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Abstract

In the context of time-sensitive networking, such as smart power grids
and remote controlled machinery, it is important to minimize the sources
of latency and jitter in the network. In this thesis, we investigate how
changing various parameters of the Linux network stack may affect the
performance of a network device. Traditionally, related work focus on
aggregated values such as average latency and jitter, but we argue that it
is important to also look at the extreme outliers in the data.

To perform tests systematically, we have developed a benchmarking
testbed solution for testing a network device’s suitability for real-time
applications. The testbed uses a modified version of Cisco TRex to gener-
ate traffic, and a custom data processing tool to analyze the results. We
define a metric called “anomalies”, defined as n consecutive packets with
a latency higher than t. The testbed is designed to be easily reproducible,
and to be able to run on a wide range of hardware, making it useful for
potential future research.

Using the testbed, we have performed a series of experiments to inves-
tigate how changing various parameters of the Linux network stack affects
the performance of a network device. We tested different queue sizes,
different traffic rates, different system loads, tested with the PREEMPT_RT
kernel, and with applying a recent patch that changes the way the Linux
kernel handles network interrupts. We found that there are combinations
of parameters that perform much better than others, but that there is no
single configuration that fits all use cases.





Sammendrag

Når vi snakker om tidskritiske nettverksenheter, som for eksempel i
smarte strømnett eller fjernstyrte kjøretøy, er det viktig å minimere kilder
til forsinkelse og variasjoner i denne. I denne oppgaven har vi sett på hvor-
dan nettverksstakken til Linux blir påvirket når man endrer på diverse
parametre og verdier, og hvordan dette påvirker ytelsen til nettverksenhe-
ter. Tidligere forskning baserer seg hovedsakelig på sammenlagte verdier,
som for eksempel gjennomsnittlig forsinkelse og varians, mens vi i denne
oppgaven heller fokuserer på de sjeldnere ekstremverdiene.

For å gjøre dette på en systematisk måte, har vi utviklet en test-
løsning for nettverksenheter, med fokus på tidssensitive applikasjoner.
Testløsningen baserer seg på å bruke en modifisert versjon av Cisco TRex
til å generere nettverkstrafikk, og et selvlaget program for å tolke dataen
som blir generert. Vi definerte et mål vi kaller «anomalies», som vi har
definert som n påfølgende pakker med en forsinkelse som er høyere enn t.
Testoppsettet er laget for å være gjenbrukbart og støtte et bredt utvalg
av forskjellig maskinvare, og vil derfor kunne brukes i fremtidig forskning.

Ved å bruke testløsningen vår, gjorde vi en rekke tester på Linux-
kjernens nettverksstakk. Vi eksperimenterte med å variere størrelsen på
køene til nettverkskortet, forskjellige mengder nettverkstrafikk, testet
med PREEMPT_RT-kjernen, og ved å teste ut en relativt ny patch til
kjernen som lar brukeren endre hvordan kjernen håndterer interrupts fra
nettverkskortet. Gjennom testingen fant vi ut at det er store variasjoner
mellom de ulike kombinasjonene av parametre, som viser at det kan være
mye å hente på å optimalisere kjernen for spesifikke applikasjoner. Det
var ingen parametre som viste seg å universelt forbedre ytelsen, så det
vil være nødvendige å gjøre tester for hver enkelt applikasjon.
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Chapter1Introduction

Major parts of this introduction are based on the preliminary work done in the
pre-project for the thesis, which was conducted during the fall of 2022[12].

1.1 Motivation

The world is getting more interconnected, and more devices than ever are being
connected to the internet. From smartphones, to children’s toys, appliances, and
critical infrastructure, the amount of devices with some form of internet connection
is increasing rapidly. Many of these devices run a variant of the Linux operating
system[19].

There are many reasons for choosing Linux for an internet-connected device. It
is widely used, so many resources are available. It is free and open source, and
can be tailored for almost any kind of workload. Configuration parameters can be
applied both at runtime, and while configuring the source code before compiling.
This gives system administrators and device manufacturers many ways to make sure
their installations work in an optimal way. However, this flexibility has its downsides.
How can a user know which options matter, and what to set them to? Another
aspect that might affect how well a system works, is the Linux kernel itself. Linux is
a large piece of software, with many interconnected parts. This gives plenty of room
for errors and poorly optimized code. Are there any parts of the kernel that would
benefit more than others from some optimization?

An example of optimizations working well, can be seen in the FreeBSD Journal[34].
FreeBSD is, like Linux, a Unix-like operating system. The article looked into the
performance of the software network bridge in the FreeBSD kernel, and discovered
that the bridge was not as fast as expected. By using various tracing tools, the
author found that most of the Central Processing Unit (CPU) time during bridging
was spent on waiting for software locks. By rewriting parts of the code to use more
modern semaphore implementations instead of simple locks, the performance of the

1



2 1. INTRODUCTION

network bridge was improved by about 500%. Could anything similar exist in the
Linux kernel?

1.2 Methodology

The thesis has two distinct main parts: “The testbed part” and “The evaluation part”.
The testbed part will consist of developing and documenting a proper testbed setup
for real-time network applications, while the evaluation part will use the created
testbed to evaluate the importance of various configuration parameters in the Linux
kernel.

1.2.1 Design science methodology

The first part of the thesis, is a typical design science problem. A design science
problem differs from the more widely known natural science problem by having a
goal of creating a solution to a problem, instead of explaining a phenomenon[25].
One approach that can be used to create a solution to a design science problem, is
to use the design science methodology. The main part of design science methodology,
is the design cycle. For a thesis like ours, the cycle will have three steps, which are
repeated until a solution has been created.

Step 1: Problem Investigation In this stage, the various requirements and
stakeholders involved in the problem are identified. This includes finding out why
the problem exists, and what would be needed to solve it.

Step 2: Treatment Design In design science, “treatment” refers to a solution
to a problem. The second stage of the design cycle, is about developing a potential
solution to a problem, based on the requirements specified in the first step.

Step 3: Treatment Validation Once a potential treatment has been developed,
it is time to test and verify it. If the treatment is found to solve the problem, the
design cycle is complete. Otherwise, the cycle is restarted from step 1, but with new
knowledge obtained from the previous iteration.

1.2.2 Part 1: The testbed part

In the first part of the thesis, we will continue on the background study from the
pre-project[12], in order to get an understanding of the requirements for a testbed.
This corresponds to the first step of the design cycle described in the previous
subsection.
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After landing on some requirements for the testbed, we can begin the design
process. This will include both software setup, hardware setup, and perhaps most
importantly documentation. The documentation is one of the main artifacts from
the thesis, as this will allow anyone to recreate the testbed to perform their own
experiments. We will write a draft for the documentation while developing the
testbed, to make sure all details are included, before improving it when the design is
complete.

While working on the testbed, we will conduct small intermediate tests to get an
understanding of how well the setup works. The results obtained at this stage will
only be used for validation of the testbed setup, and will not be used for the evaluation
part of the thesis. These intermediate tests will include as few variables as possible,
for example by running the tests in loopback mode (explained in subsection 3.3.1).

Completing this part of the thesis is vital for starting the second part, the
evaluation part. This can be seen as a treatment evaluation of the developed testbed.

1.2.3 Part 2: The evaluation part

In the evaluation part, we will repeatedly use the testbed from part 1 of the thesis.
The testbed will be used to try out the effects of applying various configuration
parameters to the Linux kernel. To get a sense of stability in the results, we will
perform each test several times, and with many different permutations of configuration
parameters. For efficiency, we will use a batching script for this, so minimal user
interaction will be required.

Before starting the tests, we will create a plan, with a list of what to test, how to
test it, and expected results. After we have obtained results, we will analyze them,
and make attempts at drawing conclusions from the obtained results.

1.3 Research questions

While doing the pre-project for this thesis[12], some research questions were defined.
These will be carried over to the thesis, so the questions and justifications from the
pre-project are included below.

RQ1: How can we create an open-source benchmarking testbed for network perfor-
mance assessments?

RQ2: What are the performance bottlenecks in the Linux network stack, in the
context of real-time applications running on a desktop server?
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RQ3: What is the optimal configuration of a Linux server used for real-time applica-
tions?

RQ1 is the main research question for the testbed part of the thesis. If we can
get the testbed to work as intended, we will have an answer to this question. In
addition, the testbed will help us answer the other two research questions.

RQ2 and RQ3 are the main research questions for the evaluation part of the
thesis. These questions will be answered by using the testbed to perform several
tests with different configurations. The results from these tests will be analyzed, and
used to draw conclusions about the performance of the Linux network stack, and
what configuration parameters are most important for real-time applications. The
questions are linked together, in that we expect the answer to RQ2 to provide hints
on what we can conclude with in RQ3.

Since the network stack is a very complex piece of software, we will not be able to
answer these questions in full. Instead, we will try to find some of the most important
parameters, and try to find out how they affect the performance of the network stack.
Our hypothesis is that since the network stack is made to be general purpose, it will
not be optimized for real-time applications, making it possible to tweak it for better
performance.

1.4 Project outputs

The main outputs from our thesis, will be the testbed and the documentation for it.
The testbed will be described in a publicly accessible GitHub repository, with all
tools and scripts needed to recreate the testbed. These outputs are produced in the
first part of the thesis, and validated during the second part.

In addition to the testbed, we will also produce a report describing the results
from the evaluation part of the thesis, with results and plots of results. These will
be published in this document.



Chapter2Background

In this chapter, we will introduce some of the concepts and technologies that are
relevant for the rest of the thesis. We will first provide an introduction to what
network traffic is, and how it can be simulated. Then, we will take a look at the
Linux kernel, before evaluating some alternatives for network traffic generation.

2.1 Network traffic

In this section, we will give an introduction to what network traffic is, how artificial
traffic can be generated, and how we can leverage this to benchmark network devices.

“Network traffic” refers to data being sent over a network. This data can be
anything from a simple control message to a web request or video streaming. The
data is sent in packets, which are small chunks of data with headers containing
information about the packet. The headers contain information such as the source
and destination of the packet, and the type of data contained in the packet. This
design allows for a wide variety of different types of data to be sent over the same
infrastructure, which increases the scalability and durability of the network.

Different types of network traffic have different requirements for how the network
should behave. Some types of traffic are very robust, and can handle both long
delays, packet loss, and variations in latency. Examples of this type of traffic, are
file transfers and email, where protocols such as Transmission Control Protocol
(TCP) help compensate for packet loss and out-of-order packets, for example by
retransmitting lost packets and performing reassembly. Other types of traffic are
more sensitive, and might require strict timing guarantees from the network in order
to work as intended. Examples of this type of traffic, could be the operation of
remote controlled machinery, where a few out-of-order packets could be the difference
between a successful operation and a catastrophic failure.

5



6 2. BACKGROUND

Figure 2.1: Device connections used in RFC2544

2.1.1 Benchmarking network devices

During the pre-project for this thesis, we performed a study of how network devices
are benchmarked[12]. This subsection builds on the results from the study, and
extends it where appropriate.

In order to measure and benchmark network performance, a good benchmarking
testbed is needed. Developing a reliable and predictable testbed in a complex
environment such as networking is difficult, and errors could make the results
obtained inaccurate or even useless. One attempt at developing a standardized
solution for performing network benchmarks, is published as RFC2544[2]. This
Request For Comments (RFC) defines a series of possible tests to measure various
metrics, including values to obtain and how to present the results. What most of
those tests have in common, is how the network devices are being connected. They
refer to the device being tested as Device Under Test (DUT). The DUT connects
to one or more devices used to generate the data used for testing. An example
connection with a single tester device testing a single DUT can be seen in Figure 2.1.

RFC2544 has received some criticism[22], not about the RFC itself, but on
how these tests have been used. RFC2544 was intended for benchmarking network
devices in isolated test environments, like in our project. However, enough users were
running the tests in production environments such that an amendment to RFC2544
was published as RFC6815[3]. RFC6815 does not make any modifications to the
benchmarks, but rather adds a warning to not run the tests in a production network.

2.1.2 Benchmarking software tools

For some types of benchmarks, it is enough to use simple software tools. Software
tools are often portable and easy to set up compared to specialized hardware tools,
in addition to usually being cheaper. However, software tools may have limited
performance compared to dedicated hardware tools. We will look at a widely used
tool for measuring network bandwidth, iperf3.

iperf3 is a commonly used tool for measuring network performance. It is a



2.1. NETWORK TRAFFIC 7

Figure 2.2: Screenshot of iperf3

command-line utility that can be used to measure the bandwidth of a network
connection. It is open source, and is available for most popular operating systems[16].
iperf3 is used in several studies where network performance is measured[39, 4]. iperf3
uses a client-server architecture, where the DUT hosts a server, while a client initiates
a test by connecting to the server. A screenshot of a typical iperf3 session can be
seen in Figure 2.2, where the iperf3 client measures the maximum throughput of the
connection to the server.

Software tools like iperf3 have several advantages. They are easy to set up and
use, and provide a simple way to measure network performance. However, they are
limited in the types of tests that can be performed, and in scale. Since these tools
usually run on top of an operating system, they will be limited by the networking
capabilities of the operating system.

2.1.3 Traffic generators

One commonly used tool while benchmarking network devices, is a traffic generator[26,
24]. A traffic generator is a device that generates, transmits, and receives artificial
network traffic, which can be processed by the DUT. This allows device manufacturers
and researchers to test realistic traffic scenarios within a closed and controlled
environment. A typical traffic generator will have multiple network interfaces, where
each one is used to either transmit or receive traffic.

A traffic generator can be used for a wide variety of tests. From simple tests like
measuring the maximum throughput (similar to iperf3), to more complex tests like
stress-testing firewalls and intrusion detection systems. Dedicated traffic generators
are often optimized for generating larger amounts of traffic than software tools, and
can be used to generate traffic at line rate.
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Traditionally, commercial closed-source traffic generators have been used for
benchmarking network devices[26, 24]. This approach has several disadvantages:

– Commercial traffic generators can get very expensive[31], which could hinder
research activities without large budgets.

– Being closed source, it can be difficult to know exactly what is going on inside
the generator. This gives less transparency into the benchmarking process, and
may give uncertainties that would not be present if the inner workings of the
generator could be inspected.

– As an extension of the point above, the closed approach of commercial traffic
generators reduces the flexibility of the device.

Despite the disadvantages, commercial traffic generators can still be used for
research projects. In 2007, Bolla et al. used a commercial traffic generator to
benchmark the performance of the Linux kernel, similar to what we will do in
this thesis[35]. The study used a traffic generator from Agilent Technologies (now
Keysight[38]) to generate traffic at up to 1Gbps.

Not all research projects have access to commercial traffic generators. Fortunately,
in recent years, open-source traffic generator solutions have appeared. These traffic
generators are mostly software-based, and use common Commercial off-the-shelf
(COTS) hardware, while still achieving better performance than software-only tools
like iperf3. This greatly reduces the entry barrier of using a traffic generator.
Examples of open-source traffic generators, are MoonGen[14] and Cisco TRex[5].
Both of these will be described in more detail in section 2.3. But first, we will take
a look at how networking works in the Linux kernel, which is required in order to
understand some of the open-source traffic generators we will introduce later.

2.2 Linux networking

The Linux operating system has several interconnected parts. One major part of
the kernel, is the network stack. The network stack is responsible for handling all
TCP/IP related tasks, to allow applications to communicate over the internet in a
portable and uniform way.

2.2.1 The Linux Network Stack

The network stack is the part of an operating system responsible for network-related
tasks. On Linux, the stack includes everything between the network cards and the
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application layer, including device drivers, system calls, protocol implementations,
and the interfaces between them[15].

Closest to the hardware, are the device drivers for the network interface cards.
Device drivers are specific for each network card, and are often written by the device
manufacturers themselves. For example, the Network Interface Card (NIC) used
in this thesis, the Intel X710-T2L, uses the i40e driver by Intel[8]. Drivers are
responsible for the interaction between the kernel and the hardware. This includes
initializing the hardware correctly, registering it to the kernel, reporting supported
features, and handling the actual transmission and receiving of network traffic[30].
Drivers are required to implement certain functions and structures, which makes
them interoperable with the rest of the kernel.

Traditionally, when a network packet arrives at the NIC, an interrupt is generated.
An interrupt is a signal sent from the hardware to the CPU, which causes the CPU to
stop what it is doing and handle the interrupt, before returning to what it was doing.
In the past, this allowed the system to handle packets arriving at any time, but also
caused a great amount of overhead when heavy traffic was present. To reduce the
overhead, a new system was developed, known as the “New API”, or NAPI for short.
NAPI allows the driver to temporarily poll the NIC for new packets actively, instead
of waiting for an interrupt, during times of high traffic[35]. This reduced the amount
of interrupts generated, and thus reduced the overhead. However, to enable the use
of NAPI, the driver has to support it.

Whenever a new packet arrives, the CPU will need to process it. If the CPU is not
available, it needs to be stored until the CPU is ready. This is done by using buffers,
implemented as ring buffers in the system memory. The NIC can copy packets into
the buffer without using the kernel or CPU by using Direct Memory Access (DMA),
allowing packets to be copied in the background. These buffers can then be used as
a queue by the CPU. Queue sizes are set by the driver, and can in most cases be
configured by the user. In addition to varying queue sizes, the number of queues
can also be changed. This can be useful in multicore systems, where each core can
handle one queue[30].

Once the CPU is ready to process a packet from the receiving queues, parsing can
begin. At this stage, the incoming packet is parsed layer by layer until all headers
have been processed. The kernel handles parsing of headers at the data link layer up
to and including the transport layer. Checksums are also verified at this stage. The
kernel will then copy the data contained in the packet to the receiving socket of the
application. The application can then read the data and use it as needed. Note that
a copy takes place here, which does have a performance cost. The copy operation is
needed because the network stack runs in kernel space, while the application runs in
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user space. This separation is made for security reasons, but does have a performance
impact. A way to avoid this extra copy is described in subsection 2.2.4.

2.2.2 Tuning the network stack

The Linux network stack was designed to work for any application with minimal
configuration. As a result of this, the performance may not be optimal for all
applications. To improve the performance for a particular application, the network
stack can be tuned to optimize relevant network metrics. For example, for a real-time
application, it may be more important to reduce latency and jitter, even if it means
lowering the maximum throughput or increasing CPU usage.

ethtool

One way of tuning the network stack, is to use the ethtool utility. ethtool is a
command-line utility for changing parameters in the NIC driver, and by extension
how the NIC operates. The parameters that can be changed, depend on what the
driver reports as being configurable, but may include parameters such as queue
sizes, queue counts and distribution, and interrupt settings. It may also be used to
obtain information and statistics from a NIC, such as firmware version, received and
transmitted packets, packet loss, and current packet rates[17, 30].

Threaded NAPI pool patch

As mentioned in subsection 2.2.1, the NAPI system allows the driver to poll the NIC
for new packets, instead of waiting for an interrupt. However, where this polling and
subsequent processing takes place, is not specified. In the default implementation,
the polling and processing takes place anywhere on the system, making it more
difficult to monitor and control[9].

In 2020, a patchset was published that would allow the polling and processing
to be done in dedicated kernel threads instead of in software interrupt handlers.
This would allow for better control of the system, and easier monitoring of resource
usage for the NAPI. The patchset was merged in 2021, and can be used on newer
kernels by setting a flag in the Linux system configuration. Initial tests showed some
performance improvements, but the patchset is still very new, and not much data is
available[9].

2.2.3 Alternative kernels

There are several alternative patchsets that can be applied to the Linux kernel,
in order to fit specific use cases better. One of these patchsets, is known as the
PREEMPT_RT kernel. The main feature of this kernel, is to allow for preemption.
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This means that tasks can be assigned a priority, and tasks with higher priority
can interrupt tasks with lower priority if required. This also applies to kernel
tasks, where critical applications may take priority and preempt the kernel. These
features can be useful for real-time applications, where applications might have strict
timing requirements. Additional features of the PREEMPT_RT kernel include handling
interrupts as kernel threads instead of directly in the interrupt context, and improve
the accuracy of the kernel timers[1]. Together, the features of the PREEMPT_RT kernel
pathset can help make a system more deterministic, and thus more suitable for
real-time applications[18].

2.2.4 Bypassing the network stack

In some cases, such as when achieving maximum performance is required, it may be
necessary to bypass the network stack. This can be done using memory mapping
frameworks, such as Intel Data Plane Development Kit (DPDK) or PF_RING ZC.
These frameworks allow the application to directly control the NIC, completely
bypassing the kernel. This has two main advantages: allowing applications to use all
the features available on the NIC, and potentially avoid the performance overhead of
the network stack. This may give large performance improvements, at the cost of
the portability and usability of the network stack[20].

The term memory mapping framework describes one of the core features of the
frameworks: allowing the NIC to write packets directly into application memory,
instead of writing it to the kernel. This allows the applications to access the packet
data directly, instead of waiting for the kernel to process it. In addition to allowing
full control over packet processing, this also avoids the need to copy packet data
from kernel memory to user memory.

Using a memory mapping framework does have some drawbacks. One of them
is that while the Linux network stack is designed to be general and support many
different NICs, memory mapping frameworks are often tailored to support specific
NICs. This allows the frameworks to utilize all hardware features available on the
NIC, but requires applications to be written specifically for the framework and NIC.

In addition to losing the portability of the network stack, the application will also
need to handle all the tasks that the network stack normally handles. For example,
DPDK, as the name implies, only implements up to the data plane of the network
stack. Applications will therefore in most cases be required to either implement the
transport layer protocols themselves, or use additional tools like F-Stack[7] to do so.



12 2. BACKGROUND

DPDK

DPDK is an open source memory mapping framework developed by Intel. It is
designed to allow high-performance packet processing by controlling the NICs directly.
DPDK includes a set of libraries and drivers for a wide range of NICs and use cases.
The source code is available under an open source license at GitHub[11]. The project
was started by Intel, but is now a part of the Linux Foundation[33].

DPDK is designed to be powerful and flexible, but this comes at the cost of
usability. Compared to some of the alternatives discussed above, DPDK will in most
cases require more work to set up, learn, and use[20]. However, once this entry barrier
is overcome, DPDK can vastly improve the performance of network applications[26,
15].

Other memory mapping frameworks

DPDK is not the only framework available to developers who want to improve
the performance of their network applications. There are several other frameworks
available, such as PF_RING ZC[28] and netmap[27].

PF_RING ZC (“Zero Copy”) is a framework developed by ntop. Like DPDK, it
uses custom drivers to control the NICs directly, without going through the kernel.
It is designed to be easy to use, by giving developers access to a Python library to
integrate into their own applications. It also includes a packet capture application,
which can be used to capture packets from the network and write them to a file. The
main downside of PF_RING ZC is that it is not open source, and requires a license to
use. It is therefore not an option for our thesis.

netmap is a framework developed by Luigio Rizzo. It differs from DPDK and
PF_RING ZC in that it is not provided as one or more libraries, but rather a modified
version of the standard network system calls used by the Linux network stack. This
can make it easier to integrate netmap into existing applications, but also means that
it is not as powerful as the other frameworks.

In 2015, Gallenmüller et al.[20] compared the performance of DPDK, PF_RING,
and netmap. They found that DPDK had the overall best performance, while PF_RING
came in at a close second. netmap had the worst performance of the three, but was
still significantly better than the Linux network stack for their test applications.

2.3 Cisco TRex

In our thesis, we will not use Intel DPDK or any other memory mapping frameworks
directly. Instead, we will use software that builds on top of DPDK to improve the
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performance of our testbed. We will use the packet generator Cisco TRex, which we
will introduce in this section.

TRex is an open source traffic generator developed by Cisco. It utilizes the DPDK
framework to generate large amounts of network traffic using commodity hardware.
It is designed to be used in performance testing of network devices, and can generate
tens of gigabits of traffic on a modern CPU. The traffic generator supports a wide
range of protocols and applications, making it suitable for many different use cases.
It is also highly configurable, allowing users to customize the traffic to their needs[5].

2.3.1 Modes of operation

Cisco TRex has three modes of operation: Stateless Mode (STL), Stateful Mode
(STF), and Advanced Stateful Mode (ASTF). In STL mode, all packets are generated
based on templates or user-defined scripts, and the generator does not keep track of
any state. This makes it suitable for testing stateless devices, such as routers and
switches. STL mode sends one type of packet, but the packet can be fully customized
using the Scapy library for Python[36]. Stateless mode can be used from a console
environment, controlled via a Python API, or through a graphical user interface.

The Stateful mode is the default mode of operation for TRex. In this mode, the
generator replays a Packet Capture (PCAP) file containing real traffic. The addresses
are replaced by TRex to multiply the traffic as if it originated from different devices.
This mode is suitable for testing stateful devices, such as load balancers and firewalls.
This mode is usable directly from the TRex Command Line Interface (CLI), by
providing a configuration file with an IP address range and other parameters. In this
mode, it is also possible to do latency measurements in parallel to the traffic. This
is done by sending a special packet at regular intervals, and measuring the time it
takes to receive a response.

The latency measurements in stateful mode uses hardware features of the NIC if
available, or a software implementation if not. This means that the accuracy of the
latency measurements can vary between different NICs. The latency measurements
are also limited to running on a single CPU core, which can be a bottleneck for
high-speed links. The idea is to run the latency checks as a separate, smaller stream
of packets, while transmitting heavier traffic in parallel, thus providing measurements
for only a sample of the packets. It is also not possible to change the packet size of
the latency-measuring packets.

The last mode TRex supports, is the Advanced Stateful mode. This is an extended
version of the stateful mode, with support for traffic where some headers may change.
An example of this, could be a web server proxy that changes addresses in the packet,
while preserving most of the original packet. This mode is implemented by including
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a full TCP implementation, based on the FreeBSD network stack. This allows TRex
to understand and analyze full TCP traffic. In the future, this mode will support
more detailed latency measurements, but as of May 2023, this has not been properly
implemented yet.

2.3.2 TRex alternatives

Cisco TRex is not the only open source traffic generator available. There are several
other alternatives, such as Ostinato[29], Ixia-C [21], and MoonGen[13]. These three
alternatives all build on top of DPDK, but they differ in other ways. We will briefly
introduce these alternatives in this section.

Ostinato is an open source traffic generator, which describes itself as the “reverse
of Wireshark”. It has a graphical user interface, and supports replaying PCAP files
as well as generating traffic based on templates. It works on both Linux, Windows,
and macOS. On Linux, it is possible to utilize DPDK with the help of a plugin. This
allows Ostinato to generate traffic at line rate. However, even if the source code of
Ostinato is open source, the DPDK plugin is not. For most users, it is also necessary
to purchase a license to use the software. This makes it unsuitable for our goals.

Ixia-C is another open source traffic generator. It is marketed as an open source
alternative to the commercial traffic generator family Ixia from Keysight Technologies.
Ixia-C is built as a reference implementation of the Open Traffic Generator API, which
is a standard by the Open Traffic Generator organization. Ixia-C is published under
a permissive MIT-style license. However, generating large amounts of traffic requires
the commercial version of Ixia-C, known as Keysight Elastic Network Generator.
Since other alternatives without this restriction are available, we will not use Ixia-C
in our thesis.

The last TRex alternative we will present, is MoonGen. MoonGen is a scriptable
high-performance packet generator built on top of DPDK. It uses Lua as a scripting
language, making MoonGen very flexible. For common use cases, convenience scripts
are provided. MoonGen is published under a permissive MIT license. While TRex
was developed by Cisco as a tool for engineers, MoonGen was developed by researchers
as an academic tool.

Among the presented alternatives, MoonGen looks like the most promising
alternative. Both are actively developed and maintained, and support a wide range
of NICs and systems. However, MoonGen is not as mature as TRex, and requires
hardware support to do accurate packet timestamping. At the same time, the feature
set and usability of MoonGen looks promising, so further research could be done to
compare the two alternatives. For our thesis, we will use TRex.



Chapter3Testbed Creation

In the first part of our thesis, we designed and implemented a testbed solution for
network devices, based only on open source software and COTS hardware. The
testbed was not only designed to benchmark the Linux kernel, like we did in the
second part of the thesis, but also to be general and reusable for other research
projects in the future.

The testbed is based on Cisco TRex, with slight modifications to the source code
to export more finely granulated data for processing.

3.1 Goals of testbed

Before we started designing a testbed, we needed to define what we wanted to achieve
with it. We had to decide on what kind of tests we wanted to run, and what kind of
data we wanted to obtain.

Since we were interested in measuring suitability for real-time applications, we
decided that maximum throughput was not the most important metric to measure.
Instead, we wanted to focus on the latency, especially on variations in latency.
Existing solutions, like iperf3, give good average values, but do not show small
outliers that can happen over time. We wanted to make an attempt at measuring
these outliers, and see if we could find any patterns in them.

To achieve this, we needed a few things in the testbed:

1. A packet generator that could efficiently generate a large amount of packets

2. A way to store individual timestamps and latency values for each generated
packet

3. A metric of analysis that gave insight into the anomalies in the data without
being overwhelming

15
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The first two points are closely related, since the packet generator will have to do
the recording and storage of timestamps on the artificial traffic. The third point was
more about how we wanted to present the data to the user, and how it would be
processed, so it was mostly independent of the traffic generator. We wanted to do as
little processing as possible while running the tests, to avoid affecting the results.

3.2 Hardware setup

Like in most of the tests in RFC2544, we wanted to test the performance of a network
device in an isolated environment. This was to avoid any interference from other
network devices, and to avoid affecting the rest of the local network. Like in the
RFC, we will refer to the device we were testing as the DUT. The tester device will
be referred to as the Packet Generator (PGEN). For this setup, we needed both the
DUT and the PGEN to have two available network interfaces. This was to allow us
to connect the two devices directly to each other, but still have data use different
paths in each direction.

While the testbed is designed to be general and reusable, we will also give a
description of the exact hardware setup used in this thesis. A photo of the testbed
setup can be seen in Figure 3.1. The PGEN in the testbed used in the thesis was
a Dell Precision 3640 Tower, which was inherited from a previous project at the
department. It had the following technical specifications:

– CPU: Intel Xeon W-1270P, 8 cores running at 5.10GHz

– Random Access Memory: 32GB DDR4

– NIC: Intel Ethernet Network Adapter X710-T2L, firmware version 8.10 0x800093ea
1.2829.0

– Storage: 512GB M.2 NVMe Solid State Drive (SSD)

The DUT in our testbed was mostly equal to the PGEN, except for having 64GB of
RAM instead of 32GB.

Both machines used a fresh installation of Arch Linux from December 2022. The
main reason for picking Arch Linux, was the availability of recent software packages,
and good documentation. A different distribution, like Ubuntu or CentOS, would
probably have worked just as well, since we could use the same software tools. The
PGEN used kernel version 6.0.5.14.realtime1-2-rt, while the DUT used kernel versions
6.0.10.arch2-1 or 6.0.5.14.realtime1-2-rt depending on chosen testing configuration.
The machines were connected using two 50 cm CAT6 cables.
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Figure 3.1: Photo of testbed setup, with the PGEN and DUT connected directly
to each other

In addition to the dedicated Intel NIC, both machines also had a built-in NIC on
the motherboard. This interface was used for internet and remote access over SSH,
while the Intel NIC was used for the actual benchmarking traffic.

3.3 Software implementation

The software implementation of the testbed was split into two parts: a modified
version of Cisco TRex to serve as a traffic generator, and a data processing tool, named
the data-postprocessor. The TRex fork was responsible for generating packets and
storing the timestamps, while the data-postprocessor was responsible for analyzing the
data and generating plots. We will introduce the traffic generator and validation of it
first, and then move on to how we designed and implemented the data-postprocessor.

3.3.1 Cisco TRex fork

TRex was chosen as the packet generator for the testbed, because it is relatively well
known and widely used among open-source alternatives[31]. It is actively developed,
with several new commits added to the GitHub repository during the months we
were working on this thesis.
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When running TRex in stateful mode with latency measurements enabled, it
will generate a report at the end of the test, and print it to the standard output.
This report contains information about the physical links, such as the Ethernet line
rate, as well as obtained measurements. A table with statistics for each network
interface is generated, which shows total bytes and packet transmitted, packet loss,
and malformed packets. At the end, a table with data from the separate latency
measurements is printed. This table contains the average latency values, a calculated
jitter value, and a histogram of aggregated latency values. This is a good start, but
not enough for our purposes.

While TRex is a powerful tool, it was not designed to be used to inspect per-packet
variations within a flow. Thankfully, because of its open-source license, this was
something we could change ourselves by creating a fork of the source code. Our fork
is located at https://github.com/KHTangent/trex-core. We created the fork on the
20th of January 2023, so any changes to the official TRex repository since then have
not been included in the thesis. The fork is, as of writing this, listed as being almost
two thousand commits behind the master branch of TRex. This is misleading, as the
commit history of the original repository has suffered from a bad merge, creating a
lot of duplicate commits. The actual difference between the two repositories are only
a few commits.

In summary, we made one change to the source code of TRex: added the export of
intermediate data to the latency measurement mode in TRex. In practice, whenever
TRex is executed, a file titled timestamps-[date]-p0.data is created in the current
working directory. This file contains raw double-precision floating point number
data of transmit and arrival times for each latency packet, which can be processed
externally later. See section 3.5 for more information on how we use the generated
raw data.

While modifying the source code, we had to be very careful to not introduce
additional latency to the obtained results, and to avoid running out of memory. To
test for this, we ran TRex in loopback mode. In loopback mode, the two interfaces
on the PGEN are connected to each other, instead of through the DUT. A photo of
this setup is shown in Figure 3.2. In this configuration, all performance variations
are caused by the PGEN, like the OS, hardware, or TRex. We first did some tests
with an unmodified version of TRex to see a baseline, and then repeated the same
tests after our changes had been applied, so we could see how much they impacted
the performance.

For our first attempt at implementing timestamp exports, we simply generated
an empty file at the start of the test, and then appended the raw timestamp values
to the end of the file as packets arrived. This worked, but it was very slow, and it

https://github.com/KHTangent/trex-core
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Figure 3.2: Photo of PGEN connected in loopback mode

greatly affected the results we were obtaining compared to the original TRex. This
made sense, as doing a file write at every single packet has a lot of overhead.

Our second attempt, was to cache all obtained data in a linked list in memory,
and only write it to the file at the end of the test. A linked list was used because
they support constant-time insertion, while a regular vector would require resizing
and moving of elements when it reached its full capacity. This approach was much
faster, but put a hard limit to how many packets a test could contain before running
out of system memory. To make matters worse, using a linked list instead of an array
or vector meant that every packet data had to include a pointer to the next packet,
limiting the amount of data we could generate even more.

Our solution was to use a fixed size array to cache the data, and to write it to
the file in chunks. This provided a good balance between speed and memory usage,
and did not noticeably reduce the performance of TRex compared to the original
version. We could implement this with relative ease, because the latency measurement
mode in TRex runs on a single core, so we did not need to be careful about thread
safety. All code changes were performed in the src/stateful_rx_core.cpp and
src/stateful_rx_core.h files of the original TRex code.
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Unfortunately, this method of obtaining results is not perfect. As mentioned, it
only uses the latency measurement mode in TRex, which has several limitations.
First off, it has to do CPU processing on every packet, severely limiting the maximum
throughput we can generate. Secondly, the mode does not support setting custom
packet sizes, and we were unable to add this feature during our work on the thesis.
This means that we can only generate small packets. It could be possible to implement
the latency exports in one of the other modes supported by TRex, but this would
seemingly require a lot more work, and we did not have the time to do this. Another
downside, is that latencies are only stored when the packet is received, not when it
is sent. This makes it impossible to know when a packet is lost. An estimation for
packet loss can still be made by looking at the difference between the expected and
actual number of packets received.

3.3.2 Testbed validation

Before we could start using the testbed for our experiments, we had to validate that
it was working as intended. We wanted to make sure that the results we obtained
were accurate, and that the testbed was not introducing any errors. We did this by
running TRex in loopback mode, and inspecting the results for any anomalies.

While running TRex in loopback mode, we would expect latency to be very low,
and with little variation. However, we did see a few outliers in our preliminary tests,
which would affect our results if we did not account for them. One option would
be to do several tests in loopback mode, and make an estimation for TRex-induced
outliers, then subtract them from the obtained test results. This would not be very
accurate, and we wanted to avoid it if possible. A better solution would be to reduce
or completely eliminate all TRex-induced spikes.

A plot of a 10-minute test run in loopback mode before our changes, can be seen
in Figure 3.3. The vertical lines in the plot represent one or more packets that were
delayed by a significant amount of time. We will revisit this type of plot later, but
for now only the amount of vertical lines matter.

We took several steps to minimize spikes. Our main assumption, was that the
spikes were caused by other processes on the system, causing small delays in the
execution of TRex. We therefore started by going through all processes running on
the system, and disabling the ones we deemed unnecessary. Our main change here,
was to disable Xorg, the graphical user interface, in favor of running the system in
terminal-only mode. This had an impact on our results, but did not resolve the issue
completely.

Our second change to the PGEN system, was to let TRex run on isolated CPU
cores. This would ensure that no other processes would run on the same cores
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as TRex, potentially reducing the number of spikes. This was accomplished by
modifying the boot parameters of the Linux kernel, and isolating four CPU cores.
We then used the taskset command to force TRex to run on the isolated cores. Like
when disabling Xorg, this had a positive impact on our results, but we still had some
spikes left.

Finally, we migrated the PGEN to use the PREEMPT_RT kernel. As mentioned
in the background chapter, this is a modified version of the Linux kernel, which is
optimized for situations where applications need to respond within set time limits.
On Arch Linux, this was easily achieved by installing the linux-rt package, and
rebooting the system. This had a great effect on the remaining performance issues
we had, and by our tests the TRex-induced spikes were practically gone. Our PGEN
was now ready for usage. A new plot of a 10-minute test run in loopback mode after
our changes, can be seen in Figure 3.4. Note that there are still some delayed packets
right after the start of the test, motivating us to discard the first second of each test
to account for such warmup time.

While it is possible to tune various network-related parameters in the Linux
kernel, such as with ethtool, this would not have had any effect on our results. This
is because TRex bypasses the Linux kernel completely, and communicates directly
with the NIC using DPDK. There might be some parameters in DPDK that could
be tuned, but we did not investigate this further.

3.4 Metrics to use

We needed a way to give insight into the outliers in a test, without overwhelming the
user with too much data. We considered several alternatives, but decided on using a
metric with “anomalies”. We defined an anomaly as “a set of n consecutive packets
with a latency greater than t”. This metric has several advantages. For example,
the thresholds n and t can be adjusted based on requirements, and the generated
output can be summarized well by providing aggregate data for all anomalies in a
test run. The value of t could also be set dynamically based on the average latency
of the test, to get an accurate result without having to calculate a reasonable value
for t beforehand.

One disadvantage of this metric, was that it does not necessarily show if anomalies
themselves happen in bursts or are spread evenly. To help with this, we wanted a
way to create a plot of the anomalies as well, so that the user could see the anomalies
on a timeline. This plot needed some thought, to try to capture as much useful info
as possible without being confusing to the viewers. Implementation-wise, this also
meant that we would need to use a very flexible plotting library, or in the worst case
we would have to implement our own plotting on top of a general graphics library.
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Figure 3.3: Anomaly plot of a test run in loopback mode with the default system
configuration. n = 1, t = 50 µs

Luckily, the plotting library we ended up using was flexible enough by itself, saving
us time.

Before deciding on this metric, we also considered several alternatives. One
alternative would be to create a plot of all latencies in a single second of data, and
carefully inspect this. This would create a manageable amount of data for visual
inspection, but would be difficult to do systematically. It would also not catch
periodic events that happen less than once a second.

Another alternative was to make a plot of inter-arrival times. This would have
shown variations in latency in a visual way, but would, like the alternative above, be
difficult to do systematically. Nevertheless, we made an implementation of this in
our data-postprocessor, should it be useful in the future.
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Figure 3.4: Anomaly plot of a test run in loopback mode with the optimized system
configuration. n = 1, t = 50 µs

3.5 Data processing

Obtaining data is not useful by itself, if there is no way to interpret and understand
it. In this section, we will describe how we processed the data obtained from the
testbed. First, we will describe how we wanted the data to be presented and what
metrics to include, then we give a description on how we wrote software to parse the
large data files generated by our testbed.

3.5.1 Processing large amounts of data

For maximum flexibility and minimum performance impact, our testbed only outputs
raw timestamps for transmission and arrival of packets as double-precision floating
point numbers. To properly utilize the testbed and obtain results, we would need
to extract useful data and measurements from this. A simple way to plot the data,
would be to just add a pixel to the plot for each latency measurement. This would
give a decent general overview of the data, but would not be very useful for systematic
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analysis, and would be overwhelming for large data sets. However, it was useful as a
first step, and we therefore used it when evaluating different tools for processing and
plotting.

Some of our tests generate large amounts of data. For example, a 10-minute test
with 1 million packets per second would generate 600 million data points, or about
8.9 GiB of data1. This is a lot to process, making performance and memory usage
more important than usual.

To be able to get some insight into the general “shape” of the data, we wanted to
make a plot of all the data from a single test. This would require plotting a point for
each data packet. We first tried to use the matplotlib library for Python, as we
were already somewhat familiar with it. However, it quickly became clear that this
would not work well. We used it to plot a file with 120 million data points, which
took about two minutes. This does not sound bad by itself, but we knew that we
would plot many more data files, and potentially large ones.

We made an attempt of using the Julia language with the Plots.jl library
instead. Our results showed a slight improvement in performance, of about 40%.
Even if this is good, it was still not enough to make plotting all our data feasible
in a practical amount of time. Additionally, we did not have much experience with
the Julia language, and it was not worth the effort to learn it well for such a small
improvement.

We ended up rewriting our plotting script as an application in the Rust program-
ming language, using the Plotters library[32]. This was a bit more work than using
Python, but in the end we could plot our test file in two seconds instead of two
minutes. This was a remarkable improvement, making it possible to plot all our data
in a reasonable amount of time. At these speeds, the plotting time is not the limiting
factor, but rather the time it takes to read the data from disk.

Writing a plotting script in Rust was also a good learning experience, as we did
not have much Rust experience. Rust is a language that is designed to be fast and
memory safe, but the design makes it a bit different from many other languages.
For example, Rust does not have a garbage collector for memory management, but
instead uses a system of ownership and borrowing. This means that the compiler can
guarantee that memory is always freed when it is no longer needed, and that there
are no dangling pointers, without the performance penalty of a garbage collector
system[10]. This is a very powerful feature, but it also means that the programmer
has to think about memory management more than in higher-lever languages. For

18 bytes per timestamp, 2 timestamps per packet (transmission and arrival time), 1 million
packets per second, 600 seconds.
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example, if a value is produced by a function, and then passed into a different
function, it is considered “moved” and can no longer be used by the first function.

When writing the Rust application, we first implemented it by reading the entire
data file into memory, then plotting it. This worked well for files up to a few gigabytes
in size, but we wanted to be able to process larger files eventually. We therefore had
to implement a buffered iterator reader, which would read the file in small chucks,
while providing the rest of the application with a simple iterator interface. This was
more work compared to caching the whole file in memory, but it was worth it in
the end, as we could now process files of any size without running out of memory.
Our tests showed that this implementation was able to handle files of up to at least
250GB without problems.

To improve the user-friendlyness of the application, we also implemented a simple
command-line interface, using the clap library[6]. clap is a library for parsing and
validating command-line arguments, in addition to generating help messages and
other useful features. This made it very easy to implement a simple interface for our
application, which would be useful for future use.

All the plotting tools are available in the thesis-subprojects GitHub repos-
itory, located at https://github.com/KHTangent/thesis-subprojects. The origi-
nal, unfinished Python and Julia scripts are located in the scripts directory as
latencyplotter.py and latenclyplotter.jl, while the more polished Rust appli-
cation is located in the data-postprocessor directory. Only the Rust application
supports the detection and analysis of anomalies, the other scripts are only used for
plotting raw latency values, and are preserved mostly for comparison purposes.

3.5.2 The data-postprocessor application

The finished Rust application, the data-postprocessor, has two main modes: plot
mode, and validation mode. Both modes accept a single file as input, and will process
it according to the rest of the given command-line parameters. The plot mode will
plot data about individual packets, with an option for plotting individual latencies,
or inter-arrival times. The plotting mode is limited to files that can fit in the system
memory, since the plotting library requires all data points to be in memory while
plotting. This mode can be useful to get a quick overview of how a data file looks,
but it is not very useful for systematic analysis.

The other mode, validation mode, is more useful for systematic analysis. This
mode will go through the data file, and look for packets that are part of a latency spike,
which is how we defined an “anomaly” earlier. Thresholds for what is considered
an anomaly can be set with command-line parameters. The application will then
print out some statistics about the data (such as average latency), and a list of all

https://github.com/KHTangent/thesis-subprojects
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anomalies found in the file. Optionally, it can also generate a plot of the anomalies,
to give a graphical representation of when anomalies happened, and how severe they
were.

The application is cross-platform, and can be compiled and run on any platform
supported by the Rust compiler. This includes Windows, Linux, and macOS. This
allows future users of the testbed to keep processing and analysis of the data on their
own computers, without having to use the testbed itself. This can be useful if the
testbed is not available, or is being used for other tests.

3.6 Documentation

To make it easier to use the testbed, we wrote a user guide. This guide describes
how to set up the testbed, optimize the packet generation, how to run tests, and
how to analyze the data. It also includes some examples of how to use the testbed,
and how to interpret the results. The guide is available in our GitHub repository, at
https://github.com/KHTangent/thesis-subprojects, in the testbed-docs directory.
It is written as simple Markdown documents, which can be viewed directly on the
GitHub website. It is split into multiple chapters, with an introduction chapter that
explains the different parts. We have included a copy of the guide as an appendix,
see Appendix A.

Now that we had a usable testbed, and a way to analyze the data, we were ready
to put it to use and start running tests. We will describe the tests we ran in the next
chapter.

https://github.com/KHTangent/thesis-subprojects
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Now that we had created our testbed, it was time to put it to use. We used the
testbed to evaluate the performance of the Linux kernel network stack, with a focus
on real-time applications. In this chapter, we will first describe the goals of the
testing by introducing what we tested, then describe the methodology used for the
test. Afterward, we will present and discuss the obtained results.

By doing these tests, we were hoping to find some results that could provide
answers to some of our research questions. In particular, if we found some configura-
tions that performed better than others, we could use this to answer RQ3 in the
context of real-time applications.

4.1 Variations to test

Before we could start the testing, we wanted to make a list of variations to try out.
To make this list, we had to decide on some parameters we wanted to vary, and which
values to try out for the parameters. Note that while we did various optimizations
on the PGEN in the previous chapter, we will now do tests on the DUT, and all
configuration parameters below are changed on the DUT.

RX/TX Queue Sizes The first parameter we wanted to vary was the size of
the RX and TX queues. The RX and TX queues are used to buffer packets that
are waiting to be processed by the kernel. The default size of these queues on our
NIC was 512. This number represents the number of pointers to packet data structs,
which in essence describes how many packets can be in queue before packets need to
be dropped[37]. We wanted to test if changing this value would affect the results,
and how. These values can be set using the following ethtool command:
ethtool -G [interfacename] rx [size] tx [size]

27



28 4. LINUX EVALUATION

Kernel to use We had observed how the PREEMPT_RT kernel had reduced the
latency variation in traffic generated by TRex on our PGEN, and therefore wanted
to see how it would affect packet processing in general. To have a valid comparison,
we tested with both the stock kernel, and with the PREEMPT_RT kernel.

Threaded NAPI pool patch As mentioned in chapter 2, it is now possible to
let the polling of packets be handled in dedicated threads, which can be pinned to
specific cores. We wanted to test if this would have any effect on the performance of
the network stack, and if so, how much. We tested with and without enabling this
patch.

The patch is enabled using the sysfs interface. To enable the patch, the following
command was used:
echo 1 | sudo tee /sys/class/net/<iface>/threaded
After setting this option, NAPI-related processed started to appear in the process
list. To set a priority for all these threads in one go, the following command was
used:
ps aux | grep '\[napi' | awk '\{ print $2 \}' | head -n -1 | xargs -I pid
-n1 sudo taskset -pc 0-3 pid
The command works by first listing all processed related to threaded NAPI handling
(they were prefixed with \[napi), then extracts the process IDs using awk. Afterward,
it removes the last line, which is the process that is running the grep command.
Finally, it uses xargs to run taskset on each of the process IDs, and sets the priority
of the processes to the first four cores. We had isolated these four cores using boot
parameters, so they should not be occupied by any other processes.

System load When an application is running on a system, it usually does not
only send and receive network traffic, but will also do some processing on the data.
This puts some load on the CPU, which might affect the performance of the network
stack. We wanted to test how the network stack would perform with minimal system
load, and with a moderate amount of system load (40% CPU usage). To generate
the system load, we used the stress-ng command, which is a tool for generating
system load. We used the following command to generate the load:
stress-ng -c 12 -l 40 -t 1y
This creates 12 threads, one for each non-isolated core on our system, and sets the
load to 40% for each thread. The load is set to run for 1 year, to make sure it does
not stop during our tests.

Traffic amount Different applications send different amounts of traffic. We wanted
to test how various amounts of traffic were handled. We used four different amounts
of traffic: 1, 10, 100 and 900Mbps. This is, unlike the other parameters, controlled by
adjusting the traffic amount used on the PGEN. This gives four different magnitudes
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of traffic. The reason for choosing 900Mbps instead of 1Gbps was that sending
1Gbps of traffic seemed to cause some problems with the PGEN, where the CPU
was not able to track all latency measurements in time. This caused packet loss in
loopback mode, which was not acceptable for testing. We therefore chose to use
900Mbps instead, which appeared to be stable.

Our TRex setup operated with packets per second, not bits per second. To
convert between the two, we did some experimentation to determine what traffic
amount gave the desired traffic rate. We found that 1900 packets per second gave a
traffic rate of 1Mbps, and used this as a base for the other traffic rates. The final
traffic rates we used were therefore 1900, 19000, 190000 and 1700000 packets per
second.

Test duration We wanted to test how the network stack performed over time. We
therefore ran each test for a duration of 10 minutes. This should be enough to make
sure the results are stable. While processing the results, we also stripped off one
second at each end of the data, to account for warmup and cooldown time.

4.1.1 Final parameters

To summarize, these were the parameters we wanted to vary, and their values:

1. RX/TX Queue Size: We used three values: 256, 512 and 1024 packets,
where 512 was the default value for our driver.

2. Kernel to use: We tried out both the stock kernel, and the PREEMPT_RT
kernel.

3. Threaded NAPI pool patch: We tested with and without enabling a
threaded NAPI pool.

4. System load: We used two different system CPU loads: 0% and 40%.

5. Traffic amount: We used values of 1900, 19000, 190000, and 1700000 packets
per second, corresponding to 1, 10, 100 and 900Mbps.

To give stability to the results, we ran each test 15 times, with each test lasting
for 10 minutes. This gave a total of 3 ·2 ·2 ·2 ·4 ·15 = 1440 tests, lasting for a total of
10 days, plus time configuration time between each set of tests. In total, performing
all the 10-minute tests took about two weeks.
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4.1.2 Longer tests

In addition to doing the tests described above, we also did some longer tests to
see how the configurations performed over longer periods of time. Due to time
constraints, this was only done for the default settings, and for the setup that gave
the best results in the shorter tests. These longer tests were done for 24 hours each,
with a traffic rate of 100Mbps (190000 pps).

4.2 Methodology

In the previous chapter, we described how we designed a testbed to evaluate the
performance of a network device. We will now describe how we used this testbed to
evaluate the performance of the Linux kernel network stack.

The general procedure for performing a test, was:

1. Power on both the PGEN and the DUT

2. Configure the DUT to forward packets, and apply the configuration that would
be tested

3. Start TRex on the DUT to generate traffic for a set amount of time

4. After the test has finished, stop TRex and process the generated .data file
with the data-postprocessor

Since we ended up with wanting to do 1440 tests, we needed a way to automate
the testing procedure. Automating everything would have been a lot of work, so
we decided to automate the execution of TRex, while doing configuration on the
DUT manually. We wrote a simple script to run TRex several times with different
traffic amounts, and naming the generated data files appropriately. This allowed us
to run up to 60 tests in a row with no interaction (15 repetitions of 4 different traffic
amounts). We then did the configuration on the DUT manually, and repeated until
all 24 different DUT configurations had been tested. The batching script is, along
with all other files used during the thesis, available on our thesis-subprojects
GitHub repository, in the batching directory. Even if it is available, it is not by
itself useful for others, but can serve as an example.

4.3 Data processing

Now that we have described how we collected the data, we will describe how we
processed it. We used the data-postprocessor tool we developed for this purpose.
Using a shell script, we ran the tool on all our 1440 data files, storing all visual plots
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in separate folders based on configuration, and stored a summary of all runs in a
text file. We then wrote some Python scripts to generate aggregated bar charts from
the summary file. The scripts we made are available on our GitHub, but are not
by themselves useful for others, as they are very specific to our data and naming
schemes.

Our testbed was designed to accept user-defined values for the tresholds used
to determine what is considered an anomaly. Both the parameters n for number of
subsequent delayed packets, and t for the time threshold, could be set by the user.
This meant that we had to decide on some values when using the testbed on the
Linux kernel.

One possible source of information for deciding on the values to use, is RFC8578
[23]. This RFC talks about use cases for deterministic networking, and describes
some requirements for the different use cases. One of the mentioned use cases is
smart electric power grids. For this use case, the RFC gives a requirement of less
than 750 µs delay variation for legacy traffic, and 250 µs for time-sensitive traffic. We
can use these values as values for t in our metric. Even if our t describes an absolute
latency, and not a variation, we can still use it in many cases. The baseline values for
our DUT is very low, so we can approximate the variation as the absolute latency.

Finding a good value for n is not as simple. A simple approach would be to use
n = 1, and count every delayed packet as an anomaly. However, the RFC mentions
that some packet loss is acceptable, so we can assume that an application will be
able to handle some out-of-order packets. We therefore used n = 2 as our value for
n. This means that we will not count a single delayed packet as an anomaly, but two
or more delayed packets will be counted as an anomaly.

The data-postprocessor tool also accepted a parameter to ignore the first and
last x seconds of the input file, to account for warmup and cooldown time. We used
a value of 1 second for this parameter, as our experiments showed that the results
stabilized quickly.

4.4 Results

With 1440 tests performed, and several different values of n and t to consider, we
ended up with a lot of data. It is not possible to give a thorough analysis of all the
data in this thesis, so we will focus on aggregated values. We will also look more
carefully at the two 24-hour tests. This section will only present results, and not
discuss them. The discussion will be done in section 4.5.

For the rest of the section, we will refer to the different configurations with a
systematic naming scheme. The naming scheme will use the following form:
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[kernel]-[threading]-[queuesize]-[idle/load]
An example is:
default-threaded-default-load
This example refers to the stock (non-RT) kernel, with threaded NAPI enabled,
default RX/TX queue sizes (512 packets), and a 40% CPU load. The traffic amount
will be given separately. We have generated horizontal bar plots based on the obtained
results over the 15 test runs. The plots show the sample mean of the 15 runs of
each configuration, with error bars showing a 95% confidence interval for the results.
In these plots, we have applied a separate color to each combination of kernel and
threading, to make the figures more readable.

The 95% confidence interval is calculated by assuming that the obtained results
are approximately normally distributed. We then calculate the average as an estimate
for the mean of the distribution, and calculate a sample standard deviation as an
estimate for the standard deviation of the distribution. We then calculate the 95%
confidence interval by using the Student’s t-distribution with n−1 degrees of freedom,
and a confidence level of 95%. The t-distribution is used because we do not know the
true standard deviation of the population, and have to estimate it from the sample
standard deviation.

4.4.1 Latency results

We will start by looking at the aggregated results for the different configurations. A
good start is to look at average latencies for the different configurations. We have
plotted the average latencies for all configurations in figures 4.1, 4.2, 4.3 and 4.4.
Note that for the 1700000 pps plot, we have used a logarithmic scale on the x-axis,
while the other plots are linear. A plot of the packet loss for all configurations at
1700000 pps is also included, in Figure 4.5. The other traffic rates had no packet
loss, so we did not plot them.

The first thing to note, is that most configurations had problems with packet loss
at 1700 kpps. The only configurations that did not have any substantial packet loss,
were the three different queue sizes for the default kernel without threaded NAPI.
This is also shown in the latency values for this traffic rate, where the packets that
made it through were delayed by a lot. These packet loss values are so high that we
are not able to use the other results for this traffic rate, as they would be too skewed
from the packet loss.

Another thing to note, is that results seem very stable. Most values have a narrow
confidence interval, shown by the small error bars. This is good, and shows that 15
repetitions were enough to get a good result for the configurations.

An interesting takeaway from the results, is that the low-traffic run with 1900 pps



4.4. RESULTS 33

Figure 4.1: Latency for all configurations, at 1900 pps

Figure 4.2: Latency for all configurations, at 19000 pps
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Figure 4.3: Latency for all configurations, at 190000 pps

Figure 4.4: Latency for all configurations, at 1700000 pps
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Figure 4.5: Packet loss for all configurations, at 1700000 pps

resulted in much higher latencies than the other configurations. The 19 kpps run had
much lower latencies, and a bit more variation between the different configurations.
The RT kernel seems to perform slightly worse than the stock kernel at this traffic
rate, but the difference is not very large. The threaded NAPI configurations also
seem to perform slightly worse than the non-threaded ones, but again, the difference
is not very large. The queue sizes and system load values did affect the results, but
does not show a clear pattern to draw any conclusions from.

The 190 kpps run shows more interesting results, with some configurations
performing much worse than others. Some of the results are also very strange, for
example that the rt-threaded-half-load configuration had an about 85% lower
latency than the rt-threaded-half-idle configuration, but a larger variation.

4.4.2 Anomaly results

After looking at the latency results, we will now look at the anomaly results. Since
we have two different values for n and t, this doubles the amount of data points
compared to the latency measurements above. We have excluded the 1700000 pps
traffic rate, as the packet loss was too high to get any meaningful results. We have
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also excluded the 1900 pps measurements for t = 250 µs, as the average latency in this
test was much higher than the anomaly count. This would cause the result to appear
as a single, long anomaly. The results for the other traffic with thresholds of n = 2

and t = 250 µs are shown in figures 4.6 and 4.7. Results with thresholds of n = 2

and t = 750 µs are shown in figures 4.8, 4.9, and 4.10. Note that the numbers along
the x-axis change between the plots, as some configurations had many anomalies.

In addition to anomaly count, we will also look at the average anomaly duration.
This is a measure of how many packets an anomaly lasted on average. Results with
n = 2 and t = 250 µs are shown in figures 4.11 and 4.12. Results with n = 2 and
t = 750 µs are shown in figures 4.13, 4.14, and 4.15. Note that data from runs with
no anomalies have been excluded when calculating the average for a configuration.
For configurations where there were no anomalies in any of the runs, the average
anomaly duration has been set to zero.

The first thing to note, is that no configurations managed to get zero anomalies
with the t = 250µs threshold value. This is a bit disappointing, as we would have
liked to see some configurations that “passed” the validation without anomalies.
The results looked better for the t = 750µs threshold, where some configurations
managed to get zero anomalies.

As expected, more traffic resulted in more anomalies for all configurations with
more than zero anomalies. This makes sense, as there are more packets that can be
registered as anomalies.

Compared to the average latency tests, there are more patterns to be found in the
anomaly counts. For example, configurations with no other system load and a doubled
queue size perform well in almost all cases. In addition, the rt-default-half-idle
configuration seems to perform well in all cases. For this reason, we decided to use
this configuration in one of our 24-hour tests (see next subsection). Other parts
of the result seem less predictable. For some tests, increasing CPU load actually
improved the results, while for others it made it worse.

4.4.3 24 hour tests

The tests in the previous section were run for 10 minutes each. To get a better idea
of how the system behaved over time, we also did two 24 hour tests. The first test
was run on the default configuration with no system load, and the second test was
run on a configuration using the real-time kernel, with halved queue sizes, and no
system load. We used 190 kpps as data rate for both tests. The results from these
tests were plotted using our data-postprocessor. Like with the 10-minute tests, we
used two different threshold values, t = 250 µs and t = 750 µs, both with n = 2.
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Figure 4.6: Anomaly count for all configurations, at 19000 pps. n = 2, t = 250

Figure 4.7: Anomaly count for all configurations, at 190000 pps. n = 2, t = 250
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Figure 4.8: Anomaly count for all configurations, at 1900 pps. n = 2, t = 750

Figure 4.9: Anomaly count for all configurations, at 19000 pps. n = 2, t = 750
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Figure 4.10: Anomaly count for all configurations, at 190000 pps. n = 2, t = 750

The data-postprocessor validation plots require some explanation, as they contain
a lot of information. Each anomaly is represented by a vertical line, with three
markers. The top marker represents the maximum latency within that anomaly, the
bottom marker represents the minimum, and the final marker represents the average.
The colors of the anomaly lines are arbitrary, and is only used to distinguish between
different anomalies. The background color of the plots has been set to black, as
this made it easier to distinguish between the colors of the anomalies. The duration
of the anomaly is not included in the plot. A horizontal line is added to the plot
to show the threshold value for t. There is also a horizontal line to show the total
average latency, but this line is often not usable, since the average latency will be
much lower than the threshold value, causing it to blend into the x-axis.

The results with the default configuration are shown in figures 4.16 and 4.17,
while the results with half queue size and real-time kernel are shown in figures 4.18
and 4.19. Numerical results obtained from the data-postprocessor are shown in table
4.1.

The 24-hour tests give some insight into how the system behaves over time. There
are some very severe anomalies that happen at most every few hours, and some
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Figure 4.11: Average anomaly duration for all configurations, at 19000 pps. n = 2,
t = 250 µs

Figure 4.12: Average anomaly duration for all configurations, at 190000 pps. n = 2,
t = 250 µs
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Figure 4.13: Average anomaly duration for all configurations, at 1900 pps. n = 2,
t = 750 µs

Figure 4.14: Average anomaly duration for all configurations, at 19000 pps. n = 2,
t = 750 µs
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Figure 4.15: Average anomaly duration for all configurations, at 190000 pps. n = 2,
t = 750 µs

Default
n = 2, t = 250µs

Default
n = 2, t = 750 µs

rt-half-queue
n = 2, t = 250 µs

rt-half-queue
n = 2, t = 750 µs

Latency
(min/avg/max)

10.790/20.923/8282.788 µs 11.081/18.075/4256.964 µs

Anomalies 4101730 433 190 27
Average anomaly
duration (packets)

27.471 76.820 172.621 40.704

Average anomaly
packet latency

321.036 µs 991.845 µs 484.566 µs 1368.896 µs

Table 4.1: Numerical results for 24 hour tests
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Figure 4.16: Validation plot for 24 hour test with default configuration, n = 2,
t = 250 µs

Figure 4.17: Validation plot for 24 hour test with default configuration, n = 2,
t = 750 µs
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Figure 4.18: Validation plot for 24 hour test with modified configuration, n = 2,
t = 250 µs

Figure 4.19: Validation plot for 24 hour test with modified configuration, n = 2,
t = 750 µs
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less severe anomalies that happen more frequently. For example, there was a severe
anomaly around 10 hours into the first test, where the maximum latency was over 8
ms. Anomalies like these would not have been visible in a test based on aggregated
data, as the average latency would not have been visibly impacted by a single spike
like this.

These results show a clear improvement in the amount of anomalies over a 24-hour
period with the real-time kernel and halved queue sizes. There were fewer anomalies,
and the maximum latency of anomalies was lower. Especially with the t = 250µs

threshold, the amount of anomalies was reduced by as much as 99.99%.

4.5 Discussion

Now that we have presented the results of our tests, we will discuss the results and
their implications. We will also discuss the limitations of our tests, and how they
could be improved.

Starting with the packet loss results for the 1700 kpps tests (Figure 4.5), we see
that the configurations with threaded NAPI had much higher packet loss than the
configurations without threaded NAPI. This is not what we expected, as we thought
that threaded NAPI would help offload packet handling to dedicated CPU cores,
allowing the kernel to prioritize the handling of packets. One potential reason for
this, is that we tested by isolating the threaded NAPI to four CPU cores, while the
non-threaded NAPI was allowed to use all CPU cores. So letting the system use all
cores some of the time seems to work better than giving it exclusive access to a few
of the cores.

Continuing with the latency results, we see that the runs with low traffic had
much higher average latency compared to the runs with higher traffic rates. It is
not clear why this happens, but one potential reason could be that the traffic is too
low to trigger the usage of the NAPI, causing all packets to be handled by software
interrupts instead. This would result in higher latencies, as the CPU would have to
do more work for each packet. This applied to all configurations, where the results
were very similar for all of them. All configurations also seem to be able to handle
19 kpps without significant impact on average latency, where all the configurations
had a similar, low average value of between 20 and 25 µs.

At 190 kpps, both the average latency and the number of anomalies start to
increase a lot, especially for some of the configurations. Average latency and anomaly
counts are closely related as they both increase, since the packets that are part of
anomalies will pull up the average value.

Most of the tests are relatively stable between the 15 runs, with narrow confidence
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intervals. However, a major limitation of our testing was that we did all the 15
tests in a row, without rebooting the machine between tests. This means that the
results could be affected by the state of the system, and that the results could have
been different if we had randomized the ordering a bit, or rebooted more often. We
did reboot between all configuration changes, so all tests were started from a fresh
startup.

Our results do in general display a disappointing lack of patterns. We expected
to see some configurations perform better than others, or at least some parameters
affecting things consistently. Unfortunately, the results are very inconsistent, and it
is hard to draw any conclusions from them. It could potentially have helped to do a
reboot of the system for every five tests or similar. Thankfully, it is possible to look
for improvements on a case-by-case basis, for example for our 190 kpps traffic rate.

The 24-hour tests are easier to compare, since we only have two test runs to
compare. We see a clear improvement on the anomaly count and maximum latency
when using the real-time kernel and halved queue sizes. With the parameters n = 2

and t = 750 µs, the real-time kernel with halved queue sizes had only 27 anomalies
over a 24-hour period, which is very low, and could be usable for a real-time system.

In summary, it is not possible to draw any general conclusions from our results, but
we can see that by default, the Linux kernel performs well. The default configuration
had no outstandingly bad results, and the average latency was low. However, there
were still variations within the sub-millisecond range, and the extreme cases would
still reach up to 8ms. The real-time kernel seems to offer some improvement in
special cases, but it has to be tested for each individual case.

4.6 Sources of error and limitations

There are several potential sources of errors in our tests. We will discuss some of
them here, and how they could have affected our results.

As mentioned in the previous section, we did not reboot the system between all
tests. This could have affected the results, as the state of the system could have been
different between some of the tests. Ideally, this should not have been a problem, as
we did reboot between all configuration changes, so all tests were started from the
same state. However, with a complex real-world system, it is hard to guarantee that
the state is exactly the same between all tests.

A second potential source of error is that we did not properly account for the
latency induced by TRex. As discussed in subsection 3.3.2, we did spend time on
minimizing the amount of latency spikes caused by TRex, but we have not subtracted
the latency caused by TRex from our results. This means that the results for latency
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do not show the exact latency of the system, but rather the latency of the system plus
the latency of TRex. This is not a major issue, as the latency of TRex is relatively
low and can be assumed to be constant across all tests. However, it is something to
keep in mind when looking at the results.

A limitation to our tests, is that we only tested with a single traffic rate, due to
our difficulty with adding support for multiple packet sizes. This means that we do
not know how the system would handle fewer, but larger packets. It is possible that
the system would perform better with fewer, larger packets, as the CPU would have
to process fewer headers.





Chapter5Conclusion

In this thesis we have presented a benchmarking testbed for measuring the perfor-
mance of network devices in the context of real-time applications, as well as used
the testbed on the Linux kernel in different configurations. We started by looking
into the current state of the art in the field of network device benchmarking, and
motivated the need for an open source solution. We then presented the design of the
testbed, and how we used it. Finally, we described various experiments we performed
on the Linux kernel, and presented the results.

Our testbed seems to work well, and can be reused in the future for other projects
with similar needs to ours. We have not tested the testbed on other hardware setups,
but all the tools we used should be compatible with many other configurations. The
testbed provides an answer to our first research question, which was about how to
design an open-source benchmarking testbed for real-time applications.

Whether we have answered our second research question, is up for debate. The
question was about what the performance bottlenecks of the Linux kernel are, and
how they can be improved. Our results did unfortunately not provide any clear
answers to this question, so further research is needed to fully answer this complex
question. We did however find some interesting results, which can be used by future
researchers to further investigate the performance of the Linux kernel.

Continuing on this, we do not have a clear answer to our third research question
either. The question asked what would be the optimal configuration of the Linux
kernel for real-time applications. We did find that for a specific traffic type, using the
real-time Linux kernel and halving the queue size would provide a clear improvement
over the default configuration. However, this result was not generalized to different
traffic rates.

Overall, the thesis was mostly a success. We did produce and document our
testbed, which can be used by future researchers to further investigate the performance
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of the Linux kernel or other network devices. We also found some interesting results,
which could be used as a starting point for further research. We might have been a
bit too ambitious with some of the research questions, but laid the groundwork for
future research in this area.

If we were going to change something about the thesis, we would probably have
given MoonGen a try for the generation part of the testbed. MoonGen does not
support timestamping on as many network cards as TRex do, but could potentially
have made it easier to generate traffic with customizable packet sizes. For the testing,
we would have been more careful to do more reboots between test repetitions, to
avoid potential errors due to the kernel not being in a clean state.

Further research into this topic could be to investigate what is causing the
performance differences, by looking into the source code of the Linux kernel, or by
profiling the system while the tests are running. Another interesting research topic
would be to investigate the performance of other network devices, such as a typical
home router, and compare it to the performance of the Linux kernel.
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AppendixATestbed guide

This appendix contains the guide we wrote for how to recreate the testbed. It is also
available on our GitHub repository.

A.1 Creating a testbed for testing network devices suitability
for real-time applications

These documents describe how to re-create the testbed I used in my master’s thesis.
The testbed can be used to see how well a device can handle real-time applications,
by measuring ”anomalies” in traffic handling. An anomaly is defined as ”A group of
N consecutive packets that have a latency over a threshold T”.

The guide has several parts, split into multiple sections. To have a full testbed
setup, it is recommended to follow them in order. The parts are:

1. Introduction: (this section)

2. Hardware Setup: Hardware requirements, and how to set it up.

3. Packet Generator software setup: Software installation and configuration on
the packet generator.

4. Device Under Test setup: Software installation and configuration on the device
under test. Contains the general procedure, and a specific example for a Linux
desktop.

5. Test running and analysis: How to run the tests, and how to analyze the results.

6. Packet Generator validation and tuning: How to validate the packet generator
setup, and how to tune it for optimal performance.

To get started, continue to the Hardware Setup section.
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A.2 Hardware setup

The testbed uses two computers, one to generate traffic (the Packet GENerator,
PGEN), and one device to be tested (DUT). Both devices have some minimum
requirements to be able to work under this test setup. For the PGEN, the requirements
are:

– A network interface card with at least two interfaces, that are supported by
Cisco TRex. See table 5 on this page of the TRex manual1 for a list of supported
network cards.

– An installation of a Linux distribution. A fresh installation of Arch Linux was
used during testing, but other distributions should work too.

– In addition, it is recommended to have at least 32 GB of RAM, and a ”powerful”
desktop CPU. An Intel Xeon W-1270P running at 5.10 GHz was used during
testing.

For the device under test, the requirements are:

– Two network interfaces

– The ability to route or forward packets between them

During testing, two point-to-point connections should be made between the PGEN
and the DUT, so traffic can flow both ways through different interfaces.

Once you have the hardware setup ready, continue to the Packet Generator
software setup section.

A.3 Packet Generator software setup

This section details how to set up the packet generator for performing tests.

A.3.1 Initial setup

These are the steps needed for creating the traffic generator for the first time.

1. Install a Linux distro on the PGEN. Arch Linux is used in this example.
1https://trex-tgn.cisco.com/trex/doc/trex_manual.html#_hardware_recommendations

https://trex-tgn.cisco.com/trex/doc/trex_manual.html#_hardware_recommendations
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2. Install git and GCC (if you receive errors later, install gcc8 and try again)

3. Clone the trex-core fork: git clone https://github.com/KHTangent/trex-
core

4. Build TRex:

cd trex-core/linux_dpdk
# Either
./b configure
./b build
# Or, in case the above commands give errors
CXX=g++-8 CC=gcc-8 ./b configure
./b build

5. Find the ID’s of the network cards you want to use.

– cd into the scripts directory of TRex: cd ../scripts

– Run sudo ./dpdk_setup_ports.py -s to see a list of available ports.

Network devices using kernel driver
===================================
0000:00:1f.6 'Ethernet Connection (11) I219-LM' if=eno1 ...
0000:01:00.0 'Ethernet Controller X710 for 10GBASE-T' if=enp1s0f0 ...
0000:01:00.1 'Ethernet Controller X710 for 10GBASE-T' if=enp1s0f1 ...

In our case, we want to use the Intel X710 interfaces, which here have ID’s
01:00.0 and 01:00.1

6. Create a TRex configuration file somewhere, with the following contents. Re-
place the port ID’s with the ones you found in the previous step.

- port_limit: 2
version: 2
interfaces: ["01:00.0", "01:00.1"] # Replace if needed
port_info:
- ip : 11.11.11.2

default_gw : 11.11.11.1
- ip : 12.12.12.2

default_gw : 12.12.12.1

TRex is now installed and ready to use.
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A.3.2 Initializing TRex

In addition to the initial setup, the port configuration must be applied after every
reboot by using the dpdk_configure_ports.py script:

cd trex−core / s c r i p t s
sudo . / dpdk_setup_ports . py −−c fg path/ to / c o n f i g . yaml

TRex is now functional, and can be used as-is. Continue to the Device Under
Test setup section to set up the device under test.

After making sure TRex works, it is recommended to spend some time on tuning
the setup. This is described in the final section, Packet Generator validation and
tuning.

A.4 Device Under Test software setup

No matter what the device under test is, it must follow a few requirements:

– Have two or more network interfaces

– Be able to route packets between them

We used a Linux desktop during our testing, but any device that meets the above
requirements can be used. We will give a general procedure for configuration of the
DUT, then show how we accomplished it on our Arch Linux desktop.

A.4.1 General procedure

1. Enable forwarding of packets on the device

2. Enable the two interfaces

3. Add static routes for the two interfaces used by TRex. In the previous section,
we configured TRex to use 11.11.11.2 as its IP address on one interface, and
expects the DUT to use 11.11.11.1 on the same interface. The same applies
to the other interface, where the PGEN uses 12.12.12.2 and expects the DUT
to use 12.12.12.1. Therefore, assign a static IP address of 11.11.11.1/24 to
the interface that will be used for receiving data, and 12.12.12.1/24 for the
other interface.

4. TRex will send packets with a source IP address in the 48.0.0.0/8 subnet,
with a destination address in 16.0.0.0/8. Therefore, add static routes for
these subnets, with the PGEN as the gateway.
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5. Sometimes, static ARP routes must be added on the DUT to locate the PGEN.
Find the MAC addresses of the interfaces on the PGEN, and add static ARP
routes for them on the DUT.

A.4.2 Example: Linux desktop

If the DUT is a Linux device, it can be helpful to put all the required setup steps
in a shell script, since many of them will have to be re-executed after every reboot.
The script could look like this:

#!/bin/bash
# Enable forwarding of packets
sysctl -w net.ipv4.ip_forward=1

# Bring up our interfaces. Replace with actual interface names
ip link set enp1s0f0 up
ip link set enp1s0f1 up

# Add static IP addresses to the interfaces. Replace the
# interface names if needed
ip a add 11.11.11.1/24 dev enp1s0f0
ip a add 12.12.12.1/24 dev enp1s0f1

# Add static routes for the traffic from TRex. These commands
# should work as-is, if you use the config given above
ip route add 48.0.0.0/8 via 12.12.12.2
ip route add 16.0.0.0/8 via 11.11.11.2

# Add static ARP entries. Replace the MAC addresses with the
# ones of the PGEN interfaces
arp -s 11.11.11.2 68:05:ca:df:09:26
arp -s 12.12.12.2 68:05:ca:df:09:27

Run this script as root after every reboot, and the DUT should be ready to
receive traffic from TRex.

Now that the DUT is ready, it is finally time to run some tests. Continue to the
Running the tests section.
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A.5 Test running and analysis

This section describes how to run the tests, and how to analyze the results. We
will start by preparing the data-postprocessor, which will be used to analyze the
results obtained from TRex.

A.5.1 Data-postprocessor setup

This can be performed on any machine, for example on the PGEN, or a separate
device. Using the PGEN can be convenient, as the data files can get quite large.

1. Install Rust. The simplest way is usually to use rustup2

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

2. Clone this repo, and build the data-processor

git clone https://github.com/KHTangent/thesis-subprojects
cd thesis-subprojects/data-postprocessor
cargo build --release

3. If you want to install the data-postprocessor system wide, run the following
command:

cargo install --bins --path .

If you chose to not install the executable system wide, it will be located in thesis-
subprojects/data-postprocessor/target/release/data-postprocessor. It can
be freely moved to a more convenient location if you want, it does not have any
external dependencies.

A.5.2 Running a test

Now that you have configured your PGEN and your DUT, you can run a test. A
general test has three stages:

1. Configure the DUT to forward packets between the two interfaces, and apply
any other configurations you want to try on the DUT.

2. Use TRex to generate latency measurement traffic, which is stored as a data
blob.

2https://rustup.rs/

https://rustup.rs/
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3. Analyzing this blob using the data-postprocessor.

To run a test, run the commands below on the PGEN. Remember to initialize
your ports if you have not done so already.

cd trex-core/scripts
sudo ./_t-rex-64 --cfg path/to/config.yaml --lo \

-l 190000 -f cap2/dns.yaml -d 60

Explanation of parameters:

– --lo Send only latency traffic. Latency traffic is the only traffic we can obtain
full latency stats for, so only send this

– -l 190000 Send 190 thousand latency packets every second, giving about 100
Mbps of traffic

– -f cap2/dns.yaml TRex requires an input file to run the mode we use, but
since we use --lo, the contents doesn’t affect anything. cap2/dns.yaml is a
simple minimal file.

– -d 60 Run test for 60 seconds

After the test has finished, a data blob will be placed in your trex-core/scripts
directory, titled timestamps-[date]-p0. This file contains raw values for transmit
and arrival times of all latency packets generated by TRex. This file is accepted by
the data-postprocessor.

A.5.3 Viewing results

The data blobs can be analyzed using the data-postprocessor. The data-postprocessor
has a help page that can be viewed by running data-postprocessor --help.

Examples of commands that can be run:

# Print a summary of anomalies in the data blob, and save a
# plot to plot.png. Consider 2 consecutive packets with a latency
# of 500 µs an anomaly
# Cut away the first and last second of the data
data-postprocessor timestamps-[date]-p0 validate -n 2 -t 500 \



62 A. TESTBED GUIDE

--summary-only -c 1 -o plot.png

# Print all of the anomalies in the data blob, and save a plot
# to plot.png. Consider 2 consecutive packets with a latency of
# three times the average latency an anomaly
# Cut away the first and last five seconds of the data
data-postprocessor timestamps-[date]-p0 validate -n 2 -d 3 \

--summary-only -c 5 -o plot.png

# Plot latencies of all packets in the data blob. Include all data
data-postprocessor timestamps-[date]-p0 plot -p latency -o plot.png

If you are able to run tests, it is recommended to spend some time on tuning and
validating your setup. This is described in the last section, Tuning the PGEN.

A.6 Tuning the packet generator

This section gives some tips on how to tune the packet generator (PGEN) to get
more accurate results.

A.6.1 Run TRex in loopback mode to reduce outside interference

While tuning the PGEN, it is recommended to run TRex in loopback mode. This
means that the PGEN will send packets to itself, instead of sending them to the DUT.
This has the advantage that the PGEN is not affected by the DUT’s performance,
and that the PGEN can be tuned without needing to have the DUT connected.
Running in loopback mode requires a different configuration file than the one used
for normal testing.

First, connect the two physical network interfaces on the PGEN to each other.

Create a copy of your TRex config file titled loopback.yaml, and set your IP
addresses like this:

- port_limit: 2
version: 2
interfaces: ["01:00.0", "01:00.1"] # Replace if needed
port_info:
- ip : 11.11.11.2

default_gw : 12.12.12.2
- ip : 12.12.12.2

default_gw : 11.11.11.2
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Run the dpdk_setup_ports.py script as described earlier, but use this new
loopback.yaml config file as input parameter. If an error occurs because the ports
are already bound, reboot the PGEN, and try again.

cd trex-core/scripts
sudo ./dpdk_setup_ports.py --cfg path/to/loopback.yaml

A.6.2 Suggested optimizations

Even while running in loopback, it is possible that latency spikes appear in the test
results. This can happen for various reasons, for example because of other processes
running on the PGEN, or how TRex is implemented. To make results as accurate as
possible, it is recommended to spend some time experimenting in loopback mode until
you get a good baseline with minimal spikes. This section will give some suggestions.

Minimize the number of processes running on the PGEN

A good starting point is to disable all services that are not needed for the PGEN to
function.

The commands in this section assume that you are using systemd to manage
your services. If you are not, you will need to adapt them to your system.

First, use a tool like htop to get an overview of what’s running on the system.
Many services can be disabled by simply running systemctl disable <service>.

In addition, it is recommended to disable X11, and any other graphical services,
on the PGEN. TRex is a command-line application, so a desktop environment is not
needed for it to function. To disable X11, run the following command:

sudo systemctl set-default multi-user.target

Reboot, and you should be taken to a terminal instead of a graphical login screen.

To undo this change at a later point, use the following command:

sudo systemctl set-default graphical.target

Run TRex on an isolated CPU core.

1. Add the following to your GRUB configuration to isolate four CPU cores from
the kernel:
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isolcpus=0,1,2,3

2. Reboot

3. Make sure your CPU cores are isolated by checking the contents of
/sys/devices/system/cpu/isolated

4. Prefix all TRex commands with taskset -c 0-3. For example, to run the test
mentioned earlier:

taskset -c 0-3 sudo ./_t-rex-64 --cfg path/to/config.yaml --lo \
-l 190000 -f cap2/dns.yaml -d 60

Switch to the preempt-rt kernel

The preempt-rt kernel is a real-time kernel, which is designed to minimize jitter and
spikes by changing how the kernel handles scheduling, among other things. In our
experience, it has been very effective at reducing spikes from the PGEN. Switching
to the preempt-rt kernel is a bit distribution-dependent, so the following steps are
only directly applicable to Arch Linux.

1. Install the linux-rt package: sudo pacman -S linux-rt

2. Regenerate your GRUB configuration: sudo grub-mkconfig -o /boot/grub/grub.cfg

3. Reboot

Once the system has booted, you can verify that you are running the preempt-rt
kernel by running cat /proc/version. It should contain rt in the output.


