
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Ingvild Strømsheim Devold

Graph-based methods for data-
driven reservoir modeling

Master’s thesis in Industrial Mathematics
Supervisor: Knut-Andreas Lie
Co-supervisor: Øystein Klemetsdal and Stein Krogstad
June 2023

Ingvild Strømsheim Devold

Graph-based methods for data-driven
reservoir modeling

Master’s thesis in Industrial Mathematics
Supervisor: Knut-Andreas Lie
Co-supervisor: Øystein Klemetsdal and Stein Krogstad
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Data-driven approaches in reservoir modeling range from fully data-driven machine learning tech-
niques to history matching of traditional mathematical models. In this thesis, we propose hybrid,
graph-based models which are both data-driven and physically consistent. The models are based
on a standard finite-volume discretization formulated on geometrically flexible graphs, and their
parameters are calibrated freely by adjoint-based optimization to give predictions matching ob-
served behavior. The computational costs herein call for the use of reduced-order models. To that
end, we consider two main approaches to construct coarse graphs. A CGNet is based on a coarse
partition of the original grid, whereas a TriNet is constructed from a triangulation of the wells,
selected points along the domain boundary and possibly additional internal nodes. The resulting
models offer a rich set of connections between wells, and thus a larger set of tunable parameters
than a typical interwell network model. Furthermore, we consider different approaches to construct
non-uniform graphs adapting to the flow, including a priori techniques using residence times and
distance to well, and a refinement algorithm where the graph automatically refines itself based on
parameter sensitivities.

The results show that surprisingly coarse models can be calibrated to successfully mimic the
observed behaviour. We observe that sufficiently accurate estimates for physical quantities like
pore volumes and initial saturations are a prerequisite for successful calibration. If we have a poor
initial saturation guess, including it in the calibration gives significantly improved results. The
automatic refinement does generally not give better results than a uniform model, but offers the
advantage of not being dependent of the user’s understanding of the flow physics, and enables
starting from a very coarse graph.

i

Sammendrag

Datadrevne metoder innen reservoarmodellering inkluderer både fullt ut databaserte maskin-
læringsmetoder og historietilpasning av tradisjonelle matematiske modeller. I denne oppgaven
foreslår vi en type hybride, grafbaserte modeller som er både datadrevne og fysikkbaserte. Mod-
ellene baserer seg på en standard endelig volum-metode, formulert på geometrisk fleksible grafer.
Modellparametere kalibreres fritt gjennom adjungert-basert optimering for å gi prediksjoner som
samsvarer med observasjoner, og beregningskostnadene her krever at vi bruker reduserte modeller.
I den hensikt studerer vi to metoder for å konstruere grove grafer. En CGNet-modell er basert på
en grov partisjon av det opprinnelige gridet, mens en TriNet-modell er basert på en triangulering
av brønnpunktene, utvalgte punkter langs randen, og eventuelt noen ekstra interne noder. De
resulterende modellene har et rikt antall koblinger mellom brønner, og dermed en større mengde
trenbare parametere enn en typisk inter-brønn nettverksmodell. Videre diskuteres ulike metoder
for å lage ikke-uniforme grafer som er tilpasset flyten, inkludert a priori-teknikker basert på resi-
denstider og avstand til nærmeste brønn, og en forfiningsalgoritme hvor grafen automatisk forfiner
seg selv basert på parametersensitiviteter.

Resultatene viser at overraskende grove modeller kan kalibreres for å replikere observert reser-
voaroppførsel. Vi observerer at tilstrekkelig gode estimater for fysiske størrelser som porevolumer
og initialmetninger er en forutsetning for å lykkes med kalibreringen. I de tilfeller hvor vi har en
dårlig gjetning for initiell vannmetning, viser vi at å inkludere dette som en trenbar parameter gir
betydelig forbedring av resultatet. Den automatiske forfiningsalgoritmen gir generelt ikke bedre
resultater enn en uniform modell, men har den fordelen at den ikke er avhengig av brukerens
forståelse av fysikken, og muliggjør å starte fra en veldig grov modell.

iii

Preface

This thesis concludes my five-year M.Sc. in Applied Physics and Mathematics with a specialization
in Industrial Mathematics at the Norwegian University of Science and Technology. The project has
been carried out in collaboration with the Computational Geosciences group at SINTEF Digital.

I would like to thank my supervisors Knut-Andreas Lie, Stein Krogstad and Øystein Klemetsdal
for suggesting the topic, for their many ideas and suggestions along the way, for their help with
both programming and writing, and for always being available and enthusiastic. I appreciate the
opportunity to stay in SINTEF’s Oslo office for the past months and am thankful also to the
remaining Computational Geosciences group members for welcoming me and making this time
enjoyable.

Ingvild Strømsheim Devold
Oslo, Norway

June 2023

v

Contents

Abstract i

Sammendrag iii

Preface v

1 Introduction 1

1.1 Contribution . 2

1.2 Outline . 3

2 Flow in Porous Media* 5

2.1 Geological model . 5

2.2 Single-phase flow . 7

2.3 Multiphase flow . 8

2.3.1 Physical properties . 8

2.3.2 Flow equations . 10

2.4 Well model . 11

2.5 The full model . 12

3 Discretization* 13

3.1 The finite-volume method . 13

3.2 Computational grid . 14

3.3 Two-point flux approximation . 14

3.4 Discrete operators . 16

3.5 Newton’s method . 17

3.6 The MATLAB Reservoir Simulation Toolbox (MRST) 18

4 Model Calibration 21

4.1 Formulating the optimization problem* . 21

4.2 The Levenberg–Marquardt algorithm* . 22

vii

Contents

4.3 Calculating the Jacobian from an adjoint simulation 24

4.4 Parameter limits and scaling . 24

5 Graph-based Reservoir Simulation 27

5.1 Partition-based network models (CGNet) . 28

5.1.1 Constructing the coarse graph . 29

5.1.2 Completing the model with upscaling . 30

5.1.3 Modifying the partition . 30

5.1.4 Flow-adapted models using residence times 30

5.2 Triangulation-based network models (TriNet) . 33

5.2.1 Constructing the coarse graph . 33

5.2.2 Calibrating the initial saturation . 35

5.2.3 Extending to 2.5D . 35

5.2.4 Flow-adapted models using distance to closest well 36

5.3 Automatic graph refinement* . 36

5.3.1 Selection for refinement . 36

5.3.2 Refinement . 37

5.3.3 Initial parameter values for new nodes and edges 39

5.3.4 Full graph optimization algorithm . 39

5.4 Implementation and MRST integration . 40

6 Simulation Results 43

6.1 A demo problem . 43

6.1.1 Homogeneous case . 43

6.1.2 Heterogeneous case . 48

6.2 The Egg model . 49

6.2.1 Calibration . 49

6.2.2 Testing predictive ability through control perturbations 50

6.3 The Norne field . 53

6.4 The SAIGUP model . 54

6.4.1 Calibrating the initial saturation . 54

6.4.2 Stacked TriNet . 55

6.5 The Brugge model . 56

6.5.1 Calibration . 57

6.5.2 Control optimization . 59

viii

Contents

7 Conclusions and outlook 61

References 63

A Basic Graph Theory* 67

A.1 Definitions . 67

A.2 Matrix representation . 68

A.3 The MATLAB graph . 69

ix

Chapter 1

Introduction

Modeling flow in porous media is of interest and importance in applications spanning from chem-
istry and biology to geology. The latter is particularly motivated by the petroleum industry,
where simulations are the backbone of important decision-making processes, essential for both
economical, environmental, and safety reasons. Hydrocarbon reservoirs are highly complex sys-
tems, often exhibiting both complicated geometries and non-trivial interactions between different
fluids. Consequently, a detailed reservoir model is often large and complex. In fact, a conventional
physics-based reservoir model can have millions of cells, implying that significant computational
costs are associated with a single forward simulation. While recent advances in computing power
have reduced some of the computational obstacles, too complex models remain computationally
prohibitive in certain applications. Although running a day-long simulation once may be fully fea-
sible for the patient researcher, doing so repeatedly soon becomes problematic. In an optimization
setting, such as production optimization or parameter calibration, hundreds of simulation runs
may be required. This renders the traditional fine-scale model intractable and calls for the use of
reduced-order or proxy models. The same applies to digital twins, as one of their crucial compo-
nents is continuous model updates from data and this is computationally challenging for complex
models.

Data-driven methods have evolved at an exponential speed in the last decades, making their
grand entry in all branches of science, natural and social alike. The utilization of large and ever-
expanding data sets has become a focal point in industry, and data-driven methods have been
suggested also as replacements for physics-based models. Reservoir modeling is no exception to
this trend. Neural network-based models have been used to, e.g., simulate gas reservoirs about
108 times faster than a commercial simulator [1], and as proxy models in a history matching
setting [2]. However, it is important to acknowledge the limitations of such purely data-driven
machine-learning models. Machine-learning methods in general require large amounts of measured
or simulated data and are computationally costly to train. More importantly, in the context of
reservoir simulation, it is vital that the results are physically reliable, as inaccurate simulations can
lead to severe consequences. A purely data-driven model lacks an understanding of the underlying
physics and is solely trained to give the desired input-output relation. Even if the model accurately
predicts responses for its training data, there is no guarantee that it will give physically consistent
predictions for unseen input data. To address this, physics-informed neural networks have been
proposed. These incorporate the physics, either by learning the governing equations directly, or
by penalizing physically invalid solutions, see, e.g., [3, 4].

In this thesis, we propose a different, hybrid approach, where we keep our mathematical model
of the flow physics, and formulate coarse or reduced models which can be calibrated to replicate
observed behavior or simulated data. Specifically, we formulate the coarse models using geomet-
rically flexible graphs. This is motivated by the recognition that a conventional finite-volume
reservoir simulator can in fact be interpreted as a computational graph. Nodes store fluids and
edges transmit them. This perspective poses little restriction on the model geometry, and inspires
the use of more flexible graphs.

1

Chapter 1. Introduction

Previous research on network models for reservoirs includes, among others, GPSNet, which models
the reservoir using one-dimensional flow paths between wells [5], and StellNet, which instead uses
3D flow paths and a standard finite-volume discretization [6]. Both these models fall within the
category of interwell network models, which can be seen as a graph-based analogue to streamline
methods, and have also been studied in, e.g., [7, 8, 9] under the name interwell numerical simulation
models (INSIM). We shall focus instead on models with a richer topology, more possible flow paths
between wells, and consequently a larger set of tunable parameters. Herein, a straightforward
model reduction is to use a graph whose topology mimics that of a three-dimensional coarse finite-
volume grid. This strategy has previously been employed in [10, 11, 12], and we will adopt the
naming CGNet (coarse-grid network) for such models. A fine model can easily be reduced to a
CGNet through partitioning. We could, however, imagine that we do not have a fine-scale model
in the first place. In that case, we propose a triangulation-based model type which requires little
information about the reservoir geometry and geology. Here, the main idea is to construct a graph
from some triangulation of the wells and selected points along the boundary, and we will refer to
this model type as TriNet.

When tampering with the geometry, we will heavily rely on the ability to calibrate the models
afterwards. In particular, we calibrate the model to reproduce observed well responses. To that end,
we take physical parameters from our mathematical model and treat them as tunable parameters
which we adjust almost freely to get the desired input-output relation. More specifically, the
parameters are calibrated by means of the Levenberg–Marquardt algorithm, a form of adjoint-
based optimization. This approach differs from the traditional history matching setting, since we
do not seek universally valid models, do not interpret the parameter values as physical, and do not
penalize deviation from an a priori geological model.

The resulting methods are hybrid, that is, both physics-based and data-driven. This allows us to
exploit available data, but without discarding our knowledge of physics. The coarse nature of the
models enables the use of computer-intensive methods like the Levenberg–Marquardt algorithm,
using data to calibrate the model. Moreover, since the simulations still use the standard discretiza-
tion of the flow equations, we can expect physically meaningful predictions, even if the parameter
values themselves are no longer physical.

Uniform models are often the default choice, but in some cases, the system we attempt to model
has features suggesting a non-uniform approach. For realistic reservoirs, hydrocarbons may for
instance be concentrated in one part of the domain, or wells distributed in such a way that some
parts of the reservoir have limited fluid flow, and there is little information to be deducted from
data considering fluid injection and production in wells. In such cases, we often try to tailor our
numerical methods, using higher resolution in the more active parts of the domain. This can be
accomplished in different ways. First, we can do it a priori, before calibration, by computing a
flow indicator such as residence time [13]. Second, we can use a more naïve approach, perhaps
best described as an educated guess, increasing the resolution in the near-well regions. Finally,
we can take the more passive route, allowing the model to decide its own resolution through
some automatic refinement procedure. We will compare these strategies with the zero-thinking
alternative of using a uniform model.

1.1 Contribution

The overarching goal of this thesis is to explore the use of graph-based methods in reservoir mod-
eling. Since these models directly incorporate the physics by using the discretized flow equations,
they can potentially offer a more physically sound alternative to machine-learning methods. More-
over, given a successful calibration, the coarse nature of the models can prove useful in applications
like control optimization.

Specifically, we present and compare the two main model types CGNet and TriNet. Herein, we
test the effect of tweaking the topology. In addition to the a priori flow adaptation, we suggest an
automatic refinement algorithm for the triangulation-based models. Furthermore, we investigate
the value of information, testing whether a model using more information from the original model

2

1.2. Outline

is easier to calibrate. Here, one could argue that there are two main settings. In the data-driven
modeling context, we construct the models using little to no information from the original model,
and calibrate it as almost a black-box model to give the desired predictions. On the other hand,
we can try to map as much information as possible from the original model, which is easy if we use
a partitioning approach. Moreover, we test the influence of different parameters in calibration. In
addition to comparing calibration results, we briefly test and compare the generality and predictive
abilities of the models. Given a successfully calibrated model, we also demonstrate its use in a
control optimization application.

This project has expanded the work on CGNet models from [10, 11, 12], by looking at different use
cases, constructing a priori flow-adapted models from residence-time fields, as well as introducing
some new tunable parameters. The triangulation-based models, TriNet, are new altogether, and
suggested as a more radically data-driven alternative, applicable also when you do not have a
fine-scale reservoir model in the first place. Programming has been a major part of this project
and the code is openly available from a Bitbucket repository1.

We emphasize that the thesis builds on and expands the results of the author’s specialization
project carried out in the fall semester 2022 [14]. There is some overlap in order to make this text
self-contained. Chapters or sections that are reused with only minor modifications are marked by
an asterisk (*). This mainly includes the background chapters 2–4 and Appendix A. All material on
partition-based models is new. The triangulation-based models were also used in the specialization
project, but have been extended to both 2.5D models and a priori flow-adapted models. Moreover,
gravitational effects and initial water saturation have been added as tunable parameters, the latter
giving significantly improved results. The codebase has faced a major reorganization aiming at
improved generality, and thus easier testing of modified methods. As for the simulation results, a
demonstration case has been reused with some modifications. The SAIGUP model is now used with
its original initial saturation, as opposed to in the specialization project where we initialized the
reservoir with oil only. All results on the Egg model, the Norne field, and the Brugge benchmark
case are new.

1.2 Outline

This thesis is structured as follows. Chapters 2–4 constitute the background part. In particular,
Chapter 2 is devoted to the theory behind flow in porous media, deriving the flow equations for
single- and multiphase flow. Next, Chapter 3 outlines the steps to discretize these equations using
a finite-volume method with a two-point flux approximation. Chapter 4 explains how model pa-
rameters can be calibrated using the adjoint-based Levenberg–Marquardt optimization algorithm.
In Chapter 5, the graph-based perspective is motivated, and the two main model types are in-
troduced. Chapter 6 holds the simulation results for a number of cases, and finally, Chapter 7
contains some concluding remarks and suggestions for future work. In addition, Appendix A gives
a brief introduction to the basic definitions and notations of graph theory.

1https://bitbucket.org/ingvilddevold/graph-based-methods/

3

https://bitbucket.org/ingvilddevold/graph-based-methods/

Chapter 2

Flow in Porous Media*

Modeling flow in porous media is of interest in a wide range of applications, spanning from geo-
physical flow to chemical, hydrological, and even physiological phenomena. The most well-known
application is perhaps hydrocarbon recovery, an industry where accurate modeling is essential for
both economical, environmental, and safety reasons. The first step towards an accurate simulation
is a mathematical model. In this chapter, the physical and mathematical foundations of reservoir
simulation are outlined. A full description of flow in a reservoir involves three key components: a
geological model describing the subsurface reservoir, a flow model describing fluid flow within the
porous rock, and a model of the wells and near-well region.

While the presentation in this chapter is tailored to the hydrocarbon reservoir setting, many of the
fundamental principles in discussion are readily applicable in other contexts. For example, both
geothermal energy and carbon storage modeling share a common focus on subsurface geological
formations and fluid flow. See, for instance, [15, 16, 17] to learn more about modeling geothermal
energy systems, and [18] for a general overview of carbon storage modeling and simulation.

2.1 Geological model

Hydrocarbon reservoirs are characterized by porous rocks, which on the small scale consist of small
pores between grains of solid, as illustrated in Figure 2.1. These void spaces allow fluids to be
stored in and transmitted through the reservoir. When simulating flow at the scale of a reservoir,
we are neither interested nor able to describe storage and transport at the pore-scale. Instead,
we attempt to build models that capture the geological properties of the rock at the macroscopic

Figure 2.1: A conceptual illustration of a porous medium on the microscopic level, including a represen-
tative elementary volume (REV). The gray parts are the grains, and the open white space represents the
void space available for fluids.

5

Chapter 2. Flow in Porous Media*

Figure 2.2: A conceptual illustration of the porosity-permeability relation. The permeability depends
on both the distribution and shapes of the void spaces. Here, the leftmost part is both non-porous and
non-permeable, the middle part is porous and non-permeable, whereas the rightmost part is both porous
and permeable.

scale. These models use macroscopic petrophysical properties based on a continuum hypothesis
and volume averaging over representative elementary volumes (REVs), which we define as the
smallest volume where a property can be measured and be representative of the entire volume [19].
Figure 2.1 illustrates such a representative elementary volume.

In reservoir simulation, the macroscale geological model seeks to represent the reservoir, including
both its geometry and its ability to store and transmit fluids. To that end, the reservoir rock is
modeled by a volumetric grid, consisting of grid cells of sizes ranging from O(0.1)–O(1) meters in
the vertical direction and O(10)–O(100) meters in the horizontal direction. Each grid cell is then
assigned a constant value for petrophysical properties such as porosity and permeability [19].

Here, we define the porosity ϕ as the fraction of interconnected void space in a rock, and note
that ϕ clearly must satisfy the bounds 0 ≤ ϕ < 1. We only include interconnected spaces since
disconnected unavailable pores are not of particular interest when simulating flow.

While the porosity is a static quantity independent of the flow for fully rigid rocks, it is dependent
on the pressure for compressible rocks. Introducing the rock compressibility cr, we have the relation

cr =
1

ϕ

dϕ

dp
=

d ln(ϕ)

dp
, (2.1.1)

where p is the overall reservoir pressure.

The permeability is a fundamental property of a porous medium describing how easily a fluid can
flow through it; more precisely, the medium’s ability to transmit a single fluid when the void space
is completely filled with it. In effect, this measures the connectivity of the pore spaces. It depends
not only on the porosity, but also on how the void spaces are shaped and distributed. For example,
winding paths are harder to flow through than straight paths. If the void spaces are not connected,
the medium is not permeable at all, as illustrated in Figure 2.2.

Permeability has SI unit m2, but is more commonly measured in unit millidarcies (mD), with typical
values ranging from 100 to 500 mD for hydrocarbon reservoir rock. Here, 1D ≈ 0.987 · 10−12 m2

[19]. The permeability K, together with the fluid viscosity µ, appear as the proportionality factor
between the flow rate or macroscopic velocity v⃗ and pressure or potential gradient ∇Φ in Darcy’s
law, a fundamental concept in flow in porous media, which reads

v⃗ = −K

µ
∇Φ. (2.1.2)

Darcy’s law stems from the work of the French hydraulic engineer Henry Darcy’s work on water
flowing through sand [19]. Its physical interpretation is conservation of momentum, and the obser-
vant reader may notice that Darcy’s law is on the same form as several other physical laws, such
as Fourier’s law on heat conduction, Ohm’s law on electric potential, and Fick’s law on diffusion.

Reservoirs commonly exhibit anisotropic permeability, characterized by significant variations in
permeability between vertical and horizontal planes, deviating from the assumption of homogeneous
(isotropic) permeability. In the general case, we thus need to represent the permeability as a full

6

2.2. Single-phase flow

x⃗(t)

v⃗

Ω

q

Figure 2.3: A conceptual illustration of the control volume Ω used when deriving the macroscopic
continuity equations. Here, q is a source term, v⃗ the bulk velocity, and x⃗(t) the position at time t of a
point or imaginary particle moving along the velocity field. Adapted from Figure 4.3 in [19].

tensor in a macroscale model to accurately model local flow in directions at an angle to the
coordinate axes. Specifically, we let

K =

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 , (2.1.3)

where the entry Kij relates the pressure drop in direction j to the flux in direction i. We note that
the permeability tensor K must be symmetric and positive definite [19].

With these concepts in place, we may now move on to formulate the simplest case of governing
equations for single-phase flow.

2.2 Single-phase flow

The single-phase flow equations arise from the combination of Darcy’s law and conservation of
mass. For a single-phase fluid, Darcy’s law (2.1.2) reads

v⃗ = −K

µ
(∇p− gρ∇z), (2.2.1)

where p is the fluid pressure, z the vertical coordinate, g the gravitational acceleration, K the
permeability tensor, ρ the fluid density, and µ the fluid viscosity. It should be stressed that the
Darcy velocity v⃗ is not an intrinsic fluid velocity in the microscopic sense, but rather an apparent
macroscopic velocity, or an average volumetric flux, for the bulk movement of fluid through the
medium, obtained from REVs.

Consider a fluid with density ρ(x, t) moving with bulk velocity v⃗(x, t), as illustrated in Figure 2.3.
Defining some control volume Ω with porosity ϕ, the fluid mass inside that volume is given by∫

Ω

ϕρ(x, t)dx⃗.

Conservation of mass implies that the accumulation of mass in the volume equals the sum of the
net flow of mass into the volume over its boundary, and the mass from sources inside the volume.
This can be expressed mathematically as

∂

∂t

∫
Ω

ϕρ dx⃗︸ ︷︷ ︸
Accumulation term

+

∫
∂Ω

ρv⃗ · n⃗ ds︸ ︷︷ ︸
Flux term

=

∫
Ω

ρq dx⃗︸ ︷︷ ︸
Source term

. (2.2.2)

We can apply the divergence theorem to the flux term, and assuming that the functions are
bounded and sufficiently smooth, we can move the time derivative in the accumulation term into

7

Chapter 2. Flow in Porous Media*

the integral. This gives ∫
Ω

[
∂(ϕρ)

∂t
+∇ · (ρv⃗)

]
dx⃗ =

∫
Ω

ρq dx⃗. (2.2.3)

Since this holds for arbitrary control volumes Ω, we can reformulate the conservation equation in
differential form as

∂(ϕρ)

∂t
+∇ · (ρv⃗) = ρq. (2.2.4)

Here, we have more unknowns than equations, and we need some additional equations to get a
closed system. To that end, we use constitutive equations, which relate different states of the
system to each other.

Recall that the rock compressibility in (2.1.1) describes how the porosity ϕ and pressure p are
related. We can define the fluid compressibility relating the fluid density ρ and pressure p analo-
gously. By simple partial differentiation, we obtain

dV

V
=

1

V

(
∂V

∂p

)
T

dp+
1

V

(
∂V

∂T

)
p

dT, (2.2.5)

where the subscripts indicate which variables are kept constant. Now assuming a constant number
of particles, we have that ρV is constant, and thus V dρ = −ρdV . Exploiting this, we get

dρ

ρ
=

1

ρ

(
∂ρ

∂p

)
T

dp+
1

ρ

(
∂ρ

∂T

)
p

dT = cfdp+ αfdT, (2.2.6)

where we have introduced the isothermal compressibility cf and the thermal expansion coefficient
αf . In subsurface systems, the density change is typically slow, allowing heat conduction to keep
the temperature constant [19]. In that case, we can disregard the last term, and (2.2.6) simplifies to

cf =
1

ρ

dρ

dp
=

d ln(ρ)

dp
, (2.2.7)

similar to the rock compressibility definition in (2.1.1). We refer to cf as the fluid compressibility,
and note that it is non-negative and generally dependent on pressure and temperature.

Combining Darcy’s law (2.2.1) and the rock and fluid compressibilities with the mass conservation
equation (2.2.4), we arrive at the parabolic equation for fluid pressure,

ctϕρ
∂p

∂t
−∇ ·

[
ρK

µ
(∇p− gρ∇z)

]
= ρq, (2.2.8)

where the compressibilities have been combined into the total compressibility ct = cr + cf .

2.3 Multiphase flow

For hydrocarbon reservoirs, single-phase flow rarely makes a sufficient model. In most applica-
tions, the point of interest is how one fluid phase displaces others, such as water displacing oil in
water-flooding oil recovery. A multiphase and multicomponent flow model is needed to accurately
represent the system. For such a model, we need to define three new physical properties, namely
the saturation, relative permeability, and capillary pressure, which will be used to extend Darcy’s
law. Combining this with mass conservation for each fluid phase (or fluid component), we arrive
at a system of governing partial differential equations describing the multiphase flow.

2.3.1 Physical properties

We consider the setting with two or more immiscible fluid phases, meaning that the phases do not
mix. There is no mass transfer between the phases. Figure 2.4 shows a representative elementary
volume for two-phase water-oil flow.

8

2.3. Multiphase flow

Grain

Oil

Water

Figure 2.4: A representative elementary volume for two-phase flow in a reservoir.

Rock

Oil

Water

θ θ

Figure 2.5: An illustration of wettability. Here, the left panel shows a water wet system (0° ≤ θ < 90°),
whereas the right panel illustrates an oil wet system (90° ≤ θ < 180°), where θ is the contact angle.

We now define the saturation Sα as the fraction of the pore volume occupied by phase α. In the
single-phase setting, we assumed that the void space was completely filled with the present fluid.
The multiphase assumption is similar, stating that the void space is completely filled with one or
more fluid phases [19]. Thus, the saturations must sum to unity,∑

α

Sα = 1. (2.3.1)

The wettability of a liquid phase is its ability to maintain contact with a solid surface. When
there are two immiscible fluid phases, the cohesion forces between molecules of the same phase are
greater than the adhesive forces between molecules in different phases, which causes a surface to
form between the two phases. The associated surface tension measures the force required to change
the shape of the surface. In a reservoir, molecules are also attracted to the surface of the rock.
When there are two liquid phases in a pore space, one will be more drawn to the rock than the
other, and we refer to that phase as the wetting phase. The other is called the non-wetting phase.
Figure 2.5 illustrates a water wet versus an oil wet system, that is, when water or oil, respectively,
is the wetting phase. Due to the surface tension on the interface between the two phases, there will
generally be a difference in the equilibrium pressure [19]. We define this as the capillary pressure,

pc = pn − pw, (2.3.2)

where we have used subscripts n and w to denote the non-wetting and wetting phase, respectively.
The capillary pressure will always be positive, since the pressure in the non-wetting phase is always
greater than the pressure in the wetting phase.

Recall from the single-phase setting that the permeabilityK measured the rock’s ability to transmit
fluids. When there are several fluid phases, they will interfere with each other, one acting as an
additional obstacle for the other. The resulting interfacial tensions will slow down the flow [19].
As a result, each phase α will experience an effective permeability Ke

α which is smaller than the
intrinsic rock permeability K. Also the sum of the effective phase permeabilities will generally be
less than the original K, ∑

α

Ke
α < K. (2.3.3)

9

Chapter 2. Flow in Porous Media*

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Sw

krwkro

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Sw

krw

kro

Smin
w 1− Smin

o

k0o

k0w

Figure 2.6: Brooks-Corey relative permeabilities with nw = no = 2. In the right plot, there is residual
saturation, and the maximum relative permeabilities are less than 1. Adapted from Figure 2.6 in [20].

Modeling this flow reduction exactly is not trivial, and the common approach is to use the relative
permeability. This multiplicative factor will always lie between 0 and 1, and for an isotropic medium
it is defined as

krα =
Ke

α

K
. (2.3.4)

Even though the relationship may be different for each component in the anisotropic case, it is
common to still define the relative permeability as scalar, with

Ke
α = krαK. (2.3.5)

The relative permeabilities are typically assumed to be monotone functions of the saturations, and
are either given as tabulated quantities or represented by simple analytic relationships. The latter
often use the normalized, or effective, saturation,

Ŝw =
Sw − Smin

w

Smax
w − Smin

w

, (2.3.6)

where Smin
w and Smax

w are the minimum and maximum values the saturation can take during
displacement. A straightforward model for relative permeability is the Corey model, which is a
power-law relationship describing the behavior of a two-phase water-oil system,

krw = (Ŝw)
nwk0w,

kro = (1− Ŝw)
nok0o ,

(2.3.7)

where the exponents nw, no ≥ 1 and the constants k0w, k0o are used for end-point scaling and should
both be fit based on measured data [19]. Figure 2.6 shows two examples, both with nw = no = 2,
but with different residual saturations and maximum relative permeabilities.

2.3.2 Flow equations

To obtain the governing equations for the multiphase flow setting, we again use conservation of
mass. To begin with, we consider immiscible, single-component phases. Requiring that the mass
is conserved for each phase α, we get a set of equations on the form

∂

∂t
(ϕραSα) +∇ · (ραv⃗α) = ραqα. (2.3.8)

Using the relative permeabilities, we can formulate an extended version of Darcy’s law applicable
to multiphase flow,

v⃗α = −λαK(∇pα − gρα∇z), (2.3.9)

10

2.4. Well model

where we have introduced the phase mobility λα = krα/µα as a shorthand.

The flow equations can be reformulated in a number of ways, depending on which phases are present
and whether they represent immiscible or miscible, single- or multicomponent fluid systems. For
our discussion, we will state the black-oil model, which is the industry standard for oil and gas
simulations. This is a simplified compositional model with no diffusion among the components,
using three phases: the liquid oleic phase (o), the gaseous phase (g) and the aqueous phase (w).
Likewise, we have three components: water, hydrocarbons that appear in the liquid phase at
surface conditions (oil), and hydrocarbons that appear as gases at surface conditions (gas).

The two hydrocarbon components will partition differently among the two hydrocarbon phases
depending upon the (phase) pressure. We introduce the shrinkage factor bα = Vαs/Vα, which is
the volume occupied by phase α at surface conditions divided by the volume occupied at reservoir
condition, and let Rs model the solubility of gas in the oleic phase and Rv the solubility of oil in the
gaseous phase. These can be used to express the density of each phase, resulting in conservation
of mass for the respective fluid components as

∂t[ϕ(boSo + bgRvSg)] +∇ · (bov⃗o + bgRv v⃗g)− (boqo + bgRvqg) = 0

∂t(ϕbwSw) +∇ · (bwv⃗w)− bwqw = 0

∂t[ϕ(bgSg + boRsSo)] +∇ · (bg v⃗g + boRsv⃗o)− (bgqg + boRsqo) = 0.

(2.3.10)

Consult, e.g., [19] for a detailed explanation.

2.4 Well model

To extract hydrocarbons from a reservoir, a set of wells are drilled into the porous rock. We
separate between producers, where the hydrocarbons are brought to the surface, and injectors,
where fluids are injected into the reservoir to increase or maintain the reservoir pressure, or retard
its natural decline, thereby contributing to push the hydrocarbons towards the producers.

The diameter of a well is typically less than a meter, and thus much smaller than the size of a
grid cell, which can be hundreds of meters wide. While the pressure variations are often small far
from the wells, allowing the simplification of constant pressure within each cell, this is inaccurate
close to the wells. This motivates the introduction of a well model, providing better accuracy in
the near-well regions.

Wells are normally controlled by requiring that the injected or produced fluids satisfy a given
surface rate or bottom-hole pressure. By bottom-hole pressure we mean the pressure at some
point inside the wellbore, typically at the bottom-most perforation. A well model attempts to
describe the pressure at the well radius when the injection or production rate is known, or vice
versa. The model takes the form of an inflow-performance relation. The simplest example is the
linear law

q0 = J(pR − pw), (2.4.1)

where q0 is the flow rate, pR the average pressure in the cell that contains the well, pw the pressure
at the wellbore, and J is a proportionality constant which we call productivity index for production
wells and well injectivity index for injection wells. For the standard Peaceman type well model
[21], the well indices are calculated from the analytical solution of an infinitely repeated five-spot
pattern. We refer to [19, Chapter 4] for a more detailed explanation.

11

Chapter 2. Flow in Porous Media*

2.5 The full model

Let us conclude the chapter by gluing the pieces together, arriving at the full mathematical model
of flow in a reservoir. For each phase α we have three equations,

∂

∂t
(ϕραSα) +∇ · (ραv⃗α) = ραqα, (2.5.1a)

v⃗α = −λαK(∇pα − gρα∇z), (2.5.1b)
qα = λwb

α J(pwb − pα), (2.5.1c)

representing the conservation of mass inside the reservoir, Darcy’s law, and the inflow/outflow
relationship for individual wells. The different quantities entering these equations are:

t – time K – permeability tensor
ϕ – porosity pα – pressure
α – phase subscript g – gravitational acceleration
ρα – density z – depth coordinate
Sα – saturation λwb

α – wellbore mobility
v⃗α – macroscopic (Darcy) velocity J – well index
qα – source term pwb – wellbore pressure
λα – mobility krα/µα

In the following chapter, we will see how this model can be discretized using a finite-volume method.

12

Chapter 3

Discretization*

The mathematical model derived in Chapter 2 is fairly complex and, as most equations describing
real-world physics, far beyond what we can solve analytically. We need to resort to numerical
solutions. To this end, we will now describe a discretization of the model. The discretization is
based on a finite-volume method with a two-point flux approximation for the Laplace operator
and upstream mobility weighting for all hyperbolic transport terms. We also introduce the open-
source MATLAB Reservoir Simulation Toolbox (MRST) [19, 22], in which this discretization is
implemented using automatic differentiation and discrete differential and averaging operators for
code brevity and flexibility.

3.1 The finite-volume method

The finite-volume method is a popular choice for spatial discretization of partial differential equa-
tions in the form of conservation laws. Considering some computational domain Ω, the first step
is to divide the domain into a set of polyhedra Ωi ⊂ Ω, i = 1, . . . , nc, which we may refer to as
finite volumes, control volumes or control cells. We typically require that the cells should cover the
entire domain, ∪iΩi = Ω, and be pairwise disjoint, or non-overlapping; see [23]. Figure 3.1 shows
an example of a hexagonal control volume.

Having a set of control volumes, the conservation law is formulated on each individual cell Ωi.
Herein, we represent the conserved quantity, say u, for each cell by its cell average, u. We assume
that the cell-averaged quantities are multiplicative, meaning that if ab is conserved, then ab = a · b.
Moreover, we often need to reconstruct the pointwise solution, e.g., to calculate fluxes. To that
end, we make an additional assumption about the shape of u inside the cell. We will use a vari-
ant of this method to derive the spatial discretization of the governing equations for single- and
multiphase flow.

∂Ωi

Ωi

Figure 3.1: A typical two-dimensional hexagonal control volume used in a finite-volume method. We use
the convention that the boundary is part of the cell, ∂Ωi ⊂ Ωi.

13

Chapter 3. Discretization*

Figure 3.2: A three-dimensional grid consisting of grid cells. The cells are delimited by a set of faces,
the faces by a set of edges, and the edges by two vertices.

Figure 3.3: A single cell in a corner-point grid, with the four grid lines that together define a pillar of
cells stacked on top of each other.

3.2 Computational grid

To perform a spatial discretization of the flow equations, we first need a computational grid rep-
resenting our reservoir domain Ω, consisting of a set of cells. In the two-dimensional case, a cell
is in general a closed polygon, which is defined by a set of vertices and a set of edges connecting
two vertices and representing the interface between cells. In three dimensions, the definition can
be extended to a closed polyhedron, which is defined by a set of vertices, a set of edges connecting
pairs of vertices, and a set of faces representing the interfaces between cells. Figure 3.2 illustrates
a three-dimensional grid. We let nc denote the number of cells and nf the number of faces.

An industry-standard grid representation in reservoir simulation is the stratigraphic or corner-
point grid. In the simplest form, each cell is hexahedral and defined by its eight corners. These
corner-points are specified as four pairs of depth coordinates defined along four vertical or in-
clined coordinate lines, see Figure 3.3, that emanate from a quadrilateral in the lateral direction.
Together, the four coordinate lines define a pillar of cells, and this type of grid is thus also often re-
ferred to as a pillar grid. The grid format has a logical Cartesian numbering, but the corner-points
of neighboring cells need not coincide, which in essence means that the resulting grids can have
an unstructured topology [19]. This type of unstructured grid is highly flexible, but maintains a
simple ijk-indexing, and is well-suited to adapt to the geological features of a reservoir, including,
e.g., layers and faults.

3.3 Two-point flux approximation

The spatial discretization of the flow equations (2.5.1) is based on a simple finite-volume method
called the two-point flux approximation (TPFA). Figure 3.4 illustrates some of the main ingredients
of the method. For a simple demonstration, consider the simplified single-phase flow case for a
single incompressible fluid (a fluid with constant density), in which case the conservation equation

∂(ϕρ)

∂t
+∇ · (ρv⃗) = ρq. (3.3.1)

14

3.3. Two-point flux approximation

Γi,k
pi

Ωi

pk

Ωkn⃗i,k
c⃗i,k

πi,k

Figure 3.4: The two cells and related quantities used in the two-point flux approximation of the Laplace
operator. Adapted from Figure 4.10 in [19].

simplifies to ∇· v⃗ = q, as the accumulation term vanishes because ϕ and ρ are independent of time,
and we eliminate ρ. The resulting model,

∇ · v⃗ = q

v⃗ = −K∇p,
(3.3.2)

should originally hold pointwise in Ω. Let us now impose it on a single cell instead.

When integrating the conservation law ∇ · v⃗ = q over a single cell Ωi, and then applying the
divergence theorem, we obtain ∫

∂Ωi

v⃗ · n⃗ ds =

∫
Ωi

q dx⃗, (3.3.3)

which ensures that the mass is conserved for that cell. The surface integral is naturally decomposed
into a sum of integrals over the faces that bound the cell. In most reservoir models, the flow across
the exterior boundary is assumed to be zero, so we can focus on interior cell faces only.

Now, let Γi,k = ∂Ωi ∩ ∂Ωk denote a half-face (Figure 3.4); that is, a face associated with grid cell
Ωi, for which the normal vector n⃗i,k is pointing from Ωi to Ωk. Assuming a matching grid, all
interior half-faces have an opposite half-face with the same area, Ak,i = Ai,k, and opposite normal
vector, n⃗k,i = −n⃗i,k. We can define the flux across a half-face as

vi,k =

∫
Γi,k

v⃗ · n⃗i,k ds, (3.3.4)

and approximate this integral using the midpoint rule, obtaining

vi,k ≈ Ai,kv⃗(x⃗i,k) · n⃗i,k, (3.3.5)

where x⃗i,k denotes the centroid of Γi,k. Applying Darcy’s law, we get the following expression for
the flux:

vi,k ≈ −Ai,k (K∇p)(x⃗i,k) · n⃗i,k. (3.3.6)
The next step is to approximate the pressure gradient with a one-sided finite difference. Consider
again the cells Ωi and Ωk and let πi,k be the pressure at the face centroid x⃗i,k, and pi the average
pressure inside the cell Ωi. Since we need the pressure at a certain point in Ωi, we make an
additional assumption that the pressure is linear within each cell. Then the pressure at the cell
center equals the average. Letting c⃗i,k denote the vector from this cell centroid to the face centroid
x⃗i,k we get the approximation

vi,k ≈ Ai,kKi
(pi − πi,k)c⃗i,k

|⃗ci,k|2
· n⃗i,k = Ti,k(pi − πi,k), (3.3.7)

where Ti,k denotes the one-sided transmissibility or half-transmissibility associated with Γi,k.

Finally, if we require continuity of fluxes across all faces, vi,k = −vk,i =: vik, as well as continuity
of face pressures, πi,k = πk,i =: πik, we get the two-point approximation scheme

vik = Tik(pi − pk), (3.3.8)

15

Chapter 3. Discretization*

c
p[C1(f)] p[C2(f)]

f

Figure 3.5: Discrete divergence (left) and gradient (right) operators. In this case, the discrete divergence
in cell c is calculated by subtracting the influxes (blue) from the outfluxes (red). The discrete gradient
operator on face f subtracts the value in its left cell from that in its right cell.

where we define the transmissibility on the interface as Tik = [T−1
i,k + T−1

k,i]
−1. As indicated by

the name, the TPFA scheme approximates the flux across the interface using the average pressure
inside each of the two cells.

Considering again the full domain Ω and summing the contributions from all faces that bound each
cell, we arrive at the full TPFA discretization of the simplified single-phase flow equation (3.3.2),∑

k

Tik(pi − pk) = qi, ∀Ωi ∈ Ω. (3.3.9)

We remark that the TPFA method is generally not consistent, since the transverse flux can not be
approximated by the pressure difference pi−pk. It is, however, convergent for K-orthogonal grids,
where (Kn⃗ik) ∥ c⃗ik for all cells [19].

3.4 Discrete operators

By introducing discrete divergence and gradient operators, we can easily convert continuous equa-
tions like (3.3.2) to their discrete counterpart. These operators not only simplify notation when
describing discrete equations but are also simple to realize in software and lead to compact code
that can be made to look very similar to the corresponding mathematical formulas. We denote
these new operators by div and grad, respectively, and refer to Figure 3.5 for an illustration.

The discrete divergence operator is a mapping from faces to cells, which can be applied to some
discrete flux v ∈ Rnf [19]. Let v[f] denote its restriction onto the face f . For a matching grid,
each interior face will have a cell on each side, which we call C1(f) and C2(f). If we now assume
that the flux across a face f is always pointing from C1(f) to C2(f), we can subtract the influxes
from neighboring cells from the outfluxes from the cell itself to get the total amount of matter
leaving a cell c, the discrete divergence,

div(v)[c] =
∑

f∈F (c)

v[f]1c=C1(f) −
∑

f∈F (c)

v[f]1c=C2(f), (3.4.1)

where F (c) is the set of all faces that bound cell c and 1 is the indicator function that equals 1 if
the subscripted condition holds and 0 otherwise.

The discrete gradient operator maps cell pairs to faces. It can be applied to any cell quantity
p ∈ Rnc and is defined as

grad(p)[f] = p[C2(f)]− p[C1(f)]. (3.4.2)

To demonstrate the usefulness of these newly defined operators, we can immediately translate
(3.3.2) to the discrete case

div(v) = q, v = −Tgrad(p), (3.4.3)

16

3.5. Newton’s method

where T is a vector that holds the intercell transmissibilities defined in (3.3.8).

The discrete differential operators are naturally defined as sparse matrices. In fact, the div matrix
is the negative transpose of the grad matrix, in analogy to the continuous case where the gradient
is the adjoint operator of the divergence. The matrix representing the grad operator (3.4.2), say D,
is easy to compute given the adjacency map describing the topology of a structured or unstructured
grid. Here, D is an nf × nc matrix, and the sparse matrix representation of div follows from a
sign flip and transpose [19]. The operators are then succinctly defined as

grad(p) = Dp, div(v) = −DTv. (3.4.4)

Similar to (3.4.3), we can apply the discrete operators to the multiphase flow equations (2.5.1),
and get the fully implicit system

1

∆t

[
(ΦSαρα)

n+1 − (ΦSαρα)
n
]
+ div(ραvα)

n+1 = qn+1
α (3.4.5)

and
vn+1
α = −λαT [grad(pn+1

α)− gρn+1
α grad(z)], (3.4.6)

where we have used a backward temporal discretization. The superscripts indicate discrete time
steps, and ∆t is the associated step length. Moreover, Φ is the vector of pore volumes, ρα is the
vector of phase densities, and Sα contains cell-averaged saturations. Finally, the vector pα holds
the cell-averaged pressures, and vα holds fluxes for phase α for each face. In Eq. (3.4.6), the phase
mobilities λα and densities ρ are evaluated at the faces, but they are given in terms of quantities
that are only available as cell averages. To define density on a face Γi,j , we can simply use an
arithmetic mean,

ρα,ij =
1

2
(ρα,i + ρα,j). (3.4.7)

Furthermore, to define the phase mobilities, we use the single-point upstream scheme,

λα,ij =

{
λα,i if grad(pα)[Γij]− gρα,ijgrad(z)[Γij] ≤ 0,

λα,j otherwise.
(3.4.8)

3.5 Newton’s method

After applying the discrete operators, we end up with a system of highly nonlinear equations, which
can be reformulated in residual vector form as F n(x

n+1;xn) = 0 for each time step n, where xn

denotes the known state of the primary variables at the start of the time step and xn+1 is the
unknown state at the end. For simplicity, we drop the superscript and write this as F (x) = 0.
This residual equation can be solved iteratively using Newton’s method. Starting from some initial
guess x0 for x, we repeat for k = 0, 1, . . .

solve JF (x
k)δxk = −F (xk)

set xk+1 = xk + αδxk

until the residual is sufficiently small [24]. Here, 0 < α ≤ 1 is a dampening effect that is often
introduced in practice to reduce the computed increment to improve convergence. The algorithm
requires obtaining the Jacobian matrix JF of F in each iteration. The Jacobian contains the
derivatives of F with respect to all primary variables,

JF (x) =
∂F

∂x
,

(
JF (x)

)
ij
=

∂Fi

∂xj
(x). (3.5.1)

One can prove that Newton’s method is quadratically convergent for a sufficiently accurate initial
guess and under certain smoothness assumptions on F . In practice, obtaining such convergence
heavily depends on the availability of a sufficiently accurate Jacobian. Deriving the Jacobian
analytically and coding it is highly error-prone and time-consuming [19]. Using automatic differ-
entiation, we can avoid this.

17

Chapter 3. Discretization*

Automatic differentiation relies on the fact that computer code, when broken down, consists of
basic operations like addition or multiplication, or function evaluations like sines or exponentials.
The derivative of a series of these operations with respect to a given input variable follows from
simply applying the chain rule together with well-known differentiation rules for each operation,
evaluated at the specific value of the input variable. Automatic differentiation has become a
cornerstone in mathematical software and scientific computing, and is a crucial part also in the
MATLAB Reservoir Simulation Toolbox, which we use in this thesis.

3.6 The MATLAB Reservoir Simulation Toolbox (MRST)

After presenting some of the essentials of reservoir simulation, it is evident that the full implemen-
tation of an advanced simulator is extensive and far beyond the scope of this project. The upcoming
simulation studies will therefore rely heavily on existing software, and extending its functionality
to our specific needs. The software in use is called the MATLAB Reservoir Simulation Toolbox
(MRST). This is a free and open-source software for reservoir modeling and simulation, primarily
developed by the Computational Geosciences research group at SINTEF Digital [22]. It is built
with rapid prototyping in mind, aiming to substantially reduce the time from a novel idea to a
working demonstration [19, 25, 26, 27].

Herein, we will use the object-oriented, automatic-differentiation-based simulator framework (AD-
OO) that has been built for rapid prototyping of fully differentiable simulators for various complex
fluid models, including the black-oil model discussed earlier in the thesis. A simulation setup
within the AD-OO framework has three main components: A model, a schedule and an initial
state. The model includes a geological model consisting of a grid and a set of cell-wise properties
that together describe the rock geometry and its petrophysical properties; a fluid model defining
the present phases and their properties; as well as a system of algebraic nonlinear equations that
describe the discretized form of the pertinent flow equations. The schedule holds the well model, as
well as possible sources and boundary conditions, for each time step. Finally, the initial state stores
the values of the state variables, such as pressure, saturation and fluxes, that together describe the
distribution and the possible instantaneous movement of all fluids at the start of the simulation.

MRST comes with a rich set of modules, many of which are used in this project. Table 3.1 gives
a short summary of the modules in use, what they hold, and what we have used them for. Note
that the used functions column is not exhaustive, as it only includes functions and classes that are
used explicitly. The call stack will typically include many layers of functions, all the way down to
the AD modules. The MRST-based implementation of the graph-based reservoir models is further
discussed in Chapter 5.

A key feature of MRST is the object-oriented framework for automatic differentiation, referred to as
the AD-OO framework [19, 28]. The implementation is based on the ADI class, which keeps track
of a variable and its derivative simultaneously. Whenever an operation is performed on the variable,
the corresponding differentiation rule is applied to its derivative through operator overloading. For
example, consider the ADI pair ⟨f, f ′⟩, where f is the variable and f ′ its derivative. Some examples
of operator overloadings include

⟨f, f ′⟩+ ⟨g, g′⟩ = ⟨f + g, f ′ + g′⟩
⟨f, f ′⟩ ∗ ⟨g, g′⟩ = ⟨fg, fg′ + f ′g⟩

sin⟨f, f ′⟩ = ⟨sin(f), cos(f)f ′⟩.

If the primary variables of the reservoir models are defined as ADI variables, the calculation of the
residual equations automatically calculates the Jacobian as well.

18

3.6. The MATLAB Reservoir Simulation Toolbox (MRST)

Table 3.1: Relevant modules and used functions of MRST.

Module Description Used functions
ad-core Object-oriented framework (AD-OO) for solvers

based on automatic differentiation.

ad-blackoil Extends ad-core with, e.g., black-oil equations and
single-, two- and three-phase solvers.

ad-props Functionality for property calculations for the
ad-core framework.

coarsegrid Functionality for defining coarse grids based on a
partition of an underlying fine grid.

partitionUI
processPartition
compressPartition

deckformat Support for reading ECLIPSE decks. We use it to
read and set up industry-standard reservoir models.

readEclipseDeck
convertDeckUnits
initEclipseRock
compressRock

diagnostics Flow diagnostics (i.e., methods for understanding
the fluid communication within the reservoir), from
which we use the time-of-flight computation.

computeTimeOfFlight

ensemble Ensemble simulation.

network-models Experimental module including CGNet and GPSNet
implementation. We use a utility function for per-
turbing controls.

makeRandomTraining

optimization Functionality for solving optimal control problems
through forward and adjoint simulations with auto-
matic differentiation.

OptimizationProblem
ModelParameter
unitBoxLM
matchObservedOW
NPVOW

test-suite Framework for setting up test cases for the AD-OO
framework.

TestCase
egg_wo
saigup_wo
norne_simple_wo

upr Tools for creating Voronoi grids adapting to, e.g.,
wellpaths and faults. We use its modified implemen-
tation of DistMesh and generator of clipped Voronoi
grids.

distmesh2d
clippedPebi2D

upscaling Methods for flow-based upscaling of, e.g., permeabil-
ities and transmissibilities.

upscaleModelTPFA
upscaleState
upscaleSchedule

19

Chapter 4

Model Calibration

A reservoir model as described in the previous chapters has a number of physical parameters,
such as transmissibilities T , pore volumes Φ and well indices J . In practice, it is difficult to
determine correct values for these parameters a priori, but fortunately, their values can be tuned.
In particular, we can adjust the parameters until the model output matches sufficiently well with
observed behaviour.

The traditional approach herein is history matching, an instance of an inverse problem using
observations to assign values to the model parameters [29]. As opposed to purely data-driven,
machine learning-type models, there is now an underlying mathematical model including physical
parameters. This entails that the parameter tuning should not only give accurate predictions, but
also physically meaningful parameters. Moreover, an equally important goal of history matching is
improved reservoir characterization. Here, the matching seeks to deviate as little as possible from
the a priori geological model. In particular, ensemble-based history matching, which is common
nowadays, fits multiple models to sample a probability field imposed on the model, e.g., for the
distribution of petrophysical parameters.

In this project, we part from the traditional history matching and leave behind its physical con-
straints. We no longer view the tunable parameters as physical, but instead treat them as mere
algebraic coefficients that can be calibrated freely until the model produces the desired predictions.
While history matching generally seeks universally valid models, our aim is limited to predicting
states close to the training data. Mathematically, the goal is to minimize an objective function
measuring the mismatch in the model output compared to the observed data; see Figure 4.1. We
will now succinctly define the optimization problem and suggest an iterative algorithm for its
solution.

4.1 Formulating the optimization problem*

Let xn denote the state vector at time step n, typically containing all pressures, saturations and
well rates/bottom-hole pressures. Moreover, let the vector θ ∈ RNθ hold the model parameters,
which we assume to be constant over time. As seen in Section 3.5, we then solve the system
F n(x

n+1,xn;θ) = 0 at each time step n. Having N time steps in total, we get a set of states
{x1, . . . ,xN}.

Assume now that we have some set of observations y ∈ RNy , with corresponding model predictions
ŷ = ŷ(x1, . . . ,xN). For our purpose, the observations will be the output of a fine-scale simulation,
but they could also be real measurements. We define the weighted residuals rj as

rj = wj(ŷj − yj).

Here, wj is a weight chosen to normalize the residuals (so that rj ∼ 1), by for example using the
reciprocal of a typical value magnitude. Note that the residual is also referred to as the misfit or

21

Chapter 4. Model Calibration

5 10 15 20 25 30

Years

0

500

1000

1500

2000

O
il

ra
te

 [m
3 /d

ay
]

Reference
Calibrated

Figure 4.1: A typical well production curve. The red curve represents the true/measured oil rate, while
the blue curve is the coarse-model prediction. The objective function (4.1.1) sums up the squared difference
over all time steps for all wells.

mismatch and should not be confused with the residual in the discretized flow equations. We can
assemble the Ny residual terms into the residual vector r,

r = (r1, r2, . . . , rNy
)T ,

and formulate our objective function,

M =
1

2

Ny∑
j=1

r2j =
1

2
rTr, (4.1.1)

which we aim to minimize. The misfit minimization is thus an instance of a nonlinear least-squares
problem, for which there exist a number of algorithms. Here, we will consider the Levenberg–
Marquardt algorithm.

4.2 The Levenberg–Marquardt algorithm*

The Levenberg–Marquardt algorithm is an iterative method for solving nonlinear least-squares
problems [30], aiming to minimize an objective function on the form (4.1.1). The algorithm makes
use of the misfit Jacobian Jr, a matrix of dimension Nθ × Ny containing the derivatives of all
residuals with respect to all parameters,

Jr = [∇θr1,∇θr2, . . . ,∇θrNy
]. (4.2.1)

Using the residual vector and the Jacobian matrix, the gradient and Hessian of the objective
function M can be succinctly written as

∇θM = Jrr, (4.2.2)

∇2
θM = JrJ

T
r +

Ny∑
j=1

rj∇2
θrj . (4.2.3)

Several observations can be made from these expressions. First, the residual gradients are usually
easily calculated, making the Jacobian matrix Jr itself easily available. Having the Jacobian, we
can obtain the gradient ∇θM in (4.2.2) and the first term of the Hessian in (4.2.3) relatively easily
and inexpensively. Algorithms for nonlinear least-squares problems often exploit this, as well as
the fact that the first term in the Hessian (4.2.3) is typically more important than the second. In
fact, the second term vanishes when the residuals vanish, so algorithms excluding this term often
perform well in cases with sufficiently small residuals.

22

4.2. The Levenberg–Marquardt algorithm*

We aim to identify an appropriate parameter update that decreases the objective value. In a
line-search approach, a descent direction pk is chosen, and the distance αk to move along that
direction decided by solving minαk

M(θk +αkpk). Here, k is the iteration number in the iterative
optimization algorithm. A common choice of descent direction is the Newton direction pN , which
comes from solving

∇2
θM pN = −∇θM = −Jrr, (4.2.4)

where we have dropped the subscript k for simplicity. The Newton direction can be derived from
the second-order Taylor series expansion of the objective function,

M(θk + pk) ≈ Mk + pT
k∇θMk + 1

2p
T
k∇2

θMkpk =: mk(pk). (4.2.5)

Under the assumption that the Hessian∇2
θMk is positive definite, we minimizemk(pk) with respect

to pk by setting its derivative to zero, and obtain the Newton direction

pN
k = −(∇2

θMk)
−1∇θMk. (4.2.6)

A drawback of the Newton direction is the need for the full Hessian ∇2
θM . Quasi-Newton methods

avoid this by using an approximation of the Hessian instead. In particular, Gauss–Newton methods
use the approximation ∇2

θM ≈ JrJ
T
r , solving

JrJ
T
r pGN = −Jrr (4.2.7)

instead of the original Newton equations (4.2.4) in each iteration. In this project, we do not use a
line-search approach like Quasi-Newton methods, but instead a trust-region method based on the
same Hessian approximation; in particular, the Levenberg–Marquardt algorithm. Unlike a line-
search method that first finds a direction and then a step length, a trust-region method first decides
a maximum step length and then finds the best direction inside the allowed region. Assuming a
spherical trust region, we find a descent direction inside the region at each iteration, specifically a
direction p solving

min
p

1

2
∥Jrrp+ r∥2 , subject to ∥p∥ ≤ ∆, (4.2.8)

where ∆ denotes the radius of the trust region. If the direction pGN from (4.2.7) is inside the
trust region, satisfying

∥∥pGN
∥∥ ≤ ∆, then it also solves (4.2.8). Otherwise, the solution to (4.2.8)

is on the trust-region boundary, ∥p∥ = ∆, and there is some damping parameter α > 0 such that
it satisfies

(JrJ
T
r + αI)p = −Jrr = −∇θM. (4.2.9)

Observe that if α = 0, then this gives us the Gauss-Newton direction pGN . If α → ∞, then p
tends towards the steepest descent direction.

Algorithm 1 summarizes the Levenberg–Marquardt method.

Algorithm 1 The Levenberg–Marquardt algorithm
while ∇θM ≥ ϵ do

Solve (JrJ
T
r + αkI)pk = −Jrr

if M(θk + pk) < M(θk) then ▷ Accept step and shrink trust region
αk+1 = αk/αdec

θk+1 = θk + pk

k = k + 1
else ▷ Reject step and increase trust region

αk+1 = αk · αinc

θk+1 = θk

k = k + 1
end if

end while

The damping parameter α is updated between iterations following a quasi-trust-region logic, where
we increase or decrease the damping parameter instead of directly increasing or shrinking the trust

23

Chapter 4. Model Calibration

region radius ∆ itself. In particular, we decrease α by a factor αdec if a step is accepted, or increase
it by a factor αinc if the step is rejected. In the MRST implementation of Levenberg–Marquardt
(unitBoxLM from the optimization module), the default values are αdec = 5 and αinc = 8. The
damping parameter prevents singular systems, thus avoiding the problematic behaviour of Gauss-
Newton methods when the Jacobian is rank-deficient [24].

4.3 Calculating the Jacobian from an adjoint simulation

The Levenberg–Marquardt algorithm requires the full mismatch Jacobian matrix Jr. This can
either be computed by Ny forward simulations, or more effectively through Nθ adjoint simulations
[31, 32].

To see this, first observe that the gradient of the objective function, ∇θM , can be obtained by
running a standard adjoint simulation,

∇θM =

N∑
n=1

∂F n

∂θn

T

λn. (4.3.1)

Here, λn denote the Lagrange multipliers, which can be obtained by solving the linear adjoint
equations

∂F n

∂xn

T

λn = − ∂M

∂xn

T

− ∂F n+1

∂xn

T

λn+1, n = N,N − 1, . . . , 1. (4.3.2)

Each column in the mismatch Jacobian matrix Jr corresponds to the gradient of a single residual rj
with respect to all parameters θ, and we can calculate one such gradient ∇θrj through an adjoint
equation. Replacing M with rj in (4.3.1)-(4.3.2), we get

∇θrj =

N∑
n=1

∂F n

∂θ

T

λn, (4.3.3)

with the Lagrange multipliers now given by

∂F n

∂xn

T

λn = − ∂rj
∂xn

T

− ∂F n+1

∂xn

T

λn+1, n = N,N − 1, . . . , 1. (4.3.4)

In (4.3.3), the left and right hand sides are Nθ×1 column vectors, and we have Ny such equations.
Instead of solving one adjoint equation for each data point, we can stack them and solve one system
with multiple right hand sides,

Jr =

N∑
n=1

∂F n

∂θ

T

Λn (4.3.5)

Now, Λn is a matrix, where each column is the vector of Lagrange multipliers λn for one data
point from (4.3.3). These can be obtained from the matrix adjoint equations

∂F n

∂xn

T

Λn = − ∂r

∂xn

T

− ∂F n+1

∂xn

T

Λn+1, n = N,N − 1, . . . , 1. (4.3.6)

4.4 Parameter limits and scaling

In its original form, the Levenberg–Marquardt algorithm does not impose any bounds on the
parameter values. Keeping in mind that one of the motivations behind our hybrid methods was to
give physically consistent results, it does however seem reasonable to set some, rather loose, limits
even if we do not intend to try to interpret the calibrated parameters as physically representative.

We could set some predetermined lower and upper box limits, and require that the parameters
remain within the interval. This is natural for parameters like saturations, which should always be

24

4.4. Parameter limits and scaling

between 0 and 1. For other parameter types, it is better to set non-uniform relative limits, tailored
to each single parameter on the cell/face level. Specifically, given a parameter θ with initial value
θ0, we use a lower and an upper bound [lmin, lmax] and require that lminθ0 ≤ θ ≤ lmaxθ0. As
a default, we use [0.01, 10] for pore volumes Φ and [0.01, 100] for transmissibilities T and well
indices J . This implies, e.g., that given a cell with initial pore volume 1, the pore volume has
to remain within the [0.01, 10] interval during calibration. A complete overview of the parameter
limits used in the upcoming simulations is given in the following chapter (Table 5.1).

Scaling is a widely used preconditioning technique for optimization algorithms, which alleviates
ill-conditioning and thus improves numerical behaviour. In the MRST version of the Levenberg–
Marquardt algorithm, we do indeed work with scaled parameters. In fact, all parameters are scaled
using their limits, so that they remain within the unit interval [0, 1]. If the Levenberg–Marquardt
algorithm suggests an illegal step, with parameter values outside the bounds, the step is simply
projected onto the allowed interval; that is, if the suggested (relative) value is too large, the upper
limit is used, and if it is too small, the lower limit is used.

25

Chapter 5

Graph-based Reservoir Simulation

We saw in Chapter 2 that the governing equations for flow in a reservoir arose from a combination
of Darcy’s law and conservation of mass for each phase. These equations were then discretized
using a finite-volume method with a two-point flux approximation in Chapter 3, giving the final
discrete system

Φ

∆t

[
(Sαρα)

t+∆t − (Sαρα)
t
]
+ div

(
(ραvα)

t+∆t
)
= qα (5.0.1a)

vα = −Tλαgrad (p− gραz) (5.0.1b)
qα = λwb

α J
(
pwb − p

)
. (5.0.1c)

The key idea behind this thesis is to shift the perspective and recognize that a TPFA model
like (5.0.1) can be interpreted as a computational graph in which nodes store fluids and edges
transmit them. This interpretation naturally emerges from the underlying conservation laws and
their discretization. On the discrete level, the conservation laws ensure that the accumulation of
mass in a control cell equals the sum of its net influx and possible source terms. Here, the cell flux,
the flow in and out of the cell, corresponds to the movement of fluids to or from its neighboring
cells.

In a standard finite-volume grid, the neighbor relation has a natural physical interpretation, as the
neighboring cells are next to each other in physical space. However, in reservoir simulation it is also
common to include so-called non-neighboring connections to enable flow between grid cells that are
not physically adjacent, e.g., to represent flow through conductive faults that have so small volumes
that they are not naturally represented as volumetric cells in the grid. Several simulators therefore
have a preprocessing phase in which the physical grid is turned into a computational graph, which
is then used as the key data structure in the subsequent simulation. Somewhat simplified, this
graph is formed by extracting nodes from the list of the cells’ pore volumes and edges from the
intercell transmissibilities, possibly enhanced by non-neighboring connections. The same approach
is also common in mixed-dimensional models of fractured media; see for instance [33]. But why
stop here: We could argue that the conservation of mass is not dependent on a “physical” grid,
but may just as well be imposed on some flexible graph. Accepting this, we are left with one major
question: how should the graph look?

Previous research includes different versions of interwell network models, using wells as their nodes
and adding edges between them, see e.g., GPSNet [5], StellNet [6], FlowNet [34, 35], RGNet [36],
and INSIM [7, 8, 9]. This gives a coarse model, and a limited number of pathways between wells.
From a data-driven point of view, more parameters give more flexible models that may be easier
to calibrate well. Also, from a physical perspective, fluids do not generally follow a single path
from injector to producer. Perhaps the connection graph should be richer, allowing fluids to take
multiple different paths. This hypothesis has previously been investigated in [12], where the CGNet
model type was compared with the interwell model GPSNet. The models demonstrated similar
predictive power, but the CGNet appeared more efficient and robust. The CGNet model type was

27

Chapter 5. Graph-based Reservoir Simulation

Φ Φ

Φ Φ

Φ, J

T

T

T

T

Figure 5.1: An example graph illustrating where the tunable parameters belong. Here, each node has an
associated pore volume Φ, each edge a transmissibility T , and each well node (red) a well index J .

further studied in [11], also including automatic tuning of network granularity.

This chapter presents two main genres of graph-based models, both offering a richer set of con-
nections and thus more tunable parameters. The first is a variant of the above mentioned CGNet,
based on partitioning. We discuss how to construct such a model by starting from a fine-scale
model and performing a partition, uniform or not, to give a coarsened model. The second provides
a simple and well-defined way of constructing a model of desired granularity using little to no
information about the reservoir and is based on a triangulation of the wells and selected points
along the reservoir boundary. Similar ideas have been employed in, e.g., [36] and [37].

When tampering with the geometry, we will heavily depend on the subsequent model calibration.
To that end, we can use the physical parameters of the discrete system (5.0.1), such as pore volumes
Φ, transmissibilities T and well indices J . When simulating on a graph, these all have their
natural places, at the nodes, edges, and well nodes, respectively. This is illustrated in Figure 5.1
for an imaginary model with a single well. Each node has an associated pore volume, each edge a
transmissibility, and each well node (corresponding to a perforation) a well index. When calibrating
the graph-based models, we will no longer interpret the tunable parameters as physical, but rather
allow them to be adjusted almost freely to give the desired input-output relation, as described
in Chapter 4. An advantage of this approach is that since we still use our mathematical model,
we can expect physically consistent predictions. Moreover, as long as we keep the graphs small,
the models enable rapid evaluations and thereby inexpensive calibration. Finally, the models fit
almost immediately into a standard reservoir simulator like MRST. The implementation is briefly
explained at the end of this chapter.

We remark that the graph-based simulation framework described here could be applied to any
finite-volume based simulation. In particular, the context where models are optimized based on
well responses is directly transferable to geothermal energy and carbon storage applications, but
this project is confined to hydrocarbon reservoirs.

5.1 Partition-based network models (CGNet)

Starting from a traditional fine-scale model, there are a number of ways to construct reduced-order
models, coarsened models that are more suitable for applications requiring multiple simulation
runs, such as optimization. If you want to generate a coarse grid instead of a fine one, you could of
course just generate it in the same way as the original, only with a lower spatial resolution. This,
however, has its disadvantages. When the original grid is geometrically complex, as is often the
case for realistic reservoirs, it is challenging to preserve this geometry with a coarse grid. Moreover,
you generally do not have a one-to-one mapping between cells in the fine and coarse grids [19].
Using a partition, we avoid these issues.

28

5.1. Partition-based network models (CGNet)

1

1

1

1

1

2 2

2

2

3

3

3

3

4

4

5 5

6

6

Figure 5.2: An example of a partition in 2D. The number in each cell ci corresponds to that cell’s entry
in the partition vector, pi. Adapted from figure in [19, Page 519].

5.1.1 Constructing the coarse graph

Coarse grids that are based on a direct partition of a fine grid can be represented by a partition
vector. Say that the fine grid has n cells, and the coarse grid groups these cells into blocks Bl,
l = 1, 2, . . . , N . Then, the partition vector p has n elements, and each element pi takes the value l
if cell ci belongs to block Bl. Thus, we can define our block Bl as the set of cells it contains,

Bl = {ci | pi = l}. (5.1.1)

Figure 5.2 shows a simple example of a partition with six blocks, where the number in each cell
corresponds to that cell’s entry in the partition vector.

A partition can in principle take any form, only limited by the creator’s imagination. Still, it seems
reasonable to enforce a few rules. We will require that each cell in the fine grid belongs to exactly
one block in the coarse grid. In other words, all blocks should be non-overlapping, and the total
number of block cells should equal the number of cells n,

Bl ∩Bk = ∅, l ̸= k∣∣⋃
l

Bl

∣∣ = n.

Moreover, we require that all blocks consist of a connected subset of cells. That is, all cells in a
block have to share a face with at least one other cell in that block,⋃

cj∈Bl

cj ̸=ci

ci ∩ cj ̸= ∅ ∀ ci ∈ Bl.

With such partitions, it is straightforward to convert the coarse grid to a graph. Each coarse block
is a node, and we add edges between coarse blocks that share one or more cell faces (or more
generally, have an associated intercell transmissibility). For the example in Figure 5.2, this gives
the graph G = (V,E), where

V = {1, 2, 3, 4, 5, 6}
E = {(1, 2), (1, 3), (2, 3), (2, 5), (2, 6), (3, 4), (3, 5)}.

Here, we have used the standard graph notation with G denoting the graph, V the nodes or vertices
and E the edges (see Appendix A).

The most straightforward way to create a partition is to do it uniformly, by specifying some coarse
rectilinear grid. This can be accomplished either in physical space or, for a corner-point grid, in
index space. We use a sufficiently high resolution for no wells to end up within the same block.

29

Chapter 5. Graph-based Reservoir Simulation

Figure 5.3: Construction of a partition-based network model for the Egg case. On the left is the fine
grid and wells, in the middle an explosion view of the 6× 6× 1 coarse partition after culling, and on the
right the resulting CGNet. The wells are assigned to separate blocks and thus nodes (shown in red).

This can also be achieved by splitting blocks, at the expense of a slightly more complicated graph
topology. Reservoir domains are often non-rectangular, so we use a fictitious domain approach,
culling the cells that fall outside the reservoir. Figure 5.3 shows an example for the Egg model
[38]. Here, we have used a 6× 6× 1 coarse grid, and separate blocks/nodes for wells. The model
is tested numerically in the next chapter.

5.1.2 Completing the model with upscaling

The partition itself gives only the coarse grid. Then, the model needs to be tailored to that grid.
Cell- and face-wise properties, including parameters and initial states, need to be mapped over to
the coarse grid with appropriate dimensions. When we know the original fine-scale model, this can
be done through upscaling. In MRST, the necessary tools are implemented and ready to use in
the upscaling module.

Since three-dimensional reservoir models can have millions of cells, upscaling has become a natural
part in the reservoir modeling workflow. The upscaling process aims to convert the cell-wise
properties of an original fine-scale model to blocks in a coarse grid through some homogenization.
Properties like saturations and pore volumes are additive and can therefore be upscaled through a
simple weighted arithmetic average, whereas non-additive properties like permeabilities are far less
trivial. For more details on this, consult, e.g., [19]. We remark that it is of course no disadvantage to
set accurate values for upscaled properties, but do keep in mind that parameters will be calibrated.
A reasonable initial guess should be adequate.

5.1.3 Modifying the partition

A partition does not only allow a straightforward construction of a coarse grid. Given a coarse grid
represented by a partition vector, the grid can easily by altered by tweaking the partition vector.
If, for example, you want to merge two neighboring blocks k and l, you may simply replace all k
values in p with l, or opposite. Then, the partition vector can be compressed to maintain a logical
numbering. Similarly, if you want to split a block into its fine cells, you can simply assign unused
block numbers to those cells. This flexibility is useful if you want to create non-trivial grids, e.g.,
adapted to the flow.

5.1.4 Flow-adapted models using residence times

In real reservoirs, oil may be concentrated in a cap, and wells distributed in such a way that
the fluid flow is very limited in certain parts of the reservoir. An example of this is the Brugge
benchmark model [39], for which Figure 5.4 demonstrates that the oil and wells are concentrated

30

5.1. Partition-based network models (CGNet)

Figure 5.4: Initial oil saturation for the Brugge benchmark model. Injectors in white and producers in
red.

Figure 5.5: A set of streamlines, including the tangential velocity field vectors.

in a small part of the domain. In such cases, the network model will likely benefit if we adapt the
grid partition to the flow. We want higher resolution in high-flow areas, and lower in the more
uneventful region.

Can we achieve this a priori? That is, based on information from the fine model, can we construct a
coarse grid that adapts to the flow before calibration? A simple solution is to just use the distance
from any injector/producer to infer the block density. Another, more physically sophisticated,
approach is to use a flow indicator to determine the local granularity [13]. Possible flow indicators
include permeability, velocity and residence time, where we will focus on the latter. The flexibility
in the partition-based representation of a coarse grid makes it relatively easy to define the non-
uniform models. First, we need to calculate the indicator.

Time-of-flight and residence times

To understand time-of-flight, we first need to introduce the concept of streamlines. A streamline
consists of a family of curves that are tangential to the velocity field v⃗ at some time t, as illustrated
in Figure 5.5. Thus, the streamlines indicate where a fluid element would travel at that point in
time [19]. We can parameterize a single streamline at time t̂ by x⃗(r), where

dx⃗

dr
× v⃗(x⃗, t̂) = 0, (5.1.2)

or equivalently,
dx⃗

dr
=

v⃗(t̂)

|v⃗(t̂)|
. (5.1.3)

It is common to parameterize a streamline using time-of-flight instead of the arc length r, as this
accounts for the reduced volume available for flow through the porosity ϕ. The time-of-flight τ
expresses the time it takes a particle to flow along a streamline for some distance r, and is defined
as

τ(r) =

∫ r

0

ϕ(x⃗(s))

|v⃗(x⃗(s))|
ds. (5.1.4)

31

Chapter 5. Graph-based Reservoir Simulation

Figure 5.6: Distance from wells (left) and residence-time field (right) for the Brugge model. Injectors in
white and producers in red. The two metrics are qualitatively similar.

We can compute the directional derivative of τ along a streamline, and apply the fundamental
theorem of calculus to (5.1.4),

v⃗

|v⃗|
· ∇τ =

d

dr
τ(r) =

ϕ

v⃗
. (5.1.5)

This yields the differential form,
v⃗ · ∇τ = ϕ,

which we refer to as the time-of-flight equation [19].

In a reservoir setting, we define the forward time-of-flight as the time it takes a neutral particle to
flow from the nearest fluid source (injector or inflow boundary) to each point in the reservoir,

v⃗ · ∇τf = ϕ, τ |inflow = 0. (5.1.6)

We can also compute the backward time-of-flight, which is the time it takes a particle to flow from
each point in space to the nearest fluid sink (producer or outflow boundary),

v⃗ · ∇τb = ϕ, τ |outflow = 0. (5.1.7)

If we sum up the two, we get the residence time, τf + τb. This is the total time an imaginary
particle spends in the reservoir as it travels from the nearest inflow point to the closest outflow
point. This is an interesting quantity, as it says something about which parts of the reservoir are
more and less eventful.

The Brugge benchmark model is a particularly illustrative example due to the concentration of oil
and wells in a limited area. Figure 5.6 shows the distance to closest well and computed residence-
time field. In the outer areas, outside the wells, the residence time is generally above 500 years,
indicating that the flow is negligible there. The model, and the use of well distance and residence
time to construct non-uniform network models will be further discussed and tested numerically in
Chapter 6.

Construction of a non-uniform coarse graph

Having computed a flow or refinement indicator I : V → R, as just described, we can easily create
an adapted non-uniform grid by tweaking the partition vector. Start with a coarse nx × ny × nz

partition, with a partition vector pc. We want to use the flow indicator to decide which blocks to
refine. To that end, we need to map the flow indicator from the fine cells onto the coarse blocks.
We will do this by simply summing up, so

I(Bl) =
∑
ci∈Bl

I(ci), (5.1.8)

where the notation ci ∈ Bl means that cell ci belongs to block Bl, or equivalently, p(i) = l.

Construct a second, slightly finer and overlapping partition, such as 2nx × 2ny ×nz. For example,
you could use a coarse 10 × 10 × 1 partition with partition vector pc, and a finer 20 × 20 × 1
partition with partition vector pf . This corresponds to a 2 × 2 horizontal splitting of each block
in the coarsest partition.

32

5.2. Triangulation-based network models (TriNet)

Figure 5.7: Construction of a non-uniform grid based on residence time for Brugge. The three plots show
the outline of the coarse grid overlaid on the residence-time field, after each step in the process. 1) Coarse
9× 5× 1 uniform partition. 2) Split blocks with residence time above median. 3) Add separate blocks for
the wells.

Next, we need to define some criterion under which we select the blocks to split. This can be
done by setting some tolerance, and selecting the blocks with indicator above that, giving a set of
selected blocks

B∗ = {Bl | I(Bl) > tol}. (5.1.9)
A simple option is to split blocks with indicator above the median. Alternatively, this criterion
can be adjusted by multiplying the median by some factor to obtain the desired granularity.

Finally, we split the selected blocks B∗ by altering the partition vector. In practice, we can do this
by first shifting the numbering of pf to not conflict with pc,

pf = pf +max(pc). (5.1.10)

Then, starting with p = pc, we modify the partition by

p(ci) = pf (ci), ci ∈ Bl, Bl ∈ B∗, (5.1.11)

followed by a compression to avoid unused block numbers.

An example for the Brugge model is illustrated in Figure 5.7. Here, we have started from a 9×5×1
partition, and split all blocks with residence time above the median in four, via a 18 × 10 × 1
partition. Finally, we added separate blocks for all wells.

5.2 Triangulation-based network models (TriNet)

A partition-based model assumes that we already have access to a detailed fine-scale geological
model, and is well-suited as a reduced-order or proxy model. However, we can consider a more
radical data-driven setting, starting from close-to-zero knowledge of the reservoir and calibrating
the model largely as a black-box method. This has previously been tested for CGNet, where the
model was constructed through a fictitious domain approach by wrapping a coarse rectilinear mesh
around the assumed reservoir outline, and removing cells which fall outside the domain [10]. The
resulting graph abides the original domain outline to some extent, but if the rectilinear mesh is very
coarse, the resolution may be too low to get an accurate representation of the boundary. Using a
triangulation, we can construct a graph that better accounts for the presumed domain boundary
by explicitly including boundary points as outmost nodes in the triangulation. In particular, we
form a triangulation from the wells and selected points along the reservoir boundary.

5.2.1 Constructing the coarse graph

As indicated by the name, a TriNet relies on a triangulation. Herein, we restrict the discussion to
two dimensions. When the original model is three-dimensional, we work with the lateral projection
of the reservoir, performing the triangulation in the xy-plane. Moreover, we assume wells to be
vertical, so that each well can be represented by a single point in the xy-plane. We propose an
extension to 2.5D in Section 5.2.3.

33

Chapter 5. Graph-based Reservoir Simulation

Figure 5.8: Two triangulation-based network models for the Brugge case, without (left) and with (right)
DistMesh.

To perform a triangulation, we first need to select a set of points. To that end, we first collect
the coordinates of all the wells. Additionally, we include a selection of points along the boundary.
For simple geometries, we can extract the boundary through a convex hull. We suggest to set
some minimum distance between points, and merge all points that are closer than this threshold.
Once we have selected our set of points, we can proceed with a Delaunay triangulation. This is
a triangulation with the property that the disc circumscribed to each triangle contains no vertex
(none of our selected points) [23]. The resulting triangulation directly translates into a graph,
where the selected points serve as the nodes, and the triangle sides as the edges.

The direct Delaunay triangulation can often be highly uneven, which is associated with poor
numerical performance when used directly as a simulation grid. A perhaps better alternative
is to use DistMesh [40], in particular, the extended version of DistMesh implemented in UPR
[41]. DistMesh builds upon the Delaunay triangulation, but incorporates a force-based smoothing
procedure aiming to optimize the node locations. This generally gives well-shaped meshes. It
also supports, among other options, setting an initial edge length h0, thereby providing a simple
way of adjusting the granularity of the model. We propose to set h0 relative to the diagonal
of the bounding box of the domain, ldiag; that is, use h0 = α0 · ldiag for some constant α0.
Figure 5.8 shows two possible triangulation-based models for Brugge, one without and the other
with DistMesh. The effect of DistMesh is clear, giving a significantly more even triangulation.
In this case, the DistMesh-based model greatly benefits from the relative edge length option, as
the convex hull gives two long line segments in the bottom part. It is possible to enforce some
maximum edge length in the none-DistMesh construction as well. Instead of directly using the
points returned by the convex hull, we could manually add or adjust the points before performing
the Delaunay triangulation. However, since this is already implemented in DistMesh, along with
numerous other options, it may not be worth the effort.

Physical interpretation*

Unlike a traditional grid-based model, a network model does not necessarily have a natural physical
interpretation. In theory, you can add edges between any pair of nodes within the network.
However, for structured geometries, it is possible to convert the graph back into a grid. For
rectilinear CGNet-type models, the graph-to-grid mapping is simply the reverse of the construction.
That is, since we originally used the cells/blocks in the grid as our nodes, and mapped faces to
edges, we can easily revert this process and obtain a physical grid. For graphs based on a Delaunay
triangulation, we can use the Voronoi diagram. The Voronoi diagram and Delaunay triangulation
are dual to each other, with the nodes of the Voronoi control cells corresponding to the centers of
the circles circumscribed around the Delaunay triangles [23]. Figure 5.9 provides two illustrations
of the Delaunay-Voronoi duality.

Although a network model in general need not have an interpretation in physical space, it can be
useful to keep this backwards mapping in mind. In particular, observe how a node in the graph
represents some physical volume, just like it did when we constructed a CGNet from a coarse grid.

34

5.2. Triangulation-based network models (TriNet)

Figure 5.9: Two examples of triangulation-based network models, including the dual Voronoi diagram
clipped against the outer boundary in gray.

5.2.2 Calibrating the initial saturation

The simulation captures how the reservoir fluids evolve from an initial state, when impacted by
some external driving forces like injection wells. If the initial state itself is far off, the model
may consequently be hard to calibrate. For the partition-based models, we converted the initial
state to the coarse grid through some upscaling procedure. At least to some extent, this keeps
the local heterogeneity of properties like initial saturations. For triangulation-based models, the
geometry generally makes it harder to map properties from the original model to the network model.
We could construct a mapping using the Voronoi grid, but this would be more computationally
expensive and complicated to implement and has not been included in this project. The TriNet
models may consequently suffer from poor initializations.

To remedy this, we propose to instead add variables like initial water saturation to the tunable
parameters and try to calibrate our way to a reasonable value. As long as we simulate two-phase
water-oil systems, it suffices to add the water saturation Sw; the oil saturation So will be given
implicitly since Sw + So = 1. To calibrate Sw, we first need to make some initial guess. In lack of
a more sophisticated mapping from the fine model, we can average over all fine cells. If the total
reservoir contains, say, 60% water and 40% oil, we initialize Sw = 0.6 and So = 0.4 in all nodes.
Then we can tune the water saturation within the box constraints 0 ≤ Sw ≤ 1.

5.2.3 Extending to 2.5D

The original TriNet framework gives two-dimensional models. However, many reservoirs ex-
hibit a layered structure and involve non-negligible buoyancy effects, possibly requiring a three-
dimensional model in order to give accurate simulations. To this end, a simple extension of the
TriNet model is suggested, stacking copies of the two-dimensional graph on top of each other, with
vertical connections between the layers. We refer to this as 2.5D.

Unless the reservoir is perfectly box-shaped, the nodes of the stacked model may fall outside the
original domain. To circumvent this, one could interpolate the coordinates onto the surface of
the reservoir. The heights of the nodes affect the gravitational effects in the simulations. An
alternative remedy is to consider the gravitational effect itself as a tunable parameter.

Recall from Chapter 3 the fully implicit system, including the discrete flux (3.4.6),

vn+1
α = −λαT [grad(pn+1

α)− gρn+1
α grad(z)], (5.2.1)

For the 2.5D models, the heights of the layers can be chosen freely. Tuning the gravity term
g · grad(z) could prevent inaccuracy stemming from poor height choices. When doing so, we
can use the bottom and top of the reservoir to set suitable box limits. In particular, we identify
the maximum and minimum z coordinate of all centroids, say zmin, zmax, and calculate our limit
l = g(zmax − zmin). Then, we set box limits [−l, l].

We remark that the g · grad(z) term can be both negative and positive, depending on the defined
direction of the face/edge in question. An improved box limit could account for this by prohibiting

35

Chapter 5. Graph-based Reservoir Simulation

the term to change sign.

5.2.4 Flow-adapted models using distance to closest well

For CGNets, we proposed to use flow indicators like residence time to construct flow-adapted
models a priori. Since TriNets should not rely on the availability of a fine-scale model, we propose
a less sophisticated and more naïve approach, using distance to wells. That is, we use the distance
to the closest well to indicate high-flow areas of the reservoir. In most cases, it is a reasonable
assumption that more fluids will be displaced closer to wells. In fact, we saw in Figure 5.6 that
the well-distance and residence-time fields were qualitatively similar for the Brugge model. Hence,
the distance metric seems like a good alternative to construct TriNet models adapted to the flow.

As long as we construct our models using DistMesh, it is fairly straightforward to modify the local
granularity. This is done by providing a tailored edge length function, h(x), which returns the
desired relative edge length for each point x in space [40]. We can construct h(x) in such a way
that it gives shorter edge lengths closer to wells and longer edge lengths farther from wells. In
particular, we let d(x) be the distance from point x to the closest well. Then, define

t(x) := min

{
exp

(
d(x)

0.25 ∗ ldiag

)
− 1, 1

}
,

h(x) := t(x) · hmax + (1− t(x)) · hmin,

(5.2.2)

where hmin and hmax denote the minimum and maximum relative edge length, respectively, and
ldiag is the diagonal length of the bounding box of the domain. Here, t(x) goes to 0 near the wells,
and 1 sufficiently far away, with the effect that h(x) goes towards hmin close to wells and hmax far
away.

5.3 Automatic graph refinement*

The graphs used in our network models have a modest number of degrees of freedom compared to
standard reservoir simulation models, enabling applications like adjoint-based gradient optimiza-
tion. They should however not be too coarse. For the model calibration to succeed, a certain
number of tunable parameters is required. If a model proves too coarse, the obvious action is to
try a new and finer model. However, increased resolution may not be equally needed everywhere
and it is desirable to add parameters where they have the largest effect. We have already discussed
some approaches to construct non-uniform models a priori, that is, before calibration. In that
case, we relied on our own understanding of the flow physics, expecting the high-flow regions to
require higher resolution. We now consider a quite different approach, where we let the model
automatically refine itself based on parameter sensitivities obtained in calibration.

5.3.1 Selection for refinement

When tuning the model parameters, the solution of the adjoint problem computes the Jacobian
matrix of the mismatch functions via automatic differentiation. At a certain data point, a derivative
of the mismatch function with respect to some parameter intuitively tells how the mismatch is
influenced by a change in that parameter. Calculating the standard deviation across all data
points for a certain parameter, we get an indicator of where we need more information. If the
standard deviation is large, there is disagreement between the data points on how to adjust the
parameter to improve the objective function. Adding more parameters by refining the graph in
that area may help.

We define the refinement indicator Iref as the standard deviation of the entries in the mismatch
Jacobian Jr belonging to a single parameter. Recall that Jr (4.2.1) has dimension Nθ × Ny, so

36

5.3. Automatic graph refinement*

one row contains the derivatives of all residuals rj (for all Ny data points) with respect to a single
parameter θi, such as the pore volume of one specific node,

Jr = [∇θr1,∇θr2, . . . ,∇θrNy
] =

∂r1
∂θ1

∂r2
∂θ1

· · · ∂rNy

∂θ1

∂r1
∂θ2

. ∂rNy

∂θ2...
∂r1
∂θNθ

∂r2
∂θNθ

· · · ∂rNy

∂θNθ

 . (5.3.1)

We thus take the standard deviation across one row,

Iref(θi) = STD
[
∂r1
∂θi

,
∂r2
∂θi

, . . . ,
∂rNy

∂θi

]
. (5.3.2)

If we select nodes or edges, we can use the sensitivities directly. For a triangle, on the other hand,
we need some kind of mapping from its nodes and edges to the triangle. It seems natural that a
triangle with larger refinement indicators on its components should be refined before triangles with
smaller indicators. Possible mappings include the maximum, mean and sum over the parameters
on the triangle’s nodes and edges. Note that the sum indicator will naturally favor well nodes,
since they have an extra parameter, and might therefore not be suitable. The max indicator has
the drawback of discarding information. If two triangles have the same maximum, but one has
large values all over, while the other has small, they are treated as equal. The mean indicator
avoids both these issues. Letting θT denote the set of parameters θi belonging to the nodes and
edges of triangle T , we can formally define the mean refinement indicator

Iref(T) =
1

|θT |
∑

θi∈θT

Iref(θi). (5.3.3)

Having such a refinement indicator Iref, we need to decide the extent of the refinement. One
option is to select the parts where Iref is larger than some prespecified tolerance, or alternatively,
selecting a subset of these triangles. This would give a stopping criterion for the graph update loop
as well, when no triangles have indicators above the bound, but setting an appropriate tolerance
can be challenging. An alternative is to select some prespecified fraction, e.g., selecting the 10%
triangles with the largest refinement indicator. This may result in only one of two triangles with
equal indicator being selected, especially when using a maximum mapping. Using a mean or
sum mapping, on the other hand, this will likely occur very seldom. When using this selection
criterion, we need an additional stopping criterion for the refinement. Alternatives include setting
a maximum number of refinements, a maximum number of parameters, and a mismatch tolerance.

5.3.2 Refinement

In addition to nodes and edges, our graphs have structures that allow us to identify triangles or
rectangles, depending on the chosen strategy when first constructing it. Refinement of a graph
may be based on either of these, or a combination. In this setting, we will only consider refinement
of triangle-structured graphs. We proceed to introduce methods for refining a selected triangle,
edge or node.

For a triangulation-based graph, we can select and refine triangles. Since automatic graph refine-
ment will likely include repeated refinements, the triangle refinement should preferably maintain
the triangular structure. A simple option is to split each triangle in three, drawing edges from its
centroid to each corner. This would give progressively sharper triangles, so we instead propose a
method inspired by red-green mesh refinement in the finite element method. Here, the refinement
consists of two steps: the red step where we refine the selected triangles and the green step where
we fix hanging nodes. In the red step, the selected triangles are split in four by splitting each of
the three edges. The new nodes are connected together, forming a new triangle in the middle.
The procedure is illustrated in Figure 5.10. The refinement gives the graph three additional node

37

Chapter 5. Graph-based Reservoir Simulation

1 2

3

1 2

3

4

56

Figure 5.10: A triangle before and after the red step of triangle refinement.

1 2

3

4 1 2

3

4

5

1 2

3

4

56

Figure 5.11: The three cases in the green step of triangle refinement. In each case, the hanging nodes
are removed by adding new edges.

parameters and six additional edge parameters.

When refining the selected triangles in the red step, we keep track of and flag their neighbors.
We can then iterate over the flagged triangles and fix them, that is, remove hanging nodes while
recovering the triangular structure. A flagged triangle can have either one, two or three red-refined
neighbor triangles. The green step of refinement in each case is illustrated in Figure 5.11. For one
hanging node, it is simply connected to the node opposite to it. For two hanging nodes, an edge
is added between them, as well as an edge from one of them to its opposite node. Finally, if the
flagged triangle has three hanging nodes, the refinement looks just like in the red step, connecting
all the hanging nodes to each other.

Having selected an edge for refinement, a natural way to refine is to split that edge. To maintain
the triangular structure, we also connect the new middle node to the opposite corners, as illustrated
in Figure 5.12. The resulting graph has one more node parameter and three more edge parameters.

Finally, selected nodes can most easily be refined by refining all triangles the given node is part
of. While this approach is well-defined and symmetric, it is very extensive, heavily changing the
graph. It is, however, not trivial coming up with an alternative which maintains the triangular
structure. Selecting triangles instead, we avoid this problem, and ill-represented nodes should still
be effectively refined given a reasonable refinement indicator mapping to triangles, Iref(T).

1 2

3 4

1 2

3 4

5

Figure 5.12: Edge refinement of the edge (2,3). The edge is split in two and the new node is connected
to the opposite nodes of the two triangles.

38

5.3. Automatic graph refinement*

5.3.3 Initial parameter values for new nodes and edges

After refining the graph, we need to assign initial parameter values to all new nodes and edges.
For the unchanged nodes and edges, we map over the tuned parameters from the previous graph,
while for new parts, we need to come up with some initial guess. This is done locally, taking the
average value of the neighbourhood. For a new node vnew ∈ V new, a parameter θ is set to

θ(vnew) =
1

|N∗(vnew)|
∑

v∈N∗(vnew)

θ(v), (5.3.4)

where N∗(vnew) is the neighborhood N(vnew), but excluding other new nodes, that is, N∗(vnew) =
{v ∈ N(vnew) | v /∈ V new}. In other words, when assigning a new node parameter, we use the
average of all the nodes that the node is adjacent to, excluding those that are also new. In the case
when a new node is only adjacent to other new nodes, a global average is used instead. Similarly
for a new edge e ∈ Enew, the parameter is calculated by averaging over the edges that the new
edge is adjacent to, excluding new ones,

θ(enew) =
1

|N∗(enew)|
∑

e∈N∗(enew)

θ(e). (5.3.5)

We remark that it is possible to largely avoid the global average fallback using an iterative strategy,
skipping the nodes/edges with only new neighbors until at least one of their neighbors have been
assigned a value. However, these new parameters are part of the initial guess of the Levenberg–
Marquardt algorithm for the updated graph and will be tuned. The goal is therefore not more
ambitious than to set reasonable values.

Note that when using this strategy, the sum of the parameters will increase after each graph
refinement. For parameters such as pore volume, this is problematic, since the total reservoir
volume would in effect increase in each iteration. To circumvent this, the pore volumes can be
rescaled to keep the sum constant. Doing this globally, simply dividing all parameters with the
current sum and multiplying by the previous, is the simplest way. However, this would affect areas
of the graph where there was no refinement. A local strategy avoids this. This requires keeping
track of which parts of the graph were affected by the refinement, for example choosing all new
nodes and their neighbors and rescaling only their pore volume values. A fully local approach
could even redistribute pore volumes in each single triangle refinement. In this project, we use a
semi-local strategy in which we identify the affected areas, and rescale all pore volumes therein by
the same factor.

5.3.4 Full graph optimization algorithm

Combining the steps just described, we get a full graph optimization procedure, which starts from
an initial graph and attempts to optimize both the graph topology and the model parameters. The
resulting algorithm can be seen as a double loop. The inner loop optimizes the model parameters
on each graph using the Levenberg–Marquardt algorithm. The outer loop updates the graph
topology based on sensitivities from the parameter tuning. This gives a highly flexible algorithm
with a number of options, including choosing the initial graph, convergence criteria for both the
inner and outer loop, methods for both refinement selection and the refinement itself, and methods
to calculate parameters for the new nodes and edges.

We will use the relative mismatch reduction,

M(j − 1)−M(j)

M(j)
,

as a stopping criterion for the parameter tuning. When this is small (< tol), it indicates that the
improvement for the current model has stagnated. If the achieved mismatch is not satisfactory, we
can add more parameters and try again. That is, we refine the graph until the absolute mismatch
meets some tolerance (M(j) < TOL). A pseudocode for the graph refinement procedure follows.

39

Chapter 5. Graph-based Reservoir Simulation

procedure optimizeNetworkModelTopology(G0)
for i = 1, 2, . . . do ▷ Outer loop: Graph topology

for j = 1, 2, . . . do ▷ Inner loop: Graph parameters
Calibrate parameters θj using Levenberg–Marquardt.
Simulate and evaluate objective function M .
Simulate adjoint system and assemble mismatch Jacobian.
if (M(j − 1)−M(j)) /M(j) < tol then ▷ Indicates stagnation

break ▷ Stop tuning on current graph
end if

end for
if M(j) < TOL then return ▷ Satisfied with result: Stop.
else ▷ Not satisfied: Refine graph.

Calculate refinement indicator Iref(T) (5.3.3) for all triangles.
Select parts for refinement. ▷ e.g., top 10%
Gi = refineGraph(Gi−1). ▷ Red-green triangle refinement
Fill in parameter values on Gi using (5.3.4), (5.3.5). ▷ Prepare for new tuning

end if
end for

end procedure

5.4 Implementation and MRST integration

Both model types in consideration offer the advantage of fitting almost immediately into a standard
finite-volume-based simulator. This section provides a brief explanation of their implementation
and the measures required to simulate them with MRST. For all details, consult the source code
and associated documentation [42].

The main infrastructure for a graph-based reservoir model can be found in the NetworkModel
class. A NetworkModel, like an MRST simulation setup, holds three objects/classes: a model,
a schedule and an initial state state0. In addition, we include two important properties: the
network and the params object.

The network is an instance of the BaseGraph class, which implements various utilities for working
with a graph. The network stores the MATLAB graph G, and works as a wrapper for the built-in
graph functionality. For an introduction to graphs and the MATLAB graph, see Appendix A. You
could say that the network replaces the grid. Note, however, that when you want to simulate the
model, you need to update the MRST grid, found in model.G, but you do not need a fully defined
geometry. It is sufficient to:

• Update the discrete operators with appropriate dimensions, e.g.,

pv = mean(model.operators.pv)*ones(network.numNodes, 1)
T = mean(model.operators.T)*ones(network.numEdges , 1)
model = model.setupOperators(model.G, ...

model.rock, ...
'trans', T, ...
'neighbors', network.G.Edges.EndNodes, ...
'porv', pv);

Here, we use a mean value as our initial guess for pore volumes and transmissibilities. The
neighbors operator (model.operators.N) can be set directly to the edge list representation
(EndNodes) of the graph.

• Update the number of grid cells to match the number of nodes in the network.

model.G.cells.num = network.numNodes();

• Update the cell centroids to the node coordinates, e.g.,

40

5.4. Implementation and MRST integration

model.G.cells.centroids(:,1) = network.G.Nodes.x

The node coordinates are stored as columns in the node table of the graph. Note that the
coordinates in most cases do not impact the simulation, except the gravitational effect in
3D cases, but this is necessary for the simulation to run, and also useful for visualization
purposes.

Moreover, you need to make sure that the initial state in state0 matches the dimensions of your
network. There should be as many pressures and saturations as there are nodes.

The schedule contains the well structure. As most models are originally three-dimensional, the
wells have several perforations. When constructing two-dimensional network models, we need to
create new well structures with the right number of perforations, keeping track of which nodes in
the graph are the well nodes.

Both the partition-based and triangulation-based network models fit into this framework, and their
implementation is based on inheritance from the NetworkModel class, with separate implementation
of more specialized functionality and properties. For example, a partition-based model should
store the partition vector and original model, whereas the triangulation-based model needs a data
structure representing the triangles.

The params property is a cell array of NetworkModelParameter objects, which inherit fromMRST’s
ModelParameter class. These are the tunable parameters, and each NetworkModelParameter holds
information about one parameter type, such as pore volumes. The parameter values themselves
are not stored here, but each parameter holds information about where in the simulation setup
(model, schedule, state0) its values are found.

The network models will be calibrated using the methodology described in Chapter 4. Table 5.1
summarizes the tunable parameters we can include and also includes suggestions for their limits.
Note that in the original schedule, each well has one well index per perforation. In the network
model, each perforation is represented by its own well node, so that each well index belongs to a
single well node.

We remark that the computational overhead of MATLAB is significant. When simulating with
MATLAB and MRST, we do not fully unlock the speed potential of very coarse models. Simu-
lations, and thereby calibrations, would likely be significantly faster in a language like Julia, e.g.,
using the JutulDarcy reservoir simulator [43].

Table 5.1: Available tunable parameters in calibration of the network models.

Name Description Location Suggested limits
porevolume Pore volumes Φ Nodes [0.01, 10] relative

transmissibility Transmissibilities T Edges [0.01, 100] relative
conntrans Well indices J Wells [0.01, 100] relative

swl Rel.perm. scaling Nodes [0, 0.4] box
swcr Rel.perm. scaling Nodes [0, 0.4] box
swu Rel.perm. scaling Nodes [0.8, 1] box
sowcr Rel.perm. scaling Nodes [0, 0.4] box
krw Rel.perm. scaling Nodes [0.2, 2] box
kro Rel.perm. scaling Nodes [0.2, 2] box
sw Initial water saturation Nodes [0, 1] box
gdz Gravitational effect Edges gmax(div(z)) box

41

Chapter 6

Simulation Results

The graph-based reservoir simulation framework described in the previous chapter is best illus-
trated by means of examples. In the following sections, the models are demonstrated for a number
of cases. We first consider a constructed two-dimensional demo problem, well-suited for a demon-
stration of the methods. Then, we apply the ideas to the Egg model, a synthetic channelized
reservoir, where we also test the model generality by introducing control perturbations. Next, we
test the effect of multiple layers on a simulation model of the Norne field, before demonstrating
the importance of an accurate initial saturation for a synthetic (but realistic) model realization
from the SAIGUP study. As a final example, we discuss the Brugge benchmark model, also
demonstrating a priori flow-adapted models and a production optimization application.

All results should be reproducible. To that end, MATLAB function scripts for the different ex-
amples and experiments are available in a Bitbucket repository [42], where they are found in the
examples/master-thesis directory.

6.1 A demo problem

For a first demonstration of the methods, we consider a simple constructed two-dimensional setup
with five wells, taken from chapter 13 in [19] 1. The two injectors inject at a 0.0594m3/s rate, while
the three producers maintain a 100 bar pressure. We use an immiscible two-phase fluid model,
with initial oil saturation equal to 1, formulated on a 5000×2500 m domain divided into 4096 grid
cells. The duration is 2 years, divided into 33 time steps. We are free to choose the porosity and
permeability fields of the model, and will consider a homogeneous and a heterogeneous case.

Figure 6.1 depicts seven possible coarse graph representations of the model. The leftmost is a pure
Delaunay TriNet, followed by a preprocessed variant where all triangles have been refined once.
Next are three DistMesh-based TriNets, the first with a maximum relative edge length 0.25, the
second with 0.1, and the third with increased granularity close to wells. Finally, we have a 7×4×1
and a 13× 6× 1 CGNet. In all calibrations for this case, we use pore volumes, transmissibilities,
and well indices as tunable parameters, with the limits given in Table 5.1. Figure 6.1 also holds a
table stating the dimensions and total number of parameters for each model.

6.1.1 Homogeneous case

For the first demonstration, we use homogeneous permeability and porosity, with constant values
695md and 0.40, respectively. We may then expect some symmetry in the graph refinement.

1This example is based on one from the specialization project [14], where the same setup was used, but the results
and discussion presented herein have been modified.

43

Chapter 6. Simulation Results

I1

I2

P1

P2

P3

TriNet1 TriNet2 TriNet3 TriNet4 TriNet5 CGNet1 CGNet2

Model Nodes Edges Parameters Description
TriNet1 9 20 34 Pure Delaunay
TriNet2 29 76 110 Uniform refinement of TriNet1
TriNet3 19 46 70 DistMesh, α0 = 0.25
TriNet4 59 162 226 DistMesh, α0 = 0.1
TriNet5 56 152 213 DistMesh, well-adapted (α0 = 0.075, hmin = 0.05, hmax = 0.5)
CGNet1 28 45 78 Cartesian 7× 4× 1
CGNet2 78 137 220 Cartesian 13× 6× 1

Figure 6.1: Six graph representations for the demo case.

0 5 10 15 20

Iterations

10 -2

10 -1

0 5 10 15 20

Iterations

10 -2

10 -1

TriNet1
TriNet3

Figure 6.2: Comparison of mismatch reduction using TriNet1 and TriNet3. For the left case, the pore
volumes are the average over the fine-scale model cells, and in the right case they have been rescaled to
preserve the total volume.

Misfit reduction – the impact of rescaling

We start by comparing the performance of TriNet1 and TriNet3, tuning the parameters for 20
iterations. The resulting mismatch reductions during the Levenberg–Marquardt iterations are
shown in Figure 6.2. For the left case, the pore volumes are set directly to the average pore volume
in the fine-scale model. The right case includes a rescaling of the pore volumes, forcing the total
pore volume to equal that in the original model. The results indicate that a poor initial guess
for the pore volumes can make the models hard to calibrate, and they will thus be rescaled in all
upcoming examples. In both cases, the DistMesh-based model TriNet3 achieves a slightly better
mismatch than the TriNet1 model. However, it should be noted that TriNet1 is more coarse,
with only 34 parameters, while TriNet3 has 70. Although TriNet3 calibrates better, it is therefore
difficult to conclude which one is actually better. Still, looking at the graphs, and recalling the
previously discussed Delaunay-to-Voronoi mapping, the more even DistMesh option does seem like
a good choice.

Even though the mismatch reduction is less than an order of magnitude for the left, non-rescaled,
case, the models are learning, and we can investigate what happens more closely. Since the param-
eter tuning seeks to minimize the error in the well curves, a mismatch reduction should correspond
to the calibrated curves closing in on the reference curves. This effect is visualized in Figure 6.3.
The water and oil rates in producer P1 are plotted for the first ten iterations of the TriNet3 tuning.
The calibrated curves become visibly closer to the reference curve with each iteration. There is
even a significant improvement between iteration 5 and 6, in agreement with the steeper part of
the mismatch reduction plot.

44

6.1. A demo problem

5 10 15 20 25 30

Step #

0

0.01

0.02

0.03

0.04

0.05

W
at

er
 r

at
e

[m
3 /s

]

5 10 15 20 25 30

Step #

0.01

0.02

0.03

0.04

0.05

0.06

O
il

ra
te

 [m
3 /s

]

It 1
It 2
It 3
It 4
It 5
It 6
It 7
It 8
It 9
It 10
Reference

Figure 6.3: Water rate (left) and oil rate (right) for the well P1 after each iteration of the parameter
tuning on TriNet3.

I1 I2

P1 P2 P3

0 5 10 15 20 25 30 35 40

Iterations

10 -4

10 -2

TriNet1 auto
TriNet2
CGNet1
CGNet2

|V | |E| |θ| M
TriNet2 29 76 110 5.0e-4
CGNet1 28 45 78 1.3e-4
CGNet2 78 137 220 8.9e-6
TriNet1

G1 9 20 34 3.1e-3
G2 14 35 54 2.4e-3
G3 24 65 94 1.5e-4

Figure 6.4: Mismatch reduction for the homogeneous demo case, using the pure Delaunay TriNets and
the two CGNets. Above the mismatch plot, the three graphs G1-G3 in the automatic refinement of TriNet1
are shown.

Autotuning model granularity

If the tuning has stagnated and we want to reduce the mismatch further, a natural action is to add
more parameters, which corresponds to using a finer graph. We can refine the graph uniformly,
increasing the resolution everywhere, or adaptively, e.g., using the graph refinement algorithm
introduced in Section 5.3. The two next experiments include refinement of coarse TriNets, and
compare the results with a uniformly finer TriNet, as well as a coarse and finer CGNet.

For the first refinement example, we use TriNet1 as the initial graph. The stopping criterion for
parameter tuning on each graph is the relative mismatch reduction in a single iteration being less
than 1%. When this occurs, 20% of the triangles are selected for refinement using the indicator in
(5.3.3). We also include static parameter tuning on TriNet2, CGNet1 and CGNet2. The results are
shown in Figure 6.4, and the code for this example is found in demoHomogeneousCalibration.m.

The finer CGNet2 calibrates very quickly, reaching the 10−5 stopping criterion in only 14 iterations.
The fine TriNet2, having half as many parameters, trains slower and stagnates around 5 · 10−4.
Looking at the first iteration, we see that the initial mismatch of the TriNets is at least an order
of magnitude larger than those of the CGNets. In fact, the initial objective values are about 0.13
for TriNet1 and TriNet2, 0.01 for CGNet1, 0.0034 for CGNet2. With that in mind, the TriNet2
calibration is comparable to that of the CGNets in terms of reduction relative to the starting point.
The fact that the TriNets have larger initial mismatch values suggests that the initial parameter
guesses work better for CGNet, at least in this case. The TriNet1 refinement increases resolution
most around the producers, with each refinement giving little extra reduction in the mismatch. The
final graph G3 is slightly coarser than TriNet2, and stagnates at a slightly larger final mismatch.

We again stress that the tunable parameters are not considered to be physically representative,
45

Chapter 6. Simulation Results

I1 I2

P1
P2

P3

I1 I2

P1 P2 P3

I1 I2

P2

P1 P3

Figure 6.5: Calibrated pore volumes illustrated as node sizes for TriNet2, CGNet1 and CGNet2.

I1 I2

P1 P2 P3

0 10 20 30 40 50 60 70 80 90

Iterations

10 -4

10 -2

TriNet3 auto
TriNet4
CGNet1
CGNet2 |V | |E| |θ| M

TriNet4 59 162 226 6.1e-5
CGNet1 28 45 78 1.3e-4
CGNet2 78 137 220 8.9e-6
TriNet3

G1 19 46 70 1.4e-3
G2 32 84 121 4.4e-4
G3 54 145 204 1.6e-4

Figure 6.6: Mismatch reduction for the homogeneous demo case, using the DistMesh-based TriNets and
the two CGNets. The three graphs G1-G3 in automatic refinement of TriNet3 are shown on the top.

but calibrated freely within some loose bounds. Figure 6.5 illustrates the calibrated pore volumes
for TriNet2, CGNet1 and CGNet2. In particular, the node sizes are scaled according to their pore
volumes. Since this model has homogeneous porosity, physically speaking, the pore volumes should
be equal in a uniform model. This is clearly not the case after calibration.

We now perform a similar experiment, but this time using the more even DistMesh-based TriNet3 as
the initial graph and comparing with the finer graph TriNet4 in addition to CGNet1 and CGNet2 as
in the previous case; see Figure 6.6 for the results and demoHomogeneousDistmeshCalibration.m
for the script.

This time, the fine TriNet4 is slightly better than the coarse CGNet1 but still not quite competing
with the fine CGNet2, which has approximately the same number of parameters. The TriNet3
refinement is, like for the TriNet1 refinement, first concentrated around the producers and then
around the injectors. The two refinements give some extra mismatch reduction, with G3 ending at
a mismatch slightly larger than for CGNet1, but with significantly more parameters.

In this case, the refinement looks quite symmetrical. This may be an advantage, and a more
even initial graph is a good starting point for a more even refinement. However, one should not
read too much from how the graphs look. They are plotted using physical coordinates mostly for
visualization purposes. This can be misleading, since the physical coordinates do not really matter
in the simulation. Figure 6.7 shows an alternative, circular way of illustrating TriNet3, which is
just as correct. Clustering of refinement around a well, which may look bad in the physical plots, is
not necessarily a problem. The effect is adding more possible paths to or from the given well. That
said, this should be investigated, e.g., by testing if penalization of repeated refinement improves
the results. Either way, one should not focus too much on the graphs looking good, when plotted
with physical coordinates.

The achieved mismatch values are quite small, which naturally corresponds to a close match in
the well curves. With the final mismatch in TriNet3 refinement being as small as 1.6 · 10−4, we
expect a good match, which is what we see in Figure 6.8. As the producer curves are hard to
separate, we take a closer look in Figure 6.9, showing the water and oil rate in P1, including the
tuned CGNet2, the refined TriNet3 (G3) and the reference. The curves are hard to distinguish in
the top row, but looking at the difference between the calibrated curves and the reference (bottom
row), we see that CGNet2 is slightly better, in agreement with the difference in final mismatch.

46

6.1. A demo problem

I1

I2

P1

P2

P3

67 8

9
10

11

1213

14

15 16

1718 19

I1

I2

P1

P2

P
36

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 6.7: Two alternatives for illustrating TriNet3: the plot to the left uses physical coordinates from
the generating triangulation to lay out the nodes of the graph and the plot to the right uses a circular
layout that disregards the physical position of the nodes.

0.5 1 1.5 2

Time [year]

0

500

1000

1500

2000

2500

3000

W
at

er
 r

at
e

[m
3 /d

ay
]

P1 (Reference)
P2 (Reference)
P3 (Reference)
P1 (Calibrated)
P2 (Calibrated)
P3 (Calibrated)

0.5 1 1.5 2

Time [year]

0

1000

2000

3000

4000

O
il

ra
te

 [m
3 /d

ay
]

0.5 1 1.5 2

Time [year]

0

500

1000

1500

2000

2500

3000

3500

B
ot

to
m

-h
ol

e
pr

es
su

re
 [b

ar
]

I1 (Reference)
I2 (Reference)
I1 (Calibrated)
I2 (Calibrated)

Figure 6.8: Comparison of well responses for the refined TriNet3 network model (“calibrated” in the
legends) and the fine-scale model (“reference” in the legends).

0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

W
at

er
 r

at
e

[m
3 /d

ay
]

0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

O
il

ra
te

 [m
3 /d

ay
]

Reference
TriNet3
CGNet2

0.5 1 1.5 2

Time [year]

-40

-20

0

20

40

D
iff

er
en

ce
 [m

3 /d
ay

]

0.5 1 1.5 2

Time [year]

-50

0

50

D
iff

er
en

ce
 [m

3 /d
ay

]

Figure 6.9: Comparison of well curves from producer P1 for CGNet2 and the refined TriNet3. The top
row shows the water and oil rates and the bottom row the difference between the calibrated curves and
the reference.

47

Chapter 6. Simulation Results

Figure 6.10: Logarithmic permeability (left) and porosity (right) fields for the heterogeneous version of
the demo case.

I1

I2

P1

P2

P3

0 10 20 30 40 50 60 70

Iterations

10 -5

10 -4

10 -3

10 -2

10 -1

TriNet1 auto
TriNet2

CGNet1
CGNet2

|V | |E| |θ| M
TriNet2 29 76 110 2.2e-4
CGNet1 28 45 78 2.2e-5
CGNet2 78 137 220 1e-5
TriNet1

G1 9 20 34 1.4e-3
G2 14 35 54 1.1e-3
G3 24 64 93 3.3e-4
G4 43 121 169 3.4e-4
G5 77 223 305 1.8e-4
G6 140 411 556 1.8e-4

Figure 6.11: Mismatch reduction for the heterogeneous demo case, using the pure Delaunay TriNets
and the two CGNets. Above the mismatch plot, we show the six graphs G1-G6 obtained in automatic
refinement of TriNet1.

6.1.2 Heterogeneous case

The homogeneous porosity and permeability are now replaced with fields based on a normal and
log-normal distribution, respectively, with the previous constant values as means, illustrated in
Figure 6.10. Notice that the permeability and porosity are higher in the upper left part of the
domain, close to the P1 producer. We run the same experiments as in the homogeneous case, first
using the pure Delaunay graphs TriNet1 and TriNet2, and then using the DistMesh-based graphs
TriNet3, TriNet4. We now also include the non-uniform TriNet5 based on distance to wells in the
second experiment.

Figure 6.11 shows the mismatch reductions for the first experiment, and the corresponding code is
found in demoHeterogeneousCalibration.m. Perhaps somewhat surprisingly, CGNet1 performs
better now than in the homogeneous case. We can also observe that now, as opposed to the
homogeneous case, it is the CGNets that have a worse starting point, but they are still able to
beat the TriNets and end up at smaller final mismatch values. CGNet2 is again the better fine
model, reaching its 10−5 stopping criterion in 18 iterations. This model should perhaps have been
tuned even further, as it does not appear to have stagnated yet. On the other hand, we should
not generally seek as small mismatch values as possible, as we then run the risk of overfitting the
model.

The TriNet1 refinement clusters around I2 and P3. Despite claiming that a graph does not need
to look good, refining this heavily around one well may be unfortunate. The initial graph TriNet1
reduces its mismatch by two orders of magnitude, after which it takes four refinements, and 271
more parameters, to get almost an additional order of magnitude reduction. In other words, the
refinement algorithm does not do very well.

The results for the second experiment are shown in Figure 6.12, and the corresponding code is found
in the script demoHeterogeneousDistmeshCalibration.m. The refinement now clusters around
the injectors and producer P1, and we get little extra mismatch reduction with each refinement.
This case also includes the a priori adapted TriNet5, which comes with higher resolution close to

48

6.2. The Egg model

I1

I2

P1

P2

P3

0 10 20 30 40 50 60 70

Iterations

10 -5

10 -4

10 -3

10 -2

10 -1
TriNet3 auto
TriNet4
TriNet5
CGNet1
CGNet2

|V | |E| |θ| M
TriNet4 59 162 226 5.1e-5
TriNet5 56 152 213 5.9e-5
CGNet1 28 45 78 2.2e-5
CGNet2 78 137 220 1e-5
TriNet3

G1 19 46 70 4.6e-4
G2 32 84 121 1.7e-4
G3 55 152 212 1.5e-4
G4 96 274 375 1.3e-4

Figure 6.12: Mismatch reduction for the heterogeneous demo case, using the DistMesh-based TriNets
and the two CGNets. The top row shows the four graphs G1-G4 in the automatic refinement of TriNet3.

wells. This performs almost identically to the uniform TriNet4, so for this case, a uniform model
seems to be adequate.

In all the automatic refinement results seen so far, we notice that the mismatch increases at each
graph refinement. Recalling how the initial parameter guesses on updated graphs were set, this
is not that surprising. There is no guarantee that the parameters that are optimal for one graph
are optimal for the next, and it is even less likely that the initial guesses on the new nodes and
edges are optimal. At the same time, part of the purpose of updating the graph is to perturb
the parameters away from local minima. Attempting to construct the ideal parameter mapping
between graphs may not be worthwhile. The jumps are not necessarily problematic in themselves,
as long as the new graph achieves a closer match than the previous. Still, we could hope that the
new graphs would take some advantage of the previous tuning. This may be more likely if smaller
changes are made in each refinement. Testing a stricter bound on the number of parameters added
should be considered.

To maintain physically meaningful model outputs, we enforce conservation of the total pore volume
at each graph refinement. This is done semi-locally, identifying the affected parts of the graph,
and rescaling all pore volumes herein by the same factor. It should be considered to do a fully
local rescaling instead, redistributing pore volumes at the triangle level. This could improve the
parameter mapping between graphs, and thus reduce the jumps.

6.2 The Egg model

As our next example case, we use the Egg model [38], a synthetic model of a three-dimensional
channelized reservoir. The original fine-scale model consists of 18 553 cells divided between 7
horizontal layers. Eight injectors and four producers are distributed across the egg-shaped domain,
and we consider a water-flooding scenario in which the injectors operate at a constant water
injection rate of 79.5m3/day and the producers at a constant bottom-hole pressure of 395 bar. The
model has porosity 0.2 in all cells. The left plot of Figure 6.13 shows the log-scale permeability field.
The water-oil system is governed by a relatively simple black-oil model with weak compressibility,
cubic and quartic relative permeability curves, and 5 cP and 1 cP viscosities for the oil and water
phases, respectively. The initial saturations are Sw = 0.1 and So = 0.9 in all cells.

6.2.1 Calibration

We will compare two coarse models, in particular a CGNet and a TriNet of comparable granularity.
Both models are shown in Figure 6.13. The CGNet is based on a 6× 6× 1 uniform partition with

49

Chapter 6. Simulation Results

Model Nodes Edges Parameters Description
CGNet 45 69 396 Uniform partition (6× 6× 1)
TriNet 40 101 393 DistMesh α0 = 0.13

Figure 6.13: Original model with log-scale permeability and wells, CGNet and TriNet for Egg.

0 5 10 15 20

Iterations

10
-4

10
-3

10
-2

10
-1

CGNet

TriNet

Figure 6.14: Mismatch reduction during calibration of the Egg CGNet and TriNet.

separate well blocks, as was illustrated in Figure 5.3. The resulting graph after culling has 45
nodes and 69 edges. The TriNet model is constructed using DistMesh, with a maximum edge
factor of 0.13. This model has 40 nodes and 101 edges. As our tunable parameters, we include
pore volumes, transmissibilities, well indices, and the six relative permeability scaling parameters.
This gives a total of 396 parameters for CGNet and 393 for TriNet. The script for this case is
eggCalibration.m.

Figure 6.14 shows the mismatch reduction during calibration of the two models. Both models
calibrate quickly to a good accuracy. A successful calibration entails that the given model makes
accurate predictions for the training data, but does not directly imply that the model is valid in a
more general sense in that it will give accurate predictions for different data.

6.2.2 Testing predictive ability through control perturbations

In a practical setting, model calibration alone is not the main interest. A useful model should
work well on scenarios different from, but not necessarily far from, those it was trained on. As a
simple test of the model generality, we now perturb the controls and run a new fine- and coarse-
scale simulation. We can again use the mismatch in well responses as our metric and repeat
the experiment with increasingly large perturbations. The injection rates are perturbed by y +
2α(x− 0.5)y, where α ∈ {0.05, 0.1, 0.15, 0.25}, x is a random number between 0 and 1, and y the
original value. The producer bottom hole pressures are similarly perturbed by y − β(x − 0.2)y,
for β ∈ {5, 7.5, 10, 15}. We consider four levels, with increasing perturbations in both rates and
bottom hole pressures.

50

6.2. The Egg model

Table 6.1: Mismatch of calibrated CGNet and TriNet for different levels of control perturbation.

Perturbation Mismatch
level CGNet TriNet
0 1.3e-5 2.0e-5
1 1.1e-4 3.7e-4
2 2.0e-4 7.9e-4
3 3.1e-4 1.4e-3
4 5.7e-4 2.6e-3

1 2 3 4 5 6 7 8 9
0

50

100

150

200

W
a
te

r
ra

te
 [
m

3
/d

a
y
]

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

O
il

ra
te

 [
m

3
/d

a
y
]

Reference

TriNet

CGNet

1 2 3 4 5 6 7 8 9

Time [year]

-50

0

50

D
if
fe

re
n
c
e
 [
m

3
/d

a
y
]

1 2 3 4 5 6 7 8 9

Time [year]

-20

-10

0

10

20

D
if
fe

re
n
c
e
 [
m

3
/d

a
y
]

Figure 6.15: A comparison of the water and oil rates in producer well P1 predicted by the original Egg
model (”reference” in the legend), the CGNet and TriNet when simulating with level 4 perturbation in the
well controls.

Table 6.1 gives the mismatch of the tuned CGNet and TriNet for each level of perturbation.
The CGNet appears to be more general, as increased perturbation levels give a smaller mismatch
increase than for the TriNet.

Figure 6.15 shows production responses for producer P1, including the difference between predicted
and true solutions, for the largest perturbation (level 4). There is generally a good agreement
between the true and predicted curves, but it is also obvious that TriNet is visibly less accurate
than CGNet. Figure 6.16 shows the resulting well responses in all the producers for all four levels
of perturbation. Both these figures confirm the results in Table 6.1, with the TriNet giving slightly
less accurate predictions than the CGNet. This could indicate that the CGNet model generalizes
better.

It should be commented that there is one significant topological difference between the CGNet and
TriNet in this case. For this specific CGNet, we added separate nodes for the wells. These nodes
are themselves connected to a single different node. In the TriNet model, each well node was set
as an integral part of the triangulation. Then, the well nodes are directly connected to multiple
other nodes. This has the effect that CGNet is somewhat refined around the wells, offering a few
extra tunable parameters there. It should be considered to test the effect of this extra well node
more thoroughly. This can either be done by trying a CGNet model without it, or by including it
also for TriNet.

51

Chapter 6. Simulation Results

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

350

W
a

te
r

ra
te

 [
m

3
/d

a
y
]

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

O
il

ra
te

 [
m

3
/d

a
y
]

P1 (Reference)

P2 (Reference)

P3 (Reference)

P4 (Reference)

P1 (CGNet)

P2 (CGNet)

P3 (CGNet)

P4 (CGNet)

P1 (TriNet)

P2 (TriNet)

P3 (TriNet)

P4 (TriNet)

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

350

400

W
a

te
r

ra
te

 [
m

3
/d

a
y
]

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

O
il

ra
te

 [
m

3
/d

a
y
]

P1 (Reference)

P2 (Reference)

P3 (Reference)

P4 (Reference)

P1 (CGNet)

P2 (CGNet)

P3 (CGNet)

P4 (CGNet)

P1 (TriNet)

P2 (TriNet)

P3 (TriNet)

P4 (TriNet)

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

350

400

W
a

te
r

ra
te

 [
m

3
/d

a
y
]

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

O
il

ra
te

 [
m

3
/d

a
y
]

P1 (Reference)

P2 (Reference)

P3 (Reference)

P4 (Reference)

P1 (CGNet)

P2 (CGNet)

P3 (CGNet)

P4 (CGNet)

P1 (TriNet)

P2 (TriNet)

P3 (TriNet)

P4 (TriNet)

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

350

400

450

W
a

te
r

ra
te

 [
m

3
/d

a
y
]

1 2 3 4 5 6 7 8 9

Time [year]

0

50

100

150

200

250

300

350

O
il

ra
te

 [
m

3
/d

a
y
]

P1 (Reference)

P2 (Reference)

P3 (Reference)

P4 (Reference)

P1 (CGNet)

P2 (CGNet)

P3 (CGNet)

P4 (CGNet)

P1 (TriNet)

P2 (TriNet)

P3 (TriNet)

P4 (TriNet)

Figure 6.16: Production well responses predicted by the original Egg model (reference), CGNet and
TriNet, for each of the four levels of control perturbation. Top to bottom row corresponds to increasing
levels 1-4.

52

6.3. The Norne field

9 × 9 × 1 6 × 6 × 2 9 × 9 × 2 6 × 6 × 1

Model Nodes Edges Parameters
CGNet 9× 9× 1 112 202 330
CGNet 6× 6× 2 97 221 334
CGNet 9× 9× 2 184 448 648
CGNet 6× 6× 1 59 95 170

Figure 6.17: The four partitions of the Norne model, where disconnected blocks have been split and we
have added separate blocks for wells. The table shows their dimensions, including the total number of
parameters when calibrating pore volumes, transmissibilities and well indices.

6.3 The Norne field

Next, we consider a simulation model of the Norne field in the Norwegian Sea. This model is
available as an open data set via the Open Porous Media (OPM) initiative [44] and is one of
the standard test cases in the MRST test-suite module. We consider a simplified case with
immiscible waterflooding into a reservoir initially filled with oil (So = 1 in all cells). The reservoir
has 5 injectors and 6 producers, where the injectors operate at a constant water injection rate
of 16 000m3/day, and the producers at a constant bottom-hole pressure of 100 bar. The original
model is formulated on a 46×112×22 corner-point grid with 44 915 active cells, displaying complex
geological features such as faults and displaced layering.

We compare four CGNet models of varying lateral and vertical resolution, aiming to test the effect
of multiple layers; see norneCalibration.m. Note that since this model has a layered structure,
with two lateral layers that are completely disconnected in parts of the domain, a two-dimensional
partition-based model will initially have disconnected blocks. This can cause trouble, for instance,
in upscaling of transmissibilities, so we choose to split these blocks so that all blocks are connected.
This has the effect that the models that initially were two-dimensional, end up having two layers in
the disconnected parts. Moreover, as we did for the Egg model, we add separate blocks for wells.
Figure 6.17 illustrates the resulting partitions.

Figure 6.18 shows the mismatch reduction during calibration. The four models perform very
similarly, all reaching a small mismatch value in only ten iterations. Perhaps somewhat surprisingly,
the coarsest 6× 6× 1 model performs the best.

Note that we have not included triangulation-based models for Norne, since the non-convex reser-
voir domain would not allow the direct use of the TriNet framework. In particular, it does not
allow the use of a convex hull to extract the boundary, and a triangulation would include non-
physical connections through areas that are unavailable for flow. These challenges could of course
be overcome with some manual hard coding. A suggested workaround is to construct the TriNet
in the regular way, and then manually remove the edges we deem unreasonable. It would even be
an interesting experiment to compare a dummy TriNet with non-physical connections, similar to
CGNet in [10], to one which we have forced to abide the physical domain.

53

Chapter 6. Simulation Results

0 1 2 3 4 5 6 7 8 9 10

Iterations

10 -4

10 -3

10 -2

10 -1

CGNet 9x9x1
CGNet 6x6x2

CGNet 9x9x2
CGNet 6x6x1

Figure 6.18: Mismatch reduction during calibration of the four CGNet models for the Norne case.

Figure 6.19: Initial water saturation for the SAIGUP model. The yellow part corresponds to So = 1,
and the blue part to Sw = 1.

6.4 The SAIGUP model

In the models considered so far, the initial saturations have been homogeneous and, for the demo
and Norne case, the reservoir was even initially filled with oil only (So = 1 in all cells). In those
cases, it was trivial to map the initial saturation from the fine model onto the coarse graph-based
models. However, this is not a particularly realistic model setup. For real reservoirs, the saturation
is rarely homogeneous. Now, we will try a model where there is a clear separation between the oil
and water part of the reservoir.

The model is from the SAIGUP project [45]. It is originally formulated on a grid consisting of
78 720 cells. Herein, we use a conceptual waterflooding scenario that has been introduced as part
of the MRST development. The reservoir is operated with eight injectors and six producers, where
the injector wells maintain constant water injection rates, and the producers operate at a fixed
bottom-hole pressure of 200 bar. We simulate a schedule lasting for 30 years, divided into 118 time
steps. A characteristic feature of this model, similarly to Brugge, is the concentration of oil in a cap,
as illustrated in Figure 6.19. It could thus be interesting to try to calibrate a triangulation-based
network and test the effect of tuning the initial saturation.

6.4.1 Calibrating the initial saturation

When constructing the TriNet, all nodes are assigned a globally averaged value for saturation.
In this case, this gives Sw = 0.5433 and So = 0.4567. For models like SAIGUP, this is a poor
guess which may make the model hard to calibrate. To test this, we try to construct a TriNet

54

6.4. The SAIGUP model

0 5 10 15 20

Iterations

10 -3

10 -2

10 -1

Excl. sw
Incl. sw

Figure 6.20: Mismatch (left) when calibrating the SAIGUP TriNet model (middle), with and without
initial water saturation S0

w as a tunable parameter. The rightmost plot shows the calibrated initial oil
saturation (1− S0

w).

and calibrate it with and without including the initial water saturation S0
w as a tunable parame-

ter. The TriNet model is constructed using DistMesh with a relative edge factor α0 = 0.25; see
saigupCalibration_sw.m. This gives a coarse model with only 24 nodes and 59 edges. Pore
volumes, transmissibilities and well indices are included in both cases, with a combined total of
24 + 59 + 14 = 97 tunable parameters. When including the initial saturation S0

w as well, the total
number of parameters is 121.

Figure 6.20 shows the TriNet model and the resulting mismatch reductions in the two cases. The
results largely confirm our suspicions. The model using the poor initial saturation guess calibrates
slowly and stagnates at a large mismatch value. On the other hand, the model allowing calibration
of saturation calibrates both fast and to a small mismatch value. This experiment highlights the
importance of providing a sufficiently accurate initial state. For partition-based models, we are
able to do this to some extent a priori using upscaling. However, for triangulation-based models,
we have not implemented a sophisticated mapping from the fine model. Then, calibrating the
initial saturation seems to be a good and needed alternative.

6.4.2 Stacked TriNet

Next, we compare the performance of a stacked 2.5D TriNet model to a 2D TriNet of similar size.
To construct the stacked model, we use two copies of the TriNet from the previous experiment,
placed at the top and bottom of the domain. Here, we identify the bottom and top by finding
the maximum and minimum z coordinate of the centroids in the original model. The resulting
stacked model has a total of 48 nodes and 142 edges. To get a two-dimensional model of comparable
granularity, we use DistMesh with maximum relative edge length α0 = 0.1, which gives a graph with
51 nodes and 133 edges. If we include pore volumes, transmissibilities, well indices and intial water
saturation as tunable parameters, this gives a total of 266 parameters for the stacked model, and
249 for the two-dimensional model. Both models are calibrated for 20 iterations, and Figure 6.21
shows the model networks and resulting mismatch reduction. We also include a calibration of the
stacked model including the gravitational parameter g ·grad(z) as a tunable parameter. Then, the
total number of parameters is 408. The script for this experiment is saigupCalibration_stack.m.

In this case, the two models perform similarly, both calibrating rapidly and to a small mismatch
magnitude. The multi-layer topology does not give significantly improved results here. Moreover,
adding the gravitational parameter in tuning does not improve the result, but instead gives a
slightly worse calibration. However, this is perhaps not that surprising considering that this model
has its variability mostly in the horizontal direction and is not particularly gravity-driven. We can
expect that this parameter may be more important in cases where gravity has a larger effect, such
as in models including gas.

55

Chapter 6. Simulation Results

0 5 10 15 20

Iterations

10 -3

10 -2

10 -1

TriNet stack
TriNet fine
TriNet stack incl. gdz

Figure 6.21: Stacked TriNet (top view) and finer two-dimensional TriNet for SAIGUP, and the resulting
mismatch reduction when calibrating the models.

Figure 6.22: Initial oil saturation (left) and residence times (right) for the Brugge model. Injectors in
white and producers in red.

6.5 The Brugge model

For our final example, we will use the Brugge benchmark model [39], which is an interesting case
due to its concentration of oil and wells in a small part of the reservoir. This is illustrated in the left
plot of Figure 6.22, which shows the initial oil saturation. The strong heterogeneity encourages
the introduction of non-uniform models. Moreover, the initial saturation resembles that of the
SAIGUP model, for which we demonstrated the importance of calibrating the initial saturation
(Section 6.4.1).

The original Brugge grid has 43 474 cells. The reservoir has 10 injectors and 20 producers, and we
simulate for a duration of 10 years, divided into 130 time steps.

Model Nodes Edges Parameters Description
CGNet1 122 205 1211 13× 8× 1 uniform partition + well blocks.
CGNet2 125 234 1264 9× 5× 1 uniform partition + split high-flow blocks + well blocks.
TriNet1 111 305 1223 DistMesh, α0 = 0.055
TriNet2 113 321 1255 DistMesh, well-adapted (α0 = 0.05., hmin = 0.075, hmax = 0.5)
TriNet3 47 125 531 DistMesh, α0 = 0.1.

Figure 6.23: The suggested network models for Brugge.

56

6.5. The Brugge model

The models we will compare are shown in Figure 6.23, which also gives their dimensions and
short descriptions. The first model, CGNet1, is based on a uniform 13 × 8 × 1 partition, with
separate nodes for the wells. Next, we have the flow-adapted CGNet2. This is constructed using
residence times, as described in subsection 5.1.4. The right plot in Figure 6.22 shows the computed
residence-time field. To set up the non-uniform model, we start from a 9 × 5 × 1 coarse uniform
partition. The residence-time field originally holds one value per fine cell, which we map to the
coarse blocks by simply summing up to get our indicator. Then, we select the blocks where the
indicator is above the median value, and split these blocks in four via a 18 × 10 × 1 partition.
Finally, we add separate well nodes.

We also include two triangulation-based models. The first, TriNet1, is constructed from DistMesh
with initial edge length chosen to give a comparable number of parameters to the CGNets. The
other, TriNet2, is constructed using our qualified guess flow indicator that measures distance to
wells, as explained in Section 5.2.4. Below the model plots in Figure 6.23 is a table stating the
dimensions of each model. We note that the models are of comparable size.

Finally, we include the coarse TriNet3, which will be the initial graph in an automatic refinement.
This model has only 47 nodes initially, and less than half as many parameters as the four other
models.

6.5.1 Calibration

We now calibrate each of the four fine models for 20 iterations. As our tunable parameters, we
will use pore volumes, transmissibilities, well indices, six relative permeability scaling parameters
(exponent and endpoint coordinates for each of the phases), and initial water saturation. This
gives approximately 1200 parameter values in total for each model. Moreover, we run an automatic
refinement process for TriNet3, refining 10% of the triangles at each graph update. The code for
this experiment is found in bruggeCalibration.m.

For the CGNets, we consider two cases. In the first, we use the upscaled information from the fine
model, including, e.g., a decent initial guess for saturations. To get a more fair comparison with
the purely data-driven TriNets, we also include a CGNet tuning where we discard this information,
using the same average-based initial guess as for TriNet.

Figure 6.24 shows the mismatch during calibration of the models. The CGNets using upscaled
information calibrate better than the TriNets, and the difference between the uniform and non-
uniform versions is small, with the flow-adapted model being slightly better. The non-upscaled

0 5 10 15 20 25 30 35 40 45 50

Iterations

10 -2

10 -1

TriNet1
TriNet2
CGNet1 upscaled
CGNet2 upscaled
CGNet1 poor initial
CGNet2 poor initial
TriNet3 auto

Figure 6.24: Calibration results for Brugge. Above the mismatch plot are the four graphs G1-G4 in
automatic refinement of TriNet3.

57

Chapter 6. Simulation Results

Table 6.2: Model dimensions and final mismatch value in calibration of the different network models for
Brugge.

|V | |E| |θ| M
TriNet1 111 305 1223 7.6e-2
TriNet2 113 321 1255 4.8e-2

CGNet1 (upscaled) 122 205 1211 5.3e-3
CGNet2 (upscaled) 125 234 1264 8.9e-3

CGNet1 (poor initial) 122 205 1211 0.37
CGNet2 (poor initial) 125 234 1264 0.33

TriNet3 auto
G1 47 125 531 1.0e-2
G2 63 173 707 3.4e-3
G3 86 241 959 3.6e-3
G4 120 343 1333 2.1e-3

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

W
a
te

r
ra

te
 [
m

3
/s

]

10
-3

CCNet1

CGNet2

TriNet1

TriNet2

Reference

0 20 40 60 80 100 120 140
0.5

1

1.5

2

2.5

3

3.5

4

O
il

ra
te

 [
m

3
/s

]

10
-3

CGNet1

CGNet2

TriNet1

TriNet2

Reference

0 20 40 60 80 100 120 140

Step #

-5

0

5

10

D
if
fe

re
n
c
e
 [
m

3
/s

] 10
-4

0 20 40 60 80 100 120 140

Step #

-1

0

1

D
if
fe

re
n
c
e
 [
m

3
/s

] 10
-3

Figure 6.25: Water and oil rate in producer P5 predicted by the calibrated network models, compared
to the fine-scale reference. The CGNets here are the upscaled versions.

CGNets work very poorly in this case, and significantly worse than the TriNets. The TriNet3
automatic refinement works rather well in this case. The mismatch is quite small already on the
first graph, and for the fourth graph, which is comparable in granularity to the other models, the
mismatch is as good as for the upscaled CGNet2. Although the automatic refinement does not
give a better final result than the upscaled CGNet2, it has the advantage of not depending on the
user’s understanding and chosen model configuration.

The mismatch reduction should correspond to a good agreement between the fine-scale reference
and calibrated well responses. Figure 6.25 illustrates this for the production well P5. The calibrated
curves for the upscaled CGNets are qualitatively very close to the reference, whereas the TriNet
curves are visibly further away.

In this case, the TriNet models and CGNets with poor initial guess, use an initial guess Sw = 0.8577,
So = 0.1423 for the initial saturations, which comes from averaging over the original model. The
water saturation, and thus implicitly the oil saturation, are then calibrated within a [0, 1] interval.
We can investigate which values they are calibrated to. Figure 6.26 shows the tuned oil saturation,
plotted on the dual Voronoi grids. The saturations are interestingly qualitatively similar to those
in the original model (Figure 6.22).

58

6.5. The Brugge model

0

0.5

1

Figure 6.26: Calibrated initial oil saturation for TriNet1 and TriNet2, plotted on their dual Voronoi
grids.

Table 6.3: Bounds used in control optimization for Brugge.

Lower Upper
Injector rate [m3/day] 10 1000
Producer liquid rate [m3/day] 10 500
Injector BHP [bar] 160 180
Producer BHP [bar] 50 120

We remark that when calibrating the TriNet models with initial saturations as purely tunable
parameters, an illuminating problem occured. Letting the initial saturations vary freely within the
unit interval enabled the optimizer to pick values in such a way that the simulation was inconsistent
and the optimization crashed after a few iterations. This was due to the Brugge model having
capillary pressures, in which case it is problematic to tune the initial water saturation to values
below the residual water saturation. We therefore ended up removing the capillary pressures
from all models. One could even argue that in a data-driven setting, this information would not
be available, so calibrating models without imposing such physical effects a priori may be more
realistic.

6.5.2 Control optimization

So far, we have mostly discussed efficiency and accuracy in calibrating the network models, and
briefly tested their generality and predictive abilities. As a final experiment, we will demonstrate
one of the motivating applications of the coarse models, namely control optimization. We choose
the CGNet2 model (upscaled version), which demonstrated the best calibration result. The coarse
nature of CGNet2 makes it a well-suited proxy model.

Control optimization in this case involves finding well controls that maximize the net-present-value
(NPV) of the reservoir. In the NPV function, we use an oil revenue of 50 USD per STB (stock
tank barrel), water injection cost of 3 USD per STB, water production cost of 3 USD per STB, and
a yearly discount rate of 10%. Moreover, we set some bounds on the controls, given in Table 6.3.

The resulting NPVs are given in Table 6.4, and Figure 6.27 shows the obtained optimal controls.
First, observe that the predicted NPV on the original schedule is similar for the original and
reduced CGNet2 model. This confirms that the network model does in fact represent the original
model, as the small mismatch value in calibration indicates. The NPV using optimized controls is

Table 6.4: Net-present-value for Brugge, with original and optimized controls, for the fine-scale and
CGNet2 models.

Model Controls NPV (1010 $)
CGNet2 Original 1.840
CGNet2 Optimized 2.404
Fine Original 1.837
Fine Optimized 2.117

59

Chapter 6. Simulation Results

1 2 3 4 5 6 7 8 9 10

Time [year]

0

100

200

300

400

500

600

700

W
a

te
r

ra
te

 [
m

3
/d

a
y
]

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

1 2 3 4 5 6 7 8 9 10

Time [year]

0

50

100

150

B
o

tt
o

m
-h

o
le

 p
re

s
s
u

re
 [

b
a

r]

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

Figure 6.27: Optimized well controls for Brugge, using the calibrated CGNet2 as a proxy.

more deviant, and significantly larger for CGNet2. This could indicate that the controls that are
optimal for CGNet2 are not optimal for the original model. However, we do obtain a significant
NPV increase (2.8 bill. USD) compared to the original controls, so our optimization does have an
effect.

The network models are trained on limited data, and their generality is thus likely equally lim-
ited. In the control optimization setting, we may end up with optimized controls that deviate
significantly from those we started with. In other words, the controls give new reservoir responses
that are far from the training data, and it can not be guaranteed that the calibrated models give
accurate predictions. To circumvent this, it is possible to run a retraining; see [11]. Once the
controls are optimized using the calibrated network model, a new fine-scale simulation is run using
the obtained optimal controls to produce a new set of training data. The coarse model can then
be retrained, a new control optimization can be run, and so on.

60

Chapter 7

Conclusions and outlook

We have demonstrated two main approaches to construct coarse, graph-based reservoir models.
The models offer a richer graph topology and more tunable parameters than pure interwell network
models and are easy and fast to evaluate in a standard finite-volume reservoir simulator. As we keep
the underlying mathematical model, we prevent predicting unphysical states, giving an advantage
over purely data-driven machine-learning models. Moreover, the coarse nature of the models allows
computer-intensive applications like parameter calibration and production optimization.

The numerical examples have demonstrated that even very coarse models with less than a hundred
nodes can be effectively calibrated to give predictions closely resembling those of the original fine-
scale model. Perturbations of well controls also indicated that the models were able to give quite
accurate predictions for data outside the range they were trained on, with the CGNet appearing
to be more general than TriNet.

The initialization of both initial states and parameters had a significant effect on calibration. We
saw that a reasonable initial guess for pore volumes was crucial for good calibration. Moreover, the
SAIGUP case demonstrated the importance of an accurate initial saturation. For a partition-based
network model, reasonably accurate values can easily be obtained via upscaling. If we do not have
such an immediate mapping, e.g., like we assumed was the case for the triangulation-based models
herein, adding initial saturation as a tunable parameter appears to work well. The saturation was
even calibrated to at least qualitatively resemble that in the original model. It could also be worth
an attempt to map more information from the fine model to a TriNet model, including initial
saturations. This can be based on the dual Voronoi grid and some upscaling procedure, similar to
how it was done for partition-based CGNets. Pore volumes, for instance, could be scaled according
to the size of the corresponding Voronoi cell and initial saturations could just be volume-averaged.

Including the gravitational effect parameter in calibration did not improve the results in the ex-
amples tested here. This should be tested on cases where gravitation plays a more important role,
such as models including gas, e.g., a carbon storage simulation.

Different methods for constructing non-uniform models were compared, including a priori flow-
adapted models based on well proximity and residence times, and an automatic refinement pro-
cedure. These gave variable results, generally not significantly better than a uniform model. The
automatic refinement algorithm has several weaknesses that should be adressed to improve results,
including the parameter mapping between graphs. It may, for instance, be worth testing a fully
local redistribution of pore volumes at the triangle level. Still, this approach offers the advantage
of starting from a very coarse model, and not being dependent on the user choosing a suitable
model topology a priori.

In this thesis, automatic graph refinement was only tested for triangulation-based models. A
similar procedure can be applied to partition-based models; see [11]. The algorithm could even be
expanded to go both ways. Using nested partitions, we can easily go both finer and coarser from
a given graph.

61

Chapter 7. Conclusions and outlook

With their limited degrees of freedom, the models enable speedy evaluations, and are well-suited
as proxies in applications like production optimization. This was demonstrated for the Brugge
model. Using a calibrated coarse CGNet, the controls were successfully adjusted to significantly
improve the net-present-value objective function. An iterative retraining, as suggested in [11],
could circumvent the lacking generalization of the calibrated network models, when the optimized
controls end up being far from the initial training data, thus giving a more accurate optimization.

One of the main motivations behind the coarse, graph-based models were in fact their speedy
simulations, and thus suitability in an optimization context. In the examples in this thesis, all
parameters have had the same granularity as the network. For example, if there are 100 nodes in
the graph, we calibrate 100 pore volume values. However, it is possible to reduce the parameter
space without decreasing the granularity of the graph itself. We can use different resolutions
for different parameters, for example by defining regions where the parameter value is constant.
Considering the relative permeability parameters, of which there are six (for a Corey-type two-
phase fluid model), it is evident that there are significant costs in calibrating these at every single
node. It should be investigated if calibrating one or a few values instead gives good enough results.
More parameters may require more training data, so a smaller parameter space may give a model
that is easier to calibrate and less likely to be overfitted to the training data. Moreover, we have
always calibrated all parameters simultaneously. It should also be investigated if it is better to
split the calibration, e.g., first calibrating pore volumes, transmissibilities and well indices, and
then fluid/permeability parameters.

Despite some of the weaknesses identified herein, we conclude that the methods hold great promise
as a hybrid approach to reservoir modeling, utilizing data without discarding our knowledge of the
flow physics. Finally, we remark that the models and principles used in this project can be readily
applied to other contexts, and are most immediately extended to geothermal energy and carbon
storage applications.

62

References

[1] S. Ghassemzadeh et al. «A data-driven reservoir simulation for natural gas reservoirs». In:
Neural Computing and Applications 33.18 (2021), pp. 11777–11798. doi: 10.1007/s00521-
021-05886-y.

[2] L. A. N. Costa, C. Maschio, and D. José Schiozer. «Application of artificial neural networks
in a history matching process». In: Journal of Petroleum Science and Engineering. Neural
network applications to reservoirs: Physics-based models and data models 123 (2014), pp. 30–
45. doi: 10.1016/j.petrol.2014.06.004.

[3] M. M. Almajid and M. O. Abu-Alsaud. «Prediction of Fluid Flow in Porous Media using
Physics Informed Neural Networks». In: Abu Dhabi International Petroleum Exhibition &
Conference. Abu Dhabi, UAE, Nov. 2020. doi: 10.2118/203033-MS.

[4] C. G. Fraces and H. Tchelepi. «Physics Informed Deep Learning for Flow and Transport
in Porous Media». In: SPE Reservoir Simulation Conference. On-Demand, Oct. 2021. doi:
10.2118/203934-MS.

[5] G. Ren et al. «Implementation of Physics-Based Data-Driven Models With a Commercial
Simulator». In: SPE Reservoir Simulation Conference (Galveston, Texas, USA). Society of
Petroleum Engineers, Apr. 2019. doi: 10.2118/193855-MS.

[6] G. Lutidze. «StellNet – physics-based data-driven general model for closed-loop reservoir
management». PhD thesis. The University of Tulsa, 2018.

[7] H. Zhao et al. «INSIM: A Data-Driven Model for History Matching and Prediction for
Waterflooding Monitoring and Management with a Field Application». In: SPE Reservoir
Simulation Symposium. Society of Petroleum Engineers, 2015.

[8] Z. Guo, A. C. Reynolds, and H. Zhao. «A Physics-Based Data-Driven Model for History
Matching, Prediction, and Characterization of Waterflooding Performance». In: SPE Journal
23.02 (2018), pp. 367–395. doi: 10.2118/182660-PA.

[9] Z. Guo, A. C. Reynolds, and H. Zhao. «Waterflooding optimization with the INSIM-FT data-
driven model». In: Computational Geosciences 22.3 (2018), pp. 745–761. doi: 10.1007/s10596-
018-9723-y.

[10] K.-A. Lie and S. Krogstad. «Data-Driven Modelling with Coarse-Grid Network Models». In:
ECMOR 2022. The Hague, Netherlands / Online: European Association of Geoscientists &
Engineers, 2022. doi: 10.3997/2214-4609.202244065.

[11] S. Krogstad, Ø. A. Klemetsdal, and K.-A. Lie. «Efficient Adaptation and Calibration of
Adjoint-Based Reduced-Order Coarse-Grid Network Models». In: SPE Reservoir Simulation
Conference. Galveston, Texas, USA: Society of Petroleum Engineers, Mar. 2023. doi: 10.
2118/212207-MS.

[12] K.-A. Lie and S. Krogstad. «Comparison of two different types of reduced graph-based reser-
voir models: Interwell networks (GPSNet) versus aggregated coarse-grid networks (CGNet)».
In: Geoenergy Science and Engineering 221 (2023), p. 111266. doi: 10.1016/j.petrol.2022.
111266.

[13] V. L. Hauge, K.-A. Lie, and J. R. Natvig. «Flow-based coarsening for multiscale simulation
of transport in porous media». In: Computational Geosciences 16.2 (2012), pp. 391–408. doi:
10.1007/s10596-011-9230-x.

63

https://doi.org/10.1007/s00521-021-05886-y
https://doi.org/10.1007/s00521-021-05886-y
https://doi.org/10.1016/j.petrol.2014.06.004
https://doi.org/10.2118/203033-MS
https://doi.org/10.2118/203934-MS
https://doi.org/10.2118/193855-MS
https://doi.org/10.2118/182660-PA
https://doi.org/10.1007/s10596-018-9723-y
https://doi.org/10.1007/s10596-018-9723-y
https://doi.org/10.3997/2214-4609.202244065
https://doi.org/10.2118/212207-MS
https://doi.org/10.2118/212207-MS
https://doi.org/10.1016/j.petrol.2022.111266
https://doi.org/10.1016/j.petrol.2022.111266
https://doi.org/10.1007/s10596-011-9230-x

References

[14] I. S. Devold. «Graph-based Methods for Data-driven and Reduced-order Reservoir Model-
ing». Specialization Project (unpublished work). NTNU Trondheim, Dec. 2022.

[15] A. Yapparova, S. Matthäi, and T. Driesner. «Realistic simulation of an aquifer thermal energy
storage: Effects of injection temperature, well placement and groundwater flow». In: Energy
76 (2014), pp. 1011–1018. doi: 10.1016/j.energy.2014.09.018.

[16] M. Collignon, Ø. S. Klemetsdal, and O. Møyner. «Simulation of Geothermal Systems Using
MRST». In: Advanced Modeling with the MATLAB Reservoir Simulation Toolbox. Ed. by
K.-A. Lie and O. Møyner. Cambridge University Press, 2021, pp. 491–514. doi: 10.1017/
9781009019781.018.

[17] Ø. Klemetsdal et al. «Modeling and Optimization of Shallow Geothermal Heat Storage».
In: ECMOR 2022. European Association of Geoscientists & Engineers, Sept. 2022. doi:
10.3997/2214-4609.202244109.

[18] J. M. Nordbotten and M. A. Celia. Geological Storage of CO2: Modeling Approaches for
Large-Scale Simulation. John Wiley & Sons, 2011.

[19] K.-A. Lie. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User
Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge: Cambridge
University Press, 2019. doi: 10.1017/9781108591416.

[20] Ø. S. Klemetsdal. «Efficient Solvers for Field-Scale Simulation of Flow and Transport in
Porous Media». PhD thesis. NTNU, 2019.

[21] D. W. Peaceman. «Interpretation of Well-Block Pressures in Numerical Reservoir Simula-
tion With Nonsquare Grid Blocks and Anisotropic Permeability». In: Society of Petroleum
Engineers Journal 23.03 (1983), pp. 531–543. doi: 10.2118/10528-PA.

[22] SINTEF Computational Geosciences. The MATLAB Reservoir Simulation Toolbox (MRST).
Version 2023b. 2023. url: https://www.sintef.no/projectweb/mrst/.

[23] A. Quarteroni. Numerical Models for Differential Problems. 2nd ed. Milano: Springer Milan,
2014. doi: 10.1007/978-88-470-5522-3.

[24] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. 2nd ed. Vol. 37. Texts in
Applied Mathematics. Berlin, Germany: Springer, 2007. doi: 10.1007/b98885.

[25] K.-A. Lie and O. Møyner, eds. Advanced Modeling with the MATLAB Reservoir Simulation
Toolbox. 1st ed. Cambridge University Press, Nov. 2021. doi: 10.1017/9781009019781.

[26] K.-A. Lie et al. «Open-source MATLAB implementation of consistent discretisations on
complex grids». In: Computational Geosciences 16.2 (2012), pp. 297–322. doi: 10 . 1007 /
s10596-011-9244-4.

[27] S. Krogstad et al. «MRST-AD – an Open-Source Framework for Rapid Prototyping and
Evaluation of Reservoir Simulation Problems». In: SPE Reservoir Simulation Symposium.
Houston, Texas, USA: Society of Petroleum Engineers, 2015.

[28] O. Møyner. «Faster Simulation with Optimized Automatic Differentiation and Compiled
Linear Solvers». In: Advanced Modeling with the MATLAB Reservoir Simulation Toolbox.
Ed. by K.-A. Lie and O. Møyner. Cambridge University Press, 2021, pp. 200–254. doi:
10.1017/9781009019781.011.

[29] D. S. Oliver and Y. Chen. «Recent progress on reservoir history matching: a review». In:
Computational Geosciences 15.1 (2011), pp. 185–221. doi: 10.1007/s10596-010-9194-2.

[30] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd ed. New York, NY, USA: Springer,
2006. doi: 10.1007/978-0-387-40065-5.

[31] K.-A. Lie and S. Krogstad. «Data-driven Modelling With Coarse-grid Network Models».
In: European Conference on the Mathematics of Geological Reservoirs 2022 (The Hague,
Netherlands). EAGE, Sept. 2022. doi: 10.3997/2214-4609.202244065.

[32] S. Krogstad. «Introduction to adjoint methods for time‐dependent systems». Presented at
the Geilo Winter School (online). 2022.

[33] R. March et al. «A Unified Framework for Flow Simulation in Fractured Reservoirs». In:
Advanced Modeling with the MATLAB Reservoir Simulation Toolbox. Ed. by K.-A. Lie and O.
Møyner. Cambridge University Press, Nov. 2021, pp. 454–490. doi: 10.1017/9781009019781.
017.

64

https://doi.org/10.1016/j.energy.2014.09.018
https://doi.org/10.1017/9781009019781.018
https://doi.org/10.1017/9781009019781.018
https://doi.org/10.3997/2214-4609.202244109
https://doi.org/10.1017/9781108591416
https://doi.org/10.2118/10528-PA
https://www.sintef.no/projectweb/mrst/
https://doi.org/10.1007/978-88-470-5522-3
https://doi.org/10.1007/b98885
https://doi.org/10.1017/9781009019781
https://doi.org/10.1007/s10596-011-9244-4
https://doi.org/10.1007/s10596-011-9244-4
https://doi.org/10.1017/9781009019781.011
https://doi.org/10.1007/s10596-010-9194-2
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.3997/2214-4609.202244065
https://doi.org/10.1017/9781009019781.017
https://doi.org/10.1017/9781009019781.017

References

[34] A. Kiærr et al. «Evaluation of A Data-Driven Flow Network Model (FlowNet) for Reser-
voir Prediction and Optimization». In: ECMOR XVII – 17th European Conference on the
Mathematics of Oil Recovery. European Association of Geoscientists & Engineers, 2020. doi:
10.3997/2214-4609.202035099.

[35] O. Leeuwenburgh et al. «Application of Coupled Flow Network and Machine Learning Models
for Data-Driven Forecasting of Reservoir Souring». In: ECMOR 2022. European Association
of Geoscientists & Engineers, Sept. 2022. doi: 10.3997/2214-4609.202244046.

[36] Z. Guo, S. Sankaran, and W. Sun. «Reservoir Modeling, History Matching, and Characteri-
zation with a Reservoir Graph Network Model». In: SPE Reservoir Evaluation & Engineering
(2023), pp. 1–13. doi: 10.2118/209337-PA.

[37] S. Nnozuba. «A dual mesh and network model for closed-loop reservoir management». Mas-
ter’s thesis. The University of Tulsa, 2020.

[38] J. D. Jansen et al. «The egg model – a geological ensemble for reservoir simulation». In:
Geoscience Data Journal 1.2 (2014), pp. 192–195. doi: 10.1002/gdj3.21.

[39] E. Peters et al. «Extended Brugge benchmark case for history matching and water flooding
optimization». In: Computers & Geosciences. Benchmark problems, datasets and method-
ologies for the computational geosciences 50 (Jan. 2013), pp. 16–24. doi: 10.1016/j.cageo.
2012.07.018.

[40] P.-O. Persson and G. Strang. «A Simple Mesh Generator in MATLAB». In: SIAM Review
46.2 (2004), pp. 329–345. doi: 10.1137/S0036144503429121.

[41] R. L. Berge, Ø. S. Klemetsdal, and K.-A. Lie. «Unstructured Voronoi grids conforming to
lower dimensional objects». In: Computational Geosciences 23.1 (2019), pp. 169–188. doi:
10.1007/s10596-018-9790-0.

[42] I. S. Devold. Graph-based methods. 2023. url: https://bitbucket.org/ingvilddevold/graph-
based-methods/.

[43] O. Møyner et al. sintefmath/JutulDarcy.jl: v0.2.6. Version v0.2.6. June 2023. doi: 10.5281/
zenodo.8013240. url: https://github.com/sintefmath/JutulDarcy.jl.

[44] The Open Porous Media (OPM) Initiative. The Norne dataset. url: https://github.com/
OPM/opm-data.

[45] T. Manzocchi et al. «Sensitivity of the impact of geological uncertainty on production from
faulted and unfaulted shallow-marine oil reservoirs: objectives and methods». In: Petroleum
Geoscience 14.1 (2008), pp. 3–15. doi: 10.1144/1354-079307-790.

[46] R. Diestel. Graph Theory. 5th ed. Vol. 173. Graduate Texts in Mathematics. Berlin, Germany:
Springer, 2017. doi: 10.1007/978-3-662-53622-3.

65

https://doi.org/10.3997/2214-4609.202035099
https://doi.org/10.3997/2214-4609.202244046
https://doi.org/10.2118/209337-PA
https://doi.org/10.1002/gdj3.21
https://doi.org/10.1016/j.cageo.2012.07.018
https://doi.org/10.1016/j.cageo.2012.07.018
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.1007/s10596-018-9790-0
https://bitbucket.org/ingvilddevold/graph-based-methods/
https://bitbucket.org/ingvilddevold/graph-based-methods/
https://doi.org/10.5281/zenodo.8013240
https://doi.org/10.5281/zenodo.8013240
https://github.com/sintefmath/JutulDarcy.jl
https://github.com/OPM/opm-data
https://github.com/OPM/opm-data
https://doi.org/10.1144/1354-079307-790
https://doi.org/10.1007/978-3-662-53622-3

Appendix A

Basic Graph Theory*

In its most general form, a graph is a highly versatile tool that can be used to represent a wide
range of systems. Abstractly speaking, we could say that a graph models pairwise relations between
objects. We are free to choose both what the objects represent and what a relation between two
objects means. The generality of graphs becomes apparent in their many of applications, including
classical problems like shortest path or maximum flow in a network, the chemical model of a
molecule, and even sociograms in social sciences.

The purpose of this chapter is to introduce some fundamental definitions and notation in graph
theory. Different matrix representations for use in a programming setting are presented, and a
brief introduction to MATLAB’s graph framework is given.

A.1 Definitions

A graph is a pair of sets G = (V,E), where the elements of V are called nodes or vertices, and the
elements of E are called edges [46]. An edge connects two nodes, such that E ⊆ [V]2. We denote
an edge e ∈ E between the nodes v1, v2 ∈ V by e = (v1, v2), and call v1 and v2 incident with the
edge e. For directed graphs, the edge e goes from v1 to v2. For our purpose, undirected graphs are
sufficient, in which case the edges are bidirectional and direction does not play a role. Figure A.1
illustrates an undirected graph.

In many applications, each edge and/or node in the graph is assigned a numerical value, a weight,
which can represent some additional information. Figure A.2 illustrates a simple example of a

Figure A.1: A generic undirected graph. The blue discs represent the nodes, which are connected by the
edges.

67

Appendix A. Basic Graph Theory*

v1 v2

v3 v4

Figure A.2: A simple graph.

graph G = (V,E) with nodes V = {v1, . . . , v4} and edges E = {(v1, v2), (v2, v3), (v2, v4), (v3, v4)}.

We call two nodes adjacent if there is an edge between them. Moreover, we let the neighborhood
N(v) of a node v denote the set of nodes adjacent to v. Similarly, two edges are adjacent if they
have an end-node in common, and we let the neighborhood N(e) of e be the set of all edges adjacent
to e.

A.2 Matrix representation

In a programming setting, there are a number of ways to represent a graph. Let G = (V,E) be a
graph with nodes V = {v1, . . . , vn} and edges E = {e1, . . . , em}.

The adjacency matrix A = (aij)n×n has entries

aij :=

{
1 if (vi, vj) ∈ E

0 otherwise.

For the graph in Figure A.2, the adjacency matrix is

A =

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 .

Having an adjacency matrix representation, it is trivial to find the neighborhood of a node vi.
We simply find the nonzero entries in row/column i, N(vi) = {j | aij = aji = 1}. Moreover, the
adjacency matrix provides a simple way of finding the extended neighborhood, N̂(vi), the neighbors
of the neighbors. The matrix ATA = (âij) will have nonzero entries on the diagonal, and for nodes
i, j that share a neighbor. For undirected graphs, AT = A, so we can skip the transpose and look
at A2 instead. Then, N̂(vi) = {j | âij = 1, j ̸= i}.

The incidence matrix B = (bij)n×m has elements

bij :=

{
1 if vi ∈ ej

0 otherwise.

The incidence matrix of the graph in Figure A.2 is

B =

1 0 0 0
1 1 1 0
0 1 0 1
0 0 1 1

 .

Finally, a graph can be represented by an edge list C = (cij)m×2, where the rows are edges in the

68

A.3. The MATLAB graph

graph, C = [e1, e2, . . . , em]T . For our simple example graph, this gives

C =

v1 v2
v2 v3
v3 v4
v2 v4

 .

A.3 The MATLAB graph

MATLAB has a built-in graph object for undirected graphs. In its most basic form, such a graph
has a set of nodes and a set of edges, and is defined by an edge list. The nodes and edges are
represented by each their table. While additional properties on a graph are usually restricted to
weights, the MATLAB graph is flexible, supporting assignment of custom properties to both nodes
and edges. A new property is simply added as a column in the corresponding table. The graph
object comes with a set of basic methods, such as accessing the adjacency and incidence matrix,
or adding and removing nodes or edges.

69

	Abstract
	Sammendrag
	Preface
	Introduction
	Contribution
	Outline

	Flow in Porous Media*
	Geological model
	Single-phase flow
	Multiphase flow
	Physical properties
	Flow equations

	Well model
	The full model

	Discretization*
	The finite-volume method
	Computational grid
	Two-point flux approximation
	Discrete operators
	Newton's method
	The MATLAB Reservoir Simulation Toolbox (MRST)

	Model Calibration
	Formulating the optimization problem*
	The Levenberg–Marquardt algorithm*
	Calculating the Jacobian from an adjoint simulation
	Parameter limits and scaling

	Graph-based Reservoir Simulation
	Partition-based network models (CGNet)
	Constructing the coarse graph
	Completing the model with upscaling
	Modifying the partition
	Flow-adapted models using residence times

	Triangulation-based network models (TriNet)
	Constructing the coarse graph
	Calibrating the initial saturation
	Extending to 2.5D
	Flow-adapted models using distance to closest well

	Automatic graph refinement*
	Selection for refinement
	Refinement
	Initial parameter values for new nodes and edges
	Full graph optimization algorithm

	Implementation and MRST integration

	Simulation Results
	A demo problem
	Homogeneous case
	Heterogeneous case

	The Egg model
	Calibration
	Testing predictive ability through control perturbations

	The Norne field
	The SAIGUP model
	Calibrating the initial saturation
	Stacked TriNet

	The Brugge model
	Calibration
	Control optimization

	Conclusions and outlook
	References
	Basic Graph Theory*
	Definitions
	Matrix representation
	The MATLAB graph

