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Abstract

This thesis presents the development of a versatile and scalable infrastructure for
the monitoring and control of various Internet-enabled Internet of Things (IoT)
devices. The primary objective is to reduce energy consumption and costs through
cost-effective thermal-response control in Norwegian homes and offices. The in-
frastructure, constructed using Kubernetes, Django, and InfluxDB, permits seam-
less integration of new devices, effectively logging their data and providing an
easy-to-use platform for data retrieval. Users can engage with the system by log-
ging device data from their homes, allowing comprehensive data analysis for re-
searchers and providing users access to advanced control algorithms.

Historically, the integration of IoT devices from different vendors has been
challenging due to diverse communication methods. However, the recent surge
in user-friendly IoT devices has made remote data access and device control a
reality. The system presented in this thesis has effectively collected data from a
variety of IoT devices across multiple vendors and homes, thereby laying a robust
foundation for the essential data gathering required for future research. The lack
of data on domestic demand response for research is one of the main motivations
for the system. While commercial vendors providing similar services exist, the
drive to create this system is reinforced by factors including GDPR compliance,
its intended sole use for research, and the advantageous prospect of the research
group having its own dedicated tool.

The retrieved data has been used to complete the control loop by sending in-
puts back to some of these devices, and this has been successfully demonstrated
with both Proportional-Integral (PI) control and Model Predictive Control (MPC).
This accomplishment, a system made to be scalable using affordable, off-the-shelf
hardware without an in-house central hub, is what sets it apart. Effective control
algorithms also mean that users can realize substantial energy and cost savings.
Enhanced performance can be achieved by integrating sensor data with real-time
spot market prices and weather forecasts. Importantly, the system’s adaptability
extends beyond thermal-response control; it can be tailored to interact with other
systems, such as ventilation and in-house battery systems. The collected data will
also support the development of learning-based predictive control algorithms,
contributing to further advancements in this field.
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Sammendrag

Denne avhandlingen presenterer utviklingen av en allsidig og skalerbar infrastruk-
tur for overvåkning og kontroll av forskjellige internettkoblede Tingenes Internett
(IoT)-enheter. Hovedmålet er å redusere energiforbruket og kostnadene gjennom
kostnadseffektiv termisk responskontroll i norske hjem og kontorer. Infrastruk-
turen, som er bygget på Kubernetes, Django og InfluxDB, tillater sømløs integras-
jon av nye enheter, logger effektivt deres data og gir en brukervennlig plattform for
datahenting. Brukere kan melde seg inn i systemet og deretter logge sensordata fra
sine hjem, noe som tillater omfattende dataanalyse for forskning og gir brukerne
tilgang til avanserte kontrollalgoritmer.

Historisk har integrasjonen av diverse IoT-enheter vært utfordrende grunnet
varierte kommunikasjonsmetoder. Men ankomsten av flere brukervennlige IoT-
enheter har gjort fjerntilgang av data og kontroll til en realitet. Systemet utviklet
i denne avhandlingen har lykkes med å logge data fra et utvalg av IoT-enheter
fra forskjellige leverandører og hjem, og dermed etablert grunnlaget for den nød-
vendige datainnsamling for fremtidig forskning på feltet. Denne mangelen på for-
skningsdata som omhandler etterspørselsrespons i vanlige hus er den største mo-
tivasjonen bak dette systemet. Til tross for tilstedeværelsen av lignende kommer-
sielle løsninger, er behovet for dette systemet begrunnet med flere faktorer. Disse
inkluderer systemets overensstemmelse med GDPR-retningslinjer, det faktum at
det utelukkende vil bli brukt til forskningsformål, og fordelen ved å ha et dedikert,
internt verktøy for datainnsamling innen forskningsgruppen.

Den innsamlede dataen har blitt brukt til å fullføre kontrollsløyfen ved å sende
kontroll tilbake til noen av disse enhetene, noe som har blitt demonstrert med
både Proporsjonal-Integrasjon (PI) kontroll og Modellprediktiv Styring (MPC).
Det unike med dette systemet er dets evne til å skalere opp uten behov for en
sentral kontroll-hub innad i huset, ved å bruke kostnadseffektive IoT enheter
som forbrukere enkelt kan anskaffe. Effektive kontrollalgoritmer betyr også at
brukerne kan oppnå betydelige energi- og kostnadsbesparelser. Forbedret ytelse
kan oppnås ved å integrere sensordata med sanntids spotmarkedspriser og vær-
prognoser. Systemets tilpasningsevne strekker seg også utover termisk respon-
skontroll. Det kan tilpasses for å samhandle med andre systemer som ventilasjon
og innebygde batterisystemer. Den innsamlede dataen vil også støtte utviklingen
av læringsbaserte prediktive kontrollalgoritmer, noe som vil bidra til videre for-
skning på dette feltet.
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Glossary

JSON stands for JavaScript Object Notation, which is a lightweight, human-readable,
and widely used data interchange format [3]. It is language-independent
and easy for humans to read and write, as well as for machines to parse
and generate. JSON is often used for asynchronous browser-server com-
munication, and as a file format for storing and exchanging data between
applications. 15, 28, 60, 115–124

MQTT stands for Message Queuing Telemetry Transport, which is a lightweight,
open-source, and publish-subscribe messaging protocol designed for con-
strained environments and low-bandwidth, high-latency, or unreliable net-
works [4].. 10, 14, 23, 26, 28, 37, 57, 58, 63, 68

namespace in the context of Kubernetes, a namespace is a logical partition within
a cluster that enables multiple teams or applications to share the same phys-
ical infrastructure while isolating their resources and policies [5]. It provides
a way to organize and manage different environments, such as develop-
ment, staging, and production. 53, 54

ORM is a programming technique that facilitates the conversion of data between
incompatible, object-oriented programming languages and relational data-
base systems [6]. ORM enables developers to interact with databases using
the syntax and constructs of their programming language, abstracting away
the underlying SQL code. This process simplifies data management and ma-
nipulation, allowing developers to work with databases more efficiently and
with a higher level of abstraction. 14, 16, 30

proxy in computer networking, is an intermediary server that acts on behalf of
clients seeking resources from other servers [7]. It acts as a gateway between
the client and the target server, forwarding requests and responses between
them. The primary purpose of a proxy is to enhance performance, security,
and privacy. 29, 45, 69

XML stands for eXtensible Markup Language, which is a markup language de-
signed to store, transport, and organize structured data in a human-readable
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format [8]. XML allows users to define their own tags and attributes to de-
scribe the structure and semantics of the data, making it highly versatile and
applicable across various industries and use cases. It is often used for data
exchange between systems and for the configuration of applications. 15



Chapter 1

Introduction

Venturing into the world of smart homes is akin to finding oneself in a choose-
your-own-adventure story, brimming with choices of numerous gadgets and giz-
mos claiming to save you x amount on your energy bill. While many of these con-
tenders offer notable benefits, some are pretty limited in their decision-making,
and others cost a lot to implement. All of which have a varying degree of insight
into your own data. However, imagine a scenario where these various IoT devices
in homes could be integrated without adding a new gadget. This study offers a
backstage pass to such a future, one that could not only be more intelligent but
also more economical.

1.1 Description

Navigating the landscape of smart homes reveals a plethora of solutions geared
towards augmenting home intelligence. These solutions exhibit a range of effect-
iveness and adopt diverse mechanisms. This study aims to harness the power
of affordable equipment to interface with energy-centric appliances such as heat
pumps and ventilation systems across multiple houses. Furthermore, it is to em-
ploy sophisticated algorithms that enhance operational efficiency without neces-
sitating the installation of additional devices in the home. The approach proposed
here takes advantage of the open Application Programming Interface (API) of
existing energy-related home devices, performing the algorithmic computations
remotely on an NTNU server. A high level overview of the total system can be
found in Figure 1.1. Here hybrid digital twins as well as reinforcement learning
is shown as ways of further improving Model Predictive Control (MPC) control.

The core emphasis of this study is on the design and development of a scal-
able software infrastructure capable of collecting data from a multitude of devices
spread across various homes. It also proposes a backend that allows individuals to
effortlessly log in, select their home devices, and initiate the data logging process
for their devices. The study then evolves to demonstrate a practical control use
case, further showcasing the utility and potential of this approach.

1
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Figure 1.1: Showing a high level overview of the proposed control system. Mul-
tiple houses can connect to the same system, each with their own control al-
gorithms. These control algorithms are running on some kind of server, doing
calculations based on sensor data and sending actuations back to the correspond-
ing IoT devices.



Chapter 1: Introduction 3

1.2 Motivation

This initiative seeks to build upon the work of Eric Törn [1], who, in his master’s
thesis, constructed a comprehensive system centred around logging data from a
few publicly accessible IoT devices. This system aimed at closing the MPC heat
pump control loop within a house, and its effectiveness was validated within a
single house, showing promise for its adaptability to other homes.

This project aims to expand upon this foundation and provide an accessible
and intelligent control solution capable of optimizing various aspects of a smart
home using inexpensive, readily available IoT hardware.

One of the key observations from Törn’s work was the potential for a more
remote solution [1]. Despite being operational on a Raspberry Pi, the system was
not tied to the house’s geographical location, suggesting the system’s potential to
operate independently of the house’s physical location. This study aims to explore
this potential and develop a system that can log data and send control to IoT
devices remotely.

Such an arrangement could allow the system to expand without the necessity
of hiring additional technical staff, thereby providing scalability, which would,
in turn, greatly increase the possibilities of more data for research. However, to
facilitate this scalability, a re-engineering of the software from the ground up is
required, incorporating principles that ensure it can cope with an expanding user
base.

1.2.1 Norway: A Prime Location for Smart Homes and Energy Effi-
ciency

Norway is an optimal location for the advancement and implementation of smart
homes, given its well-connected society and favourable infrastructure. This is evid-
enced, for example, by the mandatory installation of smart power meters in all
residences, which collect and transmit data on energy consumption [9]. Further-
more, in 2020, 61% of all energy used in Norway came from renewable sources
[10]. Thus, using smart electrical devices for Heating, Ventilation, and Air Condi-
tioning (HVAC) is a practical and viable solution for homes.

In addition, the demand for such solutions is greater in Norway due to the
country’s cold climate. With high energy costs and low temperatures, the benefits
of these solutions could outweigh their development expenses. Over the years,
energy consumption in Norwegian households has steadily risen. In 2017, resid-
ential buildings accounted for 22% of the country’s total energy usage [11]. It is
hoped that this figure will decrease with the implementation of smarter housing,
including energy-efficient grids and individual homes that consume less energy
while working in harmony.
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1.2.2 Smart-home Control and the Gap in the State of the Art

One of the primary motivations for collecting data in smart homes is to utilize it to
effectively control various devices and systems. The simplest form of control can
be observed in thermostats, which regulate devices based on a set temperature
by issuing either on or off signals. Moving forward in complexity, Proportional-
Integral-Derivative (PID) controllers can be introduced to further refine the con-
trol process. The most advanced control systems involve predictive algorithms,
such as Model Predictive Control (MPC), which can anticipate future conditions
and adjust controls accordingly. However, these more advanced control schemes
require more data, and the interoperability between these devices is not trivial.
This research data, which there is a lack of on domestic response control, is needed
to improve these control systems further.

This interoperability challenge is evident in most vendor-offered heating solu-
tions, of which several will be detailed in Section 2.1, which vary significantly
in their effectiveness and customizability. These systems often necessitate the ex-
clusive use of devices within a specific ecosystem, thereby increasing costs for a
comprehensive solution. This limitation highlights a notable gap in the market:
the lack of advanced and customizable heating control systems that can operate
across different ecosystems.

Though custom integrations are possible within some ecosystems, they are
often limited to basic on/off controls based on the time of day or current utility
price. Implementing and maintaining more advanced control algorithms, such as
MPC, requires extensive technical expertise.

It has been shown by a previous master’s student that heating control using
cheaper devices and their data is possible, and it would therefore be interesting
to see whether this is true also on a bigger scale [1]. The interconnected system
offers an additional advantage: when multiple houses are connected, they can
potentially work together.

Ecogrid, a project based in Denmark, made an attempt to unify several dif-
ferent houses into one smart system [12]. They claimed to control units in 800
homes in a connected system remotely. The project lasted between 2016 and 2019
and was more of a test concept to demonstrate how houses connected together in
this smart grid could improve overall energy usage. Although they were able to
integrate more green energy, reduce costs for customers, and maintain a balance
between production and consumption, the project has been discontinued. This
cessation of the Ecogrid project underscores the unmet need for comprehensive,
interoperable, and user-friendly solutions in the smart-home sector.

Beyond heating control, this gap in the market extends to other aspects of
smart homes, including ventilation systems and solar battery management. All-
in-one solutions that address these issues exist, some of which are presented in
Section 2.1.2. However, they often offer limited customization, and their control
systems’ overall impact can be difficult to discern. This again highlights the critical
issue at hand: the absence of advanced, interoperable control systems that cater
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to varying user requirements without demanding excessive technical expertise.
To address this gap, future smart-home solutions could focus on the following

aspects:

• Interoperability: Ensuring that smart home devices and systems can work
seamlessly with each other, regardless of the manufacturer or ecosystem.
This would enable users to mix and match devices to suit their specific needs
and budgets.
• Customization: Developing advanced control systems that offer a higher

degree of customization, allowing users to tailor their smart-home solutions
to their unique requirements and preferences.
• Usability: Simplifying the process of setting up and maintaining advanced

control algorithms, making it more accessible to users without extensive
technical knowledge.
• Transparency: Providing users with clear insights into the performance of

their smart-home systems, including quantifiable metrics that demonstrate
the effectiveness of the control algorithms in use.

By adhering to these points, we can address the identified challenges and pave the
way for the next generation of smart home solutions. This would allow home users
to effortlessly access advanced control algorithms without investing in expensive
ecosystems or proprietary smart hubs. This vision can be achieved by leveraging
the open APIs of existing devices within their homes, thus granting them smart
capabilities without any additional installations. As the necessary data and actu-
ators are often already in place, unlocking these potential capabilities requires
establishing the required infrastructure. This approach would empower individu-
als with control over their smart homes and simultaneously contribute valuable
data for further research in the field.

1.2.3 Towards Economical and User-Friendly Smart Homes

The landscape of smart-home development presents a spectrum of solutions that
vary significantly in sophistication and implementation costs, as discussed further
in Section 2.1. The possibility of homeowners effortlessly installing readily avail-
able devices that may not inherently communicate with one another, but can be
unified through non-local software, provides an economical and convenient av-
enue to decrease energy consumption. For instance, a homeowner could opt for a
Sensibo Sky for heat pump control, a Tibber Pulse for monitoring electricity usage,
and potentially a few Mill Sense sensors for assessing the indoor climate [13–15].
While these specific devices are just examples, their interconnectivity would sup-
ply all the necessary data for intelligent control, with the sole missing component
being the system that unites them.

The system developed in this thesis aims to serve as that missing link, and its
implementation is elaborated upon in Chapter 4. Despite the existence of similar
solutions, the necessity for a solution that suits specific research requirements
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motivates the development of a new system. Additionally, this endeavour aligns
with the UN sustainability goals, which are discussed further in Section 8.7.

1.3 Scope and Limitations

This project primarily focuses on developing the software infrastructure neces-
sary for collecting data, which will serve as the foundation for more complex al-
gorithms in smart-home control. As the research group POWIOT led by Sebastien
Gros explores various aspects of smart home management, creating a scalable
infrastructure for efficient data gathering is crucial for the team members.

The system is limited to devices that can be accessed remotely without any user
intervention within the home. These devices must have a public API endpoint to
which the system can connect. The currently supported devices are those in homes
that have consented to participate in this research, as access to these devices is
needed to test the integrations.
The main objectives of this project include:

• Developing a robust infrastructure for data collection and processing.
• Simultaneously gathering data from multiple houses.
• Facilitating easy access to data for research group members.
• Implementing a backend for serving collected data and providing informa-

tion about active devices to users.
• Closing the control loop by running control algorithms on the server using

the collected data.

1.4 Layout of this report

The report starts with an overview covering the current landscape of these solu-
tions, what is available, and their limitations in Chapter 2. Then it will outline
the software specification for the new system, going over its requirements in
Chapter 3. After that, the entire implementation will be detailed in Chapter 4.
To close the feedback loop, a test was conducted in Chapter 5, where control was
used alongside the system. A complete system guide will be found in Chapter 6.
After that, results are in Chapter 7, followed by the discussion in Chapter 8. Finally,
the conclusion can be found in Chapter 9.



Chapter 2

Background

This section provides the necessary background information for this thesis. First,
it explores the existing smart-home solutions in residential homes in Section 2.1.
Then, in Section 2.2, it delves into the theory required for the implementation of
the system in Chapter 4.

2.1 Current landscape

The landscape of IoT and smart homes is currently evolving at a rapid pace. With
numerous vendors offering varying functionalities, navigating and implementing
these technologies can be challenging and expensive. Furthermore, the degree
of vendor lock-in varies significantly. Some manufacturers develop proprietary
software that restricts device compatibility to their ecosystem, while others create
open APIs for greater flexibility.

Historically, these systems have been associated with high costs and complex
installation processes. However, the recent trend seems to have shifted towards
more specialized, cloud-connected devices that excel in performing specific tasks.
Some of these will be detailed in Section 2.1.1. This shift allows for greater ad-
aptability and ease of integration within smart-home ecosystems.

2.1.1 Devices for smarter energy management

There is a wide range of energy-related IoT devices which fulfil various different
tasks. Below is a list showing an assortment of IoT energy-related home devices:

• Sensibo Sky and Air devices enable Wi-Fi connectivity for most air-to-air
heat pumps, allowing remote control through an app and their API [13].
These devices function by imitating the heat pump’s remote, transmitting
infrared signals in the same manner. They are equipped with built-in hu-
midity and temperature sensors.
• HAN meters are mandatory in all Norwegian homes [16]. Connecting a

device like Tibber Pulse [14] to this port enables the collection of real-time

7
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energy consumption data, which can be used to optimize usage. Hourly data
is accessible regardless of installed devices, but the ease of access varies
depending on the electricity vendor.
• Mill Heaters are Wi-Fi enabled and integrate within their ecosystem for

seamless automation based on sensor triggers [17]. Mill offers additional
sensors like the Mill Sense that can be linked to heaters for improved tem-
perature control in a room [15]. These sensors include humidity, temperat-
ure, eCO2 and Total Volatile Organic Compounds (TVOC) readings.
• Aquarea Smart Cloud CZ-TAW1 facilitates remote control of a select few

water-to-air heat pumps [18]. Once connected to the system, it is accessible
through their smart cloud interface.
• Easee Home is a series of Electric Vehicle (EV) charging stations designed

for residential use [19]. They are easy to install, compatible with various
home environments, and Wi-Fi enabled for remote monitoring and control
via a mobile app.
• Nest Learning Thermostat is a smart thermostat that supports Google Home

and Apple Homekit [20]. It enables both manual control and independent
operation based on learned user patterns. These thermostats are compat-
ible with various heat pumps and provide intelligent temperature control
through sensors located elsewhere in the home.
• Tado Smart Thermostat is a Wi-Fi-enabled device offering intelligent cli-

mate control for heating and cooling systems [21]. Compatible with vari-
ous heat pumps and water boilers, Tado learns user habits and employs
geofencing technology to optimize energy usage. Additionally, it integrates
weather forecasts to adapt energy consumption to external conditions.
• Similar solutions often adopt cloud-based platforms with publicly available

APIs, simplifying access and integration for users.

2.1.2 Smart-home solutions

To unify the variety of smart-home devices into a single solution, several vendors
offer all-in-one systems that consolidate these devices into one app or ecosystem.
Below is a list of some of the most popular smart-home solutions, though it is not
exhaustive. They are listed in no particular order:

• Homey is a smart hub designed to support a wide range of vendors [22]. It
is a centralized solution to manage and control smart devices, though it is
not primarily geared towards integrating different devices. Homey provides
flow automation for basic IF This Then That (IFTTT) automation that works
even without an internet connection. Homey also offers an all-cloud solu-
tion that doesn’t require a smart hub but integrates with other cloud-based
systems.
• Futurehome provides a complete smart-home system. They sell their own

hub along with separate sensors and devices for a smart home [23]. Al-
though its compatibility list is shorter than Homey, the supported devices
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work natively. Futurehome claims to reduce energy bills by up to 25% with
its integrated solution that measures power and controls heating, boilers,
and car charging based on spot market rates. To install the system, an elec-
trician is needed.
• Home Assistant is the tinkerers choice. It is an open-source smart hub soft-

ware focusing primarily on local control [24]. With it being open source
and easily available they have a huge supported device list, it is only the
software, and thus it has to be run on some kind of local hardware. For
most, this could be a home server or some smaller, more dedicated unit
like a Raspberry Pi. However, this can only communicate with other cloud-
based devices as it needs additional hardware to connect to and control
through Zigbee and other protocols commonly used for low-power smart
home devices. It is also not out of the box possible to control these devices
remotely, but it can be done using custom integrations.
The pros of Home Assistant come in its total control. As it is made for the
tinkerers, they can easily create their own integrations and automation, and
there are really no limits on what can be done, although it may take time
and some know-how. More complicated automation like Model Predictive
Control (MPC) is not easily implemented, but workarounds are possible.
• Google Home and Apple Home have their own ecosystems for controlling

and seeing data from various IoT devices [25, 26]. Their supported list is,
however, smaller than Home Assistant as they need native compatibility.
Automations are also limited in functionality. These don’t usually require a
central hub, although having one adds more features, such as remote con-
trol.
• Tibber functions as an electricity provider [27]. Besides selling proprietary

devices like the Tibber Pulse, which enables live power monitoring, they
also offer a dedicated app. This app integrates with a range of other devices
to facilitate energy-saving automation by intelligently monitoring electricity
usage in relation to spot market trends [14].
• Enode is a startup from NTNU that doesn’t provide the smart features ne-

cessarily, but they allow for the unification of several different APIs [28]. Be
it different Heating, Ventilation, and Air Conditioning (HVAC) systems, EV
car chargers, solar inverters etc. This system maps API calls through their
system to make it seem like the calls to different providers are the same.
In this way as the user of their API, you wouldn’t need to know the differ-
ence between a Sensibo API or a Mitsubishi cloud API, as they would do the
work of integrating this for you. This system is mostly meant as a baseline
for other integrators to work on top of, as they take care of the grunt work
of having these APIs work and up to date. However, if their system is down,
your entire system will also be down. In addition, if a vendor updates their
API you would need to wait for Enode to update their integration before it
will work again.
• Samsung SmartThings is a smart home ecosystem that combines various
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devices, allowing for centralized control and management [29]. With a wide
range of compatible devices and an open platform for developers, SmartTh-
ings offers users flexibility in configuring their smart home. The system sup-
ports automation through the SmartThings app, enabling the creation of
custom rules and routines for different devices to interact.
• Various vendor apps: Many different device makers today also create their

own apps that can sometimes integrate with other vendors’ devices. These
vary greatly in functionality.
• Custom software: Since a lot of vendors today allow for open APIs to their

devices or open local protocols like MQTT, creating custom software is also
a possibility. This can be done by connecting to these various APIs, logging
data or trying to control them through code.
• Matter standard aims to unify all IoT devices by creating a similar interface

between them all [30]. This standard will hopefully make it much easier
to connect the devices of different vendors together. It is open source and
already pushed by big corporations such as Apple and Google. Although it
will take time, this will most likely change the IoT landscape drastically.

2.1.3 The Role of Data and Advanced Controls in Smart-Home Sys-
tems

The effectiveness and efficiency of smart-home systems hinge significantly on
data. High-quality sensor data enables appliances to make informed decisions
based on various factors like temperature and occupancy, leading to enhanced per-
formance and greater energy efficiency. A classic example is a heat pump outfitted
with several temperature sensors, which can develop a nuanced understanding of
the indoor climate and construct more accurate operational models. Through the
intelligent utilization of this data, the pump and other devices can anticipate fu-
ture conditions, such as changing weather patterns or fluctuations in energy spot
prices.

Commercial off-the-shelf solutions often fall short as they limit control to built-
in sensors, inhibiting scalability and overall effectiveness. Addressing this chal-
lenge calls for a more sophisticated solution, which will be explored further in
Chapter 4.

Given their substantial energy usage, heating, ventilation, and battery man-
agement systems, when present, are key optimization targets within the myriad
systems of a smart home. Although these systems often come with implemented
control algorithms, there is room for further enhancement. For instance, while
ventilation systems may use a Proportional-Integral-Derivative (PID) control ap-
proach, recent testing suggests that model predictive control systems can lead to
more efficient energy use and better system control [31].

Model Predictive Control (MPC) is an advanced control technique that en-
hances the performance of dynamic systems through the use of a mathematical
model to predict future behaviour and optimize control inputs based on desired
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performance criteria. This technique is widely applied in various fields, includ-
ing robotics [32], process control, [33], and smart homes [34], for its ability to
optimize control inputs based on future predictions.

In previous work, heat pumps were equipped with MPC combined with a Mov-
ing Horizon Estimation (MHE) approach for state estimation [1]. This combina-
tion led to improved efficiency and performance by accurately predicting future
system behaviour based on its current state. These findings underline the potential
for advanced control techniques to revolutionize smart-home systems, provided
they’re fueled by comprehensive and high-quality data.

As the complexity of control models increases, with strategies ranging from
machine learning [35], to MPC, to reinforcement learning-enhanced MPC models
[36], the importance of data becomes even more critical. Accurate models require
more than a detailed floor plan; they need real-world data, capturing factors like
insulation quality and occupants’ usage patterns. Collecting such comprehensive
data empowers superior control and opens avenues for research with a diverse set
of houses. This data-driven approach would also facilitate the creation of digital
twins, enabling accurate simulations to optimize smart home systems further.

2.2 Software and theory

This section introduces software and frameworks used for the implementation of
a custom logging system in Chapter 4.

2.2.1 Docker

Docker is a widely-used open-source platform that has revolutionized the way
software applications are developed, deployed, and managed [37]. Docker allows
developers to package applications and their dependencies into self-contained,
portable containers that can be easily deployed and run on any platform. By ab-
stracting the underlying infrastructure, Docker enables applications to run con-
sistently and reliably across different environments, including on-premise data
centres, public and private clouds, and hybrid environments. Docker has become
a critical tool in modern software development, enabling faster and more effi-
cient application delivery and deployment, and helping organizations to achieve
greater agility, scalability, and flexibility in their operations. As seen in Figure 2.1,
Docker works by having its own Docker layer and running containers on top of
it. This allows the different containers to share much of the same infrastructure,
reducing overhead, storage and memory use. This is in contrast to normal virtual
machines that come with everything necessary for running a complete operating
system every time one is booted up. Docker containers are built using Dockerfiles,
which contain information about what image they are based on and what pack-
ages will be installed in the container. This Dockerfile also contains information
about what to load into the container and in what order.
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Figure 2.1: Overview of how docker works, Docker on the left and virtual ma-
chines on the right. The figure is based on the Docker documentation [38].

Docker Hub hosts many different images that can be used as the base for
Docker containers [39]. These can be everything from small containers containing
only the bare minimum to a full-fledged Ubuntu operating system. This makes it
easier to create small microservice applications.

Docker Compose

Docker allows for quite a complex network creation [40]. To compose several
communicating containers, separate virtual networks within the docker container
clusters can be set up. To compose several containers at once that communicate,
one can use Docker Compose [41]. It is a tool that simplifies the creation of differ-
ent containers into a single .yaml file. An example of starting a Docker container
using Docker Compose can be seen below.

version: "3.9"
services:
postgres_db:
image: postgres
command: -p 5432
expose:
- 5432

ports:
- "5432:5432"

volumes:
- postgres_data:/var/lib/postgresql/data/

restart: always

volumes:
postgres_data:

By storing the above file in adocker-compose.yaml file and running:

$ docker compose up
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A Postgres database with port 5432 exposed will be started. The local folder
postgres_data will also hold the local database.

2.2.2 Kubernetes

Kubernetes, colloquially referred to as K8s, is a sophisticated and open-source
platform built specifically for managing containerized applications [42]. Such ap-
plications often come in the form of Docker containers. The platform automates
the deployment, scaling, and management of these applications, thereby freeing
developers from the concerns of underlying infrastructure complexities. Its robust
functionality and versatility make it a popular choice for environments on-premise
and in the cloud. It aids in the modern shift towards containerization and mi-
croservices architectures, providing an optimal platform for deploying and man-
aging cloud-native applications. With potent tools, APIs, and built-in capabilities,
Kubernetes enables load balancing, service discovery, and automated failover.

Kubernetes is a flexible platform with an array of features and extensibility
options. Developers can tailor and extend it to meet their specific needs, adding
to its appeal [42]. One significant feature includes the secure storage and utiliza-
tion of confidential credentials, often termed secrets [43]. By default, Kubernetes
encodes these secrets and offers additional encryption at rest for bolstered secur-
ity. These secrets are seamlessly integrated into pods as environment variables,
simplifying their usage within the containers.

Architecture and Components

The architecture of Kubernetes is a meshwork of several components, illustrated
in Figure 2.2. At its core are clusters, facilitating communication across different
machines [44]. A single machine can operate as an individual cluster or be part of
a multi-machine cluster. Each cluster comprises nodes, which serve as the running
environment for containerized applications, i.e., Docker containers. The control
plane, a vital part of the Kubernetes architecture, oversees the operation of worker
nodes and pods within the cluster. Pods represent the smallest deployable units
of computing within Kubernetes. They host containerized applications and can
scale to run multiple instances of the same application simultaneously. Deploy-
ments, defined within nodes, consist of a specified number of pods. Kubernetes
has an inherent capability for auto-scaling these deployments to meet fluctuations
in demand, allowing for an elastic and responsive system.

Kubernetes provides clients for multiple programming languages, including
Python. The Python client, for instance, interfaces with the control plane, enabling
actions on the cluster [45]. It supports various operations, from querying running
pods, and initiating new deployments, to deleting existing ones. The comprehens-
ive API ensures all actions on the clusters can be seamlessly executed, reinforcing
Kubernetes as a robust tool for container orchestration.
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Figure 2.2: Overview of different Kubernetes components. The figure is based on
the Kubernetes documentation [44].

2.2.3 MQTT

MQTT (Message Queuing Telemetry Transport) is a messaging system that is well-
suited for constrained devices or networks with limited bandwidth [4]. MQTT
operates on a publish/subscribe model, where all connected nodes can publish
and subscribe to various topics. To enable this communication model, a broker is
required to act as a post office, receiving and redistributing messages to the ap-
propriate subscribing nodes. The broker can be hosted locally or in the cloud, and
various brokers offer different service qualities, such as node reconnection and
encryption. MQTT also provide node authentication to ensure that only eligible
nodes can connect to the broker. While MQTT does not have built-in encryption,
it does support encryption over the Secure Sockets Layer (SSL) protocol if con-
figured on both ends of the communication [46].

2.2.4 Django

Django is a popular open-source web framework written in Python that is de-
signed for the rapid development of robust, scalable, and maintainable web ap-
plications [47]. Django follows the Model-View-Controller (MVC) architectural
pattern, which promotes code organization and separation of concerns. Django of-
fers a rich set of built-in features and tools, including an ORM system, a powerful
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templating engine, an administrative interface for managing application data, and
support for user authentication, session management, and other common web de-
velopment tasks. Django also provides a robust ecosystem of third-party packages
and libraries that extend its functionality and enable developers to build com-
plex applications with ease [48]. With its emphasis on simplicity, flexibility, and
reusability, Django has become a popular choice among developers for building
web applications, from small personal projects to large-scale enterprise applica-
tions.

Django rest framework

The Django Rest Framework (DRF) is a powerful and flexible toolkit for building
Web APIs [49]. It is an extension of the Django web framework, providing a set of
additional tools and libraries specifically for building RESTful APIs. RESTful APIs,
or Representational State Transfer APIs, are a type of web-based interface that
follows certain principles to enable communication and data exchange between
different systems or applications. In simpler terms, RESTful APIs provide a stand-
ardized way for systems to talk to each other over the Internet. They use common
HTTP methods, such as GET, POST, PUT, and DELETE, to perform actions on re-
sources (such as retrieving, creating, updating, or deleting data) in a predictable
and consistent manner. DRF includes a range of features and capabilities, includ-
ing support for serialization and deserialization of complex data types, authentic-
ation and permissions, content negotiation, pagination, filtering, and more. DRF
also provides built-in support for popular serialization formats, such as JSON and
XML, and enables developers to easily customize the output of their APIs. With
DRF, developers can rapidly build robust and scalable APIs that can be easily con-
sumed by clients across a variety of platforms and programming languages. DRF
has become a popular choice among developers for building APIs that power web
and mobile applications, IoT devices, and other systems that require seamless data
exchange over the web.

2.2.5 InfluxDB

InfluxDB has emerged as a powerful and efficient time series database designed for
high throughput and high demand [50]. It is specifically designed for time series
data and has thus been used mostly in IoT data retrieval, industrial automation
and monitoring systems. Its most highly viewed features are its data compression,
scalability, and data retention policies, which give it quite the edge in this market.
It can be used through their influx cloud, or it can also be self-hosted on company
premises.

In conjunction with InfluxDB, Telegraf, another product developed by InfluxData,
provides an extensive plugin system that complements the robustness of InfluxDB
[51]. Telegraf is a server agent designed for collecting and reporting metrics and
data, with more than 200 plugins available to gather various types of metrics
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from a myriad of sources. These plugins can be categorized into four types: in-
put, output, aggregator, and processor plugins. Input plugins fetch metrics from
specified sources, and output plugins are used to send these metrics to various
other data stores, including InfluxDB. Aggregator plugins create aggregate metrics
(like sums, averages, minimums, etc.), while processor plugins transform, decor-
ate, and/or filter metrics. This extensibility allows users to integrate InfluxDB and
Telegraf into existing systems or tailor it to their needs. Telegraf’s plugin-centric
design thus enhances InfluxDB’s versatility, making it an even more powerful tool
for time series data management.

Flux query language

The database can be queried using InfluxQL, an SQL-like language. However, this
is not native in the latest version. Instead, the flux query language has emerged
with its own Python integration [52]. The flux language resembles a functional
programming style where data is piped into each other, and the server can handle
much of the heavy lifting. Inside this language is the support for various statistical
tools that can make the server do the work, making the amount of data needed
to be transferred to the client smaller. For examples of what this query can look
like, head to Section 6.3.

2.2.6 PostgreSQL

PostgreSQL is an advanced open-source relational database management system
[53]. It adheres to the SQL standards and has support for more advanced types. In
addition to this, it supports high workloads and a lot of customisation if necessary.
It integrates well with Django using its ORM.



Chapter 3

Software Specification

This chapter details an overview of what the system wants to achieve and what
parts it is built up from. First, the overview will be shown in Section 3.1. Then the
requirements for the various parts of the system will be presented in Section 3.2,
Section 3.3 and Section 3.4.

3.1 System overview

A simple illustration of the entire system can be observed in Figure 3.1. This system
is predicated on the capability to log and store information from numerous devices
within a residence in a designated database. Subsequently, the collected data can
be utilized in a processing node for various purposes, ranging from basic control
measures to more sophisticated Model Predictive Control (MPC) schemes, con-
tingent on the specific device being managed. The control is implemented based
on multiple data points recorded for each residence within the database. Com-
mands are then transmitted to the designated devices, completing the feedback
loop. To facilitate this process, a backend infrastructure is required to manage user
information, house details, and the devices currently used by residents.

Figure 3.1: Simple overview of the proposed system.

Based on this overview, the system comprises a few main systems. And this
chapter will outline a few requirements for the software. These requirements

17
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aren’t necessarily every feature that is needed for the system to work, but all the
features that would make this a complete product. The different systems are the
following:

• Data logging
• Backend
• Processing
• Frontend

This project encompasses every aspect of the system, with the exception of the
frontend. Therefore, its requirements will not be a part of this thesis.

Given the natural absence of standardized requirements for IoT logging sys-
tems, an effort has been made to establish a set of general requirements. Some
requirements might be missing, but if it adheres to these, it should at least be
capable of doing the minimum required by this type of system.

3.2 Data logging

The data logging module is an essential component of the system, as it enables
the collection and storage of data from connected devices. The rest of the system
can then distribute and use this data.

Data Logging Requirements

• DLR-1: High available resolution of measurements.
• DLR-2: High throughput.
• DLR-3: Resilient against system crashes and restarts.

◦ DLR-3.1: Automatic restart on crashes.
◦ DLR-3.2: Credentials saved through crash/restart.
◦ DLR-3.3: Reconnection after internet failure.

• DLR-4: Persistent data storage for long-term access and analysis.
• DLR-5: Automatic backup and recovery in case of data loss.
• DLR-6: Scalable architecture for handling large amounts of data and users.
• DLR-7: Security and Compliance.

◦ DLR-7.1:Compliance with relevant data privacy regulations (e.g. GDPR).
◦ DLR-7.2: Robust data encryption and protection against unauthorized

access.

3.3 Backend

• BR-1: Integration with other systems

◦ BR-1.1: API access for developers to build custom applications and
services on top of ours.
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◦ BR-1.2: Standard REST API to support multiple data formats for easy
and seamless data exchange.

• BR-2: New device integrations

◦ BR-2.1: Ensure the backend can work independently of new integra-
tions.
◦ BR-2.2: Have a template for creating new integrations to streamline

the process.
◦ BR-2.3: Provide support for custom credential inputs, so any device

can be integrated.

• BR-3: User features

◦ BR-3.1: Enable users to start devices based on what they have at home.
◦ BR-3.2: Enable users to check the status of their devices.
◦ BR-3.3: Enable users to stop devices on demand.
◦ BR-3.4: Enable users to restart their devices on demand.
◦ BR-3.5: Enable users to retrieve their own data.
◦ BR-3.6: Remind users if their device is malfunctioning.
◦ BR-3.7: Provide different tiers of use (just logging or logging and con-

trol) with configurable parameters for each tier.

• BR-4: Security

◦ BR-4.1: Encrypt secret data.
◦ BR-4.2: Enable user authentication.

3.4 Processing

• PR-1: Reliability

◦ PR-1.1: Resilient against network connectivity issues.
◦ PR-1.2: Can send commands to the various actuators.

• PR-2:Configuration

◦ PR-2.1: Optional customisation of control algorithms.
◦ PR-2.2: Variety of supported devices for control.





Chapter 4

Implementation

In this chapter, we delve into the software’s implementation. We begin with Sec-
tion 4.1, providing a basic overview of the system. Following this, Section 4.2
presents insights into our choices of software and the subsequent creations. Fi-
nally, in Section 4.3, we enumerate the devices that have been implemented within
the system.

4.1 Overview of the system

The system comprises a main server, which talks to different vendors APIs to log
data and control devices. Data is stored in a local database instance which can be
queried locally and remotely through the internet for development purposes.

A backend API is available for normal users to log in, select which devices they
currently have in their home, send in their credentials, and immediately start up
the respecting logging nodes for their home devices. To start logging, they would
only need one of the devices supported, all of which are listed in Section 4.4.
Some of these devices do not even need a physical unit in-house, for instance, the
weather forecast logger.

Based on this data, a control loop can be made, e.g. retrieving temperature
data from a room and sending actuations to a heat pump. This is possible as some
of the integrated devices also allow for control to be sent back through their APIs.
This could be heat pumps, ventilation systems or a battery inverter. With data
about power consumption and the spot marked, the power consumption can be
optimized. This processing (control) node can also be run directly on the same
server or remotely from an external computing unit when debugging.

4.2 Modules

A comprehensive overview of the entire system is illustrated in Figure 4.1. The
system comprises multiple modules, all managed by the Kubernetes framework.
The different modules are all booted up as deployments within the Kubernetes

21
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Figure 4.1: The system’s architecture comprises yellow rectangles and pink cyl-
inders, all of which are pods within Kubernetes and are run as Docker containers.
Cylinders are storage instances. In instances where there are overlapping squares,
multiple can boot up simultaneously. A few device integrations have been picked
out as examples, but more are available, and more actuations can also be set up
from the processing units. Currently, Sensibo and Systemair are among the APIs
with actuation as well.
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cluster. Local inter-container communication between device integrations and the
Datalogger is facilitated through MQTT for seamless interaction between different
programs. Devices can therefore be developed in any language with an MQTT in-
terface and run within their respective containers. Data generated by these devices
are sent to the Datalogger node that filters and validates the data before forward-
ing it to the InfluxDB database. Users can query the data directly from the database
with developer access or interact with the Django-based backend and PostgreSQL
user database to manage devices for their homes. Endpoints exist to retrieve data,
and a comprehensive list of all of them can be found in Appendix B.

4.2.1 InfluxDB Time Series Database

The InfluxDB time series database is utilized for data storage and runs within
the Kubernetes cluster. A dashboard for the database can be accessed at https:
//influx.powiot.no. Developers can query the database using custom accounts
through the online dashboard interface or programmatically with API keys. A
Datalogger node works alongside the database to collect and validate data sent
from other devices via MQTT before storing it in the database. An overview of
the structure of the InfluxDB database can be seen in Figure 4.2. The illustration
depicts the method of data storage within the database, which comprises distinct
components termed as buckets. These buckets essentially represent the databases
themselves. Inside each bucket, we store the measurements. Each measurement has
a set of associated fields and tags, as well as a timestamp that marks the moment
when the measurement was taken. To better understand this concept, consider
the Mill Sense airSensor on the right of the diagram. It demonstrates the differ-
ent fields and tags attached to it. Within the system, the Mill Sense is within the
airSensor group. Crucially, all the fields, tags, and timestamps can be described as
key-value pairs. In this construct, every key (field, tag, or timestamp) has a corres-
ponding value associated with it. This structure ensures that each piece of data can
be identified and accessed easily within the database. For all measurements in the
system, the house_id and device_name tag has to be included. Additional informa-
tion can, for instance, be the location within the house. The available dashboard
should be for administrative usage, as this has complete access to all houses. For
normal user access to devices, the backend API should be used.

The database itself is based on the latest InfluxDB image 2.6, and it is booted
up within Kubernetes using a yaml deployment file, with secret data put in through
the yaml file. More info about this procedure can be found in Section 6.10.

4.2.2 Datalogger

The Datalogger node is responsible for pushing data into the database, its place-
ment in the system can be seen in Figure 4.1. It validates the data received over
MQTT for correct formatting before injecting it into the InfluxDB database. In ad-
dition, the Datalogger serves as a monitor, tracking which nodes are transmitting

https://influx.powiot.no
https://influx.powiot.no
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Figure 4.2: Buckets in InfluxDB are the names of the databases themselves. One
bucket is created in this system, where the measurements for all devices within all
the houses reside. This bucket has been named HouseData. Measurements have a
certain amount of fields and tags, and also a timestamp of when the measurement
was done. All of these fields, tags and timestamps are a key-value pair, and thus
all have a corresponding value to them.

data and at what time. It also logs useful information related to data transmis-
sion, which proves invaluable when identifying issues with data sent during the
development of new integrations. Although this introduces an additional layer of
interaction, the enhanced clarity and support it provides to developers during the
creation of integrations provides a justification for its inclusion. While it is pos-
sible to feed data directly into the InfluxDB database using Telegraf plugins, this
approach requires pre-formatting of the data, complicating the troubleshooting
process when developing new device integrations.

4.2.3 Backend

A Django-based backend, accompanied by a PostgreSQL database, is available to
manage user credentials, devices, and houses associated with individual users.
The overview of the models within the backend can be seen in Figure 4.3. Users
can interact with endpoints for creating, restarting, or deleting devices and ob-
taining device status information. The implementation leverages the Django REST
framework to facilitate easy endpoint implementation and automatically generate
a browsable web API for convenient testing [49]. This backend stores info about
the various integrated devices, and new integrations can be added through the
admin panel.

Another part of the backend is the integration with the Kubernetes cluster.
A custom interface has been made using the Kubernetes API for Python, which
allows for checking the status of the different devices. This allows users to see the
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Figure 4.3: A table overview of the different models in the Django backend. It
shows the types of the data stored in the PostgreSQL database.
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reason why their integrations might be crashing, be it due to an API being down,
or if invalid credentials were put in.

The Django backend is developed locally and is then built into a Docker con-
tainer using the associated Dockerfile, and is then run within the Kubernetes
cluster.

4.2.4 Backend API

The current API documentation is dynamically available at https://powiot.no/
api/docs, where an example of this can be seen in Figure 4.4. Complete docu-
mentation with request body examples can be found in Appendix B.

Figure 4.4: Swagger documentation available at /api/docs.

4.2.5 Device Integrations

Device integrations are developed using Docker containers, which can be written
in any language with an MQTT interface. Currently, all existing integrations are
developed in Python using the Paho-MQTT library [54] for MQTT communica-
tion. A template has been created to expedite the development of new devices.
The program flow of one of these device integrations can be seen in Figure 4.5.
This template includes the Dockerfile and an example Python device that sends
dummy data. This template works out of the box, and can then be modified to
suit the new device needs. For info about how to do this look in the user guide in
Section 6.8.2. Device credentials are input through environment variables, which

https://powiot.no/api/docs
https://powiot.no/api/docs
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must be defined in the code and match those input through the backend API when
starting a new device. The flow of this can be seen in Figure 4.6.

Figure 4.5: The program flow for a device integration. The exit code for when a
login does not work is to let Kubernetes know the cause of the exit.

Figure 4.6: How environment variables are set into the respective docker con-
tainers all the way from the backend. A docker container has certain environ-
ment variables needed. This is then added to the device when creating it in the
backend. Therefore when starting one of these devices, these fields are required,
and through the Kubernetes API, a device is started with an accompanying secret
with the environment variable data.

Devices can be tested independently before being incorporated into the sys-
tem. All device integrations are pushed to Docker Hub and can be initiated from
the backend immediately after being added to the list of devices. This ensures
that the development of new devices remains independent of the running system.
As long as the device functions correctly, it seamlessly integrates into the system
without affecting other components. To organise device integrations, a grouping
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system has been created. All devices fall into some group, and if one does not
already exist, a new one has to be made. The database groups try to generalize
the data that the device retrieves. The database group name maps to the meas-
urement name in the InfluxDB database. The current list of all database groups
can be seen in Table 4.1.

Table 4.1: InfluxDB database name groupings.

Measurement Description

airSensor Temperature, humidity, and other climate sensor data.
powerConsumption Power consumption for a house, realtime/hourly.
ventilationControl Control of ventilation system.

heatPumpController Control of heat pump.
weatherForecast Weather forecasting data for location.
solarRadiation Solar radiation forecasting for location.

solarBatterySystem An integrated solar and battery inverter system.

This grouping is to maximise the interoperability of the different devices so
that the same algorithms can use data from different devices without having to
know which device it comes from. airSensor for example does not care if it is
retrieved from a Mill Sense sensor or a Verisure smoke detector (which also has
temperature and humidity). This list does not include every type of smart-home
IoT device that can be included and will have to be extended with an appropriate
name when a new type of device comes up.

4.2.6 Communication between components

To ensure interoperability, communication between device integrations and the
data logger is facilitated through MQTT and its topics. Devices communicate ex-
ternally with their respective vendor APIs using HTTPS calls.

Device data is transmitted via MQTT in the form of dictionaries, which are dir-
ectly insertable into the InfluxDB database. This data is then encapsulated within
a JSON object and sent over MQTT. Communication is unidirectional: devices
transmit data to the Datalogger, which subsequently stores it in the database.
This stored data can be accessed by other processing nodes or directly by users
for further analysis or processing.

Sensor data is transmitted over the "sensors/<SENSOR-NAME>" topic, en-
abling the logger to collect all data published under the "sensors/#" topic and
accommodate various sensor types. For instance, a Sensibo device would publish
data on the "sensors/sensibo" topic. This approach is employed for local logging
purposes to track data sources. Below is an example of the data structure sent
over MQTT here as a Python dictionary.
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data = {
"measurement": "airSensor",
"tags": {

"house_id": "3",
"location": "Soverom",
"sensor_name": "mill-sense"},

"fields": {"temperature": 19.7, "humidity": 40.3},
"time": datetime.datetime.now().isoformat(),

}

The HTTP calls vary for each device, as they depend on the specific vendor. A
comprehensive list of implemented devices can be found in Section 4.4.

Incoming communication to the pod is managed through a Cloudflare proxy.
The configured domain is connected to Cloudflare, which in turn communicates
with a pod running within the Kubernetes cluster. This is to open up the server to
the Internet without port forwarding as this is not possible from the hosted NTNU
server. As illustrated in Figure 4.7, this Cloudflare pod communicates with the
Django backend service to access the system’s backend. Subsequently, the backend
interacts with various other services to access different modules within the cluster,
such as the time series and user databases.

Figure 4.7: How a request is handled on the pod level inside the Kubernetes
cluster. All orange squares are pods running within the Kubernetes cluster. The
green squares are Kubernetes services, which act as the ports of the pods, allowing
them to communicate with each other. The blue square is the Cloudflare proxy,
which is hosted by Cloudflare.

4.3 Software design

The development decisions for the software, outlined in Section 4.1, were heavily
influenced by a variety of goals. First and foremost, the software should be user-
friendly and designed in such a way that future developers can easily pick up the
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mantle as the research project progresses. Another key consideration is scalabil-
ity, anticipating the possibility of a significant increase in homeowners wishing
to join the system. The software should also closely align with the requirements
described in Chapter 3. Moreover, minimal maintenance requirements were prior-
itized, recognizing the limited resources available for continuous system upkeep.
These overarching goals shaped the decision-making process, as discussed in the
following section.

4.3.1 Software library: choices and considerations

Backend Selection

In the process of selecting a backend for this project, several systems were eval-
uated, including Django [55], FastAPI [56], and Flask [57], which are all major
solutions for Python backend development. The predecessor of this system em-
ployed Flask as its web framework [1].

Flask offers ease of setup and initial use, but its expandability and database in-
tegration capabilities are limited [57]. Both FastAPI and Flask require developers
to manually configure interactions with the database, increasing the risk of er-
rors and necessitating further decisions about the database to use. However, the
advantage is that only the necessary features need to be implemented, reducing
overall system overhead.

FastAPI bridges the gap between Flask and Django by allowing minimal imple-
mentation while also providing useful built-in features like security and automatic
documentation [56]. Despite FastAPI’s advantages for small APIs and straightfor-
ward security, Django was selected for its maturity and user-friendliness. Django’s
features cater to a broad range of systems, making it familiar to developers with
experience in similar projects, even without a deep understanding of the entire
backend implementation.

The selection of an accompanying database was another smaller decision.
Django’s ORM directly links and maps objects to database storage [58]. Among the
options, PostgresDB offered the most extensive feature set, including array fields,
a valuable tool for storing an optional dynamic amount of required environment
variable fields for device integration, and was therefore chosen.

Kubernetes

When confronted with the task of selecting a suitable framework for multi-device
management, Kubernetes stood out as an unequivocal choice. The feasibility of
developing a bespoke solution specific to this application was contemplated; how-
ever, the pre-existing advantages of Kubernetes presented a compelling argument
in its favor. Other contenders, such as Docker Swarm [59], were duly considered,
but they fell short of matching the robustness and flexibility afforded by Kuber-
netes, and they lacked a comparably extensive community and ecosystem.
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The principal attributes that distinguish Kubernetes include its inherent sup-
port for rolling updates, self-healing capabilities, and scalability potential [42].
These, in tandem with an expansive community and a thriving ecosystem, posi-
tion Kubernetes as a comprehensive solution in the realm of container manage-
ment. Hence, the strategic decision was to leverage the extensive capabilities of
Kubernetes, rather than pursuing the development of a custom solution.

Time Series Database - InfluxDB

Since most of the data would be time series data, a dedicated time series database
was therefore considered. InfluxDB is highly specialised for a lot of time series
data, both in storing and querying this well-suited data [50]. It is built for high
write and query loads, which means that it will be well suited for the future if
the system scales into more houses, with several sensors with high-time precision
data. It also boasts horizontal scalability, allowing multiple servers to operate the
same database concurrently, thereby eliminating the need for a single powerful
server to run everything. The only thing to consider here is whether or not it will
be overkill for its purpose. If the load of the system will not exceed millions of
devices, it might have been easier to go with a normal SQL database. However, it
is still interesting as a showcase of how it could scale to that amount, even if it is
giving up a bit of usability. Since, this choice essentially means that two different
databases are needed, as normal data can not be stored in the time series database.

4.3.2 Fail fast, a view on fault tolerance

A big scope of this system will be the fault tolerance, both for the individual devices
as well as the control nodes when they are implemented. For this project, a fail-
quick approach has been used. Since every single device can fail in a lot of different
ways, it is easier to make things fail and then recover into a safe state. This is then
based on the assumption that the device implementations are robust enough to
be able to boot into such a safe state. This initialization state will then always
be possible to achieve, if the vendor API is accessible, and a connection can be
made. The fail-quick approach is aided by Kubernetes, if the individual Python
device containers crash for some reason or another, it will try to boot up again
immediately, and if it crashes again subsequently it will do so just with an increas-
ing interval between reboots, so as to not overload the system. This interval caps
out at 5 minutes. As a result, this ensures that all devices try to boot up again no
matter what. As an example, in the event that an API goes down, the system will
reboot the node until it works again.

This in turn means that there is no need for error-handling logic in the device
nodes themselves, as they can crash, and the system as a whole takes care of it
instead. This does, however, mean that the devices need to crash instead of getting
stuck in an error-handling loop. If all errors are handled within the respective
container, the node won’t restart since the rest of the system cannot recognize
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its malfunction. For new device integrations this will therefore also have to be
respected.

This approach has been chosen as the number of possible failure states is so
massive that there is no way that all of them can be handled sufficiently. If the
system instead expects the devices to crash and then handles it from there, it will
be more future-proof as a result.

4.3.3 Performance considerations

Since the system introduced in Section 4.1 would be running on more powerful
hardware than the previous system by Eric [1], performance is not as important.
However, it will still be necessary if this is to be scalable. Keeping Docker con-
tainers small and efficient will help a lot with the scalability of the system. The
Docker containers are created using the smallest possible Python image based on
what is needed within it, and only the necessary packages are installed. If several
containers run on the same images this will also decrease the amount of memory
needed, as Docker handles this overlap. Currently, the Docker containers vary a
bit in size but sit at around 300 MB. That is why all the devices that can, are us-
ing the same Python images as well. To further improve performance, statically
typed languages can be used to further reduce memory and CPU usage, while also
making the integrations more robust.

4.3.4 The modular structure of the system

The main idea behind the structure of the system has been modularity. If this
system is to be reused by students who come after, it might not be that the entire
system will be necessary, but if the parts that are needed can be easily reused, then
this would be a success. In addition to this, it will make it easier to maintain the
various parts, as well as develop new parts for it. It will also be a fact that some of
the choices taken in a system on this scale will not be optimal, and the easier it is
to remedy these changes, the better for the system in the long run. The message
passing aids this modularity, making modules more interoperable, as changing out
a piece of the system only has to respect the same input and output.

4.3.5 Measures in view of a large-scale deployment

There are various ideas put into practice in the infrastructure of the software im-
plementation, to facilitate the large-scale deployment of this system in the future.
Some considerations

• The entire system resides within a Kubernetes cluster, which makes the ad-
dition of redundancy a feasible task. This can be achieved by incorporating
more clusters into the network. Furthermore, it may be worth considering
the adoption of a multi-control plane architecture. In this design, the Kuber-
netes control plane operates from multiple locations, thereby mitigating the
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risks associated with potential events such as power loss or hardware fail-
ure.
• Communication over MQTT allows for the use of practically any program-

ming language for device integrations in the future, allowing more developers
with different backgrounds to implement integrations.
• Integrations are made using docker containers of the smallest possible sizes,

making them as atomic as possible only performing the task they are sup-
posed to.
• Integrations are polling at random intervals, for instance, the Weather fore-

cast integration, will sample as often as allowed but will also add a random
offset to the sampling time to spread out the bandwidth use. This also helps
when more devices are booted up within the same system, as the load of
the integrations are naturally spread out in time, freeing up the CPU.

4.4 Available devices

At present, device support is confined to those enumerated in this section. It is
important to underscore that only devices featuring some form of cloud integra-
tion can be integrated into the system. A template to facilitate the addition of new
devices has been made, simplifying the integration process for devices that offer
some kind of open API.

The data fields associated with devices aim to maintain as much generality as
possible, with the ultimate objective of allowing a diverse set of devices to function
within the same system. For instance, monitoring power consumption shouldn’t
necessitate a specific device as long as the devices provide the same data type. A
case in point involves the Mill Sense and Verisure Smoke Detector sensors, both
of which deliver airSensor measurements. Given that both sensors offer humidity
and temperature measurements, it becomes irrelevant to discern which sensor
provides this data. The sole distinguishing feature is that Mill Sense offers two
additional data fields, TVOC and eco2. In practice, this shows up the same way
in the database, just with two additional fields. Future integrations that use these
fields must check that they are available.

Looking ahead, it is our hope that this list will continue to grow as other stu-
dents onboard new houses equipped with novel devices into the system. This ex-
pansion will further enhance the versatility and robustness of this smart-home
ecosystem.

4.4.1 Tibber / Tibber Pulse

Tibber [27], the power provider, makes hourly consumption available when used
in their home. They also sell a Tibber Pulse unit [14] that connects to the HAN port
of any mandatory smart meter in Norway [16]. This unit can then stream real-time
data (in the order of every 2 seconds) through their open API. It requires an API
key to start.
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Database group(measurement name): powerConsumption
Available data for the tibber-realtime integration can be found in Table 4.2 and
data from the tibber-hourly integration can be found in Table 4.3.

Table 4.2: Available data from the Tibber Pulse device.

Field Unit Explanation

accumulatedConsumption kWh Total consumption since midnight.
accumulatedCost NOK Cost of energy since midnight.

power W Current consumption

Table 4.3: Available data from the Tibber api.

Field Unit Explanation

hourlyCost NOK Price for consumption last hour.
hourlyPower W Watt consumed during last hour.

If the power provider for the house is also Tibber, historical data is also logged,
allowing for the tibber-hourly device to be used, logging historical data as well,
which can be more accurate, but is only accessible every hour.

4.4.2 Sensibo Sky

The Sensibo Sky device is a small device that mimics the remote controls of heat
pumps. It also has a temperature and humidity sensor built in. In this way, it is
possible to control more or less any type of heat pump by using this same device,
which makes it ideal for a system that should work on as many types of heat
pumps as possible.

The Sensibo Sky device integration connects to this API and logs the available
data. However, this is also an API that allows for control, which means that the
target temperatures of the system can be set through code. This device requires
only an API key to start.
Database group(measurement name): heatPumpController
Available data from the sensibo-sky integration can be seen in Table 4.4.

4.4.3 Systemair VSR-500

The supervisor’s house had a ventilation system installed, and accompanied by this
system was a SAVE CONNECT cloud unit for accessing and controlling the system
from remote locations [60]. This cloud interface was then turned into a device
integration. It is useful for logging data from it, but it is also possible to control
the system through the same API. The node requires a username and password to
boot up.
Database group(measurement name): ventilationControl
Available data from the systemair-vsr500 integration can be found in Table 4.5.
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Table 4.4: Available data from the Sensibo Sky device.

Field Unit Explanation

fanLevel low/medium/high Speed of fans.
humidity % Relative humidity.

mode cool/heat/auto Mode of the heat pump.
on true/false If the heat pump is on or off.

targetTemperature °C Target temperature of the heat pump.
temperature °C Temperature seen in unit.

Table 4.5: Available data from the Systemair VSR500 device.

Field Unit Explanation

extractAirSpeed % Speed of extract air fan.
extractAirTemperature °C Temperature of extracted air.

humidity % Relative humidity.
outdoorTemperature °C Temperature outdoors.
supplyAirFanSpeed % Speed of supply air fan.

supplyAirTemperature °C Supply air temperature
temperatureSetpoint °C Temperature setpoint for inflow air.

4.4.4 Mill Sense

Mill Sense sensors are easily acquired sensors for indoor climate. They supply use-
ful data for better control of the indoor climate. The Mill Sense device nodes start
up and log all data from all Mill Sense devices in the home, as there can be mul-
tiple of these devices, and stores their data based on their location information.
The Mill Sense requires a username, password, API key and access key to boot up.
Database group(measurement name): airSensor
Available data from the mill-sense integration can be found in Table 4.6.

Table 4.6: Available data from the Mill Sense device.

Field Unit Explanation

humidity % Relative humidity.
tvoc ppb Total volatile organic compounds.

temperature °C Current temperature.
eco2 ppm CO2 in the air.

4.4.5 MET

For control of heat or power distribution systems, the weather could be an im-
portant metric. That is why the free MET API accessing forecasts for weather in
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Norway has been added as a device. By supplying coordinates, this device will
start logging forecasts for that area. No further API keys or credentials are needed
for this logger to boot up.
Database group(measurement name): weatherForecast
Available data from the met integration can be found in Table 4.7.

Table 4.7: Available data from MET.

Field Unit Explanation

cloudAreaFraction % Fraction of sky covered in clouds.
humidity % Forecasted relative humidity.

temperature °C Forecasted temperature.

4.4.6 Solcast

Solcast is an online API supplying solar forecasts based on location. This data can
be especially useful in future research projects involving solar panels and optimal
distribution of batteries and grid power. That is why this API has also been added
as its own device. The device connects to the API based on an API key and location,
and starts logging solar forecasts every 6 hours, to stay within the free quota of
requests per user.

To use this API the user has to create their own account, to get their API key.
Database group(measurement name): solarRadiation
Available data for the solcast integration can be found in Table 4.8. And more info
about their API, can be found in their documentation [61].

Table 4.8: Available data from Solcast.

Field Unit Explanation

azimuth ° Solar Azimuth Angle
zenith ° Solar Zenith Angle

diffuseHorizontalIrradiance W/m2 Diffuse Horizontal Irradiance.
directNormalIrradiance W/m2 Direct Normal Irradiance

globalHorizontalIrradiance W/m2 Global Horizontal Irradiance.
temperature °C Forecasted temperature.

4.4.7 Chainpro / Victron

Chainpro is a complete battery/solar system that includes solar panels, an in-
house battery, and distribution between these and the grid. This allows for the
system to offload the grid power when the prices are high and charge up the bat-
tery when the prices are low. This data is available through their vendor Victron,
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where users can log in through a user interface. However, all data is also avail-
able through their MQTT server, where write requests can also be sent to control
the system. This device integration, therefore, retrieves data through their MQTT
server.

To be able to use this interface, a username, password and a Victron Remote
Management (VRM) ID are required.
Database group(measurement name): solarBatterySystem
A lot of data can be retrieved from their MQTT server, but the ones that have
been chosen to be logged in the system by the victron integration can be found in
Table 4.9.

Table 4.9: Available data from Chainpro battery system.

Field Unit Explanation

batteryCharge % Battery percentage on the battery unit.
batteryPower W Produced/Consumed power from the battery.

gridPower W Consumed power from the grid.
powerConsumption W Gridpower minus batteryPower.

solarPower W Power produced by solar panels.

4.4.8 Verisure Smoke Detectors

Verisure has several kinds of devices ranging from door locks, alarm systems
and smoke detectors. The smoke detectors are of special interest as they also
include temperature and humidity measurements. Since a lot of houses already
have devices like this installed, it opens up the possibility of having temperature
sensors in every room without having to buy special temperature sensors like the
Mill Sense. This would allow even more houses to be susceptible to this system.

There is no currently Open API for Verisure, but they are saying that they
are considering it. In the meantime, they are allowing third-party solutions that
mimic normal user logins. All data can therefore be retrieved through code. This
has been implemented to retrieve the climate data from the smoke sensors. The
device requires a username and password to start.
Database group(measurement name): airSensor
Available data from the verisure-smoke-detector integration can be seen in Table 4.10.

Table 4.10: Available data from the Verisure smoke detectors.

Field Unit Explanation

humidity % Relative humidity.
temperature °C Temperature seen in unit.





Chapter 5

Use Case - Closing the feedback
loop

This chapter introduces a use case for the system by closing the feedback loop
between temperature retrieval and inputs to a set of heat pumps. It first describes
the system’s configuration in Section 5.1. Thereafter the theory and the actually
implemented control can be found in Section 5.2. Lastly, how the actual control
was run can be found in Section 5.3. For the results from this use case, head to
Section 7.4.1.

5.1 System Configuration

This section illustrates the system’s capacity to administer control and complete
a feedback loop, demonstrated through real-world application in the supervisor’s
residence during the final stages of this thesis’ composition. The server accom-
plished this by utilizing data gathered from the system’s operations. As a part of
the proof-of-concept, the control was initiated in a standalone Docker container
on the server, although it can also be activated within the Kubernetes cluster. To
automate this process and enable control via the backend API, some level of in-
tegration is required.

The supervisor of this thesis resides in the smart-home test house at the DEC,
which is fitted with four heat pumps. All these pumps are cloud-enabled via Sensibo
Sky units. These units log temperature data and act as actuators, relaying refer-
ence temperatures to the heat pumps. The heat pumps, colloquially known as
main, studio, living, and livingdown, will be adhering to a pre-set heating sched-
ule.

To incorporate spot market prices into this setup, the Nordpool API, in con-
junction with a Python API wrapper [62], was used to access spot market prices
from Trondheim, where the house is located. This information is then incorpor-
ated into the subsequent control algorithm.
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5.2 Theory and Implemented Control

A straightforward control algorithm was employed for the system. The current
temperature measurements of the rooms in the house and the spot market were
utilized for control purposes. The code calculates a reference temperature for the
system based on a predetermined schedule and adjusts this temperature according
to the spot market. The mean price for the next few hours is determined using the
hourly spot market, with a higher weight given to prices closer in time as they are
more likely to be accurate and may require rapid adaptation. The calculation is
based on a geometric mean and can be found in Equation (5.1).

DiscountedMeanPrice=

∑n−1
k=1 1.25(Pricek +NettleieTarrifk) · γk−1

∑n−1
k=1 γ

k−1
(5.1)

In Equation (5.1), NettleieTariff represents the tariff from the electricity provider,
which typically varies between day and night and, thus, influences the price. The
variable k represents the timesteps into the future, and Price denotes the spot
price at hour k. γ is a tunable parameter that determines the value attributed to
prices further into the future. This discount is then adjusted according to another
parameter, Kprice, which serves as a gain factor for the influence of the Discoun-
tedMeanPrice on the final offset, as depicted in Equation (5.2).

DeltaPrice= −Kprice ·DiscountedMeanPrice (5.2)

The DeltaPrice is subsequently utilized in a PI controller to establish a desired
temperature setpoint for the heat pumps. The DeltaPrice is added to the user-
defined temperature reference. Due to the system’s slow dynamics, as a lot of
heat is stored inside the house, the integral value is essential and accounts for the
system’s extended heat dynamics.

This proof of concept demonstrates that the newly created system can be oper-
ational, suggesting adaptability to multiple houses. Additionally, it highlights how
a simple control algorithm utilizing such data can, in some cases, potentially en-
hance the system’s control without the need for more complex approaches, such
as MPC.

The complete Proportional-Integral (PI) control loop implementation can be
seen in Equation (5.3), with the parameters described below. The actual paramet-
ers used in the test are provided in Table 7.4.

• e(t) is the error at time t.
• Tmeasurement(t) is the temperature measurement at time t.
• Treference(t) is the temperature reference point at time t.
• Iupdated(t) is the updated integrator value at time t.
• Son(t) is the pump state at time t (1 if "on", 0 if "off").
• α is the integral scaling factor.
• Kp is the proportional gain.
• Ki is the integral gain.
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e(t) = Tmeasurement(t)− Treference(t) (5.3a)

Iupdated(t) = I(t − 1) + Son(t)(1+α)e(t)−αe(t − 1) (5.3b)

u(t) = Treference(t)− Ki Iupdated(t)− Kpe(t) (5.3c)

5.3 Continuous Control Operation

The control script is launched using Docker Compose on the server with a con-
figuration set to always restart in case of errors. To avoid running control on out-
dated values, the script only sends new signals to the heat pumps if there are up-
dated measurements stored in the database. Consequently, the control operates
autonomously alongside the rest of the system.

An endpoint was created in the Django backend to enable user control over
temperature and fan settings. The structure of this data can be seen in Figure 4.3.
This endpoint allows users to adjust the desired temperature and fan settings
separately for weekdays and weekends. It also allows the adjustment of the para-
meters found in Table 7.4. This feature was implemented so the supervisor could
manually modify settings while the control was running. An example of this func-
tionality, accessed through the Django admin menu, can be seen in Figure 5.1. At
each timestep, which was set to every 5 minutes, the control algorithm retrieves
these user-defined settings and updates the temperature accordingly. The final
result of this in action can be seen in Figure 7.4.

Figure 5.1: A look at how the heat-pump settings admin panel looks.





Chapter 6

Using, Managing and Developing
the system: A Comprehensive
Guide

In this section, you will find a thorough guide covering all aspects of the system. It
begins with an introduction on how to use the system that is already running, fol-
lowed by instructions on how to develop for it and how to set everything up from
scratch. While the guide may seem lengthy, it is designed to be comprehensive
rather than complicated. However, with everything like this it will be impossible
to cover every minor detail, and thus it may require some additional research
when delving deeper into some parts of the system. Instead of reading the entire
chapter, skip to the section of interest. The following sections are included:

• Section 6.1: An intro guide to this guide.
• Section 6.2: An overview of the repository.
• Section 6.3: Shows how to access/modify and use the time series database

directly.
• Section 6.4: Shows how to navigate and use/test the Django backend API.
• Section 6.5: Shows how to connect to the server for developer changes/-

monitoring.
• Section 6.6: Shows how to check the status of running containers, secret

management, and overall system changes.
• Section 6.7: Outlines the use of the development repository.
• Section 6.8: Details everything regarding device integrations.
• Section 6.9: Details developing the Django backend.
• Section 6.10: Introduces how to set up the production server from scratch.
• Section 6.11: Shows how to build docker containers.
• Section 6.12: Has some info about some issues that may arise and fixes for

them.
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6.1 A guide to the guide

For a lot of commands, the actual values have been replaced by <USERNAME-
HERE> like values, to indicate that you should exchange that part with your own
data. An example of how to do this would be to exchange the following:

$ ssh <USERNAME>@<PUBLIC-IP-HOST-MACHINE>

With a username: admin and an IP: 192.168.0.1, the result would be:

$ ssh admin@192.168.0.1

It’s crucial to point out that in the terminal examples, new lines start with $.
Please refer to Section 6.10.2, particularly if you’re executing commands on

the server, because we’ve replaced microk8s with an alias to make the commands
more general.

This guide is standalone, but it’s beneficial to have some basic knowledge of
Docker [37] and Kubernetes [63] to fully leverage it. If these technologies are new
to you, consider doing some preliminary reading. At the very least, check out the
theoretical background provided in Section 2.2.

6.2 Overview of the Repository Structure

The repository for all of the software created in this thesis can be found at https:
//github.com/thomabsk/powiot-smart-home. It is however private, and you would
have to contact the group for access. The structure of the entire repository can be
found in the tree below.

It consists of four folders. The backend holds the code for the Django backend.
k8s holds the yaml files for booting up the various Kubernetes deployments. src
has the source code for the different device integrations, and new ones are also
added here in their own folders. processing holds the code for the control use case
laid out in Chapter 5, as well as some testing regarding analytics, where it queries
the house data and tries to correlate the outside temperatures with heating and
draws some interesting analytics about this.

https://github.com/thomabsk/powiot-smart-home
https://github.com/thomabsk/powiot-smart-home
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powiot-smart-home/
backend/

backend/
accounts/
devices/
powiot/
.env.example
.env.prod.example
manage.py
.../

k8s/
devices/
django/
logging/
mqtt/
postgres/
cloudflare-tunnel.yaml

src/
device-template/
datalogger/
mill-sense/
.../

processing/
Analytics/
temperature-control/
BasicDR/
casadi-test/

skaffold.yaml
docker-compose-django-database.yaml
docker-compose-device-logging.yaml
docker-compose-casadi.yaml
README.md
.env.example

6.3 Interacting with the InfluxDB Database

6.3.1 Using the User interface

The web user interface must be made available through port forwarding or some
kind of proxy. If done, you can access the web interface. It is naturally forwar-
ded to localhost:8086, but to make it accessible from anywhere the above has to
be true. During this project, it was made available through a custom domain at
https://influx.powiot.no. To log in you need a user account, a username and
a password. For admin credentials contact the team.

https://influx.powiot.no
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Through the web interface, you can access data by querying it, see all current
tokens and create new ones, and also add new plugins. It is not currently pos-
sible to delete data or create users through the web interface. To do this head to
Section 6.3.2.

Accessing data

Follow the instruction seen in Figure 6.1 to query and visualize the data in the
browser. Queries can be filtered in any order, and the time range can be chosen
as you want. To display the data you have to choose an aggregate function. This
just entails where to place data points on the time axis.

Figure 6.1: 1. Click to head to the data tab. 2. Choose a bucket. 3 and 4. filter
the data. 5. Choose a time range. 6. Submit the query.

Creating tokens

To create a new token head to the API tokens tab as seen in Figure 6.2. Here an
admin token can be made, or a token with reduced permissions. Always make
the token with the least permissions needed to do the task, this makes it harder
to accidentally delete or change data. Tokens can be deleted when they are no
longer needed from this same interface.
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Figure 6.2: Where to find the InfluxDB token tab.

6.3.2 Utilizing the Command line interface

The database can be interfaced through a command line interface. To do this first
install it using the latest instructions found in the InfluxDB documentation [64].
Then create your influx config, it requires a custom name for it, the web address
for the database, a token with privileges needed for the action you are going to
do, and the organization name within the database, in that order in the example
below.

$ influx config create \
-n powiot-config \
-u https://influx.powiot.no \
-t <TOKEN-HERE> \
-o powiot

Then set the config as active.

$ influx config set -n powiot-config --active

Ping it to see if it is working.

$ influx ping

If the result of the ping is: OK, then you can move on.

Creating users

To create a new user to access the database directly, do the following.
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$ influx user create -n <USERNAME> -p <PASSWORD> -o <ORGANIZATION_NAME>

But also notice that if someone should just have read access, for example, gener-
ating tokens for this is better and can be done through the user interface as found
in Section 6.3.1.

Retrieving data

Data retrieval can be done using the web interface and downloading CSV files from
there, or through the REST API, with example Python code found in Section 6.3.3.

Backing up data

To backup all the data in the database to your current folder, open a terminal in
the folder you want the backup to be made in, and then run:

$ influx backup .

A complete database backup will then be written to the current folder.

Deleting data

CAREFUL: By using this, data will be removed forever, with no way of restoring
without a backup. Therefore do the steps in Section 6.3.2 first so that the data is
backed up in case of errors. An admin token with all privileges is also needed to
perform this action.

To delete data from the bucket, a start time, end time and filters have to be
specified. The filters are specified through the predicate as a string. In the below
example airSensor measurements with the tags house_id = 3 and location="Stue,
sentrum" will be deleted. Notice that there are strings within the strings.

$ influx delete --bucket HouseData \
--start 2023-02-13T16:50:00Z \
--stop 2023-03-03T00:00:00Z \
--predicate '_measurement="airSensor" \
AND house_id="3" AND location="Stue, sentrum"'

6.3.3 Accessing through Python code

Access can also naturally be made remotely or locally through Python code using
the Python client for InfluxDB. The URL of the InfluxDB database will be influxdb-
service:8086 within the Kubernetes cluster. This can also be found by issuing

$ kubectl get service

And the influxdb-service will be one of the ones running. The URL of the InfluxDB
database remotely is https://influx.powiot.no.

https://influx.powiot.no
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Simple example

import influxdb_client

house_id = "3" # The ID of the house for which the data is being queried
bucket = "HouseData" # The bucket in which the data is stored in the database
org = "powiot" # The organization that manages the bucket
token = "TOKEN-HERE" # The API token used for authentication
url = "https://influx.powiot.no" # The URL where the database is hosted
measurement = "airSensor" # Database grouping
field = "temperature" # Field to query

client = influxdb_client.InfluxDBClient(
url=url,
token=token,
org=org,

) # Creating an InfluxDB client

# Creating a Flux query. The query fetches data from the specified bucket,
# filters records based on the measurement, field and house_id values and finally
# gets the data from the last 20 minutes.
query = f"""
from(bucket:\"{bucket}\")
|> range(start: -20m)
|> filter(fn:(r) => r._measurement == \"{measurement}\")
|> filter(fn:(r) => r._field == \"{field}\")
|> filter(fn:(r) => r.house_id == \"{house_id}\")
"""
print(f"Query:\n{query}")

query_api = client.query_api()
result = query_api.query(org=org, query=query) # Querying the database

# Convert result into a dictionary
results = {}
results[measurement] = {}
for table in result:

for record in table.records:
location = record.values["location"] #The field that groups the data
if location not in results[measurement]:

# Initializing the dictionary for each location
results[measurement][location] = {}
results[measurement][location]["field"] = record.get_field()
results[measurement][location]["time"] = []
results[measurement][location]["value"] = []

# Appending each record's time and value to the respective lists
results[measurement][location]["time"].append(record.get_time())
results[measurement][location]["value"].append(record.get_value())

print(results)

Code listing 6.1: Simple Python example for accessing the InfluxDB data. Note
that the token has to be added for the example to work.

A simple example of Python access can be seen in Code listing 6.1. Make sure to
change the token to one that has the right access. For an overview of the different
measurements and their fields, go to Section 4.4. Notice, however that only houses
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with these devices enabled will have the corresponding data. The current houses
and their devices can be seen in Table 7.3. The flux query which can be found in
the query variable is the flux query sent to the database. Flux queries can do a
lot, and for more information about them, visit the influxDB flux documentation
[65].

This Python code uses the InfluxDBClient from the influxdb_client package to
connect to an InfluxDB database and query it for specific data. The code is written
to be specific to an airSensor’s temperature measurements in a particular house
over the past 20 minutes.

The script queries the database for data from a specific measurement (repres-
enting a set of data) and field (a particular aspect of the data) for a specific house.
The query is written in InfluxDB’s Flux query language.

The resulting data is then converted into a dictionary for easier handling in
Python. The dictionary is structured such that each location’s temperature meas-
urement (recorded by the airSensor) is stored along with the respective times of
measurement.

Longer example of access

A more detailed example of accessing and querying which parameters are in the
database can be found in Appendix A. This is a complete example, showing how
to filter data, showing the structure of the data, and also how to turn the data
structure into a Python dictionary. Notice that the API_KEY/TOKEN has to be set
manually at the top of the file.

6.4 Using the Backend REST API

Since the backend is based on the Django REST framework it comes with a browsable
API by default. This means that the available API endpoints are also browsable
with a web browser, and not just by issuing requests directly. Another student is
currently working on the frontend for the system, which will allow users to ac-
cess this backend through that instead. This section, however, outlines a couple
of other ways of accessing it directly, since the frontend will just be a wrapper
around this backend.

6.4.1 Using the browsable API

Every endpoint found in the backend can also be visited through the browser. By
going to the URL in the browser, a page will pop up where the user can simulate
sending requests. Figure 6.3 is an example of what this looks like. It is also possible
to insert data and post requests through this site. For a list of all endpoints, look
in Section 6.4.3.
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Figure 6.3: An example of the browsable API, here looking at the https://
powiot.no/api/auth/login endpoint.

6.4.2 Python example access

Below is a simple example of logging into the Django backend using the requests
library in Python and then accessing one of the endpoints. Here to find details
about the house of the logged-in user. To run the code, the requests library has to
be installed.

import requests

# Set the login URL and user credentials
login_url = "https://powiot.no/api/auth/login/"
username = "<USERNAME-HERE>"
password = "<PASSWORD-HERE>"

# Create a session object and make a POST request to the login URL
session = requests.session()
login_data = {"username": username, "password": password}
session.post(login_url, data=login_data)

# Make a GET request to the protected resource
protected_resource_url = "https://powiot.no/api/houses/"
response = session.get(protected_resource_url)

# Turn the received response into a Python dictionary.
data = response.json()

# Print the response content
print(data)

https://powiot.no/api/auth/login
https://powiot.no/api/auth/login
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To install the requests library run the following code.

$ pip install requests

6.4.3 API documentation

Complete swagger documentation can be found on the website by going to https:
//powiot.no/api/docs. However, complete endpoint documentation is also avail-
able in Appendix B.

6.5 Connecting to the server

6.5.1 Accessing the server

To access a remote Linux server/workstation of any kind the most typical choice
is Secure Shell (SSH). SSH creates a secure tunnel to the host machine, allow-
ing a remote computer to open a terminal on the host machine. For this to be
possible the remote user has to have credentials; a username and a password for
the machine, as well as its public IP address. However, it also needs to have its
port opened for SSH access. This port is normally port 22. For the supercomputer,
this machine is available while connected to NTNU, or using a VPN to connect
to NTNU. The IP for this particular machine can be retrieved by contacting the
responsible people for the project.
To then connect to the machine issue the following command from a terminal.

$ ssh <USERNAME>@<PUBLIC-IP-HOST-MACHINE>

You will then be prompted to enter the password, and you will gain terminal access
to the machine. If you’re not a sudo user, contact the people responsible for the
machine to get this access.

6.5.2 Set up user

For the user setup on the server, sudo access might not be needed depending on
what you must do. The necessary packages should also already be installed and
commands should just be able to be issued right away. To test this, try to run the
following commmand.

$ microk8s kubectl get pods

You may get an error that you have insufficient permissions to access Microk8s.
You will then either need sudo or you would need to be added to the Microk8s
user group. An error with possible fixes will pop up. The most practical one is
listed below.

$ sudo usermod -a -G microk8s <YOUR-USERNAME>

https://powiot.no/api/docs
https://powiot.no/api/docs
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6.6 Kubernetes management

IMPORTANT: Before proceeding with any actions in this section, ensure that you
have followed the steps in Section 6.5.1 to connect to the server and then Sec-
tion 6.10.2 to enable direct usage of kubectl commands without the need to
prefix them with microk8s every time. This section can be used for testing pur-
poses, troubleshooting issues, or manually managing pods. Normally, pod startups
and shutdowns are controlled by the backend API, but these commands allow for
manual overrides.

6.6.1 Monitoring running pods

To check on already running pods, there are a few useful commands. To list all
pods currently running in the system under the default namespace run the follow-
ing command.

$ kubectl get pods

An example of the above command can be seen in Figure 6.4. The format of
the pod names is the following: <HOUSE-ID>-<DEVICE-NAME>-<COUNT>-
<RANDOM-HASH>. The count is the number of similar devices running under
the same house, and the hash is automatically created by Kubernetes when a new
pod boots up.

Figure 6.4: Example of the output from the "kubectl get pods" command.
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To get everything under all namespaces run the following command.

$ kubectl get pods --all-namespaces

All device pods in the system are also labelled based on their house ID, device
name and count. This can also be used to only list pods from a certain house for
example. A few examples of ways to use this has been shown below. First showing
all pods with house_id = 3 then with house_id = 3 and device_name = met and
lastly only devices with the device_name = met.

$ kubectl get pods -l house_id=3
$ kubectl get pods -l house_id=3,device_name=met
$ kubectl get pods -l device_name=met

All device nodes are booted up as their own Kubernetes deployments since
pods are orchestrated by their deployment. These deployments can be started,
stopped and restarted manually, or by using the backend. This API allows for the
starting of specific containers, and also the stopping of specific containers. How-
ever, it also allows for stopping of all containers linked to one house, or all con-
tainers of one specific device_name. This is done through the use of labelling of the
pods and deployments. All the deployments are labelled both with device_name
and house_id. To get deployments by label name, see the example below. -l is the
label parameter.

$ kubectl get deployments -l <LABEL_NAME>=<LABEL>
# Examples
$ kubectl get deployments -l device_name=tibber-realtime
$ kubectl get deployments -l house_id=3

6.6.2 Procedure for Deleting pods

Since pods are orchestrated by their deployments, to delete them, the deployment
responsible for them has to be stopped. This can also be run with the same label
tags as shown previously. To delete a deployment run

$ kubectl delete deployment <DEPLOYMENT-NAME>

Where the deployment name is the name that is gotten from the list when issuing
get deployments. Every device deployment also has a secret that accompanies it,
this also has to be deleted manually if using this method. To get all secrets

$ kubectl get secrets

Then in the same manner run the following command to delete the accompanying
secret.

$ kubectl delete secret <SECRET-NAME>
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6.6.3 Reviewing Pod Logs

If you then want to check the logs for a running device, let’s say you want to check
the SystemAir device logs for house 3 from the results in Figure 6.4, you would
use the following command. Where the pod name will be different for your case.

$ kubectl logs 3-systemair-vsr500-0-798f6f7ff-htjll

Here all information that is printed/logged from the device integration will show
up. This can be useful for debugging pods that are not logging correctly or are
crashing. Another useful command, especially if things are crashing unexpectedly
is the following:

$ kubectl logs 3-systemair-vsr500-0-798f6f7ff-htjll --previous

Adding the previous tag will show the logs of the pod that was before the current
one, therefore showing the error output before it crashed.

6.7 How to use the development repository

The development repository for the system encompasses everything required to
launch the complete system in a production setting, while also including several
beneficial features for local development. Consequently, the manner and extent
of its utilization will depend on your specific use case. For conducting device in-
tegrations, only Docker needs to be installed. However, if backend work and in-
tegration testing against the Kubernetes cluster is necessary, additional tools will
be required for a comprehensive setup. A list of all the tools required for a full
installation can be found in Section 6.7.1.

6.7.1 Setting up a development environment

For reference, development has only so far been done on an M1 Mac. Instructions
will be similar for a Linux distribution, but Windows development will vary, and
a development environment on Windows has not been tested but should be quite
similar.

In this section, there will be details about how to get one type of development
setup up and running, where the main infrastructure as well as more device nodes
can be booted up, and then taken down again after development is finished. This is
useful both for testing existing components as well as for integrating new devices
into the system before actually deploying them to the server. If things work here,
they will work on the server as well. It is not necessarily needed to integrate new
devices into the system but will make debugging a lot easier if things do not end
up working at first.

Docker Desktop is the main part of the development infrastructure. It can host
Kubernetes clusters and it is also used to build new Docker containers for use in
the system. It can be installed from the Docker Desktop installation site [66].
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To simulate a Kubernetes environment there are several different utilities. For
this installation, Kind was chosen [67], a lightweight Kubernetes cluster which
allows for quick development and setup. Alternatives such as Minikube can also
be considered and there are guides on how to set this up on the Kubernetes wiki
[68]. There is a bit of freedom here, and as long as some type of Kubernetes cluster
is running, there will not be that much difference.
Install on macOS via homebrew

$ brew install kind

Install on Windows using chocolatey package manager

$ choco install kind

Then, to start up the kind cluster, run the following command

$ kind create cluster

If you want to remove it later, then run the following

$ kind delete cluster

After this is installed, the cluster should be running on your computer, and you
should then only have to install Kubectl to access the cluster. To install Kubectl,
find instructions on their website [69]. To install Skaffold, find instructions for
your OS on their website [70].

Now all needed tools should be installed, for more info about developing for
the system, head to Section 6.8.2 for creating integrations or Section 6.9 for de-
veloping the Django backend.

6.8 Device Integrations

6.8.1 Starting new devices

New devices are started through the backend API. It takes care of creating secrets
for the devices, which hold the credentials needed to boot up the devices when
they log into their respective accounts through their APIs. It also starts the devices
themselves. They can be manually booted up using Kubernetes deployment files
like in Section 6.10.4, however since credentials have to be input into the devices,
this is automated through the backend POWIOT library which can be found in:

/
backend/

powiot/
To start new devices for a house you either have to be logged in as the ad-

min user or the user who owns that specific house. Currently, only one user can
own a house. The admin account can boot up a device for any house. To login
visit the login endpoint at https://powiot.no/api/auth/login/. After you are
logged in, the username will be visible in the top right corner of the browsable
API. Now a new device can be added by going to a URL that looks like this

https://powiot.no/api/auth/login/
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https://powiot.no/api/houses/<HOUSE_ID>/devices/<DEVICE_ID>/new, with
house_id and device_id being the respective values of the house and device to be
added to that house. An example post request is shown below, here for starting
an instance of a Tibber Pulse real-time logger:

{
"api-key": "erwkk32j231joprekewr",
"pulse_index": "0"

}

The API-key is the one retrieved from Tibber(here randomly generated), and
the pulse_index count starts at 0 and increments depending on how many pulse
devices are in the house. However, the fields should represent the required fields
found on that device. An error with what field is missing will be returned if
not all the fields were given. With a successful ok message from the post re-
quest, a new device will have been booted up and it should be visible under
https://powiot.no/api/houses/<HOUSE_ID>/devices/. Here the pod_state will
represent the state of the pod. A refresh of the site will also refresh the state. If
you are on the server you can check on the pod using commands found in Sec-
tion 6.6.1.

More actions are available for the device integrations, so head to Appendix B
to find out the endpoints used for restarting, updating or deleting running devices.
These operate in the same manner as this one.

6.8.2 Creating new device integrations

This section will walk you through the process of creating and adding a new device
to the system.

First, ensure you have cloned the development repository and have all ne-
cessary components installed as detailed in Section 6.7.1. In addition to this, a
Docker Hub account is also needed for pushing the built images to it. For local
development, Docker is the key tool needed.

To facilitate testing, docker-compose-device-logging.yaml, a Docker Com-
pose file has been prepared. This file will help set up a MQTT broker, an InfluxDB
database, and a Datalogger node, and even includes an example of how to start
your custom integration. Essentially, it creates a small instance of the entire system
locally. Any logging that happens here will also work in the production environ-
ment.

Along with the compose file, you will need a .env file which contains environ-
ment variables. These variables include credentials used to boot up the InfluxDB
database as well as the individual device logging credentials. These environment
variables are put into the Docker containers through the Docker Compose yaml
script. Use the provided .env.example file as a template, copy it and rename it as
.env in the same directory as the Docker Compose file.

https://powiot.no/api/houses/<HOUSE_ID>/devices/<DEVICE_ID>/new
https://powiot.no/api/houses/<HOUSE_ID>/devices/
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Here’s a step-by-step guide on how to create a new integration:

1. Write code that communicates with the device API.
2. Integrate this code into the given template.
3. Test if the device logs correctly in your local environment.
4. Upload the container to Docker Hub.
5. Use the admin panel to add the device to the backend.
6. Initiate the device for a house to test it in the production environment.

A sample device integration is available in the path:
/
src/

device-template/
This sample is in Python, but you can use any language that has a MQTT

interface library. The testing process remains the same.
To test the existing integration, use the following command:

$ docker compose -f docker-compose-device-logging.yml up --build

This command builds necessary containers and initiates a testing environment.
After a while, you should see an output like the one shown in Figure 6.5. At the
end of this process, you should see the device template sending data and the
datalogger logging it. Important: Ensure that the .env.example file is renamed
to .env for Docker Compose to pick up the environment variables.

Figure 6.5: Terminal output of docker-compose-device-logging.yaml.
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Now, you should be able to access the InfluxDB dashboard at localhost:8086.
The default login details are admin (username) and password (password) unless
you have changed them in the .env file. After logging into the dashboard, navig-
ate to the data section to see if the device is logging heatPumpController measure-
ments correctly.

Now, you have a functioning device that needs to be modified according to
the new device requirements. The environment variables that are automatically
inserted are the house ID and the sampling time. The house ID represents the ID of
the house in the database. This ID has to be put as a tag on the data measurements,
so that they are labelled correctly. The sampling time is a time in seconds, which
tells the device how often it should query for more measurements. Check with the
vendor API whether they have limits to how often you are allowed to access it.

This is where your new logic comes in. It is recommended to start creating a
script for gathering data barebones first, and when this works, integrate it into
this template.

The Datalogger will capture any message sent over the "sensors/#" topic. The
name after "sensors/" is merely for logging purposes to help identify the origin of
the message.

After implementing the new device retrieval logic and confirming that the
device logs correctly, you can upload it to Docker Hub so that the server can pull
the built image. A Docker Hub account is needed for this step. For more informa-
tion about building and pushing Docker containers head to Section 6.11.

Figure 6.6: An overview of the admin panel, and where to add new devices.

localhost:8086
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Once the Docker image for a new device is prepared and uploaded, you can
add it to the backend. Navigate to the admin panel at https://powiot.no/admin,
and click on ’New Device’ as shown in Figure 6.6. An example of data input can
be found in Figure 6.7. If more than one field is required, separate them with a
comma. Make sure that the Docker Hub image ID matches the one you uploaded.
Now this device added in the backend will have enough information about the
integration to boot it up. When started, the required fields will be input as envir-
onment variables into the container, and the Docker image will be pulled to start
it.

Figure 6.7: An example input of how to fill out the new device form, required
fields are comma-separated if more than one. The name should be all lowercase
and represent the device/sensor. The sampling time is represented in seconds.
Allow multiple allows multiple of this type of device to be booted per house, this
is often not necessary as one integration will retrieve all the data from various
sensors in one house.

To view the test user house, visit https://powiot.no/api/houses/2/. Then
find the ID of your newly created device. A list of all devices can be found at
https://powiot.no/api/devices/. If your new device has the ID 8, add it to the
house by navigating to https://powiot.no/api/houses/2/devices/8/new.

In the raw form section, input your data matching the required fields in the
database. These values will be used within the respective device Docker container
that boots up. JSON is quite strict about its formatting, so ensure that indentations
are 4 spaces. Here is an example of this:

https://powiot.no/admin
https://powiot.no/api/houses/2/
https://powiot.no/api/devices/
https://powiot.no/api/houses/2/devices/8/new
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{
"username": "username-here",
"password": "password-here"

}

NOTICE: The username and password in this example is the username and pass-
word credentials used in the device integration to for example log into the Mill
API if it is the Mill integration. An example of what this looks like on the website
can be seen in Figure 6.8. After issuing a post command the device should boot
up.

After this is done the device should be logging and it might be useful to check
the logs for it to ensure it is working, for info about this visit Section 6.6.3.

Figure 6.8: Form data input example for starting new devices.

6.8.3 Change existing integrations

Changing existing integrations is done in a quite similar way to what is found in
Section 6.8.2. Locate the existing code for the integration under:

/
src/

<DEVICE-NAME>/
After that create/change the .env file and docker compose file to boot up this

device instead. Credentials are needed for testing to see if it works. Some reading
up on Docker Compose files might be necessary. However, examples are already
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available in the docker-compose-device-logging.yaml file, and just change the
generic device to the one you are currently working on, remember to change the
build folder to the correct one in this yaml file. Now testing can be done locally
and the rest is the same as in creating a new device from scratch in Section 6.8.2.
The Datalogger node can also be changed here in this same manner if changes are
needed to it.

6.9 Working on the backend

The backend is a bit more intricate to develop for, as it relies on a lot of moving
parts. Depending on the feature you are working on, you can boot it up in a few
different ways. The backend directory is found under:

/
backend/
The backend communicates with the Kubernetes cluster for info about the

various devices in it, to boot up and delete existing pods based on the devices
registered in the database. It also talks to the InfluxDB database to retrieve users’
requested data. To fully test the backend then, the entire cluster needs to be sim-
ulated, and this is done through the Skaffold framework using the kind cluster
in this example. This is done to more easily boot up temporary clusters that are
only important for development purposes. However, to make it easier and faster
to develop, locally the backend is usually just run outside the cluster, and there
is automatic switching inside the backend that switches how it operates based on
an env variable, called DJANGO_IN_KUBERNETES. When this is set to 1, it will
retrieve the appropriate Kube config, and vice versa when it is set to 0. This Kube
config contains information about how to talk to the Kubernetes cluster, and this
is different depending on whether it runs within the Kubernetes cluster or outside
of it. The example .env file is found at:

/
backend/

.env.prod.example/
For local development, debug should be switched to 1. The InfluxDB access

token has to be added. Currently, to ease development, the backend always talks to
the production InfluxDB database remotely. In this way, an InfluxDB access token
has to be added to the .env file and exchange the <ACCESS-TOKEN-HERE> with
a new token from InfluxDB or one that has already been made. After this, you are
ready for local development. All of this is done to make it quicker to develop, as
there is no need to load the Django backend into a Kubernetes cluster every time a
change is made. It also decouples the backend and the time series database more.
An overview of how this works can be seen in Figure 6.9. The backend will be run
directly through Python, this will allow it to auto-update when code is changed,
and there is no need to build a new Docker container after every change. The
database for the backend, PostgreSQL, is hosted within a Docker Compose file
and its port is exposed at 5432, allowing the backend to access it as if they were
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running in the same network. Skaffold boots up the rest of the infrastructure,
the local InfluxDB instance, the Datalogger, the MQTT network and various local
devices can also be booted up here through the backend, as it connects using the
Kubernetes API. For endpoints that request data from the InfluxDB database, it is
easier to talk to the production server directly instead of the local one, as it really
doesn’t matter for development purposes, as it is only retrieving data from there.

Figure 6.9: Backend development communication overview.

The backend file structure is based on Django modules. Currently, there are the
accounts and devices modules, and they have their respective folders within the
backend folder. Here the API routes are declared under the urls.py, and the func-
tions connected to these routes are defined in the views.py. The data structures
are defined in models.py and serializers for these models are in serializers.py.

Other than this the library connecting to the rest of the Kubernetes system is
defined under the POWIOT folder. It contains various functions used in talking to
the Kubernetes cluster, like booting up new deployments, restarting, getting info
and so on.
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6.9.1 Starting development

Step-by-step guide for launching everything below.

1. Run the Postgres database

$ docker compose -f docker-compose-django-database.yaml

2. Create the virtual environment for the backend if not done already

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

3. Running Django for the first time, or after making database-specific changes
run the following to connect and migrate the Postgres database.

$ python manage.py makemigrations
$ python manage.py migrate

4. Then run the backend server

$ python manage.py runserver

5. Access to the backend is now available at localhost:8000
6. Boot up Skaffold Kubernetes infrastructure if that is needed for develop-

ment. For instance, if testing booting devices and communicating with the
Kubernetes cluster.

$ skaffold dev

6.9.2 Pushing changes to production

This is a step-by-step guide to pushing these changes into the production server.

1. Create spectacular documentation used by Swagger.

$ python manage.py spectacular --file schema.yml

2. Build and push the container to docker hub, for information about this see
Section 6.11. The current name for the backend container is django-k8s-
backend

3. Now access the server as seen in Section 6.5.1.
4. If there were changes made to environment files, the secret attached to the

backend needs to be updated, otherwise ignore this step. This step also as-
sumes that there has been made a .env.prod file if this is not done look at
the example .env.prod.example in the same directory.

$ kubectl delete secret django-secret
$ kubectl create secret generic django-secret \
--from-env-file=backend/.env.prod

5. Update the launch file for the Django deployment. Open the current file in
a text editor of your choice on the server, here vim.

localhost:8000


Chapter 6: Using, Managing and Developing the system: A Comprehensive Guide 65

$ vim k8s/django/deployment.yaml

Then change the image of the deployment on the line seen in Figure 6.10.
Here it is version 2.0. If the image is now hosted on a different Docker Hub
account, thomasborge also has to be changed to the appropriate Docker Hub
account name.

6. Roll out the changes
$ kubectl apply -f k8s/django/deployment.yaml

7. Wait for changes to finish.
$ kubectl rollout status k8s/django/deployment.yaml

8. Migrate the database in case of changes to data structures. The following
executes the migrate shell script within the newly created Django container.

$ export SINGLE_POD_NAME=$(kubectl get pod -l \
app=django-k8s-prod -o jsonpath="{.items[0].metadata.name}")
$ kubectl exec -it $SINGLE_POD_NAME -- bash /app/migrate.sh

9. The new backend should now be running on https://powiot.no.

Figure 6.10: Updating deployment file when updating Django backend

6.10 Initial set up of a Production Server

This section outlines the process of establishing a production server from scratch,
a procedure designed for a fresh start or a complete overhaul when no operational

https://powiot.no
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systems are currently in place.
This guide is tailored for servers running on Ubuntu 22.04.1 LTS [71], but

it’s likely adaptable to other Ubuntu distributions as well. The setup process is
extensive due to multiple interconnected components, but once set up, the system
is designed for longevity and isn’t intended for frequent replication.

During the setup of our team’s supercomputer, the aim was minimal disturb-
ance to the existing system. The permanent operation of the server on this ma-
chine isn’t ideal due to shared user access, but for the purposes of this thesis, the
available hardware necessitated this approach. Consequently, we opted for Mi-
crok8s [72], a choice driven by its contained nature and less demanding setup
requirements compared to a standard Kubernetes installation. This choice may be
re-evaluated if the server setup is migrated to a different machine in the future.

It’s important to note that all commands, with the exception of the Microk8s
installation section, are presented without the microk8s prefix to ensure their uni-
versal applicability. If you are using Microk8s on the host machine and this guide
issues kubectl commands, they should be preceded by microk8s. To avoid having
to do this, refer to Section 6.10.2 for creating an alias.

6.10.1 Microk8s installation

Run the following command to install the snap package manager if not already
installed:

$ sudo apt update
$ sudo apt install snapd

Then install Microk8s:

$ sudo snap install microk8s --classic

Configure the firewall to allow pod-to-pod Kubernetes communication:

$ sudo ufw allow in on cni0 && sudo ufw allow out on cni0
$ sudo ufw default allow routed

To be able to use Microk8s without sudo you need to add yourself to the user
group which can be done with the following commands:

$ sudo usermod -a -G microk8s $USER
$ sudo chown -f -R $USER ~/.kube

Lastly enable the following base addons:

$ microk8s enable dns dashboard storage

Also add your kube config to your home config directory using the following com-
mands:

$ cd $HOME
$ mkdir .kube
$ cd .kube
$ microk8s config > config

$ sudo microk8s kubectl config view --raw > $HOME/.kube/config
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Microk8s is now installed and running a contained Kubernetes cluster, this cluster
can then be started/stopped using the following commands:

$ microk8s start

$ microk8s stop

For more info about the Microk8s commands, visit the Microk8s command refer-
ence [73].
Now Kubectl commands are accessible as the subcommands of Microk8s. All com-
mands for the rest of this guide will be without the microk8s as it is just a frame-
work for running normal Kubectl commands. But if the commands don’t work
right out of the box, just add microk8s to the front of them. The format of using
Kubectl with the Microk8s prefix is the following:

$ microk8s kubectl <COMMAND>

The rest of this guide assumes that the Microk8s alias in Section 6.10.2 has been
set up. If that is not done all the same commands can still be run, they just have
to be preceded by the microk8s command as seen in the code above.

6.10.2 Setting up a Microk8s alias

If you don’t want the hassle of writing microk8s in front of every Kubernetes com-
mand, and Kubectl is not already installed, you can alias it to do the same thing.
To do this open your aliases file in your favourite text editor, here using Vim:

$ vim ~/.bash_aliases

And append the following to the aliases file.

alias kubectl='microk8s kubectl'

Then relaunch the terminal and commands should now work by just issuing "kubectl"

6.10.3 Fixing Microk8s restarting pods every day on NTNU server

Since the NTNU server is hosted within its own network, there are some peculi-
arities that have to be ironed out. One of these is that new connections will make
the pod network restart every day as new connections are discovered. To prevent
this from happening, as the cluster is never accessing these new VPN connections
the following change has to be made.

SSH into the host computer. Open the following file in your favourite text
editor, here using Vim.

$ vim /var/snap/microk8s/current/args/kube-apiserver

Add the following line to this file you just opened.

--advertise-address 0.0.0.0

Then restart the cluster by issuing the following commands
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$ microk8s stop
$ microk8s start

6.10.4 Starting the main system components

The system consists of several main components.

• Influxdb (Timeseries database)
• MQTT (Message passing system)
• Datalogger (For parsing MQTT data and putting it into the database)
• Cloudflare (For accessing the system without port forwarding)

MQTT

MQTT yaml files can be found in
/
k8s/

mqtt/
mqtt-deployment.yaml
mqtt-service.yaml

To start all yaml files in the directory run the following command from root

$ kubectl apply -f k8s/mqtt/

This will start the MQTT server, hosted locally.

InfluxDB database and Datalogger

The InfluxDB database can be started using the yaml files found under
/
k8s/

logging/
To start the InfluxDB node, if it is the first time it is started on a new install-

ation, it needs to be given credentials to startup properly. These are given to the
node as secrets. The secret data can be located in:

/
k8s/

logging/
influxdb-secret-dev.yaml/

Exchange the tokens and password for something appropriate.
To start all yaml files in the directory run the following command from root:

$ kubectl apply -f k8s/logging/

This will start up the InfluxDB database as well as the Datalogger gathering
data from MQTT.
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Cloudflare

Since the system is running within a network without the ability to port forward,
Cloudflare has been used as a reverse proxy. A node is running within the cluster
that exposes the relevant servers to the web. This is a free service for smaller
projects. First, create or login to a Cloudflare account at https://cloudflare.
com/. Navigate to domain, and add a new domain. Follow the step-by-step, and
when you get to add nameservers, head to your domain provider and add the
nameservers to your external nameserver.

A full guide and the guide used to set up this in the first place can be found in
a YouTube video [74].

To get the token for the Kubernetes pod it is the same as the Docker token
that can be found by selecting Docker. This Docker token can then be inserted
into the cloudflare-tunnel.yaml file found under the k8s folder, and it can then
be started. The rest of the services can then be set up within the web interface as
seen in [74]. The local Kubernetes endpoints are then used, these correspond to
the Kubernetes services that are linked to the various systems. For instance, the
InfluxDB is exposed through the influxdb-service at http://influxdb-service:
8086. An example of this can be seen in Figure 6.11.

Figure 6.11: Cloudflare tunnel setup overview.

https://cloudflare.com/
https://cloudflare.com/
http://influxdb-service:8086
http://influxdb-service:8086


70 Thomas Borge Skøien: Scalable software for smart-house IoT management

6.11 Procedure for Building and Deploying Docker Con-
tainers

This section outlines the building and pushing of Docker containers. To push
Docker containers to the Docker Hub; an account is needed.

6.11.1 Generating Single Architecture Docker Images

If you only need to create single architecture images for development purposes
this is the way to do it. This will create images for the operating system you’re
currently using. Otherwise look in Section 6.11.2 for how to push to all major
operating systems, including the Ubuntu server. To build an image go into the
respective Docker image source folder, and run the following commands.

$ docker login
$ docker build <IMAGE_NAME> .
$ docker tag <IMAGE_NAME> <HUB_NAME>/<IMAGE_NAME>:<VERSION>
$ docker push <HUB_NAME>/<IMAGE_NAME>:<VERSION>

6.11.2 Building Multi-Architecture Docker Images for Non-x86 Ar-
chitectures

If development is done on an arm-based laptop, such as the new M1 and up-based
Macs, images have to be cross-compiled for both arm and x86/amd64 architec-
tures. This can easily be done through the Docker interface. To be able to upload
any image you need to use a Docker Hub account.

To be able to build for different architectures, have Docker Desktop installed
and then simply run the following command in the Docker image source folder. It
will build images for arm64 and amd64. It first needs to login to the account and
then build and push it by exchanging the tag parameters.

$ docker login
$ docker buildx build --push --platform linux/arm64/v8,linux/amd64 \
--tag <DOCKER-HUB-USERNAME>/<IMAGE-NAME>:<VERSION> .

If you get an error that the multiple platforms feature is not available, then
run the following command and rerun the above command.

$ docker buildx create --use

Your image will then be uploaded as a multi-architecture build onto the Docker
Hub, and the machine using it will automatically download their respective archi-
tecture build.

An example of what the correct image will look like on the Docker Hub can
be seen in figure 6.12, where two different OSs are listed for the same tag of an
image.
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Figure 6.12: Example of a docker image with 2 different architectures in the same
build.

6.12 Troubleshooting Common Errors

6.12.1 System restarting every day with no error

This could be the case if the system is running within the NTNU network. The
solution to this is outlined in Section 6.10.3.

6.12.2 Can’t SSH into server

If no response is received at all, this could point to the actual server being down,
contact the people responsible.

6.12.3 Kubectl command not found

If you are running commands on the server, currently everything is running within
Microk8s, and commands have been aliased so that microk8s kubect l commands
work as kubect l commands. Look in Section 6.10.2 for info about how to fix this.

6.12.4 Dashboard and backend not available at domain

There are two possible reasons for this issue. Firstly, it could be due to a system-
wide failure, such as a power outage or a complete system shutdown. Alternat-
ively, the problem might arise from malfunctioning Cloudflare pods. To troubleshoot,
ensure that the Cloudflare pods are operational. If they are not running, please
refer to Section 6.10.4 for instructions on how to set them up.





Chapter 7

Results

This chapter examines results derived from system tests and software validation.
It begins with an analysis of the system’s response times during database queries
in Section 7.1. This is followed by an evaluation of the system’s uptime and resi-
lience in Section 7.2. The topic of fault tolerance is then explored in Section 7.3,
succeeded by an account of the outcomes from the control running on the sys-
tem in Section 7.4. Subsequently, a system evaluation is conducted in Section 7.5,
comparing the system against its initial requirements in Section 7.6.

7.1 Response times

An essential aspect of using this system is determining the response times for
data querying, which is crucial for subsequent data manipulation. The tests in this
section were conducted on a 16 GB RAM, 10 CPU core M1 MacBook Pro. The data
was queried over the internet instead of locally to simulate a worst-case scenario
for accessing the data. Furthermore, processing nodes will access the database
locally through HTTP requests, reducing response times. Cloudflare acting as the
reverse proxy may also increase response times further.

Range Average response time Standard deviation Datapoints
30 days 7.534s 0.217s 2 397 905
10 days 2.699s 0.107s 850 289
24 hours 0.349s 0.040s 85 309
10 hours 0.248s 0.059s 35 491
1 hour 0.109s 0.060s 3563

30 minutes 0.053s 0.018s 1782
5 minutes 0.048s 0.016s 298
1 minute 0.050s 0.005s 59

Table 7.1: Response times according to time range for the measurement "power-
Consumption" with field "power" for house_id=3. All queries were repeated ten
times to gather the data.

73
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Response times were gathered by sending measurement requests to the server
remotely from a Python script. The results of this response test can be seen in
Table 7.1. The data represents the response times for retrieving the power field
under the powerConsumption measurement for the house with ID 3 with varying
time ranges. This is the test house under the DEC. Figure 7.1 presents the response
times plotted together. The graph demonstrates a decrease in response times as
the time range decreases. The response times appear to level off at around a 30-
minute time range, where the amount of data is no longer a limiting factor. This
is especially useful in some control schemes where only the most recent measure-
ments are needed, for instance, in Section 7.4.1. The query times will then be neg-
ligible compared to the remaining system. In the MPC used in Section 7.4.2, the
time ranges of queries varied from 5 minutes to 13 hours. According to Table 7.1,
all of these queries will fall under 0.35 seconds.
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Figure 7.1: Response times with standard deviation based on data in Table 7.1

Figure 7.2 illustrates how the throughput changes with different time ranges,
highlighting the presence of overhead in the data retrieval. In most cases, the most
recent data will be queried, resulting in fast response times. This differs from the
previously developed system, where response times increased throughout the day
as it had to fetch the entire day’s worth of data each time. This system allows
specifying the time frame of the query, resulting in consistent response times re-
gardless of the time of the day the query is made.
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Figure 7.2: Data points per second based on the data in Table 7.1.

7.2 Uptime and resilience

The system has been running continuously for several weeks without requiring
any user intervention. Throughout this period, data logging has been consistent
as long as the APIs have remained operational. An example showcasing the steady
data logging can be observed in Figure 7.3.

Final uptime metrics can be found in Table 7.2, which were calculated by con-
sidering the sampling time of the device and any data gaps within the total time
range. It’s important to note that some devices were undergoing fixes during this
period, resulting in lower uptime than expected during the product’s development
phase. There was also a power outage on the server during this time, however,
this is kept in to reflect the actual uptime of the system.

Notably, the Verisure Smoke Detector only provided data for the last 20 days,
so its resolution differs from the other devices. However, the standout outlier is
the Systemair VSR500 integration, which experienced a significantly high amount
of downtime. Upon contacting them, we discovered that the local in-house device
frequently experienced outages, and they are currently developing a new unit to
address this issue.

As a result of the excessive downtime with the Systemair VSR500 integration,
running control on it may not be feasible due to the frequency of interruptions.
On the other hand, the MET and Solcast do not rely on physical devices, and their
perfect uptime reflects this fact. Since predictions are overwritten as they come
closer, they are also much more lenient in their described uptime. They have been
down, but predictions were still in the system, just not the newest ones.
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Figure 7.3: A plot showing the logged temperature data from the Mill Sense
airSensor over the course of a month, also showing a gap in the data at about
12-05-23, which here occurred as the Mill API went down.

Table 7.2: Uptimes of the various device integrations over the last 30 days, except
for the Verisure integration which had only run for 20 days. Uptime is calculated
by finding gaps in the measurements based on its supposed sampling time and
by seeing how much this makes up of the entire period. Some of these results
will come from the vendor APIs being down, but some of it also comes from the
system being down.

Device Uptime
Sensibo Sky 93.95%

Systemair VSR500 64.35%
Tibber Pulse 97.80%
Mill-sense 95.28%

MET 100%
Solcast 100%
Victron 95.76%

Verisure Smoke Detector 96.86%
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7.3 Fault tolerance

7.3.1 Dealing with Internet Outages

In terms of this system, an internet outage bears a similar effect to an API go-
ing offline. Consequently, the pods will crash, repeating the cycle until they can
successfully reboot with a restored internet connection. As a result, data log-
ging will naturally resume, given the system’s inherent ’fail fast’ architecture. This
was demonstrated during instances of API downtime, where the pods persistently
crashed until they could safely reboot and resume data logging.

The same principle applies to the control loops operating within the system.
In the absence of new measurements, the control loop will eventually go offline
due to the unreliability of the outdated feedback loop data. It will then remain
inactive, awaiting fresh measurements before rebooting. Naturally, this will lead to
the control of the respective house going offline, preventing the in-house devices
from receiving any inputs until system functionality is restored. Currently, this will
lead to the last input being the one that is stored in the heat pump. To avoid this,
schedules can instead be sent, so that in the event of an outage, it can follow the
previous plan.

7.3.2 Response to Server Reboot

The current system, being hosted within Microk8s, is designed to automatically
restart upon a server reboot. The same is applicable when running Kubernetes
on bare metal, as it is configured to boot upon server startup. This functionality
has been tested several times, with the system consistently restarting as anticip-
ated. Upon reboot, the framework and all logging activity resume operation. The
pod lifetimes of which some exceed 80 days at this point, further confirm this
automatic restart feature, eliminating the need for manual intervention.

7.3.3 Handling API Downtime

The Systemair integration exemplifies the resilience of the system during API
downtime. Over a period of 35 days, the device integration had to restart 3634
times due to recurring API stability issues, primarily owing to some limitations
of the installed device. Despite these challenges, the system consistently resumes
logging each time the device becomes available and successfully reboots each time
it crashes. The system’s response to an API going offline largely depends on the
respective implementation of the device, a process that is fully modular. As long as
the device integration is programmed to crash upon losing connection, the over-
arching system will manage the recovery process and restore operation. However,
during an API downtime, data outages are inevitable, and the system has to wait
for the API to become accessible again.
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7.3.4 Data Collection Efficacy

The system has been operational for a significant period, progressively gathering
an increasing amount of data as more nodes have come online. All data captured
has been readily accessible for querying. The influxDB database has accumulated
approximately 600 MB of data, which is automatically compressed by the data-
base, facilitating instant access via queries. During the period of this thesis, three
houses have contributed to the data collection, each logging data independently.
All previously logged data has been transferred to the new system to facilitate a
smooth transition. An overview of the devices involved in logging data across the
houses is provided in Table 7.3. House 3, the supervisor’s residence, has served as
the main testing platform for integrating new devices.

Table 7.3: Distribution of devices across houses.

Device/House ID 3 4 5
Mill Sense ✓ ✓

MET ✓ ✓
Tibber RT ✓

Tibber Hourly ✓
Solcast ✓ ✓
Sensibo ✓ ✓

Systemair VSR500 ✓
Verisure ✓
Victron ✓

7.3.5 Autonomous Operation

The system currently exhibits a high degree of autonomy, requiring minimal user
intervention. It has successfully logged data continuously for over a month, demon-
strating resilience through several power outages and server reboots. Instances
of certain integrations failing have been observed, however, these failures were
largely attributable to bugs within the integrations themselves. As such, these
bugs only affected the corresponding logging pods without disrupting the entire
system. Once these bugs were resolved, the affected logging pods resumed normal
operation and have been functioning continuously since then.

It should be noted that potential updates to vendor APIs may trigger similar
issues. This has been observed in the past year and often necessitates minor code
rewrites for re-establishing effective integration. This aspect underlines the im-
portance of some monitoring within the system and to have someone responsible
for updating integrations along the way.
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7.4 Running control on the system

7.4.1 Use case - Direct response on DEC test house

In the use case outlined in Chapter 5, the server retrieves data from the system
and manages control by running a loop that calculates new actuation outputs
every five minutes. Actuations are sent only when changes are necessary. Target
temperatures are then transmitted to the Sensibo Sky units, adjusting the heat
pump settings accordingly. The control parameters used in the test can be found
in Table 7.4.

Table 7.4: Control parameter values used in the control use case in Chapter 5.

Parameter Value
γ 0.7

Kprice 0.1
Ki

1
24

Kp 1
α 0.1

The supervisor, and owner of the house, could manually change the desired
temperature settings for his comfort, which were obtained from the backend through
an API endpoint. A random day’s sample of this operation is illustrated in Fig-
ure 7.4. The system clearly adapts to fluctuating spot prices by heating in advance
while maintaining the supervisor’s preferred temperatures. This is especially evid-
ent before 8 in the morning when the heating starts earlier to not be affected by
the morning spot prices. The control has functioned autonomously for over two
weeks, effectively adjusting to any new settings established by the supervisor.

This system could be easily adapted to new houses by utilizing a Sensibo Sky
device, or a similar one, for heat pump actuation and temperature data collection.
Additionally, the spot market zone is needed to retrieve relevant pricing inform-
ation. With these parameters in place, the system can efficiently adjust based on
spot market fluctuations.

7.4.2 Use Case - Model Predictive Control (MPC)

A parallel study deployed an advanced Model Predictive Control (MPC) strategy
on the same house, demonstrating the system’s capacity to support complex con-
trol schemes [75]. The data retrieval speed of the system was found to be efficient,
with latencies insignificant compared to the computation time of the MPC, with
data retrieval taking less than a second. The data needed in this system queried
data for up to 13 hours in the future (weather forecast data) and in the past. This
demonstrates the system’s ability to perform its function without causing unne-
cessary delays. Moreover, if run locally within the Kubernetes cluster, the system
can directly interact with the InfluxDB service.



80 Thomas Borge Skøien: Scalable software for smart-house IoT management

17.5

20.0

22.5
Te
m
pe
ra
tu
re
 [°
C]

Measured room temperatures
living
livingdown
main
studio

20

25

Te
m
pe
ra
tu
re
 [°
C]

Target temperatures for the heat pumps
living
livingdown
main
studio

0

2000

Po
we

r u
sa
ge
 [W

] Real-time power usage for heat pumps

06:0
0

09:0
0

12:0
0

15:0
0

18:0
0

21:0
0

00:0
0

03:0
0

06:0
0

09:0
0

12:0
0

500

1000

Pr
ice

 [N
OK

/M
W
h]

Spot market prices
Spot Prices [Tr.heim]

Figure 7.4: This figure demonstrates the operation of the direct response control
as it responds to spot market prices. The control manages four heat pumps located
in the supervisor’s residence, specifically in the living area, lower living area, main
room, and studio, each with unique temperature settings. The depicted real-time
power usage originates from a tibber-pulse plugged into a smart meter linked
exclusively to the heat pumps. The timeline for this plot spans from 6:00 on May
8th, 2023, to 12:00 on May 9th, 2023.

Another aspect that came in handy during weather forecast retrieval for the
MPC was interpolating data directly from the database if a certain data structure
is needed. No local manipulation was needed. This and several other data manip-
ulation functions can be found in the InfluxDB documentation [76]. An example
of what this query looked like in Python code can be seen below:

measurement = "weatherForecast"
house_id = "3"
# Querieing the database based on the above information
query = f"""

import \"interpolate\"
from(bucket:\"{bucket}\")
|> range(start: -1d)
|> filter(fn:(r) => r._measurement == \"{measurement}\")
|> filter(fn:(r) => r.house_id == \"{house_id}\")
|> interpolate.linear(every: 5m)

"""

7.4.3 Use Case - MPC and Solar Battery Inverter

Another student utilized the system to develop a control algorithm for a solar bat-
tery inverter [77]. The control strategy used solar forecast data, weather forecasts,
and Chainpro/Victron data stored by the system. This demonstrates the system’s
utility as a data repository and underscores its potential as a base for further con-



Chapter 7: Results 81

trol applications. A Docker container of the control system could be created, mak-
ing it feasible to execute the entire feedback loop on the server. The lower time
constants of this system, compared to a heating solution, demonstrate its potential
to operate effectively for systems that require closer to real-time responses.

7.5 Performance Evaluation

We evaluated the performance impact of our system using Prometheus for data
collection from the Kubernetes cluster during operation [78]. The server, equipped
with an AMD Threadripper PRO 3995WX with 64 cores and 220 GB of RAM, hosts
the code execution. The rest of the specifications are in Table 7.5.

Table 7.5: Server Specifications.

Component Specification
Case FRACTAL DESIGN Define 7 XL BK TGL
Power Supply Unit BE QUIET! PSU Dark Power Pro 12 1500W
SSD SAMSUNG SSD 980 PRO 2TB M.2 NVMe PCIe 4.0
Motherboard ASUS PRO WS WRX80E-SAGE
Processor AMD Threadripper PRO 3995WX
Cooler BE QUIET! Be Quiet_ Dark Rock Pro AMD TR4
RAM KINGSTON 32GB 3200MHz DDR4 ECC CL22 (7 units)
Graphics Card ASUSGF TUF-RTX3080TI-O12G GAMING 12GB GDDR5

The fundamental infrastructure’s CPU and memory utilization, depicted in Fig-
ure 7.5 and Figure 7.7 respectively, remain relatively constant due to the consist-
ent overhead of running only a single instance of this software. The device-specific
pods’ CPU and memory consumption are illustrated in Figure 7.6 and Figure 7.8.
The CPU metrics are quantified in Kubernetes CPU units, where 1 CPU unit cor-
responds to 1 vCPU/Core or 1 hyper-thread on Intel processors [79]. This corres-
pondence suggests that this server could theoretically operate up to 64 of these
CPU units, and 128 if we are counting hyper-threading. An interesting observa-
tion is the lack of correlation between the pod sampling time and CPU usage, with
pods exhibiting performance spikes and then returning back to zero usage. This
could be due to some requests taking more CPU usage than normal, for instance,
when requests take time to go through.



82 Thomas Borge Skøien: Scalable software for smart-house IoT management

12
:06

12
:16

12
:26

12
:36

12
:46

12
:56

13
:06

Time (Hours:Minutes)

0.00

0.01

0.02

0.03

0.04

0.05

CP
U 

Us
ag

e 
(C

PU
 U

ni
ts

 1
 v

CP
U/

Co
re

)

CPU Usage of pods in the system

django-k8s-prod
influxdb
cloudflared-2
cloudflared-1
mqtt
datalogger-deployment
postgres

Figure 7.5: CPU usage of the base infrastructure running on the server with an
AMD Threadripper PRO 3995WX.
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Figure 7.7: The memory usage for the different base infrastructure pods running
in the system, running on the server with an AMD Threadripper PRO 3995WX.
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Figure 7.8: The memory usage for the different device pods currently running in
the system, running on the server with an AMD Threadripper PRO 3995WX.
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7.6 Evaluating against requirements

This section presents an evaluation based on the criteria initially specified in
Chapter 3. It aims to demonstrate the current capabilities of the system while
also identifying existing gaps in functionality.

7.6.1 Data logging

An overview of the data logging evaluation can be found in Table 7.6.

Table 7.6: Data logging requirements evaluation.

Requirement Description Result
DLR-1 High available resolution of measurements. Fully achieved
DLR-2 High throughput. Fully achieved

DLR-3.1 Automatic restart on crashes. Fully achieved
DLR-3.2 Credentials saved through crash/restart.. Fully achieved
DLR-3.3 Reconnection after internet failure. Fully achieved
DLR-4 Persistent storage of data for long-term ac-

cess and analysis.
Fully achieved

DLR-5 Automatic backup and recovery in case of
data loss.

Partly

DLR-6 Scalable architecture for handling large
amounts of data and users.

Fully achieved

DLR-7.1 Compliance with relevant data privacy regu-
lations (e.g. GDPR).

Partly

DLR-7.2 Robust data encryption and protection
against unauthorized access.

Partly

DLR-1: High available resolution of measurements

• Evaluation: The employed InfluxDB database supports nanosecond preci-
sion, providing sufficient granularity for any smart house scenario.

DLR-2: High throughput

• Evaluation: InfluxDB is designed for high throughput, offering solid per-
formance given sufficient hardware resources.

DLR-3: Resilient against system crashes and restarts

• DLR-3.1: Automatic restart on crashes

◦ Evaluation: System crashes triggered a full restart, including the rein-
itialization of all device nodes.
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• DLR-3.2: Credentials saved through crash/restart

◦ Evaluation: After a server reboot or crash, all devices were able to suc-
cessfully login again.

• DLR-3.3: Reconnection after internet failure

◦ Evaluation: While simulating an internet failure is challenging on the
NTNU Eduroam internet, the system was tested with devices going off-
line and successfully came back online once connectivity was restored.

DLR-4: Persistent storage of data for long-term access and analysis

• Evaluation: All data is stored and compressed on the server. This dataset
now spans over 3 years for the supervisor’s house, as data was migrated
from the previous system.

DLR-5: Automatic backup and recovery in case of data loss

• Evaluation: At present, there is no automatic backup system in place. How-
ever, a simple script can be run to backup data to user laptops. The team is
awaiting NTNU’s provision of a secondary server for data backup, preferably
located in a different geographical area.

DLR-6: Scalable architecture for handling large amounts of data and users

• Evaluation: InfluxDB supports the handling of large data volumes, and the
backend, powered by the PostgreSQL database for user data, should manage
any feasible user load.

DLR-7: Security and Compliance

• DLR-7.1: Compliance with relevant data privacy regulations (e.g., GDPR)

◦ Evaluation: Users can retrieve their data through the backend API.
However, the system does not yet support complete data deletion.

• DLR-7.2: Robust data encryption and protection against unauthorized
access

◦ Evaluation: Sensitive data is securely stored within Kubernetes secrets,
while user passwords are protected through Django’s hashing and salt-
ing mechanisms. Nonetheless, it is important to acknowledge that a
proficient attacker with server access might still be capable of extract-
ing this information. Recognizing the inherent nature of security as
an ongoing concern, addressing this issue will necessitate consistent
maintenance efforts.
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7.6.2 Backend

An overview of the backend evaluation can be found in Table 7.7.

Table 7.7: Backend requirements evaluation.

Requirement Description Result
BR-1.1 API access for developers to build custom ap-

plications and services.
Fully achieved

BR-1.2 Standard REST API to support multiple data
formats.

Fully achieved

BR-2.1 Independence of the backend from new in-
tegrations.

Fully achieved

BR-2.2 Template for creating new integrations. Fully achieved
BR-2.3 Provide support for custom credential inputs. Fully achieved
BR-3.1 Enable users to start devices based on their

home setup.
Fully achieved

BR-3.2 Enable users to check the status of their
devices.

Fully achieved

BR-3.3 Enable users to stop devices on demand. Fully achieved
BR-3.4 Enable users to restart their devices on de-

mand.
Fully achieved

BR-3.5 Enable users to retrieve their own data. Fully achieved
BR-3.6 Notify users if their device is not working

properly.
Partly

BR-3.7 Provide different tiers of use with configur-
able parameters for each tier.

Partly

BR-4.1 Encrypt secret data. Partly
BR-4.2 Enable user authentication. Fully achieved

BR-1: Integration with other systems

• BR-1.1: API access for developers to build custom applications and ser-
vices.

◦ Evaluation: Comprehensive API documentation is available to facilitate
developer use.

• BR-1.2: Standard REST API to support multiple data formats.

◦ Evaluation: Django, the system’s framework, has built-in support for
multiple data formats, promoting easy and seamless data exchange.

BR-2: New device integrations

• BR-2.1: Independence of the backend from new integrations.
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◦ Evaluation: The backend, which primarily concerns itself with Docker
Hub images and credential passing, is fully compatible with any type
of integration.

• BR-2.2: Template for creating new integrations.

◦ Evaluation: A device creation template is available, simplifying the in-
tegration process.

• BR-2.3: Support for custom credential inputs.

◦ Evaluation: The system can accommodate any number of text or num-
ber inputs, allowing for the integration of various device credentials.

BR-3: User features

• BR-3.1: Enable users to start devices based on their home setup.

◦ Evaluation: A list of currently supported devices is provided. If users
possess one of these devices, they can easily initiate the operation.

• BR-3.2: Enable users to check the status of their devices.

◦ Evaluation: The backend API provides users with access to their data
and the current state of their logging pod.

• BR-3.3: Enable users to stop devices on demand.

◦ Evaluation: An endpoint is available for users to halt their logging pod
operation.

• BR-3.4: Enable users to restart their devices on demand.

◦ Evaluation: An endpoint is available for users to restart their logging
pod.

• BR-3.5: Enable users to retrieve their own data.

◦ Evaluation: Data can be accessed by users through the data endpoint.

• BR-3.6: Notify users if their device is malfunctioning.

◦ Evaluation: While email notifications are not yet implemented, users
can access the status of their device through a dedicated endpoint.

• BR-3.7: Provide different tiers of use with configurable parameters for
each tier.

◦ Evaluation: Currently, users can log their devices and choose the ones
to include. Control functionality testing will precede the user rollout
of this feature.

BR-4: Security

• BR-4.1: Encrypt secret data.
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◦ Evaluation: The system presently encodes but does not encrypt data
at rest. Future work should implement encryption. However, with a
server and internal cluster breach, an attacker could access secret cre-
dentials regardless of encryption. This risk underscores the importance
of system access security.

• BR-4.2: Enable user authentication.

◦ Evaluation: Registered users can log in/out and access their own houses
and devices.

7.6.3 Processing

An overview of the processing evaluation can be found in Table 7.8.

Table 7.8: Processing requirements evaluation.

Requirement Description Result
PR-1.1 Resilient against network connectivity is-

sues.
Fully achieved

PR-1.2 Capability to send commands to various ac-
tuators.

Partly

PR-2.1 Optional customisation of control al-
gorithms.

Partly

PR-2.2 Variety of supported devices for control. Partly

PR-1: Reliability

• PR-1.1: Resilience against network connectivity issues.

◦ Evaluation: The system remains inactive during network issues, allow-
ing users to manually control their home devices. This attribute makes
the system resilient to network connectivity problems.

• PR-1.2: Capability to send commands to various actuators.

◦ Evaluation: Actuation functions have been implemented for Sensibo
and the VSR500 ventilation system. Further development is needed to
expand actuation capabilities to other devices.

PR-2: Configuration

• PR-2.1: Optional customization of control algorithms.

◦ Evaluation: As a proof of concept, different schedules can be added in
the backend, which the control will retrieve. Users can adjust desired
temperatures for each hour of the day, with different settings for week-
days and weekends. Additionally, the PI controller parameters and gain
for the spot market offset can also be adjusted.
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• PR-2.2: Variety of supported devices for control.

◦ Evaluation: Currently, Sensibo and the VSR500 ventilation system are
the only supported devices for control. Expansion to include other
devices is necessary, and investment in these devices for integration
purposes is recommended.





Chapter 8

Discussion

This chapter discusses several key topics. It commences with an evaluation of the
system, as detailed in Section 8.1, followed by a discussion on the system’s ca-
pacity in Section 8.2. Subsequently, user retention will be explored in Section 8.3
and provide an overview of our software selection in Section 8.4. The implications
of the GDPR on the system are then analyzed in Section 8.5, before examining
how system downtime is managed in Section 8.6. The project’s contributions to-
wards the United Nations Sustainability goals will be discussed in Section 8.7. The
chapter concludes with a discourse on ontological considerations in Section 8.8.

8.1 System Evaluation

The system successfully fulfilled all the components detailed in Section 1.3. It
evolved into a comprehensive infrastructure adept at both gathering and pro-
cessing data. During the course of this thesis, the system accumulated data from
three distinct residences. Numerous individuals utilized the system’s data for their
unique analytical purposes. In addition, a backend was developed with the ne-
cessary endpoints for users to activate and access devices in their homes. A final
achievement was demonstrating a proof-of-concept scenario where the server con-
trolled the heating pumps in a house, effectively closing the feedback loop. Below
are the highlights of the system’s strong points and potential areas for improve-
ment.

Strengths of the system:

• Stable data logging system.
• Custom backend API enables users to add new devices for their homes.
• Backend API also lets users view device status and retrieve data.
• System framework supports expansion, allowing processing nodes to be

booted within the Kubernetes cluster for local data retrieval or credential
access.
• Successful use by research group members for data retrieval and control

loop completion.
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• Scalability to accommodate at least 1100 additional homes, as will be de-
scribed in Section 8.2.
• Docker containers facilitate isolated development of new device integra-

tions.
• Local development environments mimic production servers for ease of de-

velopment.
• Comprehensive documentation.

Areas for Improvement:

• Certain software choices, like the time series database, may need reevalu-
ation as querying proved to be a bit complex.
• Implementation of automatic backups and a designated location for them

is necessary.
• A more streamlined method for sending control to devices on a per-house/device

basis needs to be developed.
• Aspects of the system may be overly complex due to the project’s broad

scope, indicating areas for potential simplification by future developers.

8.2 System Capacity: How many houses/devices can it
handle?

Estimating the number of houses our system can support on the current server is
somewhat theoretical. Still, an educated guess can be made based on the available
CPU and memory usage of the currently running pods. Assuming we reserve half
of the server’s CPU and memory for control and other tasks, we have about 110
GB of RAM and 32 CPU cores available (∼32 Kubernetes CPU units [79]).

From Figure 7.6, we observe that the average CPU usage is below 0.002 units,
suggesting a potential capacity of 16,000 devices. However, considering the aver-
age memory usage of about 20 MB per pod from Figure 7.8, the memory capacity
is limited to 5,500 devices. Thus, the limiting factor is the RAM.

Assuming an average of 5 devices per house, the system could feasibly sup-
port about 1,100 additional houses, leaving ample capacity for running control
algorithms alongside these logging devices, as only half of the current machine’s
resources are being utilized.

Storage requirements are primarily determined by the volume of data each
house generates. With an estimated requirement of 500 MB of storage per house
over a two-year period, 1,100 houses would require about 550 GB of storage over
two years, a negligible amount compared to the memory and CPU usage required
by the system.

The system, built on the Kubernetes framework, inherently supports hori-
zontal scalability, theoretically extending its capacity almost indefinitely. While
all system components can be scaled up, such a setup would require a certain
level of expertise and commitment to maintenance, particularly if scaled across
multiple servers.
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In practical terms, hosting everything on a single server might be most effi-
cient, focusing on module optimization to support as many houses as possible.
Python uses a significant amount of memory as it stores most of its variables on
the heap, so writing these integrations in a faster language could significantly in-
crease the number of devices the system can handle. The immediate challenge,
however, might not be technical optimization but rather encouraging user adop-
tion of the system.

8.3 User retainment

One of the compelling inquiries in the design of this system is whether users would
find it valuable enough not just to use it initially but continue to use it in the
long run. A significant selling point is the practical benefit of saving money at
no cost other than data, which inherently enhances user retention. The creation
of a high-quality product naturally encourages increased usage. This is further
complemented by the system’s "set-it-and-forget-it" style, which requires minimal
user intervention. However, it might be worth exploring additional strategies to
sustain user engagement.

Integrating elements of gamification could serve as one such strategy. Once a
substantial user base is established, comparisons between users’ electricity con-
sumption patterns could be facilitated. Questions like when they use electricity,
how efficiently they use it when costs are low, and how they fare against other
users could be posed. Such a competitive aspect may incentivize electricity use at
certain times of the day. Furthermore, this data could be regionally aggregated,
offering insights about which areas are most adept at this. Consequently, friendly
competition with a low entry barrier could be instituted.

Another compelling feature could be the provision of interesting insights de-
rived from their personal usage data. For example, users could view how their
usage correlates with outdoor temperatures, thereby gauging their house’s heat
retention capacity. This could help users ascertain whether a recent renovation has
resulted in lower energy bills. Additionally, this data could be utilized to estimate
a house’s energy rating based on its heating response. This information could be
intriguing and useful for users, contributing to user retention.

8.4 Software Selection

The selection of software libraries plays a significant role in the design of this
project, influencing its usability, scalability, and maintainability. Choices such as
InfluxDB for time series data management and Django for the backend framework
have their respective merits but also have potential drawbacks.

For instance, some of these tools may be more advanced than necessary for
this type of project, increasing the technical threshold for developers who work on
the system. With new developers joining the project annually, the system’s com-
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plexity could hinder swift and efficient development. In this context, the system’s
learnability and accessibility could be just as important as the advanced features
of the software used.

Django was selected as the backend solution, and it proved to be relatively easy
to set up despite its considerable overhead. Given that Django is utilized in pro-
duction environments by various large companies, investing time in learning the
framework is more advantageous than developing a custom setup from scratch.
While a custom approach might have required fewer lines of code, standardizing
the system is likely more beneficial for future developers working with the code.

One key strength of the current system is its modularity. If Django proves un-
suitable for the system in the long run, it can be replaced with a different backend
since the POWIOT Kubernetes module is not Django-dependent. It can be por-
ted to a new project, necessitating only the backend components’ rewriting. This
approach ensures that the system isn’t locked into its initial software choices, al-
though significant changes would require time for re-implementation.

The choice of InfluxDB for data storage also presents an interesting trade-off.
On the one hand, its performance and efficient storage of data points are clear
advantages. On the other hand, its usability proved somewhat complex. Although
manageable, this complexity might impact future usage. Creating effective wrap-
pers could alleviate this issue, but alternatively, a simpler MySQL database might
suffice for time series data if the system doesn’t scale significantly. SQL is not well-
suited for large-scale time series data, but this system may not reach that kind of
scale in the first place. As such, it might be worthwhile to reassess the choice of
database. Nevertheless, the data is currently centralized and easily retrievable,
simplifying potential migration.

The decision to implement devices via Docker containers has imparted con-
siderable flexibility to the system. Each device is isolated, ensuring that code for
a new device can’t interfere with any existing devices, as well as keeping creden-
tials for different devices completely separate. Additionally, developers can choose
to write code in the programming language they’re most comfortable with, en-
hancing productivity and code quality. While this may lead to potential dips in
performance compared to all-in-one systems, the emphasis here is on the ease of
creating new integrations.

8.5 GDPR Compliance and Personal Data Storage

The crux of this project involves handling a considerable amount of sensitive user
data, including data from devices accessed by the system and user credentials for
these devices. Consequently, adhering to the General Data Protection Regulation
(GDPR) is paramount to assure users of the safety and responsible use of their
data for research and operational purposes only.
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8.5.1 Rationale for Data Storage

A primary stipulation of the GDPR pertains to the rationale for data storage [80].
This stipulation requires a justifiable reason for data storage. For our system, the
justification is straightforward: data is stored for research and to provide users
with enhanced control algorithms. Only data pertinent to these goals are stored.
Credentials for accessing devices are retained only as long as the devices remain
active. If users remove devices from the system, they will need to re-input cre-
dentials, ensuring only necessary data is stored. The subsequent data processing
aligns with the original purpose for data storage [81]. Therefore, data collected to
enhance user algorithms cannot be repurposed, such as selling for different uses,
without user consent.

8.5.2 User Data Rights

A crucial aspect of GDPR is ensuring user control over personal data [82]. It is
not sufficient to use data responsibly; users must also have insight into their data
and the capacity to delete all their data upon request. Thus, the system should
have the infrastructure to delete all a user’s data points and compile all data into
a downloadable file for user review upon request. While these services must be
free, this does not present significant challenges as the system is research-oriented
and thus free for end users. Interestingly, the GDPR does not mandate data dele-
tion for scientific research purposes even upon user request [83]. However, ethical
considerations should guide this process, and we believe user data should be de-
leted if the user no longer wishes to retain it in the system.

8.5.3 Nature of Data Stored

One advantage of our system is that we only store data already retained by device
vendors. Since the data we accumulate is also stored by the vendors’ APIs, we
merely aggregate it. However, this aggregation creates more personally identifi-
able data, highlighting the importance of GDPR compliance. Therefore, we should
avoid storing superfluous data that could impose unnecessary risks to users. For
example, precise location data may not be needed if regional data suffices for
control algorithms, thereby reducing the amount of traceable user data.

8.5.4 Key Takeaways for GDPR Compliance and This System

Based on the aforementioned points, here are some critical guidelines for this
project to ensure GDPR compliance:

• Secure user consent before any data collection.
• Establish a valid purpose for data storage. If the data does not contribute to

research or control algorithms, consider if its storage is necessary.
• Ensure that the use of data remains consistent with the initial project scope.

The project’s objective is to provide users with better control algorithms
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for their smart appliances, which should be the primary reason for data
collection.
• Enable the system to provide all personal data to users and offer the option

to delete all personal data.
• Minimize the collection of personally identifiable data, such as location or

personal details.

8.6 Managing Downtime in a Continuously Online Smart-
home System

A critical aspect to consider in this system is its reliance on continuous online con-
nectivity. If either the server or individual vendor APIs experience downtime, the
system’s functionality could be significantly disrupted. For example, if a vendor’s
API becomes temporarily unavailable, access to the corresponding device will be
interrupted, and no data logging or control commands will be possible until the
API service resumes. Similarly, unexpected API updates by a vendor could tempor-
arily hinder device access. It is essential to acknowledge these potential scenarios
as inevitabilities in the system design.

The system is engineered to prioritize user-friendliness and ease of installa-
tion, which necessitates certain compromises compared to a wholly local system.
For instance, a persistent internet connection is mandatory for the system to op-
erate effectively. The same requirement applies to individual smart devices that
users integrate into the system, such as the Sensibo heat pump controller, which
relies on an active internet connection. If a network outage occurs, users can still
manually control devices using their respective remote controls.

A key strength of this system lies in its compatibility with multiple existing
solutions. This interoperability provides users with alternate control options in the
event of system downtime—a notable advantage over more monolithic systems,
where technician intervention may be needed to rectify malfunctions. Addition-
ally, diversifying device vendors within the system can reduce the probability of
complete system downtime. However, should a complete internet outage occur,
all smart devices would become non-functional—an unavoidable limitation of a
system of this nature.

During an internet outage, the system reverts to a standard house setup, with
all devices available for manual control. The impact on user experience under
these circumstances is most likely relatively minimal. The crucial factor here is
timely user notification of the downtime to maintain awareness of the system
status. However, some control could still be maintained, if schedules are sent to
the actuators in question. If a heat pump for instance receives the schedule for the
MPC and the system goes down, the heat pump can continue on this schedule until
another input is sent over. Based on the uptime found in Table 7.2, the devices
are not often down for long, and would probably result in downtime that users
might not even notice, as the schedules continue running.
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Power outage

An illustrative example of this occurred during the semester when a power out-
age at NTNU temporarily disabled the server. Although the server successfully
rebooted with all credentials intact once power was restored, such incidents un-
derscore the inevitability of downtime events. To mitigate this, introducing re-
dundancy into the system is crucial.

One potential solution involves physically adding another server in a geo-
graphically distinct location. To be more specific, this location has to be in a differ-
ent power and communications network, to fully ensure redundancy. This second-
ary server could serve as an additional Kubernetes cluster linked to the primary
one, ready to share the workload in the event of an outage. However, this approach
introduces complexities around user credential storage. Should credentials be rep-
licated across all servers to enhance redundancy, or would this approach pose an
unacceptable security risk? The decision is not straightforward and would bene-
fit from rigorous testing. In systems like this, it might sometimes be prudent to
sacrifice some reliability in favour of enhanced security.

8.7 A step towards achieving the UN Sustainability goals

In this section, we discuss the contribution of our scalable system for smart-home
IoT devices to the United Nations Sustainable Development Goals (SDGs). Spe-
cifically, we identify four SDGs that our system primarily addresses:

8.7.1 SDG 7: Affordable and clean energy

Our system actively supports SDG 7 by optimizing energy consumption through
the integration of smart IoT devices in residential settings. By intelligently man-
aging energy usage, our system effectively increases overall energy efficiency and
contributes to the broader goal of providing access to affordable, reliable, sustain-
able, and modern energy for all. As a result, the system reduces the demand for
energy, minimizing reliance on fossil fuels and promoting the adoption of cleaner,
more sustainable energy sources.

8.7.2 SDG 11: Sustainable Cities and Communities

Our system plays a vital role in fostering sustainable cities and communities (SDG
11) by enhancing resource efficiency, reducing energy consumption, and improv-
ing the overall quality of life in urban areas. With the potential for our system to
enable houses to collaborate in the future, we expect to see increased resilience
within communities and the development of a more sustainable built environ-
ment.
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8.7.3 SDG 12: Responsible Consumption and Production

By utilizing open APIs and sensor data to intelligently control smart pumps and
ventilation systems, our system actively encourages responsible consumption and
production patterns (SDG 12). It does so by minimizing waste and promoting
more efficient resource utilization, which aligns with the broader objective of
achieving sustainable consumption and production patterns. Using existing devices,
rather than requiring new installations, promotes responsible consumption and
production.

8.7.4 SDG 13: Climate action

Our system’s contribution to reducing energy consumption and promoting the
use of clean energy sources directly impacts SDG 13, which focuses on climate
action. By enhancing energy efficiency and diminishing the reliance on fossil fuels,
our system plays a role in combating climate change and mitigating its impacts.
Furthermore, as our system evolves to enable houses to work together, its potential
contribution to large-scale climate mitigation efforts could become increasingly
significant.

8.8 Ontological Considerations in Device Correlation and
Data Naming

A significant challenge that surfaces within this system is the issue of ontology—the
classification and organization of information. In this case, it pertains to how dif-
ferent devices, such as a varying number of sensors and actuators within a house,
are connected and correlated.

The problem at hand can be articulated as follows: if a house is equipped with
multiple climate sensors and heat pumps distributed across several rooms, how
should these devices be linked? Furthermore, how should their data be correlated
to form meaningful insights?

One potential solution to address this problem involves utilizing a graphical
interface. Users can employ this interface to group devices based on their physical
location, thereby establishing connections between sensors (devices that collect
data about the environment) and actuators (devices that perform actions based
on the sensor data). In this context, the sensors can be linked to the actuators
according to their respective locations.

The system can further enhance this user-defined grouping by employing data
analysis to verify the connections. If data patterns suggest that a particular sensor
and actuator are not interacting as expected (for example, if a heat pump is com-
manded to alter the temperature, but the associated sensor registers no change),
the system could alert the user to a potential mismatch.

The system also faces challenges in the nomenclature of database groupings
and individual measurement fields. This variation in naming conventions for gen-
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eral measurements might lead to complications in the future as more devices are
added, with various different measurements available. Hence, it is crucial to strive
for measurement names that are as general and reusable as possible, aiding sub-
sequent development. If a more appropriate or universal naming scheme is identi-
fied in the future, changing the current names is an option, albeit one that would
necessitate some manual management.





Chapter 9

Conclusion

This thesis has explored methods of creating a more scalable data retrieval system
on a larger scale, utilizing off-the-shelf IoT devices with an internet connection.
The collected data is stored in a central location that is readily accessible, facil-
itating more informed decision-making processes and providing opportunities to
complete control loops. Furthermore, the system serves as a hub for data science,
enabling users to glean more information from the data they receive.

In practice, the system can accumulate data from numerous houses, with the
capacity to seamlessly add more. The data becomes immediately available and
can be retrieved either remotely for research and development purposes or via a
processing node operating on the server for a production setup. The system has
demonstrated significant fault tolerance, reducing the need for user intervention.
This is particularly beneficial as it is unrealistic to expect someone to monitor
its functioning consistently. Thus, the system becomes a valuable tool for various
research tasks within the group, delivering data in an easily digestible format. It
was also shown in practice that a control loop could be implemented by retrieving
the logged data from the system, doing calculations on it and sending inputs back
into these IoT devices.

However, the system does have certain limitations, primarily its complexity.
Given its broad functionality, a degree of knowledge is necessary to operate and
develop it further. There is a risk of the system being discontinued as new students
seek to engage with it. To mitigate this issue, substantial effort has been devoted
to creating a comprehensive user guide, as documented in Chapter 6. The hope
is that new tools can be integrated into the existing system, extending its lifespan
and usability. The system’s modularity is a noteworthy advantage in this regard, as
it allows for replacing components that do not meet requirements while preserving
the rest of the system.

9.1 Future Work

The system presented in this thesis, which took inspiration from a previous mas-
ter’s project [1], could be further refined by subsequent contributors. The system
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is designed with modularity and scalability in mind, paving the way for future de-
velopers to adapt and expand upon it. The following aspects present possibilities
for future enhancements and developments of this system.

Device Integrations and Control Mechanisms:

• Increase the number of device integrations and verify their logging capab-
ilities to broaden system adaptability.
• Design a universal method for actuator control to facilitate the use of con-

trol algorithms across a wide set of actuators. This could, for instance, be a
universal method of controlling heating systems.

User Experience Improvements:

• Create a frontend to make the system usable for normal users.
• Let users map room sensors in their homes and associate them with corres-

ponding heat pumps to simplify system setup and increase intuitiveness.

System Performance and Security:

• Assess and optimize existing device integrations for performance, poten-
tially rewriting them in a less memory-intensive language.
• Emphasize system security by implementing encryption at rest to protect

sensitive credentials.
• Strengthen Kubernetes access controls for enhanced system security.

Compliance and User Management:

• Achieve full GDPR compliance by integrating a "Retrieve all my data" fea-
ture.
• As it stands, new users must be added by an admin to prevent bot infilt-

ration and unauthorized access during this development phase. Therefore,
creating an interface for user registration is a crucial next step. Including
sending emails to confirm users and sending crucial information about the
state of their devices.

Data Analysis:

• Investigate data analysis capabilities to provide system users with valuable
insights and identify meaningful trends in user data. This could be to estim-
ate the heating dynamics of individual homes to provide additional value to
the system and its users.
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Appendix A

InfluxDB Python example code

import influxdb_client
from influxdb_client.client.write_api import SYNCHRONOUS
from influx_database_tools import (

measurement_structure_to_dict,
get_measurements,
database_to_dict,

)
import time

bucket = "HouseData"
org = "powiot"
token = "<ADD-TOKEN-HERE>"

# This instance may change, as long as we don't have a static address for the server
url = "https://influx.powiot.no"

# Intro to flux queries at
# https://docs.influxdata.com/influxdb/cloud/query-data/get-started/query-influxdb/

def get_values_from_flux_table(tables):
values = []
for table in tables:

for record in table.records:
values.append(record.values["_value"])

return values

def get_measurements(bucket: str, org: str, client: influxdb_client):
# If you want to see avaialble measurements in a bucket, use the following query
query_available_measurements = f"""
import \"influxdata/influxdb/schema\"
schema.measurements(bucket: \"{bucket}\")
"""

# print(f"Query: \n {query_available_measurements}")
query_api = client.query_api()
result = query_api.query(org=org, query=query_available_measurements)
return get_values_from_flux_table(result)
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def get_fields_for_measurement(
measurement_name: str, bucket: str, org: str, client: influxdb_client

):
query_available_fieldkeys = f"""
import \"influxdata/influxdb/schema\"
schema.measurementFieldKeys(

bucket: \"{bucket}\",
measurement: \"{measurement_name}\"

)
"""
query_api = client.query_api()
result = query_api.query(org=org, query=query_available_fieldkeys)
return get_values_from_flux_table(result)

def get_tag_keys_for_measurement(
measurement_name: str, bucket: str, org: str, client: influxdb_client

):
# List tag keys for that same measurement

standard_tags = ["_start",
"_stop",
"_field",
"_measurement",
"_time",
"house_id"
]

query_available_fieldkeys = f"""
import \"influxdata/influxdb/schema\"
schema.measurementTagKeys(

bucket: \"{bucket}\",
measurement: \"{measurement_name}\"

)
"""
query_api = client.query_api()
result = query_api.query(org=org, query=query_available_fieldkeys)
available_tags_in_measurement = []
for table in result:

for record in table.records:
value = record.values["_value"]
if value not in standard_tags:

available_tags_in_measurement.append(value)
return available_tags_in_measurement

def get_tag_key_values_for_measurement(
measurement_name: str, bucket: str, org: str, tag: str, client: influxdb_client

):
# List tag keys for that same measurement
query_available_fieldkeys = f"""
import \"influxdata/influxdb/schema\"
schema.measurementTagValues(

bucket: \"{bucket}\",
measurement: \"{measurement_name}\",
tag : \"{tag}\"

)
"""
query_api = client.query_api()
result = query_api.query(org=org, query=query_available_fieldkeys)
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return get_values_from_flux_table(result)

def measurement_structure_to_dict(
bucket: str, org: str, measurement: str, client: influxdb_client

):
"""
Gets a dict structure of a single measurement.
"""
measurement_to_dict = {}
measurement_to_dict[measurement] = {}
measurement_to_dict[measurement]["fields"] = get_fields_for_measurement(

measurement, bucket, org, client
)
available_tags = get_tag_keys_for_measurement(measurement, bucket, org, client)
available_house_ids = get_tag_key_values_for_measurement(

measurement, bucket, org, "house_id", client
)
measurement_to_dict[measurement]["tags"] = {}
measurement_to_dict[measurement]["tags"]["house_id"] = {}
for house_id in available_house_ids:

measurement_to_dict[measurement]["tags"]["house_id"][house_id] = {}
for tag in available_tags:

measurement_to_dict[measurement]["tags"]["house_id"][house_id][
tag

] = get_tag_values_for_house_by_measurement(
measurement, bucket, org, house_id, tag, client

)
return measurement_to_dict

def database_to_dict(bucket: str, org: str, client: influxdb_client):
"""
Gets a total dict structure of the entire database, may take some time to run.
"""
available_measurements = get_measurements(bucket, org, client)
measurement_to_dict = {}
for measurement in available_measurements:

measurement_to_dict.update(
measurement_structure_to_dict(bucket, org, measurement, client)

)
print("Done with measurement: ", measurement)

return measurement_to_dict

def get_tag_values_for_house_by_measurement(
measurement_name: str,
bucket: str,
org: str,
house_id: str,
tag: str,
client: influxdb_client,

):
# List tag keys for that same measurement
query_available_fieldkeys = f"""
import \"influxdata/influxdb/schema\"
schema.tagValues(
bucket: \"{bucket}\",
tag: \"{tag}\",
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predicate: (r) => r["house_id"] == \"{house_id}\" and
r["_measurement"] == \"{measurement_name}\"
)
"""
query_api = client.query_api()
result = query_api.query(org=org, query=query_available_fieldkeys)
return get_values_from_flux_table(result)

client = influxdb_client.InfluxDBClient(
url=url,
token=token,
org=org,

)

# To get the available measurements use this function
available_measurements = get_measurements(bucket, org, client)
print("------------------")
print("Available measurements: ", available_measurements)
print("------------------")
measurement = available_measurements[0] # Picking the first measurement

""" To get the entire structure
database = database_to_dict(bucket, org, client)
print(database)
"""

start_time = time.time() # For timing the function

database = database_to_dict(bucket, org, client)
print("------------------")
print("Getting entire structure took %s seconds" % (time.time() - start_time))

print("------------------")
print("Database structure:", database)
print("------------------")

start_time = time.time() # For timing the function
database_single_measurement = measurement_structure_to_dict(

bucket, org, measurement, client
)
print("Getting single measurement took %s seconds" % (time.time() - start_time))
print("------------------")

print("Database structure for single measurement:", database_single_measurement)
print("------------------")

field = database[measurement]["fields"][0] # Picking the first field
print("Measurement: ", measurement)
print("Field: ", field)
house_id = list(database[measurement]["tags"]["house_id"].keys())[

0
] # Picking the first house_id
print("House id: ", house_id)

print("------------------")
# Querieing the database based on the above information
query = f"""from(bucket:\"{bucket}\")
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|> range(start: -20m)
|> filter(fn:(r) => r._measurement == \"{measurement}\")
|> filter(fn:(r) => r._field == \"{field}\")
|> filter(fn:(r) => r.house_id == \"{house_id}\")
"""
# Here I just take the last element of the time series,
# but you can do other things as well, or just remove it.

print(f"Query: \n {query}")

query_api = client.query_api()
result = query_api.query(org=org, query=query)

# To convert it into i.e a dictionary, do the following
results = {}
results[measurement] = {}
for table in result:

for record in table.records:
location = record.values["location"]
# This is the field that groups the data
if location not in results[measurement]:

results[measurement][location] = {}
results[measurement][location]["field"] = record.get_field()
results[measurement][location]["time"] = []
results[measurement][location]["value"] = []

results[measurement][location]["time"].append(record.get_time())
results[measurement][location]["value"].append(record.get_value())

print(results)





Appendix B

Backend API overview

Table B.1: Endpoint for POST /api/auth/login/

Field Value

Method GET /api/auth/login

Description Logs into the backend.

Headers Content-Type: application/JSON

Parameters None

Responses 200: Success, logged in.
400: Bad request, invalid login.

Request body:

{
"username" : "string",
"password" : "string"

}

Table B.2: Endpoint for POST /api/auth/logout/

Field Value

Method GET /api/auth/logout

Description Logs out of the backend.

Headers Content-Type: application/JSON

Parameters None

Responses 200: Success, logged out.
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Table B.3: Endpoint for GET /api/devices/

Field Value

Method GET /api/devices/

Description Gets a list of all current device integrations.

Headers Content-Type: application/JSON

Parameters None

Responses 200: Success, list of device integrations.
403: Unauthorized access, user not logged in.
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Table B.4: Endpoint for POST /api/devices/

Field Value

Method POST /api/devices/

Description Creates a new device

Headers Content-Type: application/JSON

Parameters None

Responses 200: Success, added device integration.
400: Bad request, bad data.

Request body:

{
"name": "string",
"docker_hub_image": "string",
"required_fields": [

"string"
],
"database_group_name": "string"

}

Table B.5: Endpoint for GET /api/devices/{device_id}

Field Value

Method GET /api/devices/{device_id}

Description Gets information about a specific device based on its id.

Headers Content-Type: application/JSON

Parameters {device_id}→ id of device

Responses 200: Success, data about that device
404: Not found
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Table B.6: Endpoint for DELETE /api/devices/{device_id}

Field Value

Method DELETE /api/devices/{device_id}

Description Deletes a specific device integration based on its id.

Headers Content-Type: application/JSON

Parameters {device_id}→ id of device

Responses 200: Success, deleted device
404: Not found

Table B.7: Endpoint for PATCH /api/devices/{device_id}

Field Value

Method PATCH /api/devices/{device_id}

Description Updates an existing device integration.

Headers Content-Type: application/JSON

Parameters {device_id}→ id of device

Responses 200: Success, data updated
404: Not found
400: Bad request

Request body has to include at least one of the following:

{
"name": "string",
"docker_hub_image": "string",
"required_fields": [

"string"
],
"database_group_name": "string"

}
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Table B.8: Endpoint for POST /api/devices/{device_id}/update/

Field Value

Method POST /api/devices/{device_id}/update

Description Updates the image of all running pods with the selected device
id.

Headers Content-Type: application/JSON

Parameters {device_id}→ id of device

Responses 200: Success, images updated
404: Not found
204: No content, no house has that device.

Table B.9: Endpoint for GET /api/houses/

Field Value

Method GET /api/houses/

Description Gets a list of all houses under the current user, admin gets all
houses.

Headers Content-Type: application/JSON

Parameters None

Responses 200: Success, list of houses.
403: Unauthorized access, user not logged in.

Table B.10: Endpoint for GET /api/houses/{house_id}

Field Value

Method GET /api/houses/{house_id}

Description Gets information about the selected house using its id.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house

Responses 200: Success, information about the house.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.
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Table B.11: Endpoint for DELETE /api/houses/{house_id}

Field Value

Method DELETE /api/houses/{house_id}

Description Deletes the selected house using its id.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house

Responses 200: Success, information about the house.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.

Table B.12: Endpoint for GET /api/houses/{house_id}/devices

Field Value

Method GET /api/houses/{house_id}/devices

Description Lists all devices for a selected house, by id.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house

Responses 200: Success, list of devices for house with id.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.

Table B.13: Endpoint for GET /api/houses/{house_id}/devices/{devices_id}

Field Value

Method GET /api/houses/{house_id}/devices/{devices_id}

Description Shows data about a device based on house id and device id.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house
{device_id}→ id of the device

Responses 200: Success, data about device.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.
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Table B.14: Endpoint for GET /api/houses/{house_id}/devices/{devices_id}/count/{count}

Field Value

Method GET /api/houses/{house_id}/devices/{devices_id}/{count}

Description Shows data about a device based on house id, device id and
count.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house
{device_id}→ id of the device
{count} → numbering of the device, usually 0 unless there are
multiples of same device in a house.

Responses 200: Success, data about device.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.

Table B.15: Endpoint for DELETE /api/-
houses/{house_id}/devices/{devices_id}/count/{count}

Field Value

Method DELETE /api/houses/{house_id}/devices/{devices_id}/

Description Deletes a device based on house id, device id and count. This
will delete it from the database as well as shut down the pod in
kubernetes

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house
{device_id}→ id of the device
{count} → numbering of the device, usually 0 unless there are
multiples of same device in a house.

Responses 204: No content
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.
404: Not found.
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Table B.16: Endpoint for POST /api/houses/{house_id}/devices/{devices_id}/count/{count}/restart

Field Value

Method POST /api/houses/{house_id}/devices/{devices_id}/count/{count}/restart

Description Restarts a device based on house id, device id and count. This
will restart the kubernetes pod linked to this instance.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house
{device_id}→ id of the device
{count} → numbering of the device, usually 0 unless there are
multiples of same device in a house.

Responses 200: Device restarted.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.
404: Not found.

Table B.17: Endpoint for POST /api/houses/{house_id}/devices/{devices_id}/data

Field Value

Method POST /api/houses/{house_id}/devices/{devices_id}/data

Description Retrieve data about the specified device for that house. Automat-
ically scales the resolution of data based on timeframe to avoid
overloading the system.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house
{device_id}→ id of the device

Responses 200: Success, with accompanying data.
403: Unauthorized access, user not logged in, or doesn’t have
access to that house.
404: Not found.

Request body has to include at least field and start, and in the time format
below:

{
"field": "string - name of measurement field",
"start": "2023-04-20T10:00 - string in ISO format",
"end": "2023-04-20T11:00 - string in ISO format",

}
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Table B.18: Endpoint for POST /api/houses/{house_id}/devices/{devices_id}/new

Field Value

Method POST /api/houses/{house_id}/devices/{devices_id}/new

Description Boots up new device under the selected house.

Headers Content-Type: application/JSON

Parameters {house_id}→ id of the house
{device_id}→ id of the device

Responses 200: Device started.
401: Unauthorized access, user not logged in, or doesn’t have
access to that house.
404: Not found.

Request body has to include all the fields required from the devices list of
required fields

{
"required_field_1": "string",
"required_field_2": "string",
"...": "...",

}

Table B.19: Endpoint for POST /api/houses/new

Field Value

Method POST /api/houses/new

Description Creates a new house under the current user.

Headers Content-Type: application/JSON

Parameters None

Responses 200: House created.
401: Unauthorized access, user not logged in.
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Table B.20: Endpoint for GET /api/users/

Field Value

Method GET /api/users/

Description Lists the current user, or if admin lists all users.

Headers Content-Type: application/JSON

Parameters None

Responses 200: Success and list of users.
400: Bad request.

Table B.21: Endpoint for POST /api/users/new

Field Value

Method POST /api/users/new

Description Creates a new user, currently only admin users can create new
users to limit access to the system.

Headers Content-Type: application/JSON

Parameters None

Responses 201: User created.
400: Bad request.

Request body:

{
"username": "string",
"password": "string",
"email": "string",

}
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