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Abstract

The Norwegian aquaculture industry faces a significant challenge with the prevalence of salmon lice.
The salmon louse Lepeophtheirus salmonis harm both wild and farmed salmon by reducing their
growth rate and ultimately causing their death. To address this issue, the industry is experimenting
with various methods and operating models to gain control over the salmon lice. In addition, the
Norwegian public authorities have implemented regulations related to lice management to minimize
the negative impacts of salmon lice and promote ethical and efficient production of farmed salmon.
One objective of this thesis is to investigate different regression models for count data using a
baseline count variable. In addition to this, we are interested in applying the regression models
to study the effect of the different non-medicinal treatment methods. Finally, we are interested in
resuming the studies done in Mæland 2022 on re-infestation of salmon lice after delousing.

In this thesis, the development of salmon lice at 35 distinct locations in the Trøndelag region
between 2018 and 2019 have been studied. Count data obtained from various salmon farms were
analysed to examine the prevalence of salmon lice. The recorded number of salmon lice have been
compared to different explanatory variables to determine their impact on the response variable.

To investigate the various delousing treatment methods and the re-infestation of salmon lice,
generalized linear models including Poisson and negative binomial regression models, and multiple
linear and random intercept models have been fitted to the observed count data. The results
obtained in the thesis suggests that a multiple linear and random intercept model with a log-
transformed response variable seemed to fit the salmon lice count data, while the Poisson and
negative binomial models led to a poor model fit. According to the multiple linear model, it
appeared that the Optilicer treatment method performed better than the LiceFlusher method, but
when adding a random intercept to account for location based clustering, there were no indications
that any of the treatment methods were better than the other. In the studies of re-infestation of
mobile lice, the results suggested that the temperature of the sea, average weight, and the placement
of salmons after delousing was associated with re-infestation. This result did not completely
coincide with the results obtained in Mæland 2022, where also lice skirt was associated with re-
infestation.
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Sammendrag

Den norske lakseoppdrettsindustrien st̊ar overfor en betydelig utfordring med forekomst av lak-
selus (Leopeohtheirus salmonis). Lakselusen skader b̊ade villaks og oppdrettslaks ved å redusere
vekstraten deres og til slutt for̊arsake deres død. For å takle denne utfordringen eksperimenterer
industrien med ulike metoder og driftsmodeller for å f̊a kontroll over utbredelsen av lakselus. I
tillegg har norske myndigheter innført forskrifter knyttet til h̊andtering av lakselus for å minimere
de negative konsekvensene av lakselus og fremme etisk og effektiv produksjon av oppdrettslaks.

Et m̊al med denne avhandlingen er å undersøke ulike regresjonsmodeller for telledata ved hjelp av
en grunnlinjetellingsvariabel (baseline). I tillegg er vi interessert i å anvende regresjonsmodellene
for å studere effekten av ulike ikke-medikamentelle behandlingsmetoder. Til slutt er vi interessert
i å gjenoppta studiene gjort i Mæland 2022 om re-smitte av lakselus etter avlusning.

I dette prosjektet har utviklingen av lakselus ved 35 ulike lokasjoner i Trøndelag-regionen i perioden
mellom 2018 og 2019 blitt studert. Telledataen som er innhentet fra ulike lakseoppdretterier har
blitt analysert for å undersøke forekomsten av lakselus. Det registrerte antallet lus er blitt sam-
menlignet med ulike forklaringsvariabler for å bestemme deres innvirkning p̊a responsvariabelen.

For å undersøke de ulike avlusningsmetodene og resmitte av lakselus har vi tilpasset generaliserte
lineære modeller, inkludert Poisson- og negativ binomisk regresjonsmodeller, samt multiple lineære
og random intercept modeller, til de observerte telledataene. Resultatene fra denne avhandlingen
antyder at en multippel lineær og random intercept-modell med en log-transformert responsvariabel
synes å være best egnet til å beskrive tellingsdataene for lakselus. Derimot ga Poisson- og negative
binomiske modeller en d̊arlig tilpasning av dataen. Den multiple lineære modellen tydet p̊a at
Optilicer behandlingsmetoden presterte bedre enn LiceFlusher -metoden. Dette resultatet var ikke
i samsvar med resultatene fra random intercept modellen, som ga ingen indikasjon p̊a at noen
av behandlingsmetodene var bedre enn de andre. I studien om re-smitte av lakselus antydet
resultatene at sjøtemperatur, gjennomsnittlig vekt p̊a laksen og plassering av laksen etter avlusning
var assosiert med re-smitte. Dermed stemte ikke resultatene helt overens med de i Mæland 2022,
hvor ogs̊a lakseskjørt var koblet til re-smitte.
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1 Introduction

Please note that Sections 1 and 2 are substantially revised versions of Mæland 2022, except Section
2.4 which is new. Section 3 is also new and Section 4 is inspired by Mæland 2022, but concerns
for the most part a new analysis.

1.1 Background

The Norwegian aquaculture industry has since the 1970s been facing a major issue with the salmon
louse Lepeophtherius salmonis (Krøyer 1837), commonly referred to as salmon lice (Hamre et al.
2013, Thorvaldsen, Frank and Sunde 2019). In recent years, the presence of Caligus elongatus
(Normann, 1832) has posed challenges for salmon farmers as well (Gaasø 2019, Hemmingsen et al.
2020). The parasites Lepeophtherius salmonis and Caligus elongatus will be collectively referred
to as sea lice, while the term salmon lice will exclusively denote Lepeophtherius salmonis. In recent
years, the growth of salmon farming has led to better conditions for the parasites to grow and
spread, compared to their natural environment in seawater (Torrissen et al. 2013). The salmon
lice attach to the skin of salmon (both wild and farmed), feeding on their blood, skin, and tissue.
They cause skin lesions, tissue damage, and impaired movement. Infested salmon may experience
reduced growth rates, delayed maturation, and increased vulnerability to other diseases, which can
eventually lead to death (Finstad et al. 2011, Forseth et al. 2017). The life cycle of the salmon
lice consists of eight stages, and these are classified into three developmental categories: sessile,
mobile, and adult female lice (Hamre et al. 2013).

To control the population of salmon lice in aquaculture facilities worldwide, strict lice control
regimes have been put in place. These regimes require all salmon farms to count and report the
average number of salmon lice per salmon in the facility every week. In Norway, the salmon lice
must be counted on at least ten random salmons in each cage, and the average count is referred to
as the lice number. The counts must be reported for the three categories of developmental stages.

According to the regulations set by The Ministry of Trade, Industry and Fisheries, there should
be no more than 0.5 adult female lice on average per salmon in the facility at all times. The
restrictions are specifically imposed on adult female lice because they are the most prolific egg
producers and play a significant role in the reproduction and population growth of lice. To ensure
that the limit is not exceeded, measures such as delousing treatments and preventive measures
must be implemented. The preventative measures aim to protect the salmon farms against salmon
lice, and the two most commonly preventative measures include lice skirts and the use of cleaner
fish. Lice skirts are typically made of a fine mesh material and are attached to the top of the
salmon cages, creating a barrier that prevents sea lice from accessing the salmon. Cleaner fish are
used in the salmon industry as a natural method of controlling sea lice. The cleaner fish, which
are typically species such as wrasse (Labridae) or lumpfish (Cyclopterus lumpus), eat the salmon
lice off the salmon helping to keep the parasite under control. The aim of the delousing treatments
is to reduce the pressure of lice in cages where the lice pressure is high. The treatments can be
split into five categories: Bath treatment, oral treatment, lice flusher, freshwater treatment and
thermic treatment. The bath and oral treatments are referred to as medicinal treatment and has
been extensively used to fight the problem of sea lice. Bath treatments are performed in two ways.
The first method is an in-cage treatment where the salmon cage is lined with a tarpaulin and
the volume of the water within the cage is reduced. The other method is a well-boat treatment
and includes crowding and then pumping the salmon into a well boat. Then for both methods,
the recommended treatment concentration for the chemotherapeutant is added and the salmon
is held in the bath for the treatment period. After treatment the tarpaulin is removed, or the
salmon are pumped out and the chemotherapeutant is released into the water. The oral treatment
includes all treatments where chemotherapeutants are delivered through fish feed. The extensive
use of medicinal treatments against salmon lice has led to the salmon lice developing a resistance
towards the delousing chemicals. Thus, the non-medicinal methods lice flusher, freshwater treat-
ment and thermic treatment are more used among salmon farmers worldwide today and make up
the treatments considered in this thesis.
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The lice flusher method is a delousing treatment that involves the use of a specialized vessel or barge
equipped with high-pressure water jets to remove lice from the salmon. The freshwater treatment
exploits the fact that salmon lice are sensitive to fresh water and generally cannot survive when
water salinity is very low. By temporarily exposing salmon to fresh water, the salmon lice detach
and can then be removed. Salmon lice release their hold at high water temperatures. This is
exploited in the thermic treatment method, where the salmon is transferred to a treatment tank
with heated salt water between 28◦ and 34◦ for about 30 seconds so that the salmon lice die and
fall of the salmon.

1.2 The RegLus-project

The project Taskforce Salmon Lice aims to establish knowledge on how salmon lice spread within
and between salmon farms. Project RegLus is deployed as a part of Taskforce Salmon Lice with the
focus on studying salmon cages that are being treated for salmon lice with non-medicinal methods.
The RegLus-project wants study and map the salmon lice throughout the delousing process and
identify the stages in the delousing process where variations in the level of salmon lice can be
observed. To do this, they have collected data from salmon lice counting’s from delousing units
using non-medicinal methods from 2018 to 2019. The counts of salmon lice were registered at four
distinct time points during delousing treatments. We refer to the counting’s done at the first time
point as the first count, counting’s done at the second time point as the second count, and so on.

The first count, henceforth referred to as the ”0-sample”, should ideally have been performed
shortly before the delousing treatment started on a random sample of 20 fish from the cage. The
second count, from now on referred to as the ”1-sample”, was done during crowding; this is the
process when the salmon is gathered in a crowding net before delousing treatment. Figure 1
illustrates a crowding net in a delousing unit. One aim of the RegLus-project is to study the
claim that some salmon lice fall off the salmon during the crowding process. A decline in the
count of salmon lice between the second and the first count, i.e., between the 1-sample and the
0-sample, would support this claim. The third count, henceforth referred to as the ”2-sample” was
made on the delousing unit after treatment and before the salmon were placed back into a cage.
Another objective of the RegLus-project is to investigate the effect of the various non-medicinal
delousing treatment methods; lice flusher-, freshwater- and thermic treatment. This can be studied
by investigating the prevalence of salmon lice in the 2-sample. Our main focus in this thesis will
be on the 2-sample as compared to the 1-sample. Salmon lice can survive in the sea for some time
without a host, and potentially re-attach to a new host. The fourth count, from now on referred
to as the ”3-sample”, should ideally have been taken on a random sample of 20 fish from the cage
within 40 hours after treatment. The RegLus-project aim to quantify re-infestation of salmon lice.
An increase in mobile lice between the 2-sample and the 3-sample could be taken as evidence of
re-infestation. This was studied in Mæland 2022 and will also be studied further in this thesis. We
specify that for each of the four samples, the three salmon lice stages, mobile-, sessile- and adult
female lice, and Caligus elongatus, were counted separately. This means that each sample contains
four different counts.
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Figure 1: Visualization of a crowding net in a salmon cage attached to a delousing unit.

Source: Marit Nersten, 2021

1.3 Outline and aim of this thesis

Section 2 provides some details regarding statistical models for count data. Specifically, we will
focus on Poisson regression, negative binomial regression and linear regression on log-transformed
count data, including random intercept models. In this section, information is also provided
regarding hypothesis testing and model validation. In Section 3, we introduce the concept of a
baseline count and investigate how to best include a baseline in a regression analysis with relevant
theory and simulation studies. Details regarding the dataset, pre-processing process and descriptive
statistics is given in Section 4. Section 4 also provides the data analysis and results. Finally, a
discussion with recommendations for further work is presented in Section 5.
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2 Regression models for count data

The theory in this section is based on Fahrmeir et al. 2013 unless otherwise specified. In this
section we will introduce three commonly used regression models for count data; Poisson, negative
binomial and linear regression on log-transformed counts. These models are part of the wider
framework of generalized linear models (GLM). In GLM, one assumes that the distribution of the
response variable Y belongs to the exponential family, and that the mean, µ, is related to a linear
predictor η = xTβ via a link function g(), such that µ = g−1(η). The linear predictor is a linear
combination of p covariates including the intercept. We will also introduce the random intercept
model, which incorporates group-level variability and within-group dependencies by estimating
unique intercepts for each group.

In this thesis, we consider response variables Y that are counts, that is, our response variables are
non-negative integers Y ∈ {0, 1, 2, 3, ...}. In the application, the response variable is the number
of salmon lice count on a sample of n salmon (typically n = 20). Therefore, we consider models
where each count variable has a so-called exposure unit attached to it. This exposure unit depends
on the context the data is collected. An exposure unit can refer to the amount of time it takes
to measure a unit or to the sample size of the observational units. In the case of counting salmon
lice, the exposure unit therefore refers to the sample size of salmon that is used to estimate the
salmon lice number in each cage.

2.1 Poisson Regression

A Poisson regression model is typically used to model count variables. In the context of generalized
linear models, this leads to Poisson regression models. In the following, we assume that we have
count responses Yi which are based on ni exposure units. This information is available, therefore
the values of ni > 0 are known. For counts Yi collected on a sample size (0, ni], we use ni as an
exposure unit for observation Yi. In addition, we have p covariates xi including the intercept for
i = 1, ..., n available. This allows us to formulate the following Poisson regression model.

Yi ∼ Poisson(niλ(xi,β)) i = 1, ..., n independent with (1)

P(Yi = yi) = exp(−niλ(xi,β))
(niλ(xi,β))

yi

yi!
, (2)

where ni is known. Further we assume that the unit Poisson rate λ(xi,β) > 0 satisfies

λ(xi,β) := exp(xT
i β)) ≥ 0 (3)

for p unknown regression parameters β and known covariates xi. In Poisson regression we also
know that the expected response is equal to the variance of the response. Thus we have

E(Yi) = µi = niλ(xi,β) = exp(xT
i β + ln(ni)) = Var(Yi). (4)

In the following, λi denotes λ(xi,β). The log-likelihood for β is given by

l(β) =

n∑
i=1

logf(yi|β) =
n∑

i=1

log

(
(niλi)

yiexp(−niλi)

yi!

)
=

n∑
i=1

[yilog(niλi)− niλi − log(yi!)]

∝
n∑

i=1

[yi(x
T
i β + log(ni))− exp(xT

i β + log(ni))].

(5)

The parameter estimates β̂ which maximize l(β) are found via the so-called Fisher scoring al-
gorithm, which involves the score vector
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s(β̂) =
∂l(β)

∂β
=

n∑
i=1

si(β) =

n∑
i=1

xi(yi − exp(xT
i β + log(ni))). (6)

and the Fisher information matrix

F (β) =

n∑
i=1

Cov[si(β)]. (7)

It can be shown that the maximum likelihood estimator β̂ is asymptotically unbiased and mul-
tivariate normal. The variance of each estimator is taken as the corresponding diagonal entries of
F (β). Note that the exposure unit ni is present in l(β) and si(β) only as an offset to the linear
predictor. When using GLM in R to fit a Poisson regression model to count data with varying
exposures, this is specified using the offset function, i.e. glm(yi ∼ xi + offset(ni)).

In the event that the counted response variables within the data exhibit a greater degree of variab-
ility than we assumed by the Poisson regression model, the model is considered to be overdispersed.
This means that Var(Yi) > E(Yi) = λi, where λi = niexp(x

T
i β). To address this, a dispersion

parameter ϕ can be introduced by supposing Var(Yi) = ϕλi. The estimation of the dispersion
parameter can be carried out via the average deviance or the average Pearson statistic of the
model:

ϕ̂P =
P

n− p
or ϕ̂D =

D

n− p
, (8)

where n is the number of observations, p is the number of parameters in the model, D is the
deviance and P is the Pearson statistic. Overdispersion is indicated when the dispersion parameter
ϕ exceeds 1, whereas under-dispersion is suggested if it is less than 1. The deviance D statistic is
given as

D = 2

n∑
i=1

{yilog
(
yi

λ̂i

)
− (yi − λ̂i)} =

n∑
i=1

yilog

(
yi

λ̂i

)
−

n∑
i=1

(yi − λ̂i), (9)

and the Pearson statistics is defined as

P =

n∑
i=1

(yi − λ̂i)
2

λ̂i

. (10)

The deviance residual is defined as

di,P = sign(yi − λ̂i)

√
2

[
yilog

(
yi

λ̂i

)
− (yi − λ̂i)

]
, (11)

where sign(yi − λ̂i) = 1 if yi − λ̂i > 0 and sign(yi − λ̂i) = −1 if yi − λ̂i < 0. The Pearson residuals
are defined as

ri,P =
(yi − λ̂i)√
Var(yi)

=
(yi − λ̂i)√

λ̂i

. (12)

The deviance and Pearson statistics adhere to an approximately χ2-distribution with n−p degrees
of freedom and can be employed to assess the goodness of fit of the model. If D is less than χ2

α,n−p,
there is no proof to suggest that the model is not a good fit to the data. Typically, the Pearson
statistic defined in Equation (10) serves as a test for overdispersion.
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2.2 Negative Binomial Regression

The issues of model overdispersion is typical for count data. We can model overdispersion us-
ing a mixing approach. Consider a conditional Poisson regression model given random means
and an independent mixing distribution for the random means. In particular, suppose that
the random count variable Yi is Poisson distributed, conditional on the parameter λi so that

f(Yi = yi|λi) =
exp(−niλi)(niλi)

yi

yi!
. Assume that the parameter λi is a random variable rather than

being a completely deterministic function of xi. In particular, let λi = µiνi, where µi is a determ-
inistic function of xi, typically µi = niexp(xiβ) and νi > 0, often referred to as a random subject
effect, is i.i.d. with density g(νi). Following Cameron and Trivedi 2005, the marginal density of yi
can be expressed as

P (Yi = yi) =

∫
P (Yi = yi|νi)g(νi)dνi, (13)

where g(νi) is the mixing distribution. Furthermore, let νi be gamma-distributed with mean
E(νi) = 1 and variation Var(νi) =

1
r so that

g(ν) =
νr−1
i exp(−νir)r

r

Γ(r)
, for r > 0. (14)

It then follows that

P (Yi = yi) =
Γ(r + yi)

Γ(r)Γ(yi + 1)

(
r

r + µi

)r(
µi

µi + r

)yi

, yi = 0, 1, 2, ..., (15)

which we can recognize as a negative binomial distribution with,

E(Yi) = µi and Var(Yi) = µi +
µ2
i

r
,

where, as before, µi = niexp(x
T
i β). Note that as r increases, Var(Yi) → E(Yi) and the distribution

of Yi is Poisson.

The parameters of interest are β and r. Assuming the response variables Yi, i = 1, 2, ..., n are i.i.d.
negative binomial distributed, the log-likelihood function is derived as

l(β, r) =

n∑
i=1

(yi−1∑
j=0

log(j+r)

)
−

n∑
i=1

[logΓ(yi+1)+rlogr−rlog(µi+r)+yilogµi)−yilog(µi+r)]. (16)

Substituting µi = niexp(x
T
i β) in the log-likelihood function in Equation (16) and taking the

derivatives with respect to β and r, we obtain the score functions

sβ(β, r) =

n∑
i=1

(
rxi

yi − exp(xT
i β + log(ni))

exp(xT
i β + log(ni)) + r

)
, (17)

and

sr(β, r) =

n∑
i=1

(
yi−1∑
j=0

1

j + r

)
+logr−log(exp(xT

i β+log(ni))+r)+
exp(xT

i β + log(ni))− yi
exp(xT

i β + log(ni)) + r

)
. (18)

Following Nakashima 1997, we have that F12(β, r) = F21(β, r) = 0, and
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F11(β, r) =

n∑
i=1

rµixix
T
i

µi + r
, (19)

and

F22(β, r) =

n∑
i=1

(
E

(yi−1∑
j=0

1

(j + r)2

)
− µi

r(µi + r)

)
. (20)

In order to estimate β̂, the Fisher scoring algorithm can be used

β̂t+1 = β̂t + F−1
11 (β̂)s(β̂t). (21)

Similarly, for r̂ one may use
r̂t+1 = r̂t + F−1

22 (r̂t)s(r̂t). (22)

In R, using glm.nb to fit the negative binomial regression model, β and r are estimated iteratively.
An initial value of r̂ is set, β̂ is estimated, then β̂ is used to update r̂, etc until convergence of
both.

When t → ∞, the maximum likelihood estimates β̂ and r̂ follows the asymptotic distribution

(
β̂
r̂

)
∼ N

((
β
r

)
,

(
F−1
11 (β̂, r̂) 0

0 F−1
22 (β̂, r̂)

))
, (23)

where F11(β) and F22(r) are defined in Equation (19) and (20), respectively.

The Pearson statistic of the negative binomial regression model is defined as

P =

n∑
i=1

(yi − µ̂i)
2

µ̂i + r−1µ̂2
i

, (24)

and the formula for the Pearson residuals is given as

ri =
yi − µ̂i√
µ̂i + r−1µ̂2

i

(25)

The deviance statistic in the negative binomial is defined as

D = 2

n∑
i=1

(
yilog

(
yi
µ̂i

)
−(yi + r) log

(
r + yi
r + µ̂i

))
. (26)

The associated deviance residuals are expressed as

di = sign(yi − µ̂i)

√
2

(
yilog

(
yi
µ̂i

)
−(yi + r)log

(
r + yi
r + µ̂i

))
. (27)

2.3 Multiple Linear Regression

In a multiple linear regression model, we assume that there is a linear relationship between a
response variable and several explanatory variables. The response variable Yi is a count variable,
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which have a naturally skewed or kurtotic distribution. This type of variable tends to generate non-
normal distributions. In order to model this in a linear regression model, a data transformation
is needed for the counted response variable. A log-transformation of the count variables both
improves the normality and the homoscedasticity of the model residuals and the transformation is
specified by ln(Yi+1

ni
), where ni is as before the exposure for count number i. The extra +1-term is

added to avoid problems with the logarithm functions in case of a zero-count. The model, having
a log-transformed response variable and not unlogged explanatory variables, is referred to as a
log-level regression model. The model is written as

log

(
Yi + 1

ni

)
= β0 + β1xi1 + ...+ βkxip−1 + ϵi, (28)

for i = 1, ..., n. One can also write this in terms of an offset, i.e.,

log(Yi + 1) = β0 + β1xi1 + ...+ βkxip−1 + log(ni) + ϵi, (29)

where ϵi ∼ N(0, σ2). The multiple linear regression model can also be written in a matrix form. Let
Ỹ be the vector of means Yi+1

ni
, i = 1, ..., n. Assuming we have n sampling units (xi1, ..., xik, yi), 1 ≤

i ≤ n, such that each sampling unit represents an instance of Equation (29), we get

log(Ỹ ) = Xβ + ϵ, (30)

The error terms ϵi in the multiple linear regression model is assumed to be Gaussian

ϵ ∼ Nn(0, σ
2I). (31)

The parameter vector of interest, β, is estimated with either the maximum likelihood function
or the least squares method. Both these methods give the same estimators when we assume a
normal linear regression model, that is β̂ = (XTX)−1XT log(Ỹ ). The distribution of β̂ is given

by β̂ ∼ Np(β, σ
2(XTX)−1).

2.4 Random Intercept Models

The theory in this section is based on Fahrmeir et al. 2013 unless otherwise specified. The random
intercept model is the simplest model in the family of linear mixed models. The term mixed refers
to the use of a mix of fixed and random effects as covariates to model the dependent variable.
In general, fixed effects are quantitative covariates which represents the whole population being
studied, while random effects are quantitative variables which measures the individual deviation
from the population fixed effect.

For simplicity, we first only look at the case of just one covariate x (in addition to the intercept).
Let

(xij , yij), i = 1, ...,m, j = 1, ..., ni

denote the values of the covariate x and response variable y for subjects j = 1, ..., ni in clusters
i = 1, ...,m. For modelling the relationship between x and y, we start with the classical linear
model

yij = β0 + β1xij + ϵij , where ϵij i.i.d. N(0, σ2). (32)

In this model, we assume that all observations are independent.
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If there is reason for assuming cluster-specific heterogeneity, e.g. that yij and yil observed for
the same cluster should not be independent, we can introduce cluster-specific parameters γ0i and
obtain

yij =

fixed part︷ ︸︸ ︷
β0 + β1xij +

random part︷ ︸︸ ︷
γ0i + ϵij , (33)

where ϵij ∼ N(0, σ2) are the standard i.i.d. errors for the classical linear model. Further, β0 is the
fixed intercept, γ0i is the cluster-specific deviation from the fixed intercept β0. This is a random
variable and not a model parameter. Thus, β0 + γ0i is the random intercept for cluster i. β1 is the
fixed slope common to all clusters. We assume for the cluster deviation intercept

γ0i ∼ N(0, τ20 )

and that γ0i and ϵij are independent. The random intercept model therefore comes across as
a linear regression model with two error terms, where γi0 is a cluster-level error that is shared
between measurements on the same cluster i and ϵij is the observation error of the measurement
j in cluster i. The presence of a random intercept in the model creates a particular correlation or
dependency structure among the responses, yij . Given the random intercepts γi0, the yij are still
conditionally independent with

yij |γi0 ∼ N(β0 + β1xij + γ0i, σ
2).

The motivation for including a new random intercept is to ensure that we consider that observations
within a cluster are correlated, while those between clusters are independent. We look at the
joint marginal distribution of the responses. Following Fahrmeir et al. 2013, measurements yij for
cluster i are correlated with within-subject correlation coefficient, often referred to as the intraclass
correlation (ICC)

Corr(yij , yil) =
τ20

τ20 + σ2
, j ̸= l. (34)

Let yi represent the vector of responses in cluster i, andXi the ni×2-matrix of covariates (including
the intercept). Then

yi ∼ N(Xiβ, σ
2Ini

+ τ20Jni
), (35)

where Jni
denotes and (ni × ni)-matrix of ones and Ini

is the identity matrix.

Let Vi be the marginal covariance matrix for yi;

Vi = σ2Ini
+ τ20Jni

. (36)

The fixed effects β are estimated using maximum likelihood (ML), while the random effect paramet-
ers σ2 and τ20 are estimated using restricted maximum likelihood (REML). According to Langaas
and Hem 2018, REML is used to get a better estimator for the random effects than using regular
ML, because it is less downwards biased. However, even though REML provides estimates that
are closer, on average, to the true value of the parameters being estimated, linear mixed models
does in general not give unbiased estimates for the parameters in Vi.

The inverse matrix of Vi is used as the weighting matrix for the estimation of the fixed effect as

β̂ = (

m∑
i=1

XT
i V̂i

−1
Xi)

−1
m∑
i=1

XT
i V̂i

−1
Yi,

and we get

β̂ ≈ N(β, (

m∑
i=1

XT
i V̂i

−1
Xi)

−1).
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The random effect parameters are as mentioned estimated with restricted maximum likelihood
(REML). The transformation method and the integration method are two different approaches used
to obtain the estimates of the model parameters with REML. In short terms, the transformation
method transforms the response variable and estimates the variance components indirectly, while
the integration method integrates the likelihood function over the random effects and estimates
the random effects and variance components together. In the following, we define ϑ = (σ2

0 , τ
2
0 ).

The integration method can be given as

lREML(ϑ) = log

∫
L(β, ϑ)dβ,

and one can demonstrate that the REML log-likelihood is

lREML(ϑ) = lP (ϑ)−
1

2
log|

m∑
i=1

XT
i V (ϑ)−1

i Xi|.

lP (ϑ) is the profile log-likelihood given by lP (ϑ) = − 1
2 log|V (ϑ)| − 1

2 (y − Xβ̂(ϑ))TV (ϑ)−1(y −
Xβ̂(ϑ)). The REML estimator for ϑ is found by maximizing lREML(ϑ).

2.5 Hypothesis testing

Hypothesis testing is used to check the significance of the covariates in the different regression
models. Due to the nature of the response variables and the variation of the model’s characteristics,
the hypothesis testing differs slightly across the multiple linear, Poisson, negative binomial and
random intercept regression models. However, common for all the models, to test the significance
of a particular regression coefficient, βj , the hypothesis statement is typically given by

H0 : βj = 0,

vs.

H1 : βj ̸= 0.

In a multiple linear regression model, the t-test is used to check the significance of the individual
covariance in the model. Each covariate’s coefficient is tested against the null hypothesis of no
association. The test statistic for the t-test is based on the t-distribution:

Tj =
β̂j

SE(β̂j)
∼ tn−p−1,

where

SE(β̂j)
2 =

σ̂2∑n
i=1(xji − x̄)2

.

The null hypothesis is not rejected if the test statistic, Tj , lies in the acceptance region:

−tα/2,n−2 < Tj < tα/2,n−2.

For GLM regression models such as the Poisson and the negative binomial model, the hypothesis
testing for individual covariates is typically done using Wald tests. Wald tests assesses the signific-
ance of the coefficient estimates by comparing them to a standard normal distribution. Following
Fahrmeir et al. 2013, the Wald statistic is given as

w = t2j =

(
β̂j

ajj

)2

, (37)
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where ajj is the j-th diagonal element of the asymptotic covariance matrix A = F−1(β̂). The test
is typically based on the statistic tj , which asymptotically follows a standard normal distribution
N(0, 1). The null hypothesis is rejected if the absolute value of tj , denoted as |tj |, is greater than
the critical value z1−α/2. Here, z1−α/2 represents the (1 − α/2)-quantile of the standard normal
distribution.

The likelihood ratio test compares the fit of a full model, which includes the covariate of interest,
with the fit of a reduced model that excludes the covariate. This test can also be employed to
compare different models. By comparing the likelihoods of nested models, the test determines
whether the more complex model significantly improves the fit compared to the simpler, reduced
model. For notation simplicity, let A refer to the full model and B refer to the reduced model
that is nested within the larger model. That is, B is a sub-model of A. The null hypothesis (H0)
assumes that the reduced model is correct, while the alternative hypothesis (H1), suggests that
the more full provides a significantly better fit to the data. The test statistic, denoted as −2lnλ,
is calculated as twice the difference in log-likelihoods between the two models:

−2lnλ = −2(lnL(β̂B)− lnL(β̂A)), (38)

which is asymptotically χ2-distributed under the null hypothesis. The degrees of freedom are
determined by subtracting the number of parameters in the reduced model from the number of
parameters in the full model. The p-values are calculated in the upper tail of the χ2-distribution.

2.6 Model Validation

The goodness of fit of a model can be calculated using the residual deviance and the null deviance:

null deviance - residual deviance

null deviance
· 100%. (39)

The residual deviance is twice the difference between the log-likelihood of the saturated model
and the log-likelihood of the proposed model, where the saturated model consists of the observed
values yi. The expected mean from the model fit is defined as λ̂i = exp(xT

i β̂), giving the residual

deviance D = 2(L(y)−L(λ̂)). Finally, the null deviance is the residual deviance of the model that
only contains an intercept.

Another goodness of fit measure is the Pearson statistic. The Pearson statistic is Chi-squared
distributed with n − p degrees of freedom and is calculated by squaring and summing all the
Pearson residuals. A Pearson residual is given as

ri =
yi − E[Ŷi]√

Var[Ŷi]
. (40)

If the Pearson statistic is larger than χ2
α,n−p for a significance level α, the null hypothesis is rejected,

indicating that the model does not fit with the distribution that have been observed.

When hypothesis testing is difficult, and when models are non-nested, R2 or information criteria
such as the AIC can be useful.

R2 gives the fraction of variance explained.

R2 =
TSS −RSS

TSS
= 1− TSS

RSS
, (41)

where TSS is the total sum of squares, calculated as the sum of the squared differences between
each observed value of the dependent variable and the mean of the dependent variable. RSS is the
residual sum of squares, calculated as the sum of the squared differences between each observed
value of the dependent variable and its corresponding predicted value
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Here we aim to have a large value, with the aim of explaining as much of the variance of the data
as possible. R2 does not penalize the number of parameters in the model. That is, adding more
variables always increase the value of R2. Thus, the adjusted R2, given as

R2
a = 1− (1−R2)

n− 1

n− p− 1
(42)

is a better choice to measure model fit. The AIC is defined as

AIC = −2l(β̂) + 2p. (43)

Here, l is the log-likelihood, n the number of observations and p is the number of regression
parameters (not including the intercept). Among a range of competing models, the model with
the smallest AIC is chosen. The penalty term for the number of parameters in the AIC prevents
overfitting of the models.
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3 Regression Models With a Baseline Count

The theory and method in this section is based on A comparison of different ways of including
baseline counts in negative binomial models for data from falls prevention trials by Zheng et al.
2018, with some adjustments made according to our motivating dataset. In this section, we consider
baseline and follow-up counts. The purpose of this section is to investigate how to best include a
baseline count when modelling a follow-up count. The baseline count is an initial measurement and
is used for comparison over time to look for changes. The follow-up count is the response variable
in the model and used to model the actual change from the baseline count. In our analysis, both
the baseline count and the follow-up count are counted numbers of salmon lice. For example, the
baseline count may refer to the counted numbers of salmon lice in the 1-sample and the follow-up
count may refer to the number of lice in the 2-sample. We assume that both the baseline count
and the follow-up count have a known exposure unit attached to it.

In Mæland 2022, we included baseline counts as log-transformed covariates in the regression models
based on the the simulation results by Zheng et al. 2018. Zheng et al. 2018 conducted a simulation
mimicking a “falls prevention trial” where individuals were observed for some time prior to and
after treatment. Then yi0 was the number of falls for person i before treatment (over a time ti0),
and yi1 was the number of falls for person i after treatment (counted over a time ti1).

In our data, the same salmon are not counted twice, but a random sample is taken from a cage
before “treatment” and thereafter a new random sample is taken from the same cage after treat-
ment. Our goal is therefore to reproduce and extend the work of Zheng et al. 2018 in this setting
and use our results to inform our choice of model in the application. In the essence, the simulation
experiment of Zheng et al. 2018 is based on creating correlated count data.

Specifically, let νi be gamma distributed with E(νi) = 1 and Var(νi) = 1
r . For the simulations,

we redefine the variance as α := 1
r . Let λi0 be the rate of occurrences before treatment and let

λi1 be the rate of occurrences after treatment where λi1 includes information on treatment or no
treatment. Similarly to what we saw in Section 2.2, let λi0 = νiµi0 and let λi1 = νiµi1, where
νi is the same at both time points. Further, µi0 = ni0µ0 and µi1 = ni1exp(β0 + β1xi), where xi

represents treatment (xi = 1) or no treatment (xi = 0). The two counts yi0 and yi1 are, conditional
on λi0 and λi1, assumed Poisson-distributed;

Yi0|λi0 ∼ Poisson(λi0), (44)

Yi1|λi1 ∼ Poisson(λi1), (45)

and the relationship between them is determined by the gamma-distributed variable νi.

Zheng et al. 2018 simulates from this model and considers negative binomial regression models for
the follow-up count yi1 using four different linear predictors. Based on this, the performance of the
negative binomial model was investigated with the following four linear predictors: (i) ignoring yi0,
(ii) including yi0 as a covariate, (iii) including log(yi0) as a covariate and (iv) including log(yi0) as
an log-transformed offset. The simplest model is the one excluding the baseline count in the linear
predictor. This model is from now on referred to as the NBnull -model. The linear predictor is
given as

ηi1 = β0 + β1xi + log(ni1), (46)

where log(ni1) is the offset of the model. The next model includes the unlogged baseline count in
the linear predictor. This model is henceforth referred to as the NBunlogged model. The linear
predictor is given as

ηi1 = β0 + β1xi + κ
yi0
ni0

+ log(ni1), (47)
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where κ is the coefficient associated with the unlogged baseline count. The third model includes
the logarithm of the baseline count. This model is from now on referred to as the NBlogged model.
The linear predictor in this model is given as

ηi1 = β0 + β1xi + ζlog

(
yi0
ni0

)
+log(ni1), (48)

with ζ being the coefficient for the logged baseline count. In practice, an extra +1 is added to
all the baseline counts to allow the log-transformation also when yi0 is zero. According to Zheng
et al. 2018, the choice of value to add do not substantially affect the estimation of β1. The last
model includes the baseline count as a log-transformed offset in the linear predictor. Here, the
linear predictor is written as

ηi1 = β0 + β1xi + log

(
yi0
ni0

)
+log(ni1). (49)

This model is from now on referred to as NBoffset. Again, +1 is added to all the baseline counts
before the log-transformation in the offset.

Having introduced the linear predictors we use in the simulations, we also want to investigate
how to theoretically best set up a negative binomial regression model to include the correlation
between yi0 and yi1 with the rates λi0 and λi1 for the baseline and follow-up count. In order to do
this, we are interested in finding an expression for the expectations of the follow-up count yi1 that
incorporates the expectations of the baseline count yi0. The expectations of yi0 and yi1 given by
the subject effect (νi) in equation (44) and (45) are

E(yi0|νi) = λi0 = νiµi0, (50)

E(yi1|νi) = λi1ni1exp(β0 β1xi) = νiµi1. (51)

νi is the same in Equation (50) and (51), and by combining these two equations one obtains,

E(yi1|νi) =
E(yi0)

ni0µ0
µi1

=
E(yi0)

ni0µ0
ni1exp(β0 + β1xi).

(52)

Taking the logarithms of both sides yields

log(E(yi1|νi)) = β0 + β1xi + log

(
1

µ0

)
+log

(
E(yi0)

ni0

)
+log(ni1). (53)

Further, assuming E(yi0) ≈ yi0 in (53), and defining the constant β∗
0 := β0+log

(
1
µ0

)
the expression

further simplifies to

log(E(yi1|νi)) = g(µi) = β∗
0 + β1xi + log

(
yi0
ni0

)
+log(ni1). (54)

The expression given in Equation (54) may suggest that it is most appropriate to incorporate the
logarithmic transformed baseline count as an offset or a covariate in the model, when our aim is

14



inference on β1. Taking the exponential of this expression will further show how the follow-up
count is explained by the baseline count. This gives

E(yi1|νi) = ŷi1 = exp(βx
0 + βxi + log

(
yi0
ni0

)
+log(ni1))

=
yi0
ni0

· exp(β∗
0 + βxi) · ni1.

(55)

One can see that the expected follow-up count ŷi1 is given by the constant term yi0

ni0
times the

exponential term exp(β0 + β1xi)ni1. This suggest that there is a linear relationship between
the expected follow-up count and the baseline count. One can also investigate the relationship
between the expected follow-up count and the baseline count if the logarithm of the baseline count
is included as a covariate in the model. In this case, the expression in Equation (54) would look
like

log(E(yi1|νi)) = g(µi) = β∗
0 + βxi + γlog

(
yi0
ni0

)
+log(ni1), (56)

where γ is the coefficient associated with the log-transformed baseline count. This expression is
identical to the one given in (54), given that the coefficient γ associated with the logged baseline
count is set to 1. Taking the exponential, the expression is given as

E(yi1|νi) = ŷi1 = exp(β∗
0 + βxi + γlog

(
yi0
ni0

)
+log(ni1))

=

(
yi0
ni0

)γ

·exp(β∗
0 + βxi) · ni1.

(57)

If the estimated value of γ is close to one, one can expect the behaviour of this model and the
offset model to be quite similar. Otherwise, the value of γ will decide how much the baseline count
is affecting the follow-up count. Having γ > 1, the baseline count can pay a great impact on
the follow-up count and having γ < 1 results in the baseline count having a lower impact on the
follow-up count.

The two models presented above, including the baseline count as a log-transformed offset and
including the logarithmic baseline count as a covariate in the models, are clearly the most appealing
given the theory presented so far in this section. However, for a simpler model, one could think
that including the unlogged baseline count as a covariate in the model also would explain the
relationship between the baseline and follow-up count sufficiently. In this case, the expression
given in Equation (54) would be

log(E(yi1|νi)) = g(µi) = β∗
0 + βxi + κ

yi0
ni0

+ log(ni1), (58)

where κ is the coefficient associated with the unlogged baseline count. Taking the expectation, one
obtains

E(Yi1|νi) = ŷi1 = exp(β∗
0 + βxi + κ

yi0
ni0

+ log(ni1))

= exp(κ
yi0
ni0

) · exp(β∗
0 + βxi) · ni1.

(59)

Here, it is not so easy to see how the follow-up count is directly affected by the baseline count since
the baseline count is incorporated in an exponential function. One model that is even simpler is
the one not including the baseline count at all. In this model, the follow-up count is only affected
by the given covariates in the model.
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Following Mæland 2022, we know that the log-transformed multiple linear regression model per-
formed well on the count data of mobile lice for the 3-sample. Thus, we are also interested
in investigating the performance of the different simulations and linear predictors using the log-
transformed linear multiple regression model. This model is discussed in detail in Section 2.1.3.
In this case the follow-up count yi1 will be log-transformed as

log(yi1 + 1),

while the baseline count is unlogged. The four linear predictors described in this section will
also be used for the log-transformed model. The log-transformed model using the linear predictor
described in Equation (46) is henceforth referred to as LM(logged)null. The log-transformed model
using the linear predictor described in Equation (47) and Equation (48) is henceforth referred to
as LM(logged)unlogged and LM(logged)logged, respectively. Finally, the offset model using the
linear predictor given in Equation (49) is henceforth referred to as LM(logged)offset. In total we
therefore investigate eight unique models based on two different regression models and four linear
predictors.

3.1 Simulation of data sets

We are interested in studying the eight different models with the motivation of determining the best
linear predictor among the four givens above. In order to do this properly, we want to simulate data
in order to test the different model’s effectiveness before applying them to our motivating dataset.
By generating data with known properties based on our observed data, we can assess whether the
different models accurately can capture the patterns and relationships within the data. We can
then use model selection methods, e.g., AIC, type-I error rates and the models estimated values
with standard deviation to evaluate the performance of models with the different linear predictors.

There were two different types of simulations done. The first simulation, henceforth referred to as
simulation 1, were a simplification of the events of counting salmon lice in the salmon cages. The
second simulation, henceforth referred to as simulation 2, tries to incorporate the real-life events
of the salmon lice sampling from the cages. Both simulations will be further explained in detail.

For both simulations, 2000 sets of data were simulated in R, using the mixed Poisson distribution
described above with the number of cages m (i = 1, ...,m) set to 100. For simplicity, we assumed
that we only had one covariate in the model. The covariate, xi, either took the value 0 or the value
1. We assumed that the first k = m/2 cages took the value 0 and the second k cages took the value
1. The rate of the follow-up count was adjusted according to xT

i β = β0 + β1xi. Setting β0 = 1 for
each simulation, only the value of β1 adjusted the rate of the follow-up count. The mean baseline
was set to µi0 = 0.5, close to the observed average baseline count from our motivating dataset of
0.41. Following Zheng et al. 2018, three levels of intervention effect were considered: β1 = −0.2,
β1 = −0.1 and β1 = 0 for checking empirical type-I error rate. The variance of the underlying
mixing distribution, α, was set at two levels: α = 3 to give a large level of overdispersion and
α = 0.5 to give a lower level of overdispersion. In the simulations, we wanted to capture two
properties of the salmons in the salmon cages, based on the real-life scenario. First, we wanted
every salmon to be unique, but there being small differences between each salmon. This is referred
to as the salmon-level subject effect. Secondly, we wanted all salmons coming from the same cage
to be more similar than salmons coming from different cages. We refer to this as the cage-level
subject effect. In order to incorporate these properties in the simulations, α was created as an
m × 1 Gaussian vector with mean 3 (or 0.5) and a small standard deviation, instead of α being
a constant. With the small standard deviation of α, we simulated that each cage had its own
α-value, αi, attached to it. The αi value was then used as the variance in a gamma distribution,
simulating subject effects for all the salmons in the cage.

In both simulations, the subject effects was then used to create the random Poisson parameters
in the baseline and follow-up count, namely νiµi0 and νiµi1, where νi is the subject effect and µi0

and µi1 were known and based on the average baseline and follow-up rate, respectively. These two
parameters were then used to create the conditional Poisson distributions described in Equation
(44) and (45). Having these distributions, we wanted to extract the total baseline and follow-
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up count. This was done by summing up all the generated values from the conditional Poisson
distribution for the baseline and follow-up.

The two simulations were quite similar, but differed in the number of salmon in the cages and
how the salmon was sampled in the counting process. In simulation 1, the number of salmon in
each cage was set to 20. This was a huge simplification compared to the real-life salmon cages,
but mimics the simulation of Zheng et al. 2018. We included this simple simulation in order to
compare it with simulation 2. Consequently, we may be able to use the simulation results to say
something about whether the model is affected by the actual sampling process of salmon lice. In
simulation 1, using the salmon-level subject effect described above, a baseline and follow-up count
of mobile lice on the 20 salmons were created using the Poisson mixture model for each of the 100
cages. Following each simulation, the generated baseline and follow-up count were used to create
four different negative binomial models and four different linear regression models with the four
linear predictors. In simulation 2, the number of salmon in each cage was set to 100000 in order to
create a more realistic sampling scenario. This was motivated by the real dataset having 103615
salmons in each cage on average. In order to simulate the actual counting process of mobile lice, a
random selection of 20 salmons from the 100000 salmons were used to create the baseline count of
mobile lice. Then, another random selection of 20 salmons were used to create the follow-up count
of salmon lice in the cage. Both the baseline count and the follow-up count were created using the
Poisson mixture model. Following each simulation, the baseline and follow-up count were used to
create the negative binomial and log-transformed regression models for each scenario.

From the simulated datasets, β̂1 and their standard errors (SE(β̂1)) were recorded. In addition, the
AIC was recorded, and the type-I error rate was calculated from the model fits to each simulated
dataset. The type-I error rate was calculated as the proportion of significant results from the Wald
test of β1 among replicates when β1 = 0.

As an example of how the data has been simulated, the R-code for the simulation of the baseline
and follow-up count is presented in Appendix C.

3.2 Simulation results

Our main focus was comparing the different ways of including a baseline count in a negative bino-
mial regression model and a log-transformed linear regression model. But we were also interested
in comparing the results from simulation 1 and simulation 2. In this section, we present the results
from the simulations in terms of β̂1 with standard errors, the power of the statistical models and
the AIC. In all scenarios the eight different models behaved quite similarly.

In Figure 26, the simulation results from simulation 1 and simulation 2 is presented using α = 3
with three different levels of β1. A similar figure showing the values of the estimated β̂1 and
their standard deviation using α = 0.5 is presented in Appendix A. The figure shows the mean
value of the estimated β̂1’s and the standard deviation for the four negative binomial and four
log-transformed linear models. In all the scenarios, β̂1 is close to the underlying value and the
standard deviation is quite similar for all the models. We note that the standard deviation is
largest for the null -models, i.e. the models using the linear predictor described in Equation (46),
where the baseline count excluded from the linear predictor.
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Figure 2: Estimated β̂1 from simulation 1 and simulation 2 using α = 3 with β1 = −0.2, β1 = −0.1
and β1 = 0.0.

Figure 3 shows the type-I error rates for simulation 1 and simulation 2 using α = 3. with Clopper-
Pearson confidence intervals as described in Clopper and Pearson 1934. The similar figure using
α = 0.5 is presented in Appendix A. The type-I error rates are in general higher for simulation 1
than for simulation 2. Type-I error rates refers to the incorrect rejection of a true null hypothesis,
meaning that the models are falsely detecting a relationship or effect when it does not exist. For
simulation 1, only the models including the baseline count as an offset and the models excluding
the baseline count, have a type-I error rate close to the nominal level of 5%. The models using the
other linear predictors, that is, including the baseline count as a covariate and as a log-transformed
covariate have a much higher type-I error rate on average. The type-I error rates of these models
are ranging from 10% to 13%, which is over twice as high as the nominal level. However, for
simulation 1, the Clopper-Pearson confidence intervals are wide, resulting in the nominal level
being encompassed by the confidence intervals. In simulation 2, the type-I error rates are in general
closer to the nominal level of 5%. The models including the baseline count as a log-transformed
offset, i.e. NBoffset and LM(logged)offset, seem to have the most appropriate type-I error rate
in both simulation 1 and simulation 2.
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Figure 3: Type-I error rates displayed as the empirical power with β1 = 0.0 from simulation 1 and
simulation 2 having α = 3 and β1 = 0. The values on the y-axis are presented in percentages (%).

Table 1 shows the AIC of the negative binomial regression models fitted to the simulated data
in simulation 1 and simulation 2 in parenthesis. In general, it appears that the AIC is higher
for simulation 2 than it is for simulation 1, with some few exceptions. The models including the
baseline count as an offset appears to have the largest AIC compared to the rest of the models in
both simulation 1 and simulation 2. That is, the NBoffset-model has the largest AIC, followed
by the model excluding the baseline count, i.e. NBnull. The trend is similar for almost all
scenarios. One of the reasons for the offset-models having a larger AIC may be due to the models
lack of flexibility. An offset model is less flexible compared to a model using a covariate because
it provides a fixed adjustment or constraint on the relationship between the predictors and the
response variable. A covariate model on the other hand, allows for more flexibility in capturing the
relationship between the predictors and the response variable as the model parameters associated
with the covariate can be estimated.

The log-transformed linear regression models use a transformation of the response variable, and
is therefore not similar to the response variable used in the negative binomial regression model.
Therefore, the AIC from the log-transformed linear regression model cannot be directly compared
with the AIC from the negative binomial regression model. A table of the AIC from the log-
transformed models is presented in Appendix B to compare the results from the different linear
predictors from simulation 1 and simulation 2.

α = 3 α = 0.5
β1 = −0.2 β1 = −0.1 β1 = 0.0 β1 = −0.2 β1 = −0.1 β1 = 0.0

NBnull(sim2) 653 (751) 760 (760) 769 (769) 653 (723) 659 (714) 666 (798)
NBunlogged(sim2) 646 (752) 703 (761) 710 (770) 646 (724) 652 (715) 658 (799)
NBlogged(sim2) 645 (752) 701 (761) 709 (770) 645 (724) 652 (715) 659 (602)
NBoffset(sim2) 711 (839) 716 (849) 724 (870) 712 (818) 720 (809) 727 (603)

Table 1: AIC from NBnull, NBunlogged, NBlogged and NBoffset from simulation 1 and simulation
2 using α = 3 and α = 0.5 with β1 = −0.2, β1 = −0.1 and β1 = 0.0.
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3.3 Remarks on the baseline models

All models performed reasonably well in both simulations. Hence, one can argue that including
the baseline count in any of the four different ways is a sound decision. The extension of the
simulation of Zheng et al. 2018 to the current simulation did not seem to alter their results, also
when modelling the log-transformed follow-up counts with a linear model. We also note that the
results from simulation 1 and simulation 2 were quite similar.

Seeing that we are interested in capturing all underlying factors that determine the level of salmon
lice in the 2-sample, we want to include the baseline count in the regression models. We will later
see that there also is a positive correlation between the salmon lice abundance in the 2-sample and
in the 1-sample, what we have referred to as the baseline count in this section. We therefore omit
all the models excluding the baseline count. Going forward, we will include the baseline count as
a log-transformed offset in all the regression models. This is also compatible with the results in
Zheng et al. 2018, where the models including the baseline count as a log-transformed covariate
and as a log-transformed offset performed best among the four models. The reason why we prefer
the offset-version is the somewhat unrealiable results for type-I error rate found in Figure 3 for the
other models.

More specifics regarding how the baseline count is included in the regression analysis will be further
discussed in Section 4.1 Including the baseline count as an offset will also be a continuation of the
work done in Mæland 2022, where the baseline count was included as a log-transformed covariate
in the regression models.
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4 Application of methods to salmon lice data

In lines with the RegLus-project, we are interested in combining the theory of the respective
regression models for count data with the observed count data of salmon lice, by applying the data
to the models. In this section, we first present a description of the data with various summary
statistics and visualizations. Then we present the results of the four different regression models
applied to the observed count data.

The data considered used in this thesis was collected from various locations in mid-Norway in co-
operation with the RegLus project. The salmon farms were ones undergoing delousing treatments.
Figure 4 displays production area 1-13 along the Norwegian coast. In this project, we only use
observations from study production area 6 and 7, marked with * in the figure. In total, there were
35 unique salmon farms registered in the dataset.

Figure 4: Production areas 1-13 along the Norweagian coast

Source: Forskrift om produksjonsomr̊ader for akvakultur av matfisk i sjø av laks, ørret og regnbueørret, 2017

The process of counting the salmon lice and sampling the data was performed in the period 2018
to 2019. The lice counting was executed by operating technicians on the facility as a part of
the ordinary salmon lice registrations. The different parameters registered for every delousing
treatment included company, location, start-time and end-time of delousing, number of salmons in
the cage, average weight of fish in the cage, cage location of the salmon after treatment, presence
of lice skirt before and after treatment, sample size of salmons used to count the salmon lice in a
cage, mortality, treatment method and sea temperature.

The salmon lice number were the average number of lice per salmon and were calculated on a
random sample of a small number of salmons in the cage. At least 20 salmons in the cage were
inspected to calculate the lice number. The number of adult female lice, mobile lice, sessile lice
and Caligus elongatus were recorded, and the lice numbers were calculated as the sample mean for
each of the four stage groups.

The delousing treatments used in this data set include freshwater treatment, lice flusher and
thermic treatment, and are explained in detail in Section 1.1. In the dataset, there was a large
variation in the use of the different methods. In addition, there were three different lice flusher
methods registered in the dataset: Hydrolicer, FLS-delousing and Skamik. Seeing that we were
interested in studying lice flusher as a delousing treatment method, and not the different types of
lice flusher methods, it was reasonable to merge them together to one treatment variable. The new
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treatment variable, consisting of Hydrolicer, FLS-delousing and Skamik, was called LiceFlusher in
the regression analysis.

4.1 Response Variable

Figure 5 presents the sum over all cages of the average number of mobile, sessile and adult female
lice in the 0-sample, 1-sample, 2-sample and 3-sample. The figure illustrates how the lice number
varies throughout the delousing process. From the figure, we see that the total number of salmon
lice is dominated by mobile lice count in the 0-,1-, and 3-sample. In the 2-sample, the lice number
of mobile, sessile and adult female lice are more evenly distributed, but the sum of mobile lice
is still the largest among the three. For our main analysis, the response variable is the total
count of sessile, mobile and adult female lice in the 2-sample per cage. We use the total count
of all salmon lice as a response variable because our primary objective is studying the delousing
treatment methods, which adversely is affecting all three stages of salmon lice. We will also extent
the work done in Mæland 2022 by considering mobile lice in the 3-sample. Here, only mobile lice
as that is the only reliable measure of re-infestation.

Figure 5: The sum of the reported salmon lice number of mobile, sessile and adult female lice in
the 0-sample, 1-sample, 2-sample and 3-sample.

As previously stated, our primary focus in this project is to examine the impact of various non-
medicinal treatment techniques. Therefore, we choose to study the prevalence of salmon lice in
the 2-sample, where the count of salmon lice was done straight after the delousing treatment was
done. Consequently, SalmonLiceCount2 = MobileLiceCount2 + SessileLiceCount2 + AdultFe-
maleLiceCount2 is used as the response variable in the regression analysis. The total counts are
calculated using the sample count, e.g., MobileLiceCount2 is calculated as MobileLiceCount2 =
MobileLice2 · SampleCount2, where SampleCount2 refers to the amount of salmon the lice was
counted on. The salmon lice Caligus elongatus (C. elongatus) is not used in the analysis even
though the lice numbers are registered in the dataset. The main reason is that this is a different
species than Lepeophtheirus salmonis. In addition, the lice numbers for Caligus elongatus are more
uncertain and there is a lack of lice registrations of C.elongatus in the dataset. As a baseline for
the 2-sample counts, we could have used either the 0-sample or the 1-sample. The 0-sample was
deemed too unreliable as a baseline because counts were taken as much as 30 days prior to delous-
ing treatment. As we were only interested in what happens immediately prior and immediately
following to the delousing treatment, we chose to use the reported average of salmon lice in the
1-sample as a baseline count in the regression models, namely SalmonLiceCount1 = MobileLice-
Count1 + SessileLiceCount1 + AdultFemaleLiceCount1. The reported lice numbers of salmon lice
in the 1-sample plotted against the reported lice numbers of salmon lice in the 2-sample, and the
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log-transformed salmon lice number in the 1-sample against the log-transformed lice number in
the 2-sample is presented in Figure 6. The plot indicates a linear relationship between the log-
transformed lice number in the 1-sample and the 2-sample. For both the unlogged and the logged
case, an increase in the salmon lice number in the 1-sample indicates an increase in the salmon
lice number in the 2-sample. As discussed in Section 3, we decided that the baseline count is
best included in a negative binomial and log-linear multiple regression model as a log-transformed
offset. For simplicity, this offset will not be written out in the model specifications in this section.

Figure 6: The reported salmon lice number in the 1-sample vs the reported salmon lice number
in the 2-sample(left) and the log-transformed salmon lice number in the 1-sample (right) plotted
against the log-transformed salmon lice number in the 2-sample. The data points with the lightest
black colour indicate a single point, while a darcer black colour indicates overlapping points.

4.2 Pre-processing

The first step of the pre-processing of the data was to remove the duplicates. There were some
data that was gathered from the same delousing treatment. This gave multiple values of the lice
numbers in the four different samples. The values from the same treatment were for most part the
same, and thus it was reasonable to only keep one observation for each sample from each delousing
treatment. We assumed that the first data point in a duplicate set gave sufficient information.
The next step of the pre-processing was to remove cages that were missing registered lice numbers
(NAs) or other important values like for instance the sample size.

The original dataset consisted of 299 observations from salmon cages at different salmon farms in
the Trøndelag-area. After removing the duplicates in the dataset, i.e., data gathered from the same
delousing unit, the data set is reduced to 266 unique observations. Removing NAs in the data,
further reduced the dataset to 241 unique observations. From a statistical perspective, the dataset
provided is considered small. Dealing with small datasets can pose several challenges. One such
challenge is that outlier values can disproportionately affect the model’s accuracy. Small datasets
are also more susceptible to overfitting, where the model becomes too complex and fits the data
too closely. Therefore, simpler models tend to be more suitable for small datasets.

The dataset included information for every operational cage following a delousing treatment at the
examined sites from 4th of April 2018, to 26th of October 26 2019. Table 2 provides an overview
of the various variables utilized in the analysis, along with their explanations.
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Variable Name Explanation of Variable
SalmonLice1 Lice number of salmon in the 1-sample, given as a reported average calculated

from a sample of at least 20 salmon. The lice number refers to the sum of the
lice number of mobile lice, adult female lice and pre-adult lice.

SalmonLice2 Lice number of salmon in the 2-sample, given as a reported average calculated
from a sample of at least 20 salmon. The lice number refers to the sum of the
lice number of mobile lice, adult female lice and pre-adult lice.

SampleCount1 The number of salmons used to count the salmon lice in the 1-sample. Sample-
Count1 is usually 20.

SampleCount2 The number of salmons used to count the salmon lice in the 2-sample. Sample-
Count2 is usually 20.

SalmonLiceCount1 The count of salmon lice in the 1-sample. Calculated as SalmonLice1 · Sample-
Count1.

SalmonLiceCount2 The count of mobile lice in the 2-sample. Calculated as SalmonLice2 · Sample-
Count2.

LogSalmonLice2 The log-transformed lice number of salmon in the 2-sample. Calculated as
log(SalmonLiceCount2+1

SampleCount2 ).

Date Date of the observation
SeaTemperature Temperature of the sea, ◦ C
AverageWeight Average weight of the salmon in the salmon cage, g
NumberOfFish Number of fish in the cage
Method Delousing method used, divided into freshwater treatment, thermic treatment

and lice flusher
Location Location of the salmon cage.

Table 2: Variables used in the analysis with explanation and units.

In both the Poisson and negative binomial regression model, all the elements in the response vari-
able SalmonLiceCount2 and baseline SalmonLiceCount1 were transformed to integers by rounding
down to the nearest integers in order to fit the model criterions. The presence of non-integer counts,
calculated using the sample size of salmon and the registered salmon lice numbers from the data-
set, may suggest that there were inaccuracies in the data. In the multiple linear regression model,
the response variable was log-transformed using the natural log. That is, the transformation
log(SalmonLiceCount2+1) was used to improve the normality and homoscedasticity of the model
residuals. The details and justification of the log-transformation is presented in Section 4.6.1.

4.3 Data visualization

This section presents the data in the form of summary statistics and various visualizations. Table 3
displays the summary statistics for the response variable and the continuous explanatory variables
used in the data visualizations and regression analysis. The percentage of zeros in each group of
lice numbers is provided in parentheses.

Variable Mean Sd. Median Min. Max.
SalmonLice1 (1.24%) 7.66 8.05 4.90 0.00 38.20
SalmonLice2 (2.49%) 0.59 0.57 0.40 0.00 3.10
SampleCount1 20.70 3.59 20.00 20.00 40.00
SampleCount2 29.80 18.45 20.00 20.00 120.00
SalmonLiceCount1 (1.24%) 155.00 160.60 99.00 0.00 764.00
SalmonLiceCount2 (2.49%) 18.40 23.23 9.00 0.00 171.00
NumberOfFish 115000.00 54950.00 134221.00 12274.00 196000.00
AverageWeight (g) 2710.00 1147.00 2813.00 700.00 5424.00
SeaTemperature (◦) 11.20 1.91 11.30 4.00 14.80

Table 3: Summary statistics for the various variables used in the regression analysis.
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The lice number and the log-transformed lice number of salmon lice in the 2-sample, i.e. Sal-
monLice2 and LogSalmonLice2, have been graphed alongside the explanatory variables employed
in the analysis. The latter is included to check the model assumptions of there being a linear
relationship between the log-transformed response and the various explanatory variables. The
reason being that the multiple linear regression model and the random intercept model both use a
log-transformed response variable. In addition, both the Poisson and negative binomial regression
model use a logarithmic function to link the response variable and the linear predictor.

In Figure 7, the salmon lice number and log-transformed salmon lice number in the 2-sample
are plotted against the explanatory variable NumberOfFish. Common for both SalmonLice2 and
LogSalmonLice2 is that there is appears to be a correlation with NumberOfFish. For SalmonLice2,
the number of salmon lice appears to increase with increasing number of salmon in the cage. The
log-transformed count, LogSalmonLice2, on the other hand, tends to decrease with an increasing
number of salmons in the cage. Seeing that there is a correlation between the numbers of salmon
in the cages and the salmon lice numbers, NumberOfFish is included in the regression analysis as
an explanatory variable.

Figure 7: The reported salmon lice number in the 2-sample (left) and the log-transformed reported
salmon lice number in the 2-sample (right) plotted against the number of fish (NumberOfFish) in
the salmon cage. The data points with the lightest black colour indicate a single point, while a
darker black colour indicates overlapping points.

Figure 8 illustrates the relationship between the explanatory variable AverageWeight and the
salmon lice numbers and log-transformed salmon lice number in the 2-sample. One can see from
the figure that there is a positive correlation between the average weight of the salmons and the
unlogged and logged salmon lice numbers in the 2-sample. That is, an increase in AverageWeight
also gives an increase in SalmonLice2 and LogSalmonLice2. For SalmonLice2, the linear trend
becomes more pronounced when the average weight of salmon reaches 2500 grams or higher, while
for lower weights, the lice abundance seems to be more randomly scattered. For LogSalmonLice2,
the linear trend appears to range all values of AverageWeight. This suggests that the average
weight of salmon serves as a reliable explanatory variable for the regression analysis.
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Figure 8: The reported salmon lice number in the 2-sample (left) and the log-transformed reported
salmon lice number in the 2-sample (right) plotted against the average weight (g) of salmon lice
in a salmon cage (AverageWeight). The data points with the lightest black colour indicate a single
point, while a darker black colour indicates overlapping points.

In Figure 9, the reported salmon lice number and log-transformed salmon lice number in the 2-
sample are plotted against the explanatory variable SeaTemperature. There appears to be a linear
relationship between the temperature of the sea and the lice abundance in the 2-sample, both on a
regular and on a log-transformed scale. The linear trend is positive and thus the salmon lice number
increase with an increasing temperature. The observed correlation suggests that SeaTemperature
is a suitable explanatory variable to include in the regression analysis.

Figure 9: The reported salmon lice number in the 2-sample (left) and the log-transformed reported
salmon lice number in the 2-sample (right) plotted against the temperature in the sea (◦C) in the
salmon cage (SeaTemperature). The data points with the lightest black colour indicate a single
point, while a darker black colour indicates overlapping points.

In Figure 10, a box plot of the covariate Method and the reported lice numbers of salmon lice in the
2-sample and the log-transformed number of salmon lice number in the 2-sample is presented. There
is a modest difference in the registered lice numbers and log-transformed lice numbers following the
three different methods. The median of the registered salmon lice numbers in the 2-sample (both
unlogged and logged) is lowest for the Freshwater treatment. The quartiles for the Freshwater
treatment are considerably smaller compared to those for LiceFlusher and Optilicer treatments.
In the dataset, the Freshwater treatment was only applied 11 times, whereas LiceFlusher and
Optilicer treatments were used 118 and 112 times, respectively. Consequently, comparing the
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effectiveness of LiceFlusher and Optilicer treatments to the Freshwater treatment may not be
entirely fair. With the aim of investigating the effect of the three treatment methods, we include
Method as an explanatory variable in the regression analysis. Method is coded as a factor variable,
considering the three distinct methods.

Figure 10: The reported salmon lice number in the 2-sample (left) plotted against the three different
delousing treatment methods and the log-transformed salmon lice number in the 2-sample plotted
against the treatment methods (left). The data points with the lightest black colour indicate a single
point, while a darker black colour indicates overlapping points.

Figure 11 shows the correlation plot between each pair of the numerical variables used in the regres-
sion analysis. The plot presents the Pearson correlation coefficient between each pair of variables
on the upper diagonal, the scatter plots of each pair in the lower diagonal, and finally, the distri-
bution of each variable on the main diagonal. By the Pearson correlation coefficient, it is observed
high correlation between every pair of variables except SeaTemperature and AverageWeight. For
instance, LogSalmonLice2 and LogSalmonLice1 are highly correlated with correlation coefficient
0.485.
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Figure 11: The Pearson correlation coefficients calculated for every pair of numeric variables,
scatter plots for each pair, and the generated distribution plots for each individual variable

The 35 different salmon farms were registered in the dataset as a variable determining the location
of the salmon farm. This variable, Location, was not included in the regression analysis. The
reason being that this categorical variable had too many levels for one-hot encoding or including it
as a factor variable. However, it was included as a random intercept term in the random intercept
model to assess if the salmon farms could be grouped based on the location.

4.4 Poisson regression

The 2-sample counts of salmon lice were first analysed using a Poisson regression model with a
logarithmic link function and treatment method (as a factor variable), number of fish, average
weight and sea temperature as covariates, and sample sizes of the 1-sample and 2-sample and the
baseline count as offsets in the model. A regression model was fitted in R to analyse the count
of salmon lice in the 2-sample. The summary output of the model is presented in Table 4, which
includes the estimated regression coefficients along with their standard errors, t-values and the
p-values.

Table 4: Regression coefficients with associated estimate, standard error, t-value and p-value from
the Poisson regression for the count model for salmon lice in the 2-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept 2.18 0.061 35.64 < 2.00 ·10−16

LiceFlusher 0.42 0.042 9.89 < 2.00 ·10−16

Optilicer 0.69 0.042 16.33 < 2.00 ·10−16

NumberOfFish -2.52 ·10−6 1.22 ·10−7 -20.75 < 2.00 ·10−16

AverageWeight -1.71 ·10−5 6.36 ·10−6 -2.69 0.0072
SeaTemperature 0.058 0.0037 15.39 < 2.00 ·10−16

AIC: 2122, Null deviance: 25723 on 237 degrees of freedom, Residual deviance: 24533 on 232 degrees of

freedom.

A goodness-of-fit test for the model was performed by using the residual deviance of the fitted
model. The residual deviance D is 24533 for the Poisson model. The corresponding quantile of
the χ2

α,n−p distribution is χ2
0.05,226 = 262 for the model. Since 24533 > 262 the model was rejected
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at significance level α = 0.05. The explained deviance was calculated as 4.63% based on the null
deviance and the residual deviance provided in Table 4, using Equation (39).

To test for overdispersion, a hypothesis test was performed using the Pearson statistic. By sub-
stituting the estimated mean λ̂ in Equation (10), the Pearson statistic for the Poisson model was
calculated as P = 32765. The observed Pearson statistic yielded an estimated overdispersion
parameter of ϕ̂P = P

n−p = 145 for the model. The null hypothesis (H0), stated as H0 : No
overdispersion, written as H0 : ϕ ≤ 1, is tested against the alternative hypothesis, H1 : ϕ > 1,
indicating the presence of overdispersion. Under the null hypothesis, the Pearson statistic, P , fol-
lows a chi-squared distribution with n− p = 226 degrees of freedom. Since the calculated p-value
exceeded the critical value χ2

0.05,226, the null hypothesis was rejected, leading to the conclusion
that overdispersion existed.

In Figure 12, we present plots depicting the relationship between the fitted values and the Pear-
son and deviance residuals for the Poisson model. The scatter of both the Pearson and deviance
residuals around zero was evident, with residuals exhibiting considerable magnitude. These find-
ings indicated that the Poisson model was not well-suited for accurately representing the data.
Furthermore, it was apparent that the residuals’ magnitude is greater for value between 15 and
25 compared to the rest of the values. This observation suggests a violation of the assumption of
constant error variance, indicating the presence of heteroscedasticity in the data.

Figure 12: Plot of Pearson and deviance residuals against fitted values from the Poisson regression
model. To visualize overlapping, the data points are partially transparent. The data points with
the lightest black colour indicate a single point, while a darker black colour indicates overlapping
points.

Figure 13 displays a frequency plot comparing the observed and fitted values obtained from the
Poisson regression model. The observed values exhibit left skewness, revealing a significant number
of zeros and small values. Conversely, the plot of the fitted values illustrated that the Poisson model
was unable to adequately capture the abundance of zeros and small values, resulting in a more right-
skewed distribution. This plot therefore further supports the notion that the Poisson regression
model may not was a suitable fit for the observed count data of salmon lice in the 2-sample.
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Figure 13: The frequency of observed (red) and fitted (blue) values from the Poisson model for the
count of salmon lice in the 2-sample.

4.5 Negative Binomial Regression

The negative binomial regression model extends the Poisson regression model, by relaxing the
assumption of equality between the mean and the variance with the use of a dispersion parameter
which accounts for extra variability in the data. Consequently, we employed a negative binomial
regression model to analyse the count of salmon lice in the 2-sample. Table 5 presents the summary
output obtained from the negative binomial regression model fitted in R. According to the p-values
from the Wald test, all covariates, except for the treatment method LiceFlusher (against the
reference Freshwater) as well as the AverageWeight covariate, demonstrated statistical significance
at a significance level of 0.05.

Table 5: Regression coefficients with associated estimate, standard error, z-value and p-value from
the negative binomial regression for the count model for salmon lice in the 2-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept 2.54 0.26 9.82 < 2.00 ·10−16

LiceFlusher 0.24 0.16 1.51 0.13
Optilicer 0.60 0.16 3.81 0.00014
NumberOfFish -3.07 ·10−6 5.93 ·10−7 -5.17 < 2.30 ·10−7

AverageWeight -5.11 ·10−5 3.00 ·10−5 -1.70 0.089
SeaTemperature 0.051 0.017 2.94 < 0.0033

AIC: 1735, Null deviance: 1368.4 on 237 degrees of freedom, Residual deviance: 1209.6 on 232 degrees of

freedom.

Figure 14 displays the Pearson and deviance residuals plotted against the fitted values for the
negative binomial regression model. Both plots exhibit scattered residuals around zero, similar to
the residual plots observed in the Poisson regression model. These residual plots also indicate the
presence of heteroscedasticity, where the error variance is largest for values between 15 and 25.
It is therefore evident that the assumption of constant variance is violated. This pattern is more
clearly visualized in the deviance plot on the right side compared to the Pearson plot on the left
side. When comparing these residual plots to the similar plots for the Poisson model depicted in
Figure 12, the magnitude of the residuals for the negative binomial model is smaller. The Pearson
and deviance residuals of the Poisson regression extend up to 80.1 and 50.8, respectively, whereas
the corresponding residuals for the negative binomial model reach up 16.3 and 7.5, respectively.
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This indicates that the negative binomial regression model provides a better fit to the data than
the Poisson regression model.

Figure 14: Plot of Pearson and deviance residuals against fitted values from the negative binomial
regression model. To visualize overlapping, the data points are partially transparent. The data
points with the lightest black colour indicate a single point, while a darker black colour indicates
overlapping points.

Figure 15 portrays a frequency plot comparing the fitted and observed values of the count of salmon
lice in the 2-sample. The plot reveals that the observed values display left skewness, including some
zeros and small values. The fitted values obtained from the negative binomial model struggle to
accurately capture these values. In general, the fitted values exhibit a greater right skewness
compared to the observed values. This indicates that the negative binomial regression model does
not effectively fit the data.

Figure 15: The frequency of fitted (blue) and observed (red) values from the negative binomial
regression model for the count of salmon lice in the 2-sample.

The AIC value obtained from the negative binomial model is lower than the AIC of the Poisson
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model, providing additional evidence that the negative binomial model was a better fit. However,
a more direct comparison between the two models can be done using a likelihood ratio test. The
parameter vector for the Poisson regression model is denoted as θ0 = β = (β0, ..., β5) and the
parameter vector for the negative binomial regression model is θ = (β0, ..., β5, ϕ). This implies
that θ0 is a subset of θ, indicating that the Poisson model is nested within the negative binomial
model. Hence, a likelihood ratio test can be employed to compare the models for the 2-sample
data, considering the Poisson and negative binomial distributions. The likelihood ratio test aims
to evaluate the null hypothesis H0 : ϕ = 0 against the alternative H1 : ϕ > 0. The test can be
computed using the R-function lrtest available in the lmtest package. The results of this test
are presented in Table 6. The low p-value, less than 2 · 10−16 indicates that the negative binomial
model is a more appropriate choice for the data compared to the model.

Number of df. log-likelihood df chisq. p-value
6 -14721
7 -4676 1 20089 < 2 ·10−16

Table 6: Summary of the likelihood ratio test between the Poisson regression model and the negative
binomial model for salmon lice in the 2-sample.

4.6 Multiple Linear Regression

Even though the negative binomial regression model fits the data better than the Poisson regression
model according to the residual plots and AIC, the negative binomial model was still not a good
fit to the observed count data, as seen in the frequency plot given in Figure 15. We therefore
try to fit a simpler model, namely the log-transformed multiple linear regression model. First, we
investigate how a log-transformation affects the response variable, SalmonLiceCount2.

4.6.1 Effect of log-transformed response

Figure 16 showcases histograms of the counts and log-transformed counts of salmon lice in the
2-sample with the associated normal distribution displayed as a blue line. The histogram on the
left side shows the unlogged counts, i.e. SalmonLiceCount2. This histogram illustrates a left-
skewed distribution, indicating a high density of counts with small values and a small density
of counts with large values. On the right side, the histogram of the log-transformed counts, i.e.
LogSalmonCount2, displays a more symmetric and normal distribution. This is attributed to the
log-transformation, which helps in achieving a more reasonable fit to the assumption of normality
in the multiple linear regression model. Consequently, using the log-transformed count response
variable is considered a more appropriate choice than the unlogged count for this model.
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Figure 16: Histogram of the estimated counted salmon lice numbers (left) and the log-transformed
estimated counted salmon lice numbers (right) in the 2-sample. The blue line shows the belonging
estimated density function.

4.6.2 The fitted log-linear model

Table 21 presents the output summary of the multiple linear regression model with LogSalmon-
LiceCount2 as response variable. The table includes the estimated regression coefficients along
with their standard error, t-value and p-value. The p-values from the Wald test indicate that none
of the terms except SeaTemperature are significant up to a significance level 0.05. From the estim-
ated coefficient of SeaTemperature, the model suggests that the delousing is less effective when the
temperature is high. In this model, we used Freshwater as a reference level in the factor variable
Method. The summary output therefore indicates that neither LiceFlusher nor Optilicer performs
better or worse than Freshwater. A model using LiceFlusher as a reference level was fitted to see
if Optilicer performed better or worse than LiceFlusher. The summary output from this model is
presented in Appendix B. The result indicated significance of Optilicer, indicating that Optilicer
performed better than LiceFlusher (β̂LiceF lusher = −0.26,p-value : 0.022).

Table 7: Regression coefficients with associated estimate, standard error, t-value and p-value from
the log-transformed multiple linear regression for the count model for salmon lice in the 2-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept -1.77 0.55 -3.22 0.0015
LiceFlusher 0.26 0.34 0.78 0.44
Optilicer 0.11 0.34 0.32 0.75
NumberOfFish 7.88 ·10−7 1.32 ·10−6 0.59 0.55
AverageWeight 5.41 ·10−5 6.52 ·10−5 0.83 0.41
SeaTemperature -0.090 0.037 -2.41 0.0033

AIC: 581. Residual standard error : 1.04 on 235 degrees of freedom. R2 : 0.56 and R2
adj : 0.55. F-statistic:

59 on 5 and 235 degrees of freedom. p-value: < 2 · 10−16.

In Figure 17, the residual plot of the log-transformed multiple linear regression is presented, where
the studentized residuals are plotted against the fitted values. The plot illustrates that the residuals
are scattered around zero, with a relatively low magnitude, ranging from -2.2 to 5.5. In contrast
to the residual plots for the Poisson and negative binomial regression models, this plot does not
exhibit clear signs of heteroscedasticity, and the error variance of the studentized residuals seems
relatively constant. This could be attributed to the log-transformation applied to the response
variable, which has the potential to enhance the homoscedasticity of the model residuals. However,
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comparing this residual plot directly to the ones from the Poisson and negative binomial models
is not straightforward due to the different types of residuals used in each model.

Figure 17: Plot of studentized residuals against the fitted values from the log-transformed multiple
linear regression for the model of salmon lice in the 2-sample. To visualize overlapping, the data
points are partially transparent. The data points with the lightest black colour indicate a single
point, while a darker black colour indicate overlapping points.

Figure 18 displays a frequency plot of the observed values and fitted values obtained from the
log-transformed multiple linear regression model. The multiple linear regression model appears to
fit the data well. It also looks like the model also succeeds in fitting the small values, compared to
the Poisson and negative binomial model.

Figure 18: Frequency plot of and fitted (blue) and observed (red) values from the log-transformed
multiple linear regression model of counted salmon lice in the 2-sample.
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4.7 Random Intercept Model

4.7.1 Specifications of the model

Based on the results from the Poisson, negative binomial and log-transformed multiple linear
regression model, the log-transformed multiple linear regression model clearly fits the observed
count data best. However, none of the models considers that samples from the same location might
be correlated. Determined by the positive results of the log-transformed multiple linear regression
model, we use the log-transformed count of salmon lice in the 2-sample, i.e., LogSalmonLiceCount2,
as a response variable in the random intercept model.

4.7.2 The fitted random intercept model

The random intercept model was fitted in R with the function lmer from the lme4 package. The
random intercept was based on clustering the data based on their location, i.e., the Location
variable. The summary output from the model fit is presented in Table 8 and 9. Table 8 presents
the estimations of the random effects and Table 9 presents the estimations of the fixed effects.

From Table 8, we can see that τ̂0
2 = 0.3546 and σ̂0

2 = 0.4913. We can therefore calculate the
ICC of the model using Equation (34) as ICC = 0.3546

0.3546+0.4913 = 0.4192. This ICC value suggests a
moderate level of clustering or between-group variation. Specifically, 42% of the variability in the
outcome can be attributed to differences between the locations, while the remaining 58% of the
variation is due to variations within each location.

Table 8: Random effects with associated variance and standard deviation from the random intercept
model for the count model for salmon lice in the 2-sample.

Groups Name Variance Std.Dev
Location (Intercept) 0.3546 0.5955
Residual 0.4913 0.7009

Number of obs: 241, groups: Location,35.

From Table 9, none of the parameters in the models were significant at a 5%-level according to the
random intercept model. We note that SeaTemperature is no longer significant, as it was in the
multiple linear regression model. Also in this model, Freshwater was used as a reference level in
the factor variable Method. The summary output therefore indicates that neither LiceFlusher nor
Optilicer outperforms Freshwater. A model using LiceFlusher as a reference level was fitted to see
if Optilicer performed better or worse than LiceFlusher. The summary output from this model is
presented in Appendix B and indicated no significant variables ( ˆβLiceF lusher = −5.45, p − value :
0.69). Therefore, the random intercept model did not suggest that Optilicer performed better (or
worse) than LiceFlusher.

Table 9: Regression coefficients for the fixed effects with associated estimate, standard error, t-
value and p-value from the random intercept regression for the count model for salmon lice in the
2-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept -1.47 0.70 -2.11 0.034
LiceFlusher 0.33 0.45 0.73 0.50
Optilicer 0.43 0.44 0.97 0.35
NumberOfFish -7.64 ·10−7 2.20 ·10−6 -0.35 0.72
AverageWeight -6.58 ·10−5 8.01 ·10−5 -0.82 0.42
SeaTemperature -0.071 0.040 -1.77 0.076

The individual factor level random effects are not included in the output summaries. However, the
location-specific intercept coefficients can be found with the coef-function in R. The output from
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this function, alongside the relative frequency of the location (in %) is presented in Table 10. Due
to privacy reasons, the names of the locations are not included in the table. It is clear that each
location has its own intercept. The slope coefficient for the fixed effects is not presented, but they
are the same as the ones given in Table 9 and stay fixed for all the locations.

Location (Intercept) Relative frequency of Location (%)
Location 1 -2.816 5.603
Location 2 -2.877 0.431
Location 3 -3.134 2.586
Location 4 -3.544 0.431
Location 5 -2.173 4.741
Location 6 -2.998 1.293
Location 7 -3.065 3.017
Location 8 -3.266 2.155
Location 9 -3.770 1.724
Location 10 -3.781 9.483
Location 11 -2.559 0.862
Location 12 -2.498 0.431
Location 13 -2.370 0.431
Location 14 -2.551 16.379
Location 15 -2.940 1.293
Location 16 -3.692 0.431
Location 17 -2.484 1.724
Location 18 -2.745 1.724
Location 19 -2.969 4.741
Location 20 -2.574 4.310
Location 21 -4.024 3.017
Location 22 -3.392 13.362
Location 23 -2.661 0.862
Location 24 -3.491 2.586
Location 25 -2.854 1.724
Location 26 -3.980 0.431
Location 27 -3.571 0.862
Location 28 -2.596 1.724
Location 29 -3.216 1.293
Location 30 -2.711 1.724
Location 31 -2.941 1.724
Location 32 -3.307 2.586
Location 33 -3.661 0.862
Location 34 -3.060 1.724

Table 10: Location-specific intercept coefficients from the random intercept model for the count
model of salmon lice in the 2-sample.

Figure 19 presents the residuals plot of the residuals against the fitted values from the random
intercept model. The plot shows that the residuals are scattered around zero. The magnitude of
the residuals stretches from -2.6 to 2.6 and is quite similar to the one from the log-transformed
linear regression model. The error variance appears to be quite constant, indicating presence of
homoscedasticity.
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Figure 19: Plot of residuals against the fitted values from the random intercept regression for
the model of salmon lice in the 2-sample. To visualize overlapping, the data points are partially
transparent. The data points with the lightest black colour indicate a single point, while a darker
black colour indicate overlapping points.

A frequency plot of fitted and observed values of the count of salmon lice in the 2-sample is
presented in Figure 20. The plot shows that the random intercept model fits the data well. The
fitted values from the models manages to fit the small observed values and the shape of the fitted
frequency plot coincides with the shape of the observed frequency plot.

Figure 20: The frequency of observed (blue) and fitted (red) values from the random intercept model
of counted salmon lice in the 2-sample.
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4.8 A continuation of investigating re-infestation of salmon lice after
delousing treatment

In Mæland 2022, we studied regression models for count data with the application of investigating
re-infestation of salmon lice after delousing treatment. We did this by looking at the count of
mobile lice in the 3-sample using the count of mobile lice in the 2-sample as a baseline count.
The data was modelled using the Poisson, negative binomial and log-transformed multiple linear
regression models. We used only the count of mobile lice, and not the total amount of salmon
lice, because mobile lice are the only lice that can move freely in the water and therefore re-attach
to the salmon after delousing treatment. By looking at residual plots and frequency plots of the
observed and fitted values, the log-transformed multiple linear regression model fitted the data
best among the three models, just as seen for the current study of salmon lice in the 2-sample.
Without first investigating how to best include the baseline count in the regression models, it
was included as a log-transformed covariate based on the results from Zheng et al. 2018. In
Figure 5 we see evidence of re-infestation in that the number of mobile lice has substantially
increased shortly after delousing treatment. With the presence of significant covariates in our
models, we can say that these factors could have protected against or worsened re-infestation of
mobile lice. Table 11 presents the summary output of the multiple linear model of mobile lice in
the 3-sample from Mæland 2022, including the baseline count of mobile lice in the 2-sample as a
log-transformed covariate. The data showed indications of re-infestation and the model suggested
that AverageWeight and SeaTemperature were factors that could worsen the re-infestation and
that Placement and LiceSkirt could protect it. That is, an increase in the average weight and sea
temperature increased the amount of mobile lice in the 3-sample, and that the presence of lice
skirt and placing the salmons in a new cage (instead of the old cage) after delousing decreased the
amount of mobile lice in the 3-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept -5.29 0.46 -11.59 2.00 ·10−16

Placement -0.58 0.16 -3.52 0.00055
LiceFlusher 0.28 0.32 0.88 0.38
Optilicer -0.20 0.28 -0.72 0.47
LiceSkirt -0.31 0.15 -2.10 0.037
NumberOfFish 1.13 ·10−6 1.41 ·10−6 0.80 0.42
AverageWeight 2.33 ·10−4 5.60 ·10−5 4.17 4.89 ·10−5

SeaTemperature 0.054 0.032 1.69 0.046
log(MobileLice2 + 1) 1.11 0.23 4.90 2.23 ·10−6

Residual standard error: 0.71 on 169 degrees of freedom. R2 : 0.42 and R2
adj : 0.39. F-statistic: 15.06 on 8

and 169 degrees of freedom. P-value: 2.2 · 10−16.

Table 11: Regression coefficients with associated estimate, standard error, t-value and p-value from
the multiple normal regression for the log-transformed count of mobile lice in the 3-sample.

We are now interested in studying the re-infestation of salmon lice with modified regression models.
The main difference will be how the baseline count of mobile lice in the 2-sample is included in the
regression models. Instead of including the baseline count as a log-transformed covariate, we now
want to include the baseline count as a log-transformed offset. In addition, we also want to use
the random intercept model to see if clustering based on the location of the salmon cages further
improves the fit of the regression models and alters the results of the 3-sample count models.

Seeing that we are interested in studying the 3-sample, we use a different set of response variables
and covariates than what have used so far in this thesis. The response variable is now based on the
count of mobile lice in the 3-sample. All the covariates used so far are included, but we also include
Placement and LiceSkirt as covariates in the regression model. Both of these explanatory variables
are only relevant for what happens when the salmon is brought back to the salmon cages after
delousing treatment and are therefore not relevant for the studies of the 2-sample. The different
variables used in the analysis of investigating re-infestation of salmon lice is presented in Table 12
with explanation.
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Variable Name Explanation of Variable
MobileLice2 Lice number of mobile lice in the 2-sample. Reported average of mobile lice in

the 2-sample calculated from a sample of at least 20 salmon
MobileLice3 Lice number of mobile lice in the 3-sample. Reported average of mobile lice in

the 3-sample calculated on a sample of at least 20 salmon
SampleCount2 The number of salmons used to count the salmon lice in the 2-sample. Sample-

Count2 is usually 20.
SampleCount3 The number of salmons used to count the salmon lice in the 3-sample. Sample-

Count3 is usually 20.
MobileLiceCount2 The count of mobile lice in the 2-sample. Calculated as MobileLice2 · Sample-

Count2.
MobileLiceCount3 The count of mobile lice in the 3-sample. Calculated as MobileLice3 · Sample-

Count3.
LogMobileLiceCount3 The log-transformed lice number of mobile lice in the 3-sample. Calculated as

log(MobileLiceCount3+1
SampleCount3 ).

Date Date of the observation
SeaTemperature Temperature of the sea, ◦ C
AverageWeight Average weight of the salmon in the cage, g
NumberOfFish Number of fish in the cage
Method Delousing method used, divided into freshwater treatment, thermic treatment

and lice flusher
Placement Placement indicator variable, coded as: 0 - salmon placed back in same cage

after treatment, 1 - salmon placed in new cage after treatment
LiceSkirt Skirt indicator variable, coded as: 0 - Lice skirt around the salmon cage, 1 -

No lice skirt around the salmon cage

Table 12: The variables used in the analysis with explanation and units.

4.8.1 Poisson Regression Model

Following Mæland 2022, we start with the most common regression model for count data, namely
the Poisson regression model. Table 13 presents the summary output from the model fit with
MobileLiceCount3 as response variable. The summary output includes estimated regression coef-
ficients along with their corresponding standard errors, t-values, and p-values.

Table 13: Regression coefficients with associated estimate, standard error, t-value and p-value from
the Poisson regression for the model of mobile lice in the 3-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept -0.37 0.21 -1.72 0.085
Placement -0.28 0.066 -4.20 2.71 ·10−5

LiceFlusher 0.67 0.16 4.08 4.56 ·10−5

Optilicer 0.55 0.15 3.61 0.00031
LiceSkirt -0.42 0.059 -7.20 6.09 ·10−13

NumberOfFish 2.47 ·10−6 5.63 ·10−7 4.39 1.16 ·10−5

AverageWeight 1.93 ·10−4 2.15 ·10−5 8.97 < 2.00 ·10−16

SeaTemperature 0.14 0.012 11.65 < 2.00 ·10−16

AIC: 2392.4, Null deviance: 1947.3 on 181 degrees of freedom, Residual deviance: 1663.4 on 174 degrees

of freedom.

The p-values from the Wald test indicated that all the terms were significant. A goodness-of-fit
analysis of the model was conducted using the residual deviance. The critical value in the χ2

α,n−p

distribution was determined as χ2
0.05,166 = 197 for a significance level α = 0.05. Since the residual

deviance D = 1663 > 197 = χ2
0.05,166, it can be concluded that the Poisson model is not a good fit

to the data.
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A hypothesis test was then performed to assess overdispersion using the Pearson statistic. The
null hypothesis, H0 suggested the absence of overdispersion was formulated as H0 : ϕ ≤ 1. The
null hypothesis was tested against the alternative hypothesis, H1 : ϕ > 1, which posited the
presence of overdispersion. Under the null hypothesis, the Pearson statistic, P , adhered to a
χ2
α,n−p distribution. As P = 2380 exceeds χ2

α,n−p = 197, the null hypothesis was reached and a
conclusion of overdispersion was reached.

A figure of the deviance and Pearson residuals plotted against the fitted values from the Poisson
regression model is presented in Appendix A.

4.8.2 Negative Binomial Regression Model

To accommodate a greater variance in the count data than the Poisson model, the negative binomial
regression model was applied to the model of mobile lice in the 3-sample. Table 14 presents the
summary output from the model fit in R. The p-values from the Wald test indicated that all
the terms, excluding LiceFlusher and Optilicer, exhibited significance at a level of 0.05. Using
Equation (24), the Pearson statistic was calculated as P = 263, less than the Pearson statistic
obtained from the Poisson model. Despite this, the corresponding quantile χ2

0.05,166 = 197 was
still lower than the Pearson statistic, implying that the fitted model failed to align with the actual
distribution. The residual plot is presented in Figure 28 in Appendix A.

Table 14: Regression coefficients with associated estimate, standard error, t-value and p-value from
the negative binomial regression for the model of mobile lice in the 3-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept -0.053 0.57 -0.093 0.93
Placement -0.48 0.20 -2.44 0.015
LiceFlusher 0.41 0.40 1.03 0.30
Optilicer 0.36 0.35 1.02 0.31
LiceSkirt -0.32 0.18 -1.77 0.076
NumberOfFish 3.89 ·10−6 1.69 ·10−6 2.20 0.022
AverageWeight 1.87 ·10−4 6.78 ·10−5 2.75 0.0059
SeaTemperature 0.14 0.039 3.50 0.00047

AIC: 1295.5, Null deviance: 230.9 on 181 degrees of freedom, Residual deviance: 200.6 on 174 degrees of

freedom.

4.8.3 Log-transformed Multiple Linear Regression Model

Both the Poisson regression model and the negative binomial regression model failed to fit the
observed count data of mobile lice. We fitted a log-transformed multiple linear regression to the
model of mobile lice in the 3-sample in R. The summary output from the model fit is given
in Table 15. The p-values from the Wald test indicate that only Placement, AverageWeight and
SeaTemperature are significant up to a significance level 0.05. With positive estimated coefficient for
SeaTemperature and AverageWeight, the prevalence of lice in the 3-sample increase with increasing
sea temperature and increased average weight of the salmon. With negative estimated coefficient
for Placement (coded as a factor variable; 0 for the same cage after delousing and 1 for a new
cage after delousing), the prevalence of salmon lice in the 3-sample decreased when the salmon was
placed in a new cage after delousing treatment. This result is not fully consistent with the results
in Mæland 2022, where also LiceSkirt showed significance.
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Table 15: Regression coefficients with associated estimate, standard error, t-value and p-value from
the log-transformed multiple linear regression for the model of mobile lice in the 3-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept 0.47 0.54 0.87 0.39
Placement -0.57 0.19 -3.01 0.0030
LiceFlusher 0.21 0.37 0.56 0.57
Optilicer 0.076 0.33 0.23 0.82
LiceSkirt -0.26 0.18 -1.48 0.14
NumberOfFish 3.13 ·10−6 1.64 ·10−6 1.90 0.059
AverageWeight 1.84 ·10−4 6.58 ·10−5 2.80 0.0057
SeaTemperature 0.096 0.037 2.57 0.011

Residual standard error: 0.85 on 174 degrees of freedom. R2 : 0.44 and R2
adj : 0.41. F-statistic: 19.22 on 7

and 174 degrees of freedom. P-value: < 2.2 · 10−16.

Figure 21 presents a plot of the residuals versus the fitted values in the log-transformed multiple
linear regression model. The residual appears to be randomly shattered around zero. In addition,
the magnitudes of the residuals are relatively low, further indicating that the model was a good fit
to the data.

Figure 21: Plot of residuals against the fitted values from the negative binomial regression for
the model of mobile lice in the 3-sample. To visualize overlapping, the data points are partially
transparent. The data points with the lightest black colour indicate a single point, while a darker
black colour indicate overlapping points.

Figure 22 presents a frequency plot of the fitted values from the log-transformed multiple linear
regression model against the observed count data of mobile lice in the 3-sample. The fitted values
from the model fits the observed count data reasonably well.
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Figure 22: The frequency of observed (blue) and fitted (red) values from the log-transformed multiple
linear regression model of counted mobile lice in the 3-sample.

4.8.4 Random Intercept Model

Knowing that the data can be clustered based on location, we fit a random intercept regression to
the model of mobile lice in the 3-sample in R. The summary output from the model is presented in
Table 16. Also for this model, the p-values obtained from the Wald test suggests that Placement,
AverageWeight and SeaTemperature are significant up to a level of 0.05. This result is consist-
ent with the results obtained in the log-transformed multiple linear model above, and thus not
consistent with the results obtained in Mæland 2022.

Table 16: Regression coefficients with associated estimate, standard error, t-value and p-value from
the random intercept regression for the model of mobile lice in the 3-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept 0.37 0.66 0.57 0.53
Placement -0.63 0.22 -2.91 0.008
LiceFlusher 0.13 0.45 0.29 0.76
Optilicer 0.21 0.42 0.51 0.61
LiceSkirt -0.23 0.23 -0.99 0.32
NumberOfFish 1.27 ·10−6 2.10 ·10−6 0.63 0.51
AverageWeight 2.00 ·10−4 7.30 ·10−5 2.75 0.008
SeaTemperature 0.12 0.042 2.78 0.006

In Figure 23 a plot of the residuals for the random intercept model is presented. We see that the
residuals are randomly scattered around the horizontal axis of 0.
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Figure 23: Plot of residuals against the fitted values from the random intercept regression for
the model of mobile lice in the 3-sample. To visualize overlapping, the data points are partially
transparent. The data points with the lightest black colour indicate a single point, while a darker
black colour indicate overlapping points.

Figure 24 presents the frequency plot of the observed data and the fitted data from the random
intercept model. From the figure it appears that the random intercept model fits the observed
data well.

Figure 24: The frequency of observed (blue) and fitted (red) values from the random intercept model
of the counted mobile lice in the 3-sample.
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5 Discussion

5.1 Remarks on the regression models

The model for the counted salmon lice in the 2-sample, and the model for counted mobile lice in
the 3-sample was fitted in R with a Poisson, negative binomial, log-transformed multiple linear and
random intercept regression model. It is natural to think that the Poisson regression model and
the negative regression model would perform well on the count data as these are the two most
common models for count data. However, since the Poisson regression model assumes that the
estimated value and the variance of the data is equal, it was not suitable for the given count data
of salmon lice in the 2-sample or the mobile lice in the 3-sample. That was seen from the lack of
fit in the frequency plots and the large residuals. The negative binomial model is supposed to be
more suitable for models with larger variance than the mean as it handles overdispersion. Even
though the negative binomial model outperformed the Poisson regression model, it did not fit the
observed data well, as was observed in the frequency- and residual plots. In both the Poisson
and negative binomial regression model, the residual plots showed evidence of heteroscedasticity,
meaning that the error variance was not constant. This was a violation of the model assumptions
of constant error variance, and we concluded that these models were not a good fit to the observed
count data.

The log-transformed multiple linear regression fitted the observed count data better than the
Poisson and negative binomial model by the look of the frequency plots and the model residuals.
The frequency plot showed that the fitted data from the model was well suited for the observed
count data, and the residual plots showed homoscedastic residuals with a relatively low magnitude.
The reason for the log-transformed multiple linear models performing better than the Poisson and
negative binomial models may be due to two things; the log-transformation of the response variable
and the linear models simplicity. As mentioned in Section 2.3, a log-transformation of the response
variable is known to improve normality and more importantly, the homoscedasticity of the model
residuals. This effect was visualized in the residual plots. Furthermore, the dataset we worked
with was very small with few observations and limited covariates. As we mentioned in Section 4.2,
simpler models often tend to be more suitable for small datasets. The multiple linear model is
considered simpler than the Poisson and negative binomial models due to its assumptions about
the response variable, the straightforward interpretation of coefficients, the less complex modelling
process and the preference for simplicity when the assumptions of multiple linear regression are
met.

The random intercept model also used a log-transformed response variable. From the residual
plots for the model of the salmon lice in the 2-sample and the mobile lice in the 3-sample, we saw
that the residuals had a quite low magnitude with a constant error variance. Furthermore, the
frequency plot of the fitted values from the random intercept model indicated that the model fitted
the observed count data well. Both the frequency plot and the residual plot were quite similar to
the ones obtained from the multiple linear model, and we concluded that the random intercept
model with log-transformed counts was a good fit to the data.

In Table 17, the model statistics from the model fits of the count of salmon lice in the 2-sample is
presented. A similar table of the model statistics from the model fits of the count of mobile lice
in the 3-sample is presented in Appendix B. One has to take into account that the log-likelihood
and the AIC of the Poisson and negative binomial cannot be directly compared with the log-
likelihood and AIC of the multiple linear and random intercept due to the log-transformation
of the response variable in the two latter models. However, the magnitude of the AIC and log-
likelihood is significantly higher for the Poisson and negative binomial model compared to the
multiple linear and random intercept model.
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Poisson Neg.bin Multiple linear Random Intercept
Degrees of freedom 7 7 7 8
Log-likelihood -1054 -861 -283 -286
AIC 2122 1735 581 589

Table 17: A comparison of the fitted regression models for the count of salmon lice in the 2-sample.

Because of the lack of fit, high residuals, high AIC and low log-likelihood of the Poisson and
negative binomial model, we did not use the results obtained in these models to study the count
of salmon lice in the 2-sample and the count of mobile lice in the 3-sample. The results from these
models would not have explained enough and not been certain. As an example, we may look at
the summary outputs from the models that indicated that some or all covariates in the regression
model was significant. In the case of the study of salmon lice in the 2-sample, the multiple linear
only indicated one significant covariate, and the random intercept model indicated zero significant
covariates. Therefore, the significant covariates outputted from the Poisson and negative binomial
regression models showed false positives due to model misspecifications. The multiple linear and
random intercept regression models with a log-transformed response variable gave a better model
fit and is therefore considered to be more accurate to the observed data. We therefore only used
the results from the multiple linear and random intercept model in this thesis.

5.2 Comparison of treatment methods

In this thesis we were interested in studying the non-medicinal treatment methods Freshwater,
LiceFlusher and Optilicer. More specifically, we wanted to look at the effects of the treatment
methods and see if any of them performed better than the others. In Section 4.4, we presented a
box plot of the three treatment methods against the number of salmon lice in the 2-sample (with
and without a log-transformation). This plot indicated only minor differences in the prevalence
of salmon lice in the 2-sample following the three different treatment methods. We therefore
get an early indication that none of the treatment methods outperforms the others. We also
noted a significant imbalance in the dataset, with the Freshwater treatment being applied only 11
times, while the LiceFlusher and Optilicer treatments were used 118 and 112 times respectively,
which suggests that a fair comparison of the effectiveness between the LiceFlusher and Optilicer
treatments versus the Freshwater treatment might not be possible. We still had to analyse the
methods more thoroughly. The treatment method variable, Method, was included in the regression
analysis and we fitted four different regression models for count data. The treatment method
variable, Method, was first coded as a factor variable in R, where Freshwater was used as the
reference level in order to compare it with LiceFlusher and Optilicer. Then we fitted another
model using LiceFlusher as the reference leve, in order to compare it with Optilicer.

As mentioned, we only used the results from the multiple linear and random intercept model to
study the treatment methods. The results from the first analysis, i.e., using Freshwater as the
reference level, showed that neither the log-transformed multiple linear nor the random intercept
model indicated any significant result for LiceFlusher or Optilicer in the summary outputs. Based
on this we can say that neither of these two treatment methods distinguishes from Freshwater.
Using LiceFlusher as a reference level in Method, the results from the multiple linear model showed
significance of Optilicer, indicating that this method performed better than LiceFlusher. The
random intercept model on the other hand, did not show significance of any of the covariates. This
model does therefore not suggest that the Optilicer method performed better than the LiceFlusher
method.

The reason for LiceFlusher and Optilicer not showing any significance against Freshwater may be
due to the significantly greater usage of these two methods compared to Freshwater. For the same
reason, the comparison between LiceFlusher and Optilicer when using LiceFlusher as a reference
appears more equitable. Seeing that the linear model showed significance of Optilicer and the
random intercept model did not, it may have been that the treatment methods were not randomly
distributed across locations. Therefore it impossible determine, based on the given information,
whether it is the treatment methods itself that produce the different results, or whether it is the
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locations (and implicitly also companies) that led to different results.

One can also stress that the nature of the dataset and more specifically - the design of the study
- makes it difficult to give a fair evaluation of the treatment methods. The dataset is very small
and there are multiple factors that differs between the observations besides the treatment methods.
The study this dataset is based on is an observational study, not specifically designed to analyse the
treatment methods. To say something certain about the treatment methods, we would recommend
a more clinical design on the study, with the purpose of studying the effect of the treatment
methods. In a clinical trial designed to investigate the effect of one specific factor, a controlled
experimental design is typically used. Generally speaking, in such an experiment, participants
are randomly assigned to different groups representing the levels of the factor under investigation,
and outcome measures are collected and analysed to compare the outcomes between the groups,
accounting for potential confounding variables. This design allows for isolating the impact of the
specific factor, which in this case would have been the treatment methods, and obtaining a clearer
understanding of its relationship with the outcome of interest.

However, as the intention of the RegLus-project was not only to study the effect of the different
treatment methods, but also to e.g., study the re-infestation after delousing, an observational study
works well. It is a useful study in cases like these, where there are several areas of interest in the
dataset, e.g., to spot trends in the dataset. Even though the dataset is small and noisy, and it is
difficult to say something certain about the treatment methods based on the design of the study,
significant results on the treatment methods could have indicated that one treatment method was
better than the other. Now, since the only significant result is given in the linear model comparing
the LiceFlusher method to the Optilicer method, and not in the random intercept model, we can
not distinguish these two treatment methods.

5.3 Continuation on re-infestation

In Mæland 2022 we studied regression models on count data, and the study of interest were re-
infestation of salmon lice after delousing treatment. Therefore, we looked at the count of salmon
lice, more specifically of mobile lice, in the 3-sample with the count of mobile lice in the 2-sample
as a baseline count. We followed the results of the simulation on how to include the baseline count
from Zheng et al. 2018, where the simulations done was based on negative binomial regression
models. The results obtained in Zheng et al. 2018 showed that the best way to include a baseline
count was as a log-transformed covariate in the linear predictor. In Mæland 2022 we found that the
log-transformed multiple linear regression model fitted the data best. Therefore, it was not obvious
for those simulated count data that the models including the baseline count as a log-transformed
covariate would perform better than the other models using different linear predictors. We found
in Section 3, with simulations and parameters based on the real sampling scenario and the observed
data, that the models (both negative binomial and log-transformed linear) including the baseline
count as a log-transformed offset performed best for our count data. Using this baseline, we wanted
to once again study the re-infestation of salmon lice after delousing.

The results from the log-transformed multiple linear regression model indicated that the variables
SeaTemperature, Placement and AverageWeight were significant. Further, we were interested in
seeing if these results stayed the same when we incorporated clusters of the data based on location.
That is, we used random intercept to model the number of mobile lice in the 3-sample. The random
intercept model, with a log-transformed response variable, fitted the data well. The results from
the model showed the same as the log-transformed multiple linear regression model, namely that
the coviarates SeaTemperature, Placement and AverageWeight were significant. In Mæland 2022,
in addition to SeaTemperature, Placement and AverageWeight, the variable LiceSkirt was also
significant. The significance of LiceSkirt indicated a lower count of mobile lice in the 3-sample
with the presence of a lice skirt on the salmon cage. The results obtained in this thesis, including
the count of mobile lice in the 2-sample as a log-transformed offset, does therefore not coincide with
the results in Mæland 2022. In the case of the multiple linear regression model, the only difference
from the model used in this thesis and the one used in Mæland 2022, was how the baseline count
was included. In Mæland 2022 it was included as a log-transformed covariate, and in this thesis it
was included as a log-transformed offset. From the simulations done in Section 3, we saw that all
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the linear predictors performed quite well and that there were no significant differences between the
models. Therefore, we cannot say that the model including the baseline count as a log-transformed
covariate is better than the model including the baseline count as a log-transformed offset. We
therefore conclude that the reason for the different results obtained in this thesis in contrast to
the results obtained in Mæland 2022, could be due to the different ways of including the baseline
count in the model, and in particular the LiceSkirt finding seems unreliable.

5.4 Problems with the dataset

The analysis of the salmon lice data encountered several potential issues. Firstly, the dataset
was notably small, and improving the model’s accuracy would have been possible with a larger
dataset incorporating more covariates and observations. For instance, it would have been valuable
to include environmental factors such as salinity, wind, and current in the model. Wind direction
and currents can potentially influence the spread of salmon lice in water, making them relevant
variables for regression analysis. Although the salinity parameter was absent in this dataset, its
inclusion would have been interesting since previous records indicate a correlation between salinity
and salmon lice prevalence. According to Dalvin, Ø. Karlsen and Samuelsen 2020, salmon lice
struggle to survive in low salinity conditions and eventually detach from the host.

Furthermore, investigating the impact of cleaner fish usage in the cages would have been inform-
ative. Cleaner fish, such as wrasse (Labridae) and lumpfish (Cyclopterus lumpus), are commonly
employed in salmon farms as a biological delousing method. These cleaner fish consume salmon
lice on the skin of the salmon. Jevne and Reitan 2019 highlight that using cleaner fish in salmon
farms can delay the time it takes for adult female lice to reach the threshold value of 0.1 per salmon
at the start of the production cycle. Thus, the number of cleaner fish deployed in a cage should
have been included as an explanatory variable in the regression analysis. However, this dataset
lacks information regarding the number of cleaner fish deployed, making it a worthwhile variable
for future research.

According to Torrissen et al. 2013, the density of salmon farms significantly affects the prevalence
of salmon lice at individual sites within an area. Therefore, including a distance parameter, such
as the distance to the nearest site, in the regression analysis would have been beneficial. This
parameter could have illustrated how neighbouring cages impact the prevalence of salmon lice in
a specific cage. Additionally, previous studies, including C. Karlsen 2021, demonstrate that the
distance from the site to the coastline has a clear effect on the prevalence of salmon lice and should
have been recorded as an explanatory variable.

Uncertainty arises from the estimation of the number of salmon lice in the 2-sample and 3-sample.
The count was derived from a small sample of salmon multiplied by the registered average mean
of salmon lice. However, relying on a sample size of 20 salmon may not accurately represent the
average lice abundance in a cage. Additionally, the inconsistency in sample size, e.g., there were
cases where the sample sizes was as high as 120, led to instances of higher counts due to larger
sample sizes.

Another problem with the dataset is its size. There are very few observations in the dataset,
and the data was only collected from a one-year period (2018-2019). It is possible that a one-year
production cycle is not completely representative for e.g. a ten year production cycle, and therefore
more data should have been collected and preferably over more than one year.

5.5 Conclusion and further work

In this thesis we have studied regression models for count data with applications to salmon lice
data. We have used the models to fit data for both salmon lice in the 2-sample in order to study
the different treatment methods and continued the studies in Mæland 2022, namely looking at
mobile lice in the 3-sample to study re-infestation of mobile lice after delousing treatment.

In both studies, the multiple linear and random intercept regression model with a log-transformed
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response variable fitted the observed data best. Given that the Poisson and negative binomial
regression models were significantly inferior to the two log-transformed regression models, the
results of these models were not used in the further analysis of the salmon lice. In summary,
addressing the limitations mentioned above, such as the size of the dataset, inclusion of relevant
environmental factors, improving sampling methods, could enhance the analysis of the salmon lice
data, providing a more comprehensive understanding of the factors influencing their prevalence.
For further work it would therefore have been interesting doing the same analysis with a larger
dataset with more observations and more covariates. For the studies of re-infestation of mobile
lice in the 3-sample and the investigation of the different delousing methods, results from such a
analysis could have given a better indication of which aspects and factors in the dataset to study
further. From this, one could for instance have set up a new study that would have been designed
to study specific factors or aspects of the prevalence of salmon lice in the four samples.
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Appendix

A Additional Figures

Figure 25: Estimated β̂1 from simulation 1 and simulation 2 using α = 0.5 and β1 = −0.2,
β1 = −0.1, β1 = 0.0.
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Figure 26: Type-I error rate from simulation 1 and simulation 2 using α = 0.5 and β1 = −0.2,
β1 = −0.1, β1 = 0.0.

Figure 27: Plot of residuals against the fitted values from the Poisson regression for the model of
mobile lice in the 3-sample. To visualize overlapping, the data points are partially transparent.
The data points with the lightest black colour indicate a single point, while a darker black colour
indicate overlapping points.
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Figure 28: Plot of residuals against the fitted values from the negative binomial regression for
the model of salmon lice in the 3-sample. To visualize overlapping, the data points are partially
transparent. The data points with the lightest black colour indicate a single point, while a darker
black colour indicate overlapping points.

B Additional Results

α = 3 α = 0.5
β1 = −0.2 β1 = −0.1 β1 = 0.0 β1 = −0.2 β1 = −0.1 β1 = 0.0

LM(logged)null(sim2) 14 (125) 124 (124) 124 (318) 14 (69) 10 (69) 7 (316)
LM(logged)unlogged(sim2) 7 (126) 68 (125) 67 (320) 7 (70) 3(70) -0.9 (318)
LM(logged)logged(sim2) 7 (126) 67 (125) 65 (320) 8 (70) 3 (70) -0.6 (318)
LM(logged)offset(sim2) 88 (206) 97 205) 96 (398) 89 (160) 86 (161) 84 (352)

Table 18: AIC from LM(logged)null, LM(logged)unlogged, LM(logged)logged and
LM(logged)offset from simulation 1 and simulation 2 using α = 3 and α = 0.5 with β1 = −0.2,
β1 = −0.1 and β1 = 0.0.

Poisson Neg.bin Multiple linear Random Intercept
Degrees of freedom 8 9 9 10
Log-likelihood -1186 -636 -223 -247
AIC 2389 1290 463 513

Table 19: A comparison of the fitted regression models for the count of mobile lice in the 3-sample.
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Table 20: Regression coefficients with associated estimate, standard error, t-value and p-value from
the multiple linear regression for the count model for salmon lice in the 2-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept 0.72 0.45 1.58 0.12
Optilicer -0.26 0.12 -2.31 0.022
Freshwater -0.15 0.27 -0.55 0.59
NumberOfFish 8.05 ·10−7 1.09 ·10−6 0.74 0.46
AverageWeight 6.65 ·10−5 5.40 ·10−5 1.23 0.22
SeaTemperature -0.021 0.032 -0.66 0.51

AIC: 581, Residual standard error: 0.83 on 235 degrees of freedom.

R2 : 0.52andR2
adj : 0.51, F − statistic : 48.04on5and235degreesoffreedom, p− value :< 2.2 · 10−16

Table 21: Regression coefficients with associated estimate, standard error, t-value and p-value from
the log-transformed random intercept regression for the count model for salmon lice in the 2-sample.

Coefficient Estimate Std.Error t-value p-value
Intercept 1.12 0.54 2.09 0.0014
Optilicer -5.45 0.13 -0.44 0.69
Freshwater -0.26 0.36 -0.74 0.46
NumberOfFish 6.14 ·10−7 1.73 ·10−6 0.36 0.68
AverageWeight -2.18 ·10−5 6.51 ·10−5 -0.34 0.77
SeaTemperature -0.033 0.033 -0.99 0.29

C R-code examples

Packages

l ibrary ( ”MASS” )
l ibrary ( ”PropCIs” )
l ibrary ( ” lmridge ” )
l ibrary ( ” ggp lot2 ” )
l ibrary ( ” la tex2exp ” )
l ibrary ( ”ggpubr” )
l ibrary ( ” t i k zDev i c e ” )
l ibrary ( ” readx l ” )
l ibrary ( ” s t a t s ” )
l ibrary ( ”GGally” )
l ibrary ( ” car ” )
l ibrary ( ” dplyr ” )
l ibrary ( ” s t a r ga z e r ” )
l ibrary ( ” p s c l ” )
l ibrary ( ” reshape2 ” )
l ibrary ( ” summarytools ” )
l ibrary ( ”AER” )
l ibrary ( ” lmtes t ” )
l ibrary ( ” lme4” )

Simulation

#Simulat ion 2
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obs = 100 #number o f salmon cages
n f i s k = 100000 #number o f salmons in each cage
#(n f i s k = 20 f o r s imu la t i on 1)
mu <− 0 .5 #mu 0
alpha vec <− rnorm( obs , mean = 3 , sd = 0.001 ) #mean va lue var i ed between 3 and 0.5
sample s i z e = 20 #number o f salmons to sample . Only used in s imu la t i on 2
beta 0 <− 1
beta 1 <− −0.2 #var i ed between −0.2 , −0.1 , 0 .0
sim = 2000 #number o f s imu la t i on s

y 0 = c ( )
y 1 = c ( )

beta1 hat = c ( )
beta2 hat = c ( )
beta3 hat = c ( )
beta4 hat = c ( )

p1 va lue s = c ( )
p2 va lue s = c ( )
p3 va lue s = c ( )
p4 va lue s = c ( )

a i c 1 = c ( )
a i c 2 = c ( )
a i c 3 = c ( )
a i c 4 = c ( )

#Log−transformed models
beta1 log hat = c ( )
beta2 log hat = c ( )
beta3 log hat = c ( )
beta4 log hat = c ( )

p1log va lue s = c ( )
p2log va lue s = c ( )
p3log va lue s = c ( )
p4log va lue s = c ( )

a i c 1 l o g = c ( )
a i c 2 l o g = c ( )
a i c 3 l o g = c ( )
a i c 4 l o g = c ( )

x = c ( rep (0 , obs/2) , rep (1 , obs/2) ) #group
n = rep (20 , obs ) #for the nb model

alpha vec <− rnorm( obs , mean = 3 , sd = 0.001 )
sample s i z e = 20
beta 0 <− 1
beta 1 <− −0.1
sim = 2000

for ( j in 1 : sim ){
print ( j )

for ( i in 1 : obs ){
s f i s k <− rgamma(n f i s k , shape = 1/alpha vec [ i ] , scale = alpha vec [ i ] )
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lambda ba s e l i n e = mu ∗ s f i s k
temp = rpois (n = n f i s k , lambda = lambda ba s e l i n e )
rand = sample ( 1 : n f i s k , sample s i z e )
y 0 [ i ] = sum( temp [ rand ] )
lambda fo l lowup = exp(beta 0 + beta 1∗x [ i ] ) ∗mu∗s f i s k
temp2 = rpois (n = n f i s k , lambda = lambda fo l lowup )
rand2 = sample ( 1 : n f i s k , sample s i z e )
y 1 [ i ] = sum( temp2 [ rand2 ] )

}
model1 = glm . nb (y 1 ˜ x + of fset ( log (n ) ) )
model2 = glm . nb (y 1 ˜ x + log ( y 0 + 1) + of fset ( log (n ) ) )
model3 = glm . nb (y 1 ˜ x + y 0 + of fset ( log (n ) ) )
model4 = glm . nb (y 1 ˜ x + of fset ( log (n) + log ( y 0 + 1 ) ) )

model1 log = lm( log ( y 1 + 1) ˜ x + of fset ( log (n ) ) )
model2 log = lm( log ( y 1 + 1) ˜ x + log ( y 0 + 1) + of fset ( log (n ) ) )
model3 log = lm( log ( y 1 + 1) ˜ x + y 0 + of fset ( log (n ) ) )
model4 log = lm( log ( y 1 + 1) ˜ x + of fset ( log (n) + log ( y 0 + 1 ) ) )

beta1 hat [ j ] = summary(model1 )$ c o e f f i c i e n t [ 2 ]
beta2 hat [ j ] = summary(model2 )$ c o e f f i c i e n t [ 2 ]
beta3 hat [ j ] = summary(model3 )$ c o e f f i c i e n t [ 2 ]
beta4 hat [ j ] = summary(model4 )$ c o e f f i c i e n t [ 2 ]

p1 va lue s [ j ] = anova(model1 )$ 'Pr(>Chi ) ' [ 2 ]
p2 va lue s [ j ] = anova(model2 )$ 'Pr(>Chi ) ' [ 2 ]
p3 va lue s [ j ] = anova(model3 )$ 'Pr(>Chi ) ' [ 2 ]
p4 va lue s [ j ] = anova(model4 )$ 'Pr(>Chi ) ' [ 2 ]

a i c 1 [ j ] = AIC(model1 )
a i c 2 [ j ] = AIC(model2 )
a i c 3 [ j ] = AIC(model3 )
a i c 4 [ j ] = AIC(model4 )

beta1 log hat [ j ] = summary(model1 log )$ c o e f f i c i e n t [ 2 ]
be ta2 log hat [ j ] = summary(model2 log )$ c o e f f i c i e n t [ 2 ]
be ta3 log hat [ j ] = summary(model3 log )$ c o e f f i c i e n t [ 2 ]
be ta4 log hat [ j ] = summary(model4 log )$ c o e f f i c i e n t [ 2 ]

p1log va lue s [ j ] = anova(model1 log )$ 'Pr(>F) ' [ 1 ]
p2log va lue s [ j ] = anova(model2 log )$ 'Pr(>F) ' [ 1 ]
p3log va lue s [ j ] = anova(model3 log )$ 'Pr(>F) ' [ 1 ]
p4log va lue s [ j ] = anova(model4 log )$ 'Pr(>F) ' [ 1 ]

a i c 1 l o g [ j ] = AIC(model1 log )
a i c 2 l o g [ j ] = AIC(model2 log )
a i c 3 l o g [ j ] = AIC(model3 log )
a i c 4 l o g [ j ] = AIC(model4 log )

}

( beta1 = mean( beta1 hat ) )
(var ( beta1 hat ) )
( beta2 = mean( beta2 hat ) )
( beta3 = mean( beta3 hat ) )
( beta4 = mean( beta4 hat ) )

( se1 = sd ( beta1 hat ) )
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( se2 = sd ( beta2 hat ) )
( se3 = sd ( beta3 hat ) )
( se4 = sd ( beta4 hat ) )

( b ia s1 <− beta 1 − beta1 )
( b ia s2 <− beta 1 − beta2 )
( b ia s3 <− beta 1 − beta3 )
( b ia s4 <− beta 1 − beta4 )

( power1 = ( length ( p1 va lue s [ p1 values <0 .05 ] ) )/sim ∗ 100)
( power2 = ( length ( p2 va lue s [ p2 values <0 .05 ] ) )/sim ∗ 100)
( power3 = ( length ( p3 va lue s [ p3 values <0 .05 ] ) )/sim ∗ 100)
( power4 = ( length ( p4 va lue s [ p4 values <0 .05 ] ) )/sim ∗ 100)

cp1 <− e xa c t c i ( power1/100∗num sim , num sim , conf . l e v e l = 0 . 95 )
cp2 <− e xa c t c i ( power2/100∗num sim , num sim , conf . l e v e l = 0 . 95 )
cp3 <− e xa c t c i ( power3/100∗num sim , num sim , conf . l e v e l = 0 . 95 )
cp4 <− e xa c t c i ( power4/100∗num sim , num sim , conf . l e v e l = 0 . 95 )

cp1 <− cp1$conf . i n t [ 2 ] ∗100 − cp1$conf . i n t [ 1 ] ∗100
cp2 <− cp2$conf . i n t [ 2 ] ∗100 − cp2$conf . i n t [ 1 ] ∗100
cp3 <− cp3$conf . i n t [ 2 ] ∗100 − cp3$conf . i n t [ 1 ] ∗100
cp4 <− cp4$conf . i n t [ 2 ] ∗100 − cp4$conf . i n t [ 1 ] ∗100

( a i c 1 = mean( a i c 1 ) )
( a i c 2 = mean( a i c 2 ) )
( a i c 3 = mean( a i c 3 ) )
( a i c 4 = mean( a i c 4 ) )

( a i c 1 log = mean( a i c 1 l o g ) )
( a i c 2 log = mean( a i c 2 l o g ) )
( a i c 3 log = mean( a i c 3 l o g ) )
( a i c 4 log = mean( a i c 4 l o g ) )

( beta1 log = mean( beta1 log hat ) )
( beta2 log = mean( beta2 log hat ) )
( beta3 log = mean( beta3 log hat ) )
( beta4 log = mean( beta4 log hat ) )

( se1 log = sd ( beta1 log hat ) )
( se2 log = sd ( beta2 log hat ) )
( se3 log = sd ( beta3 log hat ) )
( se4 log = sd ( beta4 log hat ) )

( power1 log = ( length ( p1log va lue s [ p1log values <0 .05 ] ) )/num sim ∗ 100)
( power2 log = ( length ( p2log va lue s [ p2log values <0 .05 ] ) )/num sim ∗ 100)
( power3 log = ( length ( p3log va lue s [ p3log values <0 .05 ] ) )/num sim ∗ 100)
( power4 log = ( length ( p4log va lue s [ p4log values <0 .05 ] ) )/num sim ∗ 100)

cp1 log <− e xa c t c i ( power1 log/100∗num sim , num sim , conf . l e v e l = 0 . 95 )
cp2 log <− e xa c t c i ( power2 log/100∗num sim , num sim , conf . l e v e l = 0 . 95 )
cp3 log <− e xa c t c i ( power3 log/100∗num sim , num sim , conf . l e v e l = 0 . 95 )
cp4 log <− e xa c t c i ( power4 log/100∗num sim , num sim , conf . l e v e l = 0 . 95 )

cp1 log <− cp1 log$conf . i n t [ 2 ] ∗100 − cp1 log$conf . i n t [ 1 ] ∗100
cp2 log <− cp2 log$conf . i n t [ 2 ] ∗100 − cp2 log$conf . i n t [ 1 ] ∗100
cp3 log <− cp3 log$conf . i n t [ 2 ] ∗100 − cp3 log$conf . i n t [ 1 ] ∗100
cp4 log <− cp4 log$conf . i n t [ 2 ] ∗100 − cp4 log$conf . i n t [ 1 ] ∗100
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( b ia s1 log <− beta 1 − beta1 log )
( b ia s2 log <− beta 1 − beta2 log )
( b ia s3 log <− beta 1 − beta3 log )
( b ia s4 log <− beta 1 − beta4 log )

Data Visualizations

data <− data . frame ( SalmonLice1 , SalmonLice2 ,
LogSalmonLice1 , LogSalmonLice2 , Method ,
NumberOfFish , AverageWeight , Location ,
SeaTemperature , Date ,
SampleCount1 , SampleCount2 )

Sample 0 = c ( rep ( ”Mobi leLice ” ,sum( Mobile0 ) ) ,
rep ( ” S e s s i l e L i c e ” ,sum( S e s s i l e 0 ) ) ,
rep ( ”AdultFemaleLice ” ,sum( AdultFemale0 ) ) )
Sample 1 = c ( rep ( ”Mobi leLice ” ,sum( Mobile1 ) ) ,
rep ( ” S e s s i l e L i c e ” ,sum( S e s s i l e 1 ) ) ,
rep ( ”AdultFemaleLice ” ,sum( AdultFemale1 ) ) )
Sample 2 = c ( rep ( ”Mobi leLice ” ,sum( Mobile2 ) ) ,
rep ( ” S e s s i l e L i c e ” ,sum( S e s s i l e 2 ) ) ,
rep ( ”AdultFemaleLice ” ,sum( AdultFemale2 ) ) )
Sample 3 =
c ( rep ( ”Mobi leLice ” ,sum(Mobile3 ,na .rm=T) ) ,
rep ( ” S e s s i l e L i c e ” ,sum( S e s s i l e 3 ,na .rm=T) ) ,
rep ( ”AdultFemaleLice ” ,sum( AdultFemale3 ,
na .rm=T) ) )
ok <− c ( ”Mobile L ice ” , ” S e s s i l e L ice ” , ”Adult
Female L ice ” )

dat <− data frame ( Sample 0)
dat1 <− data . frame ( Sample 1)
dat2 <− data . frame ( Sample 2)
dat3 <− data . frame ( Sample 3)

p1 <− ggp lot ( dat ) + geom histogram ( aes ( x =
Sample 0) , binwidth = 0 . 8 , alpha = 0 . 7 , stat =
”count” ) + labs (x = ”0−Sample” , y = ”Count” ) +
ylim (0 ,850)
p2 <− ggp lot ( dat1 ) + geom histogram ( aes ( x =
Sample 1) , alpha = 0 . 7 , binwidth = 0 . 8 , stat =
”count” ) + labs (

x = ”1−Sample” , y =” ” ) + ylim (0 ,850)
p3 <− ggp lot ( dat2 ) + geom histogram ( aes ( x =
Sample 2) , alpha = 0 . 7 , binwidth = 0 . 8 , stat =
”count” ) + labs (
x = ”2−Sample” , y = ”” ) + ylim (0 ,850)
p4 <− ggp lot ( dat3 ) + geom histogram ( aes ( x =
Sample 3) , alpha = 0 . 7 , binwidth = 0 . 8 , stat =
”count” ) + labs (

x = ”3−Sample” , y = ””)+ ylim (0 ,850)
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ggarrange (p1 , p2 , p3 , p4 ,nrow=1,ncol = 4 ,
common . legend=T)

p1 <− ggp lot (data , aes ( x = NumberOfFish , y =
SalmonLice2 ) ) + geom point ( alpha = 0 . 4 )
p2 <− ggp lot (data , aes ( x = NumberOfFish , y =
LogSalmonLice2 ) ) + geom point ( alpha = 0 . 4 )

ggarrange (p1 , p2 , common . legend = T)

p3 <− ggp lot (data , aes ( x = AverageWeight , y =
SalmonLice2 ) ) + geom point ( alpha = 0 . 4 )
p4 <− ggp lot (data , aes ( x = AverageWeight , y =
LogSalmonLice2 ) ) + geom point ( alpha = 0 . 4 )

ggarrange (p3 , p4 , common . legend = T)

p5 <− ggp lot (data , aes ( x = SeaTemperature , y =
SalmonLice2 ) ) + geom point ( alpha = 0 . 4 )
p6 <− ggp lot (data , aes ( x = SeaTemperature , y =
LogSalmonLice2 ) ) + geom point ( alpha = 0 . 4 )

ggarrange (p5 , p6 , common . legend = T)

data <− data . frame ( LogSalmonLice1 ,
LogSalmonLice2 , NumberOfFish , AverageWeight ,
SeaTemperature )
ggpa i r s (data )

Regression models

#Models f o r counts o f salmon l i c e in the 2−sample us ing the count o f
#salmon l i c e in the 1−sample as a b a s e l i n e

ds <− read ex c e l ( ”RegLusdatasett11okt . x l sx ” , shee t = 2)
behandl ing nr = ds$`nr . merdbeh . `
ds = ds [−which(duplicated ( behandl ing nr ) ) , ]

bev1 = ds$bev 1
bev2 = ds$bev 2

f a s t 1 = ds$ f a s t 1
f a s t 2 = ds$ f a s t 2

kjm1 = ds$kjm 1
kjm2 = ds$kjm 2

Method = ds$met
Method [Method==”FLS−av lu s e r ”
| Method == ”Hydro l i c e r ”
| Method == ”Skamik” ] = ”Mekanisk”
NumberOfFish = ds$ant
AverageWeight = ds$ snt
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Locat ion = ds$ l ok
SeaTemperature = ds$ s jotemperatur
Date = ds$dato av lu s ing
Date = as . Date (Date , o r i g i n = ”1899−12−30” )
SampleCount1 = ds$`ant . f i s k . t e l t −prove1 `
SampleCount2 = ds$`ant . f i s k . t e l t −prove2 `

df = data . frame ( bev1 , bev2 , f a s t1 , f a s t2 ,
kjm1 , kjm2 , Method , NumberOfFish , AverageWeight , Location ,
SeaTemperature ,
Date , SampleCount1 , SampleCount2 )

df = df [−c (23 ,24 ,25 ,26 ,27 ,28 ,30 ,35 ,36 ,37 ,
38 ,39 ,112 ,113 ,114 ,115 ,116 ,117 ,118 ,119 ,120 ,
123 ,124 ,125 ,126 ,127 ,128 ,138 ,139 ,140 ,141 ,
230 , 233 , 251 ) , ] #removing NA' s
bev1 = df$bev1
bev2 = df$bev2
f a s t 1 = df$ f a s t 1
f a s t 2 = df$ f a s t 2
kjm1 = df$kjm1
kjm2 = df$kjm2
Method = df$Method
NumberOfFish = df$NumberOfFish
AverageWeight = df$AverageWeight
Locat ion = df$Locat ion
SeaTemperature = df$SeaTemperature
Date = df$Date
SampleCount1 = df$SampleCount1
SampleCount2 = df$SampleCount2

SalmonLice1 = bev1 + as .numeric ( f a s t 1 ) + kjm1
SalmonLice2 = bev2 + f a s t 2 + kjm2

SalmonLiceCount1 = SalmonLice1 ∗ SampleCount1
SalmonLiceCount2 = SalmonLice2 ∗ SampleCount2

LogSalmonLice1 = log ( SalmonLice1 + 1/SampleCount1 )
LogSalmonLice2 = log ( SalmonLice2 + 1/SampleCount2 )

LogSalmonLiceCount2 <− log ( SalmonLiceCount2 + 1)

#Def in ing the r e g r e s s i on models

rand i n t <− lmer ( LogSalmonLiceCount2 ˜ as . factor (Method ) + NumberOfFish +
AverageWeight + SeaTemperature + ( 1 | Locat ion ) + of fset ( log ( SampleCount2 )
+ log ( SalmonLice1 + 1) − log ( SampleCount1 ) ) )
po i s <− glm( SalmonLiceCount2 ˜ as . factor (Method ) + NumberOfFish +
AverageWeight + SeaTemperature + of fset ( log ( SampleCount2 )
+ log ( SalmonLice1 + 1) − log ( SampleCount1 ) ) )
lm <− lm( LogSalmonLiceCount2 ˜ as . factor (Method ) + NumberOfFish +
AverageWeight + SeaTemperature + of fset ( log ( SampleCount2 )
+ log ( SalmonLice1 + 1) − log ( SampleCount1 ) ) )
neg . bin <− glm . nb ( SalmonLiceCount2 ˜ as . factor (Method ) + NumberOfFish +
AverageWeight + SeaTemperature + of fset ( log ( SampleCount2 )
+ log ( SalmonLice1 + 1) − log ( SampleCount1 ) ) )
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##Poisson r e g r e s s i on model

dp = sum( residuals ( pois , type =”pearson ” )ˆ2)/po i s$df . r e s i d u a l
P 3 = sum( residuals ( pois , type = ”pearson ” )ˆ2)

dp #Dispers ion parameter
P 3 #Pearson r e s i d u a l

summary( po i s )

df <− summary( po i s )$df
df
df [ 2 ] − df [ 1 ]

( ch i po i s <− qchisq ( 0 . 9 5 , 1 66 ) ) #Chi squared va lue

f i t po i s <− po i s$ f i tted . va lue s
df po i s <− data . frame ( f i t pois , SalmonLiceCount2 )
c o l s = c ( ” s t e e l b l u e ” , ” darkred ” )

#Plot o f f i t t e d va l u e s
ggp lot (df po i s ) + geom histogram ( aes ( x = f i t pois , c o l o r = ” Fi t t ed va lue s ” ) ,
alpha = 0 . 3 , binwidth = 0 . 8 ) +

geom histogram ( aes ( x = SalmonLiceCount2 , c o l o r = ”Observed va lue s ” ) ,
alpha = 0 . 3 , binwidth = 0 . 8 ) +
labs (x = ”SalmonLiceCount2” , y = ”Count” ,
t i t l e = ”Poisson f i t vs . observed va lue s ” ,
c o l o r = ”Legend” ) +
scale c o l o r manual ( va lue s = c o l s )

#Plot o f r e s i d u a l s
pearson po i s <− residuals ( pois , type = ”pearson ” )
deviance po i s <− residuals ( pois , type = ”deviance ” )

r e s i d u a l df <− data . frame ( pearson pois , deviance pois , f i t po i s )

ggp lot ( r e s i d u a l df , aes ( x = f i t pois , y =
pearson po i s ) ) + geom point ( alpha = 0.4)+
labs ( t i t l e = ”Res idua l p l o t f o r Poisson ” , x=
”Fi t t ed va lue s ” , y = ”Pearson r e s i d u a l s ” ) +
geom h l i n e ( y i n t e r c ep t = 0 , c o l o r = ” red ” )

ggp lot ( r e s i d u a l df , aes ( x = f i t pois , y =
deviance po i s ) ) + geom point ( alpha = 0 . 4 ) +

labs ( t i t l e = ”Res idua l p l o t f o r Poisson ” , x=
”Fi t t ed va lue s ” , y = ”Deviance r e s i d u a l s ” ) +
geom h l i n e ( y i n t e r c ep t = 0 , c o l o r = ” red ” )

## Negat ive b inomia l r e g r e s s i on model

dp = sum( residuals ( neg . bin , type =”pearson ” )ˆ2)/neg . bin$df . r e s i d u a l
P 3 = sum( residuals ( neg . bin , type = ”pearson ” )ˆ2)

dp #Dispers ion parameter
P 3 #Pearson r e s i d u a l

dp = sum( residuals ( neg . bin , type =”deviance ” )ˆ2)/neg . bin$df . r e s i d u a l
P 3 = sum( residuals ( neg . bin , type = ”deviance ” )ˆ2)
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P 3

df <− summary( neg . bin )$df
df
df [ 2 ] − df [ 1 ]

( ch i po i s <− qchisq ( 0 . 9 5 , 1 66 ) ) #Chi squared va lue

f i t nb <− neg . bin$ f i tted . va lue s
df nb <− data . frame ( f i t nb , SalmonLiceCount2 )

#Plot o f f i t t e d va l u e s

ggp lot (df nb) + geom histogram ( aes ( x = f i t nb +
10 , c o l o r = ”Fi t t ed va lue s ” ) , alpha = 0 . 3 ,
binwidth = 0 . 8 ) +
geom histogram ( aes ( x = SalmonLiceCount2 , c o l o r
= ”Observed va lue s ” ) , alpha = 0 . 3 , binwidth =
0 . 8 ) +

labs (x = ”SalmonLiceCount2” , y = ”Count” ,
t i t l e = ”Neg . bin . f i t vs . observed va lue s ” ,
c o l o r = ”Legend” ) +
scale c o l o r manual ( va lue s = c o l s )

#Plot o f r e s i d u a l s
pearson nb <− residuals ( neg . bin , type = ”pearson ” )
deviance nb <− residuals ( neg . bin , type = ”deviance ” )

resid df nb <− data frame ( pearson nb , deviance nb , mobile3 count )

ggp lot ( resid df nb , aes ( x = f i t nb , y =
pearson nb ) ) + geom point ( alpha = 0 . 4 ) +

labs ( t i t l e = ”Res idua l p l o t f o r Negative
binomial ” , x= ”Fi t t ed va lue s ” , y = ”Pearson
r e s i d u a l s ” ) +
geom h l i n e ( y i n t e r c ep t = 0 , c o l o r = ” red ” )

ggp lot ( resid df nb , aes ( x = f i t nb , y =
deviance nb ) ) + geom point ( alpha = 0 . 4 ) +

labs ( t i t l e = ”Res idua l p l o t f o r Negative
binomial ” , x= ”Fi t t ed va lue s ” , y = ”Deviance
r e s i d u a l s ” ) +
geom h l i n e ( y i n t e r c ep t = 0 , c o l o r = ” red ” )

##Mul t i p l e l i n e a r r e g r e s s i on model

f i t lm <− lm$ f i tted . va lue s
f i t lm <− exp( f i t lm) #inve r s e t rans format ion
df lm <− data . frame ( f i t lm , SalmonLiceCount2 )

#Plot o f f i t t e d va l u e s

ggp lot (df lm) + geom histogram ( aes ( x = f i t lm ,
c o l o r = ”Fi t t ed va lue s ” ) , alpha = 0 . 3 , binwidth = 0 . 8 ) +
geom histogram ( aes ( x = SalmonLiceCount2 , c o l o r
= ”Observed va lue s ” ) , alpha = 0 . 3 , binwidth =
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0 . 8 ) +
labs (x = ”SalmonLiceCount2” , y = ”Count” , t i t l e
= ”Lin . reg . f i t vs . observed va lue s ” , c o l o r =
”Legend” ) +

scale c o l o r manual ( va lue s = c o l s )

#Plot o f r e s i d u a l s

residuals lm <− lm$residuals

df residuals lm <− data . frame ( residuals lm , f i t lm)

ggp lot (df residuals lm , aes ( x = f i t lm , y =
residuals lm) ) + geom point ( alpha = 0 . 4 ) +
labs ( t i t l e = ”Res idua l s p l o t f o r Lin . Reg . ” , x =
”Fi t t ed va lue s ” , y = ” Student ized r e s i d u a l s ” ) +
geom h l i n e ( y i n t e r c ep t = 0 , c o l o r = ” red ” )

#Random In t e r c e p t r e g r e s s i on model

f i t rlm <− f i tted ( rand i n t )
f i t rlm <− exp( f i t rlm ) #inve r s e t rans format ion

df rlm <− data . frame ( f i t rlm , SalmonLiceCount2 )

#Plot o f f i t t e d va l u e s

ggp lot (df rlm ) + geom histogram ( aes ( x =
f i t rlm , c o l o r = ”Fi t t ed va lue s ” ) , alpha = 0 . 3 ,
binwidth = 0 . 8 ) +
geom histogram ( aes ( x = SalmonLiceCount2 , c o l o r
= ”Observed va lue s ” ) , alpha = 0 . 3 , binwidth =
0 . 8 ) +
labs (x = ”SalmonLiceCount2” , y = ”Count” , t i t l e
= ”Random in t e r c e p t f i t vs . observed va lue s ” ,
c o l o r = ”Legend” ) +
scale c o l o r manual ( va lue s = c o l s )

#Plot o f r e s i d u a l s

residuals rlm <− residuals ( rand i n t )

df residuals rlm <− data . frame ( residuals rlm , f i t lrm )

ggp lot (df residuals rlm , aes ( x = f i t rlm , y =
residuals rlm ) ) + geom point ( alpha = 0 . 4 ) +
labs ( t i t l e = ”Res idua l s p l o t f o r Random
In t e r c ep t model” , x = ”Fi t t ed va lue s ” , y =
” Student ized r e s i d u a l s ” ) +
geom h l i n e ( y i n t e r c ep t = 0 , c o l o r = ” red ” )

#Model comparison

AIC( rand in t )
AIC( po i s )
AIC(lm)
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AIC( neg . bin )

get df ( rand i n t )
get df ( po i s )
get df (lm)
get df ( neg . bin )

logL ik ( rand i n t )
l ogL ik ( po i s )
l ogL ik (lm)
l ogL ik ( neg . bin )
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