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Abstract

This thesis introduces and evaluates a model for post-processing of solar radi-
ation forecasts, utilizing a dataset comprising 2.5 years of NWP data and in situ
ground observations from 15 locations in Norway. The proposed model is a Spa-
tially varying coefficient model (SVCM) with a Beta distributed likelihood scaled
by the physical constraints of solar radiation. We use a Bayesian hierarchical
framework and employ a sliding window training period of 20 days to estim-
ate the model parameters. To evaluate the model’s probabilistic calibration, we
utilized the probability integral transform (PIT) histogram, and for predictive
accuracy, the continuously ranked probability score (CRPS). Additionally, the
deterministic accuracy of the post-processed forecasts was evaluated using the
root-mean-squared error (RMSE).

Our findings demonstrate that the SVCM effectively enhances predictive perform-
ance on validation locations beyond the training sample, indicating the model’s
generalizability to unseen locations within the domain. Specifically, when com-
pared to the original NWP forecasts, the CRPS increase is 35.6% on the training
locations and 20.9% on the validation locations. These improvements highlight
the potential of the SVCM based on the scaled Beta distribution for improving
solar radiation forecasts in Norway and contributing to the field of solar radiation
prediction.
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Chapter 1

Introduction

Solar radiation forecasting has traditionally not been a focus of the meteorolo-
gical community in Norway. While global solar radiation maps are available,
they only cover the southern part of Norway, and the Norwegian Meteorological
Institute does not offer solar radiation forecasts to the public. However, there is
increasing interest in solar radiation forecasts in Norway due to the potential for
solar energy to play a significant role in the country’s energy mix. Multiconsult
has conducted a study that suggests solar energy could be as significant for Nor-
way as hydropower currently is (Cato, 2022). Accurate solar radiation forecasts
are crucial for predicting solar panel power output and enabling grid operators to
balance energy generation and consumption. Solar forecasting is also considered
an important aspect of integrating solar energy into power grids (Zwane et al.,
2022).

Solar radiation refers to the energy emitted by the sun in the form of electromag-
netic waves. This energy travels through space and reaches the Earth’s atmo-
sphere, where it interacts with the atmosphere, clouds, and the Earth’s surface
(US Department of Energy, 2017). The property of our interest is the total
solar radiation that reaches a horizontal plane on the earth’s surface, known as
Global Horizontal Irradiance (GHI). GHI is the sum of direct normal radiation
(DNI), diffuse radiation (DHI), and ground-reflected radiation (HOMER, 2017).
GHI is predictable due to its dependence on the sun’s angle in the sky, time of
year, and the amount of diffuse and reflected radiation. By taking these factors
into account, it is possible to calculate the physical constraints of solar radiation
(C. N. Long, 2010).
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In a recently published paper by Gneiting et al. (2023), it is stated that the
future of solar forecasting is probabilistic. Probabilistic forecasting is a technique
that summarizes future events by assigning a probability distribution to potential
outcomes. This technique generates a complete set of probabilities that is called a
probabilistic forecast. According to Raftery et al. (2005), the goal of probabilistic
forecasting is to produce a probability density function (pdf) that is sharp and
calibrated. The same paper defines calibration as the consistency between the
forecast pdf and the actual outcomes, and sharpness as the concentration of the
forecast pdf. Specifically, a probabilistic forecast is calibrated if an event with
probability p of occurring occurs a proportion of p times on average, and sharp if
the prediction intervals are narrower than those obtained using simple methods
such as climatological data.

Egeli (2022) provides a detailed analysis of the three different methods of fore-
casting solar radiation. They conclude that for Norway, the only viable method
is Numerical Weather Prediction (NWP). According to NOAA, newer NWP sys-
tems incorporate ensemble prediction to improve the accuracy and reliability of
NWP forecasts. This involves running the same model multiple times with vary-
ing initial conditions. However, ensemble-generated forecasts can be unreliable
due to their tendency to be under-dispersive and biased (Gneiting et al., 2005).
Under-dispersive forecasts are those in which the actual observation falls outside
the range predicted by the forecast, while biased forecasts contain systematic er-
rors (Wang et al., 2018). Therefore, statistical post-processing is crucial to obtain
reliable solar radiation forecasts. The selection and application of post-processing
methods depend on the specific context and requirements.

Egeli (2022) investigated the usage of Bayesian Model Averaging (BMA) to com-
bine several ensemble forecasts into a probabilistic forecast. Specifically, they
considered 12-hour ahead forecasts of hourly irradiance at weather stations in
Norway based on the operational high-resolution NWP model run by the MEPS
(MetoCoOp Ensemble Prediction System). They modeled each ensemble member
as following a Beta distribution, scaled by the physical limits of solar radiation, to
generate probabilistic forecasts. However, post-processed probabilistic forecasts
were only made for locations where observational data exists, which in Norway
is a limited number of weather stations (Bakketun and Kristiansen, 2018). To
ensure grid reliability, solar radiation forecasts must exist in the locations where
solar panels are placed, not where the weather stations are located (Yang et al.,
2022).

To address this challenge, spatial interpolation techniques of post-processed fore-
casts are needed for locations where observational data is not available. There
exist several applicable methods, from the simplest methods using a weighted
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average of the closest observations, to more advanced methods with estimating
parameters and varying them spatially (Gaetan and Guyon, 2010). The model
utilized in this thesis is a Bayesian hierarchical model with a Beta distributed
likelihood, scaled by the physical constraints of solar radiation. The latent field
is the spatially varying coefficients. The explanatory variable for the model is the
mean of the ensemble members, as it simplifies the analysis and interpretation
of the parameters and is often considered a more reliable and skilled estimate
compared to the members of the ensemble (Christiansen, 2019). The ensemble
mean is hereafter referred to as the NWP forecast.

Spatial varying coefficient models (SVCM) are a class of statistical models used to
analyze spatially referenced data, where the coefficients in the regression models
are allowed to vary in space (Gelfand et al., 2003). Spatial varying coefficient
models have been widely applied in a large range of fields, including geography
(Su et al., 2017), ecology (Finley, 2011), econometrics (Bitter et al., 2007), and
environmental science (Waller et al., 2007). Finally, and of great importance to
this research, spatially varying coefficients have been used in the literature for
weather variables, among them simulations from a hydrological model (Roksv̊ag
et al., 2022).

For inference, a Bayesian framework with a hierarchical model is used (Blangiardo
and Cameletti, 2015). On the first level, the observational likelihood is a Beta
distribution with a logit link function. On the second level, the latent model is the
spatially varying parameters, modeled as Gaussian Random Fields (GRFs). At
the third and last level, the model parameters need suitable priors. To estimate
these parameters, a sliding window methodology is employed, with a training
period of 20 days. The parameters are then estimated by the Stochastic partial
differential equation (SPDE) approach of Lindgren et al. (2011), which employs
an approximation of a Gaussian random field with parameters comparable to
those of a Matérn covariance function. The software used in this study is R-
INLA, which performs fast approximate inference for Latent Gaussian Models
(LGMs) (Gómez-Rubio, 2020).

To evaluate the probabilistic solar radiation forecasts generated, we focus on the
measures of sharpness and calibration. The Probability Integral Transform (PIT)
histogram is used to assess the calibration of the forecasts (Raftery et al., 2005).
The PIT is a measure of the accuracy of the predictions of a model, by comparing
the predicted probabilities of an event occurring with the actual frequency of that
event (Baran and Lerch, 2016). The PIT histogram is a graphical representation
of the PIT values and can be used to identify areas where the model may need
to be improved, as well as to evaluate the reliability of the predictions (Lauret
et al., 2019).
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To quantitatively compare and rank the models, we use the Continuous Ranked
Probability Score (CRPS). CRPS is a statistical measure that evaluates the accur-
acy of NWP forecasts by measuring the difference between the predicted probab-
ilities of an event occurring and the observed frequency of that event. Therefore,
it is a method to assess both calibration and sharpness and is commonly used
by the weather forecasting community (Lauret et al., 2019). Furthermore, the
Continuous Ranked Probability Skill Score (CRPSS) is used to compare how well
a model performs over a baseline model, where the baseline model is a simple
model like the raw forecast or the climatology. The CRPSS then represents the
increase, or decrease, in the accuracy of the post-processed models compared to
the baseline model. Lastly, root-mean-squared error (RMSE) is used to measure
the deterministic accuracy of a point forecast.

The main goal of this thesis is to propose a method for probabilistic solar ra-
diation forecasts. The proposed method relies on NWP forecasts and ground
observations and utilizes the physical constraints of solar radiation to scale the
possible domain. The model can be applied both for locations with and without
ground observations. It is outside the scope to model the dependency in solar
radiation forecast errors between locations.

This work presents a spatial statistical method for probabilistic solar radiation
forecasting, utilizing a dataset comprising 2.5 years of NWP data and in situ
ground observations from 15 locations in Norway. The proposed model is a spa-
tially varying coefficient model (SVCM) that leverages a sliding window training
period of 20 days to estimate the parameters. In Chapter 2, we provide an over-
view of the theory relevant to solar radiation, probabilistic forecasting, the model
used, and the inference methods. In Chapter 3, we present and visualize the data
and conduct a brief exploratory analysis of the NWP forecasts. In Chapter 4,
we describe the methodology behind the post-processing methods and provide
an overview of the model. The results of the post-processed forecasts are presen-
ted in Chapter 5. Finally, in Chapter 6, we discuss the results and provide a
conclusion.
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Chapter 2

Background

This Chapter provides an overview of the theories relevant to solar radiation,
probabilistic forecasting, spatial statistics and the inference method. We first
introduce the physical quantity of solar radiation. Then we present the theories
behind probabilistic forecasting and the scoring rules used to evaluate the mod-
els. Finally, we outline the theory behind the spatial models and the inference
methods for estimating the parameters in the spatially varying coefficient model.
For notation, we use xt(s) to denote the NWP forecast at location s, forecasted
for time t, and yt(s) to denote the corresponding observation at location s meas-
ured at time t. In this Section, we omit the notation for t as we primarily focus
on a single day. However, some equations involve multiple training days.

2.1 Solar radiation

One way to describe the position of the sun is by using a horizontal coordinate
system that includes two angles: the zenith angle (θ) and the azimuth angle (ϕ).
The zenith angle represents the angle at which the sun is shining on the observer,
with 0◦ directly overhead. On the other hand, the azimuth angle represents the
direction from which the sun is shining, with 0◦ from the north and 180◦ from
the south. A reference system for these angles can be seen in Figure 2.1. To
calculate these angles for a specific time and location, NREL’s SPA algorithm
is commonly used (Reda and Andreas, 2004). In particular, sunset and sunrise
correspond to when the zenith angle reaches 90 degrees.
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Figure 2.1: The Figure illustrates the solar position relative to the observer. θ is
the zenith angle and ϕ is the azimuth angle.

The Baseline Surface Radiation Network (BSRN) has created a toolkit that
can determine the physical and exceedingly rare constraints of solar radiation
based on the latitude of the observation station, the time of day, and the date
(C. N. Long, 2010). These limitations represent the extreme minimum and max-
imum amounts of solar radiation, which account for all sources. The physical
limit can be determined using the following equation, where −4W/m2 denotes
radiative cooling at night, µ0 is the measured zenith angle in radians, and Sa is
the extraterrestrial radiation, which averages at 1361 W/m2. This limit is known
as the physical possible limit (PPL).

PPL : −4W/m2 < GHI < Sa · 1.5µ1.2
0 + 100W/m2 (2.1)

The extremely rare limits are less frequently reached by observations and should
be carefully examined.

ERL : −2W/m2 < GHI < Sa · 1.2µ1.2
0 + 50W/m2 (2.2)

The extremely rare limit is called ERL. This paper will make frequent use of
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these limits to scale NWP forecasts and observations within the range of 0 to
1. For simplicity, we define the lower limit as 0, making the scaling parameter
equivalent to the upper limit of solar radiation, PPL.

2.2 Probabilistic forecast

”Forecasts characterize and reduce but generally do not eliminate the uncertainty.
Consequently, forecasts should be probabilistic in nature, taking the form of
probability distributions over future events.” (Dawid, 1984)

As previously stated, the main objective of probabilistic forecasting is to optimize
the forecast pdfs’ sharpness while ensuring calibration. To measure sharpness
and calibration, we rely on two metrics: The PIT histogram and the CRPS. The
PIT histogram is a graphical tool that helps evaluate calibration, whereas the
CRPS is a proper scoring rule that accounts for both sharpness and calibration
concurrently (Lauret et al., 2019). Proper scoring rules are metrics that maximize
the expected score when the forecasted distribution equals the true distribution
(Gneiting et al., 2007). For assessing deterministic point forecasts, we use RMSE,
which quantifies the deviation between a predicted value and an observed value
and is not a probabilistic scoring rule.

To evaluate the performance of these metrics, we will employ cross-validation.
Specifically, we will calculate PIT histograms, CRPS, and RMSE for each fold
of the cross-validation. By utilizing cross-validation, we can assess the model’s
performance on unseen data and evaluate its generalization ability. The resulting
scores will provide insight into the model’s accuracy across different folds of the
data.

2.2.1 Probability Integral Transform histogram

The Probability Integral Transform (PIT) histogram is a common technique for
assessing forecast calibration. According to Baran and Lerch (2016), the PIT is
defined as the predictive cumulative density function’s value computed at the veri-
fying observations. Calibrated probabilistic forecasts generate a PIT histogram
that closely approximates a uniform distribution, indicating that values modeled
from a continuous distribution can be transformed into random variables with a
standard uniform distribution.

The PIT histogram’s shape offers insight into the forecast’s calibration. When the
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Figure 2.2: Figure of the different types of PIT-histograms. (Kleiven, 2017)

predicted interval is excessively broad, the PIT histogram exhibits a hump shape,
referred to as overdispersion. Conversely, if the predicted interval is too narrow,
the PIT histogram displays a U-shape, called underdispersion. In addition, biased
forecasts can shift the histograms to the left or right (Kleiven, 2017). Figure 2.2
provides examples of these various scenarios.

It is important to bear in mind the difficulty of evaluating probabilistic forecasts,
especially by utilizing the PIT-histogram. Hamill (2001) made an example where
all probabilistic forecasts were biased, and still the PIT values were uniform.
”His example aimed to show that the uniformity of the PIT values is a necessary
but not a sufficient condition for the forecaster to be ideal.” (Gneiting et al.,
2007). Therefore, we need a new and sufficient metric to assess the probabilistic
forecasts.

2.2.2 Continuous Ranked Probability Score

”Scoring rules assign numerical scores to probabilistic forecasts and form attract-
ive summary measures of predictive performance, in that they address calibration

8



and sharpness simultaneously.” (Gneiting et al., 2007)

Proper scoring rules play a vital role in assessing the accuracy of probabilistic
forecasts. They work by maximizing the expected score when the issued forecast
is the true distribution of the quantity being forecasted. For more information on
proper scoring rules, we refer to Gneiting and Raftery (2007), which this Section is
built on. The Continuous Ranked Probability Score (CRPS) is a commonly used
proper scoring rule that considers the entire distribution of predicted probabilities
and is particularly useful in meteorology (Jordan et al., 2017). CRPS takes into
account the entire distribution of predicted probabilities rather than just the
point estimate, allowing for a direct comparison of forecasted probabilities to the
observations. This is in accordance with the prequential principle from Dawid
(1984), where it is stated that the assessment of probabilistic forecasts needs to
be based on the predictive distributions and the observations only. If F is the
predictive cumulative density function and y is the corresponding observation,
the CRPS is defined as:

CRPS(F, y) =

∫
R
(F (x)− 1(x ≥ y))2dx, (2.3)

Gneiting and Raftery (2007) showed an alternative representation of the CRPS
as:

CRPS(F, y) = EF |X − x| − 1

2
EF |X −X

′
|, (2.4)

where X and X’ are independent copies of a random variable with cumulative
distribution function F and finite first moment. This alternative CRPS repres-
entation reduces to Mean Absolute Error (MAE) if F is a point forecast.

The CRPS is expressed in the same unit as the observed variable and measures
the difference between the predicted and observed cumulative distributions, with
smaller values indicating better performance. Closed-form solutions exist for
calculating the CRPS for many distributions, but not for all (Zamo and Naveau,
2018). In such cases, we turn to simulation-based approaches to approximate the
score. To calculate the CRPS for simulated samples from a distribution, we use
the following method:

CRPS ≈ 1

M

M∑
m=1

(Fm(y)− [y ≥ xm])2 (2.5)
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Here, M is the number of simulated samples, Fm is the cumulative density func-
tion for the mth sample, y is the observed value, and xm is the predicted value
for the mth sample.

We rank competing forecasting models based on its average over N days for a
given location, where Ft represents the predictive cdf of yt for each day (Gneiting
and Katzfuss, 2014):

CRPS =
1

N

N∑
t=1

CRPS(Ft, yt) (2.6)

We also compare the performance of different models to a baseline model using
the Continuous Rank Probability Skill Score (CRPSS) (Lauret et al., 2019). The
CRPSS is defined as:

CRPSS =

(
1− CRPSi

CRPS0

)
· 100 (2.7)

where CRPS0 is the average CRPS for a baseline model, and CRPSi is the
average CRPS for model i. The CRPSS indicates the percentage increase or
decreases in accuracy compared to the baseline model. A value of 100 represents
perfect skill compared to the baseline model, while a value of 0 indicates no skill
compared to the baseline model. Negative values indicate negative skill compared
to the baseline model.

2.2.3 Root-Mean Squared Error

The Root-mean squared error (RMSE) can be used to measure the accuracy of
a point forecast. It is calculated as the square root of the mean squared error
between the predicted value, ŷ, and the true value, y. In the context of solar
radiation forecasting at a single location, if the observed solar radiation at time
t is yt and the corresponding point forecast is ŷt, the RMSE can be calculated
over a set of N observations as follows:

RMSE =

√∑N
t=i(ŷt − yt)2

N
(2.8)

RMSE is expressed in the same units as the predicted and true values and a
smaller value indicates a more accurate forecast.
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2.2.4 Cross-validation

Cross-validation (CV) is a resampling method, where it uses different portions of
the data to test and train a model (Bivand et al., 2008). It is used in conjunction
with our other quantitive metrics, namely CRPS and RMSE, to assess predictive
performance on untrained data. There exist mainly two types of cross-validation
suitable for our task: K-fold cross-validation and leave-one-out cross-validation
(LOOCV). The K in k-fold cross-validation refers to the number of groups that
a given data sample is split into. A figure of a 5-fold CV can be seen in Figure
2.3.

Figure 2.3: The figure displays a 5-fold cross-validation technique, where the
dataset is iterated five times and tested on a new sample in each iteration. The
resulting error is calculated as the mean of the five iterations.

Cross-validation is not an evaluation metric in itself but is rather a method to
get an unbiased skill score based on the data available. The formula for RMSE
in K-fold CV is:

MSECV =

K∑
k=1

MSEi, (2.9)

where i relates to split number i. If K is equal to the sample size, it is called
LOOCV.
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2.3 Beta distribution

The Beta distribution is a commonly used probability distribution in cases where
a random variable has values limited to the domain between 0 and 1. It is fre-
quently utilized for modeling percentages or fractions (Abonazel et al., 2022).
This Section is based on the presentation of Beta regression by Ferrari and
Cribari-Neto (2004).

The probability density function (pdf) of the Beta distribution is given by the
following formula, where 0 ≤ x ≤ 1 and α, β > 0 are the shape parameters:

g(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (2.10)

Here, Γ(·) is the Gamma function, which can be defined as Γ(n) = (n − 1)!.
To provide a clearer understanding of the Beta distribution, we can adopt the
approach used in Beta regression and reparameterize the distribution to a mean
parameter µ and a precision parameter ϕ. As a result, we obtain the following
probability density function:

g(x;µ, ϕ) =
Γ(ϕ)

Γ(µϕ)Γ((1− µ)ϕ)
yµϕ−1(1− y)(1−µ)ϕ−1, (2.11)

Here, µ and ϕ represent the mean parameter and precision parameter, respect-
ively, with µ = α

α+β and ϕ = α + β. To convert these parameters back to the
shape parameters α and β, it is a simple matter of using the formulas α = µϕ
and β = ϕ(1 − µ). The precision parameter ϕ indicates the distribution’s vari-
ability, with larger values corresponding to smaller variance. A figure depicting
the Beta probability density function and cumulative distribution function for
various values of µ and ϕ is available in Figure 2.4. This Figure also depicts the
flexibility of the Beta distribution.
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(a) ϕ fixed at 20 (b) µ fixed at 0.5

Figure 2.4: The upper and lower figures show the probability density function
(pdf) and the cumulative distribution function (CDF) for a Beta distribution
with different values for the parameters µ and ϕ. In the left figure, the parameter
ϕ is fixed at 20 while the parameter µ has five different values. In the right
figure, the parameter µ is fixed at 0.5 while the parameter ϕ has four different
values. The pdf and CDF illustrate the shape of the Beta distribution for each
combination of µ and ϕ values.

The Beta distribution provides the mean and variance of a random variable X
as:

E(X) = µ

V ar(X) =
µ(1− µ)

1 + ϕ

The variance function demonstrates that the precision parameter ϕ decreases
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the variance for fixed mean values. Therefore, ϕ is referred to as a precision
parameter.

The mean µ of the Beta distribution must be bounded between 0 and 1 since it
represents the distribution’s mean. To guarantee that µ stays within the domain,
we can use a linear predictor, and find the mean through a link function. For N
explanatory variables xi, we assume that µ can be expressed as:

η = α+

N∑
i=1

βixi = g(µ), (2.12)

where α is the intercept and βi, i ∈ [1, N ] is the coefficients for the explanatory
variables. Furthermore, g(·) represents a link function that defines the relation-
ship between the mean µ and the linear predictor η. The logit function is a
common choice for the regular Beta regression model because it confines the
domain between 0 and 1.

It is possible to adjust the range of the Beta distribution by using a linear trans-
formation. By substituting the variable x in the standard form of the Beta
distribution with a new variable y defined on the desired range [a, c] using the
transformation y = x(c − a) + a, the distribution can be scaled. The resulting
scaled Beta distribution has a probability density function (pdf) given by:

f(y;µ, ϕ, a, c) =
f(x;µ, ϕ)

c− a
, (2.13)

where f(x;µ, ϕ) is the pdf of the standard Beta distribution and x can be ob-
tained from y through the transformation x = y−a

c−a . Note that the mean, µ, of
the Beta distribution should also be within the range [a, c]. To achieve this, a
linear transformation can be applied to µ resulting in a new variable, µt, that
represents the transformed µ bounded within the range [a, c]. This is done us-
ing the transformation µt = µ(c − a) + a. The mean, µt, for the scaled Beta
distribution, can be calculated as:

µt = µ(c− a) + a = logit−1(η)(c− a) + a (2.14)

where logit−1 is the inverse of the logit function, and η is the linear predictor ob-
tained from a Beta regression model that links the mean µ to a set of explanatory
variables xi, i ∈ [1, N ].
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Since the parameters α and βi, i ∈ [1, N ] are converted through a logit link func-
tion, the interpretation of these parameters can be difficult. For simplicity assume
one intercept parameter α and one slope parameter β linked to an observation
x, such that the mean is defined as µ = logit−1(α + βx). Notably, α represents
the mean when x = 0, i.e. µ = logit−1(α). However, since it is transformed non-
linearly through the logit link function, α represents the mean in a non-linear
way. For x = 0 and negative α, the mean approaches 0 when α → −∞, and 1
when α → ∞. For α = 0 and x = 0, the mean is 0.5.

The slope parameter β is more difficult to interpret as it also relies on the cor-
responding x value. Figure 2.5 presents various examples of the mean µ with
different α and β values. Three plots are made, each with a fixed α and four
different β values. Note that the mean µ equals 0.5 when the linear predictor
η equals 0, and the shape of the Beta distribution is based on the precision
parameter ϕ as depicted in Figure 2.4b.

Figure 2.5: The Figure displays 12 µ outcomes, given x, for varying α and
β combinations. The mean µ is presented on the y-axis, calculated as µ =
logit−1(α + βx), while the x-axis is the x-value. α is fixed at 3, 0, and -3 in
the left, middle, and right panels, respectively. Four β values (-3, -1, 1, and 3)
are denoted by blue, orange, green, and red, respectively. Notably, β is more
significant with smaller α, and vice versa.

When both α and β are 0, the mean µ is 0.5, and the value x has no impact on
the model. When α is large and β is small, the intercept dominates and x has
little influence on the mean µ. Conversely, if α is small and β is large, x has a
significant impact on the mean µ.
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2.4 Bayesian Model Averaging

Bayesian model averaging (BMA) is a widely used technique for post-processing
ensemble forecasts, first introduced by Raftery et al. (2005). This method com-
bines multiple probability density function (pdf) forecasts to generate a probab-
ilistic forecast. In BMA, each member of the ensemble is treated as a statistical
model represented by the pdf g(y|xm). The resulting BMA pdf is obtained by
taking a weighted average of the individual pdfs, where the weights wm satisfy the
condition

∑M
m=1 wm = 1. Assuming an ensemble member xm with its associated

pdf g(y|xm), the resulting BMA forecast can be expressed as:

f(y|x1, x2, ..., xM ) =

M∑
m=i

wmg(y|xm), (2.15)

The weights can be estimated using a training period, typically by utilizing a
sliding window methodology. In short, the N days preceding each prediction day
i are used as the training period, covering the time interval from day t = i−N to
day t = i−1. On the other hand, all ensemble members can be considered equally
important by setting wm = 1/M for all m. When applying BMA to ensemble
weather forecasting, it is commonly assumed that the ensemble members are
exchangeable, meaning that they are equally plausible future scenarios (Broecker
and Kantz, 2011). In this case, the parameters for the distributions g(y|xm) are
the same for all ensemble members. For a more comprehensive introduction to
BMA, we recommend the work of Raftery et al. (2005).

2.5 Spatial statistics

Spatial statistics is a large domain and is covered in many books. This Section
and the two next Sections about spatial statistics, Bayesian hierarchical models,
and Gaussian random fields are mainly based on the books by Blangiardo and
Cameletti (2015) and Gaetan and Guyon (2010).

Spatial data are data with known spatial locations that can be modeled as realiz-
ations of a stochastic process indexed by space. The stochastic process is denoted
as:

Y (s) = y(s), s ∈ D, (2.16)
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where D is a subset of Rd. In spatial statistics, we usually divide them into
three main types: Area or lattice data, point-referenced data, and spatial point
patterns. With observations taken from a specific location, we deal with point-
referenced data. Here we let y(s) be a random outcome at a specific location,
and the spatial index s can vary continuously in the fixed domain D. The
location s is typically represented as a two-dimensional vector with latitude
and longitude. The actual data are a collection of observations represented by
y = (y(s1), . . . , y(sn)), where the set (s1, . . . , sn) indicates the locations at which
the measurements were taken. We are interested in predicting the outcome at
unobserved locations within the domain D.

2.6 Bayesian hierarchical modelling

Given three random variables U, V and W , we can always decompose the joint
distribution of the triplet (U, V,W ) by successive conditioning:

[U, V,W ] = [W |U, V ][V |U ][U ] (2.17)

When examining a complex process, one approach is to create a hierarchy of
underlying processes or distributions to model it, rather than studying it dir-
ectly (Banerjee et al., 2014). For instance, the process governing solar radiation
forecasts (ξ) may depend on specific parameters (θ) that represent the spatial
correlation between locations. Both ξ and θ are stochastic variables with prior
and posterior distributions. A common Bayesian model for this scenario is a
three-stage hierarchical model. The first stage is the observation likelihood, the
second stage is the latent or process model distribution π(ξ|θ), and the third
stage is the model parameters π(θ). In the formulation from Equation 2.17, we
define W as the data y, V as the process ξ, and U as some (hyper)parameters θ.
By using Bayes’ formula with the observations y and some priors, we can infer
about ξ and θ.

2.7 Gaussian random fields

Gaussian Random Fields (GRF) are often used to model environmental data
or phenomena that are continuous in space (Roksv̊ag et al., 2020). A GRF
models the spatial dependency between locations. If we have a continuous field
{ξ(s); s ∈ D}, it is a GRF if it follows a multivariate Gaussian distribution:
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(ξ(s1), ..., ξ(sn))
T ∼ N(µ,Σ), (2.18)

where si, i ∈ [1, N ] is the locations, µ is a vector of expected values and Σ is the
covariance matrix. The covariance matrix defines the spatial dependency struc-
ture of the variable of interest and is established through a covariance function
C(·, ·) such that:

Σij = Cov(ξ(si), ξ(sj)) = C(si, sj) (2.19)

The covariance function C(·, ·) typically has two parameters: a marginal variance
parameter σ2 and a range parameter ρ, which describe the underlying spatial
field. The marginal variance provides insights into the degree of spatial vari-
ation in the process being considered, whereas the range parameter determines
the rate of decay in covariance between two spatial locations. Specifically, the
range parameter indicates the distance at which the correlation between two spa-
tial locations becomes almost negligible. A Gaussian Random Field (GRF) is
considered stationary when the marginal variance and range parameters remain
constant throughout the spatial domain.

To create a hierarchical framework as outlined in the preceding Section, three
steps must be followed. Firstly, a distribution is defined, characterized by a set
of parameters. This set of parameters includes the second step, defining a latent
GRF denoted ξ(s) that accounts for spatial correlation via the covariance function
C(·, ·). The third and final step involves specifying the prior distributions π(θ)
for the hyperparameters. While parameter estimation in this framework can
be computationally expensive, later sections will demonstrate the availability of
computationally efficient methods.

2.8 Spatially Varying Coefficient

Varying coefficient models, also referred to as varying effects models, are a type
of regression model that allows for the regression coefficients to vary with one
or more covariates (Hastie and Tibshirani, 1993). These models are particularly
useful when the relationship between the response variable and the covariates
varies across different levels of the covariates. In contrast to standard regression
models, varying coefficient models model the regression coefficients as smooth
functions of the covariates, rather than fixed constants. This flexibility allows for
the modeling of complex relationships between variables.
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The general spatially varying coefficient model (SVCM) was first introduced by
Gelfand et al. (2003), and this section is based on that paper. SVCM is an
extension of varying coefficient models that incorporate spatial dependence. In
these models, the coefficients of the covariates are allowed to vary across space,
meaning that their effect on the response variable can change depending on the
location. The spatially varying coefficient surface is modeled as a realization from
a spatial process located in a spatial region D ⊆ R2. A stationary specification is
commonly used, which allows for the modeling of the desired level of smoothness
in the process realization by selecting an appropriate covariance function.

Mathematically, for a single covariate x(s) which varies over space, the Gaussian
stationary spatial process is modeled as

Y (s) = µ(s) +W (s) + ϵ(s), (2.20)

where s is the location, µ(s) = x(s)Tβ and ϵ(s) is a white noise process. W(s)
are viewed as spatial random effects. The general specification of this model is
to split the intercept and slope to a general term and a spatially varying term,
resulting in the equation:

Y (s) = β0 + β1x(s) + β0(s) + β1(s)x(s) + ϵ(s) (2.21)

The general spatially varying coefficient model adopts a Bayesian approach for the
modeling framework. This approach is particularly advantageous as it allows for
inference on random spatial effects. By using the Bayesian framework, a posterior
for the spatial coefficient process at both observed and unobserved locations, as
well as posterior distributions for all model parameters, can be obtained.

A spatially varying coefficient can be seen as a realization of a Gaussian random
field (GRF) with a Matérn covariance function. The spatially varying coefficient
has the form:

β ∼ N (µ, τ−1R(ϕ)), (2.22)

where µ is a constant mean andR(ϕ)ij = (C(||i−j||)). C(·) is a Matérn covariance
function with a fixed smoothness ν, characterized by two parameters, namely the
marginal variance σ and a range parameter ρ:

Cov(si, sj) =
σ2

Γ(ν)2ν−1
(κ||si − sj ||)νKν(κ||si − sj ||), (2.23)
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where ||si−sj || is the Euclidian distance between two locations si, sj ∈ D, Γ(·) is
the Gamma function, σ2 is the marginal variance, Kν denotes the modified Bessel
function of the second kind and order ν > 0. ν measures the smoothness of the
process and is usually kept fixed. The parameter κ > 0 is a scaling parameter
related to the range ρ, i.e. the distance at which the spatial correlation becomes

almost null. Typically, this value is set at ρ =
√
8ν
κ , and is defined such that

the spatial correlation between two locations has dropped to 0.1 (Roksv̊ag et al.,
2020).

The spatial varying coefficient model can be extended to include generalized
linear models, which are called generalized spatially varying coefficient models
(GSVCM). Instead of assuming a Gaussian distribution on the response variable,
GSVCM replaces it with a distribution from an exponential family. In GSVCM,
the linear predictor η, which is linked to the mean response µ via the link function
g(·), takes the form:

ηi = β0(si) +

p∑
j=1

βj(si)Xi,j (2.24)

Here, βj(si) is the varying regression coefficient, which can be considered a
stochastic process on the effect modifier domain. When the coefficients vary
continuously in space, a Gaussian random field (GRF) with a specific covariance
function can be assumed.

Suppose a spatially varying coefficient model is expressed with a Beta distribution
and a logit link function. Then, the spatially varying coefficient model for a beta-
distributed response variable with a logit link function for the mean is given by:

Yi ∼ Beta(µi, ϕ) (2.25)

g(µi) = ηi = β0(si) +

p∑
j=1

βj(si)Xi,j (2.26)

where β0(s) and βj(s) are the spatially varying intercept and slope coefficients
respectively, and g(·) represents the link function.
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2.9 SPDE approach to spatial modeling

As noted in section 2.7, inference in Bayesian hierarchical models has tradition-
ally been very computationally expensive, but Lindgren et al. (2011) came up
with a computationally effective method called the stochastic partial differential
equation (SPDE) approach. ”A key idea of this approach is to construct continu-
ously indexed approximations of GRFs by solving SPDEs.” (Haug et al., 2020) It
consists of performing the computations using a Gaussian Markov random field
(GMRF) representation of the GRF. GMRFs are characterized by sparse preci-
sion matrices and this feature allows us to implement computationally efficient
numerical methods.

The GMRF is a discretely indexed spatial random process, and the starting point
is the linear fractional SPDE:

(κ2 −∆)α/2(τξ(s)) = W (s), (2.27)

where s ∈ Rd, ∆ is the Laplacian, α controls the smoothness, κ > 0 is the scale
parameter, τ controls the variance, and W (s) is a Gaussian spatial white noise
process. The exact and stationary solution to this SPDE is the stationary GRF
ξ(s) with a Matérn covariance function given by Equation 2.23.

The SPDE approach uses a mesh to calculate spatial dependency between obser-
vations. A good mesh is crucial for accurate results and is constructed using the
location of study points, the domain extent, and a set of polygons defining the
region of interest (Røste, 2020).

The solution to the SPDE – represented by stationary and isotropic Matérn
GRF ξ(s) – can be approximated using the finite element method through a
basis function representation defined on the meshes in the domain D:

ξ(s) =

G∑
g=1

ϕg(s)ξ̂g, (2.28)

where G is the total number of vertices of the mesh, ϕg is the set of basis functions

and ξ̂g are zero mean Gaussian distributed weights. The basis functions {ϕg(s)}
are chosen to have value 1 at vertex g and 0 on all the other vertices. A more
detailed explanation of the link between the Matérn covariance function and the
SPDE approach can be found in Lindgren et al. (2011).

21



2.10 Inference

There are two main paradigms for estimating parameters in statistical inference.
The classical approach, also called frequentist, involves estimating a fixed vector
of unknown parameters (θ1, ..., θn) using methods such as maximum likelihood
estimation. In contrast, the Bayesian approach treats all unknown quantities as
random variables, intending to calculate the joint posterior distribution. In this
approach, the parameter vector θ is also treated as a random variable, and a prior
probability distribution π(θ) is assigned to it. The posterior distribution is then
calculated using Bayes’ rule:

π(θ|y) = π(y|θ)π(θ)
π(y)

, (2.29)

where π(y|θ) is the likelihood of the data y given the parameters θ, π(y) is the
marginal likelihood and π(θ) is the prior distribution. By using the joint posterior
distribution, it is possible to derive marginal distributions for each element in the
parameter vector. This thesis utilizes Bayesian methods for inference.

2.10.1 Prior selection

The prior distribution in Bayesian models represents our beliefs or knowledge
about the parameters before observing the data. It plays a crucial role in Bayesian
inference, as it can strongly influence the posterior distribution and subsequently
the estimates of the parameters (Krainski et al., 2018).

The choice of prior can reflect a wide range of beliefs, from strong prior informa-
tion to complete ignorance about the parameters. If prior information is available,
incorporating it into the model can improve the accuracy of the parameter es-
timates and make them more robust to small sample sizes. However, if the prior
is misspecified or has a large influence on the posterior, it can lead to biased or
unreliable results (Blangiardo and Cameletti, 2015). For the varying coefficient
models, the prior selection is especially important as common choices of the prior
might lead to overfitting (Franco-Villoria et al., 2019).

The penalizing complexity (PC) priors were first introduced by Simpson et al.
(2017). Overfitting occurs when a model becomes too complex and flexible,
resulting in a poor fit for new data. PC priors counteract this by penalizing
the increase in complexity that occurs when a model deviates from a simpler,
less flexible base model. The PC priors are specifically designed for modeling
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precisions, which are the inverses of variances. For example, a Gaussian effect
with a precision τ and zero mean can be represented as N (0, τ−1). The PC prior
to this precision is constructed with the density function

π(τ) =
λ

2
τ−

3
2 exp(−λτ−

1
2 ), τ > 0, λ > 0 (2.30)

The parameter λ determines how much penalty is given to deviations from a
simpler model. To determine the value of λ, two quantities need to be specified:
a quantile u and a probability α. The probability of the standard deviation σ
exceeding the threshold u is set equal to α, expressed concisely as
Prob(σ > u) = α. The value of λ can then be found from λ = −ln(α)/u.

Furthermore, Fuglstad et al. (2019) proposed using a joint informative PC prior to
the range and marginal variance parameters of Gaussian random fields (GRFs).
This approach assumes that the GRF is defined on a two-dimensional space
D ∈ R2 with a Matérn covariance function characterized by the parameters ρ,
σ, and ν. The joint PC prior to these parameters is:

π(σ, ρ) =
d

2
λ̃1λ̃2ρ

−d/2−1exp(−λ̃1ρ
−d/2 − λ̃2σ), σ > 0, ρ > 0 (2.31)

where the tail probabilities Prob(ρ < ρ0) = α1 and Prob(σ > σ0) = α2 are
achieved by:

λ̃1 = −log(α1)ρ
d/2
0

λ̃2 = − log(α2)

σ0

This prior is weakly informative and penalizes complexity by shrinking the range
toward infinity and the marginal variance toward zero.

2.10.2 INLA

The Integrated Nested Laplace Approximation (INLA) was introduced by Rue
et al. (2009). The INLA approach provides approximate Bayesian inference for a
subclass of latent Gaussian models (LGMs). In particular, they focus on estimat-
ing the posterior marginals of the model parameters. Hence, instead of estimating
a highly multivariate joint posterior distribution π(θ|y), they focus on obtaining

23



approximations to univariate posterior distributions π(θi|y). INLA uses a direct
numerical calculation to approximate the posterior distribution. For more elab-
oration in INLA, we refer to Blangiardo and Cameletti (2015) and Krainski et al.
(2018) which this introduction is based upon.

INLA can only be used on latent Gaussian models which represent a subclass of
structured additive regression models (Blangiardo and Cameletti, 2015). In gen-
eral, these models have a three-stage hierarchical structure: A likelihood model, a
latent Gaussian field, and a vector of hyperparameters. Firstly we have observa-
tions y = (y1, ..., yn) whose distribution is in the exponential family, and a mean
µi are linked to the linear predictor ηi using an appropriate link function. The
distribution of y depends on some vector of hyperparameters θ1 and is assumed
to be conditionally independent given the latent Gaussian field ξ. The vector of
latent effects ξ is assumed to be a GMRF with zero mean and a precision matrix
Q(θ2). We denote the hyperparameters θ = (θ1, θ2). We can write the likelihood
as:

π(y|ξ, θ1) =
∏
i∈I

π(yi|ξi, θ1) (2.32)

The latent field is the second level in the model and is characterized by a mul-
tivariate Normal distribution

ξ|θ2 ∼ MVNormal(0, Q−1(θ2)) (2.33)

where Q−1(θ2) is the precision matrix of the latent Gaussian field. Finally, at
the last level of the hierarchical structure, appropriate priors are assigned to the
hyperparameters θ.

INLA aims to approximate the posterior marginals of the model effects and hy-
perparameters. By exploiting the computational properties of GMRF, and using
Laplace approximation, the joint posterior distribution for both the latent field
ξ and the hyperparameters θ is expressed as:

π(ξ, θ|y) ∝ π(θ)π(ξ|θ)
∏
i∈I

π(yi|ξi, θ) (2.34)

∝ π(θ)|Q(θ)|1/2exp

(
−1

2
ξTQ(θ)ξ +

∑
i∈I

log(π(yi|ξi, θ))

)
(2.35)
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Here Q(θ) represents the precision matrix of the latent effects. We can now
calculate the marginal posterior pdfs for each element of the latent Gaussian
field and the hyperparameters:

π(ξi|y) =
∫

π(ξi|θ, y)π(θ|y)dθ, (2.36)

and

π(θj |y) =
∫

π(θ|y)dθ−j , (2.37)

The procedure to calculate these marginals can be found in Blangiardo and Came-
letti (2015).
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Chapter 3

Forecasts and observations
of solar radiation in Norway

In this chapter, we provide an overview of the case study, including the format
and locations, as well as the observations and forecasts. We present visual plots
of both the observations and NWP forecasts and discuss the pre-processing of
the data.

3.1 Overview

The current study utilizes data from two distinct sources for observations and one
source for NWP forecasts. The observations were obtained from LMT (landbruks-
meterologisk tjeneste) and Eklima, both of which measure the total radiation in

W/m
2
hitting the ground. A total of 40 observation stations were randomly

selected from the public catalogs available from LMT and Eklima. More specific-
ally, the data was obtained from 18 stations from Eklima (https://seklima.met.no)
and 22 stations from LMT (https://lmt.nibio.no), and the locations are depicted
in Figure 3.1.

The MEPS (MetoCoOp Ensemble Prediction System) provided the forecasts for
this project, and the data was obtained through Thredds, which is the API for
data retrieval offered by the Norwegian Meteorological Institute. The MEPS fore-
casts retrieved consist of six ensemble members and are generated daily at 00:00
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Figure 3.1: A Visualization of the 40 weather stations where the data have been
retrieved from.

UTC, covering a lead time of 54 hours from January 1st, 2020, to June 1st, 2022.
The notation used in this study represents an ensemble member m at location s,
issue time i, and lead time l denoted as ximl(s), with the corresponding ground
observation y(i+l)(s). However, our focus is solely on lead time 12, simplifying
the notation as t = i+ l. Therefore, the ensembles can be denoted as xtm(s) and
the observations as yt(s). Furthermore, we adopt the mean of the six ensemble

members, represented as ˆxt(s) = 1
M

∑M
m=1 xtm(s), as the forecast value in our

model. To streamline notation, we set xt(s) to denote the mean of the ensembles,
representing the NWP forecast at location s and time t.
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3.2 Observations

LMT is an initiative led by Nibio (https://www.nibio.no), which focuses on collect-
ing meteorological data for research and warning services in Norwegian agricul-
tural and horticultural regions. Global horizontal irradiance was measured using
pyranometers, which are specialized devices that quantify solar radiation on a flat
surface in units of W/m

2
. Two types of pyranometers, namely CM11 and CM3,

were employed. Figure 3.2 illustrates a photograph of the CM11 pyranometer.

Figure 3.2: An image of a CM11 pyranometer from Kipp&Zonen.

Eklima is a service provided by the Norwegian climate service center (KSS) that
collects and organizes climate and hydrological data for use in climate adaptation
and research. The observations from Eklima are collected using the same method
as the observations from LMT, as all the observation stations used in this study
are owned by Nibio. The observations have an hourly resolution and can be used
to visualize daily and seasonal trends.

The observations exhibit a significant skew towards zero values, which can be
attributed to various factors. One possible explanation is the region’s geographic
location, which may experience fewer sun hours and longer nights, resulting in
lower solar radiation levels. This trend may be particularly evident during the
winter months. Furthermore, a majority of the observations fall below the 800
GHI threshold. A relative frequency histogram of the observations can be seen
in Figure 3.3.
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Figure 3.3: A histogram of measured global horizontal irradiance from all sta-
tions, measured at 12.00 each day.

Our dataset comprises a total of 338820 observations, and we conducted a thor-
ough analysis of the entire dataset to identify any observations that may fall
outside the theoretically possible range, as described in Section 2.1. Figure 3.4
presents the outcomes of this analysis, indicating that certain observations may
be invalid. Out of the total observations, 33 were deemed to be outside the phys-
ically possible range and were removed, whereas 528 observations were identified
to be beyond the extremely rare limits. The proportion of such observations is
0.156% of the dataset, which is considered to be negligible and hence retained
for further analysis.
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Figure 3.4: The BSRN check of physical and extremely rare limit for the obser-
vations measured by stations owned by Nibio. The blue dots are observations,
while the red and green line is respectively the extremely rare and physical pos-
sible limit.

3.3 Ensemble forecasts

The ensemble forecast used in this research is obtained from MEPS, which is
based on the HARMONIE-AROME model’s ensemble version (Frogner et al.,
2019). The HARMONIE-AROMEmodel comprises two primary radiation schemes:
short-wave and long-wave. The short-wave scheme is primarily responsible for
simulating global horizontal irradiance, and the physical mechanisms underlying
these schemes are described in ECMWF (2016). The ensemble comprises five
members in addition to a control ensemble. The control ensemble is generated
without any model perturbations, as specified in WMO (2012).

In Figure 3.5, a plot showing the relationship between the zenith angle and the
mean of the ensembles is presented, together with the physical possible limit and
the extremely rare limit. A crucial observation is that solar radiation forecasts
consistently fall below the physical and extremely rare limits.
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Figure 3.5: The BSRN check of physical and extremely rare limit for the mean
of the ensembles made by MEPS. The blue dots are forecasted values, while the
red and green line is respectively the extremely rare and physical possible limit.

This study utilizes the NWP forecast obtained from MEPS for two main object-
ives. Firstly, the forecasts are employed for statistical post-processing to enhance
forecast accuracy by addressing systematic biases and errors. This is accom-
plished through the development of statistical models. Secondly, calibrated and
probabilistic weather forecasts are generated using the NWP forecast to produce
spatial maps across the desired domain. This involves extracting the forecasts
for the entire domain of interest. This is a large amount of data, as the data
comes in a 2.5x2.5km gridded format, and our study case is Norway. In total, the
bounding box is 600x700 pixels large, resulting in 420 000 forecasted values for
a single lead time. It is important to note that due to memory limitations, the
full extent of the data is only used on selected days for visualization purposes.
In Figure 3.6, the spatial extent of the NWP forecast can be seen with both a
sunny day and a winter day.
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(a) Summer and sunny day. (b) Winter day.

Figure 3.6: The Figure illustrates the geographical coverage of the NWP forecasts
for a summer day (6th of June 2022) to the left and a winter day (2nd of February
2022) to the right. The contrast between the two maps is striking, as there
is a significant difference in solar radiation forecasts between the two seasons.
Specifically, during winter in the northern regions, the solar radiation forecast is
almost 0.

3.4 Pre-processing

The occurrence of missing values is a common issue in ground observations and
can be caused by instrument malfunctions or poor measurements. In our dataset,
we observed that some locations had a large portion of missing values. To handle
this, we removed locations with more than 5 missing values. This resulted in a
final dataset of 15 locations, and a list of these locations and their metadata can
be found in the Appendix.

Furthermore, we encountered a difference in time zones when retrieving the ob-
servations and forecasts from different sources. The forecasts from MET were
in Coordinated Universal Time (UTC), whereas the observations from LMT and
Eklima were in Central European Time (CET), with Eklima not observing day-
light saving time. The forecasts from MEPS were accumulated over the previous
hour, while the observations from LMT were averaged values for the first hour
after the given observation time. To ensure consistency, we converted all observa-

33



tions and forecasts to UTC. We also transformed the data to the same Coordinate
reference system (CRS), and use UTM zone 33N on a kilometer scale.

Since measuring solar radiation at night is not informative, we only considered
solar radiation at 12.00 UTC, representing the average solar radiation between
11.00-12.00 UTC. Additionally, there were some missing values in the ensembles
for certain locations, which we addressed by considering only those dates where
all 15 locations had no missing values. Consequently, we obtained a dataset with
775 rows of observations and forecasts for each location, which we intend to use
for both statistical post-processing of the forecasts and creating spatial maps of
calibrated weather forecasts.

15 locations is a low number when the goal is to create spatial maps, especially
when the extent is as large as Norway. Luckily, we can use the locations that are
not trained for validation purposes, resulting in 15 locations for model training
and 25 locations for model validation. Figure 3.7 presents a map of these loc-
ations, with the 15 training locations in red and the 25 validation locations in
blue. The training locations cover the entire domain, which is a favorable charac-
teristic, but both sets of samples are somewhat limited in the northern region. It
is crucial to acknowledge that this could potentially impede model training and
introduce biases.
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Figure 3.7: A figure showing the spatial location of the weather stations utilized
in this study, where the red dots represents the locations used for model training,
and the blue dots represent the locations used for model validation.

3.5 Forecast errors

The NWP forecasts are issued at noon each day and we are interested in how
well they forecast the weather for the same day, i.e. 12 hours into the future.
In this subsection, we investigate the errors of the NWP forecast to identify if
there exists locational bias. A forecast is biased if there is a consistent difference
between the observations and the forecasts, which can occur when the forecasts
tend to be too high or too low.

To quantify the error, we use the following formula:

err = yt(s)− xt(s) (3.1)

where yt(s) is the observation at location s at time t, and xt(s) is the corres-
ponding NWP forecast.
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Figure 3.8: A map of Norway showing locational bias. The color represents the
bias, and the dot is the location of the bias.

Figure 3.8 depicts a map of Norway illustrating bias, indicated by color marks
representing positive (red) or negative (blue) bias. These colors represent the
average bias for each location. Although there are areas of dark red in the north
and dark blue in the south, suggesting some regional variations, the visualiza-
tion does not reveal a distinct spatial bias pattern. Both positive and negative
biases are observed in the northern and southern regions of Norway, making it
inconclusive to draw any definitive conclusions from this visualization.

36



Chapter 4

A spatially varying
coefficient model for solar
radiation forecast

In this Chapter, we suggest a model based on the NWP forecasts and the theory
described in Chapter 2. The model is a Spatially varying coefficients model
(SVCM) with a scaled Beta distributed likelihood. In this section, we go into
details of the hierarchical model and the prior specification, before we define the
evaluation procedure. Finally, we write about the software utilized in this study.
Throughout this Chapter, we let s denote the spatial location and t denote the
time.

4.1 Mathematical Formulation

Assume that we have an NWP forecast of solar radiation at location s and time t
denoted xt(s), and corresponding observation yt(s). We want to predict for day
i based on the NWP forecast on day i, and the parameters estimated. We let
zi(s) denote the probabilistic post-processed forecast at location s on day i, and
it is given by the following formulation:
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π(zi(s)|ξi, ϕi) ∼ Beta(µi(s), ϕi) (4.1)

g(µi(s)) = αi(s) + βi(s) · xi(s) (4.2)

α ∼ N(0,Σα) (4.3)

β ∼ N(0,Σβ) (4.4)

Here ξi = (α,β) is the latent field for day i with α = (α(s1), ..., α(sn))
T and

β = (β(s1), ..., β(sn))
T as the spatially varying coefficients. The response variable

is assumed to follow a Beta distribution, with a logit link function g(·). We
model the spatially varying coefficients as Gaussian Random Fields (GRFs) with
a Matérn covariance matrix defined in Equation 2.23.

4.2 Hyperparameters

There are in total five model parameters in the model formulation from Section
4.1, and all of these need prior distributions as we use a Bayesian framework for
inference. Since we use the sliding window methodology for inference, we fix the
precision parameter ϕ throughout the entire domain. In R-INLA, The precision
parameter ϕ is represented as

ϕ = hiexp(γ), (4.5)

where h = (hi) > 0 is a fixed scaling, and the prior is defined on γ.

To define the GRFs with the Matérn covariance matrix, we need to specify a
range parameter ρ and a marginal variance parameter σ. The spatially varying
intercept has range parameter ρα and marginal variance parameter σα, whereas
the spatially varying slope has range parameter ρβ and marginal variance para-
meter σβ .

To determine the prior distributions for the spatially varying parameters α and
β, we must select priors for both the range and the marginal variance paramet-
ers. We use the same prior distributions for both the intercept and the slope
parameters. Specifically, we employ joint informative PC priors, as described in
Section 2.10.1.

To define the prior for the spatial range, we consider the distance between the
measurement stations. We set the range prior such that the probability of a
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range exceeding 500 km is 0.5. This choice is informed by the properties of the
geographical region under study.

Selecting a prior for the marginal variance parameter σ2 is more challenging.
However, based on previous work by Egeli (2022), we deem a variance of approx-
imately 10 to be reasonable for the parameters. Therefore, we set the prior for
the marginal variance such that the probability of exceeding 10 is 0.5.

In formulas, it looks like this:

Prob(ρα < 500km) = 0.5, Prob(σα > 10) = 0.5

Prob(ρβ < 500km) = 0.5, Prob(σβ > 10) = 0.5

4.3 Sliding Window

The sliding window methodology is utilized to estimate the parameters of the
latent field. Specifically, the N days preceding each prediction day i are util-
ized as the training period, covering the time interval from day t = i − N to
day t = i − 1. This approach is particularly suitable considering the significant
temporal variation observed in solar radiation, with higher values during summer
months and lower values during winter months. By implementing the sliding win-
dow approach, the model can effectively account for seasonal variations without
requiring the incorporation of separate temporal parameters.

4.4 Inference with the SPDE approach

The full model can be specified in a hierarchical framework with three levels as
defined in Section 2.6. This Section has taken inspiration from Haug et al. (2020)
and Roksv̊ag et al. (2022), as there are certain similarities with the model setup
and inference method.

In the first level, we have the observational likelihood given by the observations
y, which are assumed to be conditionally independent given the latent field ξ and
some hyperparameters θ1:
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π(Y |ξ, θ1) =
i−1∏

t=i−N

S∏
s=1

Beta(µt(s), ϕt) (4.6)

g(µt(s)) = αt(s) + βt(s) · xt(s) (4.7)

Here Y is a vector containing all observations {yt(s)} from all locations s and
training days t from i − N to i − 1. ξ is a vector containing all latent vari-
ables, in particular, the spatially varying parameters α and β, such that ξ =
({αt(s)}, {βt(s)}). Finally, g(·) is the logit link function.

The second level of the hierarchical model is the latent field ξ. Since we model it
as a latent Gaussian model, ξ is a Gaussian Markov random field given by:

π(ξ|θ2) ∼ N(0, Q−1(θ2)), (4.8)

where θ2 are some hyperparameters and the precision matrix Q−1(θ2) is sparse.

Finally, at the last level of the hierarchical model, the hyperparameters θ =
(θ1, θ2) have some prior distributions. In the Bayesian setting, independent priors
are chosen for the parameters, so π(θ) = π(ρα, σα)π(ρβ , σβ)π(γ).

In this study, we utilize R-INLA to perform inference. Given that our latent field
ξ is Gaussian, the requirements for employing R-INLA are met for our spatially
varying coefficient model. To ensure rapid and accurate approximation, we adopt
the SPDE approach, which is discussed in detail in Section 2.9. This approach
is based on the observation that a GRF with a Matérn covariance matrix can be
expressed as the solution to a stochastic partial differential equation.

To perform inference, it is necessary to triangulate the domain. This work utilizes
standard settings in R-INLA for the mesh generation, and Figure 4.1 presents
the mesh, with the training locations represented as black dots.
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Figure 4.1: The mesh used in this study. The main region is inside the blue
line, and the outer region is between the blue line and the outer black line. The
black triangles are the mesh and the black dots are the locations used for training
purposes.

4.5 Model Interpretation

The interpretation of the model is challenging due to the presence of many para-
meters and a nonlinear transformation due to the logit link function from Equa-
tion 4.1. In this section, we aim to explain how the parameters relate to the
prediction by providing a detailed analysis of a particular day.

Assuming that we have employed the sliding window methodology, and have
successfully estimated all the parameters required to predict solar radiation for
a given day. These parameters include the spatially varying parameters α and
β, as well as the precision parameter ϕ. The prediction is assumed to follow a
Beta distribution, scaled by the physical limits of solar radiation, as explained in
Section 2.1. The mean parameter µ is spatially varying and is determined by the
transformation µt(s) = logit−1(αt(s) + βt(s) · xt(s)), where logit−1 is the logistic
function.

Having estimated all relevant parameters and established their relationship to
the prediction, we can now examine the model using a specific day and location.
Specifically, we will analyze the prediction for Alvdal on June 30th, 2021. For
this day and location, the posterior mean of the intercept and slope parameters
α and β are estimated to be −2.02 and 3.73, respectively. The NWP forecast
for Alvdal on this day is 0.274 on the unit scale, and the mean parameter µ in
the Beta distribution is obtained through the transformation logit−1(α + β · x),
yielding a value of 0.270 for µ.

To further elucidate the relationship between µ and the NWP forecast range, we
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Figure 4.2: The x-axis represents the possible domain of the NWP forecast, and
the y-axis represents the mean parameter µ after the logit transformation. The
light blue line represents the formula y = logit−1(α + β · x), the red vertical
line represents the NWP forecast for Alvdal 30th of June 2021, and the blue
horizontal line represents the corresponding mean parameter µ after the logit
transformation.

present Figure 4.2, which illustrates how µ varies across the possible range of
NWP forecasts, given the aforementioned values of α and β.

We can see from Figure 4.2, that the mean parameter µ is the point of intersection
between the logistic function with these parameter values and the NWP forecast.
As we can see, this transforms the NWP forecast to the mean value µ in an
almost linear way, but the possible domain is decreased from [0, 1] to [0.12, 0.85].

Furthermore, we have also estimated a precision parameter ϕ. This parameter is
constant throughout space, and on this specific day, the posterior mean of ϕ is
21.266. For an easier interpretation of the results and illustrational purposes, we
plug in the posterior mean estimates, which yields the distribution on the unit
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Figure 4.3: The x-axis represents Global Horizontal Irradiance (GHI) measured

in W/m
2
, and the y-axis represents the pdf of the distribution. The light blue

line is the predictive distribution, the red vertical line is the observation at Alvdal
30th of June 2021, and the blue vertical line is the corresponding NWP forecast.

scale to be π(z) ∼ Beta(0.270, 21.266). We can transform this to the original
domain of solar radiation by multiplying the resulting pdf with the physical
limitations of solar radiation in Alvdal on the 30th of June 2021, which reads
1563W/m

2
. The resulting predictive distribution on the original domain can be

seen in Figure 4.3, and it is this distribution we use to evaluate the post-processed
forecast.

4.6 Evaluation of Results

The evaluation methodology utilizes two distinct methods to objectively assess
the performance of the models. The first method involves training the model on
15 reliable locations and validating it on the remaining 25 locations as described in
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Section 3.4. This approach allows for the evaluation of the model’s predictions on
new and unseen locations. The use of a separate validation set helps in detecting
potential overfitting and enables the adjustment of the model accordingly.

The second method involves Leave-One-Out Cross Validation (LOOCV) on the
15 reliable locations, which provides an unbiased evaluation of the model’s per-
formance. LOOCV is particularly useful when the dataset is small, as you can
train the model on many locations and still get an unbiased evaluation of the
model.

In both evaluation methods, the Root Mean Squared Error (RMSE) and Con-
tinuous Ranked Probability Score (CRPS) serve as objective performance metrics.
RMSE is a commonly used metric in regression analysis and provides a meas-
ure of the average deviation between the predicted and actual values. RMSE
is calculated using Equation 2.8. CRPS, on the other hand, is based on a pre-
dictive distribution and provides a more comprehensive measure of the model’s
predictive performance. CRPS for the predictive distribution is calculated using
Equation 2.4.

The evaluation of model performance against a baseline model is a crucial step
in assessing the effectiveness of the proposed model. In this study, the baseline
model is the original NWP forecast. To evaluate the performance of the baseline
model, we rely on the same metrics, namely RMSE and CRPS. We calculate
RMSE by Equation 2.8. For CRPS we refer to Section 2.2.2 which highlights that
when the CRPS metric is used on a point forecast, it reduces to Mean Absolute
Error (MAE). Therefore, we use MAE as the baseline performance metric for the
NWP forecast. To establish the effectiveness of the proposed model relative to
this baseline model, we employ Equation 2.7 to calculate a percentage increase
or decrease in predictive skill.

Calibration is evaluated using PIT-histograms as explained in Section 2.2.1. Eval-
uating calibration for the model is straightforward as the prediction is a distri-
bution. However, evaluating the calibration for the NWP forecast is more chal-
lenging since it does not make sense to evaluate calibration on a point forecast.
Consequently, we use the original raw ensembles before averaging them, and the
calibration assessment is conducted by using the empirical cumulative distribu-
tion function (CDF), as described in Section 4.1 of Egeli (2022).

Finally, we compare the performance of the spatial model on the 15 training loc-
ations with a local Bayesian Model Averaging (BMA) method. This is briefly
introduced in Section 2.4 and thoroughly evaluated in Egeli (2022). This compar-
ison allows us to assess the degree to which the spatial model performs compared
to a local model, providing a practical measure of its performance. The evalu-
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ation is conducted using the same two metrics: RMSE and CRPS. By considering
both RMSE and CRPS, we gain a comprehensive understanding of the spatial
model’s performance compared to the local BMA method.

4.7 Software

This study utilizes several packages in both R and Python and the usage of
which depends on the application. All pre-processing of the data is done in
Python using the Pandas package (pandas development team, 2023). Inference
and simulations for the spatially varying coefficient model are done using the
R-package inlabru (Bachl et al., 2019). Inlabru facilitates spatial modeling using
integrated nested Laplace approximation via the R-INLA package (Rue et al.,
2009), which can be downloaded from www.r-inla.org. The visualizations are
made by different libraries in Python and R, where the main package in Python
is Matplotlib (Hunter, 2007). Most of the spatial maps, including the maps
of the spatial parameters, the original NWP forecast, and the post-processed
predictions, are made with the two R-packages Terra and ggplot2 (Wickham,
2016).
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Chapter 5

Results

This section aims to evaluate and compare the performance of the model in-
troduced in Section 4.1. Firstly, we showcase a few examples to illustrate how
the coefficients change spatially under various conditions of season and weather.
Next, we conduct a prior sensitivity analysis to evaluate the significance of prior
specifications. Furthermore, we evaluate the model’s performance using quantit-
ative metrics such as RMSE and CRPS on the training and validation sets. We
then assess calibration using the PIT-histogram, which is based on the results of
Cross-validation. Finally, we investigate the performance of this spatial model
versus previous local models using the same metrics.

5.1 Case study: differences in space and time

In this section, we show the predictions and the model parameters during various
seasons of the year. The amount of solar radiation varies greatly over time, with
higher values during summer months and lower values during winter months.
This effect is particularly pronounced in the North, where the phenomenon of
the midnight sun occurs in the summer and polar night occurs in the winter.
Therefore, it is crucial to investigate the model’s performance across different
seasons and to examine how the model’s parameters vary over time. Addition-
ally, it is essential to assess the level of confidence we can place in the model’s
predictions.
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5.1.1 Summer day

Figure 5.1: The NWP forecast of solar radiation for 30th of June 2021 at 12.00,
issued at noon the same day. The color represents solar radiation measured in
W/m2.

The date chosen for this section is the 30th of June 2021. On this particular
day, the weather was warm, and there were very few clouds in the entire domain,
making it an ideal day to examine how the model’s parameters vary spatially. A
figure of the forecasted solar radiation for 12.00 UTC issued at noon the same day
can be seen in Figure 5.1. The model is trained from the 9th of June 2021 to the
29th June of 2021, and the prediction is based on Equation 4.1. Figure 5.2 shows
the median spatial variation of the parameters α and β. The β-parameter has
higher values along the west coast and in the middle of Norway, while it is lower in
the north and south. This suggests that the forecast is more precise in these areas
since the forecasted value is given a larger weight, as explained in Section 2.3.
However, the parameters are relatively smooth across the domain, mainly because
we intentionally defined the priors to make the parameters smooth. While the
parameters do not vary too much, this is relative, as there may still be substantial
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differences when they are transformed through the logit link function.

(a) The intercept parameter α (b) The slope parameter β

Figure 5.2: The Figure illustrates the posterior median of the intercept parameter
α and the slope parameter β on the sunny day, 30th June 2021.

Each parameter has an associated uncertainty, as shown by Equation 2.22. The
95% confidence interval provides a measure of this uncertainty, representing the
range of expected values. Figure 5.3 illustrates the 95% confidence interval of
the spatially varying parameters. Interestingly, the parameters have higher un-
certainty in the northern and southern regions compared to the central part of
Norway, with the northern region exhibiting the highest uncertainty. This obser-
vation can be attributed to the limited number of training locations in the north,
which contributes to increased parameter uncertainty.

Finally, the probabilistic forecast for solar radiation follows a Beta distribution,
and the predictions are found by combining the parameters with the NWP fore-
cast. This distribution is then transformed back to the original domain, and the
results for the 30th of June 2021 are shown in Figure 5.4. It is challenging to dis-
cern any direct relationship between the parameter estimates and the predictions,
as the latter is heavily influenced by the NWP forecast. The standard deviation
of the predictions is also of interest, and it is evident that the spatial patterns
have higher confidence in the predictions close to the locations it is trained on.
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(a) The intercept parameter α’s range (b) The intercept parameter β’s range

Figure 5.3: The Figure illustrates the range of the intercept parameter α and the
slope parameter β’s 95% confidence interval on the day 30th June 2021.

(a) The predictions for 30th June 2021 (b) The standard error for 30th June 2021

Figure 5.4: The Figure illustrates the predictions and the standard error for 30th
June 2021.
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5.1.2 Cloudy day

Figure 5.5: The NWP forecast of solar radiation for 13th of June 2021 at 12.00,
issued at noon the same day. The color represents solar radiation measured in
W/m2.

On the 13th of June 2021, the weather conditions were observed to be cloudy in
the western and middle regions of Norway, while the southern and eastern regions
had minimal cloud cover. The solar radiation forecasted for 12.00 UTC this day,
issued at noon can be seen in Figure 5.5. The model is trained from the 24th
of May 2021 to the 12th of June 2021, and the prediction is based on Equation
4.1. The posterior median spatially varying parameters, α, and β, are shown
in Figure 5.6. These parameters vary linearly based on latitude, with the slope
parameter β having a higher value in the south, indicating its greater significance
for the prediction. Conversely, the intercept α has a larger value in the north,
indicating its greater importance in the model’s output in this area.
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(a) The intercept parameter α (b) The slope parameter β

Figure 5.6: The Figure illustrates the posterior median of the intercept parameter
α and the slope parameter β on the cloudy day, 13th of June 2021.

Figure 5.7 displays the 95% confidence interval of the spatially varying parameters
α and β. The range of these parameters exhibits a similar spatial distribution as
those observed for the sunny day discussed in the previous subsection.

Finally, the parameters together with the weather forecast define a probabilistic
forecast based on the Beta distribution. This distribution is scaled back to the
original domain, and the result for the 13th of June 2021 can be seen in figure
5.8. Again, it is difficult to see any direct link between the parameter values and
the predictions.

The observant reader might have observed the similarity in the parameters es-
timated for both the cloudy and the sunny day. It should be noted that the
parameters were not trained on individual days but rather on a sliding window
over 20 days, and therefore the forecast values of the current day do not alter the
parameter estimates.
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(a) The intercept parameter α’s range (b) The intercept parameter β’s range

Figure 5.7: The Figure illustrates the range of the intercept parameter α and
the slope parameter β’s 95% confidence interval on the cloudy day, 13th of June
2021.

(a) The predictions for 13th June 2021 (b) The standard error for 13th June 2021

Figure 5.8: The Figure illustrates the predictions and the standard error for the
cloudy day, 13th of June 2021.
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5.1.3 Winter day

Figure 5.9: The NWP forecast of solar radiation for the 5th of February 2021 at
12.00, issued at noon the same day. The color represents solar radiation measured
in W/m2.

For this Section, we have chosen the date 5th of February 2021. On this day,
the northern part of Norway experienced minimal solar radiation, making it a
relatively dark day. The mountainous regions of Norway also received a small
amount of solar radiation, and it is unclear whether this was due to clouds or
the steep solar angle. The forecasted solar radiation at 12.00, issued at noon the
same day can be seen in Figure 5.9.

The median values of the spatially varying parameters α and β are displayed in
Figure 5.10. In contrast to the sunny and the cloudy day, the parameters exhibit
significant spatial variations. A high slope parameter is assigned to the eastern
part of Norway, indicating that the forecasted value has a considerable weight in
the prediction for this region. Conversely, a lower slope parameter is assigned to
the west coast. Notably, the parameters have a low value in the northern part of
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Norway, possibly indicating that solar radiation prediction in this region during
the winter season is relatively straightforward, with a high skill in predicting close
to zero radiation values.

(a) The intercept parameter α (b) The slope parameter β

Figure 5.10: The Figure illustrates the posterior median of the intercept para-
meter α and the slope parameter β on the winter day, 5th of February 2021.

The parameters also have uncertainty associated with them. The 95% confidence
interval of the parameters can be seen in Figure 5.11. Compared to the two
previous scenarios, the confidence interval for the slope parameter β is wider in
this case. This observation can be explained by the fact that the forecasted values
in the northern areas are close to zero, resulting in β times the forecast being
close to 0 as well.

Finally, the parameters together with the weather forecast define a probabilistic
forecast based on the Beta distribution. This distribution is scaled back to the
original domain, and the result for the 5th of February 2021 can be seen in figure
5.12. Interestingly, the predictions display similar spatial variability as the ori-
ginal NWP forecast depicted in Figure 5.9, suggesting that the spatially varying
coefficients do not play a prominent role in this particular scenario. Moreover,
the standard deviation also shares a resemblance with the predictions, exhibiting
lower values in the north and higher values in the south.
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(a) The intercept parameter α’s range (b) The intercept parameter β’s range

Figure 5.11: The Figure illustrates the range of the intercept parameter α and the
slope parameter β’s 95% confidence interval on the winter day, 5th of February
2021.

(a) The predictions for 5th of February
2021

(b) The standard error for 5th of February
2021

Figure 5.12: The Figure illustrates the predictions and the standard error for the
winter day, 5th of February 2021.
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5.2 Prior sensitivity

A prior sensitivity analysis is conducted to investigate the sensitivity of the model
to variations in the prior distribution. The objective of this analysis is to determ-
ine the robustness of the model’s conclusions to reasonable changes in the prior
distribution, by systematically varying the prior distribution and examining how
much the posterior distribution changes in response.

To carry out the prior sensitivity analysis, two days are selected as sufficient for
the analysis. Initially, the range parameter is varied while keeping the variance
fixed, followed by a variation of the variance parameter with the range parameter
held constant. The evaluation metrics employed for the validation dataset are
the Continuous Ranked Probability Score (CRPS) and Root Mean Square Error
(RMSE), in addition to visual inspection of the model output and parameters.

The range parameter is a user-specified parameter that is defined as Prob(ρ <
ρ0) = α, where ρ0 and α are the parameters of interest. It denotes the probability
that the spatial range exceeds ρ0 and is usually expressed in kilometers. In this
study, we hold α constant at 0.5 while varying ρ0 between 10 and 10000 km.

A small value of ρ0 restricts the spatial correlation and limits the availability
of information to only areas very close to the locations the model is trained on,
resulting in poor predictive performance. This issue is depicted in Figure 5.13,
which illustrates the spatially varying parameters with a small range parameter.
As noted in Section 2.3, when both α and β are 0, the prediction is 0.5, which is
observed to be the case for most parts of Norway in this plot. The poor predictive
performance underscores the need for a larger range parameter.

Conversely, setting the range parameter to a large value imposes a highly re-
strictive constraint by enforcing uniformity throughout the entire domain. This
is evident in Figure 5.14, which displays the spatially varying coefficients for the
range parameter ρ set to 10000. The parameter values remain nearly constant
throughout the domain, as indicated by the color legend. Moreover, the large
intercept value α relative to the slope β implies that the post-processed forecast
assigns limited weight to the NWP forecast.

The inspection of the coefficients when setting the range parameter too small and
large values provides conclusive evidence of the significance of prior specification.
This is reinforced by the quantitative measures of the out-of-sample locations’
Root Mean Square Error (RMSE) and Continuous Ranked Probability Score
(CRPS), as shown in Table 5.1.

Although the marginal variance parameter σ is an essential parameter, its effects
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(a) The intercept parameter α (b) The slope parameter β

Figure 5.13: The Figure illustrates the geographical coverage of the two paramet-
ers when the range is specified at a small value, in this case, Prob(ρ < 10km) =
0.5.

(a) The intercept parameter α (b) The slope parameter β

Figure 5.14: The Figure illustrates the two spatially varying coefficients when
the range is specified at a large value, in this case, Prob(ρ < 10000km) = 0.5.
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ρ σ CRPS RMSE
10 10 55.68 95
100 10 51.09 90.41
500 10 51.11 89.93
1000 10 51.10 89.94
10000 10 49.61 88.4
500 0.1 50.16 90.03
500 1 50.96 90.03
500 10 50.24 88.85
500 100 52.31 91.67
500 1000 52.20 91.50

Table 5.1: A Table showing CRPS and RMSE values for different combinations
of the range parameter ρ and the marginal variance parameter σ.

are not as evident in the visual inspection as those of the range parameter ρ.
Therefore, we turn to the quantitive metrics shown in Table 5.1.

The performance of a small range parameter value is inadequate, thus emphas-
izing the necessity for a larger range parameter. However, Table 5.1 presents
unexpected results, indicating that the largest range parameter value leads to
the smallest CRPS and RMSE estimates for the present test case. Nevertheless,
a more conservative range parameter appears to perform better overall. In con-
trast, the marginal variance parameter does not appear to be crucial, provided
it is not excessively large. In the test scenario, a marginal variance parameter
value of 10 exhibited the best performance, and this value was also selected for
the main results in the subsequent section.

5.3 Evaluation

This section employs the evaluation procedure described in Section 4.6. Initially,
the results from Leave-One-Out Cross Validation (LOOCV) are examined to
assess the model’s performance. Subsequently, a detailed analysis is conducted,
comparing the outcomes obtained from the training and validation locations.
The evaluation is based on quantitative metrics, namely Root Mean Squared
Error (RMSE) and Continuous Ranked Probability Score (CRPS). Additionally,
the calibration of the model is assessed through the examination of Probability
Integral Transform (PIT) histograms. Lastly, the performance of the spatial
model is compared to a local Bayesian Model Averaging (BMA) method, utilizing
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RMSE and CRPS as comparative measures.

5.3.1 Leave-one-out Cross-validation

We evaluated the performance of the spatial model using leave-one-out cross-
validation (LOOCV) on the 15 locations with good-quality data. The evaluation
involved comparing the model’s predictions to the actual observations on each
location using two performance metrics: the continuous ranked probability score
(CRPS) and the root mean squared error (RMSE).

Based on the evaluation results, the average CRPS was 58.73, which is 30% better
than the mean absolute error (MAE) of the raw NWP forecast, which was 83.4.
This indicates that the model can post-process the NWP forecasts to create more
accurate probabilistic forecasts.

In terms of RMSE, the model outperforms the NWP forecasts. The RMSE
decreased from 108.5 on the original NWP forecast to 103.65 for the model,
indicating that the model’s predicted values are on average closer to the actual
observations. It is important to note that the RMSE is a measure of the average
deviation between predicted and actual values, and does not take into account
the uncertainty of the predictions.

Overall, the evaluation results suggest that the model can make more accur-
ate predictions than the original NWP forecasts, both in terms of probabilistic
forecasts and average deviation between predicted and actual values.

5.3.2 Training and validation locations

It is important to investigate the performance of the model in both the training
locations and the validation locations. Evaluating the model on the training
locations indicates how well the model is fitting the locations it was trained
on. However, this can lead to overfitting, where the model performs well in the
training locations but poorly in new, unseen locations. Evaluating the model
on the validation locations provides an independent assessment of how well the
model can generalize to new areas. This is important for the spatial model,
where the goal is to make accurate predictions on new locations that were not
used during model training.

Based on Figure 5.15, it is evident that the model has a superior predictive
performance compared to the NWP forecasts on the training locations. The
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Figure 5.15: The Figure displays the average CRPS for each training location.

CRPS values for all locations are lower, and in Hjelmeland, it is almost twice as
good as the original NWP forecast. The increase in predictive accuracy can be
quantified by computing the CRPSS values using Equation 2.7, which results in
an average increase of 35.6%. This indicates a substantial improvement in the
model’s performance.

Root mean squared error (RMSE) is a commonly used metric to evaluate the
accuracy of point forecasts. Although it is not the primary metric for probabil-
istic forecasts, the model needs to perform well in terms of RMSE as it indicates
predictions close to the observed values. The RMSE values for the training loc-
ations are presented in Figure 5.16. The figure shows that in most locations, the
model performs better than the NWP forecast in terms of deterministic accuracy.
However, the improvement in RMSE is not as evident as for the CRPS metric.
On average, the model improves the RMSE by 11.2%.

However, it is important to note that the model is trained on the training loc-
ations, and a good spatial model needs to perform well on locations that it has
not been trained on. The predictive performance of the model on the validation
locations is shown in Figure 5.17, and the performance increase in CRPS is no
longer as clear as it was for the training locations. In Landvik, the CRPS for
the model is worse than the MAE for the NWP forecast. When comparing the
model to the MAE of the NWP forecasts, the CRPSS values result in a predictive
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Figure 5.16: The Figure displays the average RMSE for each training location.

performance increase of 20.9%, which is still a considerable improvement.

Figure 5.18 displays the RMSE values for the validation locations. Our findings
indicate that the model’s performance varies significantly across locations, with
certain locations exhibiting improvements in the RMSE and others displaying
a deterioration of the RMSE. Specifically, the locations of Landvik, Lyngdal,
and Pasvik-Svanvik manifest an RMSE that is worse by 30%, 26%, and 34%,
respectively. Consequently, the overall average RMSE experiences a decrease of
3.4%. These outcomes suggest that while the model enhances predictive accuracy
for the validation locations, there is no discernible improvement in the model’s
deterministic accuracy.

62



Figure 5.17: The Figure displays the average CRPS for each validation location.

Figure 5.18: The Figure displays the average RMSE for each validation location.
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5.3.3 Evaluating calibration with PIT-histograms

To evaluate calibration, the probability integral transform (PIT) histogram is
utilized. The PIT values used in the histogram are obtained from the validation
locations and can be seen in Figure 5.19. The histogram closely resembles a
uniform distribution, indicating that the model has good spatial calibration. As
mentioned in Section 1, ensemble forecasts are often uncalibrated. To further
illustrate this point, the PIT-histograms based on the raw ensembles from the 15
locations used in model training can be seen in Figure 5.20, and the histogram
indicates that the raw ensembles are uncalibrated.

Figure 5.19: PIT-histogram for the spatial model based on the 15 training loca-
tions.

Figure 5.20: PIT-histogram for the raw ensemble.

64



5.3.4 Spatial versus local models

Egeli (2022) used Bayesian Model Averaging (BMA) to post-process the ensemble
forecast locally. I.e. they trained and evaluated the model on a specific location,
without making the model generalizable to other locations. Therefore, we can
analyze and compare the model performance on the local BMA model from the
previous study with the Generalized spatially varying coefficient model (GSVCM)
used in this study, by investigating the training location’s CRPS and RMSE
scores. Both of the models are using a Beta distribution scaled by the physical
constraints of solar radiation and a training period of 20 days.

It is clear from both figures of CRPS (Figure 5.21) and RMSE (Figure 5.22) that
the spatially varying coefficient model is superior in terms of both predictive
accuracy and deterministic accuracy.

Figure 5.21: The Figure displays the average CRPS for each location the model is
trained on. The blue dots are from the spatially varying coefficient model, while
the pink dots are from the local BMA model.

65



Figure 5.22: The Figure displays the average RMSE for each location the model
is trained on. The blue dots are from the spatially varying coefficient model,
while the pink dots are from the local BMA model.

5.3.5 Proximity to training locations

Furthermore, we can look at the performance of the validation locations, and
compare it with the distance to the training locations. It is natural to assume
better performance in the locations closer to the training locations, and it will be
interesting to validate if this assumption is correct. A table with all the locations
in the validation set, its closest location from the training set, and the distance
between these two can be found in the Appendix. From the previous section, we
remember the poor performance of the model in the locations Landvik, Lyngdal,
and Pasvik - Svanvik. They are all over 200 km from the closest training location,
and this can be a reason for the poor performance. When investigating the
best-performing validation locations, We see Gjerpen, Ilseng, Lebergsfjellet, and
Surnadal - Sylte as all with over 30% improvement in the CRPS compared to
the NWP forecast. Both Gjerpen and Ilseng are close to a training location, but
the two others are far away, with Lebergsfjellet being over 350km away from the
closest training location. Therefore, it is inconclusive whether closer proximity
to training locations leads to better or worse performance.
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Chapter 6

Discussion and conclusion

This thesis focuses on the development and evaluation of a spatially varying
coefficient model (SVCM) for post-processing solar radiation forecasts from NWP
models. The SVCM utilizes a Beta distributed likelihood scaled by the physical
constraints of solar radiation. For the case study conducted in Norway, the SVCM
was trained at 15 distinct locations using a sliding window of 20 days. The model
was evaluated on training and validation locations, as well as through cross-
validation on locations with high-quality data to obtain an unbiased estimate.
We also compared the model’s performance on a previous study that utilized
Bayesian Model Averaging (BMA) to locally post-process the NWP forecasts.

Continuous Ranked Probability Score (CRPS) was used to measure the predict-
ive accuracy of the SVCM. The findings indicate a significant enhancement in
the predictive accuracy of the model, achieving a 34.6% improvement in CRPS
in the training locations and a 20.9% improvement in the validation locations.
The model also outperformed the NWP forecasts based on the root mean squared
error (RMSE) on the training locations, but failed to reduce the errors on the val-
idation locations. To ensure calibration, a Probability integral transform (PIT)
histogram was produced, and its visual inspection confirmed that the SVCM
model improved calibration compared to the original ensemble forecasts. Ad-
ditionally, the performance of the SVCM model was compared to a local BMA
model previously utilized on this dataset by Egeli (2022). The Figures 5.21 and
5.22 demonstrate that the SVCM model improves the accuracy both in terms of
CRPS and RMSE compared to the local BMA model.

The performance of the model on the validation locations, as measured by the
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deterministic accuracy through RMSE, was not superior to the raw ensembles.
However, RMSE is not the primary metric for probabilistic forecasting. As men-
tioned in the introduction, the objective of probabilistic forecasting is to ensure
calibration while maintaining sharpness, and RMSE does not fulfill either of these
objectives. The results obtained from the PIT-histogram indicate that the model
enhances the calibration of predictive distributions, while the CRPS estimation
demonstrates that the model improves the predictive distribution concerning both
calibration and sharpness.

When investigating why the spatial model performs better than the local BMA
model from Egeli (2022), we can highlight some possible reasons. Firstly, the
spatial model benefits from the spatial correlation among different locations, al-
lowing it to learn from the nearby locations. This is not possible in the local
model, which only considers the data from a single location. Secondly, the spa-
tial model has a larger training set since it utilizes data from multiple locations.
This can help to reduce overfitting and improve the model’s generalization per-
formance. Lastly, the local BMA model employs all six ensembles per day with
equal weighting, while the spatial model takes the average of the six ensembles
as input. Christiansen (2019) investigated the performance of the ensemble aver-
age compared to individual members, and concluded that the ensemble average
has better performance. Overall, these factors may contribute to the superior
performance of the spatial model compared to the local BMA model.

This study employs two parameters, the spatially varying intercept α and the
spatially varying slope β, for spatial postprocessing of NWP forecast. In contrast,
other spatially varying coefficient models, such as those implemented in Roksv̊ag
et al. (2022) and Meehan et al. (2019), utilize multiple parameters, such as a fixed
intercept and a spatiotemporal parameter. We do not employ a fixed intercept in
this study due to the significant spatial variations observed in the bias plot from
Figure 3.8. Consequently, a fixed intercept for all locations would probably not
enhance the overall spatial model. Conversely, the addition of a spatiotemporal
parameter may be advantageous as the prior day is likely more influential in
forecasting than the preceding 19 days. This presents a potential avenue for
future model improvements.
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Appendix A

All locations
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Navn Latitude Longitude Altitude Training Location
Alvdal 62.10944 10.62687 478 X
Apelsvoll 60.70024 10.86952 262
Brunlanes 58.9878 9.96187 20 X
Bø 59.4175 9.02859 105 X
Etne 59.6625 5.95383 8 X
Frosta 63.56502 10.69298 18 X
Fureneset 61.29272 5.04428 12 X
F̊avang 61.45822 10.1872 184
Gausdal 61.22468 10.25878 375
Gjerpen 59.22684 9.57805 41
Gran 60.35575 10.55906 245 X
Hjelmeland 59.22995 6.14992 43 X
Hokksund 59.76152 9.89166 15
Holt 69.65381 18.90946 12 X
Hønefoss 60.14032 10.2661 126
Ilseng 60.80264 11.20298 182
Kise 60.77324 10.80569 129 X
Kvithamar 63.48795 10.87994 28
Landvik 58.340071 8.522554 10
Særheim 58.7605 5.6508 87
Midtstova 60.6563 7.2755 1162
Njøs 61.1792 6.8608 45
Hansbu 60.0825 7.4247 1160

Årnes 60.1268 11.3933 160
Nordli - Sandvika 64.4595 13.5978 420 X
Skjetlein 63.3403 10.2973 48
Rissa III 63.5858 9.9705 23 X
Lebergsfjellet 62.5158 6.8717 625
Surnadal - Sylte 62.9853 8.6895 5
Linge 62.288 7.2173 34
Møsstrand II 59.8397 8.1785 977
Myken 66.7628 12.486 17 X
Tjølling 59.0467 10.125 19
Losistua 68.1905 17.7905 740
Valnesfjord 67.2763 15.1018 20
Lyngdal 58.134 7.0452 6
Landvik 58.34 8.5225 6
Nordnesfjellet 69.5575895 20.4152984 697
Pasvik - Svanvik 69.4552 30.041 27
Reinhaugen 70.3357 28.9648 470 X
Iskoras II 69.3003 25.346 591 X
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Appendix B

Validation locations with
distance to nearest training
location
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Validation location Closest Training location Distance (meters)
Apelsvoll Kise 18079.12
Tjølling Brunlanes 22181.04
Kvithamar Frosta 28346.89
Ilseng Kise 44731.64
Hønefoss Gran 58300.66
Gjerpen Brunlanes 67168.95
Skjetlein Rissa Iii 71170.15

Årnes Gran 106117.72
Særheim Hjelmeland 115672.01
Gausdal Kise 120212.9
Hokksund Bø 122288.81
Møsstrand Ii Bø 132651.09
F̊avang Alvdal 160956.64
Nordnesfjellet Holt 170423.91
Hansbu Etne 188379.28
Njøs Fureneset 203912.21
Surnadal - Sylte Rissa Iii 206030.11
Landvik Brunlanes 211887.46
Lyngdal Hjelmeland 255015.97
Midtstova Etne 266620.15
Pasvik - Svanvik Reinhaugen 309338.3
Valnesfjord Myken 325929.7
Linge Fureneset 336842.94
Lebergsfjellet Fureneset 353538.6
Losistua Holt 469931.13
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