Scatter plot for metric data over the FN_40 dataset.

(c) Scatter plot for metric data over the FP_40 dataset.

Figure 6.3.2: Figures (a), (b), and (c) show the joint metric distributions for the
constrained datasets RAW_40, FN_40, and FP_40, where N = 8.

butions of data points appear to follow a linear trend. Considering PR and RS
for the corresponding datasets, their joint distributions indicate that a decrease
in high-scoring predictions for the measures causes the overall decrease in F1crit
for lower values of the constraint variable N .

In Figure 6.3.3, histograms representing the distributions of metric results are
depicted for datasets constrained with N = 4. Comparing these to the histograms
depicted in Figure 6.3.1, it is evident that there is a decrease in the fraction
of values corresponding to low-scoring predictions for PKL. Considering F1crit,
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(a) Histogram for the RAW_40 dataset.

(b) Histogram for the FN_40 dataset.

(c) Histogram for the FP_40 dataset.

Figure 6.3.3: Figures (a), (b), and (c) show the marginal metric distributions
for the constrained datasets RAW_40, FN_40, and FP_40, where N = 4.

there appears to be an overall increase in the fraction of high-scoring predictions
for RAW_40 and FN_40, but a decrease for FP_40. This indicates a similarity
in the response of the distributions of the two metrics to the constraints imposed
for the RAW_40 and FN_40 datasets and a more evident difference in their
evaluations for the FP_40 dataset.

As observed in previously illustrated distributions for PKL, PKL appears to pe-
nalize false positives more severely than false negatives considering the respective,
fault-injected datasets FP_40 and FN_40. Analyzing the distribution of PKL
represented by FP_40 for both constrained datasets (with N = 8 and N = 4),
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it is observed that the distribution is skewed left, with values for the negative
logarithm of PKL not exceeding 2.

(a) Scatter plot for metric data over the RAW_40 dataset.

(b) Scatter plot for metric data over the FN_40 dataset.

(c) Scatter plot for metric data over the FP_40 dataset.

Figure 6.3.4: Figures (a), (b), and (c) show the joint metric distributions for the
constrained datasets RAW_40, FN_40, and FP_40, where N = 4.

In Figure 6.3.4, the joint distributions between PKL and OCM-related metrics
are depicted for datasets with a constraint of N = 4. Examining data represented
by FN_40 in Figure 6.3.4b, there appears to be a more pronounced linear rela-
tionship between F1crit and PKL as the number of objects in the evaluated scenes
decreases. This is demonstrated by the reduction in data points with low PKL
values for higher F1crit values, compared to the distributions for unconstrained
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datasets and datasets constrained with N = 8. It is important to note that the
joint distributions are depicted on the logarithmic scale of the y-axis. As a lin-
ear trend is observed for the measures F1crit and RS for FN_40, this implies a
non-linear trend for the true metric values.

Considering all the joint distributions analyzed, it can be inferred that safety-
weighted recall exhibits a higher correlation with PKL compared to reliability-
weighted precision. This correlation appears to be increasingly evident for de-
creasing values of the constraint variable N (and thus for decreasing numbers of
objects represented by the samples evaluated). One possible explanation for this
observation could be the aforementioned observed difference in the penalization
of false positive predictions between PKL and reliability-weighted precision.
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6.3.2 Statistical Analysis

In the previous section, joint distributions between PKL and F1crit were analyzed
for the scenarios N = ∞, N = 8, and N = 4. To quantify the relationship
between these measures for these constraints, the Pearson correlation coefficient
(rp) and the Spearman correlation coefficient (rS) were computed. As discussed
in Subsection 4.5.2, these coefficients measure the strength and direction of linear
and monotonic relationships, respectively. Additionally, the p-values associated
with these coefficients were computed to assess the statistical significance of the
findings. The results are summarized in Table 6.3.1-Table 6.3.3.

Table 6.3.1: Correlation on constrained detections for RAW_40.

N rP rS pP pS Size

N=∞ 0.207 0.318 4.094e-10 1.872e-22 894

N=8 0.280 0.365 1.505e-15 1.616e-9 447

N=4 0.343 0.408 1.392e-7 2.258e-10 224

Table 6.3.2: Correlation on constrained detections for FN_40.

N rP rS pP pS Size

N=∞ 0.346 0.327 3.112e-22 6.774e-20 739

N=8 0.503 0.503 5.382e-21 6.177e-21 305

N=4 0.577 0.598 1.820e-11 2.163e-12 114

Table 6.3.3: Correlation on constrained detections for FP_40.

N rP rS pP pS Size

N=∞ 0.242 0.251 8.163e-14 1.089e-14 923

N=8 0.290 0.268 1.119e-10 2.720e-9 476

N=4 0.230 0.198 0.240e-3 0.169e-2 250

In the tables, pP and pS refer to the p-values for Pearson and Spearman, respec-
tively, and “Size” refers to the size of the constrained datasets at this value of
N . Recall that lower values for the constraint variable imply smaller datasets
generated, as a consequence of excluding samples.

For the three values of N , for which the distributions of the metrics were
visualized in the preceding section, the p-values stay sufficiently low to indicate
statistically significant results1 for all but pS for N = 4 on the FP_40 dataset. This

1As a rule of thumb, p-values below 0.001 will be regarded as indications of statistical signif-
icance [48].
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is despite it being the largest dataset at this level of constraint. This indicates
that the statistical significance of the results is independent of the size of the
datasets. Examining the correlation coefficients, there is a consistent increase in
their values for decreasing values of N for all but the FP-injected dataset at N = 4.
The aforementioned results for the FP-injected dataset are likely a consequence
of PKL penalizing such faults more than the OCM-related metrics.

As the three values of N investigated thus far were arbitrarily selected and
qualitatively reviewed, a thorough analysis of the change in correlation coefficients
for a more considerable number of values for N is necessary for inferring more
meaningful insights into their dependency of the metrics on N .

In the subsequent analysis, analogous metric correlation data to what was
introduced for three values of N in Table 6.3.1-Table 6.3.3 is generated for a total
of 7 different values of N . In this experiment, constrained datasets were generated
for the 7 values of N and evaluated with regard to correlation. Subsequently,
the change in correlation coefficients and p-values was visualized. An upper limit
for the constraint variable on the datasets was set at N = 15. Furthermore, the
low limit of N = 3 was selected as a lower number for the constraint variable N
would result in the datasets containing too few samples for a reliable evaluation
of statistical correlation.

In Figure 6.3.5, the changes induced in the correlation coefficients and their
corresponding p-values by different constraints on the numbers of objects are visu-
alized. Examining Figure 6.3.5a (RAW_40) and Figure 6.3.5b (FN_40), there is a
consistent increase in the values of the correlation coefficients for decreasing values
of N when N ≥ 4. This increase is the most prominent over the FN_40 dataset,
with both coefficient values above 0.50 for samples constrained with oi ≤ 8. How-
ever, for FP_40, there is not much change in the correlation coefficients, with all
values falling in the range 0.2-0.3. Moreover, although there is a slight increase
in the values when imposing the restriction N = 15, the correlations decrease for
lower values of N . The correlation for both coefficients is reported at their lowest
values for N = 4 (although corresponding p-values at this constraint indicate un-
certain statistical significance). The aforementioned observations may indicate an
increased difference in penalization of FPs for the two metrics with a decreasing
N . If PKL in fact penalizes FP detections more than F1crit, as suggested by the
data distributions examined in Subsection 6.3.1, this can be explained by consid-
ering that for lower numbers of objects present, an injected FP will be more likely
to affect the vehicle trajectory, thus accentuating the differences in penalization.

The Spearman coefficient reports a consistently higher correlation than Pear-
son over the RAW_40 dataset. As the Spearman coefficient is a measure of the
strength of a monotonic relationship between variables, this may indicate a rela-
tionship that is monotonic and non-linear between metric values over the RAW_40
dataset (Pearson is a measure of a linear relationship). For the fault-injected sets,
the correlation coefficients are more analogous, not diverging by more than ≈ 0.04
across all values of N . This indicates that the relationship between the variables
is better described as a linear association over the fault-injected datasets (a lin-
ear relationship is a special case of a monotonic relationship). This evaluation is,
however, susceptible to ambiguity. This is elaborated upon in Subsection 7.2.2.

Considering the p-values observed in the plots of Figure 6.3.5, a similar ob-
servation to the preceding preliminary analysis of arbitrary values for N is made
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(a) Correlation on constrained RAW_40 dataset.

(b) Correlation on constrained FN_40 dataset.

(c) Correlation on constrained FP_40 dataset.

Figure 6.3.5: Change in correlation coefficients and corresponding p-values for
decreasing values of N over contained datasets. In the plots, solid lines correspond
to the left-hand y-axis and dashed lines correspond to the right-hand y-axis.
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for the coefficients over all datasets. Specifically, all p-values stay low enough for
statistical significance to be indicated by the results, excluding N ∈ {3, 4} over
FP_40. Furthermore, p-values for both correlation coefficients generally decrease
with increasing sample size in Figure 6.3.5b and Figure 6.3.5c. This is expected
behaviour for increasing sample sizes, implying more data over which the null hy-
pothesis can be evaluated4. In Figure 6.3.5a, for N = 8, a spike can be observed
for pS and a dip for pP . For all other values, the p-values show a consistent decline
for increasing N -values, with pS having a considerably lower value. For FN_40,
the reason for the increase in p-values from N = 15 to N = ∞ is likely due to more
outliers being included in the dataset as a consequence of an increased number of
objects affecting the PKL evaluation (inducing high scores).

To further analyse the significance of the values observed for rP and rS, the
confidence intervals for the coefficients are provided. The confidence intervals are
computed at 95% confidence and are complementary to the p-values visualized in
Figure 6.3.5. In Figure 6.3.6, these confidence intervals are plotted together with
the correlation coefficients for the range of values for N examined in the preceding
paragraph.

Expectedly, the confidence intervals widen for decreasing values of N and de-
creasing dataset sizes, accordingly, in Figure 6.3.6a and Figure 6.3.6b (for RAW_40
and FN_40, respectively). However, for both datasets, the intervals are sufficiently
narrow to indicate a statistically significant trend for the increase in correlation
for decreasing values of the constraint variable N . For RAW_40 and FN_40,
the intervals for rS are more narrow than that of rP , indicating higher statistical
significance in the observed results for the Spearman correlation. However, for
FN_40, the interval for rP is considerably higher than the corresponding Spear-
man interval with regard their high confidence limits.

Over the FP_40 dataset, the confidence intervals visualized in Figure 6.3.6c
indicate a smaller degree of statistical significance regarding observed values for
constraints N ≤ 6. This is especially prominent in the confidence intervals for rS.
This complements what was observed for the p-values visualized in Figure 6.3.5c.
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(a) Correlation coefficients and corresponding p-values for RAW_40 dataset.

(b) Correlation coefficients and corresponding p-values for FN_40 dataset.

(c) Correlation coefficients and corresponding p-values for FN_40 dataset.

Figure 6.3.6: Change in the correlation coefficients and their confidence intervals
at 95% confidence.
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6.4 Analysing the impact of misdetections

Applying the methodology introduced in Section 4.6, an analysis of the impact
of introducing an incremental number of faults in the prediction set of a detector
on metric results is performed. In this experiment, predictions made by SSN over
100 nuScenes samples were modified by injecting an incremental number of faults,
ranging from 0 to 5. This was performed for both types of injected faults, after
which the predictions were evaluated by the metrics. For each increment of the
number of faults, the mean of metric results was computed for PR, RS , F1crit
(computed from the aforementioned), and PKL. The resulting values were plotted
for an increasing number of injected faults. Recall that BBs in the prediction sets
of the detector over the samples were filtered at confidence thresholds τ = 0.15
and τ = 0.40 for predictions injected with FPs and FNs, respectively.

(a) (b)

Figure 6.4.1: Mean PR, RS , F1crit and PKL for 0-5 injected False Positives.

In Figure 6.4.1 and Figure 6.4.2, plots visualise the change in the means of metric
results for injected FPs and FNs, respectively. For both classes of faults, both
PR and RS are plotted in addition to F1crit to enable an interpretation of how
the individual components of F1crit penalize misdetections with regards to safety-
and reliability-related faults. Furthermore, in the visualizations provided, PKL
values are visualized. For PKL, observed values are negated solely for visualization
purposes, to enable comparative visual analysis. Hence, it should be noted that
the negative logarithm of PKL values is not applied in this specific experiment.
Note that as the number of possible FN injections for a prediction set is the same
as the number of correctly predicted BBs in the set, the “real” number of injected
FNs was, on average, less than the specified number. The real numbers of FNs
injected are presented in Table 6.4.2, and discussed in Subsection 7.2.3.

As can be inferred from Equation 2.27, the safety-weighted recall does not
change with an increasing number of FPs. Figure 6.4.1a demonstrates this for RS ,
which remains constant at 0.94. In contrast, PR starts at 0.71 and decreases with
an increasing number of faults. For PR, the lowest value of 0.41 was observed for
5 faults injected.
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For injected FPs, Figure 6.4.1a visualizes observed values for the harmonic
mean of PR and RS , namely F1crit. Furthermore, observed values for PKL evalu-
ated over the same dataset are visualized in Figure 6.4.1b. Comparing the afore-
mentioned plots, there appears to be a more prominent decrease2 in PKL values
than in values for F1crit for increasing numbers of injected FPs.

(a) (b)

Figure 6.4.2: Mean PR, RS , F1crit and PKL values over 100 samples for 0-5
injected False Negatives.

Considering the injection of FNs, reliability-weighted precision (Equation 2.26)
allows for taking on a different value if a correctly predicted BB is removed from
the evaluated predictions. For this reason, a decrease in PR can be observed in
Figure 6.4.2a. In turn, this affects F1crit by causing it to take on lower overall
values. For RS , a steep decrease of 0.53 is observed between 0 and 5 injected FNs.

Metric Injected FPs Injected FNs

PR 0.30 0.10

RS 0.0 0.53

F1crit 0.24 0.45

PKL 83 60

Table 6.4.1: The decrease in means of metric values induced by 5 injected faults.

Complementing the visualizations provided, the total changes in all metric
values between 0 and 5 injected faults for both classes of misdetection are presented
in Table 6.4.1. While PKL on average penalizes the injection of FPs more than
FNs for the injections performed over SSN predictions for the samples selected,
the opposite is true for F1crit in the observed results on the FN-injected data.
However, the magnitude of the difference in penalization for the two metrics differs.

2Note that a decrease for PKL values in these plots implies an increase in true PKL values.
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The overall decreases in the evaluation of PKL corresponding to the injection of 5
injections of FPs and FNs are 83 and 60, respectively. For F1crit, these decreases
are 0.24 and 0.45. This suggests that PKL penalizes FNs only 40% what F1crit
does, but FPs 259% more than F1crit. For the data presented in Table 6.4.1, this
implies that PKL penalizes FPs more severely than FNs by a relative difference of
138.3%. Instead, F1crit penalizes FNs more severely than FPs by a difference of
187.5% for the data evaluated. The possible causes of these results are investigated
in Subsection 7.2.3.

Injecting false negative detections into the predictions of an object detector
entails removing a correctly predicted object from its prediction set. Thus, the
number of FNs injected in the prediction set of a detector for a specific sample
depends on the predictions of the detector, and thus on the number of GT objects
present in the sample. Furthermore, the number of FNs injected depends on
the argument provided to the method of removal presented in Subsection 5.3.3,
specifically the Euclidean distance up to which objects are considered for removal.
Thus, the number of such faults present in predictions is not always equivalent to
what is implied in Figure 6.4.1 and Figure 6.4.2 for all samples. This is due to
the fact that for some prediction sets, the number of correctly predicted BBs is
less than the number of injected faults specified. Hence, for each number of FNs
intended to be injected, the true, average number of FNs present in the resulting
predictions are computed and displayed in Table 6.4.2. The implications of these
results, presented in Table 6.4.2, are discussed in Subsection 7.1.2.

Injected FNs Mean FNs

1 0.951

2 1.90

3 2.86

4 3.75

5 4.55

Table 6.4.2: True numbers of injected false negatives.
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6.5 Comparative analysis of precision, recall, and
F1-score with their safety-oriented adaptations

In this section, an analysis of the generic performance measures of precision, recall
and F1-score is performed. By contrasting the experimental results presented in
the preceding sections of this chapter, the evaluations of the metrics are visualized
and assessed over similar data. More specifically, similar experiments to what is
introduced in Subsection 4.5.1 and Section 4.6 are performed utilizing the same
datasets described in these methodologies. Thus, a comparison of the generic
metrics with PKL and OCM-related metrics is performed. The objective of this
analysis is to understand the relationship between the aforementioned, generic
metrics and their safety-oriented counterparts, namely OCM-related metrics and
PKL. A better understanding of this relationship gives context to the preceding
experimental results presented by comparative analysis with commonly applied
metrics for object detectors in the field of autonomous driving.

6.5.1 Analysis of metric distributions

In the subsequent experimental results, data visualizations for the joint distribu-
tions between PKL and precision, recall, and F1-score are presented. By examining
these results in the context of results presented in Subsection 6.3.1, a comparative
analysis of the generic metrics with their OCM-related counterpart is subsequently
performed. The method with which the experimental work was performed is anal-
ogous to the method introduced in Subsection 4.5.1, only differing with regard to
the metrics that are analyzed.

In Figure 6.5.1, the distributions of metric results for the F1-score over the
three datasets summarized in Table 4.2.1 are visualized through histograms. In
each histogram, metric values are divided into 15 bins of uniform width, with the
height of the bars representing each bin indicating the frequency of occurrence for
each range of metric values. Seeing the distributions in the context of the same
distributions visualized for F1crit in Subsection 6.3.1, some important distinctions
can be made between the measures. Considering the distribution of the F1-score
in RAW_40, it is observed that the frequency of values does not decrease mono-
tonically for lower scores. Rather, higher frequencies of values are observed for
specific bins. This indicates that for the F1-score, prediction evaluations are more
likely to fall into specific intervals of values for the RAW_40 dataset, represented
by the bins of the histograms. Considering evaluations over the fault-injected
datasets, the histograms depicted in Figure 6.5.1b and Figure 6.5.1c also reflect
the inclination of F1-score values to fall into specific intervals of values. Compared
to the distributions for F1crit presented in Subsection 6.3.1, the highest bars in
the histograms representing the F1-score distribution over fault-injected datasets
are considerably higher.
Contrasting the plots depicted Figure 6.2.2 and Figure 6.2.4, metric results of
precision, recall, and F1-score are plotted against PKL in the scatter plots depicted
in Figure 6.5.2 for the three datasets RAW_40, FN_40, and FP_40. In the plots
depicted in Figure 6.5.2, the bands of similar values for the F1-scores confirm
the aforementioned observations and explain the high frequencies of occurrence in
specific bins of the histograms depicted in Figure 6.5.1. For the metric results over
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(a) Histogram for the RAW_40 dataset. (b) Histogram for the FN_40 dataset.

(c) Histogram for the FP_40 dataset.

Figure 6.5.1: Figures (a) and (b) show the frequency of occurrence for metric
values in the RAW_40, FN_40, and FP_40 datasets, respectively.

the fault-injected datasets, it can be observed that very few data points correspond
to a maximum F1-score of 1.0. This is expected, as all generic detection metrics
applied by definition equally reflect all predictions considered upon evaluation.
This implies that fault-injected predictions can never reach a perfect score when
evaluated with such metrics. Moreover, this indicates that the few data points
corresponding to precision, recall, and F1-score values of 1.0 in turn correspond to
samples where no faults were introduced due to the random nature of the number
of injected faults described in Section 4.3. Conversely, for OCM-related metrics,
if injected FPs or FNs correspond to objects that have a criticality 0, F1crit may
evaluate to a perfect score even with such injections performed.

The aforementioned observations of bands of precision, recall, and F1-score
values can be explained by considering the binary concepts of TP/FP predictions
applied in the generic metrics and the number of objects present in a sample for
which predictions are evaluated. Consider recall computed for predictions on a
single sample in which three GTs are present. In this case, the possible values
recall can take on when evaluating the predictions are limited. More specifically,
since the denominator of Equation 2.9 will sum to the number of GTs, there are 4
possible values recall can take on, namely Recall ∈ {0, 1

3
, 2
3
, 1}. The definition of

precision is more flexible with regard to the values it can take on, depending on the
number of false positives predicted. However, in practice, for a reasonably good
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(a) Scatter plot for metric data over the RAW_40 dataset.

(b) Scatter plot for metric data over the FN_40 dataset.

(c) Scatter plot for metric data over the FP_40 dataset.

Figure 6.5.2: Figures (a), (b), and (c) visualize the joint distributions between
PKL and traditional precision, recall and F1-score computed over the RAW_40,
FN_40, and FP_40 datasets, respectively. Bands of metric values for the generic
metrics can be observed.

object detector and predictions filtered at a confidence threshold, the number of
FPs should not be too high. This would limit the number of values precision can
take on (by Equation 2.26) and induce similar behaviour for precision values to
what is observed in Figure 6.5.2. Considering the aforementioned discussion, the
number of values the generic metrics can take on will decrease with the number
of objects present. In the subsequent analysis, the distributions of metric values
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are visualized for a restriction on the maximum number of objects present in the
samples evaluated. A similar approach to what was performed in Subsection 6.3.1
is applied, and metric distributions are visualized for N = 4, limiting the maximum
amount of GT objects to 4.

(a) Histogram for the RAW_40 dataset. (b) Histogram for the FN_40 dataset.

(c) Histogram for the FP_40 dataset.

Figure 6.5.3: Figures (a) and (b) show the frequency of occurrence for metric
values in the constrained datasets RAW_40, FN_40, and FP_40, respectively,
where N = 4. It is observed that most values fall into a number of specific
intervals.

In Figure 6.5.3, the histograms representing the distributions of F1-score val-
ues evaluated over the constrained datasets are depicted. For metric results over
the RAW_40 and FN_40 datasets, similar to the indications of preceding obser-
vations, it can be observed that metric values to a great extent fall into specific
bins. However, in contrast to the histograms depicted in Figure 6.5.1a and Fig-
ure 6.5.1b, values for F1-score almost exclusively fall these intervals when N = 4
is applied. This can be explained by considering the aforementioned example, in
which the reduced numbers of GTs in the samples evaluated cause restrictions on
the possible outcomes of evaluating the predictions with precision, recall, and con-
sequently F1-score. For predictions over the FP_40 dataset, F1-scores are more
evenly distributed in the central bins of the histogram. As discussed in the pre-
ceding paragraph, this is likely due to the dependence of precision on the number
of FP predictions. As there can be false positives present in detector predictions
prior to the injection of faults, and due to the possible number of FPs injected,
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precision can take on more values when evaluated over the FP_40 dataset.

(a) Scatter plot for metric data over the RAW_40 dataset.

(b) Scatter plot for metric data over the FN_40 dataset.

(c) Scatter plot for metric data over the FP_40 dataset.

Figure 6.5.4: Figures (a), (b), and (c) show the joint metric distributions for the
constrained datasets RAW_40, FN_40, and FP_40, respectively, where N = 4.
The bands of values for generic metrics are increasingly visible for lower values of
N .

Figure 6.5.4 visualizes the joint distributions of PKL and the generic detection
metrics for the three constrained datasets. Expectedly, more clearly defined bands
of values for the F1-score are observed with N = 4. In Figure 6.5.4b, the bands
corresponding to different numbers of GTs present in the samples can be observed.
Recall that in the aforementioned example, considering the possible values of recall
with three GT objects represented in a sample, the four values recall could take
one were in {0, 1

3
, 2
3
, 1}. In Figure 6.5.4b, bands of metric data points can be

observed at the latter three values, corresponding to samples with three objects
present. Furthermore, for samples with four GT objects, bands of values can be
observed for all possible recall values, namely values in Recall ∈ {0, 1

4
, 2
4
, 3
4
, 1},

excluding 0. Similar results can be observed, corresponding to samples with two
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ground-truth objects present. For precision over the FP_40 dataset, similar bands
of results can be observed, although the number of possible values has a greater
degree of freedom as a consequence of a varying number of FPs present in the
predictions of the detector. Thus, the distribution for the F1-score, being the
harmonic mean of the two prior, follows a similar pattern and reflects the possible
values the measures can take on.

Comparing the aforementioned observations with the distributions observed in
Figure 6.3.4, it has been observed that OCM-related metrics can be more descrip-
tive of detector performance with regards to the context of the detection when
evaluated over small datasets (e.g. that of a single sample), compared to generic
evaluation metrics. This comes as a result of the greater degree of freedom in
possible values the metrics can evaluate, utilizing the concept of criticality values
for objects.

It has been observed that the set of possible metric scores for precision and
recall are restricted compared to their safety-oriented adaptations proposed in [2].
This consequently causes differences in the evaluations of the respective metrics.
To better understand these differences between specific evaluations of predictions
with generic and OCM-related metrics, the joint distributions between PKL and
the generic precision and recall are visualized with data points coloured based
on their corresponding values for PR and RS . Thus, the subsequent visualiza-
tions represent metric values for three metrics, namely PKL and corresponding
precision and recall-related metrics. In the subsequent illustrations, the datasets
representing the metric distributions are constrained with N = 8.

(a) Scatter plot for precision. (b) Scatter plot for recall.

Figure 6.5.5: Figures (a), (b), and (c) show the joint metric distributions for
the constrained datasets RAW_40, where N = 8 and dots are coloured based on
corresponding OCM-related metrics.

The joint distribution between PKL and generic precision and recall for the
constrained dataset RAW_40 is visualized in Figure 6.5.5. Each data point in the
scatter plot is coloured based on its corresponding values for reliability-weighted
precision and safety-weighted recall. Examining the distribution, it is evident that
while some metric values for the generic and safety-oriented metrics align, a sub-
stantial number of predictions are evaluated differently by these metrics. Specif-
ically, both precision and recall show that many predictions, which are scored
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perfectly by the OCM-related metrics, perform worse under the generic variants.
This is evident considering the number of yellow-coloured data points not exhibit-
ing perfect evaluation for precision and recall in Figure 6.5.5. Although most
predictions that receive perfect scores in terms of OCM-related metrics also eval-
uate to 1.0 under the generic metrics for precision and recall, the opposite is not
true for a significant number of predictions. This is expected, as predictions that
contain FNs or FPs that correspond to low-criticality objects would be less re-
flected in the OCM-related metrics than in their generic counterparts. However,
the degree to which predictions are evaluated differently by the two approaches
is significant and reflects the greater degree of values OCM-related measures can
take on.

(a) Scatter plot for precision. (b) Scatter plot for recall.

Figure 6.5.6: Figures (a), (b), and (c) show the joint metric distributions for
the constrained datasets FN_40, where N = 8 and dots are coloured based on
corresponding OCM-related metrics.

For predictions over the FN_40 dataset, Figure 6.5.6 visualizes the joint dis-
tribution of metric results for PKL and the generic precision and recall, with the
colour of dots in the scatter plots indicating the corresponding scores for OCM-
related metrics. What was observed for precision over the RAW_40 dataset, is
also the case in the joint distribution depicted in Figure 6.5.6a, with several predic-
tions scoring higher for PR than for precision. A similar observation can be made
in the case of the recall measure, whose distribution is illustrated in Figure 6.5.6b.
Predictions that assume high values for recall exhibit higher values with regard
to safety-weighted recall. Conversely, low-scoring predictions for the recall mea-
sure achieve lower scores for the OCM-related recall metric. Comparing with the
distribution illustrated in Figure 6.5.5b, there is an increase in data points that
fall in the range 0.1-0.4, most of which assume lower values with regards to RS .
It is indicated by the colour of these dots that predictions within the range of
0-0.1 for RS do not assume scores below 0.1 for ordinary recall. This highlights a
disparity between OCM-related metrics and generic metrics. By definition, when
any number of true positive predictions exist in the set of predictions generated by
an object detector, recall cannot assume a value of 0. The same is true regarding
perfect scores for recall, namely that recall cannot exhibit a perfect score if any
number of FNs are present in the prediction set. This implies that predictions
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that evaluate to perfect scores for both recall and safety-weighted recall over the
fault-injected FN_40 dataset are predictions in which no FN has been injected
due to the random nature of the method for injection described in Section 4.3.
These reservations emphasize the difference in the potential range of evaluation
scores between generic recall and safety-weighted recall.

(a) Scatter plot for precision. (b) Scatter plot for recall.

Figure 6.5.7: Figures (a), (b), and (c) show the joint metric distributions for
the constrained datasets FP_40, where N = 8 and dots are coloured based on
corresponding OCM-related metrics.

Figure 6.5.7 shows similar distributions to the aforementioned, but for the
FP_40 dataset. In the scatter plot, for precision and recall, it can be observed
that the metric values in many cases correspond to predictions that are evaluated
to lower values for PR and RS , respectively. For precision, the predictions for
which this is the case likely correspond to high-criticality objects being injected,
in which case they are reflected more negatively in the safety-oriented adaption
of precision. However, this can be observed in particular for recall, with many
low evaluations for safety-related recall corresponding to high values in the plot
depicted in Figure 6.5.6b. The opposite is also observed, namely high-scoring
predictions for RS performing worse with regards to recall. This indicates that
there are many scenarios in which predictions contain FN predictions, where the
corresponding objects are of low criticality with regard to the OCM.
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6.5.2 Analysing the impact of misdetections

Following an analogous method to what is performed in Section 4.6, this part of the
experimental results examines the impact of injecting faults into the predictions
of a detector on the generic metrics examined. More specifically, utilizing the
predictions of SSN over a set of 100 nuScenes samples, an incremental number of
false positives and false negatives are injected and the means of metric evaluations
are computed. The number of FPs and FNs injected ranges from 0 to 5, and
mean metric values are plotted for precision, recall and F1-score. As introduced
in section Section 4.6, BBs in the prediction sets of the detector over the samples
are filtered at confidence threshold τ = 0.15 and τ = 0.40 for predictions injected
with FPs and FNs, respectively. The subsequent experimental results are seen
in the context of the experimental results introduced in Section 6.4, with the
objective of investigating the difference in penalization of misdetections between
OCM-related metrics and their generic counterparts.

Figure 6.5.8: Mean precision, recall and F1-score over 100 samples for 0-5 in-
jected False Positives.

In Figure 6.5.8, the decrease in mean precision, recall, and F1-score values as
a consequence of injecting an incremental number of FPs into the prediction sets
of SSN over the samples is visualized. As observed in Section 6.4, recall remains
constant at R = 0.94 for an increasing number of FP injections. Expectedly, a
decrease in precision, and consequently in the F1-score, is observed for an incre-
mental number of FP injections. With precision at P = 0.65, the unmodified
predictions over the dataset evaluate to a lower average value for precision com-
pared to PR over equivalent data. Furthermore, a less steep decrease in precision
and F1-score as a consequence of the injection of increasing numbers of FPs is
observed when compared with analogous results for reliability-weighted precision
and F1crit. The lowest value for precision is observed at P = 0.43, slightly above
the lowest observed value for PR. The aforementioned results imply that the in-
jected FPs are more harshly penalized by reliability-weighted precision in contrast
to what is reflected in the decrease in precision, as a result of high criticalities
for injected BBs. As discussed in Section 4.6, FP injections are generated at a
location in close enough proximity to ego to likely be of some importance in terms
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of criticality. Thus, as high-criticality objects are injected as false positive de-
tections, the aforementioned results indicate that the OCM correctly reflects the
importance of correctly predicting objects in proximity to ego.

Figure 6.5.9: Mean precision, recall and F1-score over 100 samples for 0-5 in-
jected False Negatives.

Figure 6.5.9 visualizes the decrease in mean precision, recall, and F1-score val-
ues as a consequence of injecting an incremental number of FNs into the prediction
sets of SSN over the samples. Similar to results for PR presented in Section 6.4 for
injected false negative predictions, a slight decrease can be observed for precision
in Figure 6.5.9. Although the decreases in the respective precision-based metrics
are similar, there is a minor difference between the two values. Specifically, while
the lowest observed value for reliability-weighted precision is at PR = 0.85, evalu-
ated at 5 injected faults, the lowest observed value for precision is P = 0.87, for
the same number of injected FNs. Considering recall, there is a steep decrease
observed for incremental numbers of injected faults. With observed values ranging
from R = 0.78 (0 FNs) to R = 0.38 (5 FNs), this represents an overall decrease
of 0.40 in mean recall values. However, a larger decrease is observed for RS in
the results discussed in Section 6.4. Consequently, a larger decrease in F1crit is
observed, in contrast to the F1-score. This indicates that safety-weighted recall
penalizes the injected FNs more than the traditional recall measure. This is a
consequence of the removed BBs assuming higher values for criticality than other
objects in the scene, reflecting the removal of objects based on distance from ego
as introduced in Subsection 5.3.3. The aforementioned observations show that
traditional recall does not penalize the FN predictions injected as severely as its
OCM-related counterpart. The same is true for precision and F1-score.

Table 6.5.1 presents the difference in mean metric scores for precision, re-
call and F1-score resulting from the injection of 5 faults for both FPs and FNs.
Contrasting this table with results for the OCM-related metrics, presented in
parentheses in Table 6.5.1, the differences in these results give an indication of
the difference in penalization of faults between generic metrics and their safety-
oriented adaptations as introduced in [2]. In the context of similar results for the
OCM-related metrics, it can be observed that the differences in evaluation scores
induced by injecting 5 faults are larger for all safety-oriented adaptions of the
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Metric Injected FPs Injected FNs

Precision 0.23 (0.30) 0.07 (0.10)

Recall 0.0 (0.0) 0.40 (0.53)

F1-score 0.19 (0.24) 0.33 (0.45)

PKL 83 60

Table 6.5.1: The decrease in means of generic metric values induced by 5 injected
faults. Corresponding decreases for OCM-related metrics PR, RS , and F1crit are
shown in parentheses and PKL is included.

generic metrics. This validates a larger penalization of faults by the OCM-related
metrics.



CHAPTER

SEVEN

DISCUSSION

In this thesis, two proposed safety-related evaluation metrics for object detec-
tors were analysed and assessed on the nuScenes dataset [32]. The metrics were
two novel approaches for proposing a metric that considers the context in which
detections are made in the evaluation process. In this process, an experimental
methodology was established and applied to analyse the specific attributes of the
metrics, both independently and in relation to each other. Although two metrics
were selected for analysis in this experimental work, the approach taken in their
evaluation can be applied to the analysis of other similar metrics. In the work pre-
ceding this thesis, a literature review was conducted, identifying other approaches
[1].

7.1 Considerations and limitations

7.1.1 Significance of the confidence threshold

When analyzing different datasets of detections that have been subject to fault
injection, the choice of confidence threshold on which to filter predictions before
performing evaluation is critical. For a low threshold, sample predictions will con-
tain an abundance of false positives prior to the injection of faults. Conversely, for
a high threshold, predictions are likely to contain false negatives prior to injection.
As discussed, the PKL and OCM-related metrics have significant differences with
regard to their evaluation of system safety and reliability, and with regards to
their method of evaluation. Specifically, PKL provides a single-value evaluation of
a specific set of predictions filtered at a predetermined confidence threshold. Fur-
thermore, PKL consolidates the evaluation of safety and reliability-related faults
into its single evaluation score, namely the Planning KL-divergence [10]. Ceccarelli
and Montecchi [2], on the other hand, propose separate measures for evaluating
reliability and safety.

The experimental methodology introduced in Section 4.6 was developed to
explore the impact of injecting two types of fault in detector predictions on the
metrics examined. Hence, the objective of the experiment was to quantify the
change occurring in metric evaluations as a result of the aforementioned injec-
tions. When performing such an experiment, the choice of confidence threshold

89
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on which to filter predictions is important. Consider the injection of an incremen-
tal number of FP faults in a set of detector predictions where the detection model
has failed to predict a number of GTs. For the predictions evaluated, the number
of FNs would remain constant with an incremental number of FPs injected. As
has been demonstrated, the PR measure is dependent on the number of TP pre-
dictions present, and will thus be impacted by the FNs present prior to injection.
Furthermore, it was demonstrated in Section 6.1 that the injection of analogous
misdetections can induce a different change in PKL scores depending on the faults
present in the prediction set prior to injection. This illustrates the necessity of
limiting the number of faults represented by the predicted BBs when analysing
the impact of misdetections.

In the experimental work presented in Section 6.4, PKL and OCM-related
metrics are analysed in terms of their degree of penalizing FN and FP predictions.
As was demonstrated, choosing a high confidence threshold when evaluating a
dataset that has been subject to FP injection may lead to findings being less
interpretable due to the presence of FNs in the predictions. Conversely, selecting
a low threshold when analyzing the impact of injected FNs may cause a problem of
interpretability when assessing safety-weighted recall. In the methodology applied
in the experiment, this was addressed by selecting two different thresholds for the
analysis of the impact of FPs and FNs, respectively. In addition, comprising the
two OCM-related measures into the F1crit metric (introduced in Equation 4.1)
provided a single evaluation score for OCM-related measures, with which results
for PKL could be compared, promoting the interpretability of the results. In
Section 7.4, other approaches to analysing the impact of misdetections on the
evaluation metrics are explored.

For analysing metric correlation, the methodology introduced in Section 4.5
was applied. In the experiment proposed, metric evaluation was performed for
predictions filtered at a threshold of τ = 0.40. This threshold was selected to
represent an arbitrary mid-range threshold at which an abundance of FPs and
FNs were not present in the predictions. Furthermore, this choice was made to
limit the scope of the experimental work and was justified by limiting the scope
of the analysis to measuring the correlation between PKL and F1crit. By focusing
on the F1crit measure, the impact of the aforementioned ambiguity on results
is limited by consolidating safety and reliability-related factors assessed by the
OCM-related metrics into one score that could be assessed at a specific confidence
threshold.

7.1.2 Methods for injection and datasets

For the analysis of quantitative metric data performed in the experimental work
presented in Chapter 4 and Chapter 6, metric data for fault-injected predictions
over nuScenes samples were produced. Specifically, when generating the fault-
injected datasets of predictions over nuScenes samples resulting in metric data
utilized in the experiments introduced in Section 4.5 and Section 4.6, the methods
for injecting faults described in Subsection 5.3.3 were applied. Hence, results col-
lected in the aforementioned experiments were influenced by the implementation
of the methods for fault injection, and the arguments provided to these methods
upon injecting false positive or false negative predictions. In this section, the
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implementational choices considering methods for injection and the generating of
datasets utilized will be discussed.

As described in Subsection 5.3.3, the methods implemented for injection enable
inserting or removing predicted bounding boxes from the prediction sets resulting
from inference by an object detector on a single nuScenes sample. When injecting
FP predictions, i.e. inserting BBs into a prediction set, a number of properties
for the injected BBs are predetermined based on the specific scenario, and thus
equivalent for all FP predictions injected for one sample. While some of these
predetermined properties are insignificant for the results of the subsequent metric
evaluation of predictions, such as the detection score (the confidence score), others
have an impact on these results. Specifically, the orientation and z-coordinate of
an injected FP detection are always initialized as equivalent to their corresponding
values for ego. These implementational choices were made for simplicity in utiliz-
ing the aforementioned methods in constructing larger datasets of fault-injected
predictions corresponding to detections on nuScenes samples.

The predetermined orientation of an injected BB should be seen in context
with the possible initialized values for the velocity of the object. As seen in Sub-
section 5.3.3, the velocity of an injected object either corresponds to 0 or to the
ego velocity, depending on the provided argument. The combination of these two
restrictions on the possible scenarios simulated by the injection of an FP has the
consequence of limiting the possible number of generated detection scenarios that
correspond to reliability issues for autonomous systems. For example, it is impossi-
ble to inject a false positive prediction corresponding to a vehicle approaching ego.
It should be noted that the aforementioned limitations arising from the discussed
implementational choices are limitations on the possible scenarios simulated by
injecting FPs, not on the comparative analysis of safety-oriented metrics. Despite
the limitations on the possible scenarios simulated, the scenarios that were simu-
lated in the experimental work of this thesis represented plausible misdetections
upon which the differences between metric evaluations could be examined.

Considering the z-coordinate of injected FPs, initializing this value to be equiv-
alent to the corresponding property for ego can generate scenarios in which the
BB injected is initialized with a z-coordinate not corresponding to ground level.
There were no identified limitations induced by this on the experimental work of
analysing metric evaluations. However, the extent to which this affects the metric
results (specifically for PKL) can be investigated further.

When injecting FN detections, i.e. removing a correctly predicted BB from
the prediction set, a parameter is provided to the method described in Subsec-
tion 5.3.3, indicating the distance up to which predicted BBs are considered for
removal. This parameter should be seen in the context of the other parameter
provided to the method, namely the parameter indicating whether to remove all
or one single BB within the distance specified. As seen in the description of the
method provided, and in the code provided in Appendix B, the most proximate
TP in relation to ego is removed first when injecting FNs. Upon generating the
dataset FN_40, this may have had the consequence of introducing FNs that are
more proximate to ego compared to the corresponding injections of FPs, culmi-
nating in the dataset FP_40. This should be considered when analysing results
for the experimental work utilizing these datasets.

In the experimental work introduced in Section 4.5, datasets of predictions
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injected with faults were generated. Subsequently, analyses of metric evaluations
over these datasets were performed. As discussed in Section 4.2, a degree of ran-
domness was introduced when generating such datasets. Specifically, for selecting
the number of faults injected and for the location, size and speed of injected FPs,
a random element was applied in the methods applied. Similarly, a degree of ran-
domness was involved in determining the distance up to which the injection of FNs
is considered for objects. For the experiment introduced in Section 4.6, similar
datasets were generated by introducing the same random variables, excluding the
number of faults injected and the distance considered in the injection of FNs.

Considering both classes of faults introduced, the difference in the means for
injecting them induces a disparity between the number of injections for each class.
This was observed in the experimental results presented in Section 6.4, in which
the number of FNs observed was lower on average than the number of FPs, for the
same number of injections implied by the number of calls to the injection methods
described in Subsection 5.3.3. Moreover, for the experimental work examining
metric correlation, the dataset FN_40 was generated with a random value for the
distance up to which injections were considered. This further restricted the number
of FN injections possible for each sample in the experimental work introduced in
Section 4.5. This specific methodology applied for the injection of faults into
the dataset upon evaluation represented in FN_40 were made were presented in
Section 4.3.

7.1.3 Choice of parameters

As discussed in Section 5.1, all experiments performed and presented in this the-
sis apply the same parameters considered when computing criticality weights
for objects with the OCM. The values of these parameters were Dmax = 30.0,
Rmax = 20.0, and Tmax = 10.0. Furthermore, as discussed, the choice of these
values was based on having sufficiently high values for the three parameters for
considering as many possible scenarios in which the perceived objects may inter-
fere with ego. However, it might be the case that an increase in correlation can
be observed when considering lower limits represented by these parameters. As
the OCM computes future trajectories for objects by extrapolating linear trajec-
tories represented by the speed and direction of movement in a specific time-step,
selecting a lower value Tmax may cause more realistic future trajectories, and thus
criticalities, to be generated. This should be considered when interpreting exper-
imental results presented in this thesis and in any future work on the subject.

As reported in the work by Ceccarelli and Montecchi [2], different values for
the aforementioned parameters consequently produce different results when con-
sidering the evaluations with regard to reliability-weighted precision and safety-
weighted recall. As a consequence, different instantiations of these values will lead
to different results for the experiments performed. Although analysing the impact
of this choice of parameters on the experiments performed is outside the scope
of this thesis, such an analysis would add depth to the experimental results and
allow for more understanding considering the relationship between OCM-related
metrics and PKL. This is elaborated upon in Section 7.4.

The 2D center distance on the ground plane is the match criteria applied when
discriminating between TP and FP predictions over the nuScenes dataset [32]. In
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all experiments performed, the limit for 2D center distance is set to the constant
value d = 2.0. This choice was made to restrict the scope of the analysis, and thus
to perform and present a more comprehensible analysis of metric evaluations.
Although the choice of center distance limit will not impact PKL evaluations,
OCM-related metrics will reflect this choice of match criteria. Thus, a different
limit for center distance would cause different evaluations for OCM-related metrics.

7.1.4 Dataset limitations

In the results presented in Table 6.4.2, it is observed that the true numbers of
FN detections introduced in the fault-injected datasets diverge from the number
of intended FNs as the latter increases. Thus, the amount of uncertainty associ-
ated with the observations also increases for an increase in the number of injected
FNs. However, the values presented in Table 6.4.2 stay sufficiently close to the
intended number of injections to present significant, although not conclusive, find-
ings. Hence, for a more in-depth analysis of the impact of injecting false negative
detections, the predictions evaluated could be verified to contain the number of
FNs injected. One way of doing this is to draw the samples evaluated from a dis-
tribution of samples in which the number of ground truth detections is higher than
the maximum number of FNs injected in the experiment. Furthermore, detector
predictions over the samples selected should be examined, and the predictions
that do not contain a sufficient amount of True Positive detections should be ex-
cluded. However, performing the aforementioned version of the experiment would
compromise the diversity of the scenarios represented in the samples, by excluding
samples with fewer than a sufficient number of GT objects. This would introduce
another factor of uncertainty considering that the number of GT objects present in
the samples evaluated has an impact on the evaluations of OCM-related metrics,
as discussed in the preceding chapter.

Another limitation to consider, induced by the limited time frame of this work,
is the size of the datasets utilized. As performing detector inference and met-
ric evaluations over nuScenes samples is computationally expensive, datasets of
1000 and 100 nuScenes samples were utilized in the experiments introduced in
Section 4.5 and Section 4.6, respectively. Given a longer time frame, analogous
experiments would be performed on larger sets of nuScenes [32] samples, and
preferably on the entirety of the dataset. This is restated in Section 7.4.

7.2 Discussion of results
For the purpose of guiding the experimental work performed, three research ques-
tions were formulated in the introductory chapter of this thesis. Research Question
1 and Research Question 2 addressed the relationship between the investigated
metrics and their attributes compared to one another, and to generic metrics for
evaluating detection models. Furthermore, Research Question 3 addressed the
sensitivity of the safety-oriented metrics to faults. The experimental methodolo-
gies presented in Chapter 4 were applied to answer these questions. In this section,
the limitations of the applied methodologies and the results stemming from the
application of these methods will be discussed and applied to address the research
questions stated.
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7.2.1 Research Question 1: Metric properties

In the work of Guo et al. [45], an experiment is performed, computing PKL
and mAP scores for three detectors for which results have been submitted in
the nuScenes detection task [32]. The aforementioned metrics were computed for
predictions made for different constraints on the number of GT objects present
in the samples included. Results presented in the aforementioned work showed
that the best scores for mAP were achieved for the highest numbers of GT objects
present in the samples upon which predictions were made. Conversely, the best
scores for PKL were achieved for the lowest number of total objects present in the
samples evaluated. It should be noted that in the aforementioned results, metrics
were evaluated on predictions over multiple samples and median PKL values were
utilized in reported results.

In the visualizations for the joint distributions between OCM-related metrics
and PKL presented in Section 6.2 and Subsection 6.3.1, the aforementioned trend
for PKL was observed. In particular, it was observed in the metric distributions
that for lower numbers of GTs present in samples evaluated, lower scores (indicat-
ing better evaluations) for PKL were reported, especially considering fault-injected
predictions. Furthermore, a left shift in the distribution of F1crit was observed
for lower values for the constraint variable N . This indicates that although the
OCM-related metrics take into consideration the context of detections, scores for
metrics based on reliability-weighted precision and safety-weighted recall follow
a similar trend to what was observed in [45] for mAP. As a consequence of the
difference in the metrics compared and the method with which results were gath-
ered, this comparison does not provide conclusive evidence that this is the case for
the OCM-related metrics. However, it is fruitful to consider the traits of generic
detection metrics (such as mAP) in the analysis of OCM-related metrics, as they
are on the same foundational measures of precision and recall.

In Section 6.5, visualizations are provided (Figure 6.5.5-Figure 6.5.7) indicat-
ing the difference in OCM-related metrics and their corresponding generic metrics
for the scatter plots of joint distributions between PKL and the generic precision
and recall. The subsequent analysis of these distributions with their correspond-
ing differences in metrics visualized demonstrated a greater degree of freedom in
OCM-related metrics, in contrast to their generic counterparts. Specifically, it was
observed that when incorrect predictions are present in a prediction set, precision
and recall cannot evaluate to perfect scores. Conversely, when correct predictions
are present in a prediction set, the aforementioned generic metrics cannot exhibit
scores of 0.0. Furthermore, the analysis of joint distributions between PKL and
generic metrics demonstrated a general limitation of the number of possible val-
ues for precision, recall, and F1-score with a decreasing number of predictions
evaluated. This limitation was increasingly evident for lower numbers of objects
in the predictions evaluated, as illustrated in Figure 6.5.4. This is in contrast to
OCM-related metrics, which can evaluate to a continuous set of values, another
consequence of applying object criticalities. It is discussed in the Subsection 7.2.2
that the safety and reliability associated with specific detections are more reflected
in OCM-related metrics as the number of objects in a sample decreases. For the
generic versions of precision and recall, it can be argued that the opposite is true.
With a smaller number of predictions evaluated, the limitation on values that pre-
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cision and recall can take on would restrict the descriptiveness of the measures.
In addition, objects with less relevance will be increasingly influential in the final
evaluation of the measures.

In Figure 6.5.5-Figure 6.5.7, illustrating joint distributions between PKL and
generic metrics and the corresponding values for OCM-related metrics, it was
observed that OCM-related metrics generally exhibit higher values than the cor-
responding generic metrics for high-ranked predictions. Furthermore, the opposite
was true for low-ranking metrics, with OCM-related metrics assuming lower values
than their generic counterparts. This demonstrated that OCM-related metrics can
evaluate to near-perfect scores even with misdetections present in detector predic-
tions (when such predictions are not deemed relevant by the OCM), as indicated
by the lower values for corresponding, generic metrics. Conversely, OCM-related
metrics can achieve values near 0, even with a significant degree of correct pre-
dictions. This highlights the impact of object criticalities in OCM-related metrics
and an important difference between the safety-oriented and generic adaptations
of precision and recall.

Addressing Research Question 1 , the above discussion highlighted some key
differences between OCM-related and generic metrics. These differences demon-
strated through the experimental work in Section 6.5, in turn, underscore some
important similarities between the OCM-related metrics and PKL. OCM-related
metrics and PKL both rely on the notion of attributing importance to objects,
either through explicit or implicit means, respectively. In contrast to the generic
metrics for object detection examined, this enables the metrics to consider the
context of detection and evaluate detector predictions based on their potential
consequences for the systems in which they are applied. Furthermore, it was
demonstrated that when applied to small sets of predictions corresponding to sin-
gle samples, the assignment of relevance to objects allows the task-oriented metrics
to take on a larger number of values, enabling a more descriptive evaluation com-
pared to the generic metrics (derived from the binary measures of TPs, FPs, and
FNs).

7.2.2 Research Question 2: Metric correlation

In the experimental results presented in Subsection 6.3.1, a higher correlation be-
tween F1score and PKL was both perceived in the visualizations provided and
reflected in the computed correlation coefficients for results over the RAW_40
and FN_40 datasets. Despite the limited sample size evaluated, with fewer than
1000 samples, and a decreasing number of samples as the evaluated value of N de-
creased, the statistical significance of the findings was supported by the computed
p-values and confidence intervals. These statistical measures provided sufficient
evidence to conclude that there is a statistically significant increase in correlation
as the number of objects considered decreases. Furthermore, the findings indicated
that this increase is considerably higher for predictions injected with faults corre-
sponding to FNs. This indicated more consensus between the two metrics PKL
and F1crit when evaluating false negative predictions for samples with a smaller
number of GTs. For FP_40, however, the findings were more inconclusive, with
confidence intervals indicating less statistical significance for results than for the
aforementioned data. Furthermore, a decrease in correlation was observed for
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N ≤ 10. Reviewing these results in the context of other experimental results
presented, this can be a consequence of a difference in the penalization of FP
predictions between the metrics.

Throughout the experimental work presented in Chapter 6, analyses were con-
ducted on metric data that involved the evaluation of detector predictions on
individual samples. Hence, the evaluated sets of bounding boxes consisted of a
relatively small number of predictions. Specifically, the experimental results pre-
sented in Chapter 6 examined the characteristics and distinctions among generic
metrics, OCM-related metrics, and PKL. While PKL is specifically designed to
evaluate sample predictions in this manner, OCM-related and generic metrics are
typically intended for application on cumulative, low-level metric data. For in-
stance, the aforementioned metrics are typically applied to the total number of
observed TP, FP, and FN predictions over a set of multiple samples.

When evaluating predictions over single samples, reliability-weighted precision
and safety-weighted recall have been demonstrated to be sensitive to the number
of objects for which predictions are made. An example of this was introduced in
Subsection 4.5.1, where two different recall values were computed for two predic-
tions that exhibit the same degree of error. Examining Equation 2.26 and Equa-
tion 2.27, both metrics are influenced by the number of TP predictions present in
the prediction set evaluated. The more true positive detections present, the less an
injected fault is reflected in the final scores of the measures. For predictions made
by an object detector over samples with varying numbers of objects present, the
more objects present in the GT set of a sample, the more potential TP predictions
can be made. This, as a consequence, diminishes the impact of injected faults on
the PR and RS measures. This can explain the observed increasing correlation
between F1crit and PKL with decreasing values of N over the FN_40 dataset
(as illustrated in Figure 6.3.5b) if the metrics similarly assess FN predictions, as
fewer objects are present on average in this dataset. Considering FP predictions,
this can explain the decrease in correlation observed for the metrics if the metrics
penalize FP predictions differently, as this underlying difference would be more
reflected in metric results for lower values of N .

Considering correlation for increasingly constrained datasets, is important to
investigate what might cause the aforementioned disparity in terms of correlation
for different fault-injected datasets. As mentioned, the observed results FP_40
may be explained by a difference in penalization between the metrics. If such
a difference in penalization exists, this would be increasingly reflected in metric
data for OCM-related metrics as the constraint on the number of GTs present
increased (i.e. when evaluating samples with fewer objects). This is a conse-
quence of injected faults being reflected more on average in the final evaluation
of OCM-related metrics if fewer objects are present, as discussed in the preceding
paragraph. This should also be considered when discussing the increasing correla-
tion over the FN_40 dataset. Assuming that the metrics penalize FNs similarly, a
reduced number of objects present in the scenes evaluated would cause more agree-
ment between the metrics as the injected FN is reflected more in the evaluations
of the OCM-related metrics.

Additionally, when examining the aforementioned correlations for fault-injected
datasets, the results of Guo et al. [45], discussed in the preceding section, should
be considered. The results presented in that work demonstrated decreasing PKL
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values for fewer objects considered in evaluated samples. PKL evaluates the di-
vergence between trajectories planned with predictions corresponding to GTs and
the prediction from a detection model, respectively. Hence, it is intuitive that an
increasing number of objects considered upon evaluation would cause an increase
in PKL values on average, as more GT objects correspond to more potential er-
rors considered in the evaluation that may cause the planned trajectory to diverge
from the one planned with GT predictions. This would become particularly evi-
dent when faults are injected into the predictions of the detector, as more objects
present in the path planned could cause a larger divergence from the GT path
than would be the case otherwise. An example demonstrating this was presented
in the Section 6.1, where the introduction of an equivalent FP in both prediction
sets of PPT and SSN resulted in a more substantial impact on the PKL evaluation
for PPT than for SSN. This was due to the higher number of FP predictions in
the PPT predictions set prior to injection, compared to those of SSN.

Addressing Research Question 2 , the results of Section 6.3 and the discussion
above indicate that OCM-related metrics and PKL exhibit a considerable degree
of correlation under certain circumstances. Particularly, there was an observed
increase in the correlation between the metrics as the number of GT objects con-
sidered decreased, indicating a stronger reflection of object relevance in the metric
results. This implies that similar factors are considered in PKL and the OCM upon
assigning relevance to objects, but that the dependence of OCM-related metrics
on the number of TP predictions in the prediction set yields varying degrees of
perceived correlation. Furthermore, results for statistical correlation coefficients
indicated that the relationship between the metrics is best described as increasing
and linear for metric data over fault-injected predictions, and as monotonic for
non-injected predictions.

7.2.3 Research Question 3: The impact of misdetections

In the experiment performed in Section 6.4, applying the methodology proposed
in Section 4.6, an analysis of the impact of faults on metric evaluations for de-
tector predictions was performed. For PKL, the results indicated a difference
in the degree of penalization for false positive and false negative metrics. More
specifically, PKL results over the samples evaluated at different numbers of faults
indicated a higher degree of penalization of FPs in contrast to FNs. Additionally,
in Section 6.2, a left shift in the distribution of PKL was observed for the dataset
FP_40, contrasting the corresponding distribution for FN_40. With findings from
multiple experiments indicating a higher degree of penalization of FPs for PKL,
there is strong evidence that such a difference in penalization exists. Further-
more, considering the qualitative analysis of a sample over which the predictions
of SSN and PPT were injected with a false positive prediction presented in Sec-
tion 6.1, the considerable increase in PKL illustrated in Table 6.1.2 indicated that
the measure is highly sensitive to predictions with multiple FPs. In this example,
two FP predictions present in the detector predictions prior to injection caused
a significantly higher value for PKL than would otherwise be exhibited. These
results indicated that the introduction of FP predictions caused the planned path
to diverge more from the path planned with GT predictions than would be the
case with introduced FNs.



98 CHAPTER 7. DISCUSSION

In the experimental results of Section 6.4, it was observed that RS saw a larger
decrease for injected FNs in contrast to PR for injected FPs. As a consequence,
similar observations were made regarding F1crit. However, the role of the method-
ology applied to produce these observations for the OCM-related metrics should
be considered when interpreting these results. The dependency of PR and RS on
the number of TPs evaluated, and thus on the number of GT objects present was
discussed in the preceding chapter. Specifically, it was demonstrated that injected
misdetections are reflected more in the scores of the metrics when a smaller num-
ber of TPs are present in the prediction set evaluated. Considering the analysis
of the impact of misdetections performed in Section 6.4, the same set of samples
and predictions were utilized in both the analysis of injected FPs and the analysis
of injected FNs. While the removal of TP predictions (injection of FNs) impacts
the overall sensitivity of OCM-related metrics to faults, this is not the case for
the injection of FP objects. Hence, it is noted that for the two cases examined, a
more severe penalization of injected FNs would be observed for both PR and RS .
This explains the observed difference in penalization observed. While it can be
claimed by the preceding results and discussion that a difference in penalization for
OCM-related metrics regarding FNs and FPs exists, it has been shown that this
is a limited depiction of the difference in penalization of faults for OCM-related
metrics and that the number of TPs should be considered. This is an impor-
tant consideration when utilizing the aforementioned metrics for evaluating the
performance of detectors. Furthermore, this highlights an important distinction
between OCM-related metrics and PKL considering the penalization of misdetec-
tions, namely that PKL does not exhibit a dependence on the evaluation of other
predictions in the prediction set, whereas OCM-related metrics do.

As discussed in Section 6.4, a decrease in reliability-weighted precision is ob-
served when injecting an incremental number of FN detections into the dataset of
predictions. This decrease is a consequence of the dependence of PR on the num-
ber of TP predictions in the prediction set, as discussed in the preceding section.
Furthermore, it was demonstrated in the aforementioned experimental work that
RS is not affected similarly by the injection of FPs. This is a result of no depen-
dence of safety-weighted recall on the number of FP predictions in the evaluated
prediction set. In contrast to FP-injections, the decrease in PR as a consequence of
FN-injection has the consequence of decreasing the overall value of F1crit. Hence,
to evaluate the impact of injected FN detections on OCM-related metrics, par-
ticularly on how OCM-related metrics evaluate the safety of the predictions, the
value for RS should be emphasized when examining the metric results presented
in Section 6.4 (in place of F1crit).

Addressing Research Question 3 , while there is evidence that PKL in fact
penalizes false positive prediction more harshly than false negatives, this is more
subtle for OCM-related metrics. It has been shown that the penalization of faults
for OCM-related metrics is highly dependent on the number of TP predictions
in the evaluated dataset. In the experiment of Section 6.4, the same dataset of
samples was utilized for both analysing FP injections and FN injections. Hence,
as fewer TP-objects were present on average in the FN-injected dataset, these
injections were more prominent in the metric results. It can thus be correctly
stated that there is a difference in the penalization of FPs and TPs for OCM-
related metrics, but it should be noted that this perceived difference is highly
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influenced by the size of the prediction sets evaluated (corresponding to single
samples). For increasing sizes of the prediction sets evaluated, this difference in
penalization will be decreasingly evident for OCM-related metrics, given that the
number of TP predictions increases.

7.3 Evaluating the safety and reliability of detec-
tions

It has been discussed and observed that OCM-related metrics’ abilities to reflect
immediate safety hazards or reliability issues in the predictions of object detection
models depend highly on the number of correct predictions in the same prediction
set. This affects the ability of the metrics to reflect the true importance of specific
objects in traffic scenarios and thus affects the correlation observed correlation
between the aforementioned metrics and PKL, as discussed in Subsection 7.2.2.
Conversely, PKL does not exhibit a similar dependency on the number of TP pre-
dictions, and can to a greater degree reflect the immediate importance of objects
in a more diverse range of scenarios with regard to other predictions made by a
detector. However, it has been observed that the PKL measure is also sensitive
to the number of GT objects present in samples, assuming lower values for sam-
ples in which fewer objects are present. The two approaches for the task-specific
evaluation of object detectors investigated in this thesis thus exhibit differences in
terms of their sensitivity to the number of objects evaluated. While PKL displays
a sensitivity to higher numbers of objects considered, the opposite is indicated by
OCM-related measures. Hence, in the context of analysing detector predictions,
the metrics can complement one another by providing unique insights into the
safety and reliability of such predictions.

To determine how well a specific metric evaluates the safety and reliability of
object detection models applied in autonomous systems, the aforementioned fac-
tors should be considered. Furthermore, the degree of interpretability exhibited by
metrics should be considered. OCM-related metrics distinguish between safety and
reliability-related misdetections and compute criticality values for objects analyt-
ically, whereas PKL comprises all factors considered in evaluating predictions into
a single evaluation score. Furthermore, PKL utilizes an implicitly parametrized
path planning algorithm as the basis upon which evaluation is performed. Hence,
PKL exhibits interpretability issues in contrast to OCM-related metrics. It is in-
tuitive that the applicability of metrics utilized in safety-critical systems is in part
determined by the level of speculation needed in interpreting them. Hence, when
applying less interpretable evaluation metrics, rigorous analyses of their evaluation
of detector predictions over a multitude of scenarios are needed. For this purpose,
it is fruitful to apply interpretable, safety-oriented metrics for the purpose of com-
parative analysis. The experimental work presented in this thesis is an example
of such an approach.
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7.4 Future work

7.4.1 Use ground-truth data as a basis of injection

As discussed in Subsection 7.1.1, filtering predictions at a particular confidence
threshold when analysing the impact of misdetections introduces limitations with
regard to analysing the behaviour of reliability-weighted precision and safety-
weighted recall. To more precisely quantify the penalization of the metrics for
the two classes of faults, namely FPs and FNs, different approaches can be pro-
posed. One specific approach is to simulate perfect detection by generating a
dataset of predictions that correspond to the ground truth objects of nuScenes
samples. Such a dataset could be utilized as a basis for injecting faults, in which
injected FNs and FPs would be isolated. More specifically, when analyzing metric
evaluations over predictions injected with a specific type of fault, no FP or FN
predictions would be present in the predictions prior to evaluation. This would
enable a more precise analysis of fault penalization for the metrics.

7.4.2 Expand the datasets

For the experimental work presented in Section 6.4, the dataset of metric results
analysed was generated over a set of 100 nuScenes samples. As such a small
dataset is prone to inducing errors in the analysis of metric data generated over
it, producing a larger dataset over a larger quantity of samples would enable a
more thorough analysis of the impact of misdetections. Similarly, for the analysis
of correlation presented in Section 6.3, utilizing larger datasets than those sum-
marized in Table 4.2.1 would promote more statistically significant measures of
metric correlation. Furthermore, taking steps in ensuring that the data applied is
representative of a multitude of driving scenarios would be beneficial when per-
forming an analysis of metric correlation and the penalization of faults. This could
be performed by utilizing nuScenes [32] meta-data, comprising time, location, and
weather information.

7.4.3 Explore metric parameters and detectors

Considering the implementation of the OCM, the parameters (Dmax, Rmax, Tmax),
utilized in the assignment of criticalities, were assigned constant values for all ex-
perimental work of this thesis. In the future, the impact of employing different
configurations of these parameters should be investigated. This would provide
depth to the results presented in this thesis, and promote a more detailed anal-
ysis of OCM-related metrics and their relationship with PKL. Furthermore, the
methodology for experimental work described in Chapter 4 should be performed
by employing a more diverse range of object detection models to make predic-
tions over the samples examined. This would enable an analysis of metric results
computed over a larger number of different prediction scenarios.

7.4.4 Apply the methodology to other metrics

Finally, as stated in the introductory chapter of this thesis, it is an objective
of this work to motivate further research by proposing an approach for evaluat-
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ing safety-oriented evaluation metrics for object detectors. Hence, applying simi-
lar methodologies for evaluating different approaches for implementing novel and
safety-oriented evaluation metrics is encouraged.
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CHAPTER

EIGHT

CONCLUSIONS

In [1], a comprehensive literature review was carried out to identify safety-oriented
metrics proposed for object detectors applied in autonomous systems. This thesis
focused on experimental investigations, comparing and analyzing two approaches
employed for evaluating object detection models in autonomous vehicles. Specif-
ically, these two approaches were based on the Object Criticality Model [2] and
Planning KL-divergence [10]. In Section 1.2, the research objective of this work
was identified, and three research questions were formulated to guide the experi-
mental work of this thesis.

Firstly, Research Question 1 stated: “In what manner do the suggested metrics
deviate from conventional, generalized metrics utilized in object detection, as well
as from one another?”.

Secondly, Research Question 2 stated: “Examining quantitative data, is there
any measurable correlation between the metric evaluation results for the two ap-
proaches examined?”.

Lastly, Research Question 3 stated: “How do the proposed metrics penalize
detections that represent scenarios where the safety or reliability of the system is
compromised? Does quantitative metric data exhibit indications that the metrics
penalize detections that cause potential safety- or reliability issues differently?”.

Applying the methodology introduced in Chapter 4, experimental results were
collected and presented in Chapter 6, followed by a discussion in Chapter 7. Col-
lectively, this content addressed the research questions and provided substantial
experimental evidence to corroborate the findings.

To facilitate a comparative analysis of OCM-related metrics and PKL, dif-
ferent methodologies were applied to investigate the metrics’ relationships and
properties. Additionally, the effect of prediction faults on these metrics was quan-
tified, utilizing the fault injection methods introduced in Subsection 5.3.3. The
experimental work involved several stages. Firstly, a qualitative analysis was per-
formed on metric evaluations on detector predictions on a single sample from the
nuScenes dataset, with and without introducing synthetic faults into these pre-
dictions. Subsequently, an examination of the relationship between OCM-related
metrics and PKL was carried out, investigating the correlation between quantita-
tive metric data for both metrics and the corresponding data distributions. The
impact of injecting an increasing number of faults into a given prediction set on
metric evaluations was then mapped, providing insights into the penalization of
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reliability and safety-related faults for the metrics. Lastly, a comparative analysis
was performed to identify distinctions between OCM-related metrics, PKL, and
generic metrics in the context of object detection.

A qualitative analysis was performed of metric evaluations of predictions made
on individual samples from the nuScenes [32] dataset in Section 6.1. This anal-
ysis specifically investigated the sensitivity of PKL and OCM-related metrics to
injected faults. Furthermore, in Section 6.5, a comparative analysis between OCM-
related and generic metrics was performed. The findings highlighted limitations
associated with general metrics, particularly the correlation between the range of
metric values and the number of evaluated objects. Consequently, this exempli-
fied the enhanced comprehensibility of metrics that assign criticalities to objects
for small datasets of predictions corresponding to single samples. The aforemen-
tioned analyses highlighted important characteristics of the metrics examined and
functioned to add nuance to the subsequent experimental work, and addressed
Research Question 1 , investigating the characteristics of task-specific metrics and
their distinct properties when compared with generic metrics.

Subsequently, an analysis of the distributions of, and the relationship between
the metrics was performed by extensive data visualization and statistical analysis
in Section 4.5. Results indicated a statistically significant increase in correlation
for a decreasing number of objects considered in predictions. Specifically, a higher
correlation was observed with fewer objects present for datasets that were not
subject to false positive injections. Hence, it can be concluded that a relationship
exists for the metrics, but that this relationship is highly dependent on the number
of TP predictions evaluated. In Subsection 7.2.2, it is argued that this increase in
correlation for decreasing numbers of objects is a consequence of specific faults in
the predictions being increasingly reflected in OCM-related metrics. This is further
corroborated by subsequently discussed results indicating a significant difference in
the penalization of FP predictions between PKL and OCM-related metrics. The
aforementioned experimental work addressed Research Question 2 , concerning
metric correlation.

Finally, an investigation of the impact of faults on metric evaluations was
performed. This investigation involved analysing metric distributions in Subsec-
tion 6.3.1 and studying the effects of incrementally injecting faults in Section 6.4.
The results provided compelling evidence that PKL imposes a more severe penalty
on false positive predictions compared to false negative predictions. Conversely,
it was demonstrated that OCM-related metrics exhibit a higher penalization of
FNs than FPs. However, the extent of fault-penalization for OCM-related metrics
was demonstrated to be highly dependent on the number of TP predictions in
the detector predictions evaluated, with lower numbers of TPs implying a higher
penalization of faults. These results addressed Research Question 3 , which specif-
ically focused on the impact of misdetections on the evaluation metrics analysed.

Through extensive experimental work, a methodology for analysing safety-
oriented metrics was applied. In this process, new functionality was implemented,
building on the nuScenes-devkit [32], and provided in Appendix A. These should
be considered contributions that can serve to drive similar research on the subject
forward in the future. Furthermore, the research conducted in this thesis produced
a scientific paper [3] that is currently submitted at an international conference
within the field of Software Reliability. Due to the double-blind peer review process
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of the conference, further details of this conference are omitted.
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APPENDIX

A

CODEBASE

All code developed for the purposes of the research performed in this thesis is
provided in the Github repository linked below. Further explanations are given in
the readme-file of the repository.

Github repository
• https://github.com/andreas-roennestad/Thesis-Evaluating-Safety-
Oriented-Metrics-for-Object-Detectors

112

https://github.com/andreas-roennestad/Thesis-Evaluating-Safety-Oriented-Metrics-for-Object-Detectors
https://github.com/andreas-roennestad/Thesis-Evaluating-Safety-Oriented-Metrics-for-Object-Detectors


APPENDIX

B

METHODS FOR FAULT-INJECTION

Here, the code for the injection methods presented in Subsection 5.3.3 is provided.
The subsequent code adds depth to the understanding of the experimental work
introduced in Chapter 4, in which fault-injected object detector predictions are
evaluated by the metrics investigated. For further context to the implementation,
read Subsection 5.3.3. In the subsequent Python [38] code-snippets, the add_FP()
and add_FN() methods are class methods, bound to the DetectionEval-class
implemented in the file ./eval/detection/evaluate.py of the modified nuScenes
devkit provided in the repository linked to in Appendix A. To understand the
context of the functionality utilized, it is necessary to examine this file in its
entirety. However, for an understanding of the general parameters utilized to
inject faults, and to understand the general methodology of injection, this is not
necessary. Comments are provided in the code.
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B.1 False positive injection

de f add_FP( s e l f , sample_token : s t r , pos : Tuple [ f l o a t , f l o a t ] ,
s i z e : Tuple [ f l o a t , f l o a t , f l o a t ] ,
match_ego_speed = False ) :

"""
Add a FP pr ed i c t i on in coo rd ina t e s in coo rd ina t e s coords wrt . ego

r e f e r e n c e frame
: param sample_token : Sample to operate on .
: param pos : Tuple [ x , y ] . 2D coo rd ina t e s o f FP in r e l a t i o n to ego ,

where
p o s i t i v e x and y po int to r i g h t and f r on t o f ego , r e s p e c t i v e l y .
z coo rd inate i s s e t equal to ego z .

: param s i z e : Tuple [ h , l ,w ] . S i z e o f i n j e c t e d BB.
: param match_ego_speed : Boolean . Whether to match v e l o c i t y o f ego

or to have nul l−v e l o c i t y .
"""
p r in t ( "Adding␣FP␣at ␣ po s i t i o n ␣{}␣ r e l a t i v e ␣ to ␣ ego␣ at ␣ sample␣{}" .

format ( pos , sample_token ) )
# Get ego r e f e r e n c e
sample = s e l f . nusc . get ( ’ sample ’ , sample_token )
sd_record = s e l f . nusc . get ( ’ sample_data ’ , sample [ ’ data ’ ] [ ’

LIDAR_TOP’ ] )
cs_record = s e l f . nusc . get ( ’ c a l i b ra t ed_senso r ’ , sd_record [ ’

ca l ibrated_sensor_token ’ ] )
pose_record = s e l f . nusc . get ( ’ ego_pose ’ , sd_record [ ’ ego_pose_token

’ ] )
ego_trans la t i on = pose_record [ ’ t r a n s l a t i o n ’ ]
ego_rotat ion = pose_record [ ’ r o t a t i on ’ ]
ego_speed = s e l f . pred_boxes [ sample_token ] [ 0 ] . ego_speed
# Create FP box
fp_box = DetectionBox (

sample_token=sample_token ,
t r a n s l a t i o n=ego_trans lat ion ,
r o t a t i on=ego_rotation ,
s i z e=s i z e ,
de tec t i on_score =0.99 ,
num_pts=25,
attribute_name=’ v eh i c l e . moving ’ i f match_ego_speed==True e l s e

’ v e h i c l e . stopped ’ ,
v e l o c i t y=(ego_speed [ 0 ] , ego_speed [ 1 ] ) i f match_ego_speed==True

e l s e (0 , 0 ) ,
nusc=s e l f . nusc ,

)

# Create Box in s t anc e .
box = Box( cente r=fp_box . t r an s l a t i on , s i z e=fp_box . s i z e ,

o r i e n t a t i o n=Quaternion ( fp_box . r o t a t i on ) ,
v e l o c i t y=(fp_box . v e l o c i t y [ 0 ] , fp_box . v e l o c i t y [ 1 ] , 0 ) ,
name=fp_box . detection_name , c r i t=fp_box . c r i t ,
c r i t_t=fp_box . cr i t_t , c r i t_r=fp_box . cr i t_r ,
cr it_d=fp_box . cr it_d )

# Move box to ego v eh i c l e coord system .
box . t r a n s l a t e (−np . array ( pose_record [ ’ t r a n s l a t i o n ’ ] ) )
box . r o t a t e ( Quaternion ( pose_record [ ’ r o t a t i on ’ ] ) . i n v e r s e )
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# Place FP at pos coo rd ina t e s ( note : x and y coo rd ina t e s are
# in oppos i t e p o s i t i o n s in ego frame : t rans=(y , x , z ) )
box . c en t e r [0]+=pos [ 1 ]
box . c en t e r [1]−=pos [ 0 ] # po s i t i v e x−ax i s to r i g h t
# Transform to g l oba l r e f frame
box . r o t a t e ( Quaternion ( pose_record [ ’ r o t a t i on ’ ] ) )
box . t r a n s l a t e (np . array ( pose_record [ ’ t r a n s l a t i o n ’ ] ) )
# Re−i n i t i a l i z e Detect ion−Box to match new t r a n s l a t i o n ( to get

c o r r e c t c r i t i c a l i t i e s )
fp_box_m = DetectionBox (

sample_token=sample_token ,
t r a n s l a t i o n=box . center ,
r o t a t i on=ego_rotation ,
s i z e=s i z e ,
de tec t i on_score =0.99 ,
num_pts=25,
attribute_name=’ v eh i c l e . moving ’ i f match_ego_speed==True e l s e

’ v e h i c l e . stopped ’ ,
v e l o c i t y=(ego_speed [ 0 ] , ego_speed [ 1 ] ) i f match_ego_speed==True

e l s e (0 , 0 ) ,
nusc=s e l f . nusc ,

)

# Add box
s e l f . pred_boxes . add_boxes ( sample_token , [ fp_box_m ] )
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B.2 False negative injection

de f add_FP( s e l f , sample_token : s t r , pos : Tuple [ f l o a t , f l o a t ] ,
s i z e : Tuple [ f l o a t , f l o a t , f l o a t ] ,
match_ego_speed = False ) :

"""
Add a FP pr ed i c t i on in coo rd ina t e s in coo rd ina t e s coords wrt . ego

r e f e r e n c e frame
: param sample_token : Sample to operate on .
: param pos : Tuple [ x , y ] . 2D coo rd ina t e s o f FP in r e l a t i o n to ego ,

where
p o s i t i v e x and y po int to r i g h t and f r on t o f ego , r e s p e c t i v e l y .
z coo rd inate i s s e t equal to ego z .

: param s i z e : Tuple [ h , l ,w ] . S i z e o f i n j e c t e d BB.
: param match_ego_speed : Boolean . Whether to match v e l o c i t y o f ego

or to have nul l−v e l o c i t y .
"""
p r in t ( "Adding␣FP␣at ␣ po s i t i o n ␣{}␣ r e l a t i v e ␣ to ␣ ego␣ at ␣ sample␣{}" .

format ( pos , sample_token ) )
# Get ego r e f e r e n c e
sample = s e l f . nusc . get ( ’ sample ’ , sample_token )
sd_record = s e l f . nusc . get ( ’ sample_data ’ , sample [ ’ data ’ ] [ ’

LIDAR_TOP’ ] )
cs_record = s e l f . nusc . get ( ’ c a l i b ra t ed_senso r ’ , sd_record [ ’

ca l ibrated_sensor_token ’ ] )
pose_record = s e l f . nusc . get ( ’ ego_pose ’ , sd_record [ ’ ego_pose_token

’ ] )
ego_trans la t i on = pose_record [ ’ t r a n s l a t i o n ’ ]
ego_rotat ion = pose_record [ ’ r o t a t i on ’ ]
ego_speed = s e l f . pred_boxes [ sample_token ] [ 0 ] . ego_speed
# Create FP box
fp_box = DetectionBox (

sample_token=sample_token ,
t r a n s l a t i o n=ego_trans lat ion ,
r o t a t i on=ego_rotation ,
s i z e=s i z e ,
de tec t i on_score =0.99 ,
num_pts=25,
attribute_name=’ v eh i c l e . moving ’ i f match_ego_speed==True e l s e

’ v e h i c l e . stopped ’ ,
v e l o c i t y=(ego_speed [ 0 ] , ego_speed [ 1 ] ) i f match_ego_speed==True

e l s e (0 , 0 ) ,
nusc=s e l f . nusc ,

)

# Create Box in s t anc e .
box = Box( cente r=fp_box . t r an s l a t i on , s i z e=fp_box . s i z e ,

o r i e n t a t i o n=Quaternion ( fp_box . r o t a t i on ) ,
v e l o c i t y=(fp_box . v e l o c i t y [ 0 ] , fp_box . v e l o c i t y [ 1 ] , 0 ) ,
name=fp_box . detection_name , c r i t=fp_box . c r i t ,
c r i t_t=fp_box . cr i t_t , c r i t_r=fp_box . cr i t_r ,
cr it_d=fp_box . cr it_d )

# Move box to ego v eh i c l e coord system .
box . t r a n s l a t e (−np . array ( pose_record [ ’ t r a n s l a t i o n ’ ] ) )
box . r o t a t e ( Quaternion ( pose_record [ ’ r o t a t i on ’ ] ) . i n v e r s e )
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# Place FP at pos coo rd ina t e s ( note : x and y coo rd ina t e s are
# in oppos i t e p o s i t i o n s in ego frame : t rans=(y , x , z ) )
box . c en t e r [0]+=pos [ 1 ]
box . c en t e r [1]−=pos [ 0 ] # po s i t i v e x−ax i s to r i g h t
# Transform to g l oba l r e f frame
box . r o t a t e ( Quaternion ( pose_record [ ’ r o t a t i on ’ ] ) )
box . t r a n s l a t e (np . array ( pose_record [ ’ t r a n s l a t i o n ’ ] ) )
# Re−i n i t i a l i z e Detect ion−Box to match new t r a n s l a t i o n ( to get

c o r r e c t c r i t i c a l i t i e s )
fp_box_m = DetectionBox (

sample_token=sample_token ,
t r a n s l a t i o n=box . center ,
r o t a t i on=ego_rotation ,
s i z e=s i z e ,
de tec t i on_score =0.99 ,
num_pts=25,
attribute_name=’ v eh i c l e . moving ’ i f match_ego_speed==True e l s e

’ v e h i c l e . stopped ’ ,
v e l o c i t y=(ego_speed [ 0 ] , ego_speed [ 1 ] ) i f match_ego_speed==True

e l s e (0 , 0 ) ,
nusc=s e l f . nusc ,

)

# Add box
s e l f . pred_boxes . add_boxes ( sample_token , [ fp_box_m ] )
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