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Abstract

Remotely Operated Vehicles (ROVs) have become useful tools for inspection and main-
tenance in Aquaculture. This thesis documents the choice, design, implementation, and
full-scale testing of an observer for an ROV operating in fish farms surrounded by fish, and
subject to waves and currents. The ROV is equipped with an Inertial Measurement Unit
(IMU), a Doppler Velocity Log (DVL), and an Ultra-Short Baseline (USBL) positioning
system.

Currently, ROVs at fish farms are remotely controlled by operators on the surface. A
robust and precise navigation system is required to automate the tasks that today require
manual labor. The goal is to increase efficiency and reduce the cost of the inspection and
maintenance needed to prevent fish from escaping the fish farms.

The thesis presents the information about the vehicle, sensors, and environment relevant
for choosing an observer, as well as observer candidates that can solve the problem.
Inertial navigation aided by DVL and USBL is chosen as the observer and designed to
fit the vehicle and sensors. Extra functionality to help with operation in waves is added.
The system is implemented in object-oriented C++ and tested at full scale in a fish farm.
Results are presented and discussed before the choice, design, and implementation are
evaluated and changes are proposed.

A Multiplicative Extended Kalman Filter (MEKF) is developed and adapted for the
specific vehicle and sensor suite. A method for modeling biases in the pressure sensor
measurement is proposed and estimation of these biases is integrated into the MEKF.

A fish farm is a challenging environment to navigate; fish, nets, and moorings are com-
plicating factors. It becomes clear that USBL and DVL measurements in such an envir-
onment are of poor quality and not always available at all. The chosen observer works,
but the quality of the position estimates in particular is insufficient for the purpose. An
IMU of better quality is necessary to increase performance to a level sufficient for ROV
automation.

Although the results of the work in this thesis do not quite reach the objective, will
this thesis contribute with an overview, details, considerations, and experiences that are
important for continued efforts to solve the problem.
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Sammendrag

Fjernstyrte undervannsfarkoster (ROVer) har blitt et nyttig verktøy for inspeksjon og ved-
likehold i oppdrettsnæringen. Denne oppgaven dokumenterer valg, utvikling, implemen-
tering og fullskala testing av en observer til en ROV som skal operere i oppdrettsmerder
i et miljø med fisk, strømning og bølger. ROVen er utstyrt med treghetssensorer (IMU),
en Doppler Velocity Log (DVL) og et Ultra-Short Baseline (USBL) posisjoneringssystem.

P̊a n̊aværende tidspunkt styres ROVer manuelt ved hjelp av fjernstyring. Et robust og
presist navigasjonssystem vil legge grunnlaget for automatisering av oppgaver som i dag
krever manuelt arbeid. Formålet med dette er å effektivisere og redusere kostnader med
inspeksjon og vedlikehold av oppdrettsmerder, spesielt med tanke p̊a å oppdage og utbedre
hull i merdene og dermed unng̊a rømming av fisk.

Oppgaven presenterer informasjon om fartøy, sensorer og miljø som er relevant med tanke
p̊a valg av observer, samt en rekke observere som kan løse oppgaven. Treghetsnavigasjon
hjulpet av DVL og USBL velges som observer og tilpasses til ROVen og de tilgjengelige
sensorene. Ekstra funksjonalitet legges til for at ROVen lettere skal kunne operere i bølger.
Systemet implementeres i objektorientert C++ og testes fullskala i en oppdrettsmerd.
Resultater presenteres og diskuteres, før valg, design og implementasjon evalueres og
endringer foresl̊as.

Et Multiplikativt Utvidet Kalman Filter (MEKF) utvikles og tilpasses for den spesifikke
farkosten og de tilgjengelige sensorene. En metode for å modellere biaser i trykksensorm̊alinger
foresl̊as og estimering av biasene integreres i observeren.

En oppdrettsmerd er et utfordrende sted å navigere i; fisk, nett og fortøyninger kom-
pliserer operasjoner. Det er tydelig at USBL og DVL målinger i et slikt miljø blir av
d̊arlig kvalitet og ikke alltid tilgjengelig. Den valgte observerløsningen fungerer, men
kvaliteten p̊a spesielt posisjonsestimatene blir for d̊arlige til formålet. Treghetssensorer
av høyere kvalitet er nødvendig for å forbedre ytelsen til ett niv̊a som er tilstrekkelig for
automatisering av fartøyet.

Selv om resultatet av arbeidet i oppgaven ikke n̊ar opp til målsetningen, bidrar oppgaven
med oversikt, detaljer, betraktninger og erfaringer som er viktige for videre forsøk p̊a å
løse problemstillingen.
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Preface

The topic of this thesis is a hybrid between aquaculture robotics and more classical naviga-
tion challenges. This project was chosen because of my interest in marine craft navigation
and control and a desire to learn more about, in particular, attitude kinematics and rep-
resentations, Kalman filtering, and operations in waves. The thesis is therefore more
directed toward solving a navigation system engineering challenge within aquaculture,
than working in aquaculture robotics itself. The author is in general very happy with the
learning outcomes from the project.

The thesis is a continuation of a specialization project which was handed in by the author
in the fall of 2022 with the title “Choice and design of a 6 degree-of-freedom observer
for an UUV operating in fish farms in the presence of time-varying environmental dis-
turbances”(Stens̊a, 2022). The introductory work (background, literature reviews, etc.)
is reused in this thesis and because of this, certain chapters, paragraphs, sentences, and
figures are similar or identical. However, the end product; design, implementation, and
results are considered to be completely independent.
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Chapter 1

Introduction

1.1 Background

Aquaculture is one of the fastest growing sectors in the global food industry, being the
fastest growing sector in 2018 (FAO, 2018). Aquaculture plays an important role in
meeting the world’s ever-growing need for protein. Rapid growth comes with numerous
challenges, such as environmental concerns, disease management, and operational effi-
ciency. To overcome these challenges and ensure the long-term viability of aquaculture,
technological advancements are essential.

1.2 Motivation

One of the challenges in aquaculture is fish escaping the fish farms (Thorvaldsen et al.,
2015). Escaped fish may carry and spread diseases (another major challenge) to the
local wildlife. To prevent escapes, regular inspection and maintenance of the net pens
are necessary. Traditionally, this was a job for human divers, but Remotely Operated
underwater Vehicle (ROV)s have become common for these tasks, reducing the risk of
injuries (Føre et al., 2018). The safety of operators is also a concern as fish farms are moved
further offshore where the weather is harsh (Bjelland et al., 2015). This is a key motivation
for SINTEF Ocean’s CHANGE project1 which this thesis is a part of. ROVs are as the
name suggests remotely operated, meaning they require human operators in what is a
time-consuming, and depending on the weather, a difficult task. This is a motivation
for moving to more sophisticated methods of controlling the ROVs and achieving some
degree of automation and even autonomy. To achieve this it is absolutely vital for the
vehicle (and the operators) to know where the vehicle is positioned. Previous research
has shown that navigation inside net pens using Doppler Velocity Log (DVL) and Ultra-
Short BaseLine (USBL) is possible (Rundtop and Frank, 2016). Since the measurements
available underwater are not the most reliable, it is important for the vehicle to have a
robust observer which is able to estimate its position. The development, implementation,
and evaluation of such an observer is the main goal of this thesis.

1CHANGE project website: https://www.sintef.no/en/projects/2021/change-an-underwater-
robotics-concept-for-dynamically-changing-environments/

1

https://www.sintef.no/en/projects/2021/change-an-underwater-robotics-concept-for-dynamically-changing-environments/
https://www.sintef.no/en/projects/2021/change-an-underwater-robotics-concept-for-dynamically-changing-environments/
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1.3 Outline

The thesis is structured in chapters, each covering an important topic, or important stage
in the process. The first chapter, Chapter 2 presents the ROV and its sensors. This
chapter is placed early to give an idea of what we have to work with, which is important
for choices and considerations in many of the later chapters. This is followed by Chapter 3,
which introduces the basic notation used in the thesis. Chapter 4 defines the reference
frames used in this thesis, as well as the notation for vectors in these frames. Related to
this, is Chapter 5, a separate chapter on attitude representations. A literature review on
topics relevant to the choice of observer is presented in Chapter 6, before the alternatives
are discussed and an observer is chosen in Chapter 7.

The remaining chapters follow a more classical report structure, starting with Chapter 8
presenting the necessary theory for the chosen observer. Chapter 9 covers the modeling
stage. Chapter 10 covers tailoring of the observer to suit the ROV, sensor suite, and the
environment. This is simply referred to as observer design. Chapter 11 documents the
code implementation stage, a large part of this project. Experimental setup and tuning
are covered by Chapter 12, named Method. The results are presented and discussed in
Chapter 13. Finally, conclusions and further work are presented in Chapter 14.



Chapter 2

The ROV

The goal of this thesis is to choose and design an observer for a ROV. To do this, we need
to know about the ROV in question. This chapter presents what we have to work with
in terms of the vehicle and sensors and is taken from Stens̊a (2022). Section 2.1 presents
the BlueROV2. Section 2.2 presents the available sensors.

2.1 BlueROV2

Figure 2.1: The BlueROV2 with heavy configuration kit (picture from the BlueROV2
website2)

The observer will be specifically (but not exclusively) designed for the BlueROV2, shown
in Figure 2.1. The BlueROV2 is a small and affordable consumer-grade UUV suitable for
inspection and underwater exploration. This particular BlueROV2 is a “Heavy configur-
ation” and its basic dimensions are shown in Figure 2.2.

2BlueROV2 website: https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-
heavy-retrofit/

3

https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
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Figure 2.2: Dimensions of the BlueROV 2 heavy configuration (from the BlueROV2
website)

The ROV has a tether for communication with operators and equipment at the surface.
It weighs 11.5 kg and is designed to be slightly positively buoyant to ensure that the ROV
returns to the surface in case of propulsion or power system failure. The ROV design
is based on a frame containing a watertight enclosure with electronics. The vehicle is
actuated in all 6 degrees of freedom through 8 thrusters inside the frame. The maximum
rated depth is 100m depth and it has a maximum forward speed of 1.5 m/s. Lights and a
tilting camera are fitted to allow vision for human operators on the surface. Rechargeable
batteries on the vehicle allow for about 2 hours of usage time under “normal use” (Blue
Robotics, 2022).

2.2 Sensors

The BlueROV2 is configured with the following sensors from factory (Blue Robotics,
2022):

• 3-DOF Gyro

• 3-DOF Accelerometer

• 3-DOF Magnetometer

• Pressure sensor

• Temperature sensor

• Internal barometer

• Current and voltage sensors

• Leak detection

In addition, a Doppler Velocity Log (DVL) and an Ultra-Short BaseLine (USBL) transpon-
der are fitted for navigation purposes. Some of the factory sensors are for safety system
purposes only. The rest of this chapter is dedicated to a more in-depth presentation of
sensors relevant to the later chapters.
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2.2.1 Accelerometer

The accelerometer on BlueROV2 is an LSM303D (ST Microelectronics, 2013b). The ac-
celerometer measures specific force along three axes in a frame fixed to the accelerometer.
When the local gravity is known, the specific force measurement can be used to:

1. Estimate the acceleration of the craft

2. Estimate the roll and pitch of the craft

The accelerometer is a high-rate sensor. This is especially useful with small, quick, and
maneuverable vehicles. The accelerometer output is subject to significant measurement
noise. Being a consumer-grade sensor, the accelerometer is prone to a significant meas-
urement bias. This bias can vary with time.

2.2.2 Gyro

The gyro on BlueROV2 is an L3GD20H from (ST Microelectronics, 2013a). The gyro
measures angular velocity about three axes in a frame fixed to the gyro. The gyro can
be used to estimate the angular velocity of the craft. The measurement is subject to
measurement noise. The gyro measurements are subject to a significant measurement
bias. The bias can vary with time.

2.2.3 Magnetometers

The magnetometer on BlueROV2 is an LSM303D (ST Microelectronics, 2013b), this is
the same chip as the accelerometer. These sensors measure the local magnetic field along
three axes fixed to the magnetometer. This includes the Earth’s magnetic field as well
as disturbances from nearby ferromagnetic items or electronics. The measurements can
be used to determine the vehicle’s orientation, specifically the heading. The magneto-
meter measurements are subject to some noise, but it is the aforementioned magnetic
disturbances that are the main sources of error.

2.2.4 Pressure sensor

The pressure sensor on the BlueROV2 is an MS5837-30BA (TE Connectivity, 2019). The
pressure sensor measures the pressure of the water surrounding the craft. The measure-
ment can be used to calculate depth below the surface. The pressure sensor measures
absolute pressure, meaning that it does not only measure the water pressure due to grav-
ity but also the pressure of the air on the surface, appearing as a time-varying bias. The
pressure sensor is subject to noise.

2.2.5 Doppler Velocity Log

The Doppler Velocity Log fitted to the BlueROV2 is an A50 (Waterlinked, 2018). The
DVL measures the Doppler shift of four hydroacoustic beams reflecting back from a sur-
face. The relative velocity and distance along the beams are then calculated. To use the
net pen walls as a reflecting surface, the DVL is mounted facing forward on the BlueROV2.
This is not very common since the most consistent reflecting surface usually is the seabed
and therefore DVLs are traditionally mounted facing down. The DVL returns velocity
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measurements along three axes fixed to the DVL itself and an estimated 3× 3 covariance
matrix that represents the uncertainty of the velocity measurements. The A50 was at the
time of writing the world’s smallest commercially available DVL - by far, according to
their website (Waterlinked, 2018).

2.2.6 Ultra-Short BaseLine

The USBL system fitted to the BlueROV2 is a Sonardyne Micro-Ranger. This is a very
small and light system with basic performance. Quoting their own website3 for the Micro-
Ranger 2: “For when good is good enough”. USBL is an underwater acoustic positioning
system consisting of a transceiver and a transponder. The transceiver is typically mounted
to a mothership, while the transponder is mounted to the UUV. Since the system consists
of only two parts, the attitude of the transceiver becomes very important. The transceiver
is therefore fitted with internal attitude sensors for roll and pitch, and a magnetic compass
used to determine yaw. GNSS positioning is also required to determine the transceiver
position. The USBL system outputs the position measurement in a three-dimensional
vector. Additionally, it outputs an estimate of the standard deviation of the horizontal
part of the measurement.

2.2.7 Attitude and Heading Reference System

The BlueROV2 also has a built-in observer for attitude, which is referred to as Attitude
Heading Reference System (AHRS). The observer estimates roll, pitch, and yaw using the
gyro, accelerometer, and magnetometer.

3Micro-Ranger 2 website: https://www.sonardyne.com/products/micro-ranger-2-shallow-
water-usbl-system/

https://www.sonardyne.com/products/micro-ranger-2-shallow-water-usbl-system/
https://www.sonardyne.com/products/micro-ranger-2-shallow-water-usbl-system/


Chapter 3

Notation

This thesis contains a lot of mathematical notation. When possible, parameters are
gathered in vectors and matrices to simplify notation and keep the number of variables
under control. It is worth noting that this chapter only introduces the notation, and
it is further developed through the coming chapters. Section 3.1 describes how scalars,
vectors, and matrices are distinguished. Section 3.2 explains how functions are denoted.
Lastly, Section 3.3 introduces a special operator that will be used to simplify notation
later in the thesis.

3.1 Scalars, vectors, and matrices

In order to distinguish scalars, vectors, and matrices, they have different notations. Scalars
are denoted with lowercase letters, vectors with lowercase bold letters, and matrices with
uppercase bold letters. Examples are shown Table 3.1.

Table 3.1: Notation for scalars, vectors, and matrices

Type Case Bold Example
Scalar lower No a
Vector lower Yes q
Matrix UPPER Yes R

In order to distinguish covariance matrices from other matrices, they are written in calli-
graphic font. An example of a covariance matrix is R. Parameter errors are denoted as
a δ (greek letter delta) in front of the parameter. Examples are: δa (scalar), δa (vector),
and δA (matrix). These errors are to be thought of as close to zero, not infinitesimal,
but in a range where small angle approximations like sinx ≈ x are valid. Estimates of
true parameters are denoted with a hat. Example: x̂ is the estimate of the vector x.

7
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3.2 Functions

Functions also have different notations based on what they return. This notation is the
same as for parameters except that the symbols are upright instead of in italics, see
Table 3.2

Table 3.2: Notation for functions

Return type Case Bold Example
Scalar lower No sin(·)
Vector lower Yes q(·)
Matrix UPPER Yes R(·)

3.3 Discrete variable update operator

In a discrete system, it is common to update a variable based on the previous value of
the same variable. An example where x is the variable and k is the time step:

x[k + 1] = x[k] + 1 (3.1)

To avoid the cluttering and often unnecessary square brackets notation, we will use an
arrow instead of the equal sign. The same example becomes:

x← x+ 1 (3.2)

, which can be read as; “update x using the existing version of x”. This notation is
inspired by Solà (2017).



Chapter 4

Reference Frames and Vectors

The reference frames used in this thesis are defined in Section 4.1. The notation used to
denote vectors within these frames is found in Section 4.2, and operators used on vectors
in the frames in Section 4.3.

4.1 Reference frames

4.1.1 North East Down frame

Figure 4.1: An example of a NED frame at the SINTEF ACE fish farm at Korsneset
(Picture from SINTEF 4, modified with axes).

4Picture from: https://www.sintef.no/en/all-laboratories/ace/

9

https://www.sintef.no/en/all-laboratories/ace/
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A North-East-Down (NED)-frame will be used as a reference to describe the position of
the ROV. A NED frame has its x-axis pointing north, y-axis to the east, and z-axis down.
See an example of such a frame in Figure 4.1. The USBL positioning system returns
measurements in a NED frame, and in order to keep things simple we choose to just
inherit that frame. This means that the coordinate origin is earth fixed (not moving with
the vehicle) and that the exact location of the origin is chosen in the USBL system. Since
the surface of the earth is curved, it is important that the coordinate origin is chosen
reasonably close to where the ROV will operate.

4.1.2 The body frame

Figure 4.2: The body frame (picture from the BlueROV2 website, modified with axes)

The UUVs body frame is defined according to the convention in Fossen (2021). The x-axis
points forwards, the y-axis starboard, and the z-axis down as can be seen in Figure 4.2.
The coordinate origin is set to the center of the IMU. This is recommended in Fossen
(2021) to avoid numerical derivation of measurements when the accelerometer measure-
ments are used in an observer. ”b” is used as a superscript to denote vectors in the body
frame.

4.1.3 DVL frame

The DVL is mounted to the ROV in an orientation where its axes do not align with the
body frame. Because of this, it is necessary to define a frame for the DVL. The axes are
defined in the DVLs online documentation (Waterlinked, 2018) and are drawn in 4.3.

• X axis is pointing forward (LED is forward, cable backward)

• Y axis is pointing right

• Z axis is pointing down (mounting holes are up, transducers are down)
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Figure 4.3: The DVL frame (picture from Waterlinked (2018), modified with axes)

Superscript ”d” is used to denote vectors in the DVL frame.

4.2 Vector notation

A lot of three-dimensional vectors will be used in this thesis. They will generally have
sub- and superscripts to denote which reference frames they belong to and what they
describe. The superscripts denote the reference frame in which the vector is represented.
Subscripts are used to denote what the vector describes. We will explain this through
an example; the vector pca/b is the position of the coordinate origin of frame a relative to

the coordinate origin of frame b given in frame c. Since we very often end up with b/n in
the subscript, the subscripts are not used in those cases, meaning that pc is the position
of the coordinate origin of the body frame relative to the coordinate origin of the NED
given in frame c. The notation of vectors used in this thesis is summarized in Table 4.1.

Table 4.1: List of vectors

Parameter Symbol Description
Position p Distance along x,y,z axes
Velocity v Velocity along x,y,z axes
Acceleration a Acceleration along x,y,z axes
Rotation vector α Angle about direction in space
Angular velocity ω Angular velocity about x,y,z axes
Bias b Bias along/about x,y,z axes
Process noise w Noise along/about x,y,z axes
Measurement noise η Noise along/about x,y,z axes
Lever arm r Distance along x,y,z axes
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4.3 Vector Operators

4.3.1 Rotations

Rotation matrices are used to transform vectors between coordinate frames. This thesis
follows the passive body-to-ned convention for rotation matrices, meaning:

pnb/n = Rpbb/n (4.1)

The inverse operation is the transpose of the rotation matrix:

pbb/n = R⊤pnb/n (4.2)

The symbol R is used exclusively for rotations between the body frame and NED. We
also need to define a matrix to do the constant rotation between the DVL frame and
body. Let D be defined such that:

vbd/n = Dvdd/n (4.3)

4.3.2 Vector cross products and skew-symmetric matrices

Let ac =
[
ax ay az

]⊤
be a vector in frame c. The skew symmetric matrix operator S

on a is defined as:

S(ac) =

 0 −az ay
az 0 −ax
−ay ax 0

 (4.4)

The matrix resulting from the operator S has the property S(ac)⊤ = −S(ac), which is
the definition of a skew-symmetric matrix. The inverse operation from matrix to vector
is here referred to as the vex-operator and is defined such that:

ac = vex (S(ac)) (4.5)

The vector cross-product is often useful for analysis in 3-dimensional reference frames.
The skew-symmetric operator is related to the cross-product in the following way:

ac × bc = S(ac)bc (4.6)

In this thesis, the cross-product is replaced by the skew-symmetric matrix operator for
consistency. Also, note that the operator follows the same anticommutative property as
the cross product:

ac × bc = −(bc × ac)

⇕ (4.7)

S(ac)bc = −S(bc)ac
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Attitude representations

The orientation of the body frame in relation to NED will in this thesis be referred to
as attitude. Attitude can be represented in a number of ways. This chapter presents
the different attitude representations used in the later chapters and is taken from Stens̊a
(2022). Section 5.1 presents the attitude representations, and section 5.2 lists the relevant
conversion between them.

5.1 Attitude representations

There are multiple ways to represent attitude. The four that are most relevant for this
thesis are (Groves, 2008):

• Euler angles

• Rotation matrix

• Quaternions

• Rotation vector

5.1.1 Euler angles

The Euler angles describe three subsequent rotations about three coordinate axes. These
rotations are called roll, pitch, and yaw. This makes it perhaps the most intuitive rep-
resentation of attitude. Euler angles are the standard parametrization for attitude in
guidance, navigation, and control systems for surface vessels in Fossen (2021). The sym-
bols used for Euler angles in this project are ϕ, θ, and ψ describing roll, pitch, and yaw
respectively. The Euler angle parametrization suffers from singularities. No matter how
you define the rotations you always end up with at least two. For the standard Euler
angles, which are used here, the singularities occur at θ = ±90◦. This is usually not
a problem for surface craft (if the bow is pointing straight down there is little use for
navigation), but it is likely that a ROV to end up in such orientation.

13



14 CHAPTER 5. ATTITUDE REPRESENTATIONS

5.1.2 Rotation matrix

Rotation matrices describe the rotation of a vector from one frame to another. They
are mathematically very intuitive as the conversion is just a matrix multiplication and
the reverse operation involves multiplication with the transpose of the matrix. As for
notation, R is used to denote a rotation from the body frame to the NED frame. This
follows the passive body-to-ned convention used in Solà (2017). The opposite rotation
is achieved through the transpose; R⊤. This eliminates the need for cluttering sub- and
super-scripts.

5.1.3 Unit quaternions

Unit quaternions is a four-parameter, singularity-free attitude representation (Solà, 2017;
Fossen, 2021). A quaternion can be viewed as a complex number with 1 real and 3 complex
parts. The intuition behind how quaternions work is therefore related to how traditional
complex numbers work. As for notation, the letter q is used for the quaternion. The
quaternion convention used here is the Hamiltonian convention used in Solà (2017) and
is represented in vector form. This follows the passive body-to-world convention, similar
to what is used for the rotation matrix in 5.1.2. q(·) is used to denote the quaternion as
a function of something else. For some operations it is necessary to split the quaternion
into its real (η) and complex (ϵ) parts:

q =

[
η
ϵ

]
, η ∈ R, ϵ ∈ R3 (5.1)

Quaternions are considered to be computationally light weigh and have easy-to-define
operations like the quaternion product (Solà, 2017):

qa ⊗ qb =

[
ηaηb − ϵ⊤a ϵb

ηaϵb + ηbϵa + ϵa × ϵb

]
(5.2)

The quaternion can be used to rotate vectors directly without converting to a rotation
matrix first. The quaternion rotation is defined such that a vector z can be rotated from
body to NED in the following way (Solà, 2017):[

0
zn

]
= q ⊗

[
0
zb

]
⊗ q∗ (5.3)

, where q∗ is the quaternion inverse, defined as:

q∗ =

[
η
−ϵ

]
(5.4)

5.1.4 Rotation vector

The rotation vector, often also referred to as an axis-angle parametrization is perhaps
the most basic way to represent attitude. The vector is 3-dimensional and describes a
direction in space. The length of the vector describes a rotation around that direction in
space. The symbol α (as in αttitude or αxis-αngle) is used to denote rotation vectors
in this project. The angle of rotation is just given as ∥α∥ to keep the notation simple.
As for all 3-parameter representations, it suffers from singularities. A really unfortunate
one where ∥α∥ = 0 (a vector with no length has no direction), and the representation is
non-unique for ∥α∥ = π (the negation will represent the same rotation).
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5.2 Conversion

When using multiple attitude parametrizations in the same system, it is necessary to be
able to convert between them. The relevant formulas are presented here.

5.2.1 Euler angles to rotation matrix

The rotation matrix can be constructed as subsequent rotations about three axes (Fossen,
2021):

R(ϕ, θ, ψ) = R(ψ)R(θ)R(ϕ)

=

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 (5.5)

5.2.2 Euler angles to quaternion

A quaternion can be constructed from the Euler angles as follows (Fossen, 2021):

q(ϕ, θ, ψ) =


cos ϕ

2
cos θ

2
cos ψ

2
+ sin ϕ

2
sin θ

2
sin ψ

2

sin ϕ
2
cos θ

2
cos ψ

2
− cos ϕ

2
sin θ

2
sin ψ

2

cos ϕ
2
sin θ

2
cos ψ

2
+ sin ϕ

2
cos θ

2
sin ψ

2

cos ϕ
2
cos θ

2
sin ψ

2
− sin ϕ

2
sin θ

2
cos ψ

2

 (5.6)

5.2.3 Rotation matrix to Euler angles

Let:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (5.7)

Then, according to Fossen (2021), the euler angles can be found as:

ϕ(R) = atan2(R32, R33) (5.8a)

θ(R) = − asin(R31), θ ̸= ±90° (5.8b)

ψ(R) = atan2(R21, R11) (5.8c)

5.2.4 Quaternion to rotation matrix

A simple formula is found in Fossen (2021):

R(q) = I3 + 2η S(ϵ) + 2S2(ϵ) (5.9)

5.2.5 Rotation vector to quaternion

From Solà (2017). Note that curly brackets {·} denote “as a function of a rotation vector”.

q{α} =

[
cos ∥α∥

2
α

∥α∥ sin
∥α∥
2

]
(5.10)
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5.2.6 Rotation vector to rotation matrix

The mathematical way to convert rotation vectors into rotation matrices is through the
Rodrigues rotation formula (Solà, 2017):

R{α} = I3 +
sin ∥α∥
∥α∥

S(α) +
1− cos ∥α∥
∥α∥2

S2(α) (5.11)

5.2.7 Attitude jacobian

It is handy to also have a way of converting between Euler angles and rotation vectors using
a Jacobian. This is only intended for small angles δϕ, δθ, δψ about ϕ, θ, ψ respectively.
The jacobian is derived in Appendix A.3. The jacobian Tatt is defined such that:

δαn = Tatt

δϕδθ
δψ

 and

δϕδθ
δψ

 = T−1
att δα

n (5.12)

, where δαn is a small rotation vector in NED and δϕ, δθ, and δψ are small errors angles.

Tatt =

cos ψ̂ cos θ̂ − sin ψ̂ 0

sin ψ̂ cos θ̂ cos ψ̂ 0

− sin θ̂ 0 1

 (5.13)

T−1
att =


cos ψ̂

cos θ̂

sin ψ̂

cos θ̂
0

− sin ψ̂ cos ψ̂ 0
cos ψ̂ sin θ̂

cos θ̂

sin ψ̂ sin θ̂

cos θ̂
1

 (5.14)



Chapter 6

Literature Review

This chapter contains a preliminary literature review providing background for choosing
an observer for the BlueROV2 and is largely taken from Stens̊a (2022). Section 6.1 is
concerned with modeling of ROVs. Potential observers are presented in Section 6.2.
Finally, Section 6.3 concerns ROV operations at fish farms.

6.1 Modeling of ROVs

6.1.1 Hydrodynamic modeling

When designing Guidance, Navigation and Control (GNC) systems for marine craft, the
first step is often to find a model for the craft. Having a model of a marine craft is useful
for many reasons, the most important for this scenario are:

• Simulation

• Model-based observer design and tuning

• Model-based controller design and tuning

Modeling of marine craft is thoroughly described in Fossen (2021). In GNC applications,
the resulting model is often on the form:

η̇ = J(η)ν (6.1a)

MRBν̇ +CRB(ν)ν + g(η) = −MAν̇r −CA(νr)νr −D(νr)νr + τ + τwave (6.1b)

where η is a state vector containing position and attitude in NED, ν is a state vector
containing linear and angular velocity in the body frame, and νr is a state vector con-
taining linear and angular velocity relative to the surrounding water in the body frame.
The matrix J is a mapping between the body and the world frame. MRB, CRB are the
rigid body inertia and coriolis matrices. g is a vector describing gravity and buoyancy.
MA, CA and D are hydrodynamical terms describing added mass, added Coriolis, and
damping. τ are forces that the vehicle’s actuators (rudders, propellers, thrusters, etc.)
apply. τwave wave forces. Forces due to currents are captured in hydrodynamical terms
since relative velocities are used.

17
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6.1.2 Kinematic model

It is also possible to avoid hydrodynamical modeling and instead rely on measurements
of acceleration. The relation between the states can be described through differential
equations. Acceleration, velocity, and position are related, and so are the angular velocity
and attitude. For the translational model, there are two practical options to choose from,
depending on which frame you want to express velocity in. The model with velocity in
NED is:

ṗn = vn (6.2a)

v̇n = an (6.2b)

, where p, v, and a are three-dimensional vectors describing position, velocity, and ac-
celeration respectively. This is the model used in Solà (2017). Choosing to model the
velocity in the body frame results in a slightly more complicated model:

ṗn = R(q)vb (6.3a)

v̇b = ab − S(ωb)vb (6.3b)

, where ωb is the angular velocity. This model is used in Farrell (2008) and is also the
basis for the hydrodynamical model in Section 6.1.1. When using quaternions as attitude
representation, the attitude model becomes the quaternion differential equation:

q̇ =
1

2
q ⊗

[
0
ωb

]
≜

1

2
q ⊗ ωb (6.4)

, where q is the quaternion. This is the most common, as the unit quaternion is a minimal
singularity-free representation of attitude. Farrell (2008), Solà (2017) and Fossen (2021)
all recommend this approach. Alternatively, it is possible to use the rotation matrix
differential equation:

Ṙ = RS(ωb) (6.5)

where R is the rotation matrix. Gade (1997) uses this representation of attitude.

6.2 Observers

This section is a summary of the different observers that were considered for the ROV
in this thesis. The main requirement is that they must be able to work in 6-Degree-Of-
Freedom (DOF).

6.2.1 Complementary filter

Mahony et al. (2008) uses a classical control theory approach with feedback loops and
integral bias estimation to aid the gyro measurements. The aiding is based on reference
vectors. One for the direction of gravity measured through the accelerometer and one lin-
early independent of gravity measured through the magnetometer. The reference vectors
are normalized to avoid any errors due to modeling or acceleration other than gravity or
magnetic field other than that of the Earth. Orthogonalization of the reference vectors
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may also be used in order to improve performance. The version used here is from Grip
et al. (2017) with slightly modified notation.

rbm =
ybmag∥∥ybmag∥∥ (6.6a)

rbf =
ybacc
∥ybacc∥

(6.6b)

σ = km(r
b
m ×R⊤(q̂)r̄nm) + kf (r

b
f ×R⊤(q̂)r̄nf ) (6.6c)

ω̂b = ybgyro − b̂bgyro (6.6d)

˙̂q =
1

2
q̂ ⊗ (ω̂ + σ) (6.6e)

˙̂
bbgyro = −Kiσ (6.6f)

Where r̄nm and r̄nf are the reference vectors for the direction of the magnetic field and
gravity in NED respectively. σ is the attitude error. Ki, km and kf are tuning constants.

There are also other options for complimentary filters, for instance, the gradient descent
observer by Madgwick et al. (2011). Instead of the classical feedback loop, a gradient
descent algorithm is used to fuse the aiding measurements into the attitude estimate.
The observer is based on quaternions.

6.2.2 Integration filter

Dukan (2014) proposes a sensor-based nonlinear observer consisting of; the accelerometer
measurement equation, translational kinematics, and a bias model. Injection terms are
added in classical nonlinear observer fashion.

âb = ybacc − b̂bacc +R⊤(q̂)gn (6.7a)

˙̂pn = R(q̂)v̂b +K11δy
n
pos +K21R(q̂)δybvel (6.7b)

˙̂vb = âb − S(ω̂b)v̂b +K12R
⊤(q̂)δynpos +K22δy

b
vel (6.7c)

˙̂
bbacc = −K13R

⊤(q̂)δynpos −K23δy
b
vel (6.7d)

δynpos = ynpos − p̂n (6.7e)

δybvel = ybvel − v̂b (6.7f)

Where ynpos is the available position measurement, in this case, a combination of USBL
and pressure sensor measurements and ybvel would be the DVL measurement in this case.
Kij are tuning parameters.

6.2.3 Aided INS

Aided Inertial Navigation System (INS) is an observer based on an INS. The INS is a type
of navigation system where the actual movement of the vessel is measured in terms of
acceleration and angular velocity, and integrated to obtain position, velocity, and attitude.
The INS needs to be ‘aided” using external measurements in order to counteract the drift
caused by this (otherwise) open loop integration. In this case, we refer to aided INS as
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an INS aided using a Kalman filter. This results in an observer which allows for more
advanced modeling of noise and otherwise inherit the strengths of the Kalman filter.
Typically, the unit quaternion is used as attitude representation and then the observer
is often called Multiplicative Extended Kalman Filter (MEKF) (Fossen, 2021). Aided
INS can be used to estimate all 6-DOF through a neat trick where the attitude error is
represented using 3 parameters.

6.2.4 Model-based Nonlinear passive obverver

The nonlinear passive observer is a model-based observer designed specifically for marine
craft. The observer design is based on a model in the form of (6.1) and passivity arguments
from nonlinear theory to simplify tuning and guarantee stability. The original observer
was proposed for 3-DOF surface vessels (Fossen and Strand, 1999), but it can easily be
extended to 6-DOF which is done in for instance Hval (2012). The passive observer
requires at least an external measurement of position and a measurement/estimate of
attitude in order to work. It is also possible to utilize a velocity measurement.

6.2.5 Model-based Extended Kalman filter

The Extended Kalman filter (EKF) is a Bayesian observer based on the original Kalman
filter (Kalman, 1960). The EKF overcomes the limitation of the original Kalman Filter,
which assumes linearity in system dynamics and measurements. The EKF is designed
to estimate the system states by combining measurements from sensors (like USBL and
DVL) with a mathematical model of the system, like the hydrodynamical model (6.1).
The EKF approximates the system’s nonlinear behavior by linearizing the model around
the current estimated state. This linearization process involves calculating the Jacobian
matrix, which represents the partial derivatives of the model equations with respect to the
state variables. The EKF operates in two steps: the prediction step, where the system
state is estimated based on the previous state and the system model, and the update
step, where the predicted state is corrected using measurement data. The prediction step
is run iteratively, with the update step following whenever measurements are available.
The downsides of the EKF are primarily related to the linearization around current state
estimates which leads to a filter where stability cannot be proven theoretically.

6.3 ROV operations at fish-farms

6.3.1 The environment in a fish farm

The inside of a net cage is an underwater, Global Navigation Satellite System (GNSS)-
denied location where the ROV may not be possible to locate visually from the surface.
The water is saline and gravity may be different from location to location but can be
considered constant inside the limited area of the fish farm. Since the fish farms may
be placed further from the coast than traditionally, the environmental conditions can be
fairly rough. This includes winds while operating at the surface, but more importantly,
ocean currents and dynamically changing wave loads since at least parts of the net pens
are located in the wave zone. The net pens are filled with a large amount of fish. These
may get in the way of sensors and cameras and may complicate operations. Lastly, the
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net pens themselves are constantly moving with currents and waves and the location and
shape of the net are therefore difficult to model/predict.

6.3.2 Autonomous inspection through net following

Fish cages are fairly large structures, and manually controlling an ROV to inspect the
entirety of the cages net can be a challenging and time-consuming/labor-intensive job.
This is extra challenging in rough weather conditions when waves and currents apply forces
which is difficult for a human to predict and counteract manually. This is motivation to
design more advanced control systems for the ROV. Ideally, the ROV should be able to
complete the task of traversing the net pen walls by itself. This is the objective of the
master thesis of Amundsen (2020). The basic idea is to navigate using a DVL mounted
to the front of the ROV. The DVL returns the distance to the net pen wall along 4 non-
parallel beams. The attitude and distance relative to the wall become observable through
these 4 measurements and along with a sufficient velocity estimate, this is sufficient to
provide feedback for aLine-of-Sight (LOS) path following controller (Fossen, 2021) which
integral effect can take care of the environmental forces acting on the vehicle. This means
that the job of the ROV operator is reduced to setting a desired speed, distance to the
net wall, and direction so that the ROV will traverse the net pen and deliver more or less
smooth video for inspection of the net.

6.4 Sensors for underwater vehicles

6.4.1 Ultra Short Baseline

USBL is a type of acoustic positioning system used underwater. A USBL system consists
of two parts; a transceiver, which is wired and returns the measurements to the surface,
and a transponder which is wireless and only used as a beacon to locate for instance a
ROV. The system works in the following way (Jaffre et al., 2005):

1. The transceiver sends an ”interrogation signal” (asking the transponder to respond).

2. The transponder receives the signal and waits a fixed amount of time before it
answers with a signal.

3. The signal is received by the transceiver. The direction in which the signal is received
(Direction Of Arrival (DOA)) is measured and combined with the receiver’s attitude
sensors to calculate the azimuth and elevation of the transponder relative to the
transceiver.

4. The transceiver uses the time elapsed between sending and receiving to calculate
the range to the transponder.

5. Cartesian coordinates are calculated from the spherical (range, azimuth, and eleva-
tion).

In general, USBL systems are the most basic type of underwater positioning since it only
requires two parts. More advanced systems are characterized by the need for multiple
transmitters in order to triangulate position. Examples are Short BaseLine (SBL) and
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Long BaseLine (LBL), where the ”length of the baseline” refers to the distance between
transmitters, and more distance means better triangulation.

6.4.2 Doppler Velocity log

Doppler Velocity Logs (DVL) are acoustic sensors that can be fitted to moving crafts in
order to measure velocity (and potentially also distance). The DVLs working principle
is based on the Doppler effect. Four non-parallel transmitters send a signal toward a
reflecting surface and await the echo to return. When the echo is received, the frequency
is measured and compared to the original signal. The change of frequency determines
the speed along the transmitter direction. Since the four transmitters are non-parallel,
velocity can be calculated in three dimensions. The time between sending and receiving
can be used to calculate the distance to the reflecting surface (Farrell, 2008).



Chapter 7

Choise of Observer

This chapter covers the considerations made in the process of choosing the best observer
for this specific vehicle, operating in the specific environment using the specific sensor
suite. Section 7.1 states the performance requirements for the observer. Section 7.2
discusses the choice between a model-based and sensor-based observer design. Section 7.3
is a brief discussion on the choice between a Kalman filter and a nonlinear observer.
Section 7.4 concludes on which type of design is chosen.

7.1 Performance requirements

The vehicle should be able to navigate using feedback from the observer. When used
for inspection and maintenance it will be inside the net pens and fairly close to the net.
This means that the position (and velocity) estimates must be fairly accurate to avoid
the UUV getting tangled in the net, or worse; creating holes in the net.

Since fish, nets, and moorings are present, the hydroacoustic sensors (USBL and DVL) can
be blocked. In these cases, the sensors will not return correct measurements or not return
measurements at all (signal loss). This can happen every now and then, but also over
longer time periods (multiple seconds). The observer must be robust to give sufficiently
good estimates in these cases. This is often referred to as dead-reckoning capability.

The vehicle is light, small, fast, and agile. Acceleration, velocity, and angular velocity
can change significantly in a very short amount of time. Since the observer output will
be used as feedback to a control system, it is important that it is able to follow these
changes to prevent unnecessary phase lag in the feedback loop. A high observer update
rate is required to achieve this.

The vehicle is actuated in 6-DOF and can be controlled to any attitude. Whether the
use case requires this to be possible is a different discussion, but for the robustness of the
observer and to not impose limitations on the design of the control systems, the observer
should be able to estimate all attitudes singularity free.

Since the vehicle will work in the wave zone and in locations where the current can be
strong and dynamically changing, the observer must be able to function even though the
external forces on the vehicle are non-constant.

23
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7.2 Model-based vs sensor-based

There are two main categories of observers to choose from; model-based and sensor-based
observers. This section discusses the pros and cons of the two.

7.2.1 Model-based observers and hydrodynamical modeling

Model-based observers are the go-to solution for larger ships and other crafts that have
a hull that is easy to model using hydrodynamical models (Section 6.1.1). In the case of
the BlueROV2, the shape of the hull is much more difficult to model. The BlueROV2 is
built like a frame with thrusters inside. Finding coefficients for the drag and added mass
is nontrivial. It should also be noted that the BlueROV2 (heavy) has a massive amount
of thrust available compared to its size making it very agile and quick. The exact effect
of this is thought difficult to model. The thrusters are also located and oriented in such
a manner that their wake may affect each other as well as the hull/frame.

Nextly, the effect of the dynamically changing environment is difficult to take into con-
sideration in a model-based observer. External forces are usually modeled as a residual
force (a bias) with the assumption that it is constant or slowly varying. This assumption
may not be reasonable.

A model-based observer would have to be designed as a hydrodynamical model with
the vehicle’s thrust as the input and USBL, DVL, and the pressure sensor as aiding
measurements for position and velocity as well as the AHRS for attitude aiding. This
utilizes the most important sensors in our sensor suite except the accelerometer.

7.2.2 Sensor-based observers and sensor quality

Sensor-based observers are based on measuring the actual movement of the vehicle. For
comparison are model-based observers based on calculating what the movement should be.
Measuring the movement renders hydrodynamical modeling and estimation of external
forces unnecessary.

The quality of the sensors is vital to the performance of the observers. Whether the
consumer-grade inertial sensors on the BlueROV2 are sufficient is uncertain. Inertial
sensors are prone to biases causing drift in the observer estimates and the severity of these
effects are dependent on the quality (and price tag) of the sensors themselves. The required
performance for this application is that the inertial sensors must be able to maintain a
sufficiently precise measurement during time periods when USBL measurements are not
available. This is assumed to be periods of up to 5 seconds.

A sensor-based observer would require the accelerometer and gyro to be used to measure
the movement of the vehicle, and USBL, DVL, and the pressure sensor for position and
velocity aiding. Additionally, the AHRS can be used for aiding the attitude estimates.
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7.3 Kalman filter vs nonlinear observer

It is also necessary to choose between Kalman filter observers and nonlinear observers.
Nonlinear observers have the strength that they can be proven stable, which nonlinear
extensions of the Kalman filter cannot. Nonlinear observers are also in general less de-
manding on computational power. The main strength of the Kalman filter is that along
with estimating the system states, it also estimates the covariance of the state estimate.
This is helpful to ensure fast convergence after the loss of signal from acoustic sensors. A
Kalman filter will also utilize the covariance information reported by the USBL and DVL.
This could help the observer to avoid putting too much emphasis on bad measurements.

7.4 Conclusion

In order to avoid hydrodynamical modeling and to ensure that the observer is able to cap-
ture the impact of the dynamically changing environment, we will go with a sensor-based
approach. We will use a Kalman filter to incorporate the covariance information returned
from the DVL and USBL. The combination is referred to as “Aided INS”. There are still
some decisions to be made. First and foremost, the attitude parametrization must be
chosen. The quaternion will be used over the rotation matrix for its computational effi-
ciency and overall simplicity. This allows for a singularity-free representation of attitude.
Secondly, we must choose a kinematic model for the translational motion. The question
is whether velocity should be represented in the body or NED-frame. In this case, the
velocity sensor (the DVL) returns measurements in a frame that is rotating with the body
frame. This means that if we choose to represent velocity in the body frame, the DVL
measurements can enter the observer in a linear fashion (does not need to be rotated).
For this reason, the velocity will be represented in the body frame.
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Chapter 8

Background Information and Theory

This chapter provides the theory specific to the modeling and design phase of the ob-
server. Sections 8.1 and 8.2 concern modeling of waves and water pressure due to waves.
Section 8.3 contains theory specific to the aided INS observer design. Section 8.4 is a
section on the discretization of stochastic state space systems, which is important in
Kalman filtering. The concept of Normalized Innovation Squared (NIS) is introduced in
Section 8.5, followed by a note on outlier rejection in Section 8.6. Dynamic positioning
and wave filtering are presented in Section 8.7. Lastly, frequency estimation is discussed
in Section 8.8.

8.1 Wave modeling

Ocean waves are often modeled using a wave spectrum describing which wave frequencies
are present in the sea. Multiple such spectra have been introduced over the years, for in-
stance, the JONSWAP spectrum and the Modified Pierson-Moskowitz spectrums (Fossen,
2021). Since the modeling of waves is incredibly complex, they all have in common that
they are to some degree based on experimental data and are therefore approximations.
In practice, wave spectrums have a peak frequency (the frequency with the largest mag-
nitude), and have a bell shape around this frequency. A simplified model to generate such
a spectrum is a second-order linear system driven by white noise on the form (Fossen,
2021):

ξ(s) =
2λω0s

s2 + 2λω0s+ ω2
0

ε(s) (8.1)

, where ξ is the generated wave spectrum, ω0 is the peak frequency, λ is a damping term
that determines the shape of the wave spectrum, and ε is the driving white noise term,
which variance governs the overall strength of the waves. The model (8.1) can be used to
generate waves in for instance a simulator or to model waves in a Kalman filter or other
observers, for instance, the passive observer in Fossen and Strand (1999).
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8.2 Pressure due to waves

On the surface, waves appear to be vertical movements of water. This is also the case
under the surface where the water molecules move vertically. Sub-surface waves can be
considered as fluctuations in pressure at a specific point. The pressure can be modeled
as a function of the waves at the surface. A 2D model is presented in Willumsen et al.
(2007) which will be used as the primary source on this specific subject. The model is
based on linear wave theory which is a topic we will not dive deeper into than absolutely
necessary.

Let x be the horizontal and z the vertical position (below average surface level) of the
point we want to examine. The depth from the surface to the sea bed is h. ρ and g
are the water density and local gravity. The amplitude of the surface wave at time t
and horizontal position x is η(t, x), while k is the wave number. The component of the
pressure that is due to waves becomes pw(x, z, t):

pw(x, z, t) = −ρg
cosh (k(h− z))

cosh (kh)
η(x, t) (8.2)

From (8.2) we can see that the fraction reaches its minima at the bottom (z = h) and that
it is equal to 1 at the surface (z = 0). In general, the effect of surface waves on pressure
attenuates with depth. The model (8.2) can also be converted to the frequency domain
(Willumsen et al., 2007) in order to observe how depth below the surface affects the wave
spectrum. In addition to the general attenuation of amplitude, the higher frequencies
tend to attenuate faster, leading to a peak frequency that gets lower with depth (and
always lower than that on the surface).

8.3 Aided INS

8.3.1 Inertial navigation system

An INS is a 6-DOF dead-reckoning navigation system. The INS is based on integrating
inertial measurements of angular velocity and specific force (acceleration including the
acceleration due to gravity) into estimates of attitude, velocity, and position (Groves,
2008). The estimates in the INS will drift and become inaccurate over a relatively short
time. Therefore, the INS needs so-called “aiding”, meaning external measurements are
used to correct the INS-estimates. In aided INS, this is typically done using an Error
State Kalman Filter (ESKF)

8.3.2 Error State Kalman Filter

The ESKF is a Bayesian estimation algorithm that can be used to estimate the error in
a state estimate. The ESKF algorithm is practically the same as the Extended Kalman
Filter (EKF). The ESKF algorithm can be divided into two parts, one is the prediction
step:

P̂ ← F P̂F⊤+Q (8.3)

, where P̂ is the state error covariance matrix, F is the discrete time error state transition
matrix, and Q is the discrete time process noise covariance matrix. The prediction step
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is run whenever the state estimate is updated through the process model. The other step
is known as the update step:

S = HP̂H⊤+R (8.4a)

K = P̂H⊤S−1 (8.4b)

δx = Kδy (8.4c)

P̂ ← (I −KH)P̂(I −KH)⊤+KRK⊤ (8.4d)

, where S is the innovation covariance matrix, H is the measurement jacobian, R is the
measurement covariance matrix, K is the Kalman gain, δx is the estimated state error,
and δy is the innovation. The update step is run whenever one or more measurements
are available (Solà, 2017).

8.3.3 Aiding measurements

Aiding measurements are measurements used to correct the INS state estimates through
the ESKF update step. The aiding measurements are (usually) modeled on the form:

y = h(x) + η (8.5)

, where h(x) is a function of the true state x, and η is a measurement noise vector. A
predicted measurement ŷ can be constructed from the INS state estimate x̂ such that:

ŷ = h(x̂) (8.6)

In order to be usable in the ESKF, the innovation δy = y − ŷ is calculated. From the
innovation, it is possible to find a measurement Jacobian H with respect to the error
state δx such that (Solà, 2017):

δy = y − ŷ ≈Hδx+ η (8.7)

Where η is the measurement noise arising from the aiding measurements measurement
model (8.5).

8.4 Discretization of stochastic state space systems

A system on the form:
ẋ = Ax+Gw (8.8)

, where x is the state vector, A is the system matrix, G is the noise matrix and the noise
vector w is distributed as:

w ∼ N (0,W) (8.9)

, can be discretized over a time step ∆t, to the form:

x← Fx+ n (8.10)

, where the transition matrix F can be found as:

F = exp (A∆t) (8.11)
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, and the noise term n is distributed as:

n ∼ N (0,Q) (8.12)

Q can be found as (Bar-Shalom et al., 2001):

Q =

∫ ∆t

0

exp (A(∆t− τ))GWG⊤exp (A⊤(∆t− τ))dτ (8.13)

The integral in (8.13) can be calculated efficiently through a power series expansion using
the method of Van Loan (1978):

exp

([
−A GWG⊤

0 A⊤

]
∆t

)
=

[
××× V2

0 V1

]
(8.14)

, where Q is found as:
Q = V⊤

1 V2 (8.15)

8.5 Normalized innovation squared

Normalized innovation squared (NIS) is a consistency metric commonly used in Kalman
filtering. The NIS, ϵ is calculated like:

ϵ = δy⊤S−1δy (8.16)

, where δy is the innovation vector and S is the innovation covariance (Bar-Shalom et al.,
2001). The general idea is to check whether the innovation covariance is consistent with
the innovations observed. The NIS metric will in general follow a χ2 distribution. To
check for consistency, it is common to use a χ2 confidence interval with lower and upper
bounds:

ϵlower = chi2inv(
α

2
, ny) (8.17a)

ϵupper = chi2inv(1− α

2
, ny) (8.17b)

, where ny is the number of elements in the innovation δy, chi2inv is the inverse cumulative
distribution function of the χ2-distribution, and the parameter α ∈ (0, 1) determines the
size of the confidence interval. The consistency check can be interpreted as: “We can be
100(1− α)% certain on consistency when ϵ ∈ [ϵlower, ϵupper]”. The NIS will naturally vary
a lot over time and it can therefore be better to look at the average of the NIS over a
number of samples N. This leads to the Average Normalized Innovation Squared (ANIS)
metric:

ϵ̄ =
1

N

N∑
k=1

ϵk (8.18)

The ANIS confidence intervals become:

ϵ̄lower = chi2inv(
α

2
, Nny)/N (8.19a)

ϵ̄upper = chi2inv(1− α

2
, Nny)/N (8.19b)
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8.6 Outlier rejection

Some sensors have issues with measurements that are outright wrong, meaning that they
do not reflect reality at all and are unpredictable such that they cannot be modeled. In
these cases, it may be necessary to make sure that measurements that are incompatible
with the sensor model are classified as what we will refer to as outliers. The idea of outlier
rejection is to avoid outliers from entering the observer and impacting the estimates.

8.7 Dynamic Positioning

For fully actuated vessels and vehicles it is possible to use feedback control systems to
control position and attitude. This is more commonly known as Dynamic Positioning
(DP). For surface vessels, GNSS and gyrocompasses are combined in an observer for
position and heading feedback. Thrusters, main propellers, and rudders are actuators.
Dynamic positioning is also possible for sub-surface vehicles but with different sensors.
Dynamic positioning gives the operator the ability to keep the vehicle more or less still and
maintain position/attitude in potentially demanding environments where manual control
would be challenging.

8.7.1 Wave filtering

Wave filtering is an essential part of any dynamic positioning (DP) system for ships
(Fossen, 2021). Wave filtering is used to prevent wave motion from propagating through
the control system and applying oscillations to the actuators. This avoids wearing out
the actuators and saves a considerable amount of energy in the process. For model-based
marine craft observers, wave filtering has become a natural part of the navigation problem
and is often, and with great benefits, included in the observer itself. For example, the
passive observer by Fossen and Strand (1999).

For large ships, it is possible to get away with lowpass filtering measurements or estimates
to remove the wave frequencies, as the closed loop bandwidth of such ships is lower
than the wave frequencies occurring regularly at sea (Fossen, 2021). This means that all
frequencies that the ships are able to create using their own motion will slip through the
low pass filter. For smaller ships that are able to maneuver quicker, it is often necessary
for wave filtering to have bandstop characteristics since they make take frequencies inside
or even higher than the wave spectrum.

8.8 Peak frequency estimation

To avoid the addition of unnecessary phase lag and limit filtering out movement that
is not due to wave motion, the wave filters should be tuned to only filter out the wave
frequencies that are actually present. These frequencies can be different from time to
time and even change during long missions. When using wave filtering with notch filter
characteristics, it is common to set the notch frequency to the most dominant frequency
among the wave frequencies that are present, this will from now on be referred to as the
peak frequency. The peak frequency is not constant and needs to be estimated
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8.8.1 Sinusoidal signal frequency estimator

Given a sinusoidal signal with amplitude a and phase ϕ on the form:

u(t) = a sin (ωt+ ϕ) (8.20)

, it is possible to estimate the frequency of the sinusoidal signal, ω from u using an
estimator (Aranovskiy et al., 2007; Belleter et al., 2015) on the form:

ξ̇1 = ξ2 (8.21a)

ξ̇2 = −ω2
0ξ1 − 2ω0ξ2 + ω2

0u (8.21b)

˙̂
Ω = kξ1(ξ̇2 − Ω̂ξ1) (8.21c)

ω̂ =

√
−Ω̂ (8.21d)

, where the adaption gain k is a tuning parameter for the convergence rate and the natural
frequency ω0 should be chosen such that ω < ω0 (Belleter et al., 2015).



Chapter 9

Modeling

Modeling is important in any observer design. For the observer chosen in Chapter 7, the
modeling of sensors is central. Section Section 9.1 covers the modeling of the different
sensors. The kinematics of the vehicle itself is modeled in Section 9.2. Lastly, pressure
sensor biases are modeled in Section 9.3.

9.1 Sensors

This section focuses on developing measurement models for the sensors that will be a part
of the design. These are, in the order they are presented; the accelerometer, gyro, DVL,
USBL, and pressure sensor.

9.1.1 Acceletometer

The acceleration measures specific force in the body frame. Measuring specific force means
that it includes the acceleration due to gravity (gn) in addition to the acceleration (ab)
of the sensor itself. The accelerometer is subject to a slowly varying bias (bbacc), as well
as significant measurement noise (wb

acc). The measurement equation thus becomes:

ybacc = ab −R(q̂)gn + bbacc +wb
acc (9.1)

9.1.2 Gyro

The gyro measures angular velocity (ωb
gyro) in the body frame. This measurement is

subject to a slowly varying bias (bbgyro), and measurement noise (wb
acc). The resulting

measurement equation is:
ybgyro = ωb

gyro + bbgyro +wb
acc (9.2)

9.1.3 Attitude and Heading Reference System

As mentioned in Chapter 2, the BlueROV2 has an internal AHRS based on its gyro,
accelerometer, and magnetometer. This is to be used instead of the magnetometer. The
main motivation for this approach is to be able to utilize the calibration software of the
BlueROV that takes care of magnetic offsets and biases. The AHRS returns its attitude
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estimates in Euler angles. Due to the discontinuous nature of the Euler angles, we will not
attempt to use them directly but instead convert them to a rotation matrix and use that
in the model. We will however model the noise terms in roll, pitch, yaw, and linearized
using a Jacobian. Using the AHRS estimates for roll, pitch and yaw; yϕ, yθ, and yψ, let
the AHRS measurement model be:

Yahrs = R(yϕ + ηϕ, yθ + ηθ, yψ + ηψ)

≈ (I3 + S(ηnahrs))R(q) (9.3)

, where ηahrs are the individual noise terms ηϕ, ηθ, ηψ transformed into a rotation vector
in NED. Let the Euler angle noise terms be distributed as:

ηϕηθ
ηψ


︸ ︷︷ ︸
ηϕθψ

∼ N


00
0

 ,
σ2

ϕ 0 0
0 σ2

θ 0
0 0 σ2

ψ


︸ ︷︷ ︸

Rϕθψ

 (9.4)

, where Rϕθψ is the covariance matrix. The transformation jacobian (see Section 5.2.7)
is defined such that:

ηnahrs = T (yθ, yψ)ηϕθψ (9.5)

This results ηnahrs being distributed as:

ηnahrs ∼ N (0,T (yθ, yψ)RϕθψT (yθ, yψ)
⊤) (9.6)

9.1.4 Doppler Velocity Log

The Doppler Velocity Log measures velocity along three axes in a frame fixed to the DVL.
The DVL has additive measurement noise in the same frame as the measurement. This
results in the following measurement equation:

yddvl = vdd/n + ηddvl (9.7)

The DVL is mounted to the vehicle’s body frame at an orientation described by a rotation
matrix named D (see Section 4.3.1). We use this matrix to rotate the measurement into
the body frame, resulting in:

Dyddvl = vbd/n +Dηddvl (9.8)

The DVL is mounted with a lever arm rbd/b from the body CO such that:

Dyddvl = vbb/n − S(rbd/b)ω
b +Dηddvl (9.9)

9.1.5 Ultra-Short BaseLine

The USBL measures the position of the transponder pntp/n in NED. The transponder is

offset from the body Coordinate Origin (CO) by a lever arm rbtp/b. The measurement
noise is modeled as additive with a white noise term ηnusbl. The measurement equation
thus becomes:

ynusbl = pn +R(q)rbtp + ηnusbl (9.10)
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9.1.6 Pressure Sensor

The pressure sensor on the ROV will be used to determine depth. For many applications,
the conversion between pressure and depth are straight forward. However, since the ROV
will operate in the sea where tides are present and in environments with significant waves,
the picture is more complicated. This subsection covers modeling of the components that
contribute to the pressure sensor measurement. Figure 9.1 is meant to give an overview
of the four main contributors to the pressure measurement and these will be explained in
more detail in the following paragraphs.

Figure 9.1: Pressure contributions as seen from the pressure sensor on the ROV.

Atmospheric pressure

The pressure sensor measures absolute pressure meaning that the atmospheric pressure
will be a significant contributor to the total measurement. The atmospheric pressure at
sea level is in general nonstatic and changes slowly over time.

Hydrostatic pressure from sea level

Another major contributor is the hydrostatic pressure resulting from the sea level being
different than NED-zero (z = 0). This offset can change over time due to tides. It should
be noted that when defined as in Figure 9.1, this pressure component can become negative.
However, the sum of all contributors will always be positive and therefore physical. The
rate of change of this component is in general very slow.
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Hydrostatic pressure from vehicle position

The pressure component resulting from the ROVs vertical offset from the coordinate origin
is the component we are interested in using. This can be used to compute the vertical
offset. There are multiple formulas to do so, some take into account factors like; water
temperature, salinity, density, and compressibility. It is also not uncommon for seawater
to settle into layers of different densities. Since the ROV will not operate very deep and
we want to keep things simple, we will assume that the pressure is proportional to the
position through the density of the water and the local gravity:

pressure = ρ(gn)⊤pnps/n (9.11)

Note that the formula also allows the ROV to operate above z = 0 which is important
since the actual sea level can be above this plane as seen in figure 9.1.

Dynamic pressure from waves

As discussed in Section 8.2, the wave motion also induces wave frequencies in the pressure
measurements. In rough conditions, these fluctuations are considered to be so significant
that they will be inconsistent with the movement measured by the inertial sensors (IMU).
For this reason, we want to model them as a part of the pressure measurement in order
to filter them out. The frequencies present take the shape of a wave spectrum, and we
expect the pressure measurement to be able to change with frequencies both higher and
lower than this spectrum, put another way; the frequencies of the pressure fluctuations
lie inside the closed-loop bandwidth of the ROV. This is important to consider when
choosing a filtering technique for the pressure measurement.

Model

Finally, the sensor suffers from a certain amount of measurement noise. This can be added
to the pressure contributions from the previous subsections to get a model:

yps = batm + blf + bwf + ρ(gn)⊤pnps/n + ηps

= batm + blf + bwf + ρ(gn)⊤(pnb/n +R(q)rbps/b) + ηps (9.12)

Here yps is the pressure sensor measurement, batm is a constant bias set to be the standard
atmosphere, blf is a slowly varying bias consisting of changes in atmospheric pressure and
sea level. bwf is a bias resulting from waves and is therefore assumed to be oscillating at
the wave frequency.
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9.2 Kinematics model

To estimate the motion of the ROV, we need a model of the ROVs kinematics. Since this
is a sensor-based observer, the model will be based on the measurement equations for the
accelerometer (9.1) and the gyro (9.2). These can be rearranged to describe acceleration
and angular velocity:

ab = ybacc − bbacc +R⊤(q)gn −wb
acc (9.13a)

ωb = ybgyro − bbgyro −wb
gyro (9.13b)

The acceleration and angular velocity can then be integrated through a kinematics model:

ṗn = R(q)vb (9.13c)

v̇b = ab − S(ωb)vb (9.13d)

q̇ =
1

2
q ⊗ ωb (9.13e)

Lastly, the biases for the accelerometer and gyro are modeled as slowly varying through
Gauss-Markov processes. Their dynamics take the form:

ḃbacc = −
1

Tacc
bbacc +wb

b,acc (9.13f)

ḃbgyro = −
1

Tgyro
bbgyro +wb

b,gyro (9.13g)

Together, the equations (9.13) constitute a complete model of the dynamic behavior of
the vehicle including sensor biases and noise.

9.3 Pressure biases

As discussed in Section 9.1.6, the pressure sensor will measure a slowly varying bias due to
variations in sea level and atmospheric pressure. Additionally, there will be a component
that is oscillating due to pressure from waves. We want a stochastic model for both
to allow for use in a Kalman filter. The slow varying component due to sea level and
atmospheric pressure is modeled as a gauss-markov process:

blf (s) =
1

s+ 1
Tlf

wlf (s) (9.14)

, where Tlf is a (large) time constant and wlf is a unit white noise term.

The wave frequency bias is less straightforward, Willumsen et al. (2007) models the wave
motion as a Gauss-Markov process. This is reasonable when the closed-loop bandwidth is
lower than the wave frequencies since it gives the filter low-pass properties. In this case,
the bandwidth overlaps with the wave frequencies and may even be higher. To model the
bias we will use a second-order wave spectrum approximation driven by white noise (see
Section 8.1):

bwf (s) =
2λωws

s2 + 2λωws+ ω2
w

wwf (s) (9.15)
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This approach is the same as is used to achieve wave filtering in the passive observer in
Fossen (2021). A realization of (9.15) is:

ḃwf = −2λωw(t)bwf − ω2
w(t)bint + 2λωw(t)wwf (9.16a)

ḃint = bwf (9.16b)

, we couple this with the realization of (9.14):

ḃlf = −
1

Tlf
blf + wlf (9.17)

, to obtain a linear time-variant state space system: ḃlfḃwf
ḃint


︸ ︷︷ ︸

ḃpbe

=

− 1
Tlf

0 0

0 −2λωw(t) −ω2
w(t)

0 1 0


︸ ︷︷ ︸

Apbe(t)

 blfbwf
bint


︸ ︷︷ ︸

bpbe

+

1 0
0 2λωw(t)
0 0


︸ ︷︷ ︸

Gpbe(t)

[
wlf
wwf

]
︸ ︷︷ ︸
wpbe

(9.18)

, which is stable for positive Tlf , λ and ωe. The noise vector wpbe is distributed as:

wpbe ∼ N (0,Wpbe) (9.19)

, where:

Σpbe =

[
σ2
lf 0
0 σ2

wf

]
(9.20)
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Observer Design
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Figure 10.1: A block diagram of the observer design

This chapter covers the mathematical design of the observer. The chapter is structured
module-wise. The modules and the signals between them are depicted in Figure 10.1.
The core of the observer is the INS which is derived in Section 10.1. Parallel to this, the
pressure bias estimator will be used to compensate for biases in the pressure measurement.
Section 10.2 covers the design of this module. The INS and the pressure bias estimator
needs to be corrected to avoid drift. This is done via an ESKF which is presented in Sec-
tion 10.3. The ESKF requires a process model of the INS and the pressure bias estimator
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to be able to work. This is presented in Section 10.4 and the mathematical derivations
are in Appendix A.1. To be able to utilize external measurements, the ESKF requires
measurement models of the individual sensors. These are presented in Section 10.5 and
derived in Appendix A.2. The wave filter is presented in Section 10.6. Finally, the wave
frequency estimator is put together in Section 10.7.

10.1 Inertial navigation system

The idea of the inertial navigation system is to integrate accelerometer and gyro measure-
ments to obtain position, velocity, and attitude. The equations for the inertial navigation
system are found as the deterministic part of the kinematics model (9.13). The resulting
continuous time inertial navigation system equations become:

âb = ybacc − b̂bacc +R⊤(q̂)ḡn (10.1a)

ω̂b = ybgyro − b̂bgyro (10.1b)

˙̂pn = R(q̂)v̂b (10.1c)

˙̂vb = âb − S(ω̂b)v̂b (10.1d)

˙̂q =
1

2
q̂ ⊗ ω̂b (10.1e)

˙̂
bbacc = −

1

Tacc
b̂bacc (10.1f)

˙̂
bbgyro = −

1

Tgyro
b̂bgyro (10.1g)

10.1.1 Discretization

The INS equations must be discretized before implementation.

âb = ybacc − b̂bacc +R⊤(q̂)ḡn (10.2a)

ω̂b = ybgyro − b̂bgyro (10.2b)

p̂n ← p̂n +R(q̂)v̂b∆t+
1

2
R(q̂)âb∆t2 (10.2c)

v̂b ← v̂b + (âb − S(ω̂b)v̂b)∆t (10.2d)

q̂ ← q̂ ⊗ q{ω̂b∆t} (10.2e)

b̂bacc ← (1− ∆t

Tacc
)b̂bacc (10.2f)

b̂bgyro ← (1− ∆t

Tgyro
)b̂bgyro (10.2g)

The integration technique used here is from Solà (2017). This is mainly Euler discret-
ization, however, in the quaternion differential equation, the angular velocity estimate
is integrated into a rotation vector (ω̂b∆t) before being used to update the quaternion
estimate. This avoids the bad practice of Euler integration on quaternions which results
in a quaternion of non-unit length.
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10.1.2 State errors and INS injection

If the INS is just propagated using the equations found in the section above, its estimates
would quickly drift away from the true states. To compensate, we will use an ESKF to
calculate the error in the states. We define the state errors as follows:

pn = p̂n + δpn (10.3a)

vb = v̂b + δvb (10.3b)

q = δq ⊗ q̂ (10.3c)

bbacc = b̂bacc + δbbacc (10.3d)

bbgyro = b̂bgyro + δbbgyro (10.3e)

, where the error state (δ-state) is the error between the true state and the INS estimates
(ˆ-state). Note that the quaternion error is premultiplied with the quaternion estimate.
This leads to a rotation vector defined in NED when the quaternion error is swapped with
a rotation vector like:

δq ≜ q{δαn} (10.4)

This has a significant impact on the dynamics of this error state and is recommended by
Li and Mourikis (2012). According to (10.3), we have to alter the INS state estimates
by the error state in order to obtain the true state. This gives birth to the error state
injection procedure:

p̂n ← p̂n + δpn (10.5a)

v̂b ← v̂b + δvb (10.5b)

q̂ ← q{δαn} ⊗ q̂ (10.5c)

b̂bacc ← b̂bacc + δbbacc (10.5d)

bbgyro ← b̂bgyro + δbbgyro (10.5e)

The injection is to be run whenever an error state estimate is available from the ESKF.

10.2 Pressure bias estimator

Similar to the inertial navigation system, the pressure bias estimator is the deterministic
part of the pressure bias model (9.18): ḃlfḃwf

ḃint


︸ ︷︷ ︸

˙̂
bpbe

=

− 1
Tlf

0 0

0 −2λω̂w(t) −ω̂2
w(t)

0 1 0


︸ ︷︷ ︸

Âpbe(t)

 blfbwf
bint


︸ ︷︷ ︸

b̂pbe

(10.6)

, where the peak frequency has been replaced by an estimate of the peak frequency to
make the bias estimator adaptive.
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10.2.1 Discretization

Assuming that the encounter frequency is constant (in practice: slowly varying) over the
time step ∆t, the system (10.6) can be discretized using first-order Euler discretization.

Fpbe(t) =

1− ∆t
Tlf

0 0

0 1− 2λω̂w(t)∆t −ω̂2
w(t)∆t

0 ∆t 1

 (10.7)

The bias estimator can be updated the following way:

b̂pbe ← Fpbe(t)b̂pbe (10.8)

10.2.2 Pressure bias error and injection

Similar to the INS, the error state is defined as:

bpbe = b̂pbe + δbpbe, (10.9)

which lead to the injection step:

b̂pbe ← b̂pbe + δbpbe (10.10)

10.3 Error state Kalman filter

An ESKF will be used to calculate the state error δx which we define as:

δx =


δpn

δvb

δαn

δbbacc
δbbgyro
δbpbe

 (10.11)

This is achieved through an estimate of the covariance of δx called P̂ .

10.3.1 Prediction Step

The covariance is updated every time the INS and pressure bias estimator are updated
using what is known as the prediction step defined as:

P̂ ← F P̂F⊤+Q (10.12)

, where F is a the discrete time state transition matrix and Q is the discretized process
noise covariance matrix. Expressions for these matrices will be derived later.
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10.3.2 Update step

The ESKF relies on measurements to calculate the state error δx through what is known
as the update step:

S = HP̂H⊤+R (10.13a)

K = P̂H⊤S−1 (10.13b)

δx = Kδy (10.13c)

P̂ ← (I −KH)P̂(I −KH)⊤+KRK⊤ (10.13d)

, where H is the measurement jacobian, R is the measurement covariance, and δy is
the measurement innovation (difference between the actual measurement and what the
measurement is expected to be according to observer state). S is the covariance of the
innovation δy. K is an intermediary matrix commonly known as the Kalman gain. H
and R can be concatenated from the measurements available at each time step. We will
derive expressions for δy, H , and R for each sensor later.

10.3.3 Reset

When the ESKF is used with attitude error as a state, Solà (2017) recommends a third
step in the ESKF algorithm called the reset step. This is to be run along with the
INS injection Section 10.1.2 to ensure that the attitude error covariance is correct after
injection. With our choice of states, the reset operation is a jacobian on the form:

J =


I3 03 03 03 03 03

03 I3 03 03 03 03

03 03 I3 +
1
2
S(δαn) 03 03 03

03 03 03 I3 03 03

03 03 03 03 I3 03

03 03 03 03 03 I3

 (10.14)

, which is used to reset the covariance as follows:

P̂ ← JP̂J⊤ (10.15)

10.4 Process model

The goal of this section is to arrive at a process model for use in the ESKF prediction
step, i.e. find expressions for the F and Q matrices. Section 10.4.1 present the linearized
error state dynamical system which is, in turn, discretized in Section 10.4.2.
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10.4.1 Error state dynamics

. We want to obtain differential equations for the error state. Time differentiation of the
error state definition in (10.3) and (10.9) yields:

˙δp
n
= ṗn − ˙̂pn (10.16a)

˙δv
b
= v̇b − ˙̂vb (10.16b)

δ̇q = q̇ ⊗ q̂∗ + q ⊗ ˙̂q∗ (10.16c)

δ̇b
b

acc = ḃbacc −
˙̂
bbacc (10.16d)

δ̇b
b

gyro = ḃbgyro −
˙̂
bbgyro (10.16e)

δ̇bpbe = ḃpbe − ˙̂
bpbe (10.16f)

, notice that the quaternion error requires the product rule when differentiated due to
its multiplicative nature. The error state dynamics are derived from inserting the true
state model (9.13) and the INS differential equations (10.1) into (10.16). The derivation
is carried out in Appendix A.1. The result is a set of differential equations that can be
linearized around INS state estimates and put on matrix form:

˙δp
n

˙δv
b

˙δαn

δ̇b
b

acc

δ̇b
b

gyro

δ̇bpbe


︸ ︷︷ ︸

˙δx

=



03 R(q̂) −S(R(q̂)v̂b) 03 03 03

03 −S(ω̂b) R⊤(q̂)S(gn) −I3 −S(v̂b) 03

03 03 03 03 −R(q̂) 03

03 03 03
−1
Tacc

I3 03 03

03 03 03 03
−1
Tgyro

I3 03

03 03 03 03 03 Âpbe


︸ ︷︷ ︸

A(x̂)


δpn

δvb

δαn

δbbacc
δbbgyro
δbpbe


︸ ︷︷ ︸

δx

+



03 03 03 03 03×2

−I3 −S(v̂b) 03 03 03×2

03 −R(q̂) 03 03 03×2

03 03 I3 03 03×2

03 03 03 I3 03×2

03 03 03 03 Ĝpbe


︸ ︷︷ ︸

G(x̂)


wb
acc

wb
gyro

wb
b,acc

wb
b,gyro

wpbe


︸ ︷︷ ︸

w

(10.17)

Where the rotation vector δαn is used to represent the attitude error and the noise vector
w is distributed as:

w ∼ N (0,W) (10.18)

And the diagonal noise covariance matrix Σ is defined as:

W =


I3σ

2
acc 03 03 03 03×2

03 I3σ
2
gyro 03 03 03×2

03 03 I3σ
2
b,acc 03 03×2

03 03 03 I3σ
2
b,gyro 03×2

02×3 02×3 02×3 02×3 Σpb

 (10.19)



10.5. MEASUREMENT MODEL 45

10.4.2 Discretization

The deterministic part of the error state dynamics must be discretized in order to be
useful in the discrete Kalman filter.

F = exp (A(x̂)∆t) (10.20)

≈



I3 R(q̂)∆t −S(R(q̂)v̂b)∆t 03 03 03

03 R⊤{ω̂b∆t} R⊤(q̂)S(gn)∆t −I3∆t −S(v̂b)∆t 03

03 03 I3 03 −R(q̂)∆t 03

03 03 03 I3(1− ∆t
Tacc

) 03 03

03 03 03 03 I3(1− ∆t
Tgyro

) 03

03 03 03 03 03 Fpbe

 (10.21)

The stochastic part must also be discretized in order to obtain the discrete noise matrix
Q. Since the Eigen matrix library (Guennebaud, Jacob et al., 2010) in C++has a fast series
expansion evaluation of the matrix exponential, Van Loans method (see Section 8.4) is
the most precise way to achieve discretization:

exp

([
−A GWG⊤

0 A⊤

]
∆t

)
=

[
××× V2

0 V1

]
(10.22)

, where Q is found as:
Q = V⊤

1 V2 (10.23)

10.5 Measurement model

To be able to utilize the sensors in the ESKF, they need to be modeled in error-variable
form. The goal of this section is to arrive at measurement models for each of the sensors,
that is expressions for the innovations δy, the measurement matrices H , and the meas-
urement covariance matrices R. The USBL is modeled in Section 10.5.1 followed by the
pressure sensor (10.5.2), DVL (10.5.3), and at last the AHRS in Section 10.5.4.

10.5.1 USBL

The USBL measurement is predicted to be:

ŷnusbl = p̂nb/n +R(q̂)rbtp/b (10.24)

The USBL measurement innovation is the difference between the measurement and the
predicted measurement. The measurement jacobian is a result of the difference between
the measurement model and the predicted measurement:

δynusbl = ynusbl − ŷnusbl (10.25)

(Derivation in Appendix A.2.1)

≈
[
I3 03 −S(R(q̂)rbtp/b) 03 03 03

]︸ ︷︷ ︸
Husbl(x̂)

δx+ ηnusbl (10.26)

, where the measurement noise ηnusbl is distributed as:

ηnusbl ∼ N (0,Rusbl) (10.27)
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10.5.2 Pressure sensor

The pressure measurement is predicted to be:

yps = batm + b̂lf + b̂wf + ρgn⊤(p̂nb/n +R(q̂)rbps/b) (10.28)

δyps = yps − ŷps (10.29)

(Derivation in Appendix A.2.2)

≈
[
ρgn⊤ 01x3 −ρgn⊤ S(R(q̂)rbps) 01x3 01x3

[
1 1 0

]]︸ ︷︷ ︸
Hps(x̂)

δx+ ηnps (10.30)

, where the measurement noise ηnps is distributed as:

ηnps ∼ N (0,Rps) (10.31)

10.5.3 DVL

The DVL measurement is predicted to be:

ŷbdvl = v̂bb/n − S(rbd/b)ω̂
b
b/n (10.32)

δybdvl = Dyddvl − ŷbdvl (10.33)

(Derivation in Appendix A.2.3)

≈
[
03 I3 03 03 S(rbdvl) 03

]︸ ︷︷ ︸
Hdvl

δx+Dηddvl + S(rbdvl)η
b
gyro (10.34)

, where the noise is distributed as:

Dηddvl + S(rbdvl)η
b
gyro ∼ N (0,Rdvl) (10.35)

, and:
Rdvl = DR̃dvlD

⊤+ S(rbdvl)Rgyro S(r
b
dvl)

⊤ (10.36)

, where R̃dvl is the covariance matrix in the DVL frame and Rgyro is the gyro noise
covariance matrix.
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10.5.4 AHRS

The AHRS requires a slightly different approach. Rotation matrices are used in order
to avoid issues with Euler angle discontinuities. Rotation matrices are multiplicative by
nature as opposed to additive as is the case for the other measurements. The AHRS
measurement is predicted to be:

Ŷahrs = R(q̂) (10.37)

δynahrs = vex(YahrsŶ
⊤
ahrs) (10.38)

(Derivation in Appendix A.2.4)

≈
[
03 03 I3 03 03 03

]︸ ︷︷ ︸
Hahrs(x̂)

δx+ ηnahrs (10.39)

ηnahrs ∼ N (0,T (yθ, yψ)RϕθψT (yθ, yψ)
⊤) (10.40)

, where Rϕθψ is a tuning matrix containing Euler angle variances on the diagonal. T is
the Euler angle to rotation vector jacobian (see Section 5.2.7).

10.5.5 Outlier rejection

Some measurements, from now referred to as outliers, are not consistent with the DVL
measurement model in Section 10.5.3. This can for instance be due to fish swimming in
front of the DVL resulting in a Doppler frequency shift that includes the fish’s velocity.
Nevertheless, we want to avoid measurements that are outright wrong from entering the
observer. An outlier rejection method is needed for this. Since the observer is Kalman
filter based, it is natural to base the outlier rejection on some form of consistency check,
the simplest being the Normalized Innovation Squared (NIS). If the NIS is too high, it
means that the innovation is too large compared to the covariance in the Kalman filter and
this suggests that the measurement used to calculate the innovation is an outlier. When
NIS is used in Kalman filter tuning, it is also common to consider a lower bound (see
Section 8.5). This is not applicable to outlier rejection since discarding a measurement
for being “too good” is absurd. The NIS is calculated as:

ϵdvl = δy⊤dvlS−1
dvlδydvl (10.41)

The upper bound is:

ϵupper = chi2inv(1− α

2
, 3) (10.42)

This is implemented as: “Reject δydvl if ϵdvl > ϵupper”
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10.6 Wave filtering

In general, we want to implement wave filtering on the state estimates that are to be used
as feedback for control systems. Most important are the position and attitude estimates.
To allow for PD control we also want to filter velocity and angular velocity. Position,
velocity, and angular velocity are orthogonal vectors and can be filtered along three axes.
Attitude is more difficult. Ideally, the attitude should be filtered in such a way that
singularities and discontinuities will not be a problem. However, there is no trivial way to
do notch filtering on attitude. It is possible to realize some kind of quaternion low-pass
filter (MathWorks, 2023) based on quaternion SLERP (Solà, 2017). Higher-order filter
realizations are non-trivial. To keep things simple we will transform the attitude into
Euler angles, apply notch filtering directly to each component and keep in mind that
unwanted effects can arise close to the Euler angle singular points.

A notch filter on the form

hn(s) =
s2 + 2ζωn + ω2

n

(s+ ωn)2
(10.43)

, will be used to remove wave frequency components Fossen (2021). ωn is the notch
frequency, while ζ determines the notch band-width. In order to realize (10.43) as strictly
proper, it can be cascaded with a first-order low-pass filter

hlp(s) =
ωlp

s+ ωlp
(10.44)

, where the cut-off frequency ωlp is set high and way outside the bandwidth of the vehicle
to prevent unnecessary phase lag. We want to make the wave filter adaptive so that the
notch frequency (ωn) corresponds with the peak frequency of the wave spectrum (ωw).
We will use an estimate of the peak frequency and set ωn = ω̂w The cascade can then
be realized as a third-order SISO state-space system on observable canonical form with
matrices:

Awf =

0 0 −ω̂2
wωlp

1 0 −(2ω̂wωlp + ω̂2
w)

0 1 −(2ω̂w + ωlp)

 (10.45a)

Bwf =

 ω̂2
wωlp

2ζω̂wωlp
ωlp

 (10.45b)

Cwf =
[
0 0 1

]
(10.45c)

A total of 12 of these filters are implemented to filter position (3 states), velocity(3), Euler
angles (3), and angular velocity (3).
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10.7 Peak frequency estimator

The frequency estimator for sinusoidal signals by Aranovskiy et al. (2007) is to be used
for estimating the peak frequency. The exact design is dependent on which signal is used
as the input. The signal must be one that is excited by waves and therefore contains
the sinusoidal component we want to estimate the frequency of. For 3-DOF vessels, it is
common to choose roll and/or pitch which will oscillate around zero. Movement in heave
is also possible as it is often near-aligned with NED-z. For 6 DOF-vessels none of this is
true; roll and pitch are not necessarily close to zero and heave can therefore correspond
to any direction in NED.

It is tempting to use state estimates as input to the frequency estimator as they are
precise, low noise, and ideally unbiased. In the case of this system doing so will introduce
a loop between the frequency estimator and the pressure bias estimator since the bias
estimator impacts the state estimates (see Figure 10.1). Whether this would work or not
will not be examined here. In general, introducing these kinds of feedback loops is bad
practice as modularity in design and code tends to weaken. For this reason, we are left
with using raw measurements as input. USBL and DVL are low rate, low precision, and
unreliable sensors and are out of the picture. This leaves four candidates, all of which
have high rates and are reliable:

• Accelerometer

• Gyro

• Pressure sensor

• AHRS

The accelerometer and gyro turned out to have too low a signal-to-noise ratio in test
runs and are ruled out. The pressure measurement has an excellent signal-to-noise ratio,
but the vehicle is expected to move a lot in the vertical direction which would disturb
the estimation. Therefore, it was decided to use the AHRS pitch estimate. The pitch is
expected to stay constant (excluding wave motion) over time. Since the pitch does not
necessarily oscillate around zero, it is necessary to do modifications to the basic estimator
design.

In Belleter et al. (2015), the Aranovskiy et al. (2007) estimator is modified with an
adjustable natural frequency. We will use this as a starting point for our observer design.
The observer dynamics are:

ξ̇1 = ξ2 (10.46a)

ξ̇2 = −ω2
fξ1 − 2ωfξ2 + ω2

fu
′ (10.46b)

˙̂
Ω = kξ1(ξ̇2 − Ω̂ξ1) (10.46c)

, where u′ is the input. For the purpose of modifying, let the output y = ξ1 such that the
adaption law becomes:

˙̂
Ω = ky(ÿ − Ω̂y) (10.47)

, the transfer function from u′ to y is

y

u′
(s) =

ω2
f

(s+ ωf )2
(10.48)
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Now let the driving signal u′ be the output of a highpass filter with input u such that

u′

u
(s) =

s

s+ ωhp
(10.49)

, where ωhp is the high pass cut-off-frequency. When cascaded with (10.48), the resulting
transfer function becomes:

y

u
(s) =

ω2
fs

(s+ ωf )2(s+ ωhp)
(10.50)

, which is stable for ωf , ωhp > 0. The transfer function (10.50) is strictly proper and can
be realized as:ẋ1ẋ2

ẋ3

 =

 0 1 0
0 0 1

−ω2
fωhp −2ωfωhp − ω2

f −ωhp − 2ωf

x1x2
x3

+

 0
0
ω2
f

u (10.51a)

˙̂
Ω = kfx2(ẋ3 − Ω̂x2) (10.51b)

ω̂w =

√
−Ω̂ (10.51c)

This means that the adaption law is kept the same as the original.



Chapter 11

Implementation

This chapter is intended to provide insight into the process of implementing the observer
design in object-oriented C++code. Due to the nature of programming, this section is a lot
less formal than the rest of the thesis and is intended to be so. Section 11.1 is a summary
of details in the implementation and engineering choices made to reduce computational
burden and improve real-time performance. Section 11.2 is an overview of how the system
was split into modules for implementation.

11.1 Implementation details

11.1.1 Kalman filter update step

The Kalman update step calculates the state error estimate δx and updates the state
error covariance P . As a part of that, it is necessary to calculate the Kalman gain K.
This involves a matrix inversion and is on the form:

K = P̂H⊤S−1 (11.1)

The innovation covariance is quadratic with the dimension of the innovation δy, and this
dimension can in this case be up to 10 if all measurements arrive at the same time step.
Inverting a dense 10 × 10 matrix is a significant task in a real-time system and it is in
general bad practice to do pure matrix inversions if not strictly necessary. It is therefore
common to do the following trick:

Let:

Z⊤= H⊤S−1

Note that S is a covariance matrix and thus symmetric such that:

Z = S−1H

It is now clear that Z is the solution to the linear system:

SZ = H

51
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This system can be solved through a solver algorithm for linear systems so that the
Kalman gain is calculated as:

Z = linsolve(S,H) (11.2a)

K = P̂Z⊤ (11.2b)

Linsolve algorithms are often based on some kind of decomposition of the matrix S. Since
covariance matrices are positive definite, it is possible to use Cholesky decomposition
which is very fast. The eigen library has two variants of the Cholesky decomposition
which are both excellent choices. It was decided to use “Robust Cholesky decomposition
with pivoting” (Guennebaud, Jacob et al., 2010, function name: LDLT) for some extra
accuracy as well as robustness with respect to the properties of the matrix used as input.

11.1.2 Calculating the Normalized Innovation Squared

The NIS is another example where inverting of covariance matrices is something we want
to avoid, especially for outlier rejection which happens in real-time. The NIS is calculated
as:

ϵ = δy⊤S−1δy

This could simply be calculated as:

z = linsolve(S, δy)
ϵ = δy⊤z

, using Cholesky decomposition on S. It is however possible to exploit the properties of
the Cholesky decomposition (Guennebaud, Jacob et al., 2010, function name: LLT) even
more. Cholesky decomposition factors S into a lower triangular matrix L, such that:

S = LL⊤

, leading to:

ϵ = δy⊤(LL⊤)−1δy

= δy⊤L−1(L⊤)−1δy

= ((L⊤)−1δy)⊤((L⊤)−1δy)

= ||(L⊤)−1δy||2

Since L is lower triangular, it is trivial to solve, and we find the final pseudocode:

L = Cholesky(S) (11.3a)

z = solve(L⊤, δy) (11.3b)

ϵ = ||z||2 (11.3c)



11.1. IMPLEMENTATION DETAILS 53

11.1.3 Converting rotation vector to quaternion

Rotation vectors are converted to quaternions at two stages in the observer algorithm;
first, when integrating the angular velocity estimate into the quaternion estimate in the
INS:

q̂ ← q̂ ⊗ q{ω̂b∆t}

, and second, when injecting the attitude error into the quaternion estimate:

q̂ ← q{δαn} ⊗ q̂

When using a reasonably small time step, the rotation vector argument (α) is expected
to be close to zero in both cases.

Looking at the conversion formula for the rotation vector it is clear that there is a risk
for division by zero:

q{α} =

[
cos ∥α∥

2
α

∥α∥ sin
∥α∥
2

]

Common programming practice suggests:

q{α} =

[
cos ∥α∥

2
α

∥α∥ sin
∥α∥
2

]
for ∥α∥ > δ

q{α} =
[
1
0

]
else

, where the parameter δ ensures that we do not get too close to a division by zero.
However, this would lead to a loss of accuracy in an interval around zero and/or division
by a very small number (bad practice). This is an interval where we expect most of the
arguments to be. For this reason, we will instead look at an option where the loss of
accuracy occurs far from zero. The vector part of the quaternion can be rewritten as:

ϵ{α} = 1

2
α
sin ∥α∥

2
∥α∥
2

Let z = ∥α∥
2
, since arguments are expected to be around zero, a Taylor series expansion

around zero is a reasonable approximation:

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ ...

sin z

z
= 1− z2

3!
+
z4

5!
− z6

7!
+ ...

(Gradshtĕın et al., 2007), this leads to a conversion formula on the form:

q{α} =

[
1− ∥α∥2

2!22
+ ∥α∥4

4!24
− ∥α∥6

6!26
+ ...

1
2
α(1− ∥α∥2

3!22
+ ∥α∥4

5!24
− ∥α∥6

7!26
+ ...)

]
(11.4)
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In practical implementation, the Taylor series must be truncated. Four terms are con-
sidered sufficient for this application. Also, note that the two Taylor series contain a lot
of common factors. This can be exploited to reduce the number of operations needed.

11.1.4 Rotation vector to rotation matrix

The rotation vector to rotation matrix operator can also be redefined to avoid division by
zero. Using the method in Section 11.1.3 and converting via the quaternion, we redefine:

R{α} ≜ R(q{α}) (11.5)

11.1.5 Quaternion normalization

The quaternion is only a valid representation of the vehicle attitude when it is at unit
length. This constraint is the price we pay for using four parameters to describe 3-DOF.
It is therefore essential that the quaternion estimate is kept at unit length throughout the
real-time implementation of the system. Quaternion products suffer from numerical drift,
and the implementation of the rotation vector-to-quaternion operator (see the paragraph
above) results in a quaternion that is not perfectly unit length. Thankfully, quaternion
normalization is an incredibly computationally cheap operation:

q ← q

∥q∥
(11.6)

For robustness, the quaternion estimate will be normalized every time it is altered.

11.2 Classes

This section gives a brief insight into how the system is modularized for implementation.
An overview of the modules and how they interact can be seen in the block diagram
in Figure 10.1. To avoid a second copy of this block diagram, the modules are here
represented as individual tables and not in a full Unified Modeling Language (UML) class
diagram. References to chapters are also added such that the tables serve as pretty good
documentation along with the block diagram. Each table contains:

1. Internal state

2. The module interface (public functions)

3. Important helper functions that are specific to this thesis (private functions).

Internal state and the interface are what the author considers to be vital to have planned
out before starting programming. In addition, some helper functions have been added to
indicate where important features of the design are implemented.
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11.2.1 Inertial navigation system

The inertial navigation system is the core of the observer and the most obvious module
from which to make a class. Note that the acceleration and angular velocity estimates are
not internal states since they can be calculated directly from measurements and biases.
See Table 11.1.

Table 11.1: Module: Inertial navigation system

Module Name InertialNavigationSystem 10.1

Internal State

p̂
v̂
q̂

b̂acc
b̂gyro

Public Functions
Integrate(yacc, ygyro) 10.1.1
Inject(δx) 10.1.2

Private functions q = RotationVectorToQuaternion(α) 11.1.3

11.2.2 Pressure bias estimator

The pressure bias estimator is tempting to implement into the INS, but since the two
modules do not require access to each other’s internal state, good programming practice
suggests that they should be separate modules. This allows the INS to be run independ-
ently in case the pressure bias estimator turns out to be unnecessary. See Table 11.2.

Table 11.2: Module: Pressure bias estimator

Module Name PressureBiasEstimator 10.2

Internal State
b̂lf
b̂wf
b̂int

Public Functions
Step(ω̂w) 10.2.1
Inject(δx) 10.2.2

11.2.3 Error state Kalman filter

The ESKF is kept general in implementation, meaning we do not want to incorporate
model-specific functionality. The exception from this rule is the reset function which
requires knowledge about the system states (which ones correspond to attitude). The
idea is to keep an already large module as simple as possible and to allow for the reuse of
a rather useful and versatile module. The model-specific functionality is put into modules
that feed the ESKF. See Table 11.3.
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Table 11.3: Module: Error state Kalman filter

Module Name ErrorStateKalmanFilter 10.3

Internal State P̂

Public Functions
Predict(F,Q) 10.3.1
δx = Update(δy,H,R) 10.3.2
Reset(δx) 10.3.3

Private Functions
K = KalmanGain(H,S) 11.1.1
R = RotationVectorToRotationMatrix(α) 11.1.4

11.2.4 Process model

This is a module that feeds the ESKF with a discrete model of the INS and the pressure
bias estimator. The module has no state but is easily defined nevertheless. See Table 11.4.

Table 11.4: Module: Process model

Module Name ProcessModel 10.4
Internal State none

Public Functions
F = TransitionMatrix(x̂)

10.4.2
Q = ProcessCovariance(A,G,Σ)

Private Functions
A = SystemMatrix(x̂)

10.4.1
G = NoiseMatrix(x̂)
Q = VanLoan(A,G,Σ) 10.4.2

11.2.5 Measurement model

This is a module that feeds the ESKF with a model of the aiding measurements and the
innovation. The module is also responsible for rejecting outliers (meaning it only feeds
the ESKF with “good” measurements). The module has no state. See Table 11.5.

Table 11.5: Module: Measurement model

Module Name MeasurementModel 10.5
Internal State none

Public Functions
δy = Innovation(y, x̂)

10.5.1 to 10.5.4H = MeasurementMatrix(x̂, b̂)
R = MeasurementCovariance()

Private Functions
ϵ = CalculateNis(δy, S) 11.1.2
OutlierRejection(ϵ) 10.5.5

11.2.6 Wave filter

The wave filter is a straightforward implementation of the design in Section 10.6.

11.2.7 Wave frequency estimator

The wave frequency estimator is a straightforward implementation of the design in Sec-
tion 10.7.



Chapter 12

Data collection, Configuration , and
Calibration

This chapter describes how data was collected for experimental evaluation of the observer
design and implementation, how the observer was tuned on that data, and how the Kalman
filter is initialized. The experimental setup is presented in Section 12.1. The tuning used
to achieve the later results is presented in Section 12.2. The final section, 12.3, concerns
Kalman filter initialization.

12.1 Experimental setup and data gathering

The observer design in Chapter 10 is to be tested experimentally at a full-scale fish farm.
Since the time available at the fish farm is limited, the decision was not to attempt tuning
and debugging at the fish farm and instead focus on recording data that could later be
used to test the design. This should have no impact on the performance of the observer
itself as the data can be used as input to the observer exactly how it is recorded.

Figure 12.1: The location of the fish farm at Korsneset (from Google Maps5).
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The fish farm is located at Korsneset (Figure 12.1), east of Kristiansund in Norway, and
is available through SINTEF. It is located inside a fjord and is a shielded location where
the seas are usually quite calm.

The trials were conducted on 13.04.2023. The weather was windy (quite strong continuous
wind) and because of that, there were significant waves. The fish inside the cage were in
the process of being fed or had just been fed, meaning they were quite active (swimming,
leaping). In general, the conditions were well-suited to generate challenging input for the
observer and really put it to the test.

Figure 12.2: Sketch of the experimental setup. 1: The net pen. 2: The mothership,
moored to the pen. 3: The BlueROV2. 4: USBL transceiver. 5: USBL transponder. 6:
DVL beams reflecting on the net pen walls. 7: Fish inside the net pen. (Not to scale)

Figure 12.2 is a sketch of the setup for gathering data. The cylinder (1) is the net
cage from the waterline and down. The front half is drawn as see-through, only the
back wall is visible. The shape of the bottom is not relevant and not shown here. The
mothership (2) is moored to the outside of the cage and the USBL transceiver (4) is more
or less rigidly mounted to the mothership using a steel tube. The BlueROV2 (3) has
the USBL transponder (5) mounted to the starboard side. This means that the USBL
system communicates through the net pen wall. The DVL is mounted to the front of the
BlueROV2 such that its beams are reflected off the net pen walls (6). Moving fish (7) are
present in the cage and may block the USBL, the DVL, or even physically collide with
the BlueROV2.

5Google Maps website: https://www.google.com/maps

https://www.google.com/maps
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12.2 Parameters and tuning

12.2.1 Gravity

The center of the fish farm at Korsneset is located at: 63°08’34.1” N 8°13’32.8” E. The
altitude is assumed to be 0 (mean sea level). This is used as input to the gravity calculator
(The International Gravimetric Bureau, n.d.) and the result is a gravity of 9.821786 m/s2.
Assuming that this aligns with the z-axis of the NED frame, we get the following vector:

gn =
[
0 0 9.821786

]⊤
m/s2 (12.1)

12.2.2 Athmospheric pressure

The average atmospheric pressure is assumed to be the standard atmosphere:

batm = 1atm = 101325Pa (12.2)

12.2.3 Water density

The density of the seawater inside the fish farm is assumed to be:

ρ = 1025 kg/m3 (12.3)

12.2.4 Mounting

The sensors on the BlueROV2 are mounted in various locations around the vehicle. These
are measured in the body frame and become:

rbtp =
[
−0.09 0.22 −0.11

]⊤
m (12.4a)

rbps =
[
−0.26 0 0

]⊤
m (12.4b)

rbdvl =
[
0.07 0 0.13

]⊤
m (12.4c)

The matrix that represents the DVLs orientation in the body frame is:

D =

 0 0 1
−1 0 0
0 −1 0

 (12.5)

12.2.5 Noise

Tuning is a difficult task and it is often challenging to know where to start, for this reason,
it is useful to have a rough idea of the order of magnitude of the parameters we want
to choose. In Kalman filter applications, the tuning parameters represent the standard
deviation (or variance if squared) of noise from sensors. For the accelerometer, gyro, and
pressure sensor, the datasheet noise characteristics are used as a reference and multiplied
with a scaling factor when tuning. The noise densities for those sensors are:
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Table 12.1: Sensor parameters

Sensor Model
Data sheet
parameter

Symbol Value Unit

Accelerometer
ST Microelectronics
LSM303D

Linear acceleration
noise density

σ∗
acc 150 mg/

√
Hz

Gyro
ST Microelectronics
L3GD20H

Rate noise density σ∗
gyro 0.011 °/s/

√
Hz

Pressure
Sensor

TE Connectivity
MS5837-30BA

Resolution RMS σ∗
ps 0.20 mbar

The parameters in Table 12.1 are compensated for the update rate (
√
Hz) and converted

to SI units before use. The USBL returns a one-dimensional standard deviation ρ∗usbl which
will be scaled and used in the USBL measurement covariance. Similarly, the DVL returns
a full covariance matrix R∗

dvl. This will be scaled and used in the DVL measurement
covariance.

12.2.6 Tuning

The observer was tuned on experimental data. A lot of tuning parameters were tried.
One good set of tuning parameters that made the Kalman filter somewhat consistent and
led to a good performance is given in this section and is the one that gave the results in
the next chapter.

INS

σacc = 50σ∗
acc (12.6a)

σgyro = 50σ∗
gyro (12.6b)

Tacc = 100000 s (12.6c)

Tgyro = 100000 s (12.6d)

σb,acc = 0.0001m/s2 (12.6e)

σb,gyro = 0.00001 rad/s (12.6f)

Pressure bias estimator

σlf = 0.1Pa (12.7a)

σwf = 10Pa (12.7b)

Tlf = 10000 s (12.7c)

λ = 0.1 (12.7d)
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Aiding measurements

σϕ = 0.001 rad (12.8a)

σθ = 0.001 rad (12.8b)

σψ = 0.001 rad (12.8c)

R̃dvl = 3002R∗
dvl (12.8d)

σps = 5σ∗
ps (12.8e)

σusbl = 3σ∗
usbl (12.8f)

Wave filter

ωlp = 10 rad/s (12.9a)

ζ = 0.01 rad/s (12.9b)

Frequency estimator

ωf = 4 rad/s (12.10a)

ωhp = 0.5 rad/s (12.10b)

k = 20 (12.10c)

Outlier rejection

The outlier rejection upper bound for DVL measurements is set to ϵupper = chi2inv(0.975, 3).

12.3 Initialization

Initialization is of great importance in Kalman filtering. A poorly initialized Kalman
filter cannot be expected to perform well for a significant period of time and since the
Kalman filter in this thesis is a nonlinear extension, it may also diverge completely. To
avoid annoying and unnecessary manual labor, the INS and ESKF will be initialized using
measurements.

12.3.1 Position initialization

The USBL is used to initialize the position such that:

p̂n ← ynusbl (12.11)

The most reasonable initial covariance becomes:

P̂pos ←Rusbl (12.12)

, where P̂pos is the 3× 3 submatrix of the state covariance corresponding to position.
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12.3.2 Velocity initialization

The DVL can be used to initialize velocity. Assuming that the angular velocity is negligible
(we do not want to initialize using the biased gyro), we get:

v̂b ←Dyddvl (12.13)

, with the covariance initialized to:

P̂vel ←DR̃dvlD
⊤ (12.14)

12.3.3 Attitude initialization

The attitude is initialized through the AHRS:

q̂ ← q(yϕ, yθ, yψ) (12.15)

The covariance is initialized using the attitude Jacobian:

P̂att ← Tatt(yθ, yψ)RϕθψT
⊤
att(yθ, yψ) (12.16)

12.3.4 Pressure bias

The wave frequency bias is initialized to 0 but with a large covariance. The low-frequency
bias is potentially large and needs proper initialization. The USBL and the pressure
sensor will be used to do so.

b̂lf ← yps − ρ(gn)⊤ynusbl (12.17)

The covariance becomes a combination of USBL and pressure sensor noise:

P̂wf ← Rps + ρ2(gn)⊤Rusblg
n (12.18)



Chapter 13

Results and Discussion

The results will be evaluated module-wise, meaning we will try to isolate the different
components of the observer in order to determine the performance of the component
and not just the entire system. This is a decision made because parts of the system
perform less than ideal, while other parts perform as intended. It is therefore considered
more constructive to separate them and see which modules should be kept and which
need improvement/redesign. Section 13.1 presents the USBL and DVL measurements
that the observer is tested with. Getting an idea of the quality and consistency of these
measurements is important to the later results and discussion. Section 13.2 presents and
discusses the performance of the observer core. This is followed by Section 13.3 which
concerns the performance of the outlier rejection. The performance of the wave frequency
estimator is discussed in Section 13.4, before the pressure bias estimator is evaluated
in Section 13.5. Finally, the resulting estimates after wave filtering are presented and
discussed in Section 13.6.

13.1 Datasets

This section discusses the data that the results in this chapter are based on. All the data
was gathered in a full-scale real-world test at a fish farm (Section 12.1). The three datasets
are picked over data from other test sets because they contain effects that we want to test
the observer designs robustness against. The datasets are named numerically 1-3. We
will focus on the hydroacoustic measurements because they are the most susceptible to
unwanted effects like outliers, loss of signal, and overall poor measurement quality.

13.1.1 Dataset 1

This dataset is picked to test the outlier rejection on the DVL. The USBL measurements
(Figure 13.2) are as good as they get; the reported measurement standard deviation is
more or less constant, there are no signal losses, and no outliers except one at about
120 seconds. The Dvl measurement (Figure 13.1) is consistent and of high quality until
the DVL is turned away from the net at about 70 seconds. At this point, some of the
measurements are very uncertain (as indicated by the standard deviation in Figure 13.1),
and the DVL seems to pick up something that is inconsistent (possibly swimming fish),
but is reported as certain by the DVL through the standard deviation.
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Figure 13.1: Dataset 1: Dvl measurements
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Figure 13.2: Dataset 1: USBL measurements
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13.1.2 Dataset 2

Dataset 2 is chosen solely to test the observer robustness to USBL signal loss and poor
USBL performance. At 60 seconds into the test run (Figure 13.4), the signal is lost for
about 5 seconds. Why this is is uncertain, but it is unfortunately not uncommon in
the complex environment of a fish farm (and it is therefore necessary that the observer
is robust in this sense). The DVL performance (Figure 13.3) is typical with measure-
ment losses every now and then as fish swim by or the vehicle attitude suggests that
measurements are unlikely.

0 50 100 150
-0.5

0

0.5

0 50 100 150

0

0.2

0.4

0 50 100 150
-0.5

0

0.5

Figure 13.3: Dataset 2: Dvl measurements
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Figure 13.4: Dataset 2: USBL measurements
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13.1.3 Dataset 3

Dataset 3 is a worst-case test set. The USBL data in Figure 13.6 is the worst achieved
in all test runs. The signal loss, in the beginning, lasts about 20 seconds. For the first
200 seconds, the USBL reports uncertainties to a scale comparable to the size of the
net pen that the vehicle operates in. To make matters worse, the DVL measurements
(Figure 13.5) are lost before 120 seconds. The USBL performs well from 200 seconds and
on. The intention of including this data set is to:

1. Test if the observer diverges with worst-case measurements.

2. To show how bad measurements can get in this environment
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Figure 13.5: Dataset 3: DVL measurements
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Figure 13.6: Dataset 3: USBL measurements
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13.2 Observer performance

Firstly, and most importantly, we will evaluate the observer’s performance. As we have
no way of knowing the true state, we are left with evaluating the quality of the estimates.
We will start with the data in Dataset 1 in order to make it easy for the observer.

Figure 13.7: Dataset 1: Accelerometer bias estimate with standard deviation.

Figure 13.8: Dataset 1: Gyro bias estimate with standard deviation.

The ability to estimate the IMU biases is vital in inertial navigation as it is necessary to
compensate for biases to prevent the estimates from drifting. Figures 13.7 and 13.8 show
the convergence. The observer manages this fairly nicely; the accelerometer bias estimate
is excellent, while the gyro bias estimate needs some time to converge.
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Figure 13.9: Dataset 1: Attitude estimate in Euler angles with standard deviation.
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Figure 13.10: Dataset 1: AHRS attitude from the vehicle.

The attitude estimate (Figure 13.9) follows the AHRS estimates (Figure 13.10) reported
from the vehicle. The accuracy of the estimate is difficult to judge, but it looks usable as
feedback for a control system.
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Figure 13.11: Dataset 1: Velocity estimate with standard deviation.

The velocity estimate (Figure 13.11) looks mostly satisfactory. The signal is smooth with
oscillations from wave motion (which we expect to be present here). There is, however, a
little more high-frequency noise than we would like present in the signal.

Figure 13.12: Dataset 1: Position estimate with standard deviation.

Figure 13.12 shows the position estimate along with three times the standard deviation
estimated by the Kalman filter. The z-component (bottom plot) is estimated excellently,
which is expected since both the USBL and the pressure sensor are available to estimate
this and the pressure sensor is a high rate and high precision sensor. The x and y estimates
are however far from ideal. The estimates are not smooth and closer to a sawtooth shape.
This is because the estimate needs to be corrected for to much every time the USBL
gives a measurement. Also note that it is impossible to distinguish wave motion from
noise in the x-y estimates although waves are clearly there in the x-y velocity estimates
in Figure 13.11. All of this indicates that the inertial navigation system is not performing
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well as it needs to be corrected too much. The primary error source here is probably the
quality of the Inertial Measurement Unit (IMU). This is a consumer-grade IMU with a
lot of noise. Additionally, the rate of the IMU measurements from the vehicle software
was much lower in practice than expected getting as low as 10 Hz at times as opposed
to the 50Hz that we want. We should also note that the use of a magnetometer-based
attitude-aiding device (AHRS) is probably not making matters better, as a wrong yaw
estimate is also expected to have a similar effect on the north and east estimates.

Figure 13.13: Dataset 2: Position estimate with standard deviation.

Figure 13.14: Dataset 3: Position estimate with standard deviation.

Having established that the observer works, although suboptimally, we will move on with
the results from the two other datasets. Figure 13.13 shows the position estimate on
Dataset 2 (the one with loss of USBL signal). The general performance is the same
sawtooth signal as we saw earlier. More interesting is the performance when the USBL



13.3. OUTLIER REJECTION 71

signal is lost at around 60 seconds. The inertial navigation system drifts as the signal is
lost and a large jump (about 0.5 meters) in estimated position is required after a 5-second
loss of signal. This is unacceptable. Figure 13.14 shows the performance on Dataset 3.
Running any sort of feedback control systems on these estimates would surely not end
well. Jumps of 10 meters; indicating errors in the same range would result in a collision
with the net which is unacceptable.

13.3 Outlier rejection

The outlier rejection must be tested on a dataset where the observer is somewhat con-
sistent, meaning we will use Dataset 1. This is also a dataset where the outlier rejection
actually encounters measurements that need to be removed.
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Figure 13.15: Dataset 1: Dvl measurement with rejected outliers.

Figure 13.15 show the DVL measurements. After roughly 70 seconds, the vehicle turns
away from the net, meaning that the DVL is no longer directed normally towards the
net pen wall, but instead on an angle. This also results in longer travel distance for the
DVL beams (along the net) and therefore a higher risk of being reflected by fish. Exactly
what causes the degradation in measurement quality is unknown. In the period 70-80
seconds, the DVL itself reports poor signal quality through a large standard deviation
(indicated using error bars in the plots). Following that, the outlier rejection rejects a
series of measurements that the DVL reports to have a low standard deviation. These
measurements were not consistent with the INS leading to large innovations and NIS
(Figure 13.16) and are therefore rejected. Note that the entire period of 70-90 seconds has
questionable measurements, but that in the period from 70-80 seconds, few measurements
are rejected because the DVL reports a high standard deviation resulting in a low NIS.
Once the bad measurements are deemed certain by the DVL, they are rejected. This leads
to a more robust outlier rejection as measurements that are uncertain, but not completely
wrong are accepted, while the measurements that are outright wrong are rejected. We
should also note that the outlier rejection also has some “random victims” along the way.
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These measurements have NIS’ that just about crosses the limit and are therefore rejected.
As can be seen in Figure 13.16, the NIS of these measurements are significantly less than
those belonging to the outliers.
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Figure 13.16: Dataset 1: Plot of NIS for the DVL.

13.4 Wave frequency estimator

Figure 13.17 consist of three plots. The top plot is the frequency estimate over time.
The middle plot is the AHRS pitch estimate which is used as input to the frequency
estimator. The bottom plot is the normalized Fast Fourier Transform (FFT) of the
signal in the middle plot. The top plot shows that the frequency estimate converges to a
frequency of about 2 rad/s. By inspection of the FFT, this seems likely, although some
lower frequencies make it difficult to distinguish the wave motion from the vehicle motion.
The convergence is slow, using 50 seconds to converge which is considerable considering
the application. The estimate is nice and stable once it has converged.
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Figure 13.17: Dataset 2: Estimate of the wave spectrum peak frequency.

13.5 Pressure bias estimator

The pressure bias estimator consists of two parts; one low frequency bias (upper plots),
and one bias that mainly consists of frequencies close to the wave frequency estimate
(lower plots). Both of these estimates need a bit of time in order to converge. The
low-frequency bias needs a period with USBL and pressure measurements in order to
determine the difference between the two, and the wave-frequency bias estimate requires
the wave-frequency estimator to converge before we can expect it to work. Until then it
will tend to pick up other frequencies that may lead to unwanted effects.

Figure 13.18: Dataset 1: Pressure bias estimates.
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Figure 13.19: Dataset 2: Pressure bias estimates.

Figure 13.20: Dataset 3: Pressure bias estimates.

Figures 13.18, 13.19 and 13.20 show the convergence of the pressure bias estimates on
Dataset 1,2 and 3 respectively. The low-frequency bias estimates are of a significant
scale (meters of depth), indicating that modeling of the bias is indeed needed. The
estimates remain fairly stable but are slowly changing. There is no way that tides and
changes in atmospheric pressure would change the bias this quickly, so there are definitely
imperfections here. The best bet would be that the pressure measurement scaling factor
(water density and gravity) is off. These types of errors would naturally pile up on the
bias and make it dependent on the measurements. On the other side; these types of
errors will always be present and a bias term is probably the safest place for them to go
(much worse if they influence the INS state estimates). The wave frequency estimates are
always small, although generally larger before the frequency estimator converges at about
50-70 seconds. Once the frequency estimate converges, the bias estimate also stabilizes
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on all three datasets. Note that 100 Pa of pressure corresponds to about 1 cm of water
depth, so the amplitude of these biases are in ranges of millimeters. This is negligible in
this context and a lot less than expected. This can be due to a low-end accelerometer
and INS not being able to capture the movement of the waves accurately enough, or,
perhaps more likely, it can be that we have overestimated the impact of waves on the
pressure measurement. Nevertheless, the estimate behaves in a robust manner and does
not appear to introduce unwanted oscillations into the system, instead, it settles on a
small amplitude close to zero whenever there is no/little bias for it to estimate. This
tells us that the design and implementation of the wave pressure bias estimator itself are
working as intended, although it may not be necessary for the application.

13.6 Wave filter

The performance of the wave filters will be evaluated on Dataset 2, which is a dataset
where the observer estimation performance is descent enough to isolate the filter per-
formance from the observer performance, while there are enough waves present to make
the wave motion distinguishable. In general; keep in mind that the frequency estimator
converges about halfway into the dataset (see Figure 13.17).
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Figure 13.21: Dataset 2: Velocity estimate before and after filtering.

Figure 13.21 shows the result of wave filtering the velocity estimate. The wave-filtering
behaves nicely from the beginning although the frequency estimate does not converge until
about 80 seconds. After that it is clear that the filter removes a lot of the oscillations from
the signal, keeping the low-frequency motion while being able to follow high-frequency
spikes (for instance middle plot at about 130 seconds). It also becomes apparent that
wave filtering comes with the price of phase lag, especially for the lower frequencies.
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Figure 13.22: Dataset 2: Position estimate before and after filtering.

Figure 13.22 contains the result of wave filtering on the position estimate. The bottom
plot (z-estimate) shows signs of the wave filtering actually being useful, the curve is very
smooth after, and the result is definitely usable as control feedback. On the two upper
plots, it is apparent that the wave filter follows the unfortunate saw-tooth estimates fairly
well. It is very difficult to distinguish any wave motion in the original estimates so wave
filtering has little use here (although this is not the wave filter’s fault).
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Figure 13.23: Dataset 2: Angular velocity estimate before and after filtering.

The angular velocity is also interesting to the wave filter since a Proportional-Integral-
Derivative (PID)-controller for attitude would need the derivative of attitude to work.
The results are shown in Figure 13.23. In the upper plot (angular velocity about the
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body frame x-axis), the filtering seems to have little effect, while the filtering works as
intended in the middle plot. The oscillations in the top plot seem to have a significantly
higher frequency, which is unexpected. It is difficult to say exactly what causes this, but
the oscillations in the top plot are negligible anyways.
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Figure 13.24: Dataset 2: Attitude estimate before and after filtering.

Wave filtering also seems to work as intended in Figure 13.24, especially the middle plot.
This is expected since the measurement of this state is used as input to the frequency
estimator.
In general, the wave filters appear to be working as intended. The discussion is more a
matter of whether or not wave filtering is worth it on such an agile craft. The phase lag is
considerable and it is not obvious that the wave filters would save the control system and
actuators from unnecessary wear as the part that is filtered out is not very noticeable.
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Chapter 14

Conclusion and Further Work

This chapter concludes on the results and discussion of the previous chapter in Sec-
tion 14.1, and proposes changes and improvements to the design in Section 14.2.

14.1 Conclusion

In short, the results in Chapter 13 show some of the modules in the design performed
well, while others (the most important) did not. We will start with what worked.

The wave frequency estimator (Section 13.4) worked well and converged to an estimate
that gave good wave filtering performance for the wave filters in Section 13.6. The con-
vergence is, however, a bit slow for the application but in general this style of frequency
estimation seems robust and well-suited for the application.

The use of adaptive notch filters for wave filtering also seems like a good choice for the
application. As discussed in Section 13.6, they clearly remove a lot of the wave motion
from the observer output. They are simple, reliable, and guaranteed stable. The major
concern should be that they add significant phase lag which can be a bit challenging for
control systems on such a small craft.

The pressure bias estimator was the most experimental module in the design. The idea
behind the estimator was to ensure that the pressure measurement became consistent with
the USBL through a low-frequency bias and the accelerometer through a bias oscillating
at wave frequency. The low-frequency estimate converges nicely, as discussed in 13.5. The
bias estimate is of a significant magnitude, indicating that it is beneficial when using two
depth sensors. The wave frequency bias estimate has, in general, a very small amplitude,
and therefore little impact on the system performance, neither positively nor negatively.
However, the design and implementation worked well.

The NIS outlier rejection seems to work well when tested in Section 13.3. The outlier
rejection avoids the inclusion of false measurements into the observer algorithm. Unfor-
tunately, some seemingly “good” measurements are lost along the way. Further tuning
may be in order. In general, outlier rejection seems like a wise inclusion when using DVL
in the environment of a fish farm.

The aided INS observer is the core of this design. The observer design itself works and
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runs in a robust manner, but the performance of the estimation itself is insufficient for the
application. This is mainly because of the position estimates which are bad on “ideal”
input and simply unacceptable when the USBL signals are lost (see Section 13.2). In
short, this is due to the overall quality of the measurements and signals available being
insufficient for the chosen observer design. Or, the other way around, the wrong observer
type was selected for the measurements available. Simply put, the IMU is not able to
keep the state estimates precise enough during periods between USBL measurements, and
the USBL is not consistent enough to compensate for the IMU shortcomings.

14.2 Further work

Since the observer performed worse than desired, this section is dedicated to what should
be done in order to achieve the desired observer performance. Section 14.2.1 discussed
what should be kept from the design in this thesis, Section 14.2.2 what should be changed/redesigned,
Section 14.2.3 what was unnecessary to include, and Section 14.2.4 what should be added
to the design.

14.2.1 What should be kept and improved upon

Some parts of the observer design worked well and should be kept in a future improve-
ment/redesign. The style of frequency estimator used here is well suited for the application
and should be kept, while the initial convergence rate should be improved (for instance
through an initial gain as in Belleter et al. (2015)). The adaptive wave filters are also a
good fit and should be kept if wave filtering is considered necessary. The low-frequency
bias (bias between USBL and pressure depth) is necessary to ensure filter consistency and
should be included if both measurements are used (the alternative is to use only the pres-
sure sensor and let the z-estimate be separate from the USBL x-y). Finally, DVL outlier
rejection is useful for a complex environment like a fish farm. Further improvements and
adaption to the redesign of the observer could improve performance even more.

14.2.2 What should be redesigned

The observer. There are two options here:

1. Retrofit the vehicle with a higher-end (and much more expensive) IMU allowing for
a higher rate, more precise, and better-timed input to the INS. This allows keeping
the observer design. This is probably the best option considering everything but
the cost.

2. Switch to a model-based design.

Switching to a model-based design leads to a lot of other issues (see Section 7.2.1). It is
by no means certain that this would work better than the design tested here (especially
in rapidly changing environments). The main challenge would be modeling. Since the
BlueROV2 already has an attitude observer (here referred to as AHRS), a 3-DOF model
for the translational motion should suffice. Most modeling approaches for this shape of
vehicle are unreasonable, but the sides of the vehicle are all of similar size, modeling the
vehicle as a sphere is the simplest of the unreasonable alternatives.
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14.2.3 What should be left out

In high-end pressure-aided inertial navigation, the wave pressure bias estimator would
probably be useful. The example in Willumsen et al. (2007) is seabed mapping, where
the precision of the vertical measurement is vital. For these applications, the inclusion
of such an estimator is probably wise, and the design in Section 10.2 would work well.
Considering that the estimated bias is in the range of millimeters, the impact on the
system is negligible compared to the major error sources (IMU quality). The estimator
also complicates the observer tuning with extra variables. It is therefore recommended to
leave this out of future improvements/redesigns.

14.2.4 What should be added

If a better IMU becomes available, attempts at outlier rejection on the USBL measure-
ments may improve performance. The requirement here is that the IMU measurements are
so good that the INS maintains precise measurements during the period when the USBL
is rejected. In this thesis, the INS estimates got worse during the period of rejecting
measurements than the rejected measurements themselves.
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Appendix A

Derivations

A.1 Process model

A.1.1 Angular velocity error

The gyro measurement equation is:

ybgyro = ωb + bbgyro +wb
gyro (A.1)

The INS angular velocity model is:

ω̂b = ybgyro − b̂bgyro (A.2)

The angular velocity error becomes:

δωb = ωb − ω̂b (A.3)

= −δbbgyro −wb
gyro (A.4)

A.1.2 Attitude error

The quaternion differential equation is:

q̇ =
1

2
q ⊗ ωb (A.5)

The INS differential equation is:

˙̂q =
1

2
q̂ ⊗ ω̂b (A.6)
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Due to the multiplicative nature of the quaternion and the product rule in differentiation,
the quaternion error becomes:

δ̇q = q̇ ⊗ q̂∗ + q ⊗ ˙̂q∗ (A.7)

=

(
1

2
q ⊗ ωb

)
⊗ q̂∗ + q ⊗

(
1

2
q̂ ⊗ ω̂b

)∗

=
1

2
q ⊗ ωb ⊗ q̂∗ +

1

2
q ⊗ (−ω̂b)⊗ q̂∗

=
1

2
q ⊗ δω ⊗ q̂∗

=
1

2
δq ⊗ q̂ ⊗ δω ⊗ q̂∗

=
1

2
δq ⊗R(q̂)δω

Using the first order approximation: δq =
[
1 1

2
δαn

]⊤
, and: δ̇q =

[
0 1

2
˙δα
n]⊤

:[
0
˙δα
n

]
=

[
1

1
2
δαn

]
⊗R(q̂)δωb

Carrying out the quaternion product and neglecting the upper row, we get:

˙δα
n
= R(q̂)δω − 1

2
S(R(q̂)δω)δαn

Neglecting the second order product between δω and δαn:

˙δα
n
= R(q̂)δω

Inserting: δω = −δbbgyro −wb
gyro (found in Appendix A.1.1)

˙δα
n
= −R(q̂)δbbgyro −R(q̂)wb

gyro (A.8)

A.1.3 Acceleration error

The measurement equation for the accelerometer is:

ybacc = ab + bbacc −R(q)⊤gn +wb
acc (A.9)

The INS acceleration model is:

âb = ybacc − b̂bacc +R(q̂)⊤gn (A.10)

The linearized acceleration error thus becomes:

δab = ab − âb (A.11)

= −δbbacc + (R(q)⊤−R(q̂)⊤)gn −wb
acc

Using the approximation that: R(q)⊤ ≈ R(q̂)⊤(I3 − S(δαn)), the acceleration error
becomes:

δab = −δbbacc −R(q̂)⊤S(δαn)gn −wb
acc

≈ R(q̂)⊤S(gn)δαn − δbbacc −wb
acc (A.12)
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A.1.4 Velocity error

The velocity differential equation is:

v̇b = ab − S(ωb)vb (A.13)

The INS differential equation is:

˙̂vb = âb − S(ω̂b)v̂b (A.14)

The linearized velocity error dynamics become:

˙δv
b
= v̇b − ˙̂vb (A.15)

= δab + S(ω̂b)v̂b − S(ωb)vb

= δab + S(ω̂b)v̂b − S(ω̂b + δωb)(v̂b + δvb)

= δab + S(ω̂b)v̂b − S(ω̂b)v̂b − S(ω̂b)δvb − S(δωb)v̂b − S(δ̂ω
b
)δvb

Neglecting the second order product S(δ̂ω
b
)δvb and flipping some cross products we get:

˙δv
b
= −S(ω̂b)δvb + δab + S(v̂b)δωb

Inserting δab = R(q̂)⊤S(gn)δαn − δbbacc − wb
acc (found in Appendix A.1.3), and δωb =

−δbbgyro −wb
gyro (found in subsection A.1.1), we get:

˙δv
b
= −S(ω̂b)δvb +R(q̂)⊤S(gn)δαn − δbbacc − S(v̂b)δbbgyro −wb

acc − S(v̂b)wb
gyro

(A.16)

A.1.5 Position error

The position kinematics model is:

ṗn = R(q)vb (A.17)

The INS equation is:
˙̂pn = R(q̂)v̂b (A.18)

The linearized position error dynamics become:

˙̂
δpn = ṗn − ˙̂pn (A.19)

= R(q)vb −R(q̂)v̂b

Using the approximation that R(q) ≈ (I3 + S(δαn))R(q̂), we get:

˙̂
δpn ≈ R(q̂)δvb + S(δαn)R(q̂)vb

= R(q̂)δvb − S(R(q̂)(v̂b + δvb))δαn

Neglecting the crossproduct S(R(q̂)δvb)δαn, we get:

˙̂
δpn = R(q̂)δvb − S(R(q̂)v̂b)δαn (A.20)
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A.1.6 Pressure bias error

The pressure biases are modeled as a linear system on the form:

ḃpbe = Apbebpbe +Gpbewpbe (A.21)

The pressure bias estimator is defined as:

˙̂
bpbe = Âpbeb̂pbe (A.22)

The pressure bias error becomes:

δ̇bpbe = ḃpbe − ˙̂
bpbe (A.23)

≈ Âpbeδbpbe + Ĝpbewpbe (A.24)

, where the matrices Apbe and Gpbe are replaced by Âpbe and Ĝpbe to include the estimate
of the peak frequency.

A.2 Measurement innovations and jacobians

A.2.1 USBL

The USBL measurement equation is:

ynusbl = pn +R(q)rbtp/b + ηnusbl (A.25)

The predicted measurement is:

ŷnusbl = p̂n +R(q̂)rbtp/b (A.26)

The innovation becomes:

δynusbl = ynusbl − ŷnusbl (A.27)

= δpn + (R(q)−R(q̂))rbtp/b + ηnusbl

Using the approximation: R(q) ≈ (I3 + S(δαn))R(q̂)

δynusbl ≈ δpn + S(δαn)R(q̂)rbtp/b + ηnusbl

= δpn − S(R(q̂)rbtp/b)δα
n + ηnusbl

=
[
I3 03 −S(R(q̂)rbtp/b) 03 03 03

]︸ ︷︷ ︸
Husbl(x̂)

δx+ ηnusbl (A.28)

A.2.2 Pressure sensor

The pressure sensor measurement is modeled as:

yps = batm + blf + bwf + ρ(gn)⊤(pnb/n +R(q)rbps/b) + ηps (A.29)
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The predicted measurement becomes:

ŷps = batm + b̂lf + b̂wf + ρgn⊤(p̂nb/n +R(q̂)rbps/b) (A.30)

The innovation is:

δyps = yps − ŷps (A.31)

= δblf + δbwf + ρ(gn)⊤δpn + ρ(gn)⊤(R(q)−R(q̂))rbps/b + ηps

Using the approximation: R(q) ≈ (I3 + S(δαn))R(q̂):

δyps ≈ δblf + δbwf + ρ(gn)⊤δpn + ρ(gn)⊤S(δαn)R(q̂)rbps/b + ηps

= ρ(gn)⊤δpn − ρ(gn)⊤S(R(q̂)rbps/b)δα
n + δblf + δbwf + ηps

=
[
ρ(gn)⊤ 01x3 −ρ(gn)⊤S(R(q̂)r̄bps) 01x3 01x3

[
1 1 0

]]︸ ︷︷ ︸
Hps(x̂)

δx+ ηnps (A.32)

A.2.3 DVL

The DVL measurement equation is:

Dyddvl = vbb/n − S(rbd/b)ω
b +Dηddvl (A.33)

The predicted measurement is:

ŷbdvl = v̂bb/n − S(rbd/b)ω̂
b
b/n (A.34)

The innovation becomes:

δybdvl = Dyddvl − ŷbdvl (A.35)

= δvb − S(rbd/b)δω
b +Dηddvl

Inserting the angular velocity error δωb = −δbbgyro −wb
gyro (found in Appendix A.1.1):

δybdvl = δvb + S(rbd/b)δb
b
gyro +Dηddvl + S(rbd/b)η

b
gyro

=
[
03 I3 03 03 S(rbd/b) 03

]︸ ︷︷ ︸
Hdvl

δx+Dηddvl + S(rbd/b)η
b
gyro (A.36)

A.2.4 AHRS

The AHRS measurement equation is:

Yahrs ≈ (I3 + S(ηnahrs))R(q) (A.37)

The predicted measurement is:
Ŷahrs = R(q̂) (A.38)

Since rotation matrices are multiplicative, the innovation must become the measurement
multiplied by the inverse of the predicted measurement:

δYahrs = YahrsŶ
⊤
ahrs

= (I3 + S(ηnahrs))R(q)R(q̂)⊤
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Using the approximation that: R(q̂)⊤≈ R(q)⊤(I3 + S(δα)), we get:

δYahrs ≈ (I3 + S(ηnahrs))R(q)R(q)⊤(I3 + S(δα))

= I3 + S(δα) + S(ηahrs) + S(δα)S(ηnahrs)

Assuming that the product S(δα)S(ηnahrs) is negligible:

δYahrs ≈ I3 + S(δα+ ηnahrs)

Realizing that the information in δYahrs is approximately skew-symmetric, we can simplify
further by:

δyahrs = vex (δYahrs) (A.39)

= δα+ ηnahrs

=
[
03 03 I3 03 03 03

]︸ ︷︷ ︸
Hahrs

δx+ ηnahrs (A.40)

A.3 Attitude jacobian

The goal of this section is to derive an attitude Jacobian that can be used to convert atti-
tude errors between Euler angles and rotation vectors represented in NED. The approach
is inspired by Trawny and Roumeliotis (2005). Let R be a rotation matrix describing
the true rotation and R̂ be our estimate of that rotation. When the error between these
matrices is suffiently small, it can be approximated using a rotation vector in NED, δαn

like:

R ≈ (I3 + S(δαn))︸ ︷︷ ︸
≜δRα

R̂

When using Euler angle representation, the same approximation can be used for the
individual rotations:

R(ϕ) ≈ R(ϕ̂) (I3 + S(exδϕ))︸ ︷︷ ︸
≜δRϕ

R(θ) ≈ R(θ̂) (I3 + S(eyδθ))︸ ︷︷ ︸
≜δRθ

R(ψ) ≈ R(ψ̂) (I3 + S(ezδψ))︸ ︷︷ ︸
≜δRψ

, where ex, ey, ez are the x, y, and z unit vectors. The Euler angles are defined such that:

R = R(ψ)R(θ)R(ϕ)

Inserting the previous equations:

δRαR̂ = R(ψ̂)δRψR(θ̂)δRθR(ϕ̂)δRϕ
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Rearranging:

δRα = R(ψ̂)δRψR(θ̂)δRθR(ϕ̂)δRϕR̂
⊤

Inserting: R̂ = R(ψ̂)R(θ̂)R(ϕ̂), we get:

δRα = R(ψ̂)δRψR(θ̂)δRθR(ϕ̂)δRϕR(ϕ̂)⊤R(θ̂)⊤R(ψ̂)⊤

Expanding using identity matrices:

δRα = R(ψ̂)δRψR(ψ̂)⊤R(ψ̂)︸ ︷︷ ︸
I3

R(θ̂)δRθR(θ̂)⊤R(ψ̂)⊤R(ψ̂)R(θ̂)︸ ︷︷ ︸
I3

R(ϕ̂)δRϕR(ϕ̂)⊤R(θ̂)⊤R(ψ̂)⊤

= R(ψ̂)δRψR(ψ̂)︸ ︷︷ ︸
Ψ

⊤R(ψ̂)R(θ̂)δRθR(θ̂)⊤R(ψ̂)⊤︸ ︷︷ ︸
Θ

R(ψ̂)R(θ̂)R(ϕ̂)δRϕR(ϕ̂)⊤R(θ̂)⊤R(ψ̂)⊤︸ ︷︷ ︸
Φ

The individual factors can be simplified after inserting the δ factors:

Φ = R(ψ̂)R(θ̂)R(ϕ̂)(I3 + S(exδϕ))R(ϕ̂)⊤R(θ̂)⊤R(ψ̂)⊤

= I3 + S(R(ψ̂)R(θ̂)R(ϕ̂)exδϕ)

= I3 + S(R(ψ̂)R(θ̂)exδϕ)

Θ = R(ψ̂)R(θ̂)(I3 + S(eyδθ))R(θ̂)⊤R(ψ̂)⊤

= I3 + S(R(ψ̂)R(θ̂)eyδθ)

= I3 + S(R(ψ̂)eyδθ)

Ψ = R(ψ̂)(I3 + S(ezδψ))R(ψ̂)

= I3 + S(R(ψ̂)ezδψ)

= I3 + S(ezδψ)

Returning to δRα:

δRα = ΨΘΦ

Inserting:

I3 + S(δαn) = (I3 + S(ezδψ))(I3 + S(R(ψ̂)eyδθ))(I3 + S(R(ψ̂)R(θ̂)exδϕ))

Multiplying and only keeping first order terms:

I3 + S(δαn) ≈ I3 + S(ezδψ) + S(R(ψ̂)eyδθ) + S(R(ψ̂)R(θ̂)exδϕ)

= I3 + S(ezδψ +R(ψ̂)eyδθ +R(ψ̂)R(θ̂)exδϕ)
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It is now clear that:

δαn = ezδψ +R(ψ̂)eyδθ +R(ψ̂)R(θ̂)exδϕ

=
[
R(ψ̂)R(θ̂)ex R(ψ̂)ey ez

] δϕδθ
δψ


δαn =

cos ψ̂ cos θ̂ − sin ψ̂ 0

sin ψ̂ cos θ̂ cos ψ̂ 0

− sin θ̂ 0 1


︸ ︷︷ ︸

Tatt(θ̂,ψ̂)

δϕδθ
δψ

 (A.41)

The jacobian Tatt can also be inverted for the inverse transformation:

δϕδθ
δψ

 =


cos ψ̂

cos θ̂

sin ψ̂

cos θ̂
0

− sin ψ̂ cos ψ̂ 0
cos ψ̂ sin θ̂

cos θ̂

sin ψ̂ sin θ̂

cos θ̂
1


︸ ︷︷ ︸

T−1
att (θ̂,ψ̂)

δαn (A.42)

As you would expect when working with Euler angles, the inverse Jacobian is not defined
for θ̂ = ±90°
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