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Abstract

This thesis presents the construction of a sensor payload consisting of an Ouster16
LiDAR, a STIM300 inertial measurement unit (IMU), and three f9p u-blox global
navigation satellite systems (GNSS) receivers, and investigates the performance
of a particular LiDAR-inertial simultaneous localization and mapping (SLAM) al-
gorithm, Liorf, when different timestamping primitives are used for sensor syn-
chronization. To date, the field of applied sensor fusion has not extensively stud-
ied how the accuracy of synchronization between sensor measurements affects
the performance of various SLAM algorithms. The primitives used are based on
hardware timestamping from a SentiBoard, and software timestamping based on
the Robotic Operating System (ROS). A synchronization module for synchroniz-
ing the Ouster LiDAR, based on encoder pulses, with the SentiBoard through its
ROS driver is presented. Data is collected by mounting the sensor payload on
top of a car and driving in urban areas as well as on the highway. The position
and orientation estimates from Liorf are compared to estimates obtained by a
Real-time kinematic positioning (RTK) solution from GNSS measurements. Full
orientation estimates based on RTK GNSS are achieved through the use of three
GNSS receivers. The result indicates that there is no significant difference between
hardware and software synchronization when it comes to Liorf pose estimation ac-
curacy. However, the accuracy of software synchronization is highly dependent on
the deployed software, and the hardware components the software is running on.
The experiment performed in this thesis used high-quality sensors, computers, and
software, which resulted in accurate software timestamps, that would not neces-
sarily be possible in other systems with low-quality components. In addition to
the synchronization analysis of Liorf, an enhanced approach for integrating GNSS
measurements into the algorithm is presented. This modification involves com-
pensating for the relative mounting between the IMU and the GNSS antennas,
as well as incorporating relative position measurements when multiple antennas
are used. The implementation of this modification required the development of
two new classes within the Georgia Tech Smoothing and Mapping (GTSAM) C++
library.
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Sammendrag

Denne avhandlingen presenterer konstruksjonen av en sensorsammensetning bes-
tående av en Ouster16 LiDAR, en STIM300 inertial måleenhet (IMU) og tre f9p u-
blox globalt navigasjonssatellittsystem (GNSS)-mottakere, og undersøker ytelsen
til en spesifikk LiDAR-inertial Samtidig posisjonering og kartlegging (SLAM) algo-
ritme, Liorf, når ulike tidsstemplingsteknikker brukes for sensor-synkronisering.
Hittil har forskningsfeltet innen anvendt sensorfusjon ikke omfattende studert
hvordan nøyaktigheten av synkroniseringen mellom sensormålinger påvirker ytel-
sen til ulike SLAM-algoritmer. De benyttede teknikkene i denne avhandlingen
er basert på maskinvarebasert tidsstempling fra et SentiBoard og programvare-
basert tidsstempling basert på Robotic Operating System (ROS). En synkronise-
ringsmodul for å synkronisere en Ouster LiDAR, basert på enkodersignaler, med
et SentiBoard gjennom dens ROS-driver, blir presentert. Data samles inn ved å
montere sensorsammensetningen på toppen av en bil og kjøre i byområder og
på motorveien. Posisjons- og orienteringsestimatene fra Liorf blir sammenlignet
med estimatene som er oppnådd gjennom en sanntidskinematisk posisjonering
(RTK) basert på GNSS-målinger. Fullstendige orienteringsestimat basert på RTK
GNSS oppnås ved bruk av tre GNSS-mottakere. Resultatene indikerer at det ikke
er noen betydelig forskjell mellom maskinvare- og programvaresynkronisering når
det gjelder nøyaktigheten av estimatene fra Liorf. Imidlertid er nøyaktigheten av
programvaresynkronisering sterkt avhengig av den anvendte programvaren og
maskinvarekomponentene. Eksperimentet som ble utført i denne avhandlingen
brukte høykvalitetssensorer, datamaskiner og programvare, noe som resulterte i
nøyaktige programvaretidsstempler som ikke nødvendigvis vil være mulig i andre
systemer. I tillegg til synkroniseringsanalysen av Liorf blir det presentert en for-
bedret tilnærming for å integrere GNSS-målinger i algoritmen. Denne modifika-
sjonen innebærer kompensering for den relative monteringen mellom IMU-en og
GNSS-antennene, samt innlemming av relative posisjonsmålinger når flere anten-
ner brukes. Implementeringen av denne modifikasjonen krevede utviklingen av
to nye klasser innenfor Georgia Tech Smoothing and Mapping (GTSAM) C++ bi-
blioteket.
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Chapter 1

Introduction

The purpose of this chapter is to provide the motivation behind the research con-
ducted in this thesis and introduce the underlying hypothesis. The thesis makes
several significant contributions to the field of applied sensor fusion, which will
be outlined in detail.

1.1 Motivation

Advancements in autonomous systems have led to a growing demand for robots
that can navigate and solve complex tasks in unknown environments. To achieve
this, robots need the ability to construct maps of their surroundings and esti-
mate their position relative to them. This critical task is known as simultaneous
localization and mapping (SLAM) and has a rich history of development (Auli-
nas et al., 2008; Leonard and Durrant-Whyte, 1991). The first SLAM algorithms
were proposed in the 1980s and relied on simple sensors such as odometry and
range finders. However, these algorithms were limited in their ability to handle
complex environments and often suffered from drift and accumulation of errors.
Today, SLAM has become increasingly important in various applications such as
autonomous driving, search and rescue operations, and exploration of extrater-
restrial environments. As society continues to rely more on autonomous systems,
improving the accuracy and reliability of SLAM algorithms becomes crucial for
their successful implementation in real-world scenarios.

Over the years, SLAM algorithms have evolved to incorporate more advanced
sensors such as LiDAR (Raj et al., 2020), stereo cameras (O’Riordan et al., 2018),
inertial measurement unit (IMU) (Ahmad et al., 2013), global navigation satel-
lite system (GNSS) (Groves, 2013), and magnetometers (Robbes, 2006) as well
as more sophisticated estimation techniques such as particle filters and graph op-
timization (Taheri and Xia, 2021). LiDAR sensors provide precise measurements
of distance and angle to objects in the environment, making them well-suited for
mapping applications. Cameras, on the other hand, provide rich visual informa-
tion that can be used for feature detection and localization. IMUs provide informa-
tion about the robot’s acceleration and angular velocity, which can be integrated
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to estimate its position and orientation. GNSS can assist in correcting global drift
in the map and the robot’s position, as well as referencing the estimates to a global
frame. Magnetometers measure the local magnetic field and can be used to esti-
mate the robot’s heading. Many SLAM systems use multiple sensors of the same
type to obtain more data and make the system more robust to sensor failure. For
example, using two cameras instead of one makes it possible to estimate distance
to the surrounding environment and enhance the system’s robustness to changes
in lighting conditions. Similarly, using multiple GNSS receivers can help estimate
the orientation and provide more accurate position estimates, especially in urban
canyons or other environments with limited satellite visibility. However, deploying
multiple sensors on a large vehicle requires compensating for relative mounting
between the sensors. Software frameworks for sensor fusion often offer limited
flexibility in compensating for this.

Sensor measurements capture information derived from the real world, en-
compassing physical quantities as well as timing details indicating the validity of
the measured state. The process of obtaining such timing details is referred to as
timestamping. Using multiple sensors from different manufacturers often includes
the process of synchronization, such that all measurements are timestamped with
respect to the same time reference. There exist multiple primitives to synchronize
and timestamp sensor data, some more accurate than others (Jellum et al., 2022).
What role accurate synchronization and timestamping play in applied SLAM sys-
tems is not a well-studied topic in the field of robotics. In Storli (2022), the ef-
fect of hardware vs software synchronization was studied for the tightly coupled
LiDAR-inertial odometry via smoothing and mapping (LIO-SAM) algorithm (Shan
et al., 2020). The result indicated that the difference between the synchronization
primitives is more significant as the dynamics of the physical system increase. The
test case used a handheld sensor platform that would not be considered appli-
cable to any industry-relevant application. Therefore, the importance of accurate
synchronization and timestamping in industry-relevant applications using SLAM
remains an unanswered question. This thesis explores the accuracy of Liorf (an im-
plementation of LIO-SAM) when sensor data is synchronized using hardware and
software timestamping methods. The investigation focuses on a scenario where
the sensors are mounted on top of a car, which is driven in urban areas.

1.2 Problem description

From Storli (2022), it is proposed that systems with fast dynamics, such as drones,
race cars, fighter jets, and speed boats, may be more susceptible to estimation er-
rors arising from synchronization inaccuracies than systems with slow dynamics,
such as container ships, passenger planes, and trains. The rationale behind this is
the rapid and frequent changes in the measurement magnitudes that occur in fast-
moving systems. For instance, a drone may be moving at high speeds and rapidly
changing directions, which can lead to abrupt changes in sensor measurements.
In systems where the sensor measurement magnitudes change slowly, accurate
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synchronization may not be necessary.
Based on the significant difference observed between hardware and software

synchronization on the handheld platform in Storli (2022), and considering the
potentially faster dynamics of a car, the following hypothesis is formulated, and
considered the main hypothesis of the thesis:

A SLAM algorithm applied to a car driving in urban areas will have significantly less
accurate position and orientation estimates when the sensor data is synchronized
based on software methods compared to hardware methods.

This hypothesis was tested by gathering sensor data from a LiDAR, an IMU, and
three GNSS receivers mounted on top of a car driving in urban areas. All sensor
measurements were timestamped and synchronized based on hardware and soft-
ware methods. This resulted in a dataset where all measurements were given two
timestamps, one from software-based methods, and one from hardware-based
methods. The sensor data was then fed into the Liorf algorithm, and the output
pose and orientation estimates were compared.

Liorf was chosen due to its tight coupling of sensor data, and that it is con-
sidered state of the art in open source LiDAR-inertial SLAM algorithms (X. Xu et
al., 2022b). The car platform was chosen due to its relevance to the upcoming
industry challenge of making reliable self-driving cars. Such cars must be trust-
worthy, or else the consequences may be fatal. All of the actions a car makes are
based on the information it has about the world around it, and this knowledge is
mainly based on sensor data. If a car lacks realistic estimates of its surrounding
environment, it becomes unlikely for it to make safe decisions.

The vehicle employed in this project is of considerable size, resulting in a sub-
stantial separation between the IMU and the GNSS antennas. Moreover, the cur-
rent estimation approach employed by Liorf, which relies on the Georgia Tech
Smoothing and Mapping (GTSAM) C++ software library, does not possess the ca-
pability to compensate for this distance. To overcome this limitation, this thesis
introduces a modification to Liorf that addresses the antenna separation issue. Ad-
ditionally, this modification incorporates relative position measurements obtained
from multiple GNSS receivers. The implementation of this modification involves
the development of two new classes integrated into the GTSAM library. The hy-
pothesis is that the proposed modification will greatly improve the estimation ac-
curacy of Liorf when integrating GNSS measurements. To test this, the modified
version of Liorf was compared to the original implementation by evaluating the
resulting estimates.
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1.3 Main contributions

The main contributions of this thesis are:

• Insight into how hardware and software synchronized sensor measurements
affect the position and orientation estimates of a state-of-the-art SLAM al-
gorithm. (Section 6.5)
• A synchronization module for synchronizing an Ouster LiDAR with a Sen-

tiBoard v1.30 based on the open-source LiDAR ROS driver, as well as a
quantitative comparison of different LiDAR synchronization methods. (Sec-
tion 4.3.3, Section 6.2.1)
• An industry-relevant dataset with hardware synchronized measurements

with highly accurate timestamps (10 ns resolution), consisting of measure-
ments from a LiDAR, an IMU, and three GNSS receivers.
• A modification of Liorf by compensation for mounting calibration between

IMU and GNSS, and relative position measurements from GNSS antennas.
This was done through an expansion of the GTSAM C++ factor graph library,
with two new GNSS factors, GPSWithLeverArmFactor and GPSBaseLineFac-
tor. (Chapter 5, Section 6.6)

1.4 Organization of thesis

The rest of this thesis is organized as follows. Chapter 2 presents the most common
timestamping and synchronization primitives within sensor fusion for navigation
and SLAM, as well as a mathematical framework for modeling synchronization er-
rors. In Chapter 3, background information regarding sensor fusion and SLAM is
presented. This includes, coordinate system and transformations commonly used
in sensor fusion algorithms, mathematical frameworks for modeling sensor mea-
surements, and graph-based SLAM. Chapter 3 also includes a detailed descrip-
tion of the mechanism behind the SLAM algorithm deployed in this project, Li-
orf. In Chapter 4 the system used to carry out the experiment and data analysis
is described. This includes sensor mounting, hardware and software integration,
Real-time kinematic positioning (RTK) GNSS solution generation, and timestamp
modification. Chapter 5 describes the expansion of the GTSAM library and the
integration of the new factors in Liorf. In Chapter 6 the results are presented
and discussed. Firstly, the results for comparing two different methods for Li-
DAR synchronization is presented. Then the main result of the thesis is presented,
the hardware- and software-based synchronization comparison of Liorf estimates.
Lastly, the different GNSS factors are compared, to establish if the modification of
Liorf contributes to more accurate estimates. Finally, the conclusion and sugges-
tions for further work are presented in Chapter 7.



Chapter 2

Synchronization and Timing
Theory

Synchronization in the field of sensor fusion is the process of aligning the times-
tamps of measurements from multiple sensors to a common time reference. Today,
there are multiple synchronization primitives capable of achieving this goal. Some
rely on each sensor having an internal clock to timestamp the measurements,
while others use individual pulses that are sent out each time a new measure-
ment is sampled. There are also less sophisticated methods that timestamp the
measurements with the arrival time at the host computer. However, these meth-
ods are considered less accurate since they do not take into account the trans-
portation delay from the sensor to the host computer. Sensor measurements that
contain large amounts of data, such as cameras and LiDARs, will therefore be
less accurately timestamped compared to sensors such as IMUs that send small
amounts of data.

Synchronizing multiple sensors boils down to timestamping all measurements
with respect to the same time reference. On the other side, timestamping comes
down to giving a single measurement from one sensor an estimate of when the
measured value was valid in the real world. Just as for synchronization, some
methods are considered more accurate than others.

2.1 Synchronization primitives

In the following, the most common synchronization primitives are presented and
discussed. The information is based on the work in Jellum et al. (2022).

Network synchronization

Some sensors include advanced microcontrollers capable of running the TCP/IP
stack and support IEE1588 Precision Time Protocol (Watt et al., 2015) and Net-
work Time Protocol (Mills, 1991). These protocols allow sensors and computers

5
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to exchange information regarding each other’s clock state. Based on this infor-
mation each computer can adjust its clock to match the other clocks in the system.
Usually, there is a grand master clock that all other clocks in the network are try-
ing to synchronize with. This protocol is preferred in cases when the amount of
hardware cables are supposed to be at a minimum, as only an ethernet cable is
necessary.

1-Pulse-Per-Second(1PPS)

This primitive is suitable for sensors containing a microcontroller which samples
and timestamps sensor measurements based on its own internal clock (Mogul et
al., 2000). A 1-Pulse-Per-Second (1PPS) is a 1-wire signal which expects a flank
at the beginning of each second. The embedded microcontroller can then times-
tamp measurements relative to the beginning of a whole second. Typically the
host computer is the 1PPS sender, therefore referred to as the 1PPS master, while
the sensor receiving the pulse is referred to as the 1PPS slave. It is also possible for
the sensor to be the 1PPS master, sending a pulse each time its internal clock is at
a top of a second. Then the host computer is referred to as a 1PPS slave. To avoid
unnecessary clock drift, it is recommended to use the system with the most accu-
rate oscillator as the 1PPS master. Given that the timestamping of the 1PPS pulse
is accurate, the synchronization error is given by the difference in clock drift be-
tween the two systems. Some sensors can receive and parse certain GNSS timing
packets from a GNSS receiver by the use of a universal asynchronous receiver-
transmitter (UART) receiver. This allows the sensor to timestamp measurements
on the Coordinated Universal Time (UTC) timeline. Some systems also support
multiple pulses per second, to achieve an even tighter synchronization between
the systems. This method can be generalized to nPPS. If the sensor is configured
to be a 10PPS-slave, it will timestamp all measurements relative to the beginning
of every 10th of a second.

Time-of-validity (TOV) synchronization

Time of validity (TOV) is a commonly used synchronization primitive for sensors
that do not timestamp their measurements to an internal clock. The method relies
on a hardware pulse outputted by the sensor that flanks at the exact moment in
time when a measurement is sampled. Since the measurement data arrives at a
later time than the TOV pulse, the pulse needs to be timestamped and associated
with the corresponding measurement data at the host computer.

Triggering

Trigger synchronization is based on a single wire signal from the host computer
to the sensor, telling it when to sample a new measurement. This synchronization
primitive is often used for sensors such as IMUs and cameras. The sensor receiv-
ing the pulse usually has a fixed delay from the arrival of the pulse to the sample
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is performed. In order to obtain the exact time of sampling, this delay must be
added to the timestamp of the trigger pulse. The duration of this delay is usually
exposed in the sensor datasheet. Trigger synchronization is commonly used when
it is important for the measurements to be taken at the exact same time. Appli-
cations such as stereo-vision greatly benefit from this type of synchronization, as
the same features are identical in both frames. If the cameras sample at different
times, the scene might change from one sample to the other making it harder to
match features and obtain depth estimates.

2.2 Timestamping primitives

In this section, the most common timestamping primitives are covered. The infor-
mation is based on the work in Jellum et al. (2022).

Hardware

The most accurate method, and the only one to achieve deterministic timestamps,
is hardware timestamping. This method applies to 1PPS, TOV and Trigger synchro-
nization. Hardware synchronization involves using dedicated timer peripherals to
timestamp and generate pulses. Clock frequency and clock drift are typically the
only factors that affect the accuracy of hardware timestamping.

GPIO-based timestamping

Configuring general purpose input output (GPIO) pins to generate an interrupt
service routine (ISR) each time a pulse is detected, is one way to timestamp events.
ISRs can also be used to generate signals used for Trigger synchronization. This
is done by configuring the microcontroller to generate interrupts based on the
internal clock value. When using a multi-threaded platform, the sleep function
can also be utilized to generate and timestamp periodic pulses. The accuracy of
GPIO-based Timestamping comes down to how the microcontroller is configured.
If there are other ISRs with higher priority, the timestamp generated will not be
deterministic. Additionally, when all interrupts are disabled, the timestamps will
not be deterministic.

Software-based

An alternative, but less sophisticated method, is to timestamp the measurement
when it arrives at the host computer. This method is referred to as software times-
tamping. If no synchronization primitives are available on the sensor or if the host
computer has no GPIO pins available, this might be the only option. The weak-
ness with software timestamping is the fact that it does not take into account the
processing and transportation delay from the measurement is sampled to it has
arrived at the host computer. If the host computer is busy with other calculations,
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the measurement may be placed in a buffer before being timestamped, resulting
in additional delay.

2.3 Synchronization models

As with most physical phenomena, it is beneficial to have mathematical models to
lean on when studying them. The same goes for synchronization and timestamp-
ing. In this section, some basic models describing synchronization errors will be
presented and discussed. The information presented is mainly based on the work
in Sivrikaya and Yener (2004). Sivrikaya and Yener (2004) focuses on synchro-
nization in sensor networks, but the theory can be generalized to most systems
containing a hardware oscillator driving the internal clock.

Computing devices typically have a hardware oscillator-assisted clock that pro-
vides an approximation of real-time t, denoted as C(t). The rate at which the clock
runs is determined by the angular frequency of the hardware oscillator. Ideally, the
rate of a perfect clock, denoted as dC/d t, would equal 1. However, all clocks are
subject to clock drift, which refers to the unpredictable variation of oscillator fre-
quency due to various physical effects. Despite the frequency of a clock changing
over time, it can still be approximated with good accuracy using an oscillator with
a fixed frequency. For a given sensor i in a sensor payload, its local clock can be
approximated as

Ci(t) = ai t + bi , (2.1)

where ai represents the clock drift and bi represents the offset of sensor i’s clock.
The drift denotes the rate or frequency of the clock, while the offset is the differ-
ence between the clock value and the real-time t.

By using (2.1), the local clocks of two components in a sensor payload can be
compared, such as a sensor with an internal clock and a host computer. Denote
the sensor as 1 and the host computer as 2, then the mathematical relationship
can be expressed as

C1(t) = a12C2(t) + b12. (2.2)

Here, a12 and b12 are the relative drift and relative offset between the clocks in
the sensor and the host computer, respectively. When two clocks are perfectly
synchronized, their relative drift is 1, indicating that they have the same rate, and
their relative offset is zero, meaning they have the same value at that instant. Some
studies in the literature use "skew" instead of "drift," which defines the difference,
rather than the ratio, between clock rates (Elson et al., 2002). Additionally, the
offset may be alternatively referred to as phase offset.



Chapter 3

Sensor Fusion and SLAM Theory

This chapter focuses on theory related to sensor fusion and SLAM, with empha-
sis on key aspects such as coordinate frames and transformations, sensor model-
ing, graph-based SLAM, and the mechanism behind Liorf. Coordinate frames and
transformations are fundamental in robotics for accurate spatial representation
and integration of sensor data. Understanding their relationships and application
is crucial for consistent perception. Accurate sensor modeling is essential for ro-
bust sensor fusion. Various sensor models will be presented and discussed, such as
LiDAR, GNSS, and IMU. Graph-based methods for solving the SLAM problem has
gained prominence in recent years (X. Xu et al., 2022b). Additionally, the mech-
anism behind the SLAM algorithm LIO-SAM, which is the basis for Liorf, will be
presented.

3.1 Coordinate systems and transformations

In the field of navigation, guidance, and control of robots and autonomous vehi-
cles, there are different coordinate systems used for referencing physical quanti-
ties. Without a proper definition of a reference coordinate system, quantities such
as orientation, position, velocity, and acceleration would give little to no infor-
mation about the state of the system. This section about sensor fusion and SLAM
theory is therefore based on a proper definition of coordinate systems. The in-
formation presented in this section is based on the material presented in Farrell
(2008) and Cai et al. (2011).

Notation

The notation used for describing vectors in coordinate systems follows the nota-
tion of Fossen (2021). Furthermore, coordinate frames are expressed as {·}, while
a vector z ∈ R3 from {a} to {b} is denoted zc

ab when resolved in {c}. A rotation
matrix mapping from frame {a} to frame {b} is denoted as Rb

a . Scalars are writ-
ten in lower case, while vectors and matrices are written in lower and upper case
bold, respectively. Transpose is denoted (·)⊺.

9
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3.1.1 Coordinate frames

The most intensively used coordinate systems are summarized in Table 3.1. The
coordinate systems {g}, {e}, {i} are used for global referencing, while {u} is used
for referencing in a local area. The coordinate systems {b}, {bi} and {bl} refers
to the body fixed frame, IMU sensor frame and LiDAR sensor frame, respectively.
{bmb}, {br1

} and {br2
} refers to three coordinates systems describing the place-

ment of three GNSS antennas. The subscripts mb, r1, and r2 stands for Moving
Base, Rover1 and Rover2, respectively. These are the names of the three GNSS
antennas used in this project. The frames representing the GNSS antennas, IMU,
and LiDAR are commonly referred to as "sensor frames". This section describes
the individual frames in detail.

Table 3.1: Coordinate frames

Symbol Description

g Geodetic Coordinate System
e Earth Centered Earth Fixed (ECEF)
i Earth Centered Inertial (ECI)
u East North Up (ENU)
b Vehicle fixed body frame
bl LiDAR
bi IMU
bmb GNSS Moving Base antenna
br1

GNSS Rover1 antenna
br2

GNSS Rover2 antenna

Geodetic Coordinate System {g}

The Geodetic Coordinate System denoted {g}, is often used in GNSS-based po-
sitioning. This is not a usual Cartesian coordinate system, where the axes are
orthogonal to each other, but a system that describes points in terms of latitude,
longitude, and height, denoted λ, τ and h, respectively. Latitude is a measure of
the angle between the equatorial plane and the line from the center of the ref-
erence ellipsoid passing through the point of interest. Possible values for latitude
range from −90◦ to 90◦. The longitude represents the angle between the Prime
Median and the same line as Latitude. This value ranges from −180◦ to 180◦. The
Prime Median is a curved line connecting the poles through a specified point on
the surface of the earth (Smith, 1976). The height is defined as the distance from
the point of interest to the nearest point on the reference ellipsoid.
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Earth Centered Earth Fixed {e}

The ECEF coordinate system has its origin located at the center of the earth, and
rotates with it. As a consequence of this, a fixed point on the surface of the earth
has a fixed set of coordinates in the ECEF coordinate system. Furthermore, the
ECEF coordinate system is a right-handed system with its z-axis pointing to the
north pole, and x-axis pointing in the 0◦ latitude and 0◦ longitude direction. The
y-axis is orthogonal to the other axis and follows the right-hand convention.

Earth Centered Inertial {i}

The ECI frame has its origin located at the center of the earth and does not rotate
with it. Being an inertial frame means that Newton’s laws of motion apply. The
z-axis is defined as for ECEF, and the x-axis points towards the vernal equinox.
The y-axis is defined to complete the right-hand rule. At a certain point each year,
the ECEF and ECI axes are identically aligned.

East North Up {u}

The ENU coordinate system is a local positioning system where the origin can be
placed at any point. The x, y, and z axes point in the east, north, and up direction,
respectively. It is an alternative to the North East Down (NED) coordinate system,
which also has its origin placed at a local point, but with rotated axes. Typically,
the origin of the ENU frame is placed at the start of a trajectory. While the ENU
and NED systems provide an accurate representation of the area near the origin,
as the vehicle moves farther away, the north axis no longer aligns with the north
direction at the current location, leading to inaccurate representation.

Body and sensor coordinate systems {b}

The body coordinate system is a reference frame with its origin located on the
vehicle. If the vehicle is a rigid body, all points on it will have constant coordinates
in this frame. The origin can be placed anywhere on the vehicle, but it’s usually
placed at the center of mass or volume. The x-axis usually points towards the
vehicle’s front, while the z-axis points directly down or up when the vehicle is on
horizontal ground. The y-axis follows the right-hand rule, which depends on the
direction of the z-axis.

A vehicle typically has multiple sensors, each with its own coordinate system.
For example, an IMU measures acceleration and angular velocity based on its own
coordinate system. To convert these readings to the body frame, a clear definition
of the IMU’s coordinate system is required. LiDARs and cameras are often used to
calculate relative motion between two scans or frames, with motion referenced
to the local coordinate system of the sensor. However, because these sensors may
not be placed identically on the body’s origin, it is crucial to properly define their
coordinate systems.
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GNSS receivers can provide measurements that indicate the relative position
of two antennas, typically given in ENU or NED. As with IMUs, LiDARs, and cam-
eras, the antennas require representative coordinate systems for the measure-
ments to be transformed into the body frame.

3.1.2 Transformations between coordinate systems

Transforming data from one coordinate frame to another is essential for applying
sensor data in state estimation. An alternative viewpoint is to look at it as the
data is not changed but represented alternatively. A transformation between two
Cartesian frames consists of two types of actions:

1. Translation
2. Rotation

Translation involves the case when the origin of two coordinate systems is not
identically at the same point. Rotation is the process when the origins are at the
same point, but the axes do not point in the same direction. A transformation
usually consists of a translation and a rotation.

There are multiple ways of representing the orientation of one coordinate
frame relative to another (Fossen, 2021). A common approach is the use of ro-
tation matrices. A rotation matrix R is an element in the Lie group SO(3) and is
defined as

RR⊺ = R⊺R = I3, det(R) = 1, (3.1)

where I3 represents the 3×3 identity matrix, and det(·) refers to the determinant.
Rotation a vector p expressed in frame {a} to a frame {b} by the use of a rotation
matrix is expressed as:

p b = Rb
a pa (3.2)

The rotation from one Cartesian frame into another can always be represented by
the use of three successive rotations. This representation of rotation is referred to
as Euler rotations (Stevens et al., 2015). The Euler angles for roll, pitch, and yaw
are denoted as φ, θ , and ψ. The conversion between Euler angles and a rotation
matrix is expressed as:

Rb
a(Θ) =





cθ cψ −cφsψ+ sφsθ cψ sφsψ+ cφsθ cψ
cθ sψ cφcφ + sφsθ sψ −sφcψ+ cφsθ sψ
−sθ sφcθ cφcθ



 , (3.3)

where c· and s· denotes cos(·) and sin(·), respectively, and Θ = (φ,θ ,ψ)⊺

Since the Euler angles representation of orientation involves non-unique rep-
resentations, called singularities, an alternative representation is the use of quater-
nions (Brekke, 2021, Ch. 10). The unit quaternion is defined as

q = η+ ε1i + ε2 j + ε3k, q⊺q = 1 (3.4)



Chapter 3: Sensor Fusion and SLAM Theory 13

where η, ε1, ε2 and ε3 are real numbers and k, j and i are unit-vectors pointing
along the three spatial axes. The conversion from quaternion to Euler angles is
given by

φ = atan2
�

2(ε3ε2 +ηε1),η
2 − ε2

2 − ε
2
3 + ε

2
1

�

, (3.5a)

θ = asin (2(ηε2 − ε1ε3)) , (3.5b)

ψ= atan2
�

2(ε1ε2 +ηε3),η
2 + ε2

2 − ε
2
3 − ε

2
1

�

. (3.5c)

The reverse process, conversion from Euler angles to quaternions is given as

η= cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2) (3.6a)

ε1 = sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2) (3.6b)

ε2 = cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2) (3.6c)

ε3 = cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2) (3.6d)

Given a quaternion describing the orientation of {a} relative to {b}, denoted
q a

b , a rotation matrix can be obtained by

Ra
b(q

a
b) =





1− 2(ε2
2 + ε

2
3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1− 2(ε2
1 + ε

2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε

2
2)



 , (3.7)

In some cases, both translation and rotation are involved in a transformation.
Then the expression for transforming a vector p from a frame {a} to a frame {b}
becomes

p b = Rb
a pa + t b

ba, (3.8)

where Rb
a is the same as in (3.2) and t b

ba is the vector from the origin of {b} to
the origin of {a}, resolved in {b}.

The transformation in (3.8) can be expressed as a matrix equation by the use
of homogenous coordinates (Bloomenthal and Rokne, 1994). The homogenous
coordinates, denoted f(·), of a point p is defined as:

ep :=

�

p
1

�

. (3.9)

Furthermore, the transformation of a point in frame {a} to a frame {b} can be
expressed as:

ep b = T b
a ep

a, (3.10)

where T b
a is defined as

T b
a :=

�

Rb
a t b

ba
01×3 1

�

, (3.11)

where 01×3 is a zero row vector.
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An often used matrix transformation in sensor fusion is the Skrew Symmetric
Matrix S, which is a part of the Lio group SS(3) (Fossen, 2021, p.24). Given a
vector z = (z1, z2, z3)⊺, then S(z) is defined as:

S(z) :=





0 −z3 z2
z3 0 −z1
−z2 z1 0



 . (3.12)

From Geodetic to ECEF

Measurements from GNSS are often received in the Geodetic coordinate system
but are usually wanted in the local ENU or NED frame. In order for this transfor-
mation to take place, an intermediate step is required. This step is the transfor-
mation from the Geodetic coordinate system, represented by latitude, longitude,
and height, to the ECEF coordinate system. In order for such a transformation to
take place, some parameters related to the Geodetic coordinate system need to be
defined.

1. The semi-major axis a
2. The first eccentricity e
3. The prime vertical radius of curvature RN

Their numerical values are given as follows:

a = 6378137, (3.13a)

e = 0.08181919, (3.13b)

RN =
a
p

1− e2 sin(λ)2
. (3.13c)

Given the origin coordinates of a local frame {u} in the Geodetic coordinate sys-
tem, in terms of λ, τ, and h, the resulting coordinates in the ECEF frame is given
by:

p e
eu =





(RN + h) cos(λ) cos(τ)
(RN + h) cos(λ) sin(τ)
(RN (1− e2) + h) sin(λ)



 , (3.14)

where e and RN are given by (3.13).

From ECEF to ENU

Given a set of coordinates represented in ECEF, a transformation following (3.8)
is needed to obtain the local ENU representation. This is done by first defining
the origin of the local ENU frame in ECEF coordinates, given a set of geodetic
coordinates. This point is denoted as p e

eu, and obtained by feeding the geodetic
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coordinates into (3.14). Furthermore, the rotation matrix from (3.8) is defined as

Ru
e =





− sin(λ0) cos(λ0) 0
− sin(τ0) cos(λ0) − sin(τ0) sin(λ0) cos(τ0)
cos(τ0) cos(λ0) cos(τ0) sin(λ0) sin(τ0)



 , (3.15)

where τ0 and λ0 are latitude and longitude of the local ENU origin, respectively.
Moreover, the position of the vehicle body in local ENU coordinates can be ex-
pressed as

pu
ub = Ru

e (p
e
eb − p e

eu) (3.16)

ENU to Body

Given a rotation matrix describing the orientation of the body coordinate system
relative to the local ENU frame, and the vector between the two origins, the trans-
formation can be expressed as in (3.8). Given the position of a point a in the ENU
frame pu

ua, the position in the body frame is given by

p b
ba = Rb

u pu
ua + p b

bu. (3.17)

3.2 Sensor modeling

In order to integrate sensor data into a SLAM algorithm, it is necessary to have a
mathematical model of how the sensor behaves. Some sensor does not measure
relevant physical quantities directly, but a relation to them. This section includes
mathematical models for IMU, LiDAR, and GNSS. The material is based on the
work in Fossen (2021, Ch. 14) and Storli (2022). Measured quantities are denoted
(̂·).

3.2.1 Inertial Measurement Unit (IMU)

IMU is a sensor that measures multiple quantities (Fossen, 2021, Ch. 14). Most
IMUs include three accelerometers, three gyroscopes, and a temperature sensor.
Some IMUs also include other sensors such as inclinometers and magnetometers.
In this section, the focus will be on the mathematical models relating the output
of accelerometers and gyroscopes with interesting physical quantities. It should
be noted that these relations are simplifications, and actual sensor behavior may
under certain circumstances behave very differently from the presented models.

Accelerometer

Accelerometers measure specific force f , which can be related to the true acceler-
ation a through

f̂ bi
ubi
= Rbi

u (a
u
ubi
− g u) + bbi

acc + w bi
acc , (3.18)
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where Rbi
u ∈ SO(3) is the rotation matrix from the local ENU frame to the IMU

frame, au
ubi

is acceleration of the IMU frame relative to the local ENU frame, g u

is the gravitational vector, bbi
acc is accelerometer bias, and w bi

acc is measurement
noise.

Gyroscope

A gyroscope has a closer relationship to a meaningful physical quantity, which
is angular velocity. The mathematical relationship between what the gyroscope
measures ω̂ and the true angular velocity ω is given as

ω̂
bi
ubi
=ωbi

ubi
+ u bi

g y r + w bi
g y r , (3.19)

where ω̂bi
nbi

is the measured angular velocity received from the gyroscope, bbi
g y r is

the gyroscope bias, and w bi
g y r is the measurement noise. It should be noted that

gyroscopes and accelerometers measure quantities relative to the inertial frame
{i}, and the relation to {u} is a simplification.

3.2.2 LiDAR

LiDAR is a sensor that measures the distance to nearby objects (Raj et al., 2020).
This is done by emitting light rays which are reflected off the surroundings and
returned to the sensor. Based on the time it takes for the light ray to return, the
distance can be calculated. Since the speed of light is constant, the distance d can
be expressed trough

d =
c∆t

2
, (3.20)

where c = 299792458 m
s is the speed of light and ∆t is the duration for the light

ray emitted until it is returned (Storli, 2022). Based on the direction the light ray
is sent out, a vector can express the position of the object causing the reflection.
In the LiDAR coordinate frame, this position of a point o can be defined as

p bl
bl o
=





xo
yo
zo



 . (3.21)

Alternatively, the point can be expressed in polar coordinates. Represented by the
three following parameters

ppolar
bl o

=





θx
θz
d



 , (3.22)

where d is the distance given by (3.20), and θx and θz are the angles from the x-
and z-axis, respectively.
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By emitting multiple light rays in various directions, a collection of points
that describe the surrounding environment can be obtained, commonly known
as a pointcloud (X. Huang et al., 2021). Since these light rays are not emitted
simultaneously, there is a time difference between the resulting points. A LiDAR
typically comprises multiple channels, representing the vertical resolution of the
resulting pointcloud. Each channel consists of a laser and a light detector. All lasers
usually emit light simultaneously. In most LiDARs, these lasers are mounted on a
rotating platform, enabling the mapping of a full 360◦ view of the surroundings.
The horizontal resolution, which determines the number of laser shots during a
complete rotation, can often be adjusted in a LiDAR. The time difference between
two points in the horizontal direction can be calculated as

δt =
1

rh f
, (3.23)

where rh represents the horizontal resolution, and f denotes the rotation rate of
the sensor in rounds per second (Storli, 2022).

3.2.3 Global Navigation Satellite Systems (GNSS)

GNSS refers to a group of navigation systems that enable users to obtain a three-
dimensional position through passive ranging using radio signals emitted by satel-
lites in orbit (Groves, 2013)(Misra and Enge, 2012). GNSS serves as a self-positioning
system, wherein the user equipment calculates the position solution without trans-
mitting any signals for positioning purposes. Accurate time information can also
be obtained by the processing of these signals. This section presents concepts and
mathematical models related to GNSS relevant to the work presented in this the-
sis. The concepts of RTK and Post processed kinematic (PPK) is presented, which
involves a more accurate method of obtaining position estimates by utilizing an-
tennas with known positions. Furthermore, the most basic measurement, which
provides 3D-position coordinates and time information is presented. By utilizing
multiple receivers with a fixed position on a vehicle, information about the vehi-
cle’s orientation can be obtained. The information presented in this section, and
for a more comprehensive take on GNSS, the reader is referred to Teunissen and
Montenbruck (2017).

Real Time Kinematic and Post Process Kinematic

By utilizing a base station, which is a receiver with its exact position known, the
user can remove a lot of inaccuracies that are usually present when using GNSS.
This is achieved by providing the user antenna with data from the base station.
Based on data from the satellites and the base station, a more accurate position
estimate can be provided. RTK is the name for this type of positioning when done
in real-time. This process can also be done in post-process by collecting data from
satellites and then downloading baste station data from a database. When done
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post-process, the method is referred to as PPK. In the rest of the thesis, both con-
cepts will be referred to as RTK.

Single position measurement

The single-position measurement from a GNSS antenna is often given in geodetic
coordinates in terms of latitude, longitude, and height, and can be converted to
ECEF coordinates by (3.14). A mathematical model for the position of the moving
base antenna can be expressed as

p̂ e
ebmb
= p e

ebmb
+ be

gnssmb
+ w e

gnssmb
, (3.24)

where p̂ e
ebmb

is the measured position, p e
ebmb

is the true position vector, be
gnssmb

and w e
gnssmb

is bias and measurement noise related to the Moving Base receiver,
respectively.

Relative position measurement

Utilizing two GNSS antennas, where one of them functions as a base station send-
ing signals to the other, the relative position between the two antennas can be
estimated. This is usually done by referencing the position of one antenna to the
other, by defining a local ENU or NED frame on one of them and then expressing
the position of the other antenna in these local coordinates. Denoting the receiver
giving relative position measurement as Rover, with frame {br}, and the receiver
defining the measurement reference frame, Moving Base, with frame {bmb}. Then,
the relation can be modeled as

p̂u
bmb br

= pu
bmb br

+ bu
gnssr

+ w u
gnssr

, (3.25)

where p̂u
bmb br

is the relative position measurement between the Moving Base and
the Rover antennas, pu

bmb br
is the true relative position, bu

gnssr
and w u

gnssr
is bias

and measurement noise related to the Rover receiver, respectively.

Full pose based on three GNSS antennas

By mounting three antennas on a rigid-body vehicle, full orientation between the
body and the local ENU frames can be estimated. A prerequisite is that the vec-
tors describing the relative positions between the GNSS antennas are not parallel
and that their position in the body frame is known. Denote the three antennas
as Moving base, Rover1 and Rover2, where Rover1 and Rover2 give position mea-
surements relative to Moving base, as modeled in (3.25). If the body frame of the
vehicle is assumed rigid, the relative position of the antennas is constant in the
body frame and can be measured manually.

The method for calculating the full orientation of the vehicle based on the rel-
ative position vectors is called QUEST and is described in detail in Shuster and Oh
(1981). Since the method is quite comprehensive, and the details are not relevant
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to the work presented in this thesis, the reader is referred to the paper for a full
understanding. A MATLAB implementation is available on GitHub‡.

Lever Arm compensation

In most of the cases when using GNSS receivers in combination with other sensors,
the origins of the sensor frames are not identically at the same location, resulting
in a lever arm between the sensors. When estimating the position of a vehicle,
the interesting quantity is usually pu

ub. The body coordinate system may not be
located at the same point as the GNSS frame in (3.24). To compensate for this,
the lever arm between the body frame origin and the GNSS antenna has to be
taken into consideration. Given the lever arm expressed in body frame l b

bbmb
, the

relation between the body position and the GNSS measurement is given as

p̂u
ubmb

= pu
ub +Ru

bl b
bbmb

, (3.26)

where Ru
b is the rotation matrix from the body frame to the local ENU frame. As

long as the vehicle has a rigid body, the lever arm is constant in the body frame.

3.3 Graph based SLAM

The SLAM problem involves estimating the trajectory of the robot and creating
a map of the environment as the robot moves within it (Grisetti et al., 2010; X.
Xu et al., 2022b). To handle the inherent sensor measurement noise, presented
in Section 3.2, probabilistic tools are commonly used in SLAM. The robot’s move-
ment in an unknown environment is represented by a sequence of random vari-
ables x1:T = (x1, ..., xT ), where the subscript denotes at what time the position
was valid. For simplicity, the position x is refered to the body coordinate frame
expressed in ENU, x := x u

ub. Along its path, the robot collects a series of measure-
ments z1:T = (z1, ..., zT ), this can be from IMU, LiDARs and cameras, as well as
other sensors. These measurements are also referenced to the body frame, z := zb.
The goal of solving the SLAM problem is to estimate the posterior probability den-
sity function (PDF) p of the robot’s trajectory x1:T and the map of the environment
m, given all the measurements and an initial position x0. This can be expressed
as the following PDF:

p(x1:T , m|z1:T , x0) (3.27)

The initial position x0 determines the map’s reference point and can be cho-
sen arbitrarily. In the case of using global coordinates, such as ECEF, x0 can be
based on GNSS measurements (Grisetti et al., 2010). The robot’s poses x1:T are
commonly expressed as 2D or 3D transformations in SE(2) or SE(3), respectively
(Dellaert and Kaess, 2017). On the other hand, the map can be represented in
various forms. It can be represented by a set of landmarks, a set of points where
each point have a corresponding feature descriptor, or a pointcloud (Castellanos et

‡Quest MATLAB implementation: https://github.com/cybergalactic/MSS/blob/master/GNC/quest.m
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al., 2007). Both Cartesian and polar coordinates can be used for this. Usually, the
map is described in an earth-fixed frame. The benefit of this is that the coordinates
stay constant, as long as the elements in the map do not move. However, there are
benefits to keeping the map in the body frame, concerning observability in state
estimation (G.P. Huang et al., 2010). Alternatively, raw sensor measurements can
be used to construct the map. The choice of map representation depends on fac-
tors such as the sensor types employed, the environment’s characteristics, and the
estimation algorithm being utilized.

Estimating the posterior in (3.27) involves working with high-dimensional
state spaces, which would be intractable without a well-defined structure in the
SLAM problem (Grisetti et al., 2010). This structure emerges from certain com-
monly made assumptions, namely the static world assumption and the Markov
assumption. The static world assumption states that the coordinates of the map
are constant in the local ENU frame. In other words, mu is constant. The Markov
assumption assumes that the current state of the system contains all the informa-
tion needed to predict future states. In other words, it assumes that the future
states are conditionally independent of the past states given the current state.

One representation of the SLAM problem is through the "graph-based" formu-
lation, which emphasizes the structure between sensor measurements and states
to be estimated (Grisetti et al., 2010). In graph-based SLAM, the robot poses are
modeled as nodes in a graph, labeled with their positions in the environment
(Lu and Milios, 1997; Konolige et al., 2010). Spatial constraints between poses
arising from measurements zt which are encoded as edges between the nodes. A
constraint is represented by a probability distribution over the relative transfor-
mations between the poses.

The process of solving the SLAM problem using graph-based methods encom-
passes two primary tasks. The first task involves constructing the graph by defining
the states to be estimated and establishing the relationships between these states
and the incoming measurements. This step is commonly known as the "front-end"
task. Once the graph is constructed, the subsequent task is to determine the pose
estimates that best represent the likely configuration of poses based on the graph
edges. This task is often referred to as the "back-end" SLAM and is independent
of the particular sensors employed.

3.3.1 Factor graphs

Factor graphs are a popular framework for structuring and solving the SLAM prob-
lem (Brekke, 2021, Ch. 12). They are a special type of graph consisting of two
kinds of nodes. These two types of nodes are known as variable and factor nodes.
All edges go between a variable node and a factor node, which is the property
of being a bipartite graph. The variable nodes represent the states of the system,
which should be estimated. Factor nodes represent probabilistic relationships be-
tween the variable nodes.
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x1 x2 x3
A CB
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D

Figure 3.1: A factor graph example, with four variable nodes denoted x i , and six
factor nodes, denoted with capital letters.

In the realm of graphical models, factors can be categorized into two primary
types: unary factors and binary factors. Unary factors are linked to a single vari-
able node, whereas binary factors connect two variable nodes. Unary factors are
commonly used to incorporate absolute measurements, such as those obtained
from GNSS. On the other hand, binary factors are often employed to integrate
odometry measurements, which provide information about the relative motion
between two poses.

Figure 3.1 represents a factor graph with three variable nodes {x1, x2, x3}, and
five factors nodes {A, B, C , D, E}. Let fx(x t |x t−1) be the state prediction function
for variable x t given x t−1, and fz(zt |x t) the measurement prediction function for
zt given x t . The factors in the graph can then be represented as:

ξA(x0, x1) = fx(x1|x0)p(x0) (3.28a)

ξB(x1, x2) = fx(x2|x1) (3.28b)

ξC(x2, x3) = fx(x3|x2) (3.28c)

ξD(x1) = fz(z1|x1) (3.28d)

ξE(x2) = fz(z2|x2) (3.28e)

ξF (x3) = fz(z3|x3), (3.28f)

where p(x0) is the prior PDF of x0.
The joint PDF of the state variables in Figure 3.1 is given by the sum of all

factors:

p(x1:3) =
1
Z
ξA(x0, x1)ξB(x1, x2)ξC(x2, x3)ξD(x1)ξE(x2)ξD(x3), (3.29)

here Z is a normalization constant. More generally, the joint PDF of a factor graph
is represented as:

p(x ) =
1
Z

∏

s∈S

ξs(xs), (3.30)

where x is all state variables, and xs is all state variables that are corresponding
to the factor s in the set of all factors S.

MAP inference for nonlinear factor graphs

The goal of constructing a factor graph is to obtain estimates for the state variables
(Dellaert and Kaess, 2017). This can be done by finding the Maximum a posteriori
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(MAP) estimate of (3.30), formulated as

x MAP = argmax
x

p(x ) (3.31a)

= argmax
x

∏

s∈S

ξs(xs) (3.31b)

Assuming a Gaussian noise model for the measurement prediction function, with
covariance matrix Σz then the unary factors can be represented as

ξs(xs)∝ exp {−
1
2
∥ fz(xs)− zs∥2Σz,s

}, (3.32)

where ∥·∥2Σ denotes the squared Mahalanobis distance. Further, assuming a Gaus-
sian state prediction function with covariance matrix Σx , the binary factors can
be represented as

ξs(xs)∝ exp {−
1
2
∥xs − fx(xs−1)∥Σ2

x ,s
}. (3.33)

Taking the negative log of (3.31) and removing the 1
2 factor, results in the follow-

ing nonlinear lest-squares problem:

x MAP = argmin
x

∑

s∈B

∥xs − fx(xs−1)∥2Σx ,s
+
∑

s∈U

∥ fz(xs)− zs∥2Σz,s
, (3.34)

where U and B are the set of all unary and binary factors, respectively.

3.3.2 Optimization and smoothing

*The benefit of the factor graph formulation is how the posterior function can
be expressed as a product of independent likelihood and probability functions, as
in (3.30). In order to find the MAP estimate of a factor graph, an optimization
algorithm can be utilized. When optimizing a factor graph, the choice of opti-
mization algorithm often comes down to the complexity of the graph and run-
time requirements. Steepest descent, Gauss-Newton, and Levenberg-Marquardt
are some of the most used optimization methods for finding the MAP estimate of
a factor graph (Dellaert and Kaess, 2017). These methods are based on gradients
and involve computing the derivatives of the cost function. All methods require
evaluating the Jacobian of the cost function. Moreover, Gauss-Newton necessitates
the computation of the Hessian, whereas Levenberg-Marquardt only requires an
approximation of the Hessian.

As a system operates, the factor graph representing all measurements and
states will grow rapidly (Brekke, 2021, Ch. 10). The process of smoothing, which
involves optimizing with respect to older states, is often computationally expen-
sive. An approach to apply smoothing optimization in real-time is by use of fixed-
lag smoothing. This involves optimizing for a set of states stretching n timesteps

*This and subsequent paragraphs are taken from the specialization project, Storli (2022).
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backward in time. The optimization variable can be expressed as xk−n:k, where
k is the current timestep. In this optimization, the states prior to timestep k − n
are considered fixed. Fixed-lag smoothing is also referred to as sliding window
optimization. There exists other types of smoothing principles such as fixed-point
and fixed interval. Fixed-point smoothing considers the optimization of the state
variables at a certain fixed point in time. Fixed-interval smoothing includes opti-
mizing for state variables in a fixed interval independent of the current timestep.

Today, there exist multiple approaches to smoothing. What most of them have
in common, is that they exploit probabilistic graphical models. Some of these
methods include the Rauch-Tung-Striebel (RTS) smoother (Särkkä, 2008), which
is a fix-lag smoother for Gaussian-linear systems, and incremental smoothing and
mapping 2 (iSAM2), which utilizes a Bayes tree. iSAM2 is possibly the most used
method for real-time applications (Kaess et al., 2012).

3.3.3 Loop closure

Loop closure is the ability of an estimation algorithm to recognize that it has vis-
ited the same location in the past. This recognition results in a new constraint
for the state estimation process. Such constraints can be added as a factor to the
factor graph, resulting in more information that can be utilized in the optimiza-
tion. However, if an algorithm needs to evaluate if a new location has been visited
earlier, this will occupy computational resources.

There exist multiple algorithms which do not incorporate loop closure func-
tionality, and these are often referred to as odometry methods. A strong argument
for incorporating loop closure functionality in an estimation method is due to its
ability to correct for drift. Using only IMU and LiDAR will often result in a drift
since no absolute measurements, such as GNSS, are provided.†

†End of reference from Storli (2022).
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3.4 Liorf - LiDAR-inertial SLAM

Liorf is an extension of LIO-SAM, which is short for Tightly-coupled Lidar Iner-
tial Odometry via Smoothing and Mapping. LIO-SAM is an open-source‡ algorithm
documented in a conference paper (Shan et al., 2020). Liorf is also an open source
algorithm§, but is not documented in a scientific paper. Both methods are based
on factor graph optimization for state estimation. This section describes the func-
tionality of LIO-SAM, which the Liorf algorithm is built upon. The main differ-
ence between the methods is the code implementation, while the mathematics
and mechanisms still follow the same principles.

3.4.1 System overview

LIO-SAM supports sensor inputs from IMU, LiDAR, and GNSS. IMU measurements
from a gyroscope and an accelerometer are required, while heading measure-
ments from magnetometers are also supported. 3D pointcloud data from LiDAR,
with timestamps corresponding to each point, is required. Single position mea-
surements from GNSS are an optional input but are recommended to avoid large
drift in pose estimates.

Two coordinate frames are used in the estimation process. This is the world
frame {u} and the robot body frame {b}. Additionally, the sensors have their own
coordinate systems, as described in Table 3.1, but the measurements are trans-
formed to the body and world frame by the use of (3.2). For convenience, the
body frame is chosen to coincide with the IMU frame {bi}. The state to be esti-
mated is defined as follows:

x = [Ru
b, pu

ub, vu
ub, bbi

I MU], (3.35)

where Ru
b ∈ SO(3) is a rotation matrix from body to world frame, pu

ub is the po-

sition, vu
ub is the velocity, and bbi

I MU is the IMU gyroscope and accelerometer bias
(Shan et al., 2020). When not using GNSS, an initial orientation has to be pro-
vided to achieve a correct reference to a local ENU frame.

3.4.2 Factor graph

The mechanism behind the state estimation in LIO-SAM is factor graph optimiza-
tion, as described in Section 3.3. All sensor measurements are processed to a suit-
able format to fit in the factor graph, depicted in Figure 3.2. The variable nodes
consist of the states presented in (3.35), and the subscript denotes the timestep
the states are estimated at. The red factor represents the factor generated by the
IMU measurements, called IMU preintegration factor. The green factor is the rela-
tive movement estimate between two LiDAR scans, named LiDAR odometry factor.
The yellow factor represents the GNSS factor and is obtained by single position

‡LIO-SAM implementation: https://github.com/TixiaoShan/LIO-SAM
§Liorf implementation: https://github.com/YJZLuckyBoy/liorf
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measurements, named GPS factor. The name "GPS" is used since the GTSAM li-
brary, which the algorithm is built upon, uses it. However, the name "GNSS" is
more correct. The GNSS measurement is represented by the orange circle. The
black factor is the Loop closure factor and is a constraint generated by the robot
recognizing it has been at the same location earlier. This factor is used to correct
for drift in the map and trajectory and ensures that the map is consistent globally.
In the following sections, the factors are explained in greater detail.

x1 x2 x3 x4 x5 xi

xt State nodeIMU preintegration factor

Loop closure

factor

LiDAR odometry

factor

GNSS
GNSS single position

measurement

GPS factor

GNSS

GNSS

Figure 3.2: The factor graph utilized in Liorf and LIO-SAM is depicted in the
upper part of the figure. The lower part of the figure provides a detailed explana-
tion of the constituent elements comprising the graph. Inspired from Shan et al.
(2020)
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IMU preintegration factor

*IMU preintegration utilizes a mathematical framework derived from (3.18) and
(3.19). These equations are used to express the future pose and velocity of the
system, expressed as

vk+h = vk + gh+Rk( f̂k − bacc,k − wacc,k)h (3.36a)

pk+h = pk + vkh+
1
2

gh2 +
1
2

Rk( f̂k − bacc,k − wacc,k)h
2 (3.36b)

Rk+h = Rk exp ((ω̂k − bg y r,k − wg y r,k)h) (3.36c)

where p := pu
ubi

, v := vu
ubi

, R := Ru
bi

, and b and w represents the bias and mea-
surement noise, respectively. g := g u is the gravity vector, and h is the length of
time into the future. In order for this propagation to be accurate, it is assumed that
the true acceleration and angular velocity are constant during the time interval.

The relative motion estimates between two timesteps i and j, denoted ∆vi, j ,
∆pi, j and ∆Ri, j can be expressed as

∆vi, j = R⊺i (v j − vi − g∆t i, j) (3.37a)

∆pi, j = R⊺i (p j − pi − v∆t i, j −
1
2

g∆t2
i, j) (3.37b)

∆Ri, j = R⊺i R j , (3.37c)

where ∆t i, j represent the lengt of time between i and j. This time interval is usu-
ally the length of time between the insertion of two state nodes. In other words,
if a new state node is added each time a LiDAR scan comes in, the IMU measure-
ments are integrated during this time interval. This method is based on the work
in Forster et al. (2016). (3.37) is the basis for the relative motion estimate used
in the IMU preintegration factor.

LiDAR odometry factor

LIO-SAM is an indirect SLAM method, which means that it extracts features from
the pointcloud prior to solving the optimization problem. The alternative would
be to use the entire pointcloud in the optimization. Two types of features are
extracted, planar features and edge features. Planar features consist of smooth
structures in the pointcloud, while edge features are rougher areas. Prior to the
feature extraction, the pointclouds are de-skewed based on the preintegrated mo-
tion estimates from the IMU in (3.37). This de-skewing is necessary when the
LiDAR undergoes motion during a single scan. (3.23) describes the time it is nec-
essary to preintegrate the IMU measurements to de-skew a single point in the
LiDAR scan.

The extracted features in the incoming pointcloud are used to generate a Li-
DAR odometry factor by estimating a transformation between the current LiDAR

*This and subsequent paragraphs are taken from the specialization project, Storli (2022).
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frame and the world frame. This is done by comparing the features in the new
scan with the features in the current map representation. A sliding window ap-
proach is used to generate a local map of the environment, consisting of extracted
features from the n latest pointclouds. The feature extraction and scan matching
methods are described in Zhang and Singh (2017). The last step involves solv-
ing an optimization problem to minimize predefined distance metrics between
the corresponding features in the map and the new pointcloud. These error met-
rics are functions of the relative transformation between the map and the new
pointcloud, which is the variable to be optimized with respect to. The reader is
referred to Shan et al. (2020) for a detailed description of these error metrics.
Gauss-Newton is used to solve this optimization problem. †

GPS position factor

The Global Positioning System (GPS) position factor is the simplest factor, due
to the small amount of preprocessing required before being added to the factor
graph. The GNSS measurement comes in as latitude, longitude, and height. A
transformation to the local ENU frame is done based on the equations presented in
Section 3.1.2. This measurement is then compared to the current position estimate
and added as a constraint to the factor graph. A weakness of this factor is the fact
that it does not compensate for the potential lever arm between the IMU frame
and the GNSS antenna position.

Loop closure factor

*LIO-SAM has the ability to perform loop closure and add loop closure factors
to the factor graph. When a new state node is added, state nodes with position
estimates close to the new node are investigated. These nodes and their corre-
sponding LiDAR scans are used to construct a feature map. This feature map is
used to find the relative transformation between the new node and the node with
a similar position estimate. This relative transformation is the basis for the loop
closure factor. The process of finding this transformation is similar to what is done
for the LiDAR odometry factor (Shan et al., 2020).

3.4.3 Related work

In the literature, there are multiple methods utilizing LiDAR and IMU to solve the
SLAM Problem. Some of these include the classical framework, EKF-SLAM (Bailey
et al., 2006). This is a popular method and is considered as loosely-coupled (Shan
et al., 2020). When it comes to the tight coupling of LiDAR and IMU measure-
ments, there are methods such as LIO-Mapping (LIOM), which jointly optimizes
LiDAR and IMU-based motion (Ye et al., 2019). As different from LIO-SAM this
method is not applicable for real-time systems.

†End of reference from Storli (2022).
*This and subsequent paragraphs are taken from the specialization project, Storli (2022).
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Another method, Lidar odometry and mapping (LOAM), uses IMU and LiDAR
measurements in a loosely coupled way (Zhang and Singh, 2014). The preinte-
grated IMU measurements are used to de-skew the pointcloud data. What differ-
entiates LOAM from LIO-SAM is that the estimated motion from IMU preintegra-
tion is not used in the optimization part for estimating LiDAR odometry. A two-step
Levenberg-Marquardt optimization method is used in estimating LiDAR odome-
try. This is in contrast to Gauss-Newton for LIO-SAM. Lightweight and ground-
optimized LiDAR odometry and mapping (LeGO-LOAM) is a method proposed
for ground vehicle mapping and has the same loose coupling between LiDAR and
IMU as LOAM. †

†End of reference from Storli (2022).



Chapter 4

System Integration

This chapter focuses on the construction of the data collection system for gathering
real-world data from a sensor payload. The sensor payload comprises:

• an IMU
• a LiDAR
• three GNSS receivers

In order to have all measurements timestamped to the same time reference, a Sen-
tiBoard was used. All three GNSS receivers and the IMU were directly connected
to the SentiBoard. The LiDAR, which sends data over ethernet, was connected to
the host computer. This resulted in a need for a synchronization mechanism for
the LiDAR, such that the sensor data from the LiDAR was timestamped based on
the SentiBoard clock. In order to parse the data from the SentiBoard, dedicated
software from SentiSystem was used. Most of the software used is based on the
Robot Operating System (ROS) platform, which was a necessity since Liorf is im-
plemented in ROS. The car platform used for collecting data is described, and
the relative mounting between the sensors is presented. A car platform was cho-
sen due to its relevancy for applied sensor fusion in the industry. GNSS data was
collected for ground truth generation, as well as being used in the Liorf GNSS fac-
tor comparison. To assess the performance of Liorf with different synchronization
primitives for sensor measurements, a custom script was developed and deployed
to modify the dataset timestamps.

29
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4.1 Hardware components and integration

The hardware setup used to gather the data is compromised of multiple compo-
nents ranging from sensors, circuit boards, batteries, DC-AC converter, cables, and
a computation platform. In this section, the focus lies on how the different sensors
were connected to the host computer. This is what allows for data to flow from
the sensors to the host computer software, where the sensor fusion takes place.
The key hardware components used in this project are presented in Table 4.1.

Table 4.1: Hardware components used for data gathering.

Type Model Firmware version

IMU STIM300 SWD12404 REV 0
LiDAR Ouster os1-16-A2 v2.4
GNSS receivers u-blox f9p v1.30
GNSS antennas Survey antenna gps1000 No firmware
SentiBoard version 1.3 v1.3
Host Computer Intel NUC 11 TNH 0064/Ubunut 20.04

4.1.1 SentiBoard - synchronization module

The SentiBoard is a circuit board used for synchronizing and timestamping mea-
surements from different sensors to one clock reference (S. M. Albrektsen, 2018).
Figure 4.1 shows a SentiBoard v.1.30, which was used in this project. It contains
a microprocessor equipped with dedicated hardware peripherals used for times-
tamping. The hardware oscillator driving the SentiBoard clock oscillates with a
frequency of 108 Hz. This implies that all events timestamped by the SentiBoard
have an accuracy of 10 ns. The SentiBoard is capable of communicating with sen-
sors on different interfaces. It is supplied with three UART, two serial peripheral
interface (SPI), two RS232 and one RS422 communication interfaces. Each com-
munication interface can be configured to fit the communication protocol used by
the sensor. Interfacing the Sentiboard from a computer is done through Universal
Serial Bus (USB).

Each communication interface has a TOV pin and a trigger pin. This allows
for TOV- and Trigger-synchronization. Additionally, it is equipped with pure Input
Capture (IC) ports, which only consist of two pins, Ground (GND) and TOV. Each
sensor packet received by the SentiBoard is tagged with three timestamps, TOV,
time of transport (TOT), and time of arrival (TOA). TOV is the time when the
dedicated TOV signal flanks. TOA is the point in time when the first byte of the
sensor packet has arrived, and TOA is the time when the entire packet has been
received.
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Figure 4.1: Photograph of a SentiBoard, the synchronization and timestamping
module used for hardware synchronization. Courtesy of SentiSystems (SentiSys-
tems, 2023)

SentiBoard

RS422

UART UART

sync IMULiDAR

GNSS -
Moving base

GNSS -
Rover1

GNSS -
Rover2

UART

Host
computer

USBEthernet

data, TOV data, TOVdata, TOV

data, TOVTOV

data

raw GNSS data

Figure 4.2: The sensor integration diagram showcases the SentiBoard (high-
lighted in orange) serving as the central interface for all sensors. In the upper
part of the diagram, the three GNSS receivers are depicted, with the ’raw GNSS
data’ signal utilized for RTK generation. The LiDAR interfaces with the SentiBoard
solely through a synchronization pin, while the pointcloud data is directly trans-
mitted to the host computer.
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4.1.2 Sensor integration

The sensors and hardware components listed in Table 4.1 are illustrated in Fig-
ure 4.2, as well as how they are integrated into one system. As the figure shows,
all sensors are connected to the SentiBoard. The only sensor that has a direct con-
nection to the host computer is the LiDAR. This is because the SentiBoard has
no Ethernet interface, which the LiDAR uses for data transfer. However, in order
to synchronize the LiDAR with the SentiBoard, a two-wire connection is present.
These wires are GND and a TOV. The TOV signal can be configured to give a pulse
each time the internal LiDAR clock wraps a whole second, allowing for 1PPS syn-
chronization. Additionally, it can be configured to give a pulse each time the LiDAR
starts a new scan, functioning as a TOV-synchronization for the first set of points
in the LiDAR scan. This pulse is based on an encoder inside the LiDAR. The LiDAR
is configured to give a full 360◦ scan 10 times per second. It has a horizontal and
vertical resolution of 2048 and 16 points, respectively. All points are timestamped
with respect to the internal LiDAR clock when sent to the host computer over
Ethernet.

As shown in Figure 4.2, there are three GNSS receivers connected to the Sen-
tiBoard. The different receivers are called Moving Base, Rover1 and Rover2. Each
of these is connected to a UART port on the SentiBoard. Additionally, there is a
connection between the three GNSS receivers. This is a single-wire signal, which
transmits data from the Moving Base to the two rovers. This is the data that al-
lows for RTK measurements from the two rovers. Each receiver is configured to
give one measurement per second. The measurements are synchronized with the
SentiBoard through the TOV pin.

The IMU used in this project is interfaced through the RS422 communication
protocol, as shown in Figure 4.2. It is synchronized with the SentiBoard through
the TOV pin. The sampling rate is set to 500 samples per second for accelerometer
and gyroscope. The Host machine used for data storage is an Intel NUC running
Ubuntu 20.04. This platform was chosen due to its capabilities for writing data
to memory, and its rich set of interface ports. Its size of 10x11x11 cm3 makes it
handy for field experiments.
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4.2 Car platform and sensor mounting

This section describes the car platform used in the data gathering, and how the
sensors were mounted relative to each other.

4.2.1 LiDAR-IMU platform

The LiDAR and IMU used in this project were mounted rigidly on a plastic plate,
as shown in Figure 4.3. This is the same platform as the one used in Storli (2022)
to gather data. The coordinate systems for LiDAR and IMU are defined as in Fig-
ure 4.4. Data received from the two sensors are resolved in these frames. The
IMU frame serves as the reference body frame, requiring all measurements to be
transformed and expressed relative to that frame. The transformation between
the LiDAR and IMU frame follows (3.8), resulting in the following transformation
rotation matrix.

Rbl
bi
=





−1 0 0
0 −1 0
0 0 1



 , (4.1)

and the following translation vector

t bl
bl bi
= [−0.0946,−0.0224,−0.0204]⊺m. (4.2)

These numbers were measured by hand, and verified by collecting a dataset and
running the LiDAR-IMU-based calibration presented in Lv et al. (2020).

Figure 4.3: Photograph of the LiDAR-IMU platform. The LiDAR is positioned on
the right side, characterized by its taller structure, while the IMU is located on
the left side, represented by the small partially orange block. Both sensors are
securely fastened to a black plastic plate to ensure a rigid configuration.
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Figure 4.4: Illustration of the LiDAR-IMU relative mounting, with the LiDAR rep-
resented in red and the IMU in orange. The top view is depicted in the upper
figure, while the side view is shown in the lower figure. Both the LiDAR and IMU
coordinate systems are illustrated. For reference, the actual platform can be seen
in Figure 4.3.
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4.2.2 Car platform

The sensors were mounted on a platform that was placed on the roof of a car,
as shown in Figure 4.5. The Car model is a Mercedes Vito, and the platform was
custom-made by a workshop at Norwegian University of Science and Technology
(NTNU). The car roof exclusively houses the sensors, while all other components
are positioned inside the car. To make sure that most of the light rays from the
LiDAR hit the surrounding environment, and not the car, the LiDAR and IMU plat-
form was elevated.

Figure 4.6 shows how the sensors are located relative to each other. The upper
part illustrates how it looks from a top view and the lower part from a side view.
The distance between the three GNSS antennas and the LiDAR frame is presented.
The LiDAR is illustrated in red, IMU in orange, and GNSS antennas in green. The
antenna at the front is Moving Base, while the right and left antennas at the back of
the car are Rover1 and Rover2, respectively. Left and right with respect to looking
in the front direction. All GNSS measurements are referred to the center of the
antenna, indicated by the dotted line. Since the LiDAR frame functions as the body
frame, the distances between the IMU and GNSS antennas are not presented in
the figure but can be interpreted by combining the measures in Figure 4.4 and
Figure 4.6.

Figure 4.5: Photograph of the Mercedes Vito car with sensors installed on the
roof. The sensors are mounted on a sturdy platform, with two GNSS antennas
positioned at the rear, one at the front, and the LiDAR-IMU platform elevated in
the center.
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Figure 4.6: Illustration of the car platform with distance metrics. The top part
showcases the top view of the car, while the bottom figure presents the side view.
GNSS antennas are depicted in green, LiDAR in red, and IMU in orange. This
figure represents the same setup as in Figure 4.5



Chapter 4: System Integration 37

4.3 Software integration and data collection

Data from sensors generally do not come in the format that the sensor fusion
algorithm requires, which requires data conversion in software. This issue can
be quite cumbersome when working with sensor fusion algorithms. Sensor data
coming in on a serial port must be parsed and converted to the respective format
used by the sensor fusion algorithm. In this project, the algorithm used was devel-
oped in ROS – a software platform specifically designed for robotic applications.
ROS has a flexible data storage format called rosbag, in which the collected data
was stored for post-processing. The sensor data coming from the sentiBoard was
parsed and forwarded to the ROS framework, which was done through dedicated
SentiBoard parsers, called SentiReader and SentiCom. Figure 4.7 shows an abstrac-
tion of the software modules and how data flows through the system and ends up
being stored in a rosbag. Raw GNSS data were stored in a dedicated SentiSytems
file format, for RTK generation. The synchronization module, located within the
"ouster driver", is responsible for the alignment of LiDAR data with the SentiBoard
clock. This module, presented in this section, utilizes the association of point cloud
data from the LiDAR with TOV messages from the SentiBoard. The TOV messages
from the SentiBoard are generated based on the TOV pulses emitted by the LiDAR,
as depicted in Figure 4.2 and Figure 4.7.
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Figure 4.7: Software setup diagram with data flow. The hardware components
are depicted by three blocks at the top, while the host computer is represented
by the yellow area. The pink area displays the modules in the ROS framework.
"GNSS raw data" and "Rosbag" represent data storage. "SentiReader", "SentiCom",
and "ouster driver" represent software processes.
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Figure 4.8: SentiBoard Envelope data format. The first 32 bytes contain timing
and package information. The unaltered sensor data is contained in the DATA-
field. A checksum and filler bytes are added to the end of the packet. Courtesy of
SentiSystems (Albrektsen, 2022).

4.3.1 SentiReader - SentiBoard data parser

Data from the SentiBoard follows a protocol called SentiBoard Envelope, which is
shown in Figure 4.8 (Albrektsen, 2022)(Storli, 2022). SentiBoard Envelope wraps
the unaltered sensor data from the sensor in a header and a trailer. The header de-
scribes timing information and metadata related to the sensor packet. The trailer
is used for checksum calculation. SentiReader is a custom software designed to
parse data in SentiBoard Envelopes and forward it on network interfaces, uti-
lizing the User Datagram Protocol (UDP) network protocol. Data is parsed and
converted to a custom struct that is built on the Google protobuf format (Varda,
2008). The struct format is dependent on what type of sensor the data originates
from.

4.3.2 Robot Operating System (ROS)

ROS is an open-source, meta-operating system designed for robots(ROS Wiki,
2018). It offers a comprehensive range of operating system services, including
hardware abstraction, low-level device control, common functionality implemen-
tation, inter-process communication through message-passing, and package man-
agement. Additionally, ROS provides an array of tools and libraries for code ac-
quisition, building, writing, and execution across multiple computers. Compared
to other robot frameworks, ROS distinguishes itself through its peer-to-peer run-
time "graph". This graph comprises loosely coupled processes, possibly distributed
across machines, which leverage the ROS communication infrastructure. Although
ROS is not inherently a real-time framework, it supports integration with real-time
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code.
In ROS, processing capabilities have been decoupled through the utilization

of message passing and timing functionalities. Topics in ROS function as network
interfaces between parallel processes. The processes are referred to as nodes. A
topic can only send data in one direction. Each time a node receives a message
on a topic, a corresponding function is called inside the node. These functions are
referred to as callback functions. A node can have multiple topics connected to it.
Timing in ROS is based upon an internal clock that runs in the background of all
processes. To access this clock, function calls like time_now() can be called, which
would return the clock value at that time. When data is saved in a rosbag, the data
is timestamped based on this clock. The data being stored can additionally have
timing information in the stored data.

SentiCom - SentiBoard ROS driver

SentiCom is the ROS interface for packets coming from the SentiBoard(Storli,
2022). It is made to be compatible with SentiReader. It works by receiving UDP
packets on a specified network interface, which are parsed into ROS messages.
These messages are then sent out on dedicated ROS topics. SentiCom has dedi-
cated topics for different sensor messages, like GNSS and IMU.

LiDAR ROS driver

In order to parse the data from the LiDAR and turn it into ROS messages, a dedi-
cated driver‡ made by Ouster was utilized. This driver binds to a specific network
port and parses the incoming LiDAR data into a ROS message type for pointclouds.
The message used in this project is called sensor_msgs::PointCloud2. By default,
the user can configure if the pointcloud message should be timestamped based on
the LiDAR internal clock, or the ROS internal time reference. In other words, the
driver comes with no support for SentiBoard synchronization. To synchronize the
pointcloud data with the SentiBoard, a software modification to the driver was
performed.

‡Ouster ROS driver Github: https://github.com/ouster-lidar/ouster-ros
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Figure 4.9: Association of LiDAR Data and TOV messages. The upper figure il-
lustrates the arrival times of the TOV messages and pointcloud data, denoted as
"SentiInputCapture" and "ouster/points," respectively. In the lower figure, arrows
are added to indicate the corresponding association between TOV messages and
their respective pointcloud packages.

4.3.3 LiDAR synchronization

In Storli (2022) the synchronization primitive used for synchronizing the LiDAR
with the SentiBoard was 1PPS. The conclusion was that this primitive, with only
one pulse per second, gives a too-loose mapping between the LiDAR clock and the
SentiBoard clock. The synchronization accuracy comes down to the relative drift
of the LiDAR clock to the SentiBoard clock, which can be modeled through (2.2).

The LiDAR used in this project also has a mode for encoder-based pulses. Each
time the LiDAR completes a full rotation, a pulse is generated. This pulse functions
as a TOV pulse for the first measurement in the scan. With the LiDAR configured
to rotate ten times per second, ten pulses are sent out each second. Compared to
the one pulse per second in Storli (2022), ten pulses should give a much tighter
synchronization between the LiDAR and the SentiBoard. Additionally, this method
is less dependent on the accuracy of the internal LiDAR clock. However, the accu-
racy of the encoder will play a major role in the accuracy of this synchronization
method.

As in Storli (2022), the LiDAR packets received on the Ethernet interface must
be associated with the corresponding TOV pulse based on the Encoder. This TOV
signal is encapsulated in a SentiBoard Envelope and forwarded to the Host com-
puter. The TOV message carries information regarding the point in time when the
TOV pulse was received by the SentiBoard. The correspondence between the TOV
message and the LiDAR data is based on the ROS-based timestamp the messages
are given once they arrive in ROS. Figure 4.9 shows the arrival times for LiDAR
data and the TOV message in ROS, as well as how they are associated. SentiInput-
Capture and ouster/points represents the TOV message and the LiDAR messages,
respectively. As the figure shows, the LiDAR data is not associated with the nearest
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TOV message. The reason for this is that the encoder pulse is sent at the beginning
of the scan, and the LiDAR data is sent out once the scan has been completed and
the data has been formatted to fit the UDP network protocol. Since the duration
of a scan is 0.1 s, the expected arrival time of the LiDAR data is right above 0.1 s
after the TOV message arrives.

Implementation of Sync module

To implement this association in practice, a synchronization module had to be
coded. In Figure 4.7, the gray module inside the ouster driver represents this
functionality. A pseudocode representation of the implementation is represented
in Listing 4.1 and Listing 4.2. The functionality is implemented in ROS callback
functions, which are called each time a new message is received on its respective
topic. In the pseudocode, the variables tov_sbts_prev and tov_sbts are global vari-
ables holding the SentiBoard timestamp of the newest and second to newest TOV
message, respectively. The name "sbts" is short for SentiBoard timestamp.

Listing 4.1: Pointcloud callback function

pointcloud_callback(pointcloud){
pointcloud_sbts = tov_sbts_prev;

pointcloud_synced = pointcloud
pointcloud_synced.timestamp = pointcloud_sbts

publish(pointcloud_synced)
}

Listing 4.2: TOV message callback function

tov_message_callback(tov_message){
new_tov_sbts = tov_message.timestamp

tov_sbts_prev = tov_sbts;
tov_sbts = new_tov_sbts;

}

Listing 4.2 shows what happens to the TOV message when it arrives in ROS.
The timestamp is stored in a global variable called tov_sbts, and the previous
timestamp is stored in tov_sbts_prev. Since the association between the LiDAR
data and the TOV message is as shown in Figure 4.9, the newest and previous
TOV timestamps must be stored. Listing 4.1 shows that the incoming pointcloud
is assigned the SentiBoard timestamp of the previous TOV packet. In the real im-
plementation, some sanity checks were implemented to handle cases where the
LiDAR or TOV message was delayed significantly. These checks are not included
in Listing 4.1 and Listing 4.2 due to clarity.
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4.4 GNSS messages

Three u-blox f9p receivers were used to gather data for ground truth reference, as
well as data to test the implementation of the new factors in the Liorf factor graph.
The placement of the antennas and their names are described in Figure 4.6. u-blox
GNSS receivers have a rich configuration, where the user can choose between a
lot of message types to be created from the raw satellite signals. The receivers
used in this project were configured to give the messages presented in Table 4.2
(ublox, 2021).

Table 4.2: GNSS receiver messages. The Moving Base receiver was used to give
position estimates in the geodetic coordinate system, as well as time informa-
tion. The Rovers were used to get relative position measurements to the Moving
Base antenna in NED coordinates. UBX-RXM-RAWX were used for RTK genera-
tion (ublox, 2021).

Receiver name u-blox messages Transmission rate

Moving Base UBX-NAV-PVT and UBX-RXM-RAWX 1 Hz
Rover1 UBX-NAV-RELPOSNED 1 Hz
Rover2 UBX-NAV-RELPOSNED 1 Hz

The two rover receivers were used to obtain position estimates relative to
the Moving Base antenna, in NED coordinates. This was achieved by configur-
ing the Moving Base to send raw GNSS data to the rovers over UART, as shown
in Figure 4.2. The rovers could then send UBX-NAV-RELPOSNED messages to the
SentiBoard. Moving Base was configured to give single position measurements
in geodetic coordinates, which was achieved through configuring the receiver to
send UBX-NAV-PVT messages. In order to compare the Liorf estimates with RTK
GNSS estimates, the Moving Base was configured to output UBX-RXM-RAWX mes-
sages. These messages contain the raw GNSS data received from the satellites.

4.4.1 RTK GNSS - ground truth generation

In order to obtain as accurate a ground truth estimate as possible, a RTK solution
was estimated from the collected GNSS data. The process included saving raw
GNSS data from the u-blox receiver listed in Table 4.1. This data was written to a
file by SentiReader, as shown in Figure 4.7. The further process of obtaining RTK
estimates was done offline. This included downloading raw base station GNSS
data from Kartverket from the day the experimentation was performed, which
was April 4th, 2023 (kartverket, 2023). Furthermore, the raw u-blox data was
combined with the data from Kartverket in a software tool called "RTKlib" in order
to produce the RTK solution (rtklibexplorer, 2023).



44 Storli: Timing and time synchronization within LiDAR-inertial SLAM

4.5 Timestamp modification for software synchronization

In order to compare the accuracy of Liorf estimates with software vs hardware
synchronization, the timestamps in the collected dataset had to be swapped. Data
stored in rosbags are given a timestamp that is not directly visible in the ROS
message. This is the point in time when the message was stored in the rosbag and is
referenced to the internal clock running in ROS. This timestamp follows a software
timestamping primitive. A Python script was made to change the timestamps in
the original ROS messages with the timestamp given by the rosbag.

Listing 4.3 shows the code for making a new bag that has the exact same data,
but the timestamps are changed to use the once set by ROS. The name of the
original rosbag is input_bag, while the new bag is named output_bag. The "for"
loop goes through all messages in the original bag, and checks if the messages
belong to the LiDAR or IMU topic. Moreover, the messages are extracted and the
timestamps are changed. At the end, the modified messages are written to the
new rosbag.

Listing 4.3: Python script for modifying timestamps in a rosbag.

import rosbag
import numpy as np

input_bag = ’path_to_input_bag.bag’
output_bag = ’path_to_new_bag.bag’

with rosbag.Bag(output_bag, ’w’) as outbag:
for topic, msg, t in rosbag.Bag(input_bag).read_messages():

if topic == "/imu/data_raw" and msg.header.stamp:
imu_msg = msg
ros_timestamp_imu = t

imu_msg.header.stamp = ros_timestamp
outbag.write(topic, msg, msg.header.stamp)

if topic == "/os_cloud_node/points" and msg.header.stamp:
lidar_msg = msg
ros_timestamp_lidar = t

lidar_msg.header.stamp = ros_timestamp_lidar
outbag.write(topic, lidar_msg, lidar_msg.header.stamp)
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GTSAM and Liorf Modifications

One of the main contributions of this thesis is the modification of the Liorf factor
graph. Liorf currently offers small amount of flexibility in specifying where the
GNSS antennas are placed. Liorf assumes that the GNSS antenna origin and the
body frame origin coincides. This is not the case for Liorf, since the IMU frame
is used as body frame, and it is impracticable to place the GNSS antenna inside
the IMU. In order to implement flexibility in GNSS antenna placement, a couple
of new factors were developed in the GTSAM C++ library and integrated into the
current Liorf implementation. This section describes the mathematics behind the
new factors, as well as how they are integrated into the Liorf factor graph.

5.1 GTSAM factor creation

The GTSAM toolbox, known as the "Georgia Tech Smoothing and Mapping," is a
freely available C++ library centered around factor graphs (Dellaert, 2012). Devel-
oped by a collaborative team of researchers, students, and partners at the Georgia
Institute of Technology, this toolbox offers cutting-edge solutions for both SLAM
and SFM (Structure from Motion) problems. Its design allows for versatile model-
ing and solving of a wide spectrum of estimation problems, ranging from simple to
intricate scenarios. Moreover, GTSAM provides a MATLAB interface that facilitates
swift prototyping, visualization, and user engagement.

This project contributes to the GTSAM toolbox by designing two new factors.
Both of these factors are related to GNSS measurements and are named the fol-
lowing

• GPSWithLeverArmFactor (GLA)
• GPSBaseLineFactor (GBL),

where GLA and GBL are short for GPSLeverArm and GPSBaseLine, respectively.

45
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5.1.1 GPSWithLeverArmFactor

When the GNSS antenna origin does not coincide with the body frame origin, a
lever arm between them is present. Using the GNSS measurement for estimating
the body pose, a lever arm compensation has to be made, as expressed in (3.26).
Assuming white Gaussian noise for the GNSS measurement expressed in (3.24),
with covariance Σmb, gives the following expression for the GPSWithLeverArm-
Factor

ξGLA∝ exp {−
1
2
∥pu

ubmb
− p̂u

ubmb
∥2Σmb
}, (5.1)

where pu
ubmb

is the estimated position of the moving base antenna, and p̂u
ubmb

is
the GNSS position measurement. Expressing pu

ubmb
as a function of the body frame

pose and the lever arm between the body frame and the GNSS frame, the expres-
sion becomes

ξGLA∝ exp {−
1
2
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ub +Ru
bl b

bbmb
− p̂u

ubmb
∥2Σmb
}, (5.2)

where Ru
b is the rotation matrix from body to ENU, and l b

bbmb
is the lever arm from

body to GNSS frame. This is a unary factor, as described in Section 3.3 and (3.32),
where (3.26) functions as the measurement prediction function.

A typical use case for this factor would be to measure the lever arm manually in
the body frame and receive measurements from GNSS. The factor graph is then
optimized with respect to the position and orientation, represented by pu

ub and
Ru

b, respectively. The covariance Σmb can be obtained by configuring the GNSS
receivers to send messages characterizing the uncertainty in the measurements.

Jacobian

Utilizing (5.2) in factor graph-based optimization requires the explicit expression
for the Jacobian of the measurement prediction function. As stated, the measure-
ment prediction function for the GPSWithLeverArmFactor is presented in (3.26),
and can be stated as a transformation of a point in homogenous coordinates:

efGLA(R
u
b, pu

ub) =

�

Ru
b pu

ub
01×3 1

�

el b
bbmb

, (5.3)

Based on Theorem 3. in Dellaert (2022), which describes the derivative of a point
transformation, the resulting Jacobian FGLA becomes:

FGLA(R
u
b, pu

ub) =
�

−Ru
bS(l b

bbmb
) Ru

b

�

, (5.4)

where S is the skew-symmetric matrix operator described in (3.12). (5.4) is the
derivative with respect to the pose, where the first three columns correspond to
the orientation and the last three columns correspond to the position.
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5.1.2 GPSBaseLineFactor

The second factor developed was the GPSBaseLineFactor, which is applicable when
there are at least two GNSS receivers available. This factor uses (3.25) as mea-
surement prediction function and compares it to the measured relative position.
As for the GPSWithLeverArmFactor, it is assumed that the relative position esti-
mate has white Gaussian noise with covariance Σr . The factor is then given by the
following expression

ξGBL∝ exp {−
1
2
∥Ru

bl b
bmb br
− p̂u

bmb br
∥2Σr
}, (5.5)

where l b
bmb br

is the base line from the moving base antenna to the rover antenna,
Ru

b is the rotation matrix from body to ENU, and p̂u
bmb br

is the relative position
measurement between the two GNSS antennas. Σr can be obtained in the same
way as for Σmb in (5.2).

This factor does not, on its own, help with position estimates, but will benefit
the estimation of orientation. The orientation, represented by Ru

b is the optimiza-
tion variable.

Jacobian

In order to incorporate the GPSBaseLineFactor into a gradient-based optimization
framework, similar to the GPSWithLeverArmFactor, it is necessary to explicitly
express the Jacobian. The measurement prediction function utilized in (5.5) is
derived from (3.25) and can be represented as a transformation of a point in
homogeneous coordinates. The transformation takes the following form:

efGBL(R
u
b, pu

ub) =

�

Ru
b 03×1

01×3 1

�

el b
bmb br

, (5.6)

where 03×1 is a zero column vector. By again, utilizing Theorem 3. in Dellaert
(2022), the Jacobian FGBL can be expressed as:

FGBL(R
u
b, pu

ub) =
�

03×3 Ru
b

�

, (5.7)

where 03×3 is a zero matrix. (5.7) is the derivative with respect to the pose, where
the first three columns correspond to the orientation and the last three columns
correspond to the position.
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5.2 Liorf contributions

The two factors described in the above section were developed to improve the
estimates given by Liorf. This was done by adding new factors to the graph as
GNSS measurements were received. Since the GNSS receivers were configured to
give a new measurement every second, it would not be beneficial to add a new
factor each time a measurement came in. A criterion for adding new factors to the
graph was developed.

5.2.1 New factor graph

The new factor graph is shown in Figure 5.1. Compared to Figure 3.2, the changes
involve two new factors. GPSWithLeverArmFactor is represented by a purple line
between the GNSS single position measurement and a state node. GPSBaseLine-
Factor is represented by a blue line between the GNSS relative position measure-
ment and a state node. The GNSS relative position measurement is given as in
(3.25).

The original GNSS factor is replaced by the GPSWithLeverArmFactor. They
have the same structure, in the sense that both are dependent on the same GNSS
measurement. However, the difference is that the GPSWithLeverArmFactor com-
pensates for the lever arm, which the original GNSS factor does not. The mathe-
matical expression for the GPSWithLeverArm factor is given in (5.2).

GPSBaseLineFactor is dependent on a new type of measurement that is not
compatible with the original Liorf implementation. The new measurement gives
the relative position between two GNSS antennas and can be used to estimate
orientation. The mathematical expression for the GPSBaseLineFactor is given in
(5.5).
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Figure 5.1: Liorf factor graph with new GNSS factors. The new factors, namely
GPSWithLeverArmFactor and GPSBaseLineFactor, are depicted in purple and
blue, respectively. These factors extend the factor graph introduced in Figure 3.2.
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5.2.2 Factor adding criterion

Adding a new factor to a factor graph will most likely increase the computational
cost, as the cost function to be optimized gets more terms that should be evaluated.
Because of this, a configurable criterion for adding a new factor was developed.
The original GNSS factor in Liorf also has such a criterion, which the new criteria
were based on. These criteria were based on comparing the uncertainty in the
current pose estimate with the uncertainty in the GNSS measurements.

The pseudo-code for adding a GPSBaseLineFactor is given in Listing 5.1. orien-
tationCovariance is the orientation uncertainty estimate of the newest state node,
while orientationCovThreshold is the configurable value given by the user. factor-
Graph is the whole factor graph, and GPSBaseLineFactor represents the factor to
be added.

Listing 5.1: Pseudo-code for adding a GPSBaseLineFactor.

if (orientationCovariance > orientationCovThreshold) {
factorGraph.add(GPSBaseLineFactor)

}

Similarly, the pseudo-code for adding a GPSWithLeverArmFactor is given in
Listing 5.2. positionCovariance is the position uncertainty estimate of the newest
state node, while positionCovThreshold is the configurable value given by the user.
factorGraph is the same factor graph as in Listing 5.1, and GPSWithLeverArmFac-
tor represents the factor to be added.

Listing 5.2: Pseudo-code for adding a GPSWithLeverArmFactor.

if (positionCovariance > positionCovThreshold) {
factorGraph.add(GPSWithLeverArmFactor)

}

The covariance threshold can be chosen based on the accuracy of the GNSS
receivers used. In the case of very precise GNSS receivers, the threshold should
be set low, and vice versa. The computational recourses should also be considered
when choosing a threshold.



Chapter 6

Results and Discussion

In order to evaluate how different synchronization methods, and how the use
of different GNSS factors affect the output of Liorf, multiple plots are presented.
These plots compare the different pose estimates. Since pose consists of position
and orientation, both of these are compared. In order to evaluate these estimates,
they are compared to the pose estimates obtained from RTK GNSS. The dataset
gathered in this project is gathered from a car driving in urban areas, and is re-
ferred to as the Jonsvatnet dataset. It was gathered during good weather with a
clear sky. The car route consisted of multiple turns and roundabouts, as well as
ending up on the highway with speeds up to 80 km/h. In order to say some-
thing about the accuracy of the sensor timestamps and the estimates from Liorf,
compared to reference values, error metrics are used. These are defined at the
beginning of the chapter and used consequently throughout it. The timestamp
difference between two consecutive measurements is plotted to get an intuition
of what the difference between software and hardware timestamping means in
practice. This is done for all sensors. Furthermore, the timestamp difference for
encoder-based synchronization of LiDAR and SentiBoard is compared to times-
tamps based on 1PPS and ROS synchronization. This chapter ends with a broader
discussion focusing on what can be stated based on the conducted experiment
and analysis.
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6.1 Error metrics

*Statistical measures are important when analyzing data. In this report statistical
measures such as mean error (ME), root mean square error (RMSE), mean abso-
lute error (MAE), standard deviation (STD), and Max are used. So no confusion
occurs, the formulas used in this project are presented in the following subsec-
tions. Given a dataset d, that should be compared to a dataset f , where both
have length N , the following error metrics are defined. The notation (·)k and (·)
denotes element k in the dataset and the mean value, respectively.

Mean error (ME)

M E =
1
N

N
∑

k=1

(dk − fk) (6.1)

Mean absolute error (MAE)

MAE =
1
N

N
∑

k=1

|dk − fk| (6.2)

Root mean square error (RMSE)

RMSE =

√

√

√

√

1
N

N
∑

k=1

(dk − fk)2 (6.3)

Standard deviation (STD)

σ =

√

√

√

√

1
N − 1

N
∑

k=1

(dk − d)2 (6.4)

Max error

Max error for a dataset is the largest error value, in absolute value.†

*This and subsequent paragraphs are taken from the specialization project, Storli (2022).
†End of reference from Storli (2022).
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6.2 Timestamp analysis

In Storli (2022), the LiDAR was synchronized by the use of the 1PPS synchro-
nization primitive, with the SentiBoard as a slave and the LiDAR as master. In
this project, the synchronization primitive used was encoder-based pulses, which
function as a TOV for the first set of points in the scan. This section compares the
different timestamps produced by the two different synchronization primitives,
as well as the ones set by ROS. This is done by comparing the results from Storli
(2022) with the data gathered in this project.

Additionally, the timestamps set by ROS and SentiBoard are compared for IMU
and GNSS measurements. This result is presented to understand how the different
synchronization primitives affect the timestamp difference. It is these timestamps
which sets the basis for the estimates produced by Liorf, presented later in this
chapter.
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6.2.1 LiDAR Synchronization comparison - encoder, 1PPS and ROS

In Table 6.1, the error metrics for the different synchronization primitives used
for LiDAR-SentiBoard synchronization are shown. The values represent the time
difference from one measurement to the next, compared to the sampling period
given by the sensor datasheet (Ouster, 2022). The sampling rate is set to 10 Hz,
which gives a sampling period of 105 µs. The ROS-based timestamps are also
included, for comparison. The values for 1PPS and ROS laptop are taken from
the vehicle dataset in Storli (2022), while the encoder and ROS based are taken
from the Jonsvatnet dataset collected in this project. The data collected in Storli
(2022) used a laptop running a virtual machine for data collection, which was
much slower than the host computer used in this project.

The most outstanding dataset is the ROS synchronized vehicle dataset in Storli
(2022), which has much larger error values, for all metrics, compared to the other
datasets. This indicates that the accuracy of the software timestamps produced by
ROS is highly dependent on the hardware it runs on. The ROS-based timestamps
from this project, running on an Intel NUC produces as accurate timestamps as
the hardware-based methods. This analysis does not evaluate the accuracy of the
synchronization between the LiDAR and the SentiBoard. Even though the times-
tamp difference is more accurate for the ROS based method, the synchronization
with the other sensors may be much worse than for the hardware-based methods.
Moreover, this analysis is highly dependent on the sampling period specified by
the sensor manufacturer being accurate.

Table 6.1: Error metrics for different LiDAR synchronization methods. The time
difference between two consecutive measurements is compared to the sampling
period given by the sensor producer, 10 Hz. Encoder and ROS is based on the
dataset collected in this project, while ROS laptop and 1PPS is based on the ve-
hicle dataset in Storli (2022).

LiDAR synchronization method – timestamp difference

ME [µs] MAE [µs] STD [µs] RMSE [µs] Max error [µs]

Encoder: 0.24 116.14 166.08 166.06 907.76
1PPS: -1.51 81.48 447.48 447.45 2.03 · 104

ROS: -0.23 167.96 222.00 221.97 1.13 · 103

ROS laptop: -6.61 5.89 · 103 8.41 · 103 8.41 · 103 2.35 · 103
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6.2.2 Timestamp analysis for Jonsvatnet dataset

The dataset collected in this project, Jonsvatnet dataset, consists of measurements
from IMU, LiDAR, and GNSS. All measurements are given two timestamps, one
by ROS and one by the SentiBoard. In this section, the timestamp difference for
the two timestamping methods is presented and analyzed.

IMU data

In Figure 6.1, the timestamp difference for the timestamps set by ROS and Senti-
Board is presented in blue and orange, respectively. Both the ROS and SentiBoard
(SB) data seem to alter around the sampling period of 2 · 106 ns. This sampling
period coincides with the sampling frequency of the IMU, 500 Hz. Although both
graphs alter around the sampling period, it is evident that the ROS-based times-
tamps have some unwanted characteristics. First of all, the ROS data varies a lot
compared to the SB data. Secondly, there are some major spikes in the ROS data,
that may indicate that some of the measurements are stuck in a buffer before en-
tering the software. The SB data seem to have timestamps that represent the exact
sampling period throughout the dataset.

Table 6.2 shows the error metrics corresponding to the data presented in Fig-
ure 6.1. The most outstanding value is the ME for the ROS-based timestamps,
which is less than 2 ns. This may indicate, that on average, the ROS timestamps
are extremely precise. However, as the other error metrics indicate for the ROS
data, the variation in the data is high. The SB data has low values for all error
metrics. Even though the value for ME is greater, in absolute value than the ME
for the ROS data, it is still extremely low. The SentiBoard has a sampling accuracy
of 10 ns, greater than the ME value (S. M. Albrektsen, 2018).

Table 6.2: Error metrics for hardware and software synchronization of IMU times-
tamps. Hardware- and software-based timestamps are realized by SentiBoard and
ROS, respectively. The sampling period given by the sensor manufacturer is 500
Hz.

IMU timestamps - error metrics

ME [µs] MAE [µs] STD [µs] RMSE [µs] Max error [µs]

SB: 0.01 0.05 0.08 0.08 0.26
ROS: -0.001 85.38 108.77 108.77 6.63 · 103
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Figure 6.1: Timestamp difference for hardware and software synchronization
of IMU measurements. Hardware and software based timestamps are realized
by SentiBoard and ROS, respectively. ROS-based timestamps are shown in blue,
while SentiBoard are shown in orange. The sampling period, based on the man-
ufacturer’s specifications, is 2 · 106 ns.
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LiDAR data

Figure 6.2 shows the timestamp difference obtained by the encoder pulse synchro-
nization method, as well as the ROS-based timestamps. The SB- and ROS-based
timestamps are shown in orange and blue, respectively. Both graphs are altering
the sampling period of 108 ns, which is precisely what the LiDAR datasheet speci-
fies. The error metrics are presented earlier in Table 6.1, where the encoder-based
values resemble the orange graph, and the ROS synchronization values resemble
the blue graph.

There seems to be a periodic variation in the timestamps set by the SB, lasting
from 75 s to the end of the dataset. Additionally, the first 50 seconds of the SB data
seems to have much lower variation than the rest of the dataset. This could be a
result of the dynamics of the rotating part inside the LiDAR. If the LiDAR rotates
or accelerates, this will affect the torque of the rotating part inside the LiDAR, and
consequently affect at what time the encoder-based pulse is sent out.
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Figure 6.2: Timestamp difference for hardware and software synchronization
of LiDAR measurements. Hardware- and software-based timestamps are realized
by SentiBoard and ROS, respectively. ROS-based timestamps are shown in blue,
while SentiBoard-based are shown in orange. The sampling period, based on the
manufacturer’s specifications, is 108 ns.
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GNSS data

In the Jonsvatnet dataset, there are three different types of GNSS measurements.
The three types are named Moving Base, Rover1 and Rover2. The GNSS messages
received are described in Section 4.4. All three measurement types are individually
timestamped with a SB and ROS timestamp.

Figure 6.3 shows the SB and ROS timestamp difference for the three types of
GNSS measurements. The Moving Base data is presented in the top plot, while the
data for Rover1 and Rover2 is presented in the middle and bottom plots, respec-
tively. ROS and SB timestamps are represented by the blue and orange graphs,
respectively. From all three plots it is evident that the ROS timestamps vary much
more than the ones set by the SB. This is most noticeable in the Moving Base plot,
but is also visible in the two rover plots. The two spikes in the rover plots are
most likely caused by packet loss. The rover messages are based on finding the
RTK solution based on the data from the Moving base. In some cases, the signals
may not be of such quality that the RTK solution can be found, resulting in the
rover packages not being sent. In contrast, the delivery of Moving Base data is
consistent throughout the whole dataset.

Table 6.3 shows the error metrics corresponding to the data presented in Fig-
ure 6.3. All SB values for all message types are almost identical. This is expected
as the three receivers base their pulses on the UTC, and sends a pulse a top of each
second. The values in this table do not include the large peaks in the Rover1 and
Rover2 plots in Figure 6.3. These were considered outliers and were removed. The
ROS values are significantly less accurate than the SB ones and vary a lot between
the three receivers.

Table 6.3: Error metrics for hardware and software synchronization of GNSS
timestamps. Hardware- and software-based timestamps are realized by Senti-
Board and ROS, respectively. Hardware synchronization involved timestamping
with the SentiBoard, while software synchronization relied on timestamping via
ROS.

GNSS timestamps - error metrics

ME [µs] MAE [µs] STD [µs] RMSE [µs] Max error [µs]

Moving Base

SB: -0.63 0.63 0.01 0.63 0.66
ROS: -22.17 1.11 · 104 1.23 · 104 1.23 · 104 2.62 · 104

Rover1

SB: -0.62 0.63 0.01 0.63 0.65
ROS: 34.93 8.99 · 103 1.04 · 104 1.04 · 104 2.47 · 104

Rover2

SB: -0.63 0.63 0.01 0.63 0.65
ROS: 57.53 8.11 · 103 9.49 · 103 9.47 · 103 2.38 · 103



Chapter 6: Results and Discussion 59

50 100 150 200 250 300 350 400

0.98

0.99

1.00

1.01

1.02

Ti
m
es
ta
m
p 
di
ffe

re
nc
e 
[n
s]

1e9 Moving Base

50 100 150 200 250 300 350 400
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m
es
ta
m
p 
di
ffe

re
nc
e 
[n
s]

1e9 Rover1

50 100 150 200 250 300 350 400
Time [s]

1.0

1.5

2.0

2.5

3.0

Ti
m
es
ta
m
p 
di
ffe

re
nc
e 
[n
s]

1e9 Rover2
ROS timestamp
SB timestamp

Figure 6.3: Timestamp difference for hardware and software synchronization
of GNSS measurements. Hardware- and software-based timestamps are realized
by SentiBoard and ROS, respectively. ROS-based timestamps are shown in blue,
while SentiBoard are shown in orange. The sampling period, based on the man-
ufacturer’s specifications, is 109 ns.



60 Storli: Timing and time synchronization within LiDAR-inertial SLAM

6.3 GNSS estimates and RTK solution

In order to compare the output of Liorf with high-precision absolute measure-
ments, the RTK solution was calculated from the Moving Base receiver raw GNSS
data. However, when running Liorf with GNSS as input, the position measure-
ments from Moving Base are used as input and not the RTK solution. An inter-
esting result is the comparison of the Moving Base position estimates with the
RTK position estimates. In this section, the north, east, and height estimates are
compared. The estimates are compared in a local ENU frame defined by the first
RTK estimate. By the use of the QUEST method, presented in Section 3.2.3, full
orientation estimates from the two Rover antennas could be estimated and used
for comparison to the Liorf orientation estimates. These orientation estimates are
also presented in this section.

6.3.1 North, east and height estimates

In Figure 6.4 the North-East trajectory from the Moving Base messages and the
RTK solution are plotted. The RTK solution is plotted in blue, and the Moving
Base is plotted in dotted orange. From this figure, the two trajectories seem to be
completely identical. It should be noted that the axis scale is large, making it hard
to see small deviations. Further in this report, the RTK trajectory will be used as
ground truth.

The height estimates from Moving Base and RTK are plotted against time in
Figure 6.5. The RTK solution is plotted in blue, and the Moving Base is plotted in
dotted orange. This plot shows no significant difference between the two graphs.
The most notable difference may be that the Moving Base estimates are above
the RTK during the entire trajectory. Another notable difference is that the RTK
estimate is not as smooth as the Moving Base. This can be seen by the 260 s and
340 s marks.

To investigate the difference between the RTK and Moving Base estimates
without being concerned about the large-scale axis hiding the difference, error
plots are presented. Figure 6.6 shows the numerical difference between the east,
north, and height estimates from top to bottom, respectively. For comparison, all
plots have the same scale on the vertical axis. Table 6.4 contains error metrics
for the same data. The east error is on average half of the north error, as seen by
the ME and MAE. However, the variation seems to be the same, as seen by the
values for STD. The height error varies more than the east and north estimates.
However, the error is not as large as for the north estimates. At the 340 s mark the
difference has a large spike, as also seen in Figure 6.5. This is most likely caused
by the RTK solution producing inaccurate estimates. A car driving in urban areas
is not expected to drop height as rapidly as the RTK trajectory presents. This may
indicate that the calculated RTK solution has some inaccuracies.
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Figure 6.4: Comparison of North-East estimates between RTK and Moving Base
GNSS solutions. The RTK solution is depicted in blue, while the Moving Base
trajectory is illustrated as a dotted orange line.
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Figure 6.5: Comparison of height estimates between RTK and Moving Base GNSS
solutions. The RTK solution is depicted in blue, while the Moving Base trajectory
is illustrated as a dotted orange line.

Table 6.4: Error metrics for RTK and Moving Base GNSS solutions. The error
metrics for RTK and Moving Base GNSS solutions are calculated by subtracting
the Moving Base estimates from the RTK estimates. Zero is used as the reference
value for the error metrics.

RTK vs Moving Base – error metrics

ME MAE STD RMSE Max error

North [m]: -1.044 1.044 0.094 1.048 1.366
East [m]: -0.493 0.493 0.099 0.503 0.810

Height [m]: -0.627 0.627 0.279 0.686 2.118
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Figure 6.6: The plots show the East-North-Height errors of the RTK and Mov-
ing Base GNSS solutions. The error is computed by subtracting the Moving Base
estimates from the RTK estimates. All axes are scaled equally to ensure a fair com-
parison of the three directions.
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6.3.2 Orientation estimates

The orientation estimates for roll, pitch, and yaw are presented in Figure 6.7.
Roll and pitch are plotted in the upper plot, in blue and green, respectively. Yaw,
which is another term for heading, is plotted in the lower plot. This separation is
done because the yaw values span a much greater range than the roll and pitch
values, which is logical for a car application. These angles follow the right-hand
rule for the ENU frame. The yaw angle is referenced to the east axis, not the
north axis, which is common in many applications. The accuracy of these values
is hard to indicate and must be considered when compared to the Liorf orientation
estimates.

50 100 150 200 250 300 350 400

−4

−3

−2

−1

0

1

2

3

4

An
gl

e 
[d

eg
]

roll
pitch

50 100 150 200 250 300 350 400
Time [s]

−150

−100

−50

0

50

100

150

An
gl

e 
[d

eg
]

yaw

Figure 6.7: The plot displays the roll, pitch, and yaw estimates obtained from
three GNSS antennas. In the upper plot, the roll is depicted in blue, while the
pitch is shown in orange. The lower plot illustrates the yaw angle in green. The
yaw angle is calculated with respect to the east axis as a reference.
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6.4 Liorf initialization

Before comparing the pure Liorf-based estimates to the RTK generated, a note on
initialization should be made. Originally, the GNSS obtained orientation estimates
were used to initialize the body frame. Due to inaccuracies in the GNSS measure-
ments, the initial heading caused such a large drift in the estimated trajectory that
the comparison with the RTK path was meaningless. This huge drift can be seen
in Figure 6.8 where the orange trajectory resembles the pure IMU and LiDAR base
Liorf North-East estimate with GNSS based orientation initialization. The blue line
is the RTK path presented earlier.

This resulted in a need for a more precise orientation initialization. The method
used was to run Liorf with IMU, LiDAR, and GNSS as input, which then outputs
a complete factor graph with all the state nodes. Due to the nature of optimizing
a factor graph, where earlier states can be re-optimized to achieve more accurate
estimates, the first state node can be considered extremely accurate. The orien-
tation estimate of this state node was extracted and used for initialization. The
resulting trajectories, with this initial orientation, are presented in the following
sections.
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Figure 6.8: Liorf North-East trajectory initialized with orientation estimates from
GNSS compared to RTK GNSS solution. The RTK solution is plotted in blue, while
the Liorf estimates are depicted in orange.
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6.5 Liorf software and hardware synchronization com-
parison

This section presents the main result of the report, which is the comparison of
Liorf estimates when using software vs hardware timestamps for sensor synchro-
nization. Only LiDAR and IMU measurements are used as input to Liorf. This is
done to investigate the effect of accurate time synchronization between the two
sensors. In many cases, the GNSS signals may fall out, which means that a system
must be able to function properly with only LiDAR and IMU.

6.5.1 Position estimate comparison

Figure 6.9 shows the North-East trajectory produced by Liorf when using times-
tamps obtained by ROS and SB. The dotted green trajectory is the result of using
ROS timestamps, and the orange is the result of using SB timestamps. For com-
parison, the RTK path is plotted in blue. Based on this plot, the effect of using
hardware timestamps, compared to software timestamps, is minimal. Both the
ROS and SB based trajectories seem to have the same drift compared to the RTK
path. The ROS based path seems to lie further away from the RTK, but this is
minimal compared to the total drift for both paths.

Figure 6.10 shows the height estimates plotted against time for the same tra-
jectory as in Figure 6.9. This plot also indicates that the difference between the
two timestamping methods has minimal effect on the Liorf output. In contrast
to the North-East plot, the SB based height is now further away from the RTK
compared to the ROS based. This major drift in height is expected when using no
GNSS, as stated in the original LIO-SAM paper (Shan et al., 2020).

In Figure 6.11 the east, north, and height errors with respect to the RTK es-
timates are plotted against time. The SB and ROS based estimates are plotted in
orange and dotted green, respectively. The upper plot, which shows east error,
indicates that the SB based trajectory is more accurate, but not by a huge margin.
Both trajectories drift significantly, and the end difference between the SB and
ROS based trajectories is about 5 m. The middle plot shows the north error and
indicates the same as the east plot. The SB based trajectory is somewhat more
similar to the RTK trajectory compared to the ROS based. At the end of the tra-
jectory, the difference seems to be about 3 m, in favor of the SB trajectory. The
height error, shown in the lower plot, is of such a large scale that the difference
between the SB- and ROS-based trajectory is not visible.

Table 6.5 shows the error metrics for the data presented in Figure 6.11. The
SB based estimates have lower values for North and East errors compared to the
ROS based estimates. This goes for all error metrics. It is completely opposite for
the height values, where the ROS-based values are larger than the SB-based.
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Figure 6.9: North-East trajectory of LiDAR-IMU-based Liorf when using hard-
ware and software synchronization. The trajectory obtained through hardware
synchronization is represented by a dotted green line, achieved by timestamping
with the SentiBoard. The trajectory obtained through software synchronization,
achieved by timestamping with ROS, is depicted in orange. For comparison, the
RTK GNSS solution is plotted in blue.
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Figure 6.10: Height estimates of LiDAR-IMU-based Liorf when using hardware
and software synchronization. The trajectory obtained through hardware syn-
chronization is represented by a dotted green line, achieved by timestamping
with the SentiBoard. The trajectory obtained through software synchronization,
achieved by timestamping with ROS, is depicted in orange. For comparison, the
RTK GNSS solution is plotted in blue.
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Figure 6.11: East-North-Height error of hardware and software synchronized
LiDAR-IMU based Liorf estimates compared to RTK GNSS. The error based on
hardware synchronization is represented by a orange graph, and achieved by
timestamping with the SentiBoard. The error based on software synchronization,
achieved by timestamping with ROS, is depicted in dotted green.
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Table 6.5: Error metrics for hardware and software synchronized LiDAR-IMU-
based Liorf East-North-Height estimates compared to RTK GNSS. Hardware syn-
chronization involved timestamping with the SentiBoard, while software synchro-
nization relied on timestamping via ROS.

Liorf position – error metrics

ME MAE STD RMSE Max error

SentiBoard synchronization

North [m]: -2.792 5.353 6.218 6.809 14.533
East [m]: -14.772 15.567 16.538 22.158 62.637

Height [m]: -59.031 59.058 52.568 78.997 212.351

ROS synchronization

North [m]: -2.581 5.664 6.827 7.290 17.235
East [m]: -16.333 17.132 18.181 24.422 68.422

Height [m]: -58.399 58.426 52.130 78.235 211.392
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6.5.2 Orientation estimate comparison

Figure 6.12 shows the orientation error for the SB and ROS based estimates in
orange and dotted green respectively. Roll, pitch, and yaw errors are plotted from
top to bottom, respectively. Based on these plots, there seems to be no significant
difference in the SB and ROS based estimates. The only notable deviation is in
the yaw error plot at the 300 s mark. At this point, the ROS based estimate has a
large spike, while the SB estimate seems unaffected. The cause of this large error
is unknown but may be a cause of interpolating values from the GNSS based
orientation estimates to the Liorf-based estimates. This seems likely as the yaw
angle wraps from 180◦ to −180◦ at this point, seen in the lower plot in Figure 6.7.
This might be a result of the ROS based trajectory producing estimates which
are shifted in time. In the case where these estimates should have been used in
feedback control, this error spike may cause unwanted behavior.

The error metrics corresponding to the data in Figure 6.12 are shown in Ta-
ble 6.8. Roll and pitch values are all higher for the SB based estimates compared
to the ROS based values. Height values have the opposite trend, where all values
are large for the ROS based estimate, compare to the SB based estimates.

Table 6.6: Error metrics for hardware and software synchronized LiDAR-IMU-
based Liorf orientation estimates compared to GNSS obtained orientation. Hard-
ware synchronization involved timestamping with the SentiBoard, while software
synchronization relied on timestamping via ROS.

Liorf orientation – error metrics

ME MAE STD RMSE Max error

SentiBoard synchronization

Roll [deg]: 0.293 1.784 2.070 2.088 5.500
Pitch [deg]: 1.748 2.449 2.351 2.927 6.444
Yaw [deg]: -1.588 1.604 1.378 2.101 10.078

ROS synchronization

Roll [deg]: 0.286 1.745 2.029 2.046 5.340
Pitch [deg]: 1.730 2.418 2.331 2.900 6.618
Yaw [deg]: -1.783 1.793 2.012 2.686 29.521
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Figure 6.12: Roll, pitch, and yaw errors of hardware and software synchronized
LiDAR-IMU based Liorf estimates compared to RTK GNSS. The error based on
hardware synchronization is represented by a red line, and achieved by times-
tamping with the SentiBoard. The error based on software synchronization,
achieved by timestamping with ROS, is depicted in dotted blue.
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6.6 GNSS factor comparison

Comparing the output of Liorf with the GNSS factors presented is another impor-
tant result of this thesis. In the case of significantly more accurate estimates, these
factors can be considered an extension of Liorf. In this section the position and
orientation estimates from using the different factors are compared to the GNSS
based pose estimates. The three different trajectories presented are based on the
use of the following GNSS factors:

• GPSWithLeverArmFactor and GPSBaseLineFactor
• GPSBaseLineFactor
• Liorf original GNSS factor

The first trajectory uses both new factors presented in this thesis, GPSWith-
LeverArmFactor, and GPSBaseLineFactor. The second trajectory is based on only
using the GPSBaseLineFactor, and the third trajectory is based on the factor used
in the original Liorf implementation. This factor is called GPSFactor and is a part
of the GTSAM library (Dellaert, 2023). First, the position estimates are presented
and compared to the RTK estimates. Secondly, the same is done for the orientation
estimates.

6.6.1 Position estimate comparison

Figure 6.13 shows the North-East trajectory when using the different GNSS fac-
tors. All trajectories lie almost completely on top of each other, and it is hard to
tell any difference based on this plot. The height estimates are plotted against
time in Figure 6.14. In this plot, the difference between the trajectories is more
visible. Using only the GPSBasaLineFactor causes the largest deviation from the
RTK path. This is an expected result, as GPSBasaLineFactor gives only information
regarding orientation and not position. For the other trajectories, it seems like the
one based on the GPSWithLeverArmFactor and GPSBaseLineFactor lie closest to
the RTK solution. However, the trajectory based on the original GNSS factor lies
almost on top of the RTK path as well.

In Figure 6.15 the position errors are plotted. East, north, and height are plot-
ted from top to bottom respectively. It is clear that the trajectory based on only the
GPSBaseLineFactor behaves much worse than the other two. This does not come
through in the Figure 6.13 plot, due to the large scale on the axis. The trajectory
based on the GPSBaselineFactor and the GPSLeverArmFactor, and the one based
on the original GNSS factor are both relatively close to the RTK solution. The north
and east error plots reveal that there is a larger deviation in the trajectory.

In Table 6.7 the error metrics for the GNSS factor comparison is presented. It is
evident that the purely GPSBaseLineFactor trajectory has the worst error metrics,
as indicated by the earlier plots. Comparing the metrics for the original factor
and the two new factors shows that north and height estimates are worse for the
trajectory based on the original factor. However, it is the opposite for the east
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estimates, where the trajectory based on the original GNSS factor has a lower
error.
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Figure 6.13: Liorf North-East trajectory comparison based on different GNSS fac-
tors. The trajectory obtained using the two newly developed factors is depicted
in red, while the trajectory with only the BaseLine factor is shown in green. The
trajectory using the original GNSS factor is represented in orange. For compari-
son, the RTK GNSS solution is plotted in blue.
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Figure 6.14: Liorf height estimates comparison based on different GNSS factors.
The trajectory obtained using the two newly developed factors is depicted in red,
while the trajectory with only the BaseLine factor is shown in green. The trajectory
using the original GNSS factor is represented in orange. For comparison, the RTK
GNSS solution is plotted in blue.
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Figure 6.15: East-North-Height error of different approaches to GNSS integra-
tion in Liorf factor graph. The errors are calculated using RTK GNSS solution as
reference trajectory. The error obtained using the two newly developed factors is
depicted in red, while the error with only the BaseLine factor is shown in green.
The trajectory using the original GNSS factor is represented in orange.
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Table 6.7: Error metrics for Liorf’s position estimates using different GNSS fac-
tors. The first trajectory corresponds to the original GNSS factor employed by Li-
orf, the second trajectory utilizes the two newly developed factors, and the third
trajectory relies solely on the BaseLine factor. The GNSS RTK solution is employed
as the reference trajectory for error calculation.

Liorf GNSS factor comparison - position error

ME MAE STD RMSE Max error

Original GNSS factor

North [m]: 0.976 1.128 1.089 1.462 3.913
East [m]: -0.033 1.122 1.393 1.392 3.504

Height [m]: 0.354 1.412 1.862 1.893 5.988

GPSBaseLineFactor & GPSWithLeverArmFactor

North [m]: 0.611 0.943 1.106 1.262 3.575
East [m]: 1.923 1.931 1.103 2.216 4.674

Height [m]: -0.103 0.858 1.186 1.189 5.148

GPSBaseLineFactor

North [m]: 5.033 5.093 2.907 5.811 10.113
East [m]: 4.010 4.026 2.237 4.590 8.216

Height [m]: -2.111 6.563 12.705 12.862 61.499
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6.6.2 Orientation estimate comparison

Figure 6.16 shows the angle error for the different trajectories using the presented
GNSS factors. The roll error, shown in the upper plot, indicates no huge difference
between the trajectories. An interesting observation is that all three error trajecto-
ries seem to get closer and closer to each other as time goes by. This is not the case
for the pitch error, where the GPSBaseLineFactor trajectory seems to have much
worse performance compared to the two others. For the yaw error, it is difficult
to separate the three trajectories due to the axis scale in the plot. The most no-
ticeable feature in this plot is at the 300 s mark, where the yaw error drops down
to −180◦. This is most likely due to the fact that the quest obtained orientation
estimates wrap from 180◦ to −180◦ at that point. This behavior is only present for
the original GNSS factor, and may cause a problem if the estimates should have
been used for feedback control.

Table 6.8 gives a clearer comparison for the yaw estimates. The original GNSS
factor has the worst performance overall, but this might be strongly affected by
the large deviation at the 300 s mark. The GPSBaseLineFactor performs better
than both others on ME, but worse than GPSBaseLineFactor & GPSWithLever-
ArmFactor on MAE. For pitch and roll, the ME and MAE are quite similar for all
three trajectories, but the combined GPSBaseLineFactor & GPSWithLeverArmFac-
tor seem to perform somewhat better. The most outstanding value in the whole
table is the Max error for yaw on the original GNSS factor, with a value of 140◦.
The values for STD and RMSE are presented but do not bring much insight into
the performance.
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Figure 6.16: Roll, pitch, and yaw errors of different approaches to GNSS inte-
gration in Liorf factor graph. The errors are calculated using GNSS orientation
estimates as a reference. The error obtained using the two newly developed fac-
tors is depicted in red, while the error with only the BaseLine factor is shown in
green. The error using the original GNSS factor is represented in orange.
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Table 6.8: Error metrics for Liorf’s orientation estimates using different GNSS
factors. The first trajectory corresponds to the original GNSS factor employed by
Liorf, the second trajectory utilizes the two newly developed factors, and the third
trajectory relies solely on the BaseLine factor. The GNSS orientation estimates are
employed as a reference for error calculation.

Liorf GNSS factor comparison - orientation error

ME MAE STD RMSE Max error

Liorf original GNSS factor

Roll [deg]: 0.050 1.171 1.416 1.415 3.392
Pitch [deg]: -0.659 0.882 0.877 1.096 3.010
Yaw [deg]: -0.877 1.000 7.468 7.509 140.435

GPSBaseLineFactor & GPSWithLeverArmFactor

Roll [deg]: 0.260 0.908 1.100 1.129 3.381
Pitch [deg]: -0.566 0.735 0.665 0.873 2.429
Yaw [deg]: -0.429 0.596 1.487 1.545 10.295

GPSBaseLineFactor

Roll [deg]: 0.069 1.395 1.740 1.739 4.441
Pitch [deg]: -0.181 1.227 1.626 1.634 4.941
Yaw [deg]: -0.272 0.685 1.359 1.384 9.194
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6.7 Overall discussion

This thesis covers multiple research questions related to the chosen algorithm, Li-
orf. Firstly, the question of how what role different synchronization primitives play
in the resulting pose estimates from Liorf. More specifically, the use of hardware
timestamps is compared to the use of software timestamps. Before concluding,
some points have to be discussed to get a clear view of what can be said regarding
the results. These are points related to the choice of algorithm, synchronization
primitive, sensor quality, host computer capacity, software performance, and the
dynamics of the physical system.

6.7.1 Host computer

When performing a computational research problem, like the one related to the
estimates from Liorf, the choice of hardware components may play a significant
role, especially when the effect of time is studied. It is well known that different
computers have different computational performance. Some might run a specific
task 100 times faster than others, depending on the integrated circuit architec-
ture and component quality. This process is in most computers not deterministic,
meaning there is no guarantee of how much time a computation will take.

The host computer used in this project is considered fast and robust. At the
point of choosing the host computer, the role of the different hardware compo-
nents was not taken into consideration. An Intel NUC, which is the host computer,
is usually used for desktop purposes and is much too big to be tightly integrated
into a drone or a similar application. Compared to the host computer used in
Storli (2022), which additionally used a virtual machine, it can be considered
an extreme upgrade in computation power. If the experiments performed in Storli
(2022) had used the same host computer as in this project, the results are believed
to have been much different.

6.7.2 Generality of timestamping primitives

In this project, software timestamping was used to evaluate the performance of
Liorf. When presented with the question of what quality software-timestamping
and synchronization offers, there is no absolute answer. All software is man-made,
which means that its structure and architecture can vary a lot. Additionally, the
same software may perform differently when run on different hardware. As a con-
sequence of this, there is no way to generalize the quality of software-timestamping
and synchronization. The software quality in this project is given by the system
components and setup presented in chapter 4.

Hardware timestamping can be generalized much more than its counterpart.
Its accuracy boils down to much fewer factors. Since hardware synchronization
often comes down to timestamping rising or falling edges on signal pulses. The
accuracy is therefore dependent on the length of the wire the pulse propagates on.
In a hypothetical scenario where the wire is one light-year long, the timestamp
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will be off by one year. Additionally, the clock frequency in the host computer also
affects the accuracy of hardware timestamping. In another hypothetical scenario
where the clock frequency is 1 Hz, the accuracy of the given timestamp is 1 s.
In some cases, the event to be timestamped may occur at the exact nanosecond
the clock ticks, resulting in an extremely accurate timestamp. In another case, the
event may happen at the exact time between two ticks, resulting in an error of
0.5 s. Due to the relatively short distances in system setups, and the high veloc-
ity of propagation speed, the effect of wire length is often neglected in accuracy
evaluation.

6.7.3 Impact of system dynamics, sensors and SLAM algorithm

As presented in Storli (2022), the effect of timestamping and synchronization
accuracy on the output of a particular SLAM algorithm is highly dependent on the
dynamics of the physical system. The same goes for the case studied in this project.
To get a full overview of the effect of hardware vs software synchronization in
physical systems, a much wider range of physical systems must be covered. Only
collecting a dataset from a car with relatively slow dynamics does not proved
enough data to come up with a strong conclusion. Due to the LiDAR being an
exteroceptive sensor, collecting data from a different environment could cause a
completely different output. The Jonsvatnet dataset consists only of data from
urban areas.

Liorf was chosen as SLAM algorithm to test the impact of software vs hard-
ware synchronization. Since SLAM algorithms are such intricate systems, and the
programmatic implementation may vary for the same algorithm, it is very difficult
to come up whit a strong statement regarding the effect of timestamping primitive
based only on testing one algorithm. No software or hardware module is free of
bugs and errors, which may cause unwanted effects. These effects can mistakenly
be thought to be due to the timestamping error, when in fact it may be caused by
something completely else.

Sensors will also have different implementations, just like algorithms. There
is no IMU that can be considered a general IMU. The same goes for GNSS and
LiDAR. Different sensors may have different sources of error, depending on the
internal structure. Sensors are the source of data and the first step in a long chain
of data processing. There is hard to say how the different error types may prop-
agate through the system and affect the end estimation result. Fixing all other
impactful components in this project, like the algorithm, host computer, test case,
and synchronization primitive, the effect of using a different sensor cannot be
guaranteed to be insignificant.



Chapter 7

Conclusion and Further Work

This project investigates the effect of using hardware timestamping for synchro-
nization compared to software timestamping, for sensor measurement in LiDAR-
IMU-based SLAM. This was investigated by building a sensor payload capable of
tagging measurements with both hardware and software timestamps. A car ap-
plication was used to gather data, which also defines the physical system dynam-
ics. The results indicate that there is no significant difference between the two
timestamping methods. However, this conclusion can not be generalized to all
LiDAR-IMU-based SLAM algorithms. Neither can it be generalized to all physical
systems, nor all computational platforms. This is due to the huge variation con-
cerning these factors. If a different computational platform, sensor manufacturer,
timestamping software, or physical system was used, the results may have looked
completely different for the exact same algorithm. However, the effect of software
vs hardware synchronization on Liorf in this project can be concluded to have no
significant effect.

A synchronization module for synchronizing a LiDAR with a SentiBoard based
on encoder-based pulses was developed and used in the data collection. The times-
tamping accuracy was compared to the 1PPS-based timestamps used for LiDAR-
SentiBoard synchronization in Storli (2022). Evaluating the results from both
projects, it cannot be concluded which synchronization method is more accurate.
It may come down to a trade-off between the accuracy of the encoder and the
internal LiDAR clock. Moreover, the accuracy of the software-based timestamps
produced by ROS is highly dependent on the hardware compromising the host
machine, and the operating system installed.

Modifying the GNSS factor used in Liorf, by compensating for the lever arm
between the LiDAR and the GNSS antenna, improves the accuracy of the pose
estimates. Yet, the improvement is of such a small magnitude that it cannot be
concluded to have any meaningful impact. Still, the results indicate that the factor
is correctly implemented, and can be used further in applications running factor
graphs for estimation. A factor based on the relative position of two GNSS anten-
nas was developed and can be concluded to have a significant impact compared
to only using LiDAR and IMU in Liorf. The development of these factors is a con-
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tribution to the C++ factor graph library, GTSAM. Resulting in more flexibility in
GNSS antenna placement on the vehicle.

The final takeaway from this project and the work in Storli (2022) is that the
effect of synchronization and timestamping in LiDAR-IMU-based SLAM is highly
dependent on the dynamics of the physical system. Regarding the question of
whether to use software- or hardware-based timestamping in an application, the
quality of the chosen sensors, host computer, and host computer software must
be considered. The accuracy of LiDAR-IMU-based SLAM algorithms, based on the
level of synchronization, must be seen as application-specific.

Further work

This thesis collected a multi-sensor dataset with high-precision hardware times-
tamps from an industry-relevant case. Since the effect of using hardware times-
tamps compared to software timestamps in Liorf is negligible, an interesting re-
search question would be to inject artificial synchronization errors in the dataset
and investigate at what level the estimates from the Liorf would break down com-
pletely. The synchronization models, presented in this thesis, could be used for
producing artificial synchronization errors. and similar results as in Jellum et al.
(2022) could be obtained.

The effect of timestamping and synchronization on other LiDAR-IMU-based
estimation algorithms can be studied with the use of the collected dataset. An
example of such an algorithm is FAST-LIO2, which is a state-of-the-art LiDAR-
inertial odometry method (W. Xu et al., 2022a).



References

Ahmad, N., Ghazilla, R.A.R., Khairi, N.M., and Kasi, V., 2013. Reviews on vari-
ous inertial measurement unit (imu) sensor applications. International journal of
signal processing systems, 1(2), pp.256–262.

Albrektsen, S.M., 2022. SentiSystems AS sentiboard envelope description [Online].
Available from: https://gitlab.senti.no/senti/senti-doc/-/blob/master/
sentiboard/envelope.md [Accessed August 6, 2023].

Aulinas, J., Petillot, Y., Salvi, J., and Lladó, X., 2008. The slam problem: a survey.
Artificial intelligence research and development, pp.363–371.

Bailey, T., Nieto, J., Guivant, J., Stevens, M., and Nebot, E., 2006. Consistency of
the ekf-slam algorithm. 2006 ieee/rsj international conference on intelligent robots
and systems [Online], pp.3562–3568. Available from: https://doi.org/10.
1109/IROS.2006.281644.

Bloomenthal, J. and Rokne, J., 1994. Homogeneous coordinates. The visual com-
puter, 11, pp.15–26.

Brekke, E.F., 2021. Fundamentals of sensor fusion. Edmund Brekke.

Cai, G., Chen, B.M., Lee, T.H., Cai, G., Chen, B.M., and Lee, T.H., 2011. Coordinate
systems and transformations. Unmanned rotorcraft systems, pp.23–34.

Castellanos, J., Martinez-Cantin, R., Tardós, J., and Neira, J., 2007. Robocentric
map joining: improving the consistency of ekf-slam. Robotics and autonomous sys-
tems [Online], 55(1). Simultaneous Localisation and Map Building, pp.21–29.
Available from: https://doi.org/https://doi.org/10.1016/j.robot.2006.
06.005.

Dellaert, F., 2012. Factor graphs and gtsam: a hands-on introduction. (technical
report). Georgia Institute of Technology.

Dellaert, F., 2022. Derivatives and differentials. https://github.com/borglab/
gtsam/blob/develop/doc/math.pdf. Accessed: 6 16, 2023.

Dellaert, F., 2023. GTSAM factor graphs for sensor fusion in robotics. [Online].
Available from: https://gtsam.org/ [Accessed April 6, 2023].

85

https://gitlab.senti.no/senti/senti-doc/-/blob/master/sentiboard/envelope.md
https://gitlab.senti.no/senti/senti-doc/-/blob/master/sentiboard/envelope.md
https://doi.org/10.1109/IROS.2006.281644
https://doi.org/10.1109/IROS.2006.281644
https://doi.org/https://doi.org/10.1016/j.robot.2006.06.005
https://doi.org/https://doi.org/10.1016/j.robot.2006.06.005
https://github.com/borglab/gtsam/blob/develop/doc/math.pdf
https://github.com/borglab/gtsam/blob/develop/doc/math.pdf
https://gtsam.org/


86 Storli: Timing and time synchronization within LiDAR-inertial SLAM

Dellaert, F. and Kaess, M., 2017. Factor graphs for robot perception. Foundations
and trends® in robotics [Online], 6(1-2), pp.1–139. Available from: https://doi.
org/10.1561/2300000043.

Elson, J., Girod, L., and Estrin, D., 2002. Fine-grained network time synchro-
nization using reference broadcasts. Acm sigops operating systems review, 36(SI),
pp.147–163.

Farrell, J., 2008. Aided navigation: gps with high rate sensors. McGraw-Hill, Inc.,
pp.19–58.

Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D., 2016. On-manifold prein-
tegration for real-time visual–inertial odometry. Ieee transactions on robotics, 33(1),
pp.1–21.

Fossen, T., 2021. Handbook of marine craft hydrodynamics and motion control. 1st.
John Wiley & Sons.

Grisetti, G., Kümmerle, R., Stachniss, C., and Burgard, W., 2010. A tutorial on
graph-based slam. Ieee intelligent transportation systems magazine [Online], 2(4),
pp.31–43. Available from: https://doi.org/10.1109/MITS.2010.939925.

Groves, P.D., 2013. Principles of gnss, inertial, and multisensor integrated navigation
systems. 2nd. Artech House, pp.300–344.

Huang, G.P., Mourikis, A.I., and Roumeliotis, S.I., 2010. Observability-based rules
for designing consistent ekf slam estimators. The international journal of robotics
research, 29(5), pp.502–528.

Huang, X., Mei, G., Zhang, J., and Abbas, R., 2021. A comprehensive survey on
point cloud registration. Arxiv preprint arxiv:2103.02690.

Jellum, E.R., Bryne, T.H., Johansen, T.A., and Orlandíc, M., 2022. The syncline
model–analyzing the impact of time synchronization in sensor fusion. Arxiv preprint
arxiv:2209.01136.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., and Dellaert, F., 2012.
Isam2: incremental smoothing and mapping using the bayes tree. The interna-
tional journal of robotics research, 31(2), pp.216–235.

kartverket, 2023. Kartverket kartverket base station gnss data [Online]. Available
from: https://etpos.kartverket.no/ [Accessed April 4, 2023].

Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., and Fua,
P., 2010. View-based maps. The international journal of robotics research, 29(8),
pp.941–957.

https://doi.org/10.1561/2300000043
https://doi.org/10.1561/2300000043
https://doi.org/10.1109/MITS.2010.939925
https://etpos.kartverket.no/


References 87

Leonard, J.J. and Durrant-Whyte, H.F., 1991. Mobile robot localization by tracking
geometric beacons. Ieee transactions on robotics and automation, 7(3), pp.376–
382.

Lu, F. and Milios, E., 1997. Globally consistent range scan alignment for environ-
ment mapping. Autonomous robots, 4, pp.333–349.

Lv, J., Xu, J., Hu, K., Liu, Y., and Zuo, X., 2020. Targetless calibration of lidar-
imu system based on continuous-time batch estimation. 2020 ieee/rsj international
conference on intelligent robots and systems (iros) [Online], pp.9968–9975. Avail-
able from: https://doi.org/10.1109/IROS45743.2020.9341405.

Mills, D.L., 1991. Internet time synchronization: the network time protocol. Ieee
transactions on communications, 39(10), pp.1482–1493.

Misra, P. and Enge, P., 2012. Global positioning system: signals, measurements, and
performance. 2nd Rev. Ganga-Jamuna Press.

Mogul, J., Mills, D., Brittenson, J., Stone, J., and Windl, U., 2000. Pulse-per-second
api for unix-like operating systems, version 1.0. (technical report).

O’Riordan, A., Newe, T., Dooly, G., and Toal, D., 2018. Stereo vision sensing: re-
view of existing systems. 2018 12th international conference on sensing technology
(icst). IEEE, pp.178–184.

Ouster, 2022. Os1 hardware user manual [Online]. Ouster. Available from: https:
//ouster.com/downloads/.

Raj, T., Hanim Hashim, F., Baseri Huddin, A., Ibrahim, M.F., and Hussain, A., 2020.
A survey on lidar scanning mechanisms. Electronics, 9(5), p.741.

Robbes, D., 2006. Highly sensitive magnetometers—a review. Sensors and actua-
tors a: physical, 129(1-2), pp.86–93.

ROS Wiki, 2018. http://wiki.ros.org/ROS/Introduction. Accessed: 5 16,
2023.

rtklibexplorer, 2023. RTKlib kartverket base station gnss data [Online]. Available
from: https://github.com/rtklibexplorer/RTKLIB/releases [Accessed April 4,
2023].

S. M. Albrektsen, T.A.J., 2018. Reconfigurable sensor timing and navigation sys-
tem for uavs. Sensors, 18.

Särkkä, S., 2008. Unscented rauch–tung–striebel smoother. Ieee transactions on
automatic control, 53(3), pp.845–849.

SentiSystems, 2023. SentiSystems AS sensor fusion - empowering autonomy [On-
line]. Available from: https://sentisystems.com/.

https://doi.org/10.1109/IROS45743.2020.9341405
https://ouster.com/downloads/
https://ouster.com/downloads/
http://wiki.ros.org/ROS/Introduction
https://github.com/rtklibexplorer/RTKLIB/releases
https://sentisystems.com/


88 Storli: Timing and time synchronization within LiDAR-inertial SLAM

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., and Rus, D., 2020. Lio-sam:
tightly-coupled lidar inertial odometry via smoothing and mapping. 2020 ieee/rsj
international conference on intelligent robots and systems (iros) [Online], pp.5135–
5142. Available from: https://doi.org/10.1109/IROS45743.2020.9341176.

Shuster, M.D. and Oh, S.D., 1981. Three-axis attitude determination from vector
observations. Journal of guidance and control, 4(1), pp.70–77.

Sivrikaya, F. and Yener, B., 2004. Time synchronization in sensor networks: a sur-
vey. Ieee network [Online], 18(4), pp.45–50. Available from: https://doi.org/
10.1109/MNET.2004.1316761.

Smith, H.M., 1976. Greenwich time and the prime meridian. Vistas in astronomy
[Online], 20, pp.219–229. Available from: https://doi.org/https://doi.org/
10.1016/0083-6656(76)90039-8.

Stevens, B.L., Lewis, F.L., and Johnson, E.N., 2015. Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons.

Storli, H.S., 2022. Timing and time synchronization within lidar- and imu-based
simultaneous localization and mapping (slam). specialization project. Unpublished.

Taheri, H. and Xia, Z.C., 2021. Slam definition and evolution. Engineering appli-
cations of artificial intelligence [Online], 97, p.104032. Available from: https:
//doi.org/https://doi.org/10.1016/j.engappai.2020.104032.

Teunissen, P.J. and Montenbruck, O., 2017. Springer handbook of global navigation
satellite systems. Vol. 10. Springer.

ublox, 2021. u-blox F9 HPG 1.30 u-blox f9 high precision gnss receiver (v.R01).
ublox.

Varda, K., 2008. Protocol buffers. https://developers.google.com/protocol-
buffers/.

Watt, S.T., Achanta, S., Abubakari, H., Sagen, E., Korkmaz, Z., and Ahmed, H.,
2015. Understanding and applying precision time protocol. 2015 saudi arabia
smart grid (sasg) [Online], pp.1–7. Available from: https://doi.org/10.1109/
SASG.2015.7449285.

Xu, W., Cai, Y., He, D., Lin, J., and Zhang, F., 2022a. Fast-lio2: fast direct lidar-
inertial odometry. Ieee transactions on robotics [Online], 38(4), pp.2053–2073.
Available from: https://doi.org/10.1109/TRO.2022.3141876.

Xu, X., Zhang, L., Yang, J., Cao, C., Wang, W., Ran, Y., Tan, Z., and Luo, M., 2022b.
A review of multi-sensor fusion slam systems based on 3d lidar. Remote sensing,
14(12), p.2835.

https://doi.org/10.1109/IROS45743.2020.9341176
https://doi.org/10.1109/MNET.2004.1316761
https://doi.org/10.1109/MNET.2004.1316761
https://doi.org/https://doi.org/10.1016/0083-6656(76)90039-8
https://doi.org/https://doi.org/10.1016/0083-6656(76)90039-8
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104032
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104032
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://doi.org/10.1109/SASG.2015.7449285
https://doi.org/10.1109/SASG.2015.7449285
https://doi.org/10.1109/TRO.2022.3141876


References 89

Ye, H., Chen, Y., and Liu, M., 2019. Tightly coupled 3d lidar inertial odometry and
mapping. 2019 international conference on robotics and automation (icra). IEEE,
pp.3144–3150.

Zhang, J. and Singh, S., 2014. Loam: lidar odometry and mapping in real-time.
Robotics: science and systems. Vol. 2, 9. Berkeley, CA, pp.1–9.

Zhang, J. and Singh, S., 2017. Low-drift and real-time lidar odometry and map-
ping. Autonomous robots, 41(2), pp.401–416.




	Problem Formulation
	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Motivation
	Problem description
	Main contributions
	Organization of thesis

	Synchronization and Timing Theory
	Synchronization primitives
	Timestamping primitives
	Synchronization models

	Sensor Fusion and SLAM Theory
	Coordinate systems and transformations
	Coordinate frames
	Transformations between coordinate systems

	Sensor modeling
	Inertial Measurement Unit (IMU)
	LiDAR
	Global Navigation Satellite Systems (GNSS)

	Graph based SLAM
	Factor graphs
	Optimization and smoothing
	Loop closure

	Liorf - LiDAR-inertial SLAM
	System overview
	Factor graph
	Related work


	System Integration
	Hardware components and integration
	SentiBoard - synchronization module
	Sensor integration

	Car platform and sensor mounting
	LiDAR-IMU platform
	Car platform

	Software integration and data collection
	SentiReader - SentiBoard data parser
	Robot Operating System (ROS)
	LiDAR synchronization

	GNSS messages
	RTK GNSS - ground truth generation

	Timestamp modification for software synchronization

	GTSAM and Liorf Modifications
	GTSAM factor creation
	GPSWithLeverArmFactor
	GPSBaseLineFactor

	Liorf contributions
	New factor graph
	Factor adding criterion


	Results and Discussion
	Error metrics
	Timestamp analysis
	LiDAR Synchronization comparison - encoder, 1PPS and ROS
	Timestamp analysis for Jonsvatnet dataset

	GNSS estimates and RTK solution
	North, east and height estimates
	Orientation estimates

	Liorf initialization
	Liorf software and hardware synchronization comparison
	Position estimate comparison
	Orientation estimate comparison

	GNSS factor comparison
	Position estimate comparison
	Orientation estimate comparison

	Overall discussion
	Host computer
	Generality of timestamping primitives
	Impact of system dynamics, sensors and SLAM algorithm


	Conclusion and Further Work
	References

