Patrick Moen Allport

Applications of fault-tolerant
software architecture principles
in the detection of adversarial
attacks

Master’s thesis in Master of Science in Informatics
Supervisor: Leonardo Montecchi

June 2023

.ﬂ
(7]
()

i o
)

0
[
Q
=
(7))
©

=

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Patrick Moen Allport

Applications of fault-tolerant
software architecture principles
in the detection of adversarial attacks

Master's thesis in Master of Science in Informatics
Supervisor: Leonardo Montecchi
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

& NITNU

Kunnskap for en bedre verden

Applications of fault-tolerant
software architecture principles
in the detection of adversarial attacks

['T3920 - Master’s Thesis for MSIT

Patrick Moen Allport

Supervisor:
Leonardo Montecchi

Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Spring 2023

Abstract

In November of 2022, the European Union Agency for Cybersecurity (ENISA) released its
2022 ENISA Threat Landscape Report (ETL), which describes the observed threats in the
cyber domain between July 2021 and July 2022. In this report, they note the threat posed
by adversarial attacks and described it as ‘... growing and represent a major threat in ML
or Al domains.’.

Noting this threat, a Systematic Literature Review (SLR) was previously performed in
order to understand the research field of detecting these adversarial attacks. Multiple papers
have attempted to mitigate the threat posed by producing detection models which detect
these adversarial attacks. A small minority of these papers used fault-tolerant principles and
architectures to enhance the capabilities of their detectors. However, the SLR noted that
these papers only discussed architectures specific to their implementation and did not explore
the general concept of utilizing fault-tolerant architectures for detection. This thesis wishes
to explore this research gap, by approaching the problem of detecting adversarial attacks
from a fault-tolerance perspective.

Based on a customized version of an autonomous driving dataset, nuScenes, an adversar-
ial dataset was generated. Using FGSM, Carlini&WagnerL2, APGD, and Shadow Attack, 60
000 adversarial examples were generated. Two fault-tolerant architectures were implemented
and trained to detect these attacks. The first was the recovery block, consisting of an imple-
mentation of ‘InputMFS’ from Paula Harder et al. and a transfer-learned ResNet-101 model.
This architecture would explore how multi-model architectures would detect adversarial at-
tacks. The second fault-tolerant architecture was N-Version Programming (NVP). Utilizing
multiple transformations, shown to improve detection, this architecture would explore how
diversity in data would affect detection performance.

The recovery block results show that sequential detection is viable, but requires disjunct
sets of detected attacks and is prone to incorrect configurations of architectures. The NVP
architecture shows that increases in data can provide improved performance, but optimal
compositions of data can be difficult to discern. Additionally, the composition of data can
determine the detection performance across attacks. Both architectures show that fault-
tolerant principles are viable, but introduce their own set of considerations. As a result,
future works should explore methods to more efficiently determine optimal configurations
and compositions of both component detectors and data.

Acknowledgement

I would like to thank my supervisor Leonardo Montecchi for his invaluable support in produc-
ing this work. Your ability to approach, identify and solve problems has been an inspiration.
Working with you for the past year has given me the tools to understand the scientific field
and the grit required to be an active member of it. In stressful and hectic times, you have
been able to provide insights and counsel which have brought attention to what is important.
This thesis would not be possible without your guidance and I wish you all the best in all
your future endeavours.

- Patrick Moen Allport

ii

Contents

1 Introduction 1
1.1 Research Questions 2
1.2 Thesis Outline 3

2 Background 4
2.1 Computer vision 4
2.2 Adversarial attacks 6
2.3 Fault-tolerance in software 9

2.3.1 Dependability taxonomyo 9
2.3.2 Fault-tolerance principleso 12
2.3.3 Fault-tolerance architectures 13

3 Thesis Objective 16

3.1 Systematized literature review 16
3.1.1 Findings 16
3.1.2 Conclusions 20

3.2 Thesisscope 20

4 Method 24
4.1 Prerequisite artefacts L 24
4.2 Tools 25
4.3 The nuScenes dataset L 26
4.4 Customized dataset 28

4.4.1 Methodology 28
4.4.2 TImplementation 29
4.5 Adversarial dataset 36
4.5.1 Methodology 37
4.5.2 Implementationo 39
4.6 Architecture 1: Recovery block 42
4.6.1 Methodology 42
4.6.2 Implementation 45

il

CONTENTS

CONTENTS

4.7 Architecture 2: N-Version Programming
Methodology
Implementation

4.7.1
4.7.2

5 Results

5.1 Recovery block detector
5.2 N-Version programming detector

6 Discussion
6.1 Multi-model architectures
6.2 Data diversity
6.3 Suitability of detection architectures
6.4 Limitations
Researcher-produced dataset
6.4.2 Diversity of adversarial examples
6.4.3 Detector training

6.4.1

7 Conclusion

Bibliography

Glossary
Appendices

A Method

B Pseudocode

C Results

v

69

70

77

79

80

83

85

Chapter

Introduction

In November of 2022, the European Union Agency for Cybersecurity (ENISA) released its
2022 ENISA Threat Landscape Report (ETL) [1]. The report details the threats observed in
the cybersecurity domain between July 2021 and July 2022. The report lists 8 prime threats,
which they regard as the most alarming in the cybersecurity domain. Number four on this
list is Threats against data. In the chapter discussing such threats against data, they note
that:

«On top of this, Machine Learning (ML) and Artificial Intelligence (Al) is in-
creasingly being adopted and is boosting the migration from traditional software
systems based on deterministic algorithms to systems where ML or Al models
use reason on data to calculate a solution for individual instances of a problem.
This migration poses a new wave of risks that push toward the ‘Al Act’, a pro-
posed European law on artificial intelligence (AI) — the first law on Al by a major
regulator anywhere. »[1, p. 63]

The chapter on threats against data goes on further to tie some of these threats to
machine-learning models by saying :

«In addition to data leaks and data breaches, the increasing adoption of ML or
Al models at the core of novel distributed systems and decision-making put data
manipulation under the spotlight. Data poisoning and adversarial attacks become
widespread with the aim of undermining trust in I'T and production systems and,
more generally, in society as a whole.»[1, p. 63]

In addition to repeatedly ranking threats against data highly in their reports |1, p. 63],
they also note the risks tied to manipulating machine learning models, describing these at-
tacks as ‘... growing and represent a major threat in ML or AI domains.’[1, p.67].

The realization of this threat is also not lost on the commercial space, with Google an-

nouncing their ‘Unrestricted Adversarial Examples Challenge’ in 2018 [2], as well as Microsoft
releasing their ‘Adversarial ML Threat Matrix’. The matrix was made in collaboration with

1

1.1. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

the non-profit MITRE and companies including IBM and NVIDIA, and also with input from
researchers at the University of Toronto, Cardiff University, and the Software Engineering
Institute at Carnegie Mellon University [3].

The Adversarial ML Threat Matrix defines several security threats to machine learning
models. Defining these threats as adversarial attacks, the matrix subdivides these attacks
based on what the attack is trying to achieve. A subset of these adversarial attacks, called
evasive adversarial attacks, are defined by the attack’s objective of trying to prevent or dis-
rupt the proper classification of an object in an image.

Previously, a systematic literature review (SLR) was executed by the researcher, focusing
on understanding the research field of detecting evasive adversarial attacks [4]. The literature
noted that the field had different approaches to detecting evasive adversarial attacks. Most
of the experiments performed some data manipulation before passing them on to a trained
detector. Quite a few of these showed strong performance, such as Chen et al. [5|. However,
Chen et al. also noted that if an attacker knew the structure of their detection model, the
attacks could be adjusted to degrade their detector’s performance significantly.

A subset of papers approached the problem differently by implementing fault-tolerant
techniques, often seen in software architecture systems. An example is utilizing multiple
models, each optimized for detecting a specific set of attacks. Fan et al. [6] is an example
of this, where the utilization of two detectors selected for covering each other’s weaknesses
increased accuracy with a nominal increase in false positives. However, implementing these
multi-stage detectors was often strictly implementation specific and never systematically
explored the use of fault-tolerant software architecture principles.

1.1 Research Questions

With the insights from the SLR, this thesis will attempt to fill a research gap by exploring how
implementing fault-tolerant architectures can improve the performance of adversarial attack
detectors. The research questions were written to explore more generalizable fault-tolerance
concepts and how they could translate into more effective implementations of adversarial
attack detectors. Thus, the following research questions were set for this thesis:

e RQ1: How can fault-tolerant architecture principles be applied to detecting adversarial
attacks?

— RQ1.1: How can multi-model architectures be used to improve the detection of
adversarial attacks?

— RQ1.2: How can diverse data be used in fault-tolerant architectures to improve
the detection of adversarial attacks?

1.2. THESIS OUTLINE CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

Excluding the introduction and conclusion, the thesis consists of 5 sections. The ‘background’
section explains the theory behind computer vision and how adversarial attacks are gener-
ated. The section further presents the taxonomy and principles of fault tolerance and how
they tie into fault-tolerant architectures. The ‘thesis objective’-section explains the results
and conclusions from the SLR and presents the scope and objectives of the thesis. The
‘method’ section presents an overview of the prerequisite artifacts required for the thesis and
the tools used to implement them. The section describes how these artifacts were produced
and the decisions made during their production. The results section describes the results
found based on the artifacts and implementations from the method section. Finally, the
discussion section ties the results to fault tolerance and what insights it provides regarding
the research questions posed.

The complete codebase, datasets, and weights are available in the delivery system for
this thesis. However, the weights and datasets are large, with the codebase being 36GB
when compressed. Due to the delivery system’s limitations, it was impossible to deliver
the code and data separately. To allow an initial viewing of the code without having to
download everything right away, a GitHub repository containing only the code is available
at: https://github.com/pmAllport/IT3920-delivery

https://github.com/pmAllport/IT3920-delivery

Chapter

Background

In order to understand the process presented in the ‘method’ section and the produced results,
it is vital to explain the background on which they are based. This section will explain
the concept of computer vision, how adversarial attacks function, and how fault-tolerance
concepts are applied in architectures.

2.1 Computer vision

Computer vision describes the operations in which a raw image is converted from photons
hitting a sensor to outputting usable data [7]. This is often done in multiple stages, each
performing some operation to transform the image data. These stages may perform task-
agnostic enhancements, such as image sharpening or noise removal, or task-specific enhance-
ments, such as object segmentation. This section will present the stages of computer vision
and how these stages produce information optimized for computer-vision models to utilize.

According to Victor et al. [7], computer vision aims to generate data for Image under-
standing. When passed to a computer-vision model, this ‘understanding’ can then be used
by the system to make decisions [7] [8]. However, these decisions are only as accurate as the
data itself. Thus, a core principle of the computer-vision pipeline is to enhance robust and
distinct features in the data while filtering out irrelevant noise [9].

Presented in Figure 2.1 is an overview of the computer-vision pipeline and can generally
be divided into four stages: image acquisition, image processing, image analysis and data
analysis [10]. image acquisition is an important pipeline stage, as it converts photons to
analog data. However, as its processes fall outside the potential attack surface for adversarial
attacks, they will not be discussed in detail.

2.1. COMPUTER VISION CHAPTER 2. BACKGROUND

B Image Processing D Data Analysis
Al isiti - Thresholding C Image Analysis - Data normalization
mage acquisition - Binarization - Image Segmentation - Model fitting

T

_;ﬁgature _e)_(_tract§9n - Validation and tuning
B = - Predicition

Figure 2.1: An overview of the computer vision pipeline.
Adapted from: A. F. Fernandes et al. [10]

Image processing is the operation in which one converts analog data from one or more
sensors into a digital image [7][8]. In addition to the conversion to digital data, several
enhancement techniques are applied. Generally, these enhancements are task-agnostic and
enhance the quality of the image itself. Higher quality data can allow the later stages of
the pipeline to extract more distinct features and thus result in better predictions. Exam-
ples of these image processing techniques include image sharpening and contrast adjustment
[10][11][12].

The image analysis enhancements are more task-specific as they are (generally) more
strongly coupled with the task of the final model. What image enhancements are applied
vary based on the input’s attributes and what robust features the model requires. Infor-
mation may be combined, filtered, mapped, or otherwise transformed to produce relevant
data. The result may be visual, such as color maps or object segmentation, but may also be
meta-data, such as histograms or the mean L2 distances in the image [12]. What features
to extract can be set by the implementer and is often based on what they deem useful in
generating image understanding.

This final stage is data analysis. This stage trains a model to perform predictions based
on the features. While the implementations vary, some processes are typical in the data anal-
ysis stage. Generally, the features are passed to an implementation-specific model, which has
been trained to provide correct classification based on said features. The processes performed
depend upon the model architecture but may consist of convolutional, batch normalization,
and dropout layers. Finally, it is passed to a fully connected layer producing logits and possi-
bly a squashing function (e.g. sigmoid) to yield an output describing the classifier’s prediction

2.2. ADVERSARIAL ATTACKS CHAPTER 2. BACKGROUND

of one or more objects. The output can be described as an instance of image understanding,
as it describes some property of the image provided. This image understanding ‘data’ can
then be passed to a decision-making system for further use.

A thing to note on the presented computer vision pipeline is that the individual stages
and the location of operations may differ between implementations. Some models may be
responsible for, e.g. prepossessing, extraction of features, or selection of features [13]. The
pipeline presented resembles the architecture of a traditional machine-learning computer vi-
sion pipeline. This is mainly done for ease of understanding.

This distinction is further complicated by the existence of both single-stage and dual-stage
classifiers [14]. Single-stage classifiers, such as “You Only Look Once’ (YOLO), perform ob-
ject detection and classification in a single pass [15]. Taking YOLO as an example of a
single-stage detector, these detectors treat detection as a regression problem by iteratively
defining, subsetting, and merging bounding boxes which give the highest classification prob-
ability for an object [16]. Dual-stage detectors, on the other hand, perform two passes, where
the initial stage performs object segmentation and passes it on to the second stage, which
performs classification as well as fine-tuning the bounding boxes [14]. In short, the computer
vision pipeline presented is not strictly applicable to every implementation but is rather used
to describe the processes which need to be performed overall to produce image understanding.

2.2 Adversarial attacks

Within the field of computer vision, machine-learning models are heavily used. They provide
the ability to accurately perform object detection and classification, even in complex scenes.
However, these models are also known to have vulnerabilities that are difficult to mitigate
[17]. The abuse of these vulnerabilities is called an adversarial attack. The goal of adversarial
attacks is to introduce an input, called adversarial examples, which coerces a model into an
unintended state [18].

As mentioned in chapter 1, these attacks can be categorized based on the attacker’s goal.
A few notable mentions include model extraction attacks, which attempt to extract informa-
tion about the model or poisoning attacks, which attempt to induce unexpected behavior
(trojans) into the model [19]. Additionally, one has evasive adversarial attacks, which at-
tempts to hide, prevent, or otherwise disturb the proper classification of objects in the scene.
A visual example of evasive adversarial attacks can be seen in Figure 2.2, where the intro-
duction of a small amount of noise can significantly affect a classifier. The figure shows how
introducing noise causes a classifier to mistake a panda for a gibbon. It is these kinds of
attacks that this thesis will look into. As a result, it is important to note that for ease of
reading, any reference to adversarial attacks should implicitly be understood to mean evasive
adversarial attacks.

2.2. ADVERSARIAL ATTACKS CHAPTER 2. BACKGROUND

X+
x sgn (V. (6, x,) esgn (V,.J (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3% confidence

Figure 2.2: A figure showing an initial image, the noise applied, and the resulting image. The

classification for each image is also shown below each image. Image credit goes to Goodfellow
et al. [17]

Adversarial attacks generally treat the generation of adversarial examples as an optimiza-
tion problem, attempting to determine some noise in an image that maximizes the model’s
loss if a given classifier were to attempt classification on said image [20] [21]. These attacks
achieve this by utilizing a classifier’s gradients to calculate this noise. These gradients repre-
sent the internal state of the classifier and how it prioritizes different data points in an input.
By knowing this internal state, an attacker can find an image that would trick the classifier
to the largest degree.

These attacks can be divided into white-box attacks and black-box attacks, where the
former has access to the model gradients while the latter does not. What generally differ-
entiates them is that black-box attacks must perform additional processes to calculate an
‘estimated’ set of gradients instead of being provided with the actual model gradients [19].
This means that black box attacks, in addition to having to produce an adversarial example,
also need to have a method for estimating the internal gradients of the attacked model.

Utilizing these gradients, either estimated or real, the adversarial attacks use a number
of different strategies to determine the optimal noise to maximize loss. Fast Gradient Sign
Method (FGSM) is a simple white-box attack used to determine this noise and exemplifies the
vulnerabilities posed by machine-learning models [17]. FGSM introduces an imperceptible
noise level in the areas where the weights are most valued. The noise introduced can scale
relative to the dimensionality of the network and the magnitude of each weight vector. This
allows a number of minor perturbations in an image to scale up to a sizeable collective shift,
given that the machine-learning model has a sufficient number of layers. This process can be
easily understood by viewing FGSM’s optimization function:

n = esign(V,J(0,x,y))

2.2. ADVERSARIAL ATTACKS CHAPTER 2. BACKGROUND

The goal of the function is to find the noise 7, given the input image x, the ground truth
label of the image y, the model 6, the scaling factor ¢ the max-norm function sign and the
loss function of the model J. In essence, it attempts to find the noise which introduces the
maximum loss, which is then scaled by a factor of e. A multitude of algorithms exist which
improve upon FGSM, like BIM [22] or PGD [23], but under the hood still apply the same
principle as FGSM. There are also other adversarial attacks which calculate this loss entirely
differently, some of which will be introduced in section 4.5 .

The evolution of adversarial attacks has not gone unnoticed, and several approaches have
been implemented to mitigate the effects of adversarial examples. These countermeasures
(also called ‘adversarial defenses’) can (generally) be divided into three categories: ‘gradi-
ent masking’, ‘adversarial training’ and ‘adversarial detection’ [24]. Gradient masking-based
defenses base themselves on the fact that adversarial attacks need access to a representa-
tive set of gradients for the model’s internal state. Thus, these defenses attempt to mask
these gradients or make them difficult to estimate. An implementation of such a defense
is ‘Defensive Destillation’ [20], whereupon an attempt is made to smooth out the gradients
inside the classification model. Papernot et al. reasoned that the effectiveness of adversarial
attacks could be mitigated by introducing data produced by a ML model into the training
set of another model. This would result in a model with smoother gradients that are more
difficult to estimate and perturb by an adversary. However, gradient masking-based defenses
do not necessarily stop the existence of adversarial attacks. Rather, these defenses only make
it more difficult to execute them, and methods capable of circumventing these defenses are
known [21].

Adversarial training is the introduction of perturbed images into the training set to reduce
the susceptibility of a model to adversarial examples [25]. The introduction of perturbed im-
ages is intended to train the model’s weights to show indifference to adversarial perturbations
and classify objects based on more robust image features instead. Sadly, adversarial training
can have an adverse effect on the model’s ability to classify benign images correctly, and Car-
lini et al. have shown that defenses based on adversarial training can also be circumvented
[26]. The last group is adversarial detection. It consists of the attempt to detect adversarial
attacks as they are presented to the model. In section 3.1, this thesis will go into more detail
in terms of how these detectors function, as well as the different approaches used within the
research field.

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

2.3 Fault-tolerance in software

As mentioned in chapter 1, the previously performed SLR noted a number of ways in which
deep-learning models were used to detect adversarial attacks. Especially noteworthy were
models that utilized techniques similar to fault-tolerance principles from software architecture
design. Given that these models may safeguard critical systems’ decision-making software,
utilizing these techniques to detect adversarial attacks is not unreasonable. However, it is im-
portant to understand how and why these fault-tolerant techniques are generally implemented
to understand their implications. This section will describe the taxonomy of dependability,
show how it translates into fault-tolerance principles and present architectures which utilize
fault-tolerant principles.

In this thesis, the software engineering taxonomy will mainly be based on ‘Basic Concepts
and Taxonomy of Dependable and Secure Computing’ by Avizienis et al. [27] and chapter
14 of ‘Handbook of Software Reliability Engineering’ by McAllister et al. [28]. These works
were selected due to their well-defined taxonomy and presence in the fault-tolerance field [29]

[30].

2.3.1 Dependability taxonomy

Any piece of software has a defined objective, be it the processing of items online or con-
trolling an autonomous vehicle. While they are both pieces of software, the environments
in which these two pieces of software operate are completely different. One system must
be able to potentially handle millions of orders at once, while the other must be able to
detect and prevent potentially hazardous traffic situations. The difference in environments
and functionalities translates to different risks. These risks are determined by many differ-
ent requirements set upon the system. In addition to functional requirements, which dictate
what a system should be capable of doing, there are also non-functional requirements. These
non-functional requirements specify criteria in which to evaluate how well a system achieves
a certain operational attribute.

One top-level attribute is ‘Dependability’, which describes the ‘trustworthiness of a com-
puter system such that reliance can be justifiably placed on the service it delivers’ [31].
Dependability encompasses multiple primary attributes, such as reliability, and captures the
ability to rely on a system to function correctly [27]. Within the dependability scope, re-
liability describes a system’s ability to continuously provide a correct service within the
dependability scope. Also within this scope is the term ‘robustness’, which describes a sys-
tem’s ‘dependability with respect to external faults’ [27]. Expanding on the term robustness,
the attribute describes how the system’s dependability is affected when exposed to a specific
set of external circumstances. In terms of adversarial attacks, it represents the system’s
ability to provide a correct service when it is being attacked by adversarial examples.

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

Avizienis et al. [27] define three terms to explain the threats to dependability: faults,
errors and service failures (often shortened down to ‘failures’). A (service) failure is defined
as the deviation between what a service is determined to provide and what it actually pro-
vides. An error is the partition of the system state, which can create or has already created
this service failure. A fault is ‘the adjudged or hypothesized cause of an error’ [27]. It is
important to note that these faults can be both internal or external and that external faults
rely on internal faults to exist in order to affect the system [27]. Faults are further subdivided

into dormant and active faults based on whether the fault is presently affecting the system’s
output.

Faults
|
[]
Phase of creation or occurrence Development Operational
System boundaries Intemal Internal External
Phenomenological cause Human-made Natural Natural ~Natural Human-made
Dimension Software Hardware Hardw Hardw Hardw Hardware Software
| | | l I | |

[[] [| [|

Objective Non Mal Mal Non Non Non Non Non Mal Mal Non
Malicious Malicious Mal Mal Mal Malicious Malicious

Intent Non Del Del Del Non Non Non Del Del Non

Del Non Non Del Del
Del Del Del Del Del Del Del
S| AT T T L ™
Capability Acc Inc Acc Inc Acc Inc Acc Inc Acc Acc Acc Inc Acc Inc Acc Inc Acc Inc

N TITE AT 5T A e

Persistence Per Per Per Per Per Per Per Per Per Per Per Per Tr Per Tr Tr Per Tr Tr Per Tr Per Tr Tr Per Tr Per Tr Tr Per Tr
f 9 al 20 4 8

Development Faults Physical Faults Interaction Faults

Mal: Malicious Del: Deliberate Acc: Accidental Inc: Incompetence Per: Permanent Tr: Transient

Figure 2.3: A figure of the tree-representation of faults from Avizienis et al. [27, fig. 5 b)]

Due to the robustness’ connection to specific circumstances, only a subset of these faults
are relevant when evaluating robustness for models being attacked by adversarial examples.
Figure 2.3 shows an overview of the different classifications of faults. The issue of adversarial
attacks can be classified as operational, external, human-made, software-based, malicious,
and transient (classification 24). This is because the model is being attacked at run-time
(operational), by an external influence (external), by a human-made attack (human-made),
on a software level (software), by a malicious and deliberate actor (malicious/deliberate),
and the attack only affecting the system when it is being attacked (transient).

10

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

Discussing adversarial attacks from a fault perspective, adversarial examples triggers a
dormant fault which may manifest itself as changes to the output of some perceptrons in the
neural net. This would be an example of an error. This error may or may not propagate
throughout the neural net and ultimately cause the model to misclassify an object. If it does
misclassify an object, the adversarial attacks has induced a service failure of the model. The
model’s inability to provide a correct service (i.e. ‘correct classification’) could then create
errors (and even failures) in other ‘downstream’ systems and cause errors in those systems
as well. This concept is defined by Avizienis et al. [27, sec 3.5] as ‘error propagation’ and
McAllister et al. [28, chap 14.3.3] as ‘dependent failures’. These terms do not overlap en-
tirely but rather refer to the same concept of cascading errors and failures causing issues in
downstream systems. Combining these two, one could say that ‘error propagation’ can cause
‘dependent failures’.

Avizienis et al. [27] also define several mitigation strategies, which are grouped into four
categories:

e Fault prevention, which attempts to prevent the initial creation of a fault.
e Fault tolerance, which is the ability to avoid service failures, given software faults.
e Fault removal, which is the process of reducing the number and severity of faults.

e Fault forecasting, which is the estimation of fault presence and the outcomes should
the system fail.

As shown in section 2.2, some models can have their ability to provide correct service dis-
rupted using adversarial attacks. This suggests that at least some models contain faults that
a malicious actor can abuse. Some papers suggest that the existence of adversarial attacks
is inherent to the structure of machine learning models [17] [32]. Others argue that accurate
and stable neural networks are possible, but modern algorithms currently do not compute
them [33]. One fundamental piece of knowledge in computer science is ‘the halting problem’,
which proves that no general algorithm can show if an arbitrary computer program will halt
or run forever, given a specific input [34]. As a result, it will be impossible to determine if
a machine-learning model will fall victim to an adversarial attack. This is not to say that
it is impossible to understand what creates these vulnerabilities, but rather highlights that
the complexity of the problem makes it difficult to assertively state a cause for their existence.

Regardless of the cause of this vulnerability, the viability of adversarial attacks points
to the fact that some current computer-vision models are likely to contain some level of
dormant faults. These dormant faults can then be activated by an attacker via adversarial
examples and induce an error in the attacked system. The existence of dormant faults in
models makes mitigation via fault prevention a non-viable option, as the faults are already
present in models. Fault removal as a strategy can be a valid strategy against trojaned models
[35]. However, evasive adversarial examples do not require the model to be initially trojaned

11

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

to disrupt the model. Fault forecasting is useful for designing the system and properly defin-
ing requirements for a system, but is in itself not helpful for preventing adversarial attacks.
Thus, improving a model’s performance against adversarial attacks is the only viable option
to improve its fault tolerance.

2.3.2 Fault-tolerance principles

Treating the models as software components with known dormant fault problems enables
the utilization of fault-tolerant principles. The utilization of such principles is referred to
by Avizienis et al. and McAllister et al. as fault tolerance or tolerance |27, sec 3.4] 28,
sec 14.3.5] respectively. Fault tolerance refers to a system’s ability to detect, mitigate or
otherwise prevent the inducement of an error given a fault. Avizienis et al. and McAllister et
al. both note the importance of design diversity and redundancy as key to enhancing fault
tolerance in a system.

Redundancy is the multiple computations of an input intended to avoid common-cause
faults in two or more systems [28|. Architectures implementing redundancy-based solutions
can be configured to perform these computations in parallel or sequentially. In the case of se-
quential redundancy, the need for additional computations can be determined based on some
function. These functions are called Acceptance Tests (AT), and a common AT is seeing if a
value is above a certain threshold.

Tied into redundancy is the requirement for design diversity of these systems [36] [28].
Design diversity refers to the variety between each of the computation systems. An increase
in design diversity increases the total coverage of the fault-tolerant technique, where coverage
refers to the space of inputs in which the technique is effective at tolerating faults [27]. Within
the scope of adversarial attacks, coverage would refer to the total space of adversarial attacks
the system can detect. Thus, by having multiple diverse redundant systems, one increases
the total number of adversarial attacks one can detect. This is because one system may not
provide coverage for a given attack, but other systems might be able to do so. The diversity
of these systems is vital to their success, as largely overlapping coverage would provide very
little overall value to the system. As described by McAllister et al. [28] :

«The overall philosophy is to enhance the probability that the modules fail on
disjoint subsets of the input space and thus have at any time at least one correctly
functioning software component. »

To understand coverage, it is important to understand the term ‘input space’. Chapter
5 of the ‘Handbook of Software Reliability Engineering’ explains that the term ‘input space’
refers to the set of all possible input states. [37]. An input state describes a set of input
variables which can be input into a system, where input variables are all the different pa-
rameters of a system that may affect its operation [37|. A practical example of this would
be an adversarial image. Each pixel in the image is an input variable, the entire image is an

12

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

input state, and the complete set of all valid permutations of images is the input space.

Further, a run is the process of taking an input state, performing some operation on the
input state. For any given operation, the set of valid input states for that operation is called
the domain. A ‘run type’ is the set of runs with the same input state, but not necessarily
the same operation applied. Bringing this back to a practical example, a run is the process
of taking an adversarial image (input from domain) and applying some detection algorithm
to it (operation). A figure showing these terms can be seen in Figure 2.4

Input
Space

_. Input State
~~" (Run Type)

Domain

(Operation)

Figure 2.4: A diagram showing input space, input states, and domains.
Adapted from: J. Musa et al. [37] figure 5.1.

Understanding these terms allow us to describe how coverage is provided by a fault-
tolerant technique. The level of coverage is dictated by the area covered by the domains.
This means that to influence coverage, one can either change the input space or change
the performance of the operations. In more practical terms, it means that the effectiveness
of fault-tolerant techniques depends upon both data (input space) and detection methods
(operations).

2.3.3 Fault-tolerance architectures

McAllister et al. [28] present several architectures that can increase a system’s fault tolerance.
Those relevant to this thesis include the Recovery Block (RB) and N-Version Programming
(NVP) architectures. Figures of these models can be seen in Figure 2.5 and Figure 2.6.

13

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

acceptance test failure
|
module 1 | module N

Mol | M3 M\

input ——» M 1

!
I
Y
acceptance test 1 ‘ 1 ‘

A1 AZ A3 AN_" system

failure
success l ¢ ‘ i

'correct' output

* acceptance test N

Figure 2.5: A schematic overview of recovery blocks from McAllister et al. |28, fig. 14.3|

Recovery blocks are built on two components: a module M and an acceptance test (AT)
A. In a run-time scenario, the input is passed through the module M, producing an output
passed to the acceptance test A. The acceptance test then makes a determination based on
the output of M to adjudicate if the input passes or fails. If the input fails, the input may
then be passed on to another set of modules and acceptance tests. This is repeated until an
acceptance test determines the input to be acceptable or the input fails the final acceptance
test. The complexity of the modules and acceptance tests may vary across implementations.
McAllister et al. note, ‘An extreme case of an acceptance test is another complete module,
and the acceptance test would then consist of a comparison of a given module output with
the one computed by the acceptance test. .

14

2.3. FAULT-TOLERANCE IN SOFTWARE CHAPTER 2. BACKGROUND

module 1 module N

J

module outputs

Voter — system failure

#

'correct’ output

Figure 2.6: A schematic overview of N-Version programming from McAllister et al. [28, fig.
14.4]

N-Version Programming (NVP) is a software generalization of N-modular redun-
dancy and involves the input being individually processed by multiple parallel modules,
My, M;...M,,. The output from the modules is then passed on to an adjudicator (also called
a ‘voter’), which takes these outputs as input and determines the best action based on these
inputs. What operation the modules perform and how the voter makes its adjudication varies
across implementations. Examples of how the voter makes its determination can be majority
voting or median voting, but can generally be any function that bases itself on the output of
the modules.

15

Chapter

Thesis Objective

The thesis topic and research field were set based on the insights from a previously performed
Systematic Literature Review (SLR). In order to understand the rationale behind selecting
this topic, a summary of this SLR must be provided. The first section will describe the
insights the SLR generated and the research gap observed. The second section will explain
how these insights tie into the fault-tolerance taxonomy and how they define the scope of
this thesis.

3.1 Systematized literature review

In the fall of 2022, a Systematic Literature Review (SLR) was performed in the field of de-
tecting adversarial attacks on computer vision. This SLR built the foundation for this thesis
by giving insights into the field of detecting adversarial attacks. The thesis is largely based on
the knowledge gained in this SLR, and its noted research gap forms the rationale for working
on this subject. As a result, this section will present a summary of relevant works found in
the SLR and the research gap uncovered in the work.

3.1.1 Findings

The findings from the systematic literature review were based on eleven different papers.
These papers investigated and implemented different methods for detecting adversarial at-
tacks. The SLR was aimed at understanding this research field and categorizing the current
state of these detection methods. The SLR discovered that these detection methods could be
categorized into two general groupings and synthesized two terms to define them: robustness-
based methods and architecture-based methods.

16

3.1. SYSTEMATIZED LITERATURE REVIEW CHAPTER 3. THESIS OBJECTIVE

3.1.1.1 Robustness-based methods

Robustness-based methods based themselves on the premise that introducing new transfor-
mations will disproportionately affect adversarial perturbations more than the features that
were part of the original benign image. The robustness in ‘Robustness-based’ refers to the
benign features’ ability to resist change better than adversarial perturbations across image
transformations. In the SLR, these robustness-based methods were further split into two cat-
egories based on how they perform their detection: consistency analysis and reconstruction
deviation.

Consistency analysis performs its detection by understanding how some metrics in benign
images change when introduced to one or more (generally linear) transformations. By know-
ing how these metrics should change, it can detect adversarial images if this image metric
exceeds the bounds of what one could expect from a benign image. One example of this is
Paula Harder et al. [38], where they perform a Discrete Fourier Transform (DFT) on an im-
age and train a logistical regression model to discern between adversarial and benign images
based on features from this Fourier spectrum.

Another example is Nathan Drenkow et al. [39]. In their paper, they perform random
mutations on images and create a statistical model for how quickly the classification labels
for benign images change as more mutations are applied. This statistical model utilizes ad-
ditional factors, such as the consistency between the mutated images. Given an adversarial
image, they assume that the labels will diverge at a different rate than the benign images.
When this rate exceeds the bounds set by the statistical model, it will be detected as an
adversarial image.

Reconstruction deviation generally describes methods that perform their detection using
Generative Adversarial Networks (GAN) to regenerate an image. Using this regenerated
image, a pre-trained detector is trained to learn how benign image features manifest in the
regenerated images. An example of this is Wang, Shuo et al. [40], which takes an input image
and encodes into the latent space for a given GAN. Their method then uses an optimal noise
map to enhance the stochastic detail in the latent data as well as identify several style axes
to shift their data. The images were then sent to a pre-trained detector which they used to
differentiate between benign and adversarial images.

Another paper by Chen, Ruoxi et al. [5] performed their detection differently. Instead
of working on the input image, they implanted their detector inside the classification model.
Their method involves taking the features from the fully connected layer and training two
GANSs to generate the salient and trivial image features. The salient features denote the
features which are more related to the class, while trivial features denote the features which
provide very little in terms of classification. The maps containing these features are then
passed to a detector, trained on where these maps are located on benign and adversarial
images. If these maps do not correspond with what would be expected of a benign image, the
input image is classified as adversarial. An example of their implementation is in Figure 3.1.

17

3.1. SYSTEMATIZED LITERATURE REVIEW CHAPTER 3. THESIS OBJECTIVE

(a) benign example (b) heatmap of benign (c) SF of benign (d) TF of benign

(e) adversarial example (f) heatmap of adversarial (g) SF of adversarial (h) TF of adversarial

Figure 3.1: A set of 8 images showing examples of heatmaps of salient features (SF) and
trivial features (TF) in adversarial examples.
Adapted from: Ruoxi, Chen et al. [5] figure 1.

3.1.1.2 Architecture-based methods

The other group of detectors described in the SLR are architecture-based detection methods.
These methods were noted to rely on techniques often found in software architecture engi-
neering, which try to increase the fault tolerance of a system. However, how this is achieved
varies between the implementations.

An example of an architecture-based detector is Yang, Karren et al. [41]. They perform
their detection by utilizing multiple sensors observing the same space, these sensors being
video, audio, and LIDAR. By utilizing sensor fusion, they are able to identify if a sensor is
being perturbed and use n-redundancy voting to out-vote the perturbed sensor. They base
their work on the KITTI dataset [42], which consists of multiple eight-hour video feeds from
cameras on a vehicle. Using such voting and sensor fusion strategies to detect adversarial
attacks resulted in a mean average precision of 85%+ on images containing cyclists and cars.
The utilization of this additional sensor data provides the detector with additional informa-
tion in which to perform detection. This means that the increase in data provides an increase
in coverage, as it is more capable of detecting an attack given a specific input.

18

3.1. SYSTEMATIZED LITERATURE REVIEW CHAPTER 3. THESIS OBJECTIVE

Statistical detector Gaussian noise injection detector

Output
DNN l

Gaussian
*|noise injection DNN Out It"@_.
utpu

: Legitimate . |
.~ examples |

Adversarial
- examples with .
% large perturbations .7

samples ;--

Figure 3.2: An overview of the ‘hybrid detector’, showing its multi-stage detection architec-
ture.
Adapted from: Fan, Weiqi et al. [6] figure 3.

Another example of an architecture detector is the ‘hybrid detector’ by Fan, Weiqi et al.
[6], with an overview shown in Figure 3.2. Their detection is done in two stages, the first
being the use of a stenographic method called Subtractive Pixel Adjacency Matrix (SPAM).
As they note in their paper, this method is adept at identifying large perturbations in an
image. If this method detects that perturbations have been applied, the image is classified as
adversarial. If classified as benign, the image is passed to the second stage, which produces
a copy of the image injected with Gaussian noise. Both images are then passed to a GAN,
which is trained to generate an output in which the adversarial perturbations will be more
overt. The comparison of these two outputs is noted to be effective in detecting if small
perturbations have been applied to the image.

Comparing the ‘hybrid detector’ to the salient feature extractor by Chen, Ruoxi et al. [5]
provides an insight into how these two groupings differ. Both detectors use a GAN-based
approach, whereby they perform their detection based on a set of regenerated images. How-
ever, as noted in Chen, Ruoxi et al. [5], these GAN-based methods are vulnerable attacks to
which large perturbations have been applied. When these large perturbations are applied,
Chen, Ruoxi et al. notes that their detection rate falls from as high as 98%, down to 50-60%
on the CIFAR-10 and ImageNet data sets. Fan, Weiqi et al. note that the first SPAM stage
was added to mitigate this vulnerability to large perturbations [6]. Through the addition
of this initial stage, Fan, Weiqi et al. are able to increase the accuracy by as much as 3%
(96.2% to 99.5%) in their tests, with minimal cost to other metrics.

19

3.2. THESIS SCOPE CHAPTER 3. THESIS OBJECTIVE

3.1.2 Conclusions

The resulting papers from the SLR showed a larger amount of papers focusing on improving
individual models using robustness-based methods. Most of the implementations had a high
level of accuracy but also came with a high level of false positives or neglected to provide that
information. In general, the robustness-based methods performed better than their architec-
ture counterparts. Still, as previously discussed when looking at Chen, Ruoxi et al. [5], the
utilization of a single model can come with security risks. Contrasting the large presence of
robustness-based papers, only a few papers attempted to approach the issue from a software
architecture-based perspective. Here one sees novel approaches to detection, be it a simple
filter to mitigate a known model weakness, as with Fan, Weiqi et al. [6], or introducing data
points outside of the attack surface as with Yang, Karren et al. [41]. While it is difficult
to directly compare the performance of architecture-based methods and robustness-based
methods (due to different datasets and/or metrics), it can at least be observed that software
architecture principles provide increased performance to the detection framework compared
to its individual components. However, the architectures were implementation specific and
did not discuss the general concept of architecture detectors.

3.2 Thesis scope

As briefly touched upon in section 2.2, the term Adversarial attacks covers a large collection
of attacks. The ‘Adversarial ML Threat Matrix’ from Microsoft [3] shown in Figure 3.3,
shows the sheer extent to which it is possible to disrupt the proper operation of a model
using adversarial attacks. As a result, defining the boundaries of the thesis is key to ensuring
that the thesis does not increase its scope outside what is possible, given the time frame and
resources available.

20

3.2. THESIS SCOPE CHAPTER 3. THESIS OBJECTIVE

Reconnaissance Initial Access Execution Persistence Model Evasion Exfiltration Impact

Acquire OSINT information: |~ Pre-trained MLmodel with | Execute unsafe MLmodels | Execute unsafe MLmodels | Evasion Attack Exfiltrate Training Data Defacement
(Sub Techniques) backdoor (Sub Techniques) (Sub Techniques) (Sub Techniques) (Sub Techniques)

Andv 1 MLmodelsfrom 1 MLmodelsfrom 1. Offline Evasion 1. Membership inference attack
. Public blogs compromised compromised 2. Online Evasion 2. Modelinversion

Press Releases sources sources

. Conference 2. Pickle embedding 2. Pickle embedding
Proceedings

. Github Repository
6. Tweets

o swNe

ML Model Discovery Valid account Execution via APl Account Manipulation Model Stealing Denial of Service

(Sub Techniques)

1. Reveal MLmodel
ontology—

2. Reveal ML model
family —

Gathering datasets. Phishing Traditional Software Implant Container Image Model Poisoning Insecure Storage Stolen Intellectual Property
attacks 1 Model ile
2. Training data

Exploit physcial External remote services Data Encrypted for Impact
environment Data Poisoning Defacement
(Sub Techniques)
1 Tainting data from
Model Replication acquisition — Label Stop System
(Sub Techniques) Exploit public facing corruption Shutdown/Reboot
1. Exploit API— Shadow application 2. Tainting data from
Model open source supply
2. Alter publicly chains
available, pre-trained 3. Tainting data from
weights acquisition — Chaff
data
4. Tainting datain
training environment
~Label corruption

Model Stealing Trusted Relationship

Figure 3.3: Microsoft’s Adversarial ML Threat matrix [3]. Machine learning attacks are
shown in orange.

Used under license from The MITRE Corporation for research purposes !

As mentioned in section 3.1, the previous semester was spent investigating the different
methods of detecting evasive adversarial attacks. Further, it also laid out the observed lack of
generalized insights into the implementation of such architecture-based detectors. Observing
the application of fault-tolerant principles for the architecture-based detectors, Fan, Weiqi
et al. 6], and Yang, Karren et al. [41] both utilize redundancy and data diversity concepts.
Fan, Weiqi et al. [6] utilize a sequential multi-model approach that iteratively removes dis-
junct sets of attacks. Karren et al. [41] utilize diverse data, which allows for the out-voting
of attacked sensors and provides stronger coverage on a given input.

As noted multiple times, neither paper goes into significant detail in exploring how fault-
tolerant architectures can be implemented in general. It is this research gap that this thesis
wants to approach; how do some implementations of fault-tolerant architectures perform in
detecting adversarial attacks, and what factors are likely to affect them.

This thesis intends to approach this issue of adversarial detection as a fault tolerance
issue. This puts a premium on realistic scenarios as they can generally be expected to be
noisier but also will produce results more likely to represent the environment in which these
systems will run. Additionally, the fault-tolerant approach also reduces the importance of
per-component performance. The thesis aims to understand how a fault-tolerant architec-
ture’s error detection compares to its constituent components. Thus, the thesis’ goal is not
necessarily to produce the most optimal components but rather to produce sufficiently rep-

1@©2023 The MITRE Corporation. This work is reproduced and distributed with the permission of The
MITRE Corporation.

21

3.2. THESIS SCOPE CHAPTER 3. THESIS OBJECTIVE

resentative components and focus on differentiable approaches. This would then allow for a
focus on what the architecture provides that each individual component cannot.

Treating the problem as a fault-tolerant system set the thesis up for utilizing fault-tolerant
architectures. As mentioned in section 2.3, the coverage of a fault-tolerant technique was
quantified in the context of ‘domains’. These domains were defined by the input space and
the operations applied. As a result, this thesis set itself up for the process of looking into how
input spaces and multi-operation architecture models would affect the detection of adversarial
attacks. It is this insight that dictated the research questions set in chapter 1.

Concurrent Detection
E Detecti [takes place during normal service delivery]
__Error Detection
[identifies the presence of an error] Preemptive Detection

[takes place while normal service delivery
is suspended; checks the system for latent
errors and dormant faults]

Rollback

[brings the system back to a saved state
that existed prior to error occurrence;
Fault Tolerance —] saved state: checkpoint]

Error Handling

— errors Rollforward
from the system state] [state without detected errors is a new state]
Compensation
— [the erroneous state contains enough
Recovery redundancy to enable error to be masked]
[transforms a system state that contains Diagnosis

— one or more errors and (possibly) faults ~—
into a state without detected errors and
without faults that can be activated again]

[[identifies and records the cause(s) of error(s),
in terms of both location and type]

Isolation
| [performs physical or logical exclusion of the faulty
. from further participation in service
Fault Handling delivery, i.e., makes the fault dormant]
— [prevents faults fom —
being activated again] Reconfiguration

[[either switches in spare components or reassigns
tasks among non-failed components]

Reinitialization
[checks, updates and records the new configuration
and updates system tables and records]

Figure 3.4: Fault tolerance taxonomy from Avizienis et al. [27, fig. 16].

Given the research gap in the SLR and the researcher’s background within software archi-
tecture, it was a logical step to limit the thesis scope to detecting evasive adversarial attacks
using fault-tolerant architectures. The requirement for utilizing autonomous vehicles came
from the prevalence of the scenario in common discourse and access to realistic datasets being
readily available. Additionally, these datasets can be expected to be quite complex, accu-
rately testing the architecture’s ability to handle non-optimal scenarios. To limit the scope
of the dataset, it was decided to use single-modal image datasets for this thesis. Reading
the fault tolerance taxonomy in Figure 3.4 placed the implementation of these fault-tolerant
architectures under the subset of Error detection. Referring back to the taxonomy in sec-
tion 2.3, the architectures are intended to detect the presence of an activated fault. This
would mean detecting the presence of adversarial images.

An important thing to note in this thesis is the use of the terms classifiers and detectors.
Within machine learning, a classifier refers to a model which attempts to classify something,

22

3.2. THESIS SCOPE CHAPTER 3. THESIS OBJECTIVE

e.g. classify a cat as a cat. From software architecture, one has the concept of detectors,
referring to a component that attempts to detect the occurrence of a specific set of circum-
stances. In the case of this thesis, these circumstances refer to the system being attacked
by adversarial examples. As this thesis performs detection of adversarial attacks, the com-
ponents performing this detection will be called detectors, despite actually being classifiers
that only output the probability for one class. This class being ‘How probable is it that this
image has been attacked?’. The terms classifier and detector are used in this way to differen-
tiate between machine learning models which try to classify an object and detect adversarial
examples. This is done to reduce confusion and create a clear separation between these two
concepts in the following sections.

As a result, the following research questions were chosen:

e RQ1: How can fault-tolerant architecture principles be applied to detecting adversarial
attacks?

— RQ1.1: How can multi-model architectures be used to improve the detection of
adversarial attacks?

— RQ1.2: How can diverse data be used in fault-tolerant architectures to improve
the detection of adversarial attacks?

23

Chapter

Method

This chapter will present an overview of the different artifacts used in this thesis and the
need for these artifacts in the thesis. The following section will denote the different tools
used in the implementation of these artifacts. The subsequent sections will then detail and
describe the implementation of these artifacts and how the tools were utilized to create them.

4.1 Prerequisite artefacts

To produce the fault-tolerant architectures and the technical environment in which to test
them, a number of artifacts and implementations needed to exist. This section will present
those artifacts and implementations, what need they fulfill, and what requirements were
posed to them. In short, the required artifacts and implementations were:

e A benign dataset.
e An adversarial dataset.
e An implementation of a multi-model architecture detector.

¢ An implementation of a data diverse architecture detector.

The need for a benign and adversarial dataset came from the fact that the models inside
the detection architectures needed to be trained. These two datasets would also be used to
evaluate these detectors’ performance. As mentioned in section 3.2, the benign dataset would
need to depict a realistic and complex traffic situation. In terms of the adversarial dataset,
additional requirements needed to be fulfilled. The need for a realistic adversarial dataset
meant it needed to contain multiple attacks, as a defender could not expect to know what
attacks they would be presented with. Additionally, these attacks could not come from the
same ‘family’ of attacks, which meant that the attacks would be too similar. This would risk
the detectors being too adept at generalizing for that subset of attacks, which could result

24

4.2. TOOLS CHAPTER 4. METHOD

in skewed results.

To answer RQ1.1, a multi-model architecture was required. Selected for this task was
an implementation of the recovery block. This was due to its sequential nature but also
allowed for investigating how performing multi-operation detection on the same input space
could affect the detection of adversarial attacks. As mentioned in section 2.3, a sequential
redundancy detector, such as the recovery block, functions best when each set of modules
and acceptance tests iteratively filters out disjunct sets of adversarial attacks. Keeping this
in mind, strict attention would have to be paid to the diversity of the component detectors.
This is because diverse components are likely to have increased coverage.

To answer RQ1.2, required an architecture that would allow for testing how data di-
versity could affect an architecture detector. The selected architecture would be N-Version
Programming (NVP). This is due to the fact that the architecture allows for multiple modules
to perform transformations on the same input in parallel. This would then produce multiple
input spaces for a given detector. Additionally, it would also allow for multiple combinations
of input spaces, which would allow insights into how the composition of input spaces affects
detection performance.

4.2 Tools

Several tools were used to generate the datasets and train the models for the thesis. This
section will present the different tools and their role in this thesis.

Python

Python is a dynamically-typed general-purpose programming language produced and main-
tained by the ‘Python Software Foundation’ [43|. It supports multiple programming paradigms
and has many popular frameworks using it as its coding language, such as Django [44] or
Flask [45]. Its official package manager, ‘pip’, provides easy access to many useful libraries
for machine learning via the package repository ‘Python Package Index’ [46]. The language
was selected for this thesis due to the researcher’s familiarity with the language, libraries
provided by ‘pip’, and the sizeable documentation available.

Pytorch

Pytorch is a popular python-based machine learning framework maintained by The Linux
Foundation [47]. The framework supports many features, making it easy to utilize the hard-
ware for training models effectively. As a result, its ecosystem and tools have many projects
which utilize its functionality as a base for efficiently interfacing with hardware [48]. Due to
its great tools and support in the machine learning field, it was used for this thesis.

25

4.3. THE NUSCENES DATASET CHAPTER 4. METHOD

Pytorch Lightning

As mentioned, Pytorch is often used in other projects for interfacing with hardware. One is
these Pytorch Lightning, a high-level open-source framework for training machine learning
models [49]. It was initially created as part of a Ph.D. [50], it is now owned by the original
creator under the firm ‘Grid AI’. The framework utilizes its own ecosystem and classes to
modularize models, which can be combined in different ways. In addition, the framework also
has many useful and easily accessible features to ensure that training is performed correctly.
Due to these features and its good integration with Pytorch, it was used for training the
models in the thesis.

Adversarial Robustness Toolbox (ART)

The Adversarial Robustness Toolbox (ART) is a Python library hosted and maintained by
The Linux Foundation [51]|. The library is used to teach an understanding of how adversarial
attacks work and contains a multitude of implementations of both attacks and defenses.
These implementations are not limited to only evasive adversarial attacks either, and provide
a solid resource pool for understanding how to create and defend against these attacks. Due
to its extensive collection of implementations and support for generating adversarial attacks,
this thesis used this framework to generate its adversarial attacks.

IDUN

IDUN is a server cluster run by NTNU’s High-Performance Computing group [52]. The server
cluster is available to students and employees at NTNU, that require access to additional
computational hardware to perform research. The cluster consists of a number of nodes!,
with different hardware specifications. Utilizing the Slurm Workload Manager?, it is possible
to reserve a number of these nodes to perform specific processes. These processes, called
‘jobs’, can be called upon to run specific Python files. Of noteworthy per-user restrictions
relevant to this thesis is the limit of 1TB of storage space per user. The relevance of this
restriction will be discussed in section 4.5. Due to its sheer size and computational power,
the IDUN cluster was used to train this thesis’ models and perform other computationally
heavy tasks.

4.3 The nuScenes dataset

As mentioned in section 3.2, the fault-tolerant approach for testing the architectures sets
a requirement for using a complex and representative dataset. Given that an autonomous
driving dataset was found, it would also have to be large, as large datasets allow for greater
generalization of features, provide a lower risk of overfitting, and may be able to adjust for
dataset imbalances [53] [54].

thttps://www.hpc.ntnu.no/idun /hardware/. Accessed 2023-05-22
Zhttps://slurm.schedmd.com /overview.html. Accessed 2023-05-22

26

https://www.hpc.ntnu.no/idun/hardware/
https://slurm.schedmd.com/overview.html

4.3. THE NUSCENES DATASET CHAPTER 4. METHOD

One of the surveyed datasets fitting these criteria was ‘nuScenes’, a dataset often used in
computer vision benchmarking [55], which depicts complex traffic scenarios [56]. Motional,
the owners of nuScenes, have also hosted multiple object detection challenge workshops, the
last of which was at the IEEE conference ‘2021 International Conference on Robotics and
Automation 2021’ [57]. Inspired by the multi-modal dataset KITTI [42], the dataset consists
of 1000 driving ‘scenes’, where each scene is a 20-second snippet of a car in a traffic situation
[56]. The ‘scenes’ are taken from two different cities, Boston and Singapore. Additionally,
the scenes are taken at all hours of the day, in different environments (e.g., industrial and
urban), and in diverse weather conditions. The vehicle-mounted sensor suite has six cameras,
three pointing forward and three pointing backward. The vehicle is also equipped with five
radars, three pointing forward and two backward. The sensor suite also has LIDAR and an
Inertial Measurement Unit (IMU) to capture gyroscopic data. An overview of the sensor
suite can be seen in Figure 4.1.

T ‘ - | — X-axis

~ Downward —* Y-axis
® Upward —» Z-axis

Figure 4.1: A figure showing the sensor array and placement on the cars from the nuScenes
dataset. Adapted from [56, fig 4]

All of the cameras in the sensor suite capture and record images at a rate of 12 Hz. Of
these twelve images, nuScenes denotes two of them as ‘keyframes’. These ‘keyframes’ are
annotated with all the objects in the scene. Additionally, these annotations contain useful
metadata, such as how obscured objects are by other objects in the scene. For this the-
sis, only ‘keyframes’ were used as they contained annotations for objects. These annotated
objects were also labeled as one of 23 classes. An example of such a class would be ‘hu-
man.pedestrian.adult’. A number of these classes describe specialized instances of road users.
E.g., multiple classes exist for describing pedestrians, such as ‘human.pedestrian.construction worker’
or ‘human.pedestrian.wheelchair’. An important thing to note is that an object can only be-
long to one class. This means that a police officer is only labelled as ‘human.pedestrian.police officer’
and not additionally as ‘human.pedestrian.adult’. The nuScenes dataset and tools contain

27

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

support for the utilization of additional sources of information, such as LIDAR maps recorded
with the LIDAR sensor shown in Figure 4.1. These maps were not used, however, as the
thesis was focused on using images rather than sensor fusion methods. Still, it would be an
interesting future work to see how sensor-fusion in fault-tolerant architectures would perform,
mimicking the work by Yang, Karren et al. [41] on the KITTI [42] dataset.

4.4 Customized dataset

The nuScenes dataset was made with the intention of being a benchmark for real-time ob-
ject detectors [56]. The dataset needed to be modified to suit the thesis’ task, as the task
enveloped detection. This section will describe the steps to produce the customized dataset.

4.4.1 Methodology

The first stage in producing the customized dataset consisted of three modifications:

e As shown in Figure 4.2, each nuScenes image contained multiple objects. To perform
classification, the images would have to be cropped so that only one image contained one
object. In addition to compatibility, cropping has also been shown to improve classifiers’
ability to explore deep object features in images [58] and simplifies the classification of
partially obscured objects [59].

e Objects more than 40 % obscured were removed from the dataset. This was done, as
severe occlusion of objects is known to degrade models’ ability to classify objects [60]

[61].

e Images below 112 pixels in either their width or height dimension were removed. The
size restriction was set because the ResNet classifier scales images to 224x224, and
scaling of small images may enhance noise when upscaled [62]. There is no strictly
defined ‘lower bound’ for how much an image can be upscaled before classification
becomes a problem, as it can depend upon the complexity of an image and the task
performed. However, based on works by Y. Pei. et al. [63] which trained multiple
ResNet-50 classifiers, low-resolution images need to be downscaled by more than a
factor of four before accuracy seems to drop significantly. The initial lower bound of
112, a factor of two, was set as a conservative value to avoid problems with a lack of
spatial details.

28

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

CAM _FRONT

Figure 4.2: An example image from nuScenes showing multiple objects in a scene. Each
bounding box represents an annotated object.

4.4.2 Implementation

In Figure 4.2, it can be seen that the provided camera annotations define the bounding
boxes in 3d space. However, cropping these images meant the bounding boxes needed to
be defined in 2D. To perform this conversion, a script® from the nuScenes GitHub page was
used. Following this, a custom-written script used the 2D bounding box positions to crop the
annotated objects from the larger images. This process is visualized in Figure 4.3. Using the
visibility parameter provided by nuScenes, images more than 40% occluded were discarded.
Pseudo-code for this process can be seen in algorithm 1.

CAM_FRONT CAM_FRONT

Figure 4.3: An image sequence showing the 3D to 2d pipeline. The initial 3D bounding box
is converted to 2d, and the edges of the bounding boxes are then used to crop the image to
only contain that object.

3Script available here | Accessed: 2023-05-22

29

https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/scripts/export_2d_annotations_as_json.py

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

The value proposed by the nuScenes dataset was its diverse and realistic scenarios. As a
result, ensuring that the dataset retained its ability to accurately depict the different classes
despite its variety, was essential. Otherwise, the dataset could be skewed in such a way as
to produce invalid results. To verify that the modified dataset retained its ability to depict
the classes, a ResNet-101 classifier [64] was trained and tested on the dataset to gauge its
performance. ResNet models are trained to classify ImageNet objects and were thus likely
to perform well on image classification in the nuScenes dataset as well. When enforcing the
third requirement of the images needing more than 112 pixels in width and height, issues
started to arise. After training the ResNet classifier, the classifier would perform significantly
worse on some classes. In particular, the classifier performed significantly worse on classes
that were in the minority of instances in the dataset. An overview of these results can be
seen in Figure 4.4.

vehicle.truck 38.914% accuracy | 14979 images in dataset

vehicle.trailer 32.031% accuracy | 3481 images in dataset
vehicle.motorcycle 25.958% accuracy | 2165 images in dataset
vehicle.emergency.police 4 0.000% accuracy | 113 images in dataset
vehicle.emergency.ambulance { 0.000% accuracy | 10 images in dataset

vehicle.construction 9.684% accuracy | 2282 images in dataset

vehicle.car 92.409% accuracy | 73413 images in dataset

vehicle.bus.rigid 29.270% accuracy | 3027 images in dataset
vehicle.bus.bendy 28.291% accuracy | 357 images in dataset
vehicle.bicycle 35.791% accuracy | 2143 images in dataset
static_object.bicycle_rack 40.217% accuracy | 552 images in dataset
movable_object.trafficcone 78.290% accuracy | 18821 images in dataset
movable_object.pushable_pullable 25.135% accuracy | 3708 images in dataset
movable_object.debris 9.280% accuracy | 625 images in dataset
movable_object.barrier 64.682% accuracy | 26995 images in dataset
human.pedestrian.wheelchair { 0.000% accuracy | 97 images in dataset
human.pedestrian.stroller 0.901% accuracy | 111 images in dataset
human.pedestrian.police_officer 4 0.000% accuracy | 117 images in dataset
human.pedestrian.personal_mobility 1 0.000% accuracy | 85 images in dataset
human.pedestrian.construction_worker 2.953% accuracy | 1456 images in dataset

human.pedestrian.child { 0.000% accuracy | 259 images in dataset

human.pedestrian.adult 77.918% accuracy | 31750 images in dataset

animal 14.194% accuracy | 155 images in dataset

0 20 40 60 8'0 160

Figure 4.4: The per-class classification performance on the 23-class dataset.
When further investigations were conducted, it was observed that a large number of
classes with a low number of instances were often classified within their own ‘superclass’. E.g.,

instances of vehicle.emergency.police were often misclassified as ‘vehicle.car’. This breakdown
can be seen in Figure 4.5

30

4.4. CUSTOMIZED DATASET

CHAPTER 4. METHOD

vehicle.car | 0.485
movable_object trafficcone
movable_object.pushable_pullable | 0.295

movable_object.debris | 0.000

movable_object.pushable_pullable| "
‘movable_object.barrier | 0.280

vehicle.truck | 0.000

vehicle.car | 0.719
movable_object trafficcone | 0.138
movable_object.debris|

human pedestrian.adult | 0.079

movable_object.pushable_pullable | 0.000

movable_object trafficcone | 0.268

human.pedestrian.adult | 0.033

movable_object. barrier
vehicle.truck | 0.016

movable_object pushable_pullable | 0.000

vehicle.car | 0.698
vehicle.motorcycle | 0.023

human.pedestrian. wheelchair|
animal | 0.000

movable_object.barrier | 0.000

humanpedestrian.adult | 0.538
movable_object. barrier | 0.462
human pedestrian.stroller

movable_object trafficcone | 0.231

animal | 0.000

movable_object trafficcone | 0.031

movable_object barrier | 0.021

human pedestrian.police_officer
vehicle.car | 0.000

movable_object.pushable_pullable | 0.000

movable_object. barrier | 0.164

vehicle.car | 0.145
human.pedestrian.personal_mobility
movable_object.pushable_pullable | 0.000

vehicle.bus.rigid | 0.000

vehicle.car | 0.090

movable_object trafficcone | 0.037
human.pedestrian.construction_worker

movable_object.barrier | 0.036

movable_object.pushable_pullable | 0.000

movable_object trafficcone | 0.102

movable_object.barrier | 0.059
human pedestrian.child

vehicle.car | 0.037

movable_object.pushable_pullable | 0.000

vehicle.car | 0.557
movable_object.barrier | 0.380
human pedestrian.adult
movable_object.pushable_pullable | 0.133

vehicle.truck | 0.000

movable_object trafficcone | 0.365
movable_object. barrier | 0.149
animall
human.pedestrian.adult | 0.068

movable_object.pushable_pullable | 0.000

human.pedestrian.adult | 0.681

vehicle.car | 0.891

movable_object trafficcone | 0.668

movable_object.barrier | 1.000 vehicle.car | 1.000

vehicle.truck | 0.816

human.pedestrian.adult | 0.057
vehicle.truck|
movable_object.barrier | 0.048

vehicle.trailer | 0.000
human.pedestrian.adult | 1.000
vehicle.trailer | 1.000
vehicle.car | 0.786

vehicle.truck | 0.576
vehicle trailer]

movable_object barrier | 0.196
movable_object.barier | 1.000 humanpedestrian.adult | 0.000
vehicle.car | 1.000
vehicle.motorcycle | 0.671

human.pedestrian.adult | 0.507
vehicle.motorcycle

vehicle.bicycle | 0.041
vehicle.car | 1.000 movable_obiject trafficcone | 0.000
vehicle.car | 1.000
human pedestrian.adult | 0.050

vehicle truck | 0.020
vehicle.emergency.police i

humanpedestrian.adult | 1.000 movable_object baier | 0.000

static_object.bicycle_rack | 0.000

vehicle.car | 1.000

vehicle.truck | 0.000

movable_object.debris | 0.000
hicl

vehicle.car | 1.000 human.pedestrian.wheelchair | 0.000

movable_object.barrier | 0.000

vehicle.car | 1.000

vehicle.truck | 0.265

vehicle.construction | 0.103

h destrian.adult | 1.000

human pedestrian.adult | 0.065
movable_objectbarrier | 0.000
vehicle.car | 1.000
human pedestrian.adult | 0.018

human.pedestrian.adult | 1.000 movable_object trafficcone | 0.011

vehicle car}
movable_object barrier | 0.008

vehicle.truck | 0.000
vehicle.car | 1.000
vehicle.bus.rigid | 0.742

human.pedestrian.adult | 1.000
vehicle.truck | 0.322

vehicle.bus.rigid|

movable_object barrier | 0.070
vehicle.bus.bendy | 0.000
vehicle.bus.bendy | 1.000
human.pedestrian.adult | 1.000 vehicle.car | 0.851
vehicle.truck | 0.478

vehicle.bus.bendy

movable_object barrier | 0.075
vehicle.bus.rigid | 0.000
vehicle.bicycle | 1.000

movable_object.trafficcone | 1.000 vehicle.car | 0.898

movable_object.barrier | 0.119

vehicle.bicycle|
movable_object rafficcone | 0.070

static_object.bicycle_rack | 0.000

static_object.bicycle_rack | 1.000

vehicle.car | 1.000

movable_object barrier | 0.574

vehicle.car | 0.526

static_object.bicycle_rack
movable_object trafficcone | 0.086

human.pedestrian.adult | 0.000

00 02 04 06 08 10 00 02 04 06 08 10

Figure 4.5: A plot showing the breakdown of the top 5 misclassifications, per class. Values
are broken down by misclassifications in relation to the most misclassified class. This is to
show how the top 5 misclassifications were distributed.

In order to mitigate this, a number of classes were merged, reducing the number of
classes from twenty-three to four. The reasoning for why this could safely be done was that
the badly-defined classes would generally be misclassified as their ‘superclass’. E.g. hu-
man.pedestrian.wheelchair was often misclassified as human.pedestrian.adult. This can be
seen in Figure 4.5. From the perspective of the vehicle, whether or not a pedestrian is in
a wheelchair or not shouldn’t significantly affect its behaviour. Thus, trading an increased
number of classes for fewer, well-defined, classes seemed a reasonable trade-off. An additional
note is that it was assumed that an adversarial attack on an autonomous vehicle wants to
affect the behaviour of the vehicle. While misclassifying a walking pedestrian for a wheelchair

31

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

user can technically be classified as a service failure, it would have little effect on a vehicle’s
behaviour. Merging the classes would make sure that a successful attack would affect the
vehicle’s actions and the dataset would contain well-defined classes. An overview of the map-
ping between the 23 classes and their new class in the 4-class dataset can be seen in Table A.1
in the appendix. The four classes are:

e Pedestrian. Includes all classes which are commonly found on the sidewalk, such as
pedestrians, bicyclists and animals.

e Static_light. Includes static objects which pose little danger to the vehicle’s passengers
if hit, such as wheelie bins and traffic cones.

e Static_heavy. Includes static objects which can pose a danger to the vehicle’s passen-
gers it hit, such as construction barriers and garbage containers.

e Vehicle. Includes all forms of transportation vehicles which travel on the road, such as
cars, trucks, ambulances and motorcycles.

32

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

vehicle 85.929% accuracy | 35386 images in dataset

static_light 14.320% accuracy | 1648 images in dataset

static_heavy

88.681% accuracy | 5177 images in dataset

pedestrian 26.507% accuracy | 3848 images in dataset

< & ¢ 8 s g
(a) Per class accuracy.

0 20 40 60 80 100

static_heavy | 13.847% of all instances
vehicle { pedestrian | 0.223% of all instances

vehicle | 0.000% of all instances

static_heavy | 39.442% of all instances
static_light vehicle | 45.328% of all instances

pedestrian | 0.910% of all instances

vehicle | 11.281% of all instances
static_heavy { pedestrian | 0.039% of all instances

static_light | 0.000% of all instances

vehicle | 57.069% of all instances
pedestrian static_heavy | 16.424% of all instances

static_light | 0.000% of all instances

0 20 40 60 80 100

(b) Misclassifications per class.

Figure 4.6: Performance and per-class misclassification plots for the transfer-learned ResNet-
101 model. The number of images is based on the test dataset.

33

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

The ResNet classifier performed poorly during trials, as seen in Figure 4.6 a). The classi-
fier performed strongly on vehicles and heavy static objects but poorly on light static objects
and pedestrians. Both light static objects and pedestrians were consistently misclassified as
either vehicles or heavy static objects as can be seen in Figure 4.6 b). This led to additional
steps to ensure that each class would be well-defined. The first was the merging of the two
static classes into a larger class called ‘inanimate’. The mapping between the original 23
classes and the new three classes be seen in Table A.2 in the appendix. While this would
reduce the information to a decision-making system, it was done to differentiate between
objects which can be assumed to act statically rather than dynamically in a traffic scenario.
Additionally, most static objects can be assumed to ‘shape’, change or otherwise impede
traffic flow but not directly interact with traffic such as a pedestrian.

Additional steps were also taken to further improve classification performance. It was
suspected that the imbalance between the number of images also affected the classification
performance in favour of static heavy objects and vehicles. Given the requirement for images
larger than 112 pixels, this imbalance was likely caused by these objects being closer to the
nuScenes sensor vehicle. Being closer to the vehicle meant that the images were larger and
thus were more present in the dataset. Additionally Keeping in mind that Y. Pei. et al. [63]
showed that the accuracy of classifiers tended to drop off when trained on images scaled by
more than a factor of four, it was considered safe to reduce this size restriction down to 64
pixels instead of 112 pixels. While it did perform better, the classifier still had some issues
with per-class classification imbalance. This can be seen in Figure 4.7.

34

4.4. CUSTOMIZED DATASET CHAPTER 4. METHOD

vehicle 87.919% accuracy | 69276 images in dataset

pedestrian 73.452% accuracy | 12050 images in dataset

inanimate 75.074% accuracy | 19674 images in dataset

o o
&

o o o o
< © @ S
-

(a) Accuracy and samples per class

inanimate | 10.455% of all instances
vehicle
pedestrian | 1.625% of all instances

inanimate | 16.224% of all instances
pedestrian
vehicle | 10.324% of all instances

vehicle | 22.924% of all instances
inanimate
pedestrian | 2.003% of all instances

0O 10 20 30 40 50 60 70 80 90

(b) Misclassification percentage per class

Figure 4.7: Performance of transfer-learned ResNet-101 model on the three-class data set.

Looking at Figure 4.7 (b), it is clear that the inanimate class and to some degree the
pedestrian class were misclassified as vehicles. Understanding how this could occur is clearer
when looking at pedestrian and inanimate images from the dataset. As exemplified in Fig-
ure 4.8, quite a few of the inanimate and pedestrian images had vehicles in the background
or partially in the same region as the annotated object. This could also explain the misclas-
sification of pedestrians as inanimate objects.

35

4.5. ADVERSARIAL DATASET CHAPTER 4. METHOD

(b)

Figure 4.8: Two examples of potentially difficult images classified as ‘pedestrian’.

As shown in Figure 4.7, the ‘vehicle’ class had at least three times the number of images
than the other two classes in the dataset. This was likely the cause of this performance
imbalance [65]. Eliminating this imbalance involved truncating each class to 50 000 images
each, split over their respective training, validation and testing datasets. The classifier’s
performance on the final benign dataset can be seen in Figure 4.9.

Precision, Recall, and F1-score for Each Class

10 0.97 098 0.06 0.98

Inanimate Pedestrian Vehicle

Figure 4.9: Performance of transfer-learned ResNet-101 model on three-class data set after
reducing the number of vehicle photos.

4.5 Adversarial dataset

As mentioned in section 4.1, the adversarial dataset would be based on the customized benign
dataset. Ensuring that the dataset would be realistic required multiple attacks to generate
the dataset. Additionally, these attacks could not all come from the same ‘family’, as it
could inadvertently skew the results. This section will present the selection of attacks and
how these adversarial examples were generated.

36

4.5. ADVERSARIAL DATASET CHAPTER 4. METHOD

4.5.1 Methodology

As mentioned in section 4.2, the Adversarial Robustness Toolbox (ART) was used to generate
the adversarial images for the dataset. Four were chosen to generate the adversarial dataset
from the many different adversarial attacks available in the framework.

e Fast Gradient Sign Method (FGSM) from Goodfellow et al. [17]
e Carlini & Wagner’s 1.2 norm from Carlini et al. [66]
e Auto Projected Gradient Descent from Croce et al. [67]

e Shadow attack from Ghiasi et al. [68]

FGSM was chosen due to its prevalence in research papers. It is also quick to generate
adversarial images, which made it useful for initial testing. FGSM works by calculating the
gradient of the loss function in the classification model for a given input x. This is done by
calculating the sign value, scaling it by a factor of ¢, and subtracting this scaled sign value
from the gradient. This produces a new adversarial image. The epsilon value is set in the
implementation and dictates how much the attack is allowed to perturb the image.

The implementation of FGSM does support a targeted attack, such that it attempts to
cause the reclassification of the image to another specific class. However, the attack was
set to perform the untargeted version of the implementation, as the goal was to cause the
misclassification of objects. What these objects were misclassified as did not matter.

Carlini & Wagner’s L2 norm was also chosen due to its prevalence in adversarial attack
literature as well as being noted as ‘some of the strongest white-box attacks’ by the ART-
toolbox [69]. Another contributing factor to selecting Carlini & Wagner’s L2 norm is due
to their assertion that their attack is more potent on complex datasets [26], such as the
one generated for this thesis. Additionally, Carlini & Wagner’s L2 algorithm is not based
on FGSM, which was reasoned to create perturbations dissimilar to FGSM. Thus, selecting
Carlini & Wagner L2 would also support the effort of producing a realistic adversarial dataset.

The attack attempts to find the smallest perturbation that will change the classification
of an image, given the model’s gradients. The different implementations of Carlini& Wagner
attacks use different norms and methods to calculate the perturbation. The constraints dic-
tated by the parameters again bound these perturbations. Similarly to the FGSM attack,
the Carlini-Wagner L2 attack was run in the untargeted mode.

Unlike the first two attacks, published in 2014 and 2016, the final two attacks were chosen
due to them being the two most recent additions. The reasoning was that due to acceleration
within the field of adversarial attacks, FGSM and Carlini L2 norm would not necessarily be
representative of the current state of adversarial attacks. Thus, these two were added to
ensure that one would not create a disadvantage in favor of the defenders by utilizing old

37

https://github.com/Trusted-AI/adversarial-robustness-toolbox

4.5. ADVERSARIAL DATASET

CHAPTER 4. METHOD

FSGM Parameter name

ART framework default

Dataset value

Epsilon 0.3 0.05

Epsilon step size 0.1 0.0001
Distance Perturbation Norm L-infinity L2
Auto-PGD parameter value ART framework default Dataset value
Epsilon 0.3 0.05

Epsilon step size 0.1 0.0001
Distance Perturbation Norm L-infinity L2

Carlini& Wagner L2 ART framework default Dataset value
Max Iterations 10 20

Max number search halvings 5 10

Max number of search doublings 5 10

Shadow attack ART framework default Dataset value
Number of steps 300 600

Attack learning rate 0.1 0.01

Table 4.1: Table showing the ART framework default parameters and the updated values for
the dataset.

attack techniques against newer detection techniques. This would also diversify the attack
dataset, as the introduction of newer attacks could produce distinct adversarial perturbations
compared to the older attacks.

Auto Projected Gradient Descent (APGD) is within the ‘family’ of FGSM-attacks and is
functionally the same as Projected Gradient Descent [67]. However, it goes on to add some
algorithmic optimizations. PGD works by initializing its perturbations uniformly, iteratively
applying FGSM, and clipping values exceeding the maximum allowed perturbation size e.
After calculating the loss, the attack performs a step in the opposite direction of the model
gradients. In PGD, this step size is static. What APGD does differently is applying a non-
static step size to the attack in addition to utilizing a different loss function to calculate the
loss. As noted in their paper, these optimizations address issues where the algorithm’s high
dependency on an appropriately small step size could cause the model to struggle to find a
global maximum.

Shadow attack is an optimization-based attack that functions similarly to PGD or FSGM
but differs by having several constraints which aim to reduce how perceptible the pertur-
bations are in the image. Unlike APGD, where the perturbations are clipped using some
maximum perturbation scale, shadow attack applies three penalties to three characteristics
of the perturbations. These three penalties penalize perturbations with significant pixel vari-
ations in a small space, induce a large global change in the per-channel mean, and introduce
disproportionate changes to individual color channels on a per-pixel basis. The paper claims
this will result in small, smooth perturbations with non-drastic color changes [68|.

38

4.5. ADVERSARIAL DATASET CHAPTER 4. METHOD

A thing to note is that only white-box attacks were utilized to generate the adversarial
attack dataset. This is due to the fact that black-box attacks need to estimate the gradients
of the detection model [19]. This is generally done by attacking the model and incremen-
tally improving the estimated gradients based on the output from the model [70]. In the
early stages of the black-box attacks, this could have resulted in weakly attacked images in
the dataset. Sticking to white-box attacks would ensure that the images in the adversarial
dataset were proficiently attacked.

The parameters used to generate the attacks were largely set to the default parameters
from the Adversarial Robustness Toolbox. However, some of the default parameters in the
toolbox were considered to produce far too overt attacks, such as the default epsilon value
of 0.3 for FGSM. This had the potential to cause perturbations too obvious and thus be too
easy to learn for a detector. As a result, several parameters were adjusted to create more
complex and subversive images. These changes from the default values are listed in Table 4.1.

An important point to note is that adversarial images which did not successfully trick the
classifier were not filtered out. This decision was based on the fact that, in the scenario, the
detector would be assumed to be a part of a larger software architecture. In terms of fault
tolerance, removing the unsuccessful attacks would improve the error detection if a dormant
fault was activated. This is because the detector would be trained to detect successful attacks.
However, viewing the detector as part of a larger system would have made it more useful to
alert the system when someone is attempting to attack the system instead. Knowing when
the system is under attack would allow it to take preventative measures before the attacks be-
come successful. One such preventative measure could be stopping the vehicle. Assumed part
of a larger architecture, the unsuccessful attacks would be retained in the adversarial dataset.

4.5.2 Implementation

During the generation of the adversarial dataset, Carlini&WagnerL2 and ShadowAttack
proved too resource intensive to effectively produce 150 000 adversarial examples. As a
result, the number of adversarial images was reduced to 15 000 per attack. This would result
in an adversarial dataset with 60 000 images.

As noted in section 4.2, the adversarial images were generated using the IDUN server
cluster. This was done because the local hardware available was insufficient to produce the
images in a reasonable timeframe. Even when having access to IDUN, the images had to be
processed in parallel, where one job would produce images for a specific class in a specific
dataset. That is, one job would produce only Carlini&Wagner L2 images for the ‘pedestrian’
class in the ‘train’ dataset. Given unlimited access to computational resources on IDUN
would have made this process take about 24 hours to produce the dataset. However, due to
queues, per-user restrictions, and I/O bottlenecks, generating the 60 000 images took about
four days.

39

4.5. ADVERSARIAL DATASET CHAPTER 4. METHOD

An important note is that the images were not stored as either numpy arrays in the ‘.npy’
format, compressed numpy arrays in the ‘npz’ format, or any other array format such as
pickle. This was due to the previously mentioned file restrictions noted in section 4.2. Stor-
ing the adversarial dataset in any of these formats would immediately result in saturation
of the 1TB per-user quota. Instead, the adversarial images used for training and testing
were stored as ‘.tiff” images using OpenCV’s Python implementation. Choosing ‘.tiff” as the
intermediary format would allow the adversarial images to be stored as 32-bit float values,
the same data type as the PyTorch tensors defining said adversarial images. Further, the
libtiff library, which OpenCV uses for ‘.tiff” files, allows the images to be saved with a loss-
less algorithm being applied, thus ensuring that little to no data would be lost due to the
intermediary storage stage. While these images would by no means be small, each being ~
600 KB, it was small enough not to saturate IDUN’s file storage restrictions. Examples of
the produced adversarial examples can be seen in Figure 4.10. Additionally, pseudo-code for
the production of these images can be seen in algorithm 2 in the appendix.

40

https://opencv.org/
https://libtiff.gitlab.io/libtiff/

4.5. ADVERSARIAL DATASET CHAPTER 4. METHOD

(e) Benign

Figure 4.10: Examples of generated adversarial images next to the benign version of the
image.

41

4.6. ARCHITECTURE 1: RECOVERY BLOCK CHAPTER 4. METHOD

4.6 Architecture 1: Recovery block

As mentioned in section 4.1, the thesis required the implementation of a recovery block
detector. This section will present the implementation of this architecture in addition to
presenting the steps carried out.

4.6.1 Methodology

As mentioned in section 2.3, both Avizienis et al. [27], and McAllister et al. [28] note the
importance of design diversity and disjunct detection as keys to the success of sequential re-
dundancy architectures. As a result, attention was paid to ensuring that the modules would
be structurally diverse.

Normal image Normal Fourier spectrum
Adversarial image Adversarial Fourier spectrum

Pixel differen.c.e Spectrum difference

Figure 4.11: A visual example of the spectral detector.
Adapted from: Paula Harder et al. [38] figure 1.

The goal of the recovery block was to understand how multi-model configurations can af-
fect the coverage of a fault-tolerant architecture. As mentioned in section 2.3, the two factors
affecting this are the effectiveness of the operations and the applicable domain in the input

42

4.6. ARCHITECTURE 1: RECOVERY BLOCK CHAPTER 4. METHOD

space. The redundancy block aims to observe how these improvements can be implemented
and how the improvements to operations affect the domains in the input space.

The first module in the recovery block was a detector from Paula Harder et al. [38]|. As
mentioned, the detectors transformed the images using a Discrete Fourier Transform (DFT).
The transformed images would then be passed to a logistical regression model, which would
make a prediction based on some metric. A visual representation can be seen in Figure 4.11.
Paula Harder et al. [38] tried multiple implementations of this methodology, achieving strong
performance on some attacks. One of these models, ‘InputMFS’, performs its detection based
on the input image’s magnitude within the Fourier spectrum. It is not the best-performing
detector in the paper, but it did have some interesting properties. Despite its simple architec-
ture, it showed varied performance across different attacks. I.e., It showed strong performance
on attacks such as FGSM or BIM but not as strong performance on Carlini&Wagner-attacks.
As recalled from section 3.2, the goal was to produce representative models which allowed for
comparing the architecture and the per-component performance. This diversity in per-attack
performance was desirable, as varied performance across attacks could provide insights into
how fault-tolerance coverage propagates in sequential redundancy architectures.

The spectral detector was quite shallow, only relying on a single logstistical regression
layer for classification. To contrast this, the second detector would have to be large, i.e.
consist of a large number of layers and parameters. This was due to the fact that the key
to increasing coverage in fault-tolerant architectures is design diversity. Using large models
against adversarial attacks is also noted to have some inherent advantages. As indicated in
A. Kurakin et al. [71], models with an increased number of parameters tend to be more
robust against adversarial examples. This is also supported by the works by A. Madry et al.
[23|, where they note that training a ResNet-model on only natural examples its robustness
scales with an increase in parameters. This effect is especially notable on adversarial ex-
amples with smaller perturbations [23|. While both papers discuss adversarial training and
not detection, it points to models with more parameters being more capable of generalizing
adversarial noise. This would also mean that the model should be more capable of differen-
tiating between benign and adversarial images. As a result, the second detector was decided
to consist of a high-capacity, pre-trained, and transfer-learned ResNet-101 model. From here
on, this detector is referred to as ‘the binary detector’.

43

4.6. ARCHITECTURE 1: RECOVERY BLOCK CHAPTER 4. METHOD

Input image

\d
DFT
Binary Detector(M2)
Spectral Detector (IM1) v
Logistic regression model Resnet-101 model
7
N
oS
\d \d
Al A2
e »)
=] o) =
s S s
A 2 < %
2 &
2 5
\] \]
Benign Adversarial

Figure 4.12: A figure showing the Recovery block architecture. In both acceptance tests Al
and A2, the confidence value is checked and passed on based on if the probability of it being
an adversarial image is above or below the threshold. The model is meant to replicate the
architecture of the recovery block in Figure 2.5

A figure depicting the implemented recovery block detector is shown in Figure 4.12. It
depicts the spectral detector was set as the first module (M1), with the acceptance test (A1)
being a threshold that determines if the image is benign or adversarial. If an image crosses
the threshold set in A1, the image would be passed to the binary detector (M2). This also
produces a probability of the image being adversarial. Based on this, the second acceptance
test (A2) would see if this probability exceeded its threshold and classify it appropriately. In
a real-world scenario, these thresholds would have to be determined beforehand. However,
in this thesis, the thresholds would be calculated to produce the best F1 score based on the
predictions for the test dataset.

44

4.6. ARCHITECTURE 1: RECOVERY BLOCK CHAPTER 4. METHOD

The rationale for the presented model configuration was based on the fact that the spec-
tral detector was assumed to perform differently on different attacks and thus pass a varied
distribution of attacks to the binary detector. In essence, it was done to induce disjunct
sequential detection between the models. In accordance with the implementation shown in
M.R. Lyu et al. [28], the architecture was implemented in a blacklist-configuration, where-
upon the default state is to classify an image as benign, requiring both models to classify it
as adversarial for the detector as a whole to detect it as adversarial. An argument could def-
initely be made for its implementation in a whitelist-configuration, where each image needs
to be classified as benign twice to be used as a benign image. In a realistic scenario, the
selected configuration would have to be chosen based on the components’ capabilities and the
system’s non-functional requirements. However, neither of these were known at the imple-
mentation stage of these architectures. As a result, the recovery block was implemented in a
blacklist-configuration, in adherence to the implementation from the ‘Handbook of Software
Reliability Engineering’.

4.6.2 Implementation

As mentioned in section 4.2, the models were trained using the PyTorch Lightning frame-
work. While this simplified the training process and ensured reproducible results, it also
required the re-implementation of some of these models. While the authors of the ‘spectral
detector’ did provide a GitHub repository of their implementation, it was written in the Ten-
sorflow machine learning framework instead. While it was possible to utilize their Tensorflow
implementation, implementing the detector in the Pytorch framework would have ensured
consistent usage of frameworks and systems for evaluating the fault-tolerant architectures.
The relative simplicity of the detector also made it relatively simple to re-implement the
detector in the Pytorch framework. Using pytorch’s transforms, the images were applied the
DFT, and their Fourier spectrum was retrieved. The spectrum was normalized per batch
and flattened to a 1D tensor as it needed to be passed to a logistical regression model. The
transformed images were used to train the detector using this Pytorch implementation of the
‘spectral detector’.

The implementation of the binary detector went quite similarly, with the implementation
of a Pytorch lightning model loading in the pre-trained ResNet-101 weights. The ‘binary de-
tector’ fully connected layer would be changed to output one class. This class would indicate
the likelihood that an image would be adversarial, going from benign with 0 to adversarial
with 1. An additional thing to note is that all images were interpolated using Pytorch’s
‘interpolate’ function to ensure that the images had the required ResNet pixel dimensions of
224x224. Careful note was paid to use anti-aliasing and non-alignment of corners, as per the
documentation it would be equivalent to the standard Pillow sampling operation for resizing
images.

45

https://github.com/paulaharder/SpectralAdversarialDefense/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html

4.6. ARCHITECTURE 1: RECOVERY BLOCK CHAPTER 4. METHOD

Early stopping epoch Learning rate Optimizer

Spectral Detector 39 0.001 Adam
Binary Detector 5 0.0001 Adam

Table 4.2: Table showing the epoch in which the early stopping callback was triggered,
learning rate, and optimizer used for the Binary detector and the spectral detector. Models
were trained with a batch size of 32.

The models were trained in a heuristic fashion, in which the models were tested with
the learning rate at each magnitude and its halfway point to the next magnitude for values
between 1x107% and 1x107%. E.g. 1x1073, 5x107%, 1x10~* etc. Further, a regularization
method called ‘early stopping’” was used to determine the appropriate time to stop the model
training [72]. This method would check the model’s performance on a validation set every
epoch and stop the training if the model did not show improvement over two epochs. Train-
ing the model in such a way was done to avoid outfitting on the training set and producing
models representative of a detector [72|. The hyper-parameters used can be seen in Table 4.2.

During training and testing of the recovery block detector, careful note was paid to the
repeatability of the results. Both processes were seeded using Pytorch Lightning’s seed func-
tion, which, given a seed, causes the training process to be pseudo-random but deterministic.
As the benign and adversarial datasets numbered 150 000 and 60 000 images respectively,
the benign dataset would have to be truncated down to 60 000 images to ensure an even
balance of benign and adversarial images. Seeding the training and testing processes ensured
that these would be deterministic.

During the testing of the recovery block detector, the weights of the two trained models
were loaded in, and the benign and adversarial datasets were mixed. This would be fol-
lowed by the images being sent to both detectors and both detectors producing prediction
probabilities. In a realistic scenario, only the images detected as adversarial by the spectral
detector would be passed to the binary detector. However, as mentioned previously, the op-
timal threshold for knowing when the spectral detector should pass the images to the binary
detector was not known at run-time. Thus, the thresholds were calculated by generating
500 thresholds and calculating which threshold provided the best F1 score for the detectors.
Utilizing python for calculating the optimal threshold for an individual detector was trivial
but proved too computationally expensive for calculating the two thresholds in the recovery
block. This was due to the fact that calculating optimal thresholds for two models is essen-
tially a grid search, exponentially increasing the run time. Thus, a rust script was utilized
instead of python to calculate the two optimal thresholds for the two detectors inside the
recovery block model0.

46

4.7. ARCHITECTURE 2: N-VERSION PROGRAMMING CHAPTER 4. METHOD

4.7 Architecture 2: N-Version Programming

As noted in section 4.1, the N-Version Programming (NVP) architecture was implemented to
assist in answering the question posed in RQ1.2. This section will describe the methodology
and reasoning behind the NVP architecture and present how the process of implementing
the architecture was performed.

4.7.1 Methodology

Input

(M1) (Mz2) (M3) (M4)

Jpg-minpool_jpg Maxpool Minpool Minpool_jpg

N/

Resnet-101 Detector

(Voter)

Is determined to be Is determined to be
benign adversarial

Figure 4.13: A figure showing the architecture of the N-Version Programming detector. The
‘merge’- node represents that the four transformed image tensors with shape 3x224x224 are
merged into a 12x224x224 tensor before being sent to the detector. This model is meant to
replicate the NVP architecture in Figure 2.6.

47

4.7. ARCHITECTURE 2: N-VERSION PROGRAMMING CHAPTER 4. METHOD

As mentioned in section 3.2, the N-Version Programming architecture was intended to ex-
plore how data diversity affect can improve detection of adversarial attacks. As mentioned
previously, using a shift in the input space could be used to increase the domains in which to
detect attacks. In a traditional n-redundancy architecture, each set of modules would have
its own input space and perform operations with the same objective. However, NVP being
a software implementation n-redundancy means that it is not possible to change the input
space of the architecture as a whole. However, it is still possible to test how input space
affects coverage by looking at the performance of the voter instead. Thus, by treating each
of the modules as a separate input space for the voter, it is possible to observe how a shift
in input space can affect the fault tolerance of a system.

An overview of this thesis implementation can be seen in Figure 4.13. Each module would
aim to transform the image in a way that was known to be advantageous for detecting ad-
versarial attacks. The different module transformations were based on the results from a
paper in the preparatory project Mekala, Ronan et al. [73]. In their paper, they perform
a number of different transformations on images and compare the metamorphic distances
between the original and transformed images. Metamorphic distance referring to the differ-
ence in the semantic data in the image, not easily changed by transformations such as e.g.
rotation or scaling. The paper identifies a number of non-linear transformations which create
a detectable shift in the L2 distance of an image. While the implemented N-Version Pro-
gramming detector does not compare the metamorphic distances between the original and
the transformed image, it was reasoned that if these transformations were able to create a
detectable metamorphic shift, then a deep neural network would also be able to generalize for
these metamorphic shifts. As a result, the N-Version Programming detector would take the
four best-performing transformations. Adjusted for this thesis, these transformations were:

e Minpool: Applying a minpool kernel to the image.
e Maxpool: Applying a maxpool kernel to the image.

e Minpool-JPG: Minpooling and performing JPG-compression with 10% compression
strength.

e JPG-Minpool-JPG: Performing JPG-compression with 10% compression strength, ap-
plying a minpooling kernel and then again performing JPG-compression with 10%
compression strength.

Each module would transform the input image at run-time using its transformation opera-
tion. The voter would take the four transformed images, being 3x224x224 tensors, and merge
them along their channel axis, resulting in a 12x224x224 tensor. This tensor would then be
passed to a transfer-learned ResNet-101 model. Similarly to the binary detector, it was as-
sumed that such a large model would have a larger capacity for generalizing adversarial noise.

In addition to the NVP detector, four additional detectors would also have to be trained.
Unlike the NVP detector, each of these four detectors would be trained on only one of these

48

4.7. ARCHITECTURE 2: N-VERSION PROGRAMMING CHAPTER 4. METHOD

four transformations. This was done to isolate the performance of any given transformation.
Without these detectors, it would be difficult to discern whether or not any given perfor-
mance increase was due to the architecture or the given transformation being optimal for
detecting adversarial attacks. Additionally, it would also give some relative context in terms
of the performance of the NVP-detector, as understanding how well the underlying detector
performs with transformed images gives a benchmark in which to compare performance im-
provement provided by the NVP-detector.

In furtherance of the goal of exploring how data variety can enhance the performance of
architecture models, detectors with access to only two of the four transformed images will
also be trained. Henceforth known as ‘dual-transform’ detectors, these would instead be
trained on 6x224x224 tensors to see how the different combinations of transformations affect
the performance of the detection model. Tied into the results from the individual detectors
as well as the NVP detector, it would also provide the ability to see how performance changes
as the input space to the voter is increased.

4.7.2 Implementation

The training of these models was performed similarly to how it was done with the recovery
block. Utilizing the PyTorch lightning framework, a custom implementation was written for
each of these models and respective transformations, which would then be passed to IDUN
to perform the actual training. The benign images were truncated down to the size of the
adversarial images and mixed together, with benign images labeled as 0 and adversarial im-
ages labeled as 1. Following this, four transformed images per benign image were generated
by performing the four module transformations. The images were then concatenated along
the channel axis such that four 3x224x224 images became one large 12x224x224 tensor. This
tensor was then passed to the detector inside the voter for training. An important thing to
note is that, unlike the recovery block detector, the number of epochs of no improvement be-
fore the training was stopped was set to five. This is because the voters were transfer-learned
and utilizing transformations that would significantly change the image. In order to induce
the detectors to search for optimal points outside of the local area of the original weights,
this value was increased to induce this behavior.

A similar process would be performed for the individual and the dual-transform detectors.
Of note is that these models would have a similar but slightly different class implementation,
as they would have to be trained on one and two transformations, respectively. The utilized
parameters can be seen in Table 4.3. Similarly to the recovery block, the hyper-parameters
were tested heuristically, with the best-performing parameters being used. The disparity
between the optimal learning rates for the individual detectors and the NVP detector is
assumed to be due to their disparity in input spaces. Going from a 3x224x224 tensor to a
12x224x224 tensor, and four different transformations to observe patterns, it was not seen
as unreasonable that the optimal learning rate would differ to some degree. Another thing

49

4.7. ARCHITECTURE 2: N-VERSION PROGRAMMING CHAPTER 4. METHOD

Early stopping epoch Learning rate Optimizer

NVP detector 18 0.00005 Adam
Jpg_minpool jpg 6 0.0001 Adam
Maxpool 8 0.0001 Adam
Minpool 8 0.0001 Adam
minpool jpg 11 0.0001 Adam

Table 4.3: Table showing the epoch in which the early stopping epoch callback was triggered,
learning rate, and optimizer used for the NVP detector and its individual detectors. Models
were trained with a batch size of 32.

Jjpg_minpool jpg | maxpool | minpool | minpool jpg
Jpg_minpool jpg 6 8 17
maxpool 13 11 26
minpool 22 26 17
minpool jpg 13 8 12

Table 4.4: Matrix showing the early stopping epochs for the dual-transform detectors. Rows
indicate the transformation occupying the first three channels, and the columns indicate
the transformation occupying the last three channels in the 6x224x224 tensor. Models were
trained with a batch size of 32.

to note for the dual-transform detectors is the additional value provided by the increase in
epochs before the early stopping callback was triggered. The models utilized pre-trained
weights, which would risk the models naturally favoring the first three channels rather than
the newly added last three. With the increase up to five epochs, it was assumed that it
would allow the detectors to start exploring the utilization of the newly added channels to
increase their detection performance. The dual-transform detectors were trained with the
same hyper-parameters as the individual detectors, and their early stopping epochs can be
seen in Table 4.4. An additional thing to note is that the dual-transform detectors were not
trained with the same transformed image for the first and last three channels, as this would
only duplicate the input space and not increase it.

The NVP-detector, its four individual detectors, and the dual-transform detectors were
tested similarly to the recovery block testing in section 4.6. The model weights were loaded,
transformations performed, and predictions made. Additionally, the same process of saving
all predictions and calculating the optimal threshold for the predictions was done in the same
manner.

50

Chapter

Results

This section will present the results and performance of the recovery block and the N-Version
Programming detector after having tested their performance on the test set. The recovery
block section will compare the error detection of the recovery block to the spectral detector
and binary detector as if the latter two detectors were tuned to act as individual detectors.
This was done as the threshold of a detector inside and outside the recovery block could
require very different tuning for optimal performance. The N-Version programming section
will compare the results from the NVP detector to the individual detectors. Additionally,
the dual-transform detectors will also be introduced and present additional insights.

The metrics used to evaluate these models were ROC-AUC and F1-score. These metrics
were selected, as they are heavily used in evaluating classifiers and assess two different per-
formance aspects. ROC-AUC maps the true positive and false positive rates for all thresholds
and calculates the area under the mapped false positive and true positive rates [74]. This
means that ROC-AUC weighs benign and adversarial images equally. However, in a realis-
tic scenario, the ratio of benign and adversarial images cannot be assumed to be the same.
Acting as a counterweight to ROC-AUC is the F1 score, which measures the harmonic mean
between precision and recall based on only one threshold. In terms of realistic operation, the
F1 score is more applicable, as any given detector only has a single threshold upon which to
base its detection.

5.1 Recovery block detector

The performance of the recovery block, spectral, and binary detectors can be seen in Fig-
ure 5.1. The figure shows the performance of the recovery block detector, the spectral detector
and the binary detector measured in both F1-score and ROC-AUC. As can be observed, the
binary detector performs notably worse than the spectral and recovery block detectors in
both F1 and ROC-AUC. Further, the recovery block and the spectral detector perform quite
similarly, with the recovery block showing slight improvement over the spectral detector in

51

5.1. RECOVERY BLOCK DETECTOR CHAPTER 5. RESULTS

the F1 score and the spectral detector performing slightly better in ROC-AUC. That the
spectral detector performs better in ROC-AUC is not necessarily surprising, considering that
the recovery block also utilizes the worse-performing binary detector in its error detection
architecture.

Performance of recovery block detectors

1.0

0.9

0.8 0.794 0979 Models
@ mmm Recovery Block
S mmm Spectral
v 0.713 m== Binary

0.7

0.6

0.5

Fl-score ROC-AUC

Figure 5.1: The performance metrics for the recovery block detector, split across classes.

When breaking down the error detection of images per attack type, the results in Fig-
ure 5.1 are provided more context. This breakdown can be seen in Figure 5.2 and shows the
F1 score for images based on the ground truth of those images and their attack type. As the
attacks were broken down per type, ROC-AUC could not be used in these plots.! It should
also be noted that due to the fact that the dataset is balanced, with 60 000 adversarial and
60 000 benign images, the benign column represents four times as many images as each of
the per-attack columns.

'ROC-AUC relies on mapping the true positive and false positive rate. The breakdown only contains true
positives (or true negatives for benign images), which made calculating the false positive rate not possible.
The implementation did not map the adversarial images back to their respective benign images. Thus, one
would have to randomly select 15 000 images to represent the benign class to calculate the false positive rate.
This could skew the results as a random selection of images could contain unknown biases, and thus it was
decided not to use the ROC-AUC score.

52

5.1. RECOVERY BLOCK DETECTOR CHAPTER 5. RESULTS

e of Spectral detector Performance of Binary detector
1.0 0.983 0.983 0.995

0.8 08
Models Models

0.6 === Spectral - APGD 06 = Binary - APGD
] we Spectral - Carlini 9 - Carlini
S wmm Spectral - FGSM -
@ s Spectral - Shadow 0a == Bina

04 === Spectral - Benign - -

0.2 2

0.0 0.0

a) Spectral detector (b) Binary detector

very-Block detector

Scores,

°

1.0

Models
Recovery-Block - APGD
R N

¢) Recovery Block detector

Figure 5.2: Figure breaking down the per-attack F1-score of the spectral and binary detector.

As can be seen, the distribution of detection is quite varied between the spectral and
binary detectors. The binary detector is able to generalize adversarial noise across the four
attacks but is only able to classify about 40% of the benign images correctly. On the other
hand, the spectral detector performs well on errors triggered by adversarial images perturbed
with Carlini&Wagner L2 and shadow attack. In terms of images with perturbations intro-
duced by FGSM and APGD, it shows a lower level of coverage compared to the other two
attacks. In order to understand this pattern for the spectral detector, Figure 5.3 breaks down
each of these attacks in terms of how they perturb an image.

93

5.1. RECOVERY BLOCK DETECTOR CHAPTER 5. RESULTS

Fourier spectrum
Original Subtractive diff Fourier spectrum subtractive diff

Benign

FGSM

CarlinilL2

APGD

Shadow

Figure 5.3: Figure showing the original image, subtractive difference, Fourier spectrum, and
subtractive difference in the Fourier spectrum for images from each attack. Additionally the
figure includes has the same for a benign image for reference. Large, high-quality versions of
the images can also be seen in Appendix C

o4

5.1. RECOVERY BLOCK DETECTOR CHAPTER 5. RESULTS

Figure 5.3 shows four different versions of an image from each attack in addition to the
benign image. These four versions are the original image, the subtractive difference between
the original image and the benign image, the Fourier spectrum of the image, and the sub-
tractive difference of the Fourier spectrum to the benign image. The ‘Original’ column and
the ‘Fourier spectrum’ column show the ‘image’ passed to the binary and spectral detector.
The ‘diff” columns display how the different attacks apply perturbations to an image from
the perspective of the binary and spectral detector.

The images under ‘subtractive diff’ show that APGD and FGSM apply perturbations
with relatively uniform sizes, while carliniLL2 and shadow generally have a larger range of
proportions. Additionally, APGD and FGSM appear to apply perturbations more in the mid
to high-frequency spectrum compared to the Carlini and shadow attacks?.

Figure 5.3 shows that the large variety in images that both the binary and spectral de-
tectors had to detect and thus may explain why it was more difficult for the binary detector
to generalize adversarial attack patterns. Where the spectral detector can rely on detecting
bands of frequencies for detecting an attack, a binary detector would have to generalize for
the different attack patterns and shapes, discerning them from natural image noise. As a
result, it is likely that this could have made it difficult for the binary detector to consistently
identify adversarial attacks, compared to the spectral detector.

As mentioned in section 2.3, disjunct error detection is critical to good redundancy sys-
tems. This means that both detectors would ideally ensure the correct detection of different
sets of images. Figure 5.4 shows this distribution, where the two sets show the number of
images correctly identified by the spectral detector and binary detector, acting as if they
were not in the recovery block. As shown in the figure, both detectors had some overlap
of correctly detected images. Following the architecture from McAllister et al. [28], the
recovery block’s implementation was in a ‘blacklist’-fashion. This meant that both detectors
needed to identify an image as adversarial before the recovery block detector classified it as
adversarial. Based on this implementation, if the spectral detector incorrectly classifies an
adversarial image as benign, it would not have been passed to the binary detector at all. This
would have meant that the detectors could not have been used to their fullest capability. This
would have meant a reduction in the total coverage and thus affected the performance of the
recovery block as a whole. In terms of Figure 5.4, the figure shows the correctly detected im-
ages by both detectors, both benign and adversarial. The correctly identified benign images
only need to be in one of the sets (red or green), while the adversarial images need to be in
the overlapping set (yellow) to be correctly detected.

2FGSM’s perturbations in the high-frequency Fourier spectrum is not that visible in Figure 5.3, but is
more clear in the appendix images

95

5.2. N-VERSION PROGRAMMING DETECTOR CHAPTER 5. RESULTS

Binary detections (Green)
Spectral detections (Red)

Figure 5.4: Venn diagram showing the overlap of correct classifications for the spectral and
binary detectors in the recovery block. The yellow section indicates the correct detection
overlap between the spectral and binary detectors.

5.2 N-Version programming detector

The utilization of the N-version programming detector is meant to build insights into how
an architecture performs in relation to the diversity of the data. As mentioned, this consists
of performing multiple transformations on the same image and comparing the performance
of a model trained on these transformed outputs. Further, multiple detectors were indi-
vidually trained on the four respective transformations to isolate the effects of any given
transformation.

56

5.2. N-VERSION PROGRAMMING DETECTOR CHAPTER 5. RESULTS

NVP Performance with benchmark detectors. Higher is better

1.0

0.966

0.918 0.915

0.937
0.9
0.869
0.853
0.824 (.820
0.
0.713
0.
0.667
0. I
0.5

F1 Score ROC AUC

Models
jpg_minpool_jpg
maxpool
minpool
minpool_jpg
NVP Combined

Scores
~ 0

o

Figure 5.5: Performance of the combined NVP model compared to model only trained on
each individual transformation. Note that the Y-scale starts at 0.5.

As shown in Figure 5.5, the NVP detector shows improvement over each of the individ-
ual benchmark detectors by some margin in both Fl-score and ROC-AUC. However, it is
important to note that despite this, all of the individual benchmark detectors performed
well, considering that the detectors were trained on 1/4th the information provided to the
NVP detector. This may have been due to the fact that the transformations were specifically
selected due to their ability to induce detectable differences between benign and adversarial
images.

Within the individual detectors, a few things need to be noted. Out of the four transfor-
mations, the ‘jpg minpool jpg’ transformation performs quite differently in both F1-score
and ROC-AUC. This is interesting, as both the ‘minpool” and ‘minpool jpg’ transformations
performed quite well and used the same underlying functions as the ‘jpg_minpool jpg’.

57

5.2. N-VERSION PROGRAMMING DETECTOR CHAPTER 5. RESULTS

Performance of NVP detector

1.0 0.974 02,993 0.978

0.855
0.8
0.688
Models
0.6 = NVP - APGD
4 m= NVP - Carlini
S wws NVP - FGSM
[= NVP - Shadow
0.4 mmm NVP - Benign
0.2
0.0
F1 Score
Performance of maxpool detector
Performance of jpg_minpool_jpg detector 10 0.99
1.0 0994 0998 0.994 1.000 0.949
0.860 0.860 2880
0.8
08
Models
Models 06 == maxpool - APGD
06 == jpg_minpool jpg - APGD 9 === maxpool - Carlini
8 = jpg_minpool_jpg - Carlini 5 mmm maxpool - FGSM
8 m== jpg_minpool_jpg - FGSM @ m== maxpool - Shadow
== jpg_minpool_jpg - Shadow 0.4 i
04 ety oot W= maxpool - Benign
02 0.2
0028
0.0 — 0.0
F1 Score F1 Score

(b) ‘jpg_minpool jpg’ (c) ‘maxpool’

Performance of minpool_jpg detector
10 0.996

10 0.996

0.956
0.951
0.927
0.877 0.877 0.859
0.854 0.847
0.8 0.8
Models Models
. 0.6 = minpool - APGD_ 06 m== minpool_jpg - APGD
8 = minpool - Carlini 8 = minpool_jpg - Carlini
H = minpool - FGSM § = minpool_jpg - FGSM
s = minpool - Shadow &3 m minpool_jpg - Shadow
- == minpool - Benign 0.4 === minpool_jpg - Benign
0.2 02
0.0 0.0

F1 Score F1 Score

(d) ‘minpool’ (e) ‘minpool _jpg’

Figure 5.6: The per-attack Fl-score for the NVP detector and the individual detectors.

Further insight into these can be seen in Figure 5.6. The plots show the Fl-score per
attack for each of the attacks as well as the benign images. As can be observed, most of
the detectors are able to consistently correctly detect both Carlini&WagnerL2 and shadow
attacks. Additionally, most detectors are also capable of detecting FGSM and APGD exam-
ples, albeit at a lower rate.

58

5.2. N-VERSION PROGRAMMING DETECTOR CHAPTER 5. RESULTS

Two detectors that do not fit this pattern are the NVP and ‘jpg_minpool jpg’ detectors.
Similar to the binary detector, the ‘jpg_minpool jpg’ detector generalizes well for the ad-
versarial perturbations but is not able to differentiate them from natural image noise. The
NVP detector, on the other hand, sacrifices performance in detecting FGSM for a significant
improvement in detecting benign images.

Dual-transform matrix scores for F1 Score Dual-transform matrix scores for ROC-AUC

_4
o
©

jpg_minpool_jpg 0.8000 0.7350 0.8565 " : jpg_minpool_jpg 0.9079 0.8455 0.9425

maxpool maxpool -0.6

-0.4

minpool

minpool_jpg 0.8708

minpool

-0.2
I~ 0.1 minpool_jpg 0.9482
-0.0

First transformation
First transformation

) S >) O > > S
°\)Q +Q° (\Qo Q0\)Q °\)Q ,O+Q° N 0‘3\)Q
((.\\,\\Q & & & & &
& &
Second transformation Second transformation
(a) Fl-score (b) ROC-AUC

Figure 5.7: Performance of the dual-transformation detectors. The y-axis is the first transfor-
mation in the order, while the x-axis represents the second. Using the same transformation
data for the first and second transformations does not make sense, so the diagonal is removed.

Additionally, several dual-transform detectors were trained. As recalled from section 4.7,
these consisted of "NVP" detectors, but only had access to two input spaces, instead of four.
Their performance can be seen in Figure 5.7. The X-axis indicates which transformation filled
the first three channel-wise elements, and the Y-axis indicates the last three. As observed
in the matrix, there was a large variance in performance. In most cases, the F1l-score and
ROC-AUC significantly degraded in performance, with a few notable exceptions. Comparing
the results of the best-performing dual-transform detectors to the N-Version Programming
detector shows that a doubling of input spaces can put the dual-transformers performance
quite close to the performance of the NVP-detector.

The top two performers were the ‘minpool jpg’ + ‘jpg_minpool jpg’ and the ‘maxpool’
+ ‘minpool jpg’ detectors, performing close to the NVP detector. Another thing to note is
that the matrix is not mirrored across its diagonal, which may suggest that the channel order
can also significantly impact a detector’s performance. One example is that the detector uti-
lizing the ‘minpool jpg’ as its first transformation and the ‘maxpool’ as its second performs
significantly differently than the detector with this order of transformations reversed.

99

5.2. N-VERSION PROGRAMMING DETECTOR CHAPTER 5. RESULTS

Performance of Dual-Minpool-JPG detector Performance of Dual-Maxpool-JPG detector

0.994 0993
10 0.955 10

0945 0550
0%
054 055
0.8
Models
= Dual-Minpool-JPG - APGD 06
= Dual-Minpool-JPG - Carlin g
== Dua Mpuvc Fosm H
== Dual 00l-JPG - Shadow
- Dual M Doo\JPG Benign o4
0.2
0.0

F1 Score F1 Score

Models
Dual-Maxpool-JPG - APGD
Dual-Maxpool-JPG - Carlini
Dual-Maxpool-JPG - FGSM
Dual-Maxpool-JPG - Shadow
Dual-Maxpool-JPG - Benign

(a) ‘minpool jpg’ + ‘jpg_minpool jpg’ (b) ‘maxpool” + ‘minpool jpg’

Performance of minpool_jpg detector

10 0.996

0051 0.927
0.854 0.847
0.8
Models

0.6 m== minpool_jpg - APGD
8 mmm minpool_jpg - Carlini
S == minpool_jpg - FGSM
“ mmm minpool_jpg - Shadow

o4 m== minpool_jpg - Benign

0.2

0.0

F1 Score

(c¢) ‘minpool jpg’. Copy of Figure 5.6 (e),
added for convenience of reading.

Figure 5.8: Per-class detection distribution of dual-transform detectors with their respective
transformations. It also contains the distribution for their joint individual detector ‘min-

pool jpg’.

Breaking down the per-class performance of two best-performing dual-transform detectors
in Figure 5.8 (a) and (b) shows that these two detectors improve very differently over their
common individual detector ‘minpool jpg’. The dual-transform with quite similar trans-
formations, ‘minpool jpg’ + ‘jpg_minpool jpg’, improves error detection over the baseline
for specific attacks. These improvements being more distinct for APGD and FGSM. The
‘maxpool’ + ‘minpool jpg’ shows a more even distribution of per-class performance. This
suggests that the diversity between transformations may be a factor affecting the distribution
of coverage for attacks.

The dual-transform detectors in Figure 5.7 show that going from one to two transfor-
mations can drastically change performance, for better or worse. An example of the latter
case is the utilization of a well-performing transformation such as ‘maxpool’ as its initial
transformation, which, when combined with a diverse counterpart such as ‘minpool’ provides
worse performance than their individual implementations.

60

5.2. N-VERSION PROGRAMMING DETECTOR CHAPTER 5. RESULTS

Contrast this to the best performing but also the least data diverse dual-transformation
detector; ‘minpool jpg’ and ‘jpg_minpool jpg’, shown in Figure 5.8. Comparing it to the
more diverse dual-transformation detector ‘maxpool’ + ‘minpool jpg’ points to the fact that
data diversity, in general, is likely to improve the detection of adversarial attacks. Going back
to the results in Figure 5.8, it must also be noted that how diverse these transformations are
may dictate if the detection improvements come in specific classes or if the improvements are
distributed across all classes.

61

Chapter

Discussion

This chapter will discuss the results presented in the previous chapter and tie them into the
context of the research field. The first section will explain how the multi-model architecture
performed and discuss important factors to consider for future works. The second section will
discuss what the results show regarding data diversity and how an increase in input spaces
can affect the model. The third section will present the general implications of architecture
detectors and how they require additional considerations. The final section will discuss the
limitations of this thesis and how future implementations can improve.

6.1 Multi-model architectures

The results from section 5.1 provide valuable insights. The large binary detector demon-
strated a capacity to generalize attack perturbations but struggled to distinguish them from
benign images. Large models such as the binary detector can be prone to improper gener-
alization [75|. Despite the works by A. Kurakin et al. [71] and Madry et al. 23] denoting
the ability of large models to show improved performance against adversarial attacks, it did
not prove effective for the binary detector. Looking at the performance of the per-attack
detection rate and the uniformity of perturbations introduced by each attack, it is not un-
likely that the varied perturbation size in Carlinil.2 and shadow attack played a part in them
being more easily detected. Additionally, having these attacks operating in the low-frequency
spectrum could have made the detector generalize for these perturbations instead.

A possible cause for the binary detector’s performance is the lack of transformations. Ad-
versarial attacks are generated with the purpose of being difficult to detect in the input space.
As the detection operation is performed on the same input space, the operation will likely
not be as effective. The additional parameter tuning to create even more difficult attacks
would only have compounded this effect. With the works by Nathan Drenkow et al., [39] and
Paula Harder et al. [38], showing the efficacy of detection with even simple transformations,
it shows the importance of detecting adversarial attacks in an input space outside in which
they were generated to be hidden. By observing the performance of any of the benchmark

62

6.1. MULTI-MODEL ARCHITECTURES CHAPTER 6. DISCUSSION

detectors from Figure 5.7, it can be observed that even a simple maxpool transformation
can drastically improve the detection operation. While these two detectors are not strictly
comparable, it points to the value of shifting the input space to enhance error detection.

From a fault tolerance perspective, this recovery block results bring up some interesting
points. The disjunct sets in detection between the spectral detector and binary detector
indicate that the existence of two operations can map to different domains given the same
input space (image). However, the increased Fl-score observed between the recovery block
and spectral detector is not proportional to these disjunct sets in Figure 5.4. This high-
lights an important point regarding the applicability of sequential redundancy for detecting
adversarial attacks and how architecture implementations can dictate coverage. This thesis’
implementation of the recovery block was implemented with a ‘blacklist’-configuration in
accordance with the recovery block implementation from ‘Handbook of Software Reliability
Engineering’. This configuration requires both detectors to detect an image as adversarial
before it is fully classified as adversarial. This also means that images detected as benign
by the spectral detector, however wrong they may be, are not passed to the binary detector.
This results in a lack of full utilization of the models, as only a subset of images is passed to
the binary detector. Avizienis et al. [27] define this phenomenon as ‘failure independence cov-
erage’, where one component’s failure limits other components’ ability to catch said failure.
The ‘blacklist’-configuration of the recovery block implementation would naturally favor the
correct identification of benign images. This is most likely why, despite the binary detector’s
weak performance on benign images, the recovery block still has an increase in performance
on benign images. The binary detector has likely corrected the spectral detector’s detection
of a benign image as adversarial.

The configuration of the fault-tolerant architecture is a trade-off between how one pri-
oritizes the correct detection of benign and adversarial images. This thesis’ implementation
shows that this prioritization can have a notable effect on detection and the domains in
which it is effective. As a result, it denotes the importance of evaluating per-component
performance and how the component composition will affect the coverage of the detection
architecture. In addition to architecture configurations that fully utilize the detection opera-
tions, the multi-model architectures also show the value of shifting the input space. This shift
would increase the effectiveness of the detection operations. Future works should look into
how the size of a model, with the same shifted input space, affects the detection operation
and how different configurations of sequential redundancy architectures affect their coverage.

63

6.2. DATA DIVERSITY CHAPTER 6. DISCUSSION

6.2 Data diversity

As mentioned in section 4.7, the N-Version Programming (NVP) detector was implemented
to observe how an increase in input space would affect coverage. The results in section 5.2
show that adding more input states allows the detection operation to increase its domain.
When broken down on a per-attack level, it can be observed that most of the individual
detectors showed the same pattern of having more effective coverage on Carlini& Wagner.2
and shadow attacks than FGSM and APGD.

In order to understand this pattern, it may be useful to view it from the perspective
of ensemble learning. In the ensemble learning field, the diversity within classifiers dictates
performance and defines the distribution of this performance [76] [77|. In this field, a set
of high-accuracy but low-variance classifiers is known to enhance the existing patterns of
each individual detector |76]. Given the premise that the input spaces made it easier for the
operation to detect Carlini&WagnerL.2 and shadow attacks, the low diversity between the
transformations would only have enhanced this pattern. It is interesting to see that when
additional input spaces are added, APGD detection improves significantly compared to the
other attacks. This may suggest that the APGD attacks are more similar to the other attacks
than FGSM in this adversarial dataset.

The dual-transformation detectors also show that increased input spaces can also come
with risk. Some detectors with certain combinations of input spaces have their coverage
significantly reduced by the introduction of a secondary transformation. The fact that the
order of transformations affected the results may provide some insight. As mentioned in
section 4.7, a concern was that the models being pre-trained would make them prioritize
the first three channels of an image, as they would only have pre-trained weights for those
three channels. It was assumed that an increase would force the model to utilize the second
transformation before stopping training. Efforts to prevent this by increasing the number of
early stopping epochs did not work to the same degree as initially assumed.

However, this information may be useful in itself. Early layers in models are well known
to capture low-level image features such as edges and/or color correlation, with later layers
capturing more abstract and class-specific features [78] [79]. Recall from section 4.7 that
adding a second transformation involved changing the initial input layer to accept a tensor
with dimensions of 6x224x224. As the pre-trained weights only had pre-trained weights for
the first three channels, it meant that the last three channels did not have any pre-trained
weights. Thus, if the model performed well, it would mean that the initial layer found an
optimal solution quickly. As early layers capture low-level image features, it is reasonable to
conclude that the addition of an additional input space enhanced the dual-transform detec-
tors’ ability to utilize these low-level image features to detect adversarial attacks.

64

6.3. SUITABILITY OF DETECTION ARCHITECTURES CHAPTER 6. DISCUSSION

Another thing to note in Figure 5.6 is that the individual input spaces also greatly af-
fect the domains in which to detect errors. An interesting contrast is how an initial JPEG
compression stage separating the ‘jpg minpool jpg’ and the ‘minpool jpg’ hampers the
‘ypg_minpool jpg’ detectors ability to identify instances of benign images. This may be due
to the fact that the use of JPEG compression also introduces compression artifacts which
may be misconstrued as noise [80][81]. These compression artifacts, which may be imper-
ceptible to humans, could perhaps be difficult to discern from natural noise after they have
been compressed. This phenomenon is also supported by literature as attempts have been
made to utilize JPG compression during pre-processing for the adversarial training of models
attacked by FGSM [82] [83]. Similarly, it was noted that JPEG compression was ineffec-
tive for robustness training on low-resolution images, as the JPEG artifacts would confuse
the model. While not explicitly related, it shows that JPEG compression on our relatively
low-resolution dataset could make it difficult to discern adversarial perturbations and nat-
ural noise. However, when the input spaces for ‘jpg minpool jpg’ and ‘minpool jpg’ are
combined, they produce the best-performing dual-detector.

In terms of fault-tolerant architectures, this introduces some interesting insights into
data diversity and input spaces. It shows that the individual performance of a detector is not
necessarily predictive of a composition utilizing these detectors. Each composition of input
spaces can change the domain of detected examples significantly. Similarly to the work by
Nathan Drenkow et al. [39], the addition of more diverse images can allow for detectors to
observe patterns for which only one transformed image could not. However, this diversity
may come at the cost of reduced accuracy|76]. These results point to the applicability of
fault-tolerant concepts in the adversarial image detection domain. That being said, it also
denotes trade-offs and introduces dilemmas in which there are no correct answers. It could be
interesting to address these issues more thoroughly in future works, such as how sufficiently
trained detectors with diverse input spaces compare to homogeneous input spaces and how
differently they perform.

6.3 Suitability of detection architectures

While not strictly tied to a research question, comparing the issues tied to the recovery block
and the NVP architecture and the challenges sequential and parallel redundancy face in im-
plementation is interesting. As noted in section 6.1, utilizing sequential redundancy relies
heavily on disjunct error detection to be effective. For an optimal sequential redundancy
architecture, the component detectors must be trained to detect errors that previous stages
could not. As mentioned in section 6.1, this implementation was prone to a lack of ‘failure
independence coverage’. To mitigate this, a defender would have to somewhat predict errors
that previous stages could not detect. Knowing this would ensure that the detectors were
trained to ensure disjunct detection. However, it would require extensive testing to reliably
know which domains a given detector would provide coverage for.

65

6.4. LIMITATIONS CHAPTER 6. DISCUSSION

Looking at the performance of the parallel redundancy model, NVP also brings up a
number of challenges. The NVP model showed that data diversity through increased input
spaces is viable. However, it also showed that one input space is not necessarily indicative of
the performance of an entire composition. Additionally, the diversity within a composition
may affect the distribution of domains.

Both of these architectures show that as soon as adversarial attack detectors leave the
space of single-stage ‘robustness-based’ detectors, fault-tolerance principles readily apply.
When one introduces additional operations or input spaces, one suddenly needs to consider
additional factors. Overlap in coverage and distribution of domains affecting results indicate
that these additional factors can both amplify and undermine the detection of adversarial
attacks. These factors having such a large influence call for future works to investigate meth-
ods in which to predict optimal configurations or compositions without requiring extensive
run-time testing to discover them.

6.4 Limitations

It is important to understand the context in which the results and discussion are written.
This section will present the known limitations to the work performed in the thesis and
provide a scope in which to understand them.

6.4.1 Researcher-produced dataset

In terms of understanding the results, the limitations of the datasets are important to its con-
text. As the dataset was entirely produced by the researcher, a risk of it being inadvertently
skewed exists inherently in its production. The images and classes were deliberately selected
to produce a strong performance on a ResNet-101 classifier and thus may contain unforeseen
biases which may affect the performance on other tasks. As the nuScenes dataset is intended
for benchmarking object detectors, the results must be considered within the context of the
dataset.

Another known limitation is the dataset, as it could contain an imbalance in how well the
classes are defined. As mentioned in chapter 4, all the images were selected to have above
64x64 pixel sizes. Additionally, the images were re-scaled to tensors in the shape of 224x224.
As the images were taken from a vehicle, it is more than likely that the average image size
of some classes was higher than others. Thus, classes such as ‘vehicle’ have more pixels for
the PyTorch resizing transformation available to infer data and transform it into a 224x224
tensor. As mentioned previously, in subsection 4.4.1, a decrease in image size leads to more
noise, leading to worse-trained classifiers. This disparity in image sizes could have affected
classes that were further away, such as ‘pedestrian’ or ‘inanimate,” making these images nois-
ier. This could have made some attacks more effective, as some images would contain more

66

6.4. LIMITATIONS CHAPTER 6. DISCUSSION

natural noise for adversarial perturbations to ‘hide’ in.

Additionally, as noted during chapter 4, the image restrictions were reduced from 128 to
64 pixels in either dimension. However, this was done before the benign dataset was trun-
cated to 150 000 images. Ideally, one would rather set a requirement of only needing 150 000
first and then see if a sufficient amount of images were above the 128-pixel threshold to sat-
urate the need for 150 000 images in the dataset. Additionally, the script for truncating the
dataset was random and did not select the largest images. In future implementations, it could
be valuable to improve upon this process to ensure that the images were more uniform in size.

6.4.2 Diversity of adversarial examples

One major thing to note is the disparity of detection between the different attacks. As can
be seen in Figure 5.2 and Figure 5.6, both the Carlini&WagnerLL.2 and Shadow attacks were
consistently more easily detected by most detectors. This may point to the fact that some
attacks were easier to detect; thus, the detectors were more likely to optimize for detecting
those attacks. This may have skewed the detectors’ ability to detect all attacks, accepting a
sub-optimal point where most attacks were detected but not all. As most detectors show a
similar pattern, it may point to the fact that the generated Carlini&WagnerLL2 and Shadow
were weaker than their APGD and FGSM counterparts. This may have been caused by an
adjustment of the attack parameters to produce challenging images. Comparing how these
adjustments shifted the ‘difficulty’ of each attack is difficult to determine. As a result, it may
have inadvertently made FGSM and APGD attacks significantly more difficult relative to
how difficult the other attacks were. To mitigate this in the future, additional testing should
be done to ensure that the selected attack parameters create images that trick classifiers to
the same degree as all the other attacks.

Another limitation of the adversarial dataset is that each attack was only generated with
one set of parameters. One example is attacks such as APGD, where the images are per-
turbed with only one set of epsilons. Utilizing the same set of parameters for each of the
attacks could have made it much easier to generalize for the adversarial perturbations intro-
duced by the attacks, as all four attacks would attack an image in the same manner every
time. While the utilization of four attacks should have mitigated this risk, it is difficult to
exclude the fact that it may have made it easier to generalize the noise introduced by the
attacks. As a result, the ability of complex models to easily generalize for adversarial noise
across multiple attacks should not be taken as a definitive assertion. Rather, it should be
taken as an indication, available for further investigation in future works.

67

6.4. LIMITATIONS CHAPTER 6. DISCUSSION

6.4.3 Detector training

Regarding the training of the detectors, it is important to note that the models were trained
with the intention of acting as representative models, as it would allow for seeing how the
fault-tolerant architectures affected the detection performance over the component detectors.
As mentioned in chapter 4, steps were taken to ensure that the models would be reasonably
well-trained. However, several additional measures would have to be made if one would at-
tempt to conclude that these models were optimally trained. While the heuristic selection of
hyperparameters and early stopping methods should be sufficient for representative models,
additional steps could have been taken to improve model training. These include but are
not limited to Bayesian search of hyperparameters for shallow models [84] or learning rate
schedulers for deep models [85]. Additionally, the individual NVP models and dual-transform
models were trained with the same parameters instead of a different set of parameters for all.
This was done due to time constraints. This means that while the results are likely represen-
tative of the fault-tolerant architectures, they should not be considered optimal models, and
further optimizations need to be applied, relative to the detectors operating environment.

68

Chapter

Conclusion

This thesis has looked at the concept of how fault-tolerant architectures can be implemented
and using these architectures to create generalizable insights into how these architectures
should be implemented in the future. Specifically, this thesis has looked at how multi-model
and design diverse data architectures can support the goal of detecting adversarial examples.
Focusing on the concept of increasing the input space and operations used to produce de-
tection domains, this thesis implemented the fault-tolerant detection architectures recovery
block and N-Version programming. Using a modified version of the nuScenes dataset, an
adversarial dataset was generated based on four attacks; Fast Gradient Sign Method, Auto-
Projected Gradient Descent, Carlini&Wagner L2, and Shadow attack. The two architectures
were trained on this dataset, using a heuristic selection of hyperparameters and performing
early stopping when the model did not improve on the validation set.

Upon testing the recovery block, it was clear that an increase in detection operations was
beneficial to increase coverage. However, implementation did not necessarily support the
complete utilization of each component detector. The NVP detector, its individual detec-
tors, and dual-transform detectors showed that an increase in data diversity could increase the
detection of adversarial attacks, but the transformations need to be selected carefully. The
composition of these transformations can skew how this improved detection rate is distributed
among attacks, and a subpar selection of transformations can significantly hamper perfor-
mance. Both detectors show that the fault-tolerant concepts of coverage, design diversity,
and redundancy are transferable to the domain of detecting adversarial attacks. However,
when implementing fault-tolerant architectures to detect adversarial attacks, careful consid-
eration needs to be made in terms composition of detectors and how the architecture supports
them. This thesis shows that treating adversarial detection as a fault-tolerance problem is
viable, but finding optimal configurations and compositions is difficult. In future works, it
may be interesting to look into methods for predicting these optimal compositions without
the requirement of exhaustive testing.

69

Bibliography

1]

2l

13l

4]

[5]

(6]

17l

8]

European Union Agency for Cybersecurity et al. ENISA threat landscape 2022 : July
2021 to July 2022. Ed. by R Svetozarov Naydenov et al. 2022. DOI: doi/10.2824/
764318.

Tom B Brown and Catherine Olsson. Introducing the unrestricted adversarial examples
challenge. Sept. 2018. URL: https://ai.googleblog.com/2018/09/introducing-
unrestricted-adversarial.html.

Ann Johnson Ram Shankar Siva Kumar. Cyberattacks against machine learning systems
are more common than you think. Mar. 2021. URL: https://www.microsoft.com/en-
us /security/blog/2020/10/22/ cyberattacks - against - machine - learning -
systems-are-more-common-than-you-think/.

Patrick Moen Allport. “Detection of adversarial attacks in computer vision: A literature
review”. Unpublished work from course IT3915 Master in Informatics, Preparatory
Project. Supervisor: Montecchi, Leonardo. Nov. 2022.

Ruoxi Chen et al. “Salient feature extractor for adversarial defense on Deep Neural
Networks”. In: Information Sciences 600 (2022), pp. 118-143. DOI: 10.1016/j . ins.
2022.03.056.

Weiqi Fan et al. “Hybrid defense for deep neural networks: An integration of detecting
and cleaning adversarial perturbations”. In: 2019 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW) (2019). DOI: 10.1109/icmew.2019.00-
85.

Victor Wiley and Thomas Lucas. “Computer Vision and image processing: A paper
review”. In: International Journal of Artificial Intelligence Research 2.1 (2018), p. 22.
DOI: 10.29099/ijair.v2il.42.

Supriya V. Mahadevkar et al. “A Review on Machine Learning Styles in Computer
Vision—Techniques and Future Directions”. In: IEEE Access 10 (2022), pp. 107293-
107329. DOI: 10.1109/ACCESS.2022.3209825.

70

https://doi.org/doi/10.2824/764318
https://doi.org/doi/10.2824/764318
https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html
https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html
https://www.microsoft.com/en-us/security/blog/2020/10/22/cyberattacks-against-machine-learning-systems-are-more-common-than-you-think/
https://www.microsoft.com/en-us/security/blog/2020/10/22/cyberattacks-against-machine-learning-systems-are-more-common-than-you-think/
https://www.microsoft.com/en-us/security/blog/2020/10/22/cyberattacks-against-machine-learning-systems-are-more-common-than-you-think/
https://doi.org/10.1016/j.ins.2022.03.056
https://doi.org/10.1016/j.ins.2022.03.056
https://doi.org/10.1109/icmew.2019.00-85
https://doi.org/10.1109/icmew.2019.00-85
https://doi.org/10.29099/ijair.v2i1.42
https://doi.org/10.1109/ACCESS.2022.3209825

BIBLIOGRAPHY BIBLIOGRAPHY

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

[21]

[22]

Oscar Cosido et al. “Hybridization of Convergent Photogrammetry, Computer Vision,
and Artificial Intelligence for Digital Documentation of Cultural Heritage - A Case
Study: The Magdalena Palace”. In: 2014 International Conference on Cyberworlds.
2014, pp. 369-376. DOI: 10.1109/CW.2014.58.

Arthur Francisco Fernandes, Joao Ricardo Dérea, and Guilherme Jordao Rosa. “Image
Analysis and Computer Vision Applications in Animal Sciences: An overview”. In:
Frontiers in Veterinary Science 7 (2020). DOI: 10.3389/fvets.2020.551269.

Da-Hai Xia et al. “Review-material degradation assessed by digital image processing:
Fundamentals, progresses, and challenges”. In: Journal of Materials Science and Tech-
nology 53 (2020), pp. 146-162. DOI: 10.1016/j. jmst.2020.04.033.

Keumsun Park, Minah Chae, and Jae Hyuk Cho. “Image pre-processing method of
machine learning for EDGE detection with Image Signal Processor Enhancement”. In:
Micromachines 12.1 (2021), p. 73. DOI: 10.3390/mi12010073.

Laith Alzubaidi et al. “Review of Deep Learning: Concepts, CNN architectures, chal-
lenges, applications, future directions”. In: Journal of Big Data 8.1 (2021). DOI: 10.
1186/s40537-021-00444-8.

Junyi Chai et al. “Deep Learning in Computer Vision: A critical review of emerging
techniques and application scenarios”. In: Machine Learning with Applications 6 (2021),
p. 100134. por: 10.1016/j.mlwa.2021.100134.

Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
DOI: 10.1109/cvpr.2016.91.

Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
DOI: 10.1109/cvpr.2016.91.

I J Goodfellow, J Shlens, and C Szegedy. In: Fxplaining and harnessing adversarial
examples (2014). DOI: https://doi.org/10.48550/arXiv.1412.6572.

Hongshuo Liang et al. “Adversarial attack and defense: A survey”. In: Electronics 11.8
(2022), p. 1283. DOI: 10.3390/electronics11081283.

Naveed Akhtar et al. “Advances in Adversarial Attacks and Defenses in Computer
Vision: A Survey”. In: IEEE Access 9 (2021), pp. 155161-155196. DOI: 10 . 1109/
ACCESS.2021.3127960.

Nicolas Papernot et al. “Distillation as a defense to adversarial perturbations against
Deep Neural Networks”. In: 2016 IEEE Symposium on Security and Privacy (SP)
(2016). DOI: 10.1109/sp.2016.41.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. July 2018. URL:
https://arxiv.org/abs/1802.00420.

Reuben Feinman et al. Detecting adversarial samples from artifacts. Nov. 2017. URL:
https://arxiv.org/abs/1703.00410.

71

https://doi.org/10.1109/CW.2014.58
https://doi.org/10.3389/fvets.2020.551269
https://doi.org/10.1016/j.jmst.2020.04.033
https://doi.org/10.3390/mi12010073
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.mlwa.2021.100134
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.3390/electronics11081283
https://doi.org/10.1109/ACCESS.2021.3127960
https://doi.org/10.1109/ACCESS.2021.3127960
https://doi.org/10.1109/sp.2016.41
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1703.00410

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Aleksander Madry et al. “Towards deep learning models resistant to adversarial at-
tacks”. In: Cited by: 2139. 2018. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85083954061&partnerID=40&md5=84bf66031966d7b8f24a2260e59ff64c.

[24] Han Xu et al. “Adversarial attacks and defenses in images, graphs and text: A Review”.
In: International Journal of Automation and Computing 17.2 (2020), pp. 151-178. DOTI:
10.1007/s11633-019-1211-x.

[25] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. Jan. 1970. URL: https://research.google/pubs/pub43405/.

[26] Nicholas Carlini and David Wagner. “Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods”. In: Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. AlSec '17. Dallas, Texas, USA: Association for
Computing Machinery, 2017, pp. 3-14. 1SBN: 9781450352024. DOT: 10.1145/3128572.
3140444. URL: https://doi.org/10.1145/3128572.3140444.

[27] A. Avizienis et al. “Basic concepts and taxonomy of dependable and secure computing”.
In: IEEE Transactions on Dependable and Secure Computing 1.1 (2004), pp. 11-33.
DOI: 10.1109/tdsc.2004.2.

[28] D. F. McAllister and M. A. Vouk. Handbook of Software Reliability Engineering. Ed. by
M. R. Lyu. McGraw-Hill, 1996. Chap. 14.

[29] URL: https://www . scopus . com/ results / citedbyresults . uri ? sort = plf -
f& cite=2-s52.0-84929471564b& amp ; src=s& imp=t& sot=cite&
amp ; sdt=a& ; sl=0& ; origin=inward& ; editSaveSearch==& ; txGid=
4e0ce9409ad79763ae9e206d30d62437.

[30] URL: https://dl.acm.org/doi/book/10.5555/239425.

[31] “ISO/IEC/IEEE International Standard - Systems and software engineering—Vocabulary”.
In: ISO/IEC/IEEE 24765:2017(E) (2017), pp. 1-541. DOI: 10.1109/IEEESTD.2017.
8016712.

[32] Christian Szegedy et al. “Intriguing properties of neural networks”. In: (Dec. 2013).

[33] Alexander Bastounis, Anders C Hansen, and Verner Vlaci¢. The mathematics of ad-
versarial attacks in AI — why deep learning is unstable despite the existence of stable
neural networks. Aug. 2021. URL: https://arxiv.org/abs/2109.06098v1.

[34] A. M. Turing. “On computable numbers, with an application to the Entscheidungsprob-
lem”. In: Proceedings of the London Mathematical Society s2-42.1 (1937), pp. 230-265.
DOI: 10.1112/plms/s2-42.1.230.

[35] Xiaoyu Zhang et al. “Cassandra: Detecting Trojaned Networks From Adversarial Per-
turbations”. In: IEEE Access 9 (2021), pp. 135856-135867. DOI: 10.1109/ACCESS .
2021.3101289.

[36] Avizienis and Kelly. “Fault Tolerance by Design Diversity: Concepts and Experiments”.
In: Computer 17.8 (1984), pp. 67-80. DOI: 10.1109/MC.1984.1659219.

72

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083954061&partnerID=40&md5=84bf66031966d7b8f24a2260e59ff64c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083954061&partnerID=40&md5=84bf66031966d7b8f24a2260e59ff64c
https://doi.org/10.1007/s11633-019-1211-x
https://research.google/pubs/pub43405/
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1109/tdsc.2004.2
https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-84929471545&src=s&imp=t&sot=cite&sdt=a&sl=0&origin=inward&editSaveSearch=&txGid=4e0ce9409ad79763ae9e206d30d62437
https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-84929471545&src=s&imp=t&sot=cite&sdt=a&sl=0&origin=inward&editSaveSearch=&txGid=4e0ce9409ad79763ae9e206d30d62437
https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-84929471545&src=s&imp=t&sot=cite&sdt=a&sl=0&origin=inward&editSaveSearch=&txGid=4e0ce9409ad79763ae9e206d30d62437
https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-84929471545&src=s&imp=t&sot=cite&sdt=a&sl=0&origin=inward&editSaveSearch=&txGid=4e0ce9409ad79763ae9e206d30d62437
https://dl.acm.org/doi/book/10.5555/239425
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://arxiv.org/abs/2109.06098v1
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/ACCESS.2021.3101289
https://doi.org/10.1109/ACCESS.2021.3101289
https://doi.org/10.1109/MC.1984.1659219

BIBLIOGRAPHY BIBLIOGRAPHY

[37] J. Musa and G. Fuoco. Handbook of Software Reliability Engineering. Ed. by M. R.
Lyu. McGraw-Hill, 1996. Chap. 5.

[38] Paula Harder et al. “SpectralDefense: Detecting Adversarial Attacks on CNNs in the
Fourier Domain”. In: 2021 International Joint Conference on Neural Networks (IJCNN)
(2021), pp. 1-8. DOI: 10.48550/arXiv.2103.03000.

[39] Nathan Drenkow, Neil Fendley, and Philippe Burlina. “Attack agnostic detection of ad-
versarial examples via random subspace analysis”. In: 2022 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV) (2022). DOI: 10.1109/wacv51458.
2022.00287.

[40] Shuo Wang et al. “Adversarial detection by latent style transformations”. In: IEEE
Transactions on Information Forensics and Security 17 (2022), pp. 1099-1114. pOIL:
10.1109/tifs.2022.3155975.

[41] Karren Yang et al. “Defending multimodal fusion models against single-source adver-
saries”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021). DOL: 10.1109/cvpr46437.2021.00335.

[42] A Geiger et al. “Vision Meets Robotics: The kitti dataset”. In: The International Journal
of Robotics Research 32.11 (2013), pp. 1231-1237. DOI: 10.1177/0278364913491297.

[43] G. van Rossum. Python tutorial. Tech. rep. CS-R9526. Amsterdam: Centrum voor
Wiskunde en Informatica (CWI), May 1995.

[44] Django Software Foundation. Django. Version 2.2. May 22, 2023. URL: https: //
djangoproject.com.
"

[45] Miguel Grinberg. Flask web development: developing web applications with python.
O’Reilly Media, Inc.", 2018.

[46] Python Package Index - PyPI. URL: https://pypi.org/ (visited on 05/22/2023).

[47] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 2019, pp. 8024-8035.

[48] Pytorch Ecosystem tools. URL: https://pytorch.org/ecosystem/ (visited on 05/22/2023).

[49] William Falcon et al. PyTorchLightning/pytorch-lightning: 0.7.6 release. Version 0.7.6.
May 2020. DOI: 10.5281/zenodo.3828935. URL: https://doi.org/10.5281/zenodo.
3828935.

[50] URL: https://www.pytorchlightning.ai/team.

[51] Maria-Irina Nicolae et al. Adversarial robustness toolbox v1.0.0. Nov. 2019. URL: https:
//arxiv.org/abs/1807.01069.

[52] Idun. URL: https://www.hpc.ntnu.no/idun/ (visited on 05/22/2023).

[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553
(2015), pp. 436-444. DOI: 10.1038/nature14539.

73

https://doi.org/10.48550/arXiv.2103.03000
https://doi.org/10.1109/wacv51458.2022.00287
https://doi.org/10.1109/wacv51458.2022.00287
https://doi.org/10.1109/tifs.2022.3155975
https://doi.org/10.1109/cvpr46437.2021.00335
https://doi.org/10.1177/0278364913491297
https://djangoproject.com
https://djangoproject.com
https://pypi.org/
https://pytorch.org/ecosystem/
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://www.pytorchlightning.ai/team
https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1807.01069
https://www.hpc.ntnu.no/idun/
https://doi.org/10.1038/nature14539

BIBLIOGRAPHY BIBLIOGRAPHY

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

|65]

[66]

[67]

Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable effectiveness of
data”. In: IEEFE Intelligent Systems 24.2 (2009), pp. 8-12. DOI: 10.1109/mis.2009. 36.

Ekim Yurtsever et al. “A survey of autonomous driving: common practices and emerging
technologies”. In: IEEE Access 8 (2020), pp. 58443-58469. DOI: 10.1109/access.2020.
2983149.

Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving”. In:
CVPR. 2020.

nuScenes detection task. URL: https://www .nuscenes . org/object-detection?
externalData=all&mapData=all&modalities=Any (visited on 05/22/2023).

Bolei Zhou et al. “Learning deep features for discriminative localization”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). DOL:
10.1109/cvpr.2016.319.

Shifeng Zhang et al. “Occlusion-aware R-CNN: Detecting pedestrians in a crowd”. In:
Computer Vision — ECCV 2018 (2018), pp. 657-674. DOI: 10.1007/978-3-030 -
01219-9_39.

Feng Cen and Guanghui Wang. “Boosting Occluded Image Classification via Subspace
Decomposition-Based Estimation of Deep Features”. In: IEEE Transactions on Cyber-
netics 50.7 (2020), pp. 3409-3422. DOI: 10.1109/TCYB.2019.2931067.

Ajay Kumar Singh et al. “Wavelet based histogram of oriented gradients feature de-
scriptors for classification of partially occluded objects”. In: International Journal of
Intelligent Systems and Applications 7.3 (2015), pp. 54-61. DOI: 10.5815/ijisa.2015.
03.07.

Zhihao Wang, Jian Chen, and Steven C. H. Hoi. “Deep Learning for Image Super-
Resolution: A Survey”. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 43.10 (2021), pp. 3365-3387. DOIL: 10.1109/TPAMI.2020.2982166.

Yanting Pei et al. “Effects of image degradation and degradation removal to CNN-
based image classification”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 43.4 (2021), pp. 1239-1253. DOI: 10.1109/tpami.2019.2950923.

Kaiming He et al. “Deep residual learning for image recognition”. In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2016). DOI: 10.1109/
cvpr.2016.90.

Justin M. Johnson and Taghi M. Khoshgoftaar. “Survey on deep learning with class
imbalance”. In: Journal of Big Data 6.1 (2019). DOI: 10.1186/s40537-019-0192-5.

Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural net-
works”. In: 2017 IEEE Symposium on Security and Privacy (SP) (2017). DOI: 10.1109/
sp.2017.49.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks. Aug. 2020. URL: https://arxiv.org/
abs/2003.01690.

74

https://doi.org/10.1109/mis.2009.36
https://doi.org/10.1109/access.2020.2983149
https://doi.org/10.1109/access.2020.2983149
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
https://doi.org/10.1109/cvpr.2016.319
https://doi.org/10.1007/978-3-030-01219-9_39
https://doi.org/10.1007/978-3-030-01219-9_39
https://doi.org/10.1109/TCYB.2019.2931067
https://doi.org/10.5815/ijisa.2015.03.07
https://doi.org/10.5815/ijisa.2015.03.07
https://doi.org/10.1109/TPAMI.2020.2982166
https://doi.org/10.1109/tpami.2019.2950923
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/sp.2017.49
https://doi.org/10.1109/sp.2017.49
https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2003.01690

BIBLIOGRAPHY BIBLIOGRAPHY

[68] Amin Ghiasi, Ali Shafahi, and Tom Goldstein. Breaking certified defenses: Semantic
adversarial examples with spoofed robustness certificates. Mar. 2020. URL: https://
arxiv.org/abs/2003.08937.

[69] ART Attacks. URL: https://github.com/Trusted-AI/adversarial-robustness-
toolbox/wiki/ART-Attacks.

[70] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on Deep Learning in
Computer Vision: A survey”. In: IEEE Access 6 (2018), pp. 14410-14430. DOI: 10.
1109/access.2018.2807385.

[71] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial machine learning at
scale”. In: Cited by: 631. 2017. URL: https://www.scopus.com/inward/record.uri?
ei1d=2-s2.0-85088231002&partnerID=40&md5=3817712882165d26bde2bb062a4£58137.

[72] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. “Early stopping for non-parametric
regression: An optimal data-dependent stopping rule”. In: 2011 49th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton) (2011). DOL:
10.1109/allerton.2011.6120320.

[73] Rohan Reddy Mekala Fraunhofer USA CESE et al. “Metamorphic filtering of black-box
adversarial attacks on multi-network face recognition models”. In: ACM Conferences
(June 2020). DOI: 10.1145/3387940.3391483.

[74] Andrew P. Bradley. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern Recognition 30.7 (1997). Cited by: 4493; All
Open Access, Green Open Access, pp. 1145-1159. DOI: 10.1016/S0031-3203(96)
00142 -2. URL: https://www. scopus . com/inward/record.uri?eid=2-s2.0-
0031191630&doi=10.10167%2£50031-32037%2896%2900142 - 2&partnerID=40&md5=
c3e22645a8533680341¢c9d1719287600.

[75] Lutz Prechelt. “Early stopping — but when?” In: Lecture Notes in Computer Science
(2012), pp. 53-67. DOI: 10.1007/978-3-642-35289-8_5.

[76] Shuo Wang and Xin Yao. “Diversity analysis on imbalanced data sets by using ensemble
models”. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining.
2009, pp. 324-331. DOI: 10.1109/CIDM.2009.4938667.

[77] Gavin Brown, Jeremy L. Wyatt, and Peter Tino. “Managing diversity in regression
ensembles”. In: Journal of Machine Learning Research 6 (2005). Cited by: 262. URL:
https://www . scopus . com/ inward /record . uri ?7eid=2-s2 . 0- 25444484657 &
partnerID=40&md5=b41c4626debeb1b4077b7dealtd484de.

[78] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[79] Matthew D. Zeiler and Rob Fergus. “Visualizing and understanding Convolutional Net-
works”. In: Computer Vision — ECCV 2014 (2014), pp. 818-833. DOI: 10.1007/978-
3-319-10590-1_53.

1)

https://arxiv.org/abs/2003.08937
https://arxiv.org/abs/2003.08937
https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks
https://doi.org/10.1109/access.2018.2807385
https://doi.org/10.1109/access.2018.2807385
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088231002&partnerID=40&md5=3817712882165d26bde2bb06a4f58137
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088231002&partnerID=40&md5=3817712882165d26bde2bb06a4f58137
https://doi.org/10.1109/allerton.2011.6120320
https://doi.org/10.1145/3387940.3391483
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031191630&doi=10.1016%2fS0031-3203%2896%2900142-2&partnerID=40&md5=c3e22645a8533680341c9d1719287600
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031191630&doi=10.1016%2fS0031-3203%2896%2900142-2&partnerID=40&md5=c3e22645a8533680341c9d1719287600
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031191630&doi=10.1016%2fS0031-3203%2896%2900142-2&partnerID=40&md5=c3e22645a8533680341c9d1719287600
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1109/CIDM.2009.4938667
https://www.scopus.com/inward/record.uri?eid=2-s2.0-25444484657&partnerID=40&md5=b41c4626de5eb1b4077b7dea16d484de
https://www.scopus.com/inward/record.uri?eid=2-s2.0-25444484657&partnerID=40&md5=b41c4626de5eb1b4077b7dea16d484de
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

BIBLIOGRAPHY BIBLIOGRAPHY

[30]

[81]

[82]

[83]

[84]

[85]

Bin Li et al. “Revealing the trace of high-quality JPEG compression through quanti-
zation noise analysis”. In: IEEE Transactions on Information Forensics and Security
10.3 (2015), pp. 558-573. DOI: 10.1109/tifs.2015.2389148.

Bruce K. Ho et al. “Mathematical model to quantify JPEG block artifacts”. In: SPIE
Proceedings (1993). DOI: 10.1117/12.146974.

Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M. Roy. A study of the
effect of JPG compression on adversarial images. Aug. 2016. URL: https://arxiv.
org/abs/1608.00853.

Nilaksh Das et al. Keeping the bad guys out: Protecting and vaccinating deep learning
with JPEG compression. May 2017. URL: https://arxiv.org/abs/1705.02900.

Alma Rahat and Michael Wood. “On bayesian search for the feasible space under
computationally expensive constraints”. In: Machine Learning, Optimization, and Data
Science (2020), pp. 529-540. DOI: 10.1007/978-3-030-64580-9_44.

Stéphane d’Ascoli, Maria Refinetti, and Giulio Biroli. Optimal learning rate schedules in
high-dimensional non-convex optimization problems. Feb. 2022. URL: https://arxiv.
org/abs/2202.04509.

76

https://doi.org/10.1109/tifs.2015.2389148
https://doi.org/10.1117/12.146974
https://arxiv.org/abs/1608.00853
https://arxiv.org/abs/1608.00853
https://arxiv.org/abs/1705.02900
https://doi.org/10.1007/978-3-030-64580-9_44
https://arxiv.org/abs/2202.04509
https://arxiv.org/abs/2202.04509

Glossary

Adversarial Example (AE) A singular instance of a perturbed image used in an adver-
sarial attack. 6, 7, 8, 9, 11, 18, 23, 36, 39, 43, 69

Adversarial Attack (AA) An attack consisting of one or more images with perturbations

designed avoid, evade or otherwise disrupt proper clasification of one or more objects.
i,2,4,6,7, 8,9, 11, 12, 16, 20, 26, 37

COCO A data-format for describing bounding boxes. Defines bounding boxes based on x
and y coordinates of the bounding box and defining the width and height. Documen-
tation here. 83

Discrete Fourier Transform (DFT) A discrete version of the Fourier Transform used on

digital data to map input values into a discrete range in the frequency domain. 17, 43,
45

Generative Adversarial Network (GAN) A class of machine learning frameworks play-
ing a zero-sum game consisting of a generator, which attempts to produce adversarial
examples, and a discriminator whom attempts to detect them. In such a network,
both become iteratively better at detecting and generating examples until they reach
an equilibrium . 17, 19

Machine Learning (ML) A field referring to a model focused machine-system in which
one trains and adapts said model enhance a specific task. 8

Natural Examples Images in the dataset which have not had any data augmentation trans-
formation applied to them.. 43

PASCAL-VOC A data-format for describing bounding boxes. Defines bounding boxes by
the four corners of the bounding box. Documentation here. 83

Systematic Literature Review (SLR) A systematic literature review is a paper review
which looks at a number of papers from a research field in order to point out research

7

https://cocodataset.org/#home
https://cocodataset.org/#home
https://opencv.github.io/cvat/docs/manual/advanced/formats/format-voc/

Glossary Glossary

gaps, synthesise new information and produce a research position. 2, 3, 9, 16, 17, 18,
20, 22

78

Appendices

79

Appendix A

Method

80

APPENDIX A. METHOD

Original class

Mapped class in 4-class dataset

animal

human.pedestrian.adult
human.pedestrian.child
human.pedestrian.construction worker
human.pedestrian.personal _mobility
human.pedestrian.police officer
human.pedestrian.stroller
human.pedestrian.wheelchair
movable object.barrier
movable object.debris
movable object.pushable pullable
movable object.trafficcone
static_object.bicycle rack
vehicle.bicycle

vehicle.bus.bendy

vehicle.bus.rigid

vehicle.car

vehicle.construction
vehicle.emergency.ambulance
vehicle.emergency.police
vehicle.motorcycle

vehicle.trailer

vehicle.truck

pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
static__heavy
static__heavy
static _light
static_light
static__heavy
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle

Table A.1: Table showing the mapping between the original 23 classes and their new class

in the 4-class dataset.

81

APPENDIX A. METHOD

Original class

Mapped class in 3-class dataset

animal

human.pedestrian.adult
human.pedestrian.child
human.pedestrian.construction worker
human.pedestrian.personal _mobility
human.pedestrian.police officer
human.pedestrian.stroller
human.pedestrian.wheelchair
movable object.barrier
movable object.debris
movable object.pushable pullable
movable object.trafficcone
static_object.bicycle rack
vehicle.bicycle

vehicle.bus.bendy

vehicle.bus.rigid

vehicle.car

vehicle.construction
vehicle.emergency.ambulance
vehicle.emergency.police
vehicle.motorcycle

vehicle.trailer

vehicle.truck

pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
pedestrian
inanimate
inanimate
inanimate
inanimate
inanimate
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle
vehicle

Table A.2: Table showing the mapping between the original 23 classes and their new class

in the 3-class dataset.

82

Appendix

Pseudocode

Algorithm 1: Pseudocode of generation of customized dataset

1 nuscenes _dataset = download nuscenes dataset();

2 2d_annotations = nuscenes.export 2d annotations as json(nuscenes dataset);
/* This file location represents a storage location on disk */

3 cropped_file location = get location on_ disk();

4 for annotation in 2d_ annotations do

5 visibility = annotation.get visibility();
6 if wvisibility >= 60% then
7 image — annotation.get image();
/* Coordinates were in COCO-format and need to be converted to
the PASCAL-VOC format x/
8 mid x, mid _y, bbox width, bbox height = annotation.bbox;
9 X_min, y_min, X max, y_max =
10 convert coco to Pascal VOC(mid x, mid y, bbox width,
bbox height);
11 cropped image = image.crop(x_min, y min, X max, y max);
12 | cropped _image.save(cropped file location);

13 cropped images = load files(cropped file location);
/* This file location represents a storage location on disk */
14 filtered file location = get location on disk();
15 for image in cropped_images do
16 width, height = image.get width height();
17 if width >= 64 and height >= 64 then
18 class = image.class;
19 L image.move(filtered file locationclass);

83

APPENDIX B. PSEUDOCODE

Algorithm 2: Pseudocode of generation of adversarial dataset

/* This is the location of the benign images */
1 filtered file location = get location on disk();
2 benign dataset = load dataset(filtered file location);
/* This samples a representative subset of the benign images, 10% of
the original size. */

3 sampled benign dataset = sample(benign dataset, 10);
4 attacks = [APGD(), Carlini(), FGSM(), Shadow()];
5 for image,adv_save_location in sampled_benign_dataset do
6 for attack in attacks do
7 adversarial image = attack.generate(image);
/* Clips potential image values outside of the valid range of
0,1 */
8 clipped = adversarial image.clip(0,1);
/* OpenCV requires images to be in the BGR format. x/
9 bgr clipped = clipped.color format('BGR’);
10 bgr clipped.save as tiff(adv_save location);

84

Appendix C

85

APPENDIX C. RESULTS

(a) Original (b) Subtractive diff

(c) Fourier spectrum (d) Fourier spectrum Subtractive diff

Figure C.1: Original, Subtractive difference, Fourier spectrum and Subtractive Fourier spec-
trum for FGSM images.

86

APPENDIX C. RESULTS

(a) Original (b) Subtractive diff

(c) Fourier spectrum (d) Fourier spectrum Subtractive diff

Figure C.2: Original, Subtractive difference, Fourier spectrum and Subtractive fourier spec-
trum for carlini images.

87

APPENDIX C. RESULTS

oy e L

(a) Original (b) Subtractive diff

(c) Fourier spectrum (d) Fourier spectrum Subtractive diff

Figure C.3: Original, Subtractive difference, Fourier spectrum and Subtractive Fourier spec-
trum for APGD images.

88

APPENDIX C. RESULTS

(a) Original (b) Subtractive diff

(c) Fourier spectrum (d) Fourier spectrum Subtractive diff

Figure C.4: Original, Subtractive difference, Fourier spectrum and Subtractive Fourier spec-
trum for shadow images.

89

@ NTNU

Norwegian University of
Science and Technology

	Introduction
	Research Questions
	Thesis Outline

	Background
	Computer vision
	Adversarial attacks
	Fault-tolerance in software
	Dependability taxonomy
	Fault-tolerance principles
	Fault-tolerance architectures

	Thesis Objective
	Systematized literature review
	Findings
	Conclusions

	Thesis scope

	Method
	Prerequisite artefacts
	Tools
	The nuScenes dataset
	Customized dataset
	Methodology
	Implementation

	Adversarial dataset
	Methodology
	Implementation

	Architecture 1: Recovery block
	Methodology
	Implementation

	Architecture 2: N-Version Programming
	Methodology
	Implementation

	Results
	Recovery block detector
	N-Version programming detector

	Discussion
	Multi-model architectures
	Data diversity
	Suitability of detection architectures
	Limitations
	Researcher-produced dataset
	Diversity of adversarial examples
	Detector training

	Conclusion
	Bibliography
	Glossary
	Appendices
	Method
	Pseudocode
	Results

