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A B S T R A C T

Temporal computed tomography, dynamical computed tomography, or just 4D-CT,
is an X-ray imaging technique where dynamical processes can be resolved in three
dimensions over time. However, CT is a technique that requires many sampled pro-
jections in order to produce reconstructions of high quality. Consequently, the achiev-
able temporal resolution is low. Therefore, in order to extract the maximal amount of
valuable insights from a temporal CT scan, it is imperative that one has the ability
to prioritise between temporal and spatial resolution in the post-processing of the
data. Then, it would be possible to reconstruct with high spatial resolution when the
dynamical process allows for it, and sacrifice this resolution when spatial undersam-
pling is required to resolve the dynamical process. In the latter case, there is a great
demand for innovative methods for minimising the mentioned sacrifice. A technique
that enables both the mentioned properties would be vital in multiphase flow studies
in porous media, where insights could increase the oil recovery factor from reser-
voirs, and accelerate the transition towards carbon-neurality through carbon capture
and storage (CCS) technologies.

In this master’s thesis, a temporal CT technique based on golden ratio sampling
and undersampled reconstruction enhancement was developed. The motivation be-
hind this technique was, as mentioned, to enable laboratory 4D-imaging with reso-
lution flexibility a posteriori. The spatial resolution could be given lower priority due
to the enhancing and denoising abilities of a diversely trained three-dimensional con-
volutional generative adversarial network (GAN), which aimed at removing under-
sampling artefacts from CT reconstructions. With the derived technique, a dynamical
CT scan of an ordinary hourglass was performed, as well as a static CT scan of a
cracked cylindrical sandstone sample. The optimal performance of the trained GAN
was found to be 52 projections for the hourglass sample, resulting in a mean structural
similarity index (MSSIM) of approximately 0.80. In terms of Fourier shell correlation
(FSC), the performance was as good as for twice the number of projections. From
a human perception point of view, this number of projections resulted in nearly no
undersampling artefacts after GAN-enhancement. The maximal temporal resolution
tested was 26 s, which captured the sand-air interface with minor dynamical artefacts.
The GAN struggled with distinguishing between undersampling artefacts and the ac-
tual features of the sandstone sample. However, improved results were achieved by
employing the SIRT algorithm, training using the true sandstone probability distri-
bution, and by training with a batch size of 4. In these cases, the resulting MSSIM
was approximately 0.63 for 85 projections with the FDK algorithm. The same result
was achieved when using 150 iterations and 34 projections of the SIRT algorithm
in addition to a GAN trained with the true sandstone probability distribution. The
GAN was observed to remove high-frequent noise and perform contrast enhancement
when trained on FDK reconstructions, while it recovered contrast from blurring when
trained on SIRT reconstructions. Proposed development of the GAN included train-
ing at elevated undersampling artefacts, adjustments to the generality of the dataset,
hyperparameter tuning, and adaptation of the architecture to include sinogram data.
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S A M M E N D R A G

Temporal datatomografi, dynamisk datatomografi, eller bare 4D-CT, er en røntgenav-
bildningsteknikk hvor tredimensjonale dynamiske prosesser kan avbildes. Ulempen
med CT er de mange projeksjonene som kreves for å rekonstruere tredimensjonale
modeller av høy kvalitet. Dermed blir den oppnåelige tidsoppløsningen lav ved høy
romlig oppløsning. Derfor er det avgjørende å ha en teknikk som gir fleksibilitet i
valget mellom tids- og romlig oppløsning etter datatomografiopptak. Dette ville mu-
liggjøre rekonstruksjoner med høy romlig oppløsning når den dynamiske prosessen
tillater det, og rekonstruksjoner med høy tidsoppløsning fremfor romlig oppløsning
når den dynamiske prosessen krever det. Etterspørselen er stor etter teknikker som
minimerer konsekvensene av underoppløsning i datatomografi. En teknikk som for-
bedret dynamisk datatomografi i disse henseende ville være særdeles viktig i studier
av strømning i porøse medier. Innsikt fra slike studier kan øke oljeutvinningseffekti-
viteten fra reservoarer og akselerere utviklingen av karbonfangst og -lagring.

I denne masteroppgaven ble det utviklet en teknikk for dynamisk datatomografi.
Motivasjonen bak teknikken var å muliggjøre 4D billedtagning med fleksibel tids-
og romlig oppløsning. Teknikken baserte seg på de spesielle egenskapene til det gyl-
ne snitt, samt maskinlærte rekonstruksjonsforbedringsfilter for underoppløste volum.
Tidsoppløsning kunne dermed prioriteres over romlig oppløsning i datatomografi-
opptak på grunn av nettopp dette maskinlærte, tredimensjonale, generative motset-
ningsnettverket (GAN), som hadde som mål å fjerne artefakter fra underoppløste
rekonstruksjoner. Den utviklede teknikken ble testet på den dynamiske prosessen
i et timeglass, samt på en sprukket sandsteinprøve uten dynamikk. Det generative
motsetningsnettverket fungerte best på rekonstruksjoner bestående av 52 projeksjo-
ner for timeglasset. Da ble den midlere strukturelle likheten (MSSIM) lik 0.8, og den
fouriertransformerte korrelasjonen (FSC) var like god som for rekonstruksjoner bestå-
ende av dobbelt så mange projeksjoner. Fra et menneskelig perspektiv var det nesten
ingen underoppløsningsartefakter i filtrerte rekonstruksjoner med dette antallet pro-
jeksjoner eller flere. Den maksimale tidsoppløsningen som ble testet var på 26 s, der
grensesnittet mellom sand og luft ble fanget med mindre dynamiske artefakter. Re-
konstruksjonsforbedringsfilteret fungerte ikke like godt på sandsteinprøven. I dette
tilfellet var det vanskelig å skille mellom underoppløsningsartefakter og signal. Bedre
resultater ble imidlertid oppnådd ved å trene basert på SIRT-data, trene med sand-
steinens sanne sannsynlighetsfordeling og ved å beregne gradientene ut fra en parti-
størrelse på fire. I disse tilfellene ble en MSSIM på 0.63 oppnådd. Dette gjaldt både
ved 85 projeksjoner med FDK-algoritmen og ved 34 projeksjoner, 150 iterasjoner med
SIRT-GAN. I tilfeller der treningsdatasettet besto av FDK-rekonstruksjoner, fjernet det
generative nettverket høyfrekvent støy, og forbedret kontrasten, mens utsmørte kon-
traster ble gjenopprettet etter at nettverket hadde blitt trent på SIRT-rekonstruksjoner.
Foreslått videre utvikling av modellen gikk ut på å trene nettverket med kraftigere
underoppløsningsartefakter, samt å justere generaliteten i treningsdatasettet. I tillegg
var hyperparameter-justering og arkitekturtilpasninger mulige løsninger, blant annet
ved å inkludere sinogrammet som inndata til nettverket.
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0.1 introduction 1

0.1 introduction

The launch of ChatGPT [39] marked the entry of advanced language models into ev-
eryday life. Overnight, interactions with advanced artificial intelligence (AI) became
a common way of obtaining information, just like searching the web. Businesses were
forced to assess the impact of this launch, and figure out how to best enhance their
own performance utilising this new technology. The drift towards artificial intelli-
gence is also apparent within academia, mainly through the use of machine learning
and deep neural networks in research [63]. The field of physics poses countless opti-
misation problems where machine learning can be the key to unlocking new insights
through enabling innovative techniques. Computed tomography (CT) is one field
within physics where the progress made in computer vision is easily applicable, and
can be inherited and adapted effortlessly [63].

CT is a widely known 3D imaging technique that exploits the penetrating power of
X-rays to sample 2D projections of an object from many azimuthal angles [22]. From
the sampled projections, a 3D reconstruction of the object can be computed. This tech-
nique is highly applicable for nondestructive characterisation of material’s internal
structures, such as microporous structures imaged using micro-CT [1]. Furthermore,
several CT reconstructions sampled in series can capture internal dynamics within
an object, and is referred to as temporal CT, dynamical CT, or just 4D-CT because
of the added time dimension. With this technique, experiments involving advanced
dynamical processes can be performed, where the development of fluid phases can
be tracked through time, and thereby provide insights to multiphase flow in porous
media [1]. This is a field of research of particular interest to both the industry and
academia. Equinor ASA, previously the Norwegian state oil company Statoil, has a
keen interest in temporal CT, as insights from dynamical CT experiments can improve
the oil recovery factor in their reservoirs. Moreover, just like computer vision has been
directly applicable to CT, experiences from temporal CT techniques and dynamical
experiments can be directly transferred to the low-carbon transition in an effort to
accelerate the development of carbon capture and storage (CCS) technologies. CCS
is a key component for achieving a carbon-neural industry, and studies of CO2 en-
capsulated in porous media under high pressure are of particular importance for the
technology [28]. However, the temporal CT technique is not without its challenges.
In order to produce high-quality reconstructions, the number of projections must be
high. Consequently, the scan time is long, and important dynamical processes are not
captured due to a low temporal resolution.

In this master’s thesis, a temporal CT technique based on golden ratio sampling
and undersampled reconstruction enhancement is developed. The motivation for this
work is to enable laboratory 4D-imaging with flexibility in the choice between tem-
poral and spatial resolution, and to push the theoretical limit of undersampling. To
elaborate, with the proposed scanning technique, one is able to find a suitable com-
promise between temporal and spatial resolution in the post-processing of the data,
a posteriori. Then, the spatial resolution can be enhanced by applying a conditional
generative adversarial network (cGAN) [36], which through supervised adversarial
training [20] can account for streaking artefacts and noise associated with undersam-
pled CT reconstructions. With the derived technique, a simple dynamical experiment
of an hourglass is performed as an initial demonstration of application. For this sam-
ple, the achievable temporal resolution for the sample is determined, and the effect of
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the GAN-enhancement is evaluated. Further assessment of the GAN is performed by
evaluating its performance on a more complex sample, namely a cracked cylindrical
sandstone. As this is the very beginning of the collaboration between Equinoir ASA
and NTNU, several other tests are performed to increase the initial understanding
of the derived technique. Experimentation with transfer learning, loss functions, dif-
ferent datasets, and different network architectures are performed for the purpose of
optimisation.



Part I

R E V I E W O F T H E L I T E R AT U R E





1
C O M P U T E D T O M O G R A P H Y

Computed Tomography (CT) is an X-ray imaging technique were a 3D model is recon-
structed from a series of 2D projections. Small Angle X-ray Scattering Tensor Tomog-
raphy (SAXSTT) is one type of CT, which was the topic of the project thesis preceding
this master’s thesis. Therefore, much of the literature review in this chapter is directly
retrieved from the research conducted in the project thesis. Notices of this will also
be made in sections where this is the case.

1.1 x-ray radiation

X-ray radiation was thoroughly covered in the mentioned project thesis on SAXSTT,
and is therefore included as is in this section. For a quantum mechanical introduc-
tion to the topic of X-ray absorption, see Appendix A. In the project thesis, X-rays
were defined to be electromagnetic waves with energy in the orders of keV. Planck’s
Equation,

E =  hω = 2π h
c

λ
, (1.1)

relates the energy of a photon E to the angular frequency ω or wavelength λ of the
corresponding electromagnetic wave. c = 2.997 92× 108 m/s is the speed of light. The
other constant is the reduced Planck’s constant  h = 1.0543× 10−34 Js [5]. Whence,
X-rays typically have wavelengths in the sub-nanometer range.

Excitation and acceleration are the most common phenomena where X-ray radia-
tion occurs. X-ray radiation from excitation, called Characteristic X-ray radiation, occurs
when a highly energetic electron collides into a target atom. The accelerated electron
transfers enough energy to eject an inner-shell electron with energy Ei, and an outer
shell electron with energy Ef lowers its energy-state by filling the vacancy,

Ephoton = −∆E = −(Ef − Ei). (1.2)

Due to conservation of energy, this process causes emission of a photon, as de-
scribed in Equation (1.2). As the atomic energy levels are discrete, this process gives
rise to a spectrum of discrete X-ray emission lines.

Additionally, scattering events occur when electrons pass through an anode ma-
terial. These events accelerate the electrons in new directions, and X-rays known as
Bremsstrahluhng are emitted.

1.2 mathematical description

In a continuation of the previous section, the mathematical description of CT was
also investigated in the project thesis, and is included in this section. The quantum
mechanical description of X-ray absorption described in Appendix A was simplified

5
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by the attenuation coefficient µ(ν). The X-ray intensity I as a function of penetration
depth is then given from Beer-Lambert’s law,

I(s) = I(0) exp(−
∫s
0

µ(ν)dν), (1.3)

where s is the thickness of the sample, and I(0) is the initial intensity. The spectral
dependence µ(ν) is here neglected, as it often is, as the beam is assumed to be almost
fully monochromatic [7]. This assumption results in beam hardening, which is an
artefact that will be explained in below in Section 1.4. A simple manipulation of the
expression gives the projection line integral

p(s) = − ln(
I(s)

I(0)
) =

∫s
0

µ(ν)dν. (1.4)

The projection line integral in Equation (1.4) is closely related to the Radon trans-
form of an object function f(x,y) for a single orientation θ [62]. Confidence in this
statement may be achieved by comparing Equation (1.4) with a single-angle Radon
transform,

pθ(r) =

∫∞
−∞ f(r,ν)dν. (1.5)

Collected Radon transform data is called a sinogram, and is used to reconstruct the
original object function f(x,y) [18].

An example of a sinogram, calculated for a cross section image of a walnut, is
shown in Figure 1.1. The image was retrieved by performing CT on a walnut at the
Technical University in Munich.

Figure 1.1: The cross section of a walnut, and the corresponding sinogram. The sinogram was
calculated by performing the Radon transform for 360 different angles using the
skimage-package in Python.

The key in computed tomography is to determine the spatial dependency of the
attenuation coefficient µ(r). By sampling many projections, meaning line integrals
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from different orientations, data necessary to reconstruct a three-dimensional image
is collected. For a given cross section of the sample f(x,y), the detected intensity is
plotted as a function of projection number and detector number, thereby creating a
sinogram. By utilising this sinogram and the Fourier slice theorem, the object f(x,y)
may be determined by other means than computing the full inverse Radon transform.

The Fourier slice theorem states that the Fourier transform of a projection is a slice
of the 2D Fourier Transform of the region from which the projection was obtained
[18]. Consequently, the full 2D Fourier transform F(ωx,ωy) of an object f(x,y) can
be constructed from a series of 1D Fourier transforms P(ω) of projections p(s) with
different orientations [62]. In other words, the Fourier transform of a single projection
makes up one angle of the full 2D Fourier transform,

P(θ,ω) = F (ω cos θ,−ω sin θ) . (1.6)

With the fully 2D Fourier transform sampled, the filtered back projection (FBP) al-
gorithm reconstructs the object by forward and inverse Fourier transforms. Firstly, a
sinogram of projections is mapped to frequency space in polar coordinates by subse-
quent 1D Fourier transforms, mathematically described as:

P(θ,ω) =

∫∞
−∞ p(θ, r)e−2πiωrdr. (1.7)

With this the 2D Fourier transform F(u, v) of the object f(x,y) is found. The final
step is an inverse 2D Fourier transform with, for instance, a ramp-filter of |ω| to
account for the radial distribution of points in polar coordinates. This filter is also the
Jacobian of the area integration element in the polar Fourier space. Consequently, the
object function can be expressed as

f(x,y) =
∫π
0

∫∞
−∞ |ω|P(θ,ω)e−2πiω(x cosθ−y sinθ)dωdθ. (1.8)

The Feldkamp-Davis-Kress (FDK) algorithm is a popular implementation of the
FBP algorithm [15] that approximates the three-dimensional divergence of the X-ray
source by a cone, as opposed to a fan, which only describes divergence in two dimen-
sions.

1.3 simultaneous iterative reconstruction technique

The Simultaneous Iterative Reconstruction Technique (SIRT) is an iterative algorithm
in the family of algebraic reconstruction techniques (ART) [29]. The algorithm is
based on the idea of calculating the difference between measured and calculated
projections, where an initial guess of the object function is used to calculate the pro-
jections. After having calculated the difference for all pixels in all projections, each
cell is updated by the average calculated projection difference for the cell. With this,
one iteration is completed, and the process is then repeated until convergence [29]



8 computed tomography

Figure 1.2: A one-dimensional cross section of a CT scan reveals cupping artefacts due to
beam hardening. Because soft X-rays are attenuated faster than more energetic
X-rays, absorption is lower in the centre of the sample, resulting in a cupping in
reconstructed intensity.

1.4 ct artefacts

Artefacts are deviations from the theoretically expected behaviour of a CT system for
projections or reconstructed images. One essential task in the field of CT is to develop
methods to reduce the effects of artefacts. One of the most common artefacts is beam
hardening, which is caused by an increase in mean photon energy as the soft X-rays
are attenuated more than the more energetic radiation. Consequently, Beer-Lambert’s
law in Equation (1.3) is in fact a simplification of the real characteristics of the X-rays
[8]. In addition to attentuation due to penetration depth, the intensity attenuation
is also dependent on the energy of the X-rays, as derived in Equation (A.10) for
the absorption cross section. Hence, there is a non-linearity between the actual X-
ray attenuation and the measured intensity in the projections. The consequences of
beam hardening are shown in Figure 1.2. The first consequence is a cupping artefact
in the centre of the reconstruction, as the mean photon-energy has increased with
the travelled path length, resulting in less attenuation in the centre [8]. Secondly,
streak artefacts will occur between high-attenuating regions for the same reason as
the cupping artefact.

Alisasing, or undersampling, artefacts refer to CT scanning that does not comply
with the Nyquist-Shannon theorem [8]. The Nyquist-Shannon theorem states that the
sampling frequency must be at least twice the highest frequency in the signal. There-
fore, if not enough projections are taken, the Fourier slice theorem cannot be fulfilled
satisfactory. This will result in stripes from the edges of high-attenuating regions in
the reconstructed image. Additionally, there is also a practical understanding of the
undersampling issue. If the desired 3D model has a cylindrical symmetry and a ra-
dius of D

2 voxels, then the circumference of the cylinder is πD voxels. With too sparse
sampling, some voxels on the circumference will therefore not be sampled at all, re-
sulting in a loss of information. A special case of undersampling artefacts is missing
wedge artefacts, which occurs if only a limited angle interval is scanned. Such an arte-
fact is shown in Figure 1.3, where the reconstruction is based upon only 37.5% of the
total revolution.
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Figure 1.3: Missing wedge artefacts in a reconstruction because only 37.5% of the total revo-
lution was sampled. The full 2D Fourier transform is therefore not sampled, and
the Fourier slice theorem (1.6) is not satisfied. In this example, the missing wedge
results in two corners along the edge of the cross section due to the lacking infor-
mation.

Blurring in the reconstruction, as seen in Figure 1.4, is oftentimes caused by having
assumed the wrong axis of rotation (AoR). Even few pixels off the true AoR can cause
severe blurring in the reconstructed image [61]. Therefore, a major part in the post-
processing is to iteratively find the correct AoR by evaluating the sharpness of centre
slice reconstructions for different AoRs. Note, however, that this is just one instance
of a procedure to determine the correct AoR.

Figure 1.4: Misalignment of the axis of rotation causes blurring in the reconstructed image. As
seen in the misaligned reconstruction of the sandstone, numerous double edges
are present around details and at the bounds of the sample.

Finally, ring artefacts are highly recognisable defects caused by defect detector pix-
els. They can be either hot, meaning always on, or cold, meaning always off. Luckily,
these artefacts are easy to remove if the defect pixels are known. In this case, applying
a median filter to the projections at the defect pixel locations should be sufficient to
remove the artefacts.





2
M A C H I N E L E A R N I N G

2.1 introduction

Artificial intelligence (AI) is the broadest term for replicating human intelligence in
machines. The application of AI has exploded in recent years, and is now present in
everyday life as well as in many scientific disciplines. Within AI, machine learning
(ML) is another broad term for machines that recognise patterns in provided data.
The data can typically be used for learning or optimisation, and it can come as raw
or structured data. Moreover, the data can be labelled or unlabelled, meaning that
the data is either already classified or not. Artificial neural networks (ANN) are most
commonly instances of supervised machine learning, where labelled data is used to
enable the network to perform a certain task. Training of networks with many layers
is often referred to as deep learning (DL). Deep neural networks (DNN) are due to
the complexity of the model able to recognise patterns in fully unstructured data
without human intervention or preparation [14].

One of the most prominent fields of machine learning, and especially deep learn-
ing, is computer vision. Computer vision is the field of AI that enables machines to
perform image classification, enhancement, segmentation etc.

The topics of gradient descent and automatic differentiation are two essential parts
of machine learning that were the core of the research conducted in the preceding
project thesis. Therefore, much of the theory regarding these subjects have been re-
trieved from the project thesis.

2.2 gradient descent

Gradient descent is an optimisation algorithm that updates the model’s parameters
based on the gradient of the cost function and the step size α [45]. The cost function
J(θ) is the error of the model across the entire dataset, where the error function of
a single observation is denoted the loss function li(θ). It is important to realise that
even though the dataset is a sufficient representation of the true unknown distribution
P, it is nevertheless only a subset of this distribution [6]. Ultimately, the calculated
gradient ∇θJ(θ) has a certain variance compared to ∇θP(θ). It is therefore said
that machine learning algorithms minimise the empirical risk in an effort to minimise
the generalisation error, or risk [19]. Nevertheless, a step of gradient descent consists
of a forward pass where the empirical risk is calculated, followed by a backward
pass where the gradient of the model is calculated. After each backward pass, the
parameters of the model θ are updated according to the following equation:

θ = θ−α∇θJ(θ). (2.1)

The idea of this algorithm is that by following the gradient of the cost function,
the estimation will converge to the correct solution of the problem, which naturally

11
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results in the minimal error. Gradient descent in parameter space is visualised in
Figure 2.1.

Figure 2.1: A surface plot of the error in parameter space for a model. The trajectory is drawn
to show the path of parameter optimisation based on gradient descent. Notice that
the smooth curve is an indication of many steps with a small step size. An ani-
mation of the process is available at https://github.com/RubenDragland/XRD_CT/
tree/main/Plotting/animations. Both the animation and the plot were retrieved
from the mentioned project thesis.

Oftentimes the optimisation task involves a massive model with millions of pa-
rameters trained on a huge dataset. In this case, calculating the gradient to the cost
function across the entire dataset is a too computationally expensive task. Therefore,
stochastic gradient descent (SGD) is usually employed instead. By calculating the
gradient and performing an update of the model’s parameters based on a single in-
stance of data, often denoted online learning, the model usually learns much faster.
This comes at the cost of noisy updates due to the high variance of the calculated gra-
dients. However, the high variance can be a powerful tool in tackling local minima
in parameter space, which improves the chances of convergence. Therefore, SGD can
result in better solutions even with noisy updates [32]. With that being said, full batch
learning is still employed when the conditions of convergence are required to be un-
derstood, and if it is beneficial to employ accelerated gradient descent techniques,
such as conjugate gradient descent (CGD) or Quasi-Newton methods [47].

A compromise where the variance of the updates are tweaked by including several,
but not all, instances of data per update is called minibatch learning. Consequently,
the minibatch size is introduced as a hyperparameter. A hyperparameter is shortly ex-
plained the human-controlled parameters, or penalty factors, occurring in the model
and during training [41]. Determining the optimal hyperparameters will enhance the
performance of the model, and speed up the training.

Several other hyperparameters are introduced when determining the measures
of loss and optimisers. There are numerous examples of loss measures. The mean

https://github.com/RubenDragland/XRD_CT/tree/main/Plotting/animations
https://github.com/RubenDragland/XRD_CT/tree/main/Plotting/animations
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squared error (MSE) averages the Euclidean distance squared between the prediction
Ŷi and the target Yi as

MSE =
1

n

n∑
i

(
Yi − Ŷi

)2
. (2.2)

This loss measure is typically used in encoder decoder networks, image enhance-
ment algorithms, segmentation algorithms, and generally if the target variable is nu-
meric. The model targets are not necessarily numeric, but can be actual labels. In the
case of two distinct categories, the optimisation task is a binary classifier [26], and the
binary cross entropy loss is typically employed:

BCE =
1

n

n∑
i

[
Yi ln(Ŷi) + (1− Yi) ln(1− Ŷi)

]
. (2.3)

In such a classifier, the target value Yi is either 0 or 1, and the output of the model
is necessarily a probability. To ensure the latter, the Sigmoid activation function,

σ(x) =
1

1+ e−x
, (2.4)

can be exploited so that Ŷ ′
i = σ(Ŷi) ∈ (0, 1], and the resulting updated expression for

the binary cross entropy loss becomes

BCEσ(x) =
1

n

n∑
i

[
Yi ln(σ(Ŷi)) + (1− Yi) ln(1− σ(Ŷi))

]
. (2.5)

Furthermore, during training, the parameter update does not need to be based
entirely on the gradient of the cost function. By updating the parameters using Mo-
mentum [19], an exponentially decaying moving average of past gradients are used
in addition to the current gradient to ensure accelerated learning. The technique is
especially useful in the cases of noisy gradients. As mentioned, this is the case in
online learning, as the gradient is calculated based on a single instance of data, and
not an average of the entire dataset. To ensure a more consistent approach towards
convergence, momentum is used to enhance the direction shared by several consecu-
tive gradients. Correspondingly, momentum will exploit high curvature in parameter
space and series of small but consistent gradients [19]. When introducing momentum
to the optimisation step, the updated gradient descent rule becomes

v = βv −α∇θJ(θ)

θ = θ+ v,
(2.6)

where β is the momentum hyperparameter, and α is the learning rate.
In addition to tweaking the direction of the step, the size of the step can be adjusted.

Here, RMSProp [19] is a well-known technique for adjusting the learning rate by
an exponentially decaying average of the squared gradients. Formally, RMSProp is
implemented as
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g = ∇θJ(θ)

r = ρr + (1− ρ)g ⊙ g

θ = θ−α
g√

r + δ
,

(2.7)

where ρ is the decay rate of the moving average, δ prevents zero-division, and ⊙
is the element-wise multiplication operator. Note that element-wise division is also
performed in the last line.

Finally, ADAM, short for adaptive moments, is an example of an optimiser that
employs more than one of the above techniques. Specifically, ADAM is a combination
of RMSProp and momentum. Consequently, it is one of the most robust and popular
optimisers [19]. From the gradient calculation, momentum is calculated in the first
moment of the gradients, and RMSProp is calculated in the second moment of the
gradients. In contrast to the original momentum and RMSProp algorithms, ADAM
also applies a correction bias to the first and second moments. The ADAM algorithm
can be summarised as

g = ∇θJ(θ)

v = βv − (1−β)g

r = ρr + (1− ρ)g ⊙ g

v′ =
v

1−βt

r′ =
r

1− ρt

θ = θ−α
v′

√
r′ + δ

,

(2.8)

where t is the time step, and β and ρ are the decay rates of the moving averages.

2.3 automatic differentiation

As mentioned, automatic differentiation (AD) was the main focus of the project thesis,
and a detailed review of the technique from the project thesis is therefore provided
in this section. It is an algorithmic technique for computing the analytical gradients
of a function using computational graphs and the chain rule. It is important to con-
trast AD from numerical differentiation using finite differences, which comes with
substantial numerical error. Moreover, AD should not be confused with symbolic dif-
ferentiation, which is a method for calculating the full symbolic expression for the
gradient, like one would do by hand [2]. Most often, AD is implemented using an
object-oriented operator overloading approach. In other words, the AD object inserts
the operators from the cost function to a computational graph. Moreover, the rules of
differentiation for the operators are pre-implemented. Therefore, it is required that
the evaluated function only consists of operators that are supported by the AD object.
With the function evaluation completed, the backward pass is initiated. Let w(y(x))
be a functional depending on the function y(x), which is again a function of the input
variable x. Applying the chain rule,
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∂w

∂x
=
∂w

∂y

∂y

∂x
, (2.9)

the gradients with respect to the input variables are calculated given the output value.
Equation (2.9) shows how the gradient of any complex computational graph can
be written as a product series of basic gradient expressions. The backpropagation
algorithm recursively applies the chain rule on the computational graph, eventually
ending up with the gradients of the input variables [2]. Figure 2.2 is such an instance
of a computational graph, with the chain rule applied, to the function w(x,y) =

exp(xy).

x

y

* v exp() w

dw/dvdw/dv

dw/dx

dw/dy

1
dv/dx
dv/dy

Figure 2.2: A computational graph for the function w(x,y) = exp(xy) on the top. Boxes rep-
resent operators, and the circles represent the input or output variables. The chain
rule is applied to the computational graph in the bottom figure. Here, circles are
the currently calculated gradient, and the boxes are the basic gradient expressions
which are multiplied to the current gradient. The same figure was used in the
mentioned project thesis preceding this master’s thesis.

To exemplify the application of AD in the training of neural networks in a very
simplified manner using Figure 2.2, one could consider w to be the loss of the neural
network. Analogously, x and y would be the network weights. During the forward
pass, the network evaluates the input data, from which the loss is calculated. Simulta-
neously, the mentioned computational graph, which tracks all operations performed
on the input data, is constructed. In order to optimise the network, the weights are
updated according to the rules of gradient descent (2.1). For this purpose, backprop-
agation is applied to the computational graph, which results in the gradient of each
network weight being derived from the chain rule (2.9).

2.4 preparation of data

Generalisation, meaning the performance on unobserved data, is a central problem
within the field of machine learning. When minimising the empirical risk based on
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training data, so-called overfitting will eventually occur. Overfitting is a phenomenon
where the training error decreases without the validation error, which is the predicted
error on unseen data during training. The counterpart to overfitting is underfitting,
which is a model’s inability to learn the underlying pattern in the training data al-
together. In addition to the validation error, there exists a test error, also denoted
generalisation error, which is the error retrieved from testing the model on unseen
data after having finished hyperparameter-tuning and training [19].

Even though the term is called generalisation, the model cannot be expected to
perform well on all possible data. The most essential constraint for generalisation
is that all data must be independent and identically distributed (i.i.d.) [38]. In other
words, the data must be independently drawn from the same probability distribution.
This is because the model is trained to learn this underlying distribution.

There are numerous tricks to improve the generalisation of the model, called reg-
ularisation techniques. Shortly summarised, they include, but are not limited to,
dropout, early stopping, weight decay, and L2 regularisation [37]. Dropout is a tech-
nique where a random subset of weights is ignored ignored during training. Early
stopping is to abort the training process when the validation error starts to increase,
which is a sign of overfitting. The aim of weight decay is to penalise large weights,
which is a common feature of an overfitting model. One instance of weight decay is
L2 regularisation, which is to add a constant times the sum of the squared weights to
the loss function.

However, the most common and overall efficient technique for generalisation re-
gardless of model architecture is data augmentation. Data augmentation is to arti-
ficially alter the training data by applying random transformations. The most com-
mon transformations are rotations, translations, inversion, gaussian noise, and scal-
ing. Consequently, the effective size of the training data is increased, which in turn
improves the generalisation of the model, because the model has not the ability to
memorise the now greatly expanded training dataset [19]. At the same time, a data
augmented dataset is more robust to noise and outliers, which is a common feature
of real-world data. In this way, augmented datasets could be considered more repre-
sentative of real-world data.

2.5 artificial neural networks

An artificial neural network (ANN) is built up of many artificial neurons, just like the
biological neural network in the human brain is built up of neurons. In this way, the
essential building block of any ANN is the artificial neuron, a mathematical equation
that, for a given number of inputs, applies its weights to produce an activation, which
in turn is sent through a non-linear activation function to produce an output [4]. Ma-
trices and vector notation may be applied to provide the most concise mathematical
description of the feed forward process of an artificial layer consisting of N input
nodes and M output nodes,

a =Wx

z = f(a).
(2.10)

Equation (2.10) describes first the calculation of the activation of the layer through
a matrix-vector product, a linear transformation, and then the application of a non-
linear activation function, f. Further illustration is provided in Figure 2.3. Due to the
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Figure 2.3: The composition of a linear layer. x is the input vector, which by matrix-vector
multiplication with the weight matrix W results in the activation vector a. By
applying the non-linear activation function f, the output vector z is produced.

non-linearity of the activation function, addition of a series of so-called hidden layers
between the input and output layers increases the complexity of the model, which is
the key to the abilities of deep neural network, which are ANNs with many hidden
layers.

The layer described in Equation (2.10) is a linear layer, also called a fully connected
(FC) layer. One issue with linear layers is the high number of trainable parameters,
which require both a large amount of memory and computational power to train.
Moreover, the risks of overfitting increase when a neural net has overparametrised
layers, meaning that it has the capacity to memorise the training data. Therefore, con-
volutional layers revolutionised the world of machine learning, especially in the field
of computer vision. A convolutional layer applies the same convolutional kernal to the
input data, and explots the fact that nearby pixels are strongly correlated [4]. Conse-
quently, the number of parameters is greatly reduced and is constant regardless of
input size, and the model generalises more efficiently. Moreover, the model automati-
cally becomes translation invariant by applying convolutional layers instead of linear
layers.

As a fundament, the continuous convolution operation is defined as

f ∗ g =

∫∞
−∞ f(τ)g(t− τ)dτ, (2.11)

where f and g are two functions, and ∗ is the convolution operator. In the world
of computer vision, two adjustments are usually assumed for convenience when de-
scribing convolutional kernels applied to input data.

Firstly, the discrete convolution operation is used instead of the continuous con-
volution operation, since the input data is a discrete number of features. Therefore,
Equation (2.11) is adjusted to consist of a discrete sum instead of an integral:

f ∗ g =

∞∑
τ=−∞ f(τ)g(t− τ). (2.12)
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Figure 2.4: Convolution of a 2D image with a 2D kernel. The topleft pixel of the 2× 2 output
is effectively the dot product of the 3× 3 kernel and the 3× 3 topleft corner of
the input image. Correspondingly, the bottomright pixel of the output is the dot
product of the kernel and the bottomright corner of the input image. Here, a stride
of 1 is assumed.

Secondly, the cross-correlation operation is used instead of the convolution opera-
tion, which is defined as

f ⋆ g =

∞∑
τ=−∞ f(τ)g(t+ τ), (2.13)

where ⋆ is the cross-correlation operator. Specifically, cross-correlation in three dimen-
sions becomes

f ⋆ g =

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞ f(τ1, τ2, τ3)g(t1 + τ1, t2 + τ2, t3 + τ3), (2.14)

Practical illustrations of Equation (2.12), (2.13), and generally convolutional layers
are provided in Figure 2.4. For each output pixel, a dot product is performed between
the kernel and a corresponding region of the input image.

As indicated in Equation (2.14), dimensionality is a central feature of convolutional
layers. The input data has its spatial dimensions in addition to a number of channels,
exemplified by the RGB colour channels, for instance. Consequently, the convolu-
tional kernel has the same number of channels as the input data, the same number
of spatial dimensions, and a kernel width of 3, 5 or 7 in each spatial dimension.
However, this would result in a single output channel, which is not always desirable.
Instead, the entire kernel of a convolutional layer consists of a series of mentioned
convolutional kernels, each responsible for a single output channel. To summarise,
the input data has typical shape (N, Cin, S), where N is the number of samples in the
batch, Cin is the number of input channels, and S represents the spatial dimensions.
A kernel of shape (Cout, Cin, F) is applied to the input data, resulting in an output
of shape (N, Cout, S). Figure 2.5 illustrates a convolutional layer in the context of a
neural network.

It is worth realising that the many channels produced from many convolutional lay-
ers in series are the key to the success for convolutional neural networks (CNNs) [21].
Each convolutional kernel works as a filter, and performs a specific feature extraction,
for instance edge detection. This is crucial for many appplications in computer vision.

However, an increasing number of channels also increases the required computa-
tional power and memory. Fortunately, the solution is simply to reduce the spatial
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Input:
(N=1, C=3, S=Sin

3)
Output:

(N=1, C=4, S=Sout
3)

Kernel:
(Cout=4, Cin = 3, F=F3)

*
Figure 2.5: A convolutional layer with input consisting of a single sample, batch size N = 1,

three channels C, and three spatial dimensions. The layer itself consists of four
convolutional kernels, each responsible for a single output channel. Each kernel
has also three spatial dimensions F, and the same number of channels as the input
data Cin = C. Because there are four kernels, the output has four channels Cout =

4.

dimensions of the data as it passes through the network, while the number of feature
channels increases. There are generally two ways to do this: pooling and strided con-
volutions. Pooling is a non-linear operation that simply reduces the data of a given
region to a single value, for instance the maximum value or the average value. With
the 2×2Max Pooling operation, the most dominant value is selected in a region where
every spatial dimension has size 2, and because the convolutional stride is also 2, the
size of each spatial axis is reduced by a factor of 2. Similar to pooling, a reduction in
the spatial dimensions can also be achieved if the convolutional layers are not padded
and the convolutional stride is greater than 1. This phenomenon is summarised in the
following expression:

Sout =
Sin − F + 2P

S
+ 1, (2.15)

where Sout and Sin are the spatial dimensions of the output and input data, respec-
tively, F is the spatial size of the convolutional kernel, P is the padding, and S is the
convolutional stride.

As a result, a common network architecture for CNNs is the U-Net [44], which
in 2015 was a new convolutional neural network architecture proposed to perform
biomedical image segmentation. A U-net consists of a feature extraction, where the
spatial dimensions are reduced while the number of channels is increased, and a fu-
sion, where upsampling is applied at the same time as channels are merged [44]. The
crucial component of the U-net architecture is the skip connection. During upsam-
pling, stored data from the feature extraction is concatenated with the output data
from the upsampling layer, and the result is passed on to the next convolutional layer.
Consequently, the convolutional layers are not required to store every feature, but
may instead focus on the features of interest that minimise the loss function.

2.6 generative adversarial networks

A generative adversarial network (GAN) is a network architecture consisting of two
opposing neural networks, a generator and a discriminator. It was first proposed by
Ian Goodfellow in 2014 [20] with the goal of creating a zero-sum game between the
generator and the discriminator, where the generator attempts to generate realistic
samples, and the discriminator attempts to distinguish between real and fake sam-
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ples. This idea is theoretically based upon the Nash equilibrium in game theory [55].
The generator, which is the model of interest for inference, is trained to learn the
probility distribution of the training data, because the discriminator will not be able
to distinguish between real and fake samples if the probability distribution of the
generator output is equal to the probability distribution of the training data. This
procedure may be described by a min-max game with value function V(D,G) [36],

min
G

max
D
V(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.16)

whereD is the discriminator, G is the generator, pdata(x) is the probability distribution
of the training data, and pz(z) is the probability distribution of the latent space. It is
important to notice that the aim of the generator is to generate data from noise.

However, a GAN may also be conditional, where the generator is trained to gen-
erate data conditioned on a given input, called a conditional GAN (cGAN) [36]. An
example of a cGAN may be a generator that transforms a low-resolution input image
to a high-resolution output image. If generated sucessfully, the discriminator would
not be able to distinguish between the generated and real high-resolution images.

Even though GANs have been successful in generating realistic images, they are
also known to be difficult to train [20]. Since the GAN consists of two neural networks
that are trained simultaneously, the strength relation between the networks is crucial.
The discriminator has a tendency to quickly learn the key differences between the real
and generated samples, and will therefore be increasingly certain in its predictions.
This certainty is a cause for vanishing gradients in the adversarial loss function, which
in turn causes the generator to be unable to learn. The root cause for this tendency
is related to the fact that the discriminator task, binary classification, is substantially
easier than the generator task, which is generation. Therefore, the generator networks
needs to include more layers and more parameters than the discriminator network.
At the same time, the more advanced the discriminator network is, the more essential
features of the real samples it will learn, which in turn would enhance the generator
training. In instances with a too weak discriminator, it would simply guess randomly
between real and fake samples, providing no useful information to the generator.
There exist numerous techniques to stabilise GAN training. Through trial and error,
a combination of, for instance, adjusting the generator and discriminator learning
rates, the number of discriminator updates per generator update, the generator loss
function, and the minibatch size, may prevail.

2.7 transfer learning

A final important concept in machine learning is transfer learning. This technique al-
lows for exploiting the knowledge of a pre-trained model for a different task [58]. One
common example is to freeze the feature extraction weights of a deep convolutional
net, and then only train the last layers of the network so that it can be used for your
designated task. Not only does this allow for a faster training time, it is also probable
that better results are achieved with pre-trained weights, because the pre-training has
been performed on an immense scale, with a gigantic dataset on several powerful ma-
chines. Moreover, the pre-training and information sharing is also more sustainable
in terms of energy consumption. One example of a pre-trained model is ResNet [25].
This net also revolutionised the field of deep neural networks because of its use of
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residual connections, meaning to add the input of a convolutional layer to the output of
the same convolutional layer, thereby limiting the vanishing gradient problem. Other
instances of transfer learning include the so-called perceptual loss term [33]. Instead
of depending entirely on a pixel-wise loss term between target data and output data,
it is possible to first apply a pre-trained feature extractor, for instance ResNet [25],
to both the target and output data. Then, the loss term is based on the MSE loss be-
tween the feature maps of the target and output data. In this way, one can force the
model to learn what is perceived as important features, rather than only evaluating
the independent pixel-wise loss. One disadvantage with perceptual loss, however, is
the increased computational cost, since these pre-trained deep neural networks con-
sist of many layers with many parameters. The resulting computational graph when
utilising perceptual loss would therefore be significantly extended, increasing both
computational time and memory consumption.





3
T E M P O R A L C T

3.1 introduction to temporal ct

Temporal CT is a technique where a dynamic process is studied using a CT scan.
It combines the advantages of CT, specifically the ability to investigate entire 3D
volumes of a bulk object, with the ability to study the evolution of a process in time.
One example of the application of temporal CT is time resolved internal processes
in the human body, such as the heart [54]. Another example is to study the flow of
different fluids in porous media [1], which is the designated application for the work
performed in this master’s thesis.

Even though the abilities of temporal CT are advantagous, the execution of the
technique is easier said than done. The main issue is sufficiently efficient data acqui-
sition to obtain satisfactory spatial and temporal resolution. A fully sampled CT scan
will typically consist of 1000 projections for a volume of 512×512×512 voxels. The
scan time for this number of projections is typically 30 minutes. Any dynamic pro-
cess with a typical timescale of less than the scan time will provide dynamic sampling
artefacts. Alternatively, one could undersample each CT scan by reconstructing based
on, for instance, the first 300 projections. With this approach, the temporal resolution
is improved, but the spatial resolution is reduced due to undersampling artefacts
and missing wedge artefacts, as referred to in Section 1.4. To solve the issue of miss-
ing wedge artefacts, one could perform several full revolutions of the sample, with
a smaller number of projections per revolution. However, also this approach comes
with disadvantages. Firstly, one is forced to decide on the number of projections per
revolution, which ultimately is compromising between spatial and temporal resolu-
tion before even starting the dynamical experiment. Secondly, one will necessarily
sample the same projections for each revolution, and thus only provide new informa-
tion in the time domain, not the spatial domain. Thirdly, the issue of undersampling
has with this solution not been adressed.

The following sections will therefore discuss a more efficient and innovative ap-
proach to temporal CT, which is based on golden ration sampling and machine learn-
ing.

3.2 undersampled ct reconstructions

An important aspect of temporal CT is the exploitation of undersampled CT recon-
structions, or sparse-view reconstructions, to improve temporal resolution. From this
aspect, two terms are necessary to define: the necessary number of projections for full
sampling, and the undersampling factor. Full sampling is defined as the number of
projections P necessary to achieve a sampling frequency of twice the maximal signal
frequency [13]. The circumference of an assumed cylindrical sample is given by πD,
where D is the diameter of the scanned object with number of pixels as unit. The
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number of pixels is given by the field of view divided by the pixel size. Anyway, the
number of projections necessary for full sampling is thus defined as

P =
πD

2
, (3.1)

with the factor 1
2 to exploit the fact that each projection intersects the circumference

twice.
From Equation (3.1), one can define the undersampling factor as the ratio between

the sampled number of projections and the number of projections for full sampling
P. One alternative to this definition, which will be denoted the relative undersampling
factor, is the ratio between the number of projections in the undersampled reconstruc-
tion and the number of projections used in the designated ground truth. Hence, this
ratio can be either larger or smaller than P, depending on the number of projections
used in the reference reconstruction. Both definitions are useful in different contexts,
and will be referred to as undersampling factor and relative undersampling factor,
respectively.

3.3 golden ratio sampling

The golden ratio is one of the most mysterious and interesting ratios in mathematics.
It is related to the Fibonacci numbers together with all objects with five-fold symme-
try, and it can be shown that the golden ratio is the most irrational among irrational
numbers [12]. More importantly, it has been shown that the ratio is central for optimi-
sation within the field of biology, computer science, and physics. The most prominent
example is the distribution of leaves in a sunflower [12].

Even though the golden ratio seems mysterious, it appears from a simple geometric
construction [12]. Suppose that a line is divided into two parts as visualised in Figure
3.1.

a b

Figure 3.1: A line segment divided by the golden ratio. The total line length divided by the
long part is equal to the long part divided by the short part. Both ratios are equal
to the golden ratio ϕ.

The long part has length a, and the short part has length b. The respective lengths of
the lines are such that

ϕ =
a+ b

a
=
a

b
, (3.2)

from which the golden ratio ϕ can be defined. Assume further that a has unit length,
while the entire line has length x. The updated equation for the golden ratio becomes

ϕ = x =
1

x− 1
. (3.3)

Written as a quadratic equation, the golden ratio can be derived by solving

x2 − x− 1 = 0, (3.4)
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for which

x1 =
1+

√
5

2
= 1.618...

x2 =
1−

√
5

2
= −0.618...

(3.5)

are the solutions.
The next clue in understanding the properties of the golden ratio lies in investigat-

ing the Fibonacci numbers, which was performed in [12]. The Fibonacci numbers are
an example of an additive sequence of integers, where each number is the sum of the
two preceding numbers. This sequence can be expressed as

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2.

(3.6)

In other words, the recursion relation of the Fibonacci numbers is given by

An+2 = An+1 +An, (3.7)

where An is the nth. Fibonacci number. Suppose now that for a sufficiently high n,
the Fibonacci numbers are also a geometric sequence, meaning that the recursion
relation

An+1 = αAn, (3.8)

also holds. These two constraints provide the Fibonacci quadratic equation:

α2An = αAn +An =⇒ α2 −α− 1 = 0, (3.9)

which is equivalent to the first derivation of the golden ratio. As a matter of fact, if one
divides increasingly large Fibonacci numbers by their preceding Fibonacci numbers,
the ratio converges to the golden ratio [34], for instance 987/610 = 1.618033.

Moreover, some manipulation of the quadratic equation may yield the golden ratio
as continued root operations:

ϕ =
√
1+ϕ

ϕ =

√
1+

√
1+ϕ

ϕ =

√
1+

√
1+

√
1+ ...

(3.10)

Additionally, by dividing by α in Equation (3.9), it is possible to write the golden
ratio as the simplest continued fraction in existence [34]:

ϕ = 1+
1

ϕ

ϕ =
1

1+ 1
1+ 1

1+ 1
1+...

.
(3.11)
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The fact that this continued fraction is only composed of ones ensures that it con-
verges very slowly. According to [34], the golden ratio can therefore be considered
the most irrational among irrational numbers.

With sufficient investigation of the properties associated with the golden ratio, it
is time to investigate the unique opportunities of golden ratio sampling. Briefly ex-
plained, golden ratio sampling is to sample points along a line by splitting the longest
segment by the golden ratio. Mathematically, this is expressed as

xn = mod
[
l

ϕ
n, l

]
, (3.12)

where xn is the nth sample point, l is the length of the line, and ϕ is the golden ratio.
Golden angle sampling may be considered a special case of golden ratio sampling,

where points along the circumference of a circle is sampled. Firstly, the golden angle
is defined as,

φ = min
[
360

ϕ
, 360−

360

ϕ

]
= 137.5◦, (3.13)

thereby being the acute angle when dividing a circle into two parts with the golden
ratio. By sampling point n given by

θn = mod
[
360

ϕ
n, 360

]
, (3.14)

the sampled point on the circle will always split the longest segment by the golden
ratio [16]. Moreover, the distribution of points along the circumference is roughly
uniform from the beginning, and becomes increasingly uniform as the sample size
increases, not to mention the fact that each point is uniquely sampled only once, as
the golden ratio is irrational [16]. Interestingly, the uniformity peaks every time the
number of points sampled is equal to a Fibonacci number.

3.4 machine learning applied in computed tomography

CT is one of the most promising fields in physics where machine learning can be
applied, due to its close resemblance to the highly developed field of computer vision
[63]. Reconstruction of 3D-models, segmentation, classification, and enhancement are
all examples of tasks that have been perfected by the development of computer vision,
and which are very relevant for CT. This section will shortly summarise examples of
machine learning applied in CT by referring to the literature on the topic.

Firstly, the reconstruction algorithm itself can be replicated using machine learning.
This was proven in the article "Tomographic reconstruction with a generative adversial
network" [60], where a generative adversarial network (GAN) called GANrec was self-
trained to perform the inverse radon transform directly. Analytical reconstruction
algorithms cannot reconstruct satisfactory 3D-models in cases with missing wedge
artefacts, because entire sections of the object have not been sampled. Subsequently,
entire sections of the object in Fourier space would be missing [60], and the con-
dition for FBP, The Fourier slice theorem, would not be satisfied. Instead, GANrec
could compensate for missing information because it was an optimisation problem
that assumed the existence of a global minimum. This is an instance of a so-called
End-to-End approach with some degree of physics-based prior knowledge, because
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it compared the measured and projected sinograms to assess the error of the recon-
struction [22]. It is important to realise that the GANrec was self-trained, and did not
require training data. At the same time, it required a large amount of computational
power for each reconstruction, unlike the typical applications of supervised GANs.

Alternatively, one can split the approach into two steps. The first step is a physics-
assisted reconstruction algorigthm, while the second step is an image enhancement.
This was performed in "Physics-assisted generative adversarial network for X-ray tomogra-
phy" [22]. It employed an advanced physics-assisted maximum likelihood estimation
(MLE) to reconstruct the 3D-model, and further improved the reconstruction using a
conditional generative adversarial network (cGAN) called PGAN. The main purpose
of the PGAN was to remove undersampling artefacts and other forms of noise, and
supervised learning using simulated data was applied to train the network, which
will be further explained in Section 3.5.

Finally, supervised learning can also be applied to tasks such as segmentation and
super-resolution. The latter is exemplified in the article "CT-image of rock samples super
resolution using 3D convolutional neural network" [56], where a 3D-convolutional neural
network (CNN) was trained to increase the resolution of CT-images of rock samples.
High quality CT reconstructions were downsampled and interpolated to simulate
low-resolution images, for which the CNN was trained to undo the transformations.
Numerous other examples of machine learning applied in CT could be listed, but the
most relevant to the topic of this thesis are the aforementioned examples.

One instance that goes beyong the scope of convolutional neural networks is the
article Dual-domain sparse-view CT reconstruction with Transformers [48]. Their goal was
to find an alternative to the artefacts caused by filtered back projection and the time
consumption caused by iterative reconstruction algorithms in sparse-view CT. The
proposed solution was called CTTR, Computed Tomography Transformer, which
combines convolutional neural networks with the transformer architecture, and ex-
ploits information provided from both undersampled filtered backprojection and the
sinogram itself. To elaborate, the reconstructed slice was processed by convolutional
layers before being flattened and sent to the transformer encoder. The task of the
encoder was to learn what parts of its input are important. Meanwhile, the decoder
received the encodings, and utilised them to reconstruct the slice using the sinogram
as input. This mechanism, where each input to the decoder is weighed based on the
input from the encoder, is called attention [52]. The mechanism of attention addresses
the one major disadvantage of convolutional neural networks, which have no way of
weighting the importance of different parts of the input.

3.5 reconstruction enhancement

From the mentioned applications of machine learning in CT, supervised learning for
reconstruction enhancement is the most relevant to the topic of this thesis. There-
fore, it will be the focus of this section, while using the article "TomoGAN: Low-Dose
Synchtrotron X-ray Tomography with Generative Adversarial Networks" [33] as a reference.
This same reference was used to form the basic architecture of the GAN used in
this master’s thesis, and the distinctions between the models will be specified and
explained in the following sections. Nevertheless, the basic idea of the reconstruction
enhancement is the same in both cases. A two-step approach with separate recon-
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struction and enhancement is used. Consequently, the algorithm is more flexible than
the GANrec, because it is possible to improve either the reconstruction or the en-
hancement separately. Secondly, the reconstruction enhancement is performed by a
conditional GAN, which is as mentioned trained using supervised learning. In this
way, the reconstruction enhancement can be performed on any CT-image, as long as
the training data is representative of the data to be enhanced. The typical artefacts
that are removed by the reconstruction enhancement are undersampling artefacts,
high-frequent noise, and streaking artefacts. Transfer learning was also employed,
where a deep classification network was used to extract features from the CT-images
in order to assess whether all features had been maintained after enhancement [25].

3.6 quantifying reconstruction enhancement

One common means of quantifying the quality of a reconstruction is the peak signal
to roise ratio (PSNR). It is defined as

PSNR(I, J) = 10 log10

(
max(I)2

MSE(I, J)

)
, (3.15)

where max(I) is the maximum possible pixel value, typically 255 or 1, and MSE(I, J)
is the mean squared error between the two images I and J.

Additionally, structural similarity index measure (SSIM) is common metric to quan-
tify the similarity between two images [49]. For two corresponding images I and J,
the global SSIM is defined as

SSIM(I, J) =
(2µIµJ + c1)(2σIJ + c2)

(µ2I + µ
2
J + c1)(σ

2
I + σ

2
J + c2)

, (3.16)

where µI and µJ are the mean values of I and J, respectively, while σI and σJ are the
standard deviations, and σIJ is the covariance between I and J. The constants c1 and
c2 are chosen to stabilise division, and are related to the dynamic range of the images.
Therefore, the images are usually rescaled to the range [0, 1] before calculating the
SSIM. With this normalisation, 0.012 and 0.032 for c1 and c2, respectively, was used
in [49].

The expression in (3.16) is derived from weighting the image qualities of luminance,
contrast, and structure [27]. These qualities are defined as

l(I, J) =
2µIµJ + c1

µ2I + µ
2
J + c

′
1

,

c(I, J) =
2σIσJ+ c2

σ2I + σ
2
J + c

′
2

,

s(I, J) =
σIJ + c3
σIσJ + c

′
3

.

(3.17)

For simplicity, the third constant c3 is set to c3 = c2

2 [57]. As shown, for luminance
one compares the mean of the images, while the standard deviation is compared to
evaluate the contrast. Finally, the covariance of the image is related to the structural
similarity.
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However, the global SSIM score can in some cases be misleading, for instance if
most of the background is black, while fine details in regions of interest are dis-
torted. In such cases, the global SSIM score will be high, while the image quality is
perceived by humans to be poor. Therefore, the mean structural similarity index mea-
sure (MSSIM) is often used instead. It defines a gaussian kernel, often 11× 11 pixels,
which is convolved with the images. At each step of the convolution, the SSIM score
is calculated, and the mean of these scores gives the MSSIM score,

MSSIM(I, J) =
1

N

N∑
i=1

SSIM(Ii, Ji). (3.18)

This MSSIM score is supposedly more representative of the perceived image quality
[57].

It is also possible to compare 2D images or 3D volumes in the frequency domain,
by calculating the Fourier shell correlation (FSC) [23]. FSC is defined as

FSC(R) =

∑
ri∈R FI(ri) ·FJ(ri)

∗

2

√∑
ri∈R|FI(ri)|2 · |FJ(ri)|2

, (3.19)

and provides information about the correlation at different spatial frequencies be-
tween two images or volumes, I and J. Here, FI(ri) is the Fourier transform of I at
the spatial frequency ri, and R is the set of spatial frequencies to be considered.

A range of different filters can also be applied to images or volumes to enhance
and compare certain properties. Two examples of such filters are the Sobel filter and
the Laplacian filter. The Sobel filter is an approximation of the gradient of the image,
where the Sx and Sy 3× 3 kernels detect the horizontal and vertical edges, respec-
tively [17]. They are defined as

Sx =

−1 0 +1

−2 0 +2

−1 0 +1



Sy =

−1 −2 −1

0 0 0

+1 +2 +1

 .

(3.20)

Similarly, the Laplacian filter L is an approximation of the second derivative of the
image. The signs of the elements in the matrix may vary, but SciPy [53] defined the
3× 3 kernel as

L =

0 1 0

1 −4 1

0 1 0

 . (3.21)





Part II

P R O J E C T W O R K





4
E X P E R I M E N TA L

4.1 equipment

North Star Imaging Inc. is the provider of the CT scanner used in this thesis. North
Star Imaging model X5000, from now on denoted Industrial CT, is equipped with a
Gulmay MP1 450kV X-ray source. However, for the experiments in this thesis, a volt-
age of 250 kV, a current of 2700µA, and a focal spot size of 400µm were used. As for
the detector, it was a quadratic, (2048×2048), Perkin Elmer [XRD 1620/1621 AM/AN]
with pixel pitch of 200µm and 10 fps frame rate. For the cone beam geometry cali-
bration, a source to detector distance of 1350mm, and a source to sample distance of
930mm, were used. A filter of copper and thin was used in front of the source.

The micro-CT is the North Star Imaging model X3000. Its X-ray source is a XRay-
WorX 225 kV operated at 124 kV with 100µA and a focal spot size of 12.4µm. The
detector is a rectangular, (1536×1920), VarianL07 [C:10S1-403] with pixel pitch of
127µm and 5 fps frame rate. Here, the source to detector distance is 502mm, and the
source to sample distance is 47mm.

4.2 samples

The sample used for temporal CT is an hour glass, and will for simplicity be referred
to as the hour glass sample. The hour glass was blown by hand with transparent
colourless borosilicate glass with thickness between 1.55mm and 1.83mm, and di-
mensions of 135mm × 65mm × 65mm. Its content is coloured sea sand, SiO2.

The sandstone sample is a reservoir rock from the Snøhvit reservoir in the North Sea.
Its dimensions are approximately 240mm in height and 140mm in diameter. The
most distinct features of the sample are a series of wide cracks running inside the
sample. Its main purpose was to assess the spatial resolution obtained with enhanced
temporal CT, and compare PSNR and SSIM obtained with different procedures.

4.3 derived golden ratio sampling procedure

An efficient scanning routine for temporal CT using industrial CT scanners and micro-
CT was derived through trial and error. The resulting procedure was a compromise
between flexibility in the post-processing and the collected information per time dur-
ing scanning. Moreover, the procedure was constrained by versatility of the hardware,
and limited by the experimental set-up.

Originally, the procedure was supposed to perform an exposure every 137.5◦, mean-
ing every golden angle. This would maximise the amount of information collected per
exposure, and provide full flexibility in the post-processing. To elaborate, each sam-
pled projection would provide unique information, and any number of projections
could be included for a given reconstruction, representing a time frame. This would
enhance the spatial resolution of this reconstruction at the cost of temporal resolution.
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However, due time consumed by rotating the sample at a balanced velocity of 21◦/s,
or 12◦/s for the micro-CT, more frequent exposures were necessary to increase the
exposure-rotation ratio, and thus increase the amount of information collected per
time.

Metallic means, more acute irrational angles, were tested in order to increase the
information per time [51]. A higher metallic mean would result in a smaller, but
still irrational, angle, and thus more frequent unique sampling. However, using a
metallic mean, less new information was collected per exposure, and the number of
projections required for even sampling increased quadratically. Not only did this limit
the flexibility in the post-processing, this procedure was ultimately discarded due to
hardware limitations. The golden angle sampling, and the developed metallic mean
sampling, were implemented by manipulating the scanner to perform numerous CT
scans consisting of only a single projection. However, this resulted in much wasted
time due to software initiation and completion.

Therefore, the procedure was modified to perform more projections within each
software-defined CT scan, and golden ratio sampling was utilised to find from which
angle to start. Obviously, the angle increment was derived by distributing the num-
ber of projections evenly over the revolution. Next, the starting angle of the next
revolution was found through golden ratio sampling on the interval of the first an-
gle increment. However, due to tubes and other hardware, the sample stage would
alternate between rotating clockwise and counterclockwise. Therefore, the derived
sampled angle alternated between being the starting angle and the final angle of the
full revolution. From Equation (3.14), one possible way to calculate the golden ratio
sampled angle for revolution n was

θn = mod
[
n360

ϕp
,
360

p

]
. (4.1)

A visualisation of the sampling procedure for the first four revolutions of 13 projec-
tions each is included in Figure 4.1. The starting point of each revolution is marked
with a black diamond, and alternates between belonging to the first and last incre-
ment of the revolution, due to the alternation between clockwise and counterclock-
wise rotation.

4.4 verification of procedure

The validity of the final golden ratio sampling procedure was assessed by perform-
ing a scan of a static sandstone sample with the industrial CT scanner. The resulting
projections and reconstructions were compared to the same sample scanned with a
standard procedure. Moreover, it was verified that no limitations of the hardware
distorted the golden ratio reconstructions. A total of 1440 projections was performed
using standard CT, while 1000 projections were collected using the derived golden
ratio sampling procedure. In both cases, the number of projections should be suffi-
cient to provide information to each voxel of the reconstructed volumes, respectively.
Additionally, a total of 12 frames was used to average each exposure, resulting in an
effective exposure time of 1.2 s for each projection.

The obtained projections were processed using flat-field and dark-field corrections,
together with a 3×3median filter around the listed defective pixels. Briefly explained,
the projections are calibrated by subtracting the obtained signal when all detector
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Figure 4.1: Each subplot illustrates the cumulative sampling when utilising the derived sam-
pling procedure. One completed revolution is shown in the top left subplot. Two
completed revolutions are shown in the top right subplot. Additionally, the re-
spective contributions to the sampling from each revolution is illustrated by the
different markers. For each revolution, the longest unsampled interval is divided
into two shorter intervals by the golden ratio. The starting point of each revolu-
tion is marked with a black diamond, and alternates between belonging to the first
and last increment of the revolution, due to the alternation between clockwise and
counterclockwise rotation.
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pixels are off. This is the dark-field correction. Calibration is completed by dividing
the obtained signal to the maximal detector range, which is the difference between
the flat-field and dark-field image. Then, the measured intensities were expressed as a
function of absorption, utilising Equation (1.4). The centre of rotation was determined
by sharpness analysis. To elaborate, the raw projections were shifted by a varying
number of pixels, then used for a reconstruction, for whom the sharpness of the
reconstructed volume was assessed by applying a Sobel filter (3.20). The centre of
rotation was determined by the pixel offset that resulted in the best sharpness score.
Alternatively, one could use the offset that resulted in the highest variance of the
reconstructed volume [61]. Golden ratio search was used to find the centre of rotation
with a precision of 0.1 pixel as long as the sharpness was approximately concave in
the vicinity of the centre of rotation. Otherwise, a linear search was applied, with the
sharpness values being plotted and manually inspected to find the centre of rotation.

4.5 further optimisation

An effort was made to further optimise the golden ratio sampling procedure by ad-
justing the number of frames averaged per exposure (favg). To evaluate the effect
of adjusting the exposure dose, the sandstone was scanned thrice, with 6, 12, and
24 frames averaged per exposure, respectively. Whence, the resulting exposure times
were 0.6 s, 1.2 s, and 2.4 s, respectively. The idea behind reducing the exposure time
was to shorten the scan time, and thus increase the temporal resolution, at a neg-
ligible cost of spatial image quality. At the same time, the idea behind increasing
the exposure time was to enhance the quality of each projection, and thus possibly
enabling a lower number of projections in a given reconstruction, which would also
increase the achievable temporal resolution.

Another post-processing effort to optimise the achievable temporal resolution, as
well as the exposure ratio, was to perform missing wedge reconstruction with 180◦

coverage. Thereby, the rotation time could be halved for each reconstruction. The
idea was that the quality gain in terms of temporal resolution and exposure ratio
would outweigh the quality loss due to cone-beam artefacts in the missing wedge
reconstruction.
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D ATA A Q U I S I T I O N

5.1 simulated data

All eleven two-dimensional simulated datasets from TomoBank [9] were downloaded.
These phantoms had dimensions of 256×256 pixels, and had originally been gen-
erated using the TomoPhantom package [30]. Each pixel had in most cases either
the value 0 or 1, and in some instances some gray values. With the TomoPhantom
package, it could in theory be possible to generate more simulated datasets effi-
ciently. However, time was not prioritised for such a procedure. Instead, the simu-
lated datasets were given a third dimension. To elaborate, each simulated dataset
was copied 32 times in the third dimension. Following this, 32 256×256 slices of zeros
were added to the existing data. Another volume consisting of 64 slices produced
like described above was rotated slightly and added to existing simulated volume.
This procedure was repeated until the width of the third dimension was 512 pixels.
Hence, eleven 2D datasets were used to create eleven high resolution 3D datasets
with dimensions of 256×256×512 pixels.

From this ground truth dataset, the TIGRE toolbox [3] was used to generate pro-
jections of each sample. Subsequently, the projections were reconstructed using the
FDK algorithm. Given the width of 256 pixels, a fully sampled reconstruction would
require approximately 402 projections, as defined in Equation (3.1). The number of
projections for the undersampling ranged between 201 and 6, corresponding to un-
dersampling factors of 2 to 64, respectively.

Slices in the XY-plane of the target simulated data can be studied in Figure 5.1,
and are denoted with the prefix SIM, while the corresponding 8 times undersampled
reconstructions are shown in Figure 5.2, with the MSSIM value relative to the ground
truth listed.

5.2 equinor asa dataset

As for experimental data, high quality reconstructions of different porous rocks were
provided by Equinor ASA. The data had been reconstructed in the period from 2016

to 2018 using the FDK algorithm and the NSI software provided by the producer
listed in Section 4.1. The projection data was acquired using the micro-CT mentioned
in Section 4.1. Like the simulated dataset, undersampled reconstructions were gener-
ated using the TIGRE toolbox by a forward projection operation followed by backpro-
jection. Because the dimensions of the different reconstructions differed, each dataset
was created with a common undersampling factor. Training datasets with undersam-
pling factor 8, 12, and 16 were generated, but an undersampling factor of 8 was
chosen for the final training. The experimental dataset target XY-slices are denoted
EQNR in Figure 5.1, as they were provided by Equinor ASA, with the corresponding
undersampled reconstructions shown in Figure 5.2. Shown in Figures 5.3 and 5.4 are
the middlemost XZ-slices of the same dataset.
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EQNR 1 EQNR 2 EQNR 3 EQNR 4 EQNR 5

EQNR 6 EQNR 7 EQNR 8 EQNR 9 SIM 1

SIM 2 SIM 3 SIM 4 SIM 5 SIM 6

SIM 7 SIM 8 SIM 9 SIM 10 SIM 11

Figure 5.1: The target reconstructions of the training dataset. The middlemost cross section
in the XY-plane is shown. EQNR indicates that the data was provided by Equinor
ASA, while SIM indicates that the data was retrieved from TomoBank [9].
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MSSIM: 0.14 MSSIM: 0.41 MSSIM: 0.18 MSSIM: 0.33 MSSIM: 0.57

MSSIM: 0.15
MSSIM: 0.41 MSSIM: 0.55 MSSIM: 0.41 MSSIM: 0.28

MSSIM: 0.57 MSSIM: 0.39 MSSIM: 0.45 MSSIM: 0.22 MSSIM: 0.29

MSSIM: 0.34 MSSIM: 0.27 MSSIM: 0.27 MSSIM: 0.29 MSSIM: 0.28

Figure 5.2: The undersampled FDK reconstructions of the training dataset with an undersam-
pling factor of 8. The middlemost cross section in the XY-plane is shown. The
MSSIM value with respect to the ground truth is listed.
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EQNR 1 EQNR 2 EQNR 3 EQNR 4

EQNR 5

EQNR 6 EQNR 7

EQNR 8

EQNR 9 SIM 1

SIM 2 SIM 3 SIM 4 SIM 5 SIM 6

SIM 7 SIM 8 SIM 9 SIM 10 SIM 11

Figure 5.3: The target reconstructions of the training dataset. The middlemost vertical slice in
the XZ-plane is shown. EQNR indicates that the data was provided by Equinor
ASA, while SIM indicates that the data was retrieved from TomoBank, and is simu-
lated [9].
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MSSIM: 0.17 MSSIM: 0.48 MSSIM: 0.22 MSSIM: 0.64

MSSIM: 0.74

MSSIM: 0.57 MSSIM: 0.56

MSSIM: 0.73

MSSIM: 0.66 MSSIM: 0.40

MSSIM: 0.48 MSSIM: 0.46 MSSIM: 0.21 MSSIM: 0.38 MSSIM: 0.13

MSSIM: 0.26 MSSIM: 0.31 MSSIM: 0.33 MSSIM: 0.37 MSSIM: 0.34

Figure 5.4: The undersampled FDK reconstructions of the training dataset with an undersam-
pling factor of 8, illustrated by the middlemost vertical slice in the XZ-plane. The
MSSIM value with respect to the ground truth is listed.
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5.3 sirt dataset

Training data using 50 SIRT iterations and an undersampling factor of 8 were also
collected. Here, the reconstruction denoted EQNR 3 was excluded from the training
dataset, as its dimensionality caused it to be too computationally expensive to re-
construct. It should be noted that the height of the reconstruction could have been
cropped, but this was not prioritised. The middlemost cross sections in the XY-plane
of the SIRT reconstructions are included in Figure 5.5, while Figure 5.6 illustrates the
corresponding middlemost XZ-slices.

MSSIM: 0.44 MSSIM: 0.44 MSSIM: 0.42 MSSIM: 0.38 MSSIM: 0.11

MSSIM: 0.19 MSSIM: 0.43 MSSIM: 0.53 MSSIM: 0.34 MSSIM: 0.63

MSSIM: 0.34 MSSIM: 0.18 MSSIM: 0.29 MSSIM: 0.37 MSSIM: 0.55

MSSIM: 0.37 MSSIM: 0.38 MSSIM: 0.47 MSSIM: 0.41
Excluded:
EQNR 3

Figure 5.5: The SIRT reconstructions of the training dataset with 50 iterations and an un-
dersampling factor of 8. The middlemost horizontal cross section is shown. The
sample EQNR 3 was excluded from the training dataset.
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MSSIM: 0.40 MSSIM: 0.47 MSSIM: 0.59

MSSIM: 0.38

MSSIM: 0.32

MSSIM: 0.48

MSSIM: 0.55

MSSIM: 0.63 MSSIM: 0.30 MSSIM: 0.43

MSSIM: 0.26 MSSIM: 0.20 MSSIM: 0.21 MSSIM: 0.55 MSSIM: 0.77

MSSIM: 0.22 MSSIM: 0.24 MSSIM: 0.30 MSSIM: 0.28
Excluded:
EQNR 3

Figure 5.6: The SIRT reconstructions of the training dataset with 50 iterations and an under-
sampling factor of 8. The middlemost vertical slice in the XZ-plane is shown. The
sample EQNR 3 was excluded from the training dataset.
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D E V E L O P M E N T O F R E C O N S T R U C T I O N E N H A N C E M E N T
M O D E L

6.1 data preparation and augmentation

As mentioned in Sections 5.1 and 5.2, undersampled data were generated using the
TIGRE toolbox [3]. Both the FDK algorithm and the iterative SIRT algorithm were
used.

Before entering the reconstruction model, both the target ground truth and the gen-
erator input were normalised to values between 0 to 1. Moreover, the reconstructions
were cropped to 1283, and further augmented by flipping, randomly inverting, and
rotating the reconstructions. In some cases, rotation was not performed as due to
interpolation artefacts. Nevertheless, the effective size of the datasets increased dra-
matically due to the high number of possible permutations. The three-dimensional
transforms were implemented using the TorchIO package [42], which specialises in a
standard set of transforms for medical CT imaging that closely resemble the available
Pytorch 2D transforms [40]. The data preparation and augmentation processes in the
cases of training and application are illustrated in Figure 6.1.

High quality 
reconstructions

Projection 
forward

Undersampled 
reconstruction

Cropping,
normalisation,

data augmentation

Undersampled
generator

input

Ground truth 
target 

reconstructiona) Training:

Raw projections
Cropping, 
alignment, 

normalisation

Undersampled 
reconstruction

Cropping,
re-normalisation

Reconstruction
enhanced

by generator 

b) Application:

Figure 6.1: Illustration of the data preparation and augmentation processes for training and
application. In a), undersampled reconstructions are generated using forward pro-
jection and subsequent backprojection. Followings this is the data augmentation
process. The resulting data are used for the GAN training process. In b), a CT
scan with few projections is reconstructed, and only cropping and normalisation
is performed before the reconstruction enhancement model is applied. The main
differences are the use of data augmentation during training, and that application
of the trained model was used on new CT scans sampled using the derived golden
ratio sampling procedure from Section 4.3.
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Figure 6.2: Illustration of the 3D fully convolutional max-pooling U-net generator architec-
ture. Input and output shapes are given by the circles and squares. Convolutional
block information is provided between the nodes. Pooling and upsampling are
symbolised by diamonds.

6.2 architecture

The developed model used for reconstruction enhancement was a cGAN consisting
of a 3D fully convolutional U-net generator and a 3D convolutional discriminator
with two linear layers for binary classification. The respective architectures are illus-
trated in Figures 6.2 and 6.3. Input and outputs in the diagrams are illustrated by
circles, while the connections between the circles provide information about the con-
volutional kernels in the given convolutional block. The kernel spatial size is given
together with the number of output channels. The kernel input channel size is ne-
glected, as this information is provided by the input node marker. Additionally, the
convolutional stride is given only if it was not equal to 1, and parametric ReLU
(PReLU) was predominantly the activation function of choice. Note, however, that the
final layer of the generator was left without a non-linear activation function. The gen-
erator output was rescaled to values between 0 and 1 using min-max normalisation.
The discriminator had instead a sigmoid activation function to ensure meaningful re-
sults from the binary cross-entropy loss function, as seen in Equation (2.5). Input and
output features of the linear layers are illustrated by the nodes, while the weights,
and thereby the matrix vector multiplication, are illustrated by the connectors. Spe-
cial operations, such as max pooling, trilinear upsampling, and adaptive pooling are
symbolised by diamond nodes. Finally, the skip connections with concatenation of
channels are illustrated by the long horizontal arrows with squared ends. Shortly ex-
plained, max pooling reduces the spatial size of the input, upsampling increases the
spatial size, adaptive pooling ensures a constant spatial output size, and skip connec-
tions concatenate the channels of one convolutional block with the input channels of
another convolutional block.
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Figure 6.3: Illustration of the 3D strided convolutional binary classifier discriminator archi-
tecture. Input and output shapes are given by the circles. Strided convolutional
kernels are vertically aligned. 3D adaptive pooling connects the convolutional lay-
ers to the linear layers, whose matrix-vector multiplication is symbolised by nodes
and connectors.



48 development of reconstruction enhancement model

6.3 training

One epoch in the training process consisted of generator steps, discriminator steps,
and a validation. The latter was used to monitor the generalisation error of the model
to prevent overfitting, and consisted therefore of only a forward pass of the valida-
tion dataset, with no updating of weights. The actual training process consisted of
a forward pass followed by backpropagation of the generator and discriminator, re-
spectively. A diagram illustrating these separate processes is provided in Figure 6.4.
During the generator step, the output was compared to the target ground truth by
plain mean squared error (MSE) loss (2.2), as well as MSE loss of the first parts of
the ResNet convolutional feature extractor output. This loss term did, however, only
compare 2D slices in one plane, as it was severely memory intensive to repeat this
procedure along each axis. The 3D generator output and the 3D high quality recon-
struction had to be transformed to 224×224 with three channels, passed through the
first bottleneck of the freezed ResNet feature extractor, from which the outputs were
compared by MSE loss. The generator output was also fed into the discriminator,
which provided an adversarial binary cross entropy loss (2.5). If the generator man-
aged to fool the discriminator, the adversarial loss would be close to 0. A weighted
average of the different loss terms was used to calculate the total generator loss. Back-
propagation was then applied to update the generator weights based on the ADAM
optimiser (2.8).

As for the discriminator step, the discriminator performed two classifications. First
the generator output was evaluated, then the high quality reconstruction. The dis-
criminator output of the high quality reconstruction was compared to the target label
1 by binary cross entropy loss (2.5), and the discriminator output of the generated
reconstruction was compared to the target label 0 by the same loss function. Update
of the weights was also in this case performed by the ADAM optimiser on the sum
of the two loss terms.

The equipment available for training was either a single NVIDIA GeForce RTX
3090 with 10 496 cores and 24 GB of memory, or three distributed NVIDIA QUADRO
P6000 with 3840 cores and 24 GB of memory each. Even though the three QUADRO
P6000 outperformed the single RTX 3090 in terms of number of cores and memory
capacity, distribution across several GPUs involves an additional overhead due to
inter-GPU communication.

6.4 model and training optimisation

Compared to the original TomoGAN and the first developed model and training al-
gorithm in this project, several modifications were implemented. Firstly, the capacity
of the discriminator was increased by adjusting the number of output channels in the
last convolutional layers from 4 to 16. Secondly, the output activation function of the
generator was changed from linear activation to a normalisation layer, so that the out-
put was constrained to the range 0 to 1. Thirdly, the VGGNET feature extractor, that
was used in the TomoGAN paper [33], was replaced by the first layers of the ResNet
feature extractor [25]. As mentioned, PReLU was the activation function of choice for
both the generator and the discriminator, while the original TomoGAN lacked this
additional learnable parameter inbetween layers.
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In terms of training optimisation, the training step relation between the generator
and the discriminator was removed. Instead, a while-loop was implemented, where
the generator was trained until the discriminator was fooled, and then the discrimi-
nator was trained until the generator was fooled. The criteria for the generator and
discriminator to be fooled were defined as a certain adversarial loss or discrimina-
tor loss, respectively. For instance, a natural criterion was to stop generator training
when the adversarial loss was below 0.69, because a BCE loss of 0.69 indicates ran-
dom guessing (2.5). Likewise, a natural discriminator criteria would be 1.38. The
possibility of an endless while-loop was accounted for by introducing a maximum
number of 10 successive generator and discriminator steps, respectively. To fine tune
the training, a cosine-shaped learning rate scheduler was implemented, that reduced
the learning rate over the course of the maximum number of iterations. Finally, the
generator weights were frequently saved during training, and the best performing
models were manually selected based on the validation loss, relative improvement
in validation MSSIM, and stability. The optimal generator loss function weights were
found through trial and error, meaning adjusting the importance of the MSE, adver-
sarial, and perceptual loss, respectively.

Furthermore, successfully trained models were saved and used as initialisation for
other training sessions. This transfer learning was performed to reduce training time,
increase training stability, improve the generalisation error, and adapt the GAN to
new datasets. For instance, a model trained on simulated data was used as initialisa-
tion for training on experimental data. The same model was also used as initialisation
for training on undersampled SIRT reconstructions.
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Figure 6.4: The GAN training process consisted of generator steps, discriminator steps, and
validation. For the generator, MSE loss was computed directly and after ResNet
feature extraction, while the adversarial loss was computed using BCE. In contrast,
the discriminator loss was the sum of two BCE losses: one for the classification of
generator output, and one for the classification of high quality reconstruction. No
updating of weights was performed during validation.
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P E R F O R M E D E X P E R I M E N T S

7.1 4d-ct with enhanced time resolution

Because the aim of this thesis was to enhance 4D-CT, a simple, yet full worthy, dy-
namic CT experiment was performed. The hour glass sample, the industrial CT scan-
ner, and the derived golden ratio sampling procedure, described in Section 4.2, 4.1,
and 4.3, respectively, were used for the experiment. The experiment was performed
twice, once with 25 projections per revolution, and once with 13. The initial post-
processing of the measured projections included median-filtering of defect pixels,
flat-field and dark-field corrections, rotation to upright position, determining AoR,
and cropping (1536,1024) as the region of interest (RoI). The latter experiment, which
consisted of 13 projections per revolution with a total of 715 projections, was used in
the final analysis, because the sample was in this case tilted to reduce the symmetry,
making it a more challenging reconstruction. The processed projections were binned
using a 2× 2 average pooling convolutional operator with stride 2, which halved the
dimensions along each axis in terms of pixel count. The resulting projections were re-
constructed using the FDK algorithm. One reconstruction utilised all 715 projections,
while another only utilised the very first full revolution. Following reconstruction of
the volume, the fully trained generator was used to enhance the undersampled re-
construction. The generator was the result of transfer learning from initial training
on simulated data, and fine-tuning on the complete data set shown, for instance, in
Figure 5.2 Focus was directed towards the sand-air interface, which was the most dy-
namic part of the sample. To further investigate this interface, a Sobel filter (3.20) and
a Laplacian filter (3.21) were applied, and the sand-air interface was cropped for a
more thorough investigation. In one last experiment to assess the maximal temporal
resolution, the first revolution was divided into two parts of 7 projections with ap-
proximately 180◦ coverage each, and reconstructed using the FDK algorithm. These
resulting missing wedge reconstructions were enhanced by the generator, and com-
pared before and after enhancement. Finally, the movement of the sand-air interface
was visualised by comparison of the two reconstructed time stamps.

7.2 spatial comparison of reconstructions

The spatial reconstruction enhancement of the hour glass sample was also assessed.
For this analysis, no binning was performed to preserve the original number of pix-
els. The hourglass was reconstructed and enhanced using between 1 and 9 full rev-
olutions, corresponding to 13 and 117 projections, respectively. The spatial quality
metrics used to assess the enhancement were global SSIM and PSNR of volumes, as
well as MSSIM and PSNR in cropped cross sections. Additionally, line profiles were vi-
sually investigated. Iterative reconstruction using the SIRT algorithm was also added
to the comparison. A total of 100 iterations were performed using both 26 and 52

projections, with a computational time of approximately 25min per reconstruction.
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The same analysis was repeated for a static CT scan of the sandstone sample. Here,
the number of projection per revolution was 17, and the total number of projections
was 935. The ground truth was a fully sampled FDK reconstruction utilising all 935
projections. The undersampled FDK reconstructions ranged between 1 and 14 full
revolutions, corresponding to 17 and 238 projections, respectively. Because the entire
volume was static, the volume was cropped and visualised along all axes, with a
focus on the major cracks of the sample. Also in this case, iterative reconstruction
using the SIRT algorithm was included in the comparison. The settings of the iterative
reconstruction were 150 iterations and 34 projections.

7.3 enhancement of iterative reconstructions

In an experiment to test the versatility of the developed GAN, the SIRT dataset shown
in Figures 5.5 and 5.6 was used for another round of training, with the generator
weights from the initial training on simulated data as initialisation. The goal of the
experiment was to assess whether the end result of reconstruction followed by en-
hancement could be better by using a more robust reconstruction algorithm. More-
over, the experiment was aimed at shortening the required computational time for
SIRT. Note that the fully sampled FDK reconstruction was maintained as the target
in this dataset. In this way, typical iterative reconstruction blurring would be present
in the training data, but not the target data.

7.4 additional tests

A set of additional tests were performed to better understand the dynamics of the de-
veloped GAN. In order to minimise confusion, the results of these tests are presented
in Appendix C.

Firstly, the original aim of this project was to develop a general enhancer that
did not require training on a specific sample. Nevertheless, the developed GAN was
trained on a reconstruction of the sandstone sample where the ground truth consisted
of 1000 projections, and the undersampled reconstruction consisted of 50 projections.
No data augmentation except for random cropping, normalisation, and random in-
version were applied. Training was performed using both FDK and SIRT, using 150
iterations in the latter case. As usual, for the initialisation of the generator, the ob-
tained weights from the initial training on simulated data were used. The motivation
for this experiment was to investigate if a more accurate enhancement could be ob-
tained by providing the true probability distribution. By evaluating the results of the
experiment, it would be possible to asses whether the training dataset was sufficiently
representative of the true probability distribution of the sandstone.

Finally, the suspected weakness of training the GAN using online learning was
investigated. For this purpose, the spatial input dimensions were reduced to 643 so
that a batch size of 4 could be used. These were the only two hyperparameter changes
compared to the training resulting in the generator used in Section 7.1. The training
was performed using the same dataset as in the main experiments, namely Sections
7.1 and 7.2. With the increased batch size was motivated by a desire to achieve a
more stable convergence towards a set of weights that would satisfactorily enhance
all samples in the dataset.



Part III

P R E S E N TAT I O N O F R E S U LT S A N D D ATA A N A LY S I S





8
G O L D E N R AT I O S A M P L I N G

8.1 verification of golden ratio sampling procedure

Figure 8.1 illustrates the similarity between cross sections retrieved from standard
CT sampling and the derived golden ratio procedure. The corresponding intensity
distributions in Figure 8.2 revealed no distinct difference in terms of visual perception
or actual pixel values. It is worth mentioning that the most probable reason for the
small distinctions in intensity distributions was due to a different number of total
projections in the CT scans.

Standard CT Dynamical V3 CT

Figure 8.1: The same horizontal cross section of the sandstone sample is presented for two
different CT scanning techniques. On the left is the result of a standard CT scan,
where the 1440 projections were evenly distributed over the full rotation of 360◦.
The result of utilising the derived golden ratio procedure, explained in Section 4.3,
is illustrated on the right. The scan consisted of 55 revolution, where the number
of projections in each revolution was 17.
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Figure 8.2: The pixel intensity distributions of the cross sections shown in Figure 8.1. Before
plotting, the cross sections were cropped to minimise the influence of the back-
ground. The intensity distributions were very similar, as expected.
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8.2 undersampled reconstruction quality

As explained in Section 4.5, an experiment was conducted to determine the optimal
exposure time when performing temporal CT scans. The exposure time was tuned by
adjusting the number of frames averaged (favg) in each projection. One hypothesis
was that by reducing the exposure time, one would achieve a higher temporal reso-
lution at a negligible loss in image quality. The opposing hypothesis supposed that
enhanced exposure time would improve the image quality substantially, which could
ultimately allow for fewer projections in each reconstruction. Firstly, a cross section
of the sandstone containing several details in the form of cracks was chosen as the
object of interest. Next, it was verified that the SSIMs between the fully sampled re-
constructed cross sections were indeed close to 1 when comparing different exposure
times. Specifically, the mentioned SSIMs were 0.9988, 0.9993, and 0.9985 for 6 favg
compared to 24 favg, 12 favg compared to 24 favg, and 12 favg compared to 6 favg,
respectively. Correspondingly, the PSNRs were 32.3, 35.0, and 31.9.

The reconstruction with the longest exposure time was chosen as the reference for
the following analysis, because it, as expected, contained the least amount of noise,
as shown the intensity distribution included in Figure 8.3. The intensity distribution
shown is from the region of interest marked with a red rectangle in the subplot on the
left. This region will be the basis for the following analysis. The adjusted SSIMs and
PSNRs for the ground truth comparison in this region were as follows: 0.9974, 0.9984,
and 0.9969, and 30.5, 33.0, and 30.0, in the same order as mentioned above. However,
the MSSIM values for this RoI with a local 11× 11 gaussian kernel were 0.505, 0.63,
and 0.476, respectively. The fully sampled cross section of interest captured with an
exposure time of 2.4 s, corresponding to 24 favg, is shown on the left.
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Figure 8.3: The Intensity distribution of the region of interest marked by the red box on the
left was included for different exposure times in the histogram on the right. The
highest peak was obtained with the highest exposure time, as expected.

As for the undersampled reconstructions, one, two, and three full revolutions of 17
projections were used in the respective reconstructions. For all undersampled recon-
structions, the SSIM and PSNR were calculated with respect to the reference recon-
struction. The results are included in Table 8.1. The respective projections correspond
to an undersampling factor of 55, 27.5, and 18.3 with respect to the 935 projections
in the reference reconstruction. From the table, one should note that the increases in
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SSIM and PSNR were greatest when going from heavily undersampled and heavily
underexposed. However, at 17 projections, the increase was greater by doubling the
number of projections than by doubling the exposure time, both in terms of struc-
tural similarity and pixel-wise loss. Expectedly, the highest global SSIM and PSNR
was obtained by combining the highest exposure time and the highest number of
projections. With 51 projections and 2.4 s exposure, a global SSIM in the mentioned
RoI above 0.5 was achieved.

Table 8.1: An overview of the global SSIM and PSNR values for the undersampled reconstruc-
tions in the region of interest marked by a red rectangle in Figure 8.3. The values
in the respective matrices are indicated by the table headers.

SSIM

Projections Exposures

0.6s 1.2s 2.4s

17 0.204 0.238 0.329

34 0.260 0.326 0.437

51 0.303 0.387 0.523

PSNR

Projections Exposures

0.6s 1.2s 2.4s

17 13.92 16.22 18.46

34 16.82 19.07 21.16

51 18.47 20.77 22.89

Furthermore, a visual inspection of the undersampled reconstructions was per-
formed based on Figure 8.4. From the figure, it was evident that all reconstructions
were heavily undersampled. The contrast from the cracks were in the most heavily
undersampled and underexposed cases indistinguishable with surrounding streaking
artefacts. Moreover, the reconstructions in the left column, with the lowest exposure
time, had considerable random pixel-noise. The magnitude of the noise and arte-
facts were exemplified in Figure 8.5 by retrieving a line profile across two cracks in
the sandstone. Both cracks were resolved in all reconstructions, but the surrounding
noise and artefacts were of the same order of magnitude as the feature itself.

In terms of temporal resolution, the total acquisition times for the different scan
settings are included in Table 8.2. However, if the number of projections listed were
the number of projections per revolution, the updated scan times and exposure ratios
would be those listed in Table 8.3. The latter is simply defined as the ratio between the
time spent stationary counting photons and the total acquisition time. Additionally,
the MSSIM scores are included in Table 8.2 for the different combinations of exposure
times and undersampling factors. Generally, the MSSIM score is lower than the global
SSIM score. Moreover, unexpected results, such as the fact that the MSSIM score for
17 projections and 1.2 s was the lowest observed, were present. Except for this outlier,
the MSSIM score generally increased with increasing exposure time. The scan times
will be further presented in the following section, but it was observed that increasing
the exposure time provided a larger increase in exposure ratio than increasing the
number of projections. With more projections, the effective rotation rate was reduced,
which results in increased rotational time in addition to the prolonged total exposure.

8.3 time consumption with golden ratio sampling

As mentioned in Section 4.3, the optimal sampling procedure for temporal CT ex-
periments on the mentioned laboratory CT scanners was found to be a compromise



58 golden ratio sampling

17 projections 0.6s 17 projections 1.2s 17 projections 2.4s

34 projections 0.6s 34 projections 1.2s 34 projections 2.4s

51 projections 0.6s 51 projections 1.2s 51 projections 2.4s

Figure 8.4: The grid sorts the reconstructions for the different combinations of exposure times
and undersampling factors. Each column has the same exposure time, and each
row has the same number of projections. Notice that the undersampling artefacts
were the most prominent in the top row, while the random pixel noise was the
most prominent in the left column. Undersampling resulted in streaking artefacts
instead of resolving the cracks in the sandstone.
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Figure 8.5: Profiles for undersampled reconstruction cross sections of two cracks in the sand-
stone. The red line in the top image indicates the location of the line profile. The
black line indicates the ground truth line profile, while the coloured lines show
the line profiles for the different reconstructions. Here, the max number of projec-
tions was combined with varying exposure times, and the max exposure time was
combined with varying numbers of projections. Noise was generally reduced by
increasing the variable parameter in the respective subfigures. The most accurate
reconstruction of the crack was obtained with 51 projections.
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Table 8.2: An overview of the experimental scan times and MSSIM values for the undersam-
pled reconstructions in the region of interest marked by a red rectangle in Figure
8.3. The values in the respective matrices are indicated by the table headers. Exper-
imental scan time is defined to be the measurement time given the settings of the
performed CT scan.

Experimental Scan Time [s]

Projections Exposures

0.6s 1.2s 2.4s

17 46 56 76

34 91 112 153

51 137 168 229

MSSIM

Projections Exposures

0.6s 1.2s 2.4s

17 0.141 0.137 0.208

34 0.143 0.168 0.255

51 0.154 0.191 0.316

Table 8.3: An overview of the achievable scan times and corresponding exposure ratios for
different CT scan settings. The values in the respective matrices are indicated by
the table headers. Achievable scan time is defined to be the scan time necessary to
collect the given number of projections if only one revolution were performed.

Achievable Scan Time [s]

Projections Exposures

0.6s 1.2s 2.4s

17 46 56 76

34 65 85 126

51 87 117 179

Exposure Ratio

Projections Exposures

0.6s 1.2s 2.4s

17 0.223 0.365 0.535

34 0.314 0.477 0.646

51 0.353 0.521 0.685

between reconstruction flexibility and information per time. This method will be re-
ferred to simply as V3 or golden ratio V3 in the following sections. Nevertheless, one
crucial hyperparameter, in addition to the frame averaging presented in Section 8.2,
was the number of projections per revolution p, as this contributed heavily to the min-
imal temporal resolution of the 4D-CT scan. Figures 8.6 and 8.7 include the temporal
resolutions and the exposure ratio, meaning the ratio of total exposure time relative
to the total scanning time, as a function of p, for the industrial and micro CT scanners,
respectively. Figure 8.6 reveals that the industrial scanner has a temporal resolution
below one minute for p = 13 at the cost of 31% exposure time. However, the gain in
exposure ratio is marginal for p > 50, as it is 53% for p = 75. Likewise, Figure 8.7
reveals that the micro CT scanner has a temporal resolution approximately one and
a half minute for p = 13 at the cost of 34% exposure time. The difference in results
between the two scanners is due to the typical scanning parameters mentioned in
Section 4.1 and 4.3, as the micro CT scanner applies a lower rotation rate and a lower
frame per second (fps) than its industrial counterpart.

The aspect of temporal resolution from performing several revolutions comes at
the cost of fewer projections per time. The total scanning time is therefore increased
compared to a standard CT scan, but not as much as what would be the case with
golden angle sampling. Figure 8.8 compares the total scanning time for golden ra-
tio V3, standard CT, and golden angle sampling. Here, 25 projections per revolution
were used for golden ratio V3. Moreover, for golden angle sampling, both the theoret-
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Figure 8.6: The scan settings of the Industrial CT scanner are assumed. Displayed are the
temporal resolution and exposure ratio as a function of the number of projections
per revolution p when applying the developed golden ratio scanning method. The
black dots indicate the temporal resolution and exposure ratio at 13, 25, 50, and
75 projections per revolution.
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Figure 8.7: The scan settings of the Micro-CT scanner are assumed. Displayed are the tempo-
ral resolution and exposure ratio as a function of the number of projections per
revolution p when applying the developed golden ratio scanning method. The
black dots indicate the temporal resolution and exposure ratio at 13, 25, 50, and
75 projections per revolution.

ical achievable and the experimentally hardware-limited scanning times are included.
Hardware limitations were rotating both clockwise and anti-clockwise to prevent in-
tertwining of cables, as well as a software initiation and finalisation time of 5 s per
projection. The case of the industrial CT scanner is included on the left, and the
micro-CT scanner on the right.

An overview of the total scanning time for golden ratio V3 with varying number
of revolutions as well as varying number of projections per revolution is shown in
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Figure 8.8: The golden ratio V3 procedure compared to standard sampling and golden an-
gle sampling. The Industrial CT scanner settings are illustrated on the left, while
the Micro-CT scanner settings are illustrated on the right. 25 projections per rev-
olution were used for golden ratio V3. GR Exp accounts for hardware limitations
that contribute to additional scanning time, while GR Theory is what in theory is
achievable with golden angle sampling.

Figure 8.9. Likewise, the corresponding overview for the micro CT scanner is shown
in Figure 8.10. The subplots on the right in both figures include the scanning times
for different settings corresponding to a total of 1000 projections, and are essentially
the diagonal in the respective subplots on the left. It is evident that many projections
per revolution are advantageous for the total scanning time.
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Figure 8.9: Industrial CT V3 Sampling Scan Times. On the left is a map of the typical scanning
time for the golden ratio V3 procedure with varying number of revolutions and
varying number of projections per revolution. From the map, the diagonal was
retrieved and is shown on the right, where each points shows a scanning time for
collecting 1000 projections.
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Figure 8.10: Micro-CT V3 Sampling Scan Times. On the left is a map of the typical scanning
time for the golden ratio V3 procedure with varying number of revolutions and
varying number of projections per revolution. From the map, the diagonal was
retrieved and is shown on the right, where each point shown represents 1000
projections.
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9.1 the effect of exposure time for dynamical ct

Based on the visual inspection of Figures 8.4 and 8.5 together with the data in Tables
8.1 and 8.2, it is fair to state that the most significant factor for image quality is the
number of unique projections, at least with this amount of undersampling. This result
is expected if one considers the Fourier slice theorem (1.6), as many projections are
required in order to fully sample the full two-dimensional Fourier transform of an
object. This theory is experimentally shown when comparing the SSIM, PSNR, and
the visual perception of the reconstructions; namely 34 projections of 0.6 s compared
with 17 projections of 1.2 s, and 34 projections of 1.2 s compared with 17 projections
of 2.4 s. Note that the number of projections p and the exposure time e will in some
instances be listed in parenthesis to remind of the applied scan settings. In the first
case, the global SSIM values increased from 0.204 (p = 17,e = 0.6 s) to 0.260 and 0.238
by doubling the projections and exposure time, respectively. On the other hand, the
enhancement from doubling the exposure time slightly outperformed the enhance-
ment from doubling the projections in the second case (p = 17,e = 1.2 s). In terms
of MSSIM, the increase was in the first case insignificant in terms of projections, and
actually negative, but insignificant, in terms of exposure time. The reason for the lat-
ter descrepency is unknown, as the level of noise is expected to improve with longer
exposure time. However, only a single outlier is necessary to shift the intensity values
in the renormalisation of the images before the MSSIM calculations. Additionally, the
exposure comparison was only conducted for a single slice, and not a larger volume.
Averaging over volumes could have cancelled out random variations. The second in-
stance showed the opposite of the first instance, namely that the doubling of exposure
time actually outperformed the doubling of projections in terms of MSSIM. Anyway,
by doubling the projection number and exposure time, respectively, the PSNR val-
ues increased from 13.92 to 16.82 and 16.22 in the first case, and from 16.22 to 19.07
and 18.46 in the second case. This was an indication that given the current under-
sampling, the pixel-wise quality improvement from reducing the streaking artefacts
outperformed the quality improvement from reducing the experimental poisson and
gaussian random noise, as these were significant differences. It is also interesting how
the PSNR values disagreed with the MSSIM values. In [31], some underlying tenden-
cies for the different quality metrics were presented. Typically, PSNR is considered a
poor metric for image quality, as it is heavily depended on changes in brightness and
contrast, features which are not essential for human visual perception. Conversely,
blurring is a feature that significantly affects human visual perception, but this is not
well captured by PSNR [31]. All metrics are especially vulnerable to Gaussian noise.
From considering these facts, there is reason to believe that the descrepency is due
to the added aspect of structural similarity through the covariance term in MSSIM.
However, the choice of reference must also be considered. One common ground truth
was chosen as reference in all comparisons, namely the ground truth obtained with
an exposure time of 2.4 s. From an additional calculations, where the metrics in Ta-
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bles 8.1 and 8.2 were re-calculated with respect to the ground truth obtained within
the same exposure time, the tendency changed. In this case, all metrics agreed with
the fact that increasing the number of projections was the most significant factor for
image quality. Therefore, there is a possibility that the MSSIM with 2.4 s exposure
time is slightly over-estimated, because of a lack of independence to the reference re-
construction. Nevertheless, this reference is the closest reconstruction to the ground
truth, and was therefore considered the best reference. Ideally, another scan with even
longer exposure time should have been performed.

However, prioritising projections rather than exposure time comes at the cost of
loss of temporal resolution, because increasing the number of projections affects the
temporal resolution more than increasing the exposure time. In fact, the increases in
scan time are 90% and 45% higher when doubling the number of projections than
when doubling the exposure time, respectively. From this, some conclusive remarks
can be made. For instance, one should not use a too short exposure time of 0.6 s
when the number of projections is 51 or above. Instead, within the same achievable
scan time, Table 8.3, one could perform the scan with 1.2 s exposure time and 34 pro-
jections. This alternative would provide a significant increase in exposure ratio, which
resulted in higher SSIM, PSNR, and MSSIM. Furthermore, performing the scan with
2.4 s exposure time and 34 projections can be performed nearly as fast as 1.2 s expo-
sure time and 51 projections, only 9 s slower per revolution. For this loss in temporal
resolution, an exposure ratio of 0.646 compared to 0.521 may be achieved. This expo-
sure ratio ensured the second highest quality metrics of the investigated cases, only
surpassed by the setting with max exposure time and max projections. Essentially,
based upon this analysis, one should not consider to reduce the exposure time before
scanning with a severe undersampling factor. Stopping for more projections is associ-
ated with an overhead of stopping and starting the sample rotation, which affects the
temporal resolution more than increased exposure time. Likewise, when performing
a scan with very few projections, one should consider to increase the exposure time,
as this would drastically increase the exposure ratio, and thus the image quality, with
only a minor increase in scan time.

Moreover, when comparing Tables 8.1, 8.2, and 8.3, one can generally expect the
best image quality from the settings with the most time invested in the scan. With
except for the outliers of most projections combined with minimal exposure time, and
vice versa, more time invested in the scan implies better image quality. Therefore, in
order to obtain the best temporal and spatial resolution during a 4D-CT scan, one
should confirm that the scan settings are a balanced in terms of exposure time and
number of projections.

As a final note, it is important to realise that all reconstructions in Figure 8.4 were
severely undersampled, as noisy outliers were the same order of magnitude as the
important features one would like to resolve, as seen in Figure 8.5. This fact poses a
challenge for the upcoming enhancement models.

9.2 unresolved challenges

As mentioned in Section 9.1, the image quality generally increases with the time
invested in the scan. Therefore, the optimal sampling angle is the shortest angle
that allows for an acceptable temporal resolution. The desired flexibility in the post-
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processing of the measurement is another factor that has to be considered. Together
with the optimal exposure time, this angle makes up one of two essential hyperpa-
rameters for the 4D-CT scan. The unresolved challenges of the derived golden ratio
V3 procedure are that the number of projections per revolution and the exposure
time have to be chosen a priori. This choice is not trivial, as it depends on numerous
factors; the most important being the sample itself. The wider the sample is, the more
projections are required to provide sufficient information at the edge. Additionally, a
higher-quality scan is required to resolve finer details in the sample. The next essen-
tial factor is the dynamic process investigated. If the reconstructed time step is too
large, dynamical artefacts will be introduced in the reconstructions. Fortunately, the
golden ratio V3 procedure allows for including an arbitrary number of revolutions
into each reconstructed time step. However, due to the quantisation into discrete revo-
lutions, the number of projections per revolution has to be chosen carefully, as already
mentioned. In this way, the golden ratio V3 procedure is a trade-off between golden
angle sampling, which provides full flexibility, and standard CT, which provides no
real flexibility except the worst-case scenario of having to perform missing wedge
reconstructions 1.3.

9.3 proposed improvements to the procedure

An innovative proposition to the golden ratio V3 procedure is to perform two recon-
structions per revolution. This requires no additional adjustments to the procedure;
only the post-processing would need modifications. Even though the beam geometry
of a laboratory CT source is a diverging cone beam, and not a parallel beam like a
synchrotron source, it may still be worth performing two missing wedge reconstruc-
tions with 180◦ coverage per revolution. Therefore, one can effectively double the
number of projections per revolution relative to the original golden ratio V3 proce-
dure. As known, the number of projections per time increases with the number of
projections per revolution, and many projections per revolution is beneficial as long
as the temporal resolution requirements of the scan are met. Consequently, both the
temporal resolution and the exposure ratio of the scan are increased with this mod-
ification. The temporal resolution is increased, because the amount of rotation per
reconstruction is reduced, and the exposure ratio is increased, because the number of
projections collected per reconstruction remains the same. This gain comes, however,
at the cost of possibly introducing missing wedge artefacts. Nevertheless, with a pro-
posed coverage of 180◦ per reconstruction, the missing wedge artefacts may turn out
to be sufficiently weak to be removed by post-processing enhancement, for instance
performed by a GAN, even without specialised training.

Another proposition is to perform binning of the projections, meaning that multiple
pixels in the detector are summed together. This has two main advantages. Firstly,
the signal to noise ratio is increased, as the number of photons per pixel is increased,
while the random noise with zero mean will be reduced following a cancellation
effect. Secondly, the number of projections necessary for fully sampling of the object
is reduced, as the effective width of each pixel is increased. As an example, a 2× 2
binning of the projections reduces the number of projections required by a factor of
two. The drawback of binning is the reduced spatial resolution, but in cases where
the noise due to aliasing is a dominant factor, binning should be one of the first
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considerations in order to improve reconstruction quality. In other words, binning
allows for a higher temporal resolution. In cases with serious aliasing, binning might
actually improve the actual spatial resolution as well, because the aliasing effect, that
priorly to binning destroyed the spatial resolution, would be reduced.
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10.1 4d-ct of hour glass

For the 4D-CT experiment, the hourglass sample was tilted to distort the otherwise
cylindrical symmetry, and scanned using the derived golden ratio sampling proce-
dure with 13 projections per revolution. A total of 55 revolutions were performed,
resulting in 715 projections in approximately 45min. As estimated in Section 8.3, the
maximal temporal resolution of one full revolution was therefore 49 s. However, a
temporal resolution below 1min came at the cost of significant spatial noise and un-
dersampling artefacts. To compensate for poor spatial resolution, the mentioned GAN
was optimised and trained on a diverse dataset of both simulated and experimental
reconstructions, using an undersampling factor of 8. The generator found weights
that resulted in satisfactory validation loss, structural similarity, and pleasing human
perception. This section will be devoted to investigating the dynamical processes of
the 4D-CT experiment, and demonstrate the enhancement provided by the trained
GAN. Moreover, the absolute limit of temporal resolution will be determined and
studied for the hourglass sample, despite an expected increase in undersampling
artefacts.

Firstly, Figures 10.1 and 10.2 illustrate the necessary compromise between temporal
resolution and spatial resolution. The figures compare the resulting reconstruction
from FDK including all 715 projections, and 13 projections of FDK with and without
GAN-enhancement, respectively. It is evident that the fully sampled reconstruction
suffered from severe dynamical artefacts, while the spatial undersampling artefacts
were significant at the hourglass boundaries in the undersampled reconstructions.

Next, the temporal resolution was investigated further. In this case, the fully sam-
pled reconstruction was disregarded entirely. A measure of good temporal resolution
in the case of the hourglass sample was the visibility of the sand-air interfaces. The
interface, or edge, was highlighted using a Sobel-filter (3.20), representing the first
gradient, and a Laplacian-filter (3.21), representing the second gradient. Figure 10.3
corresponds to Figure 10.1, but compares the gradient image of the FDK reconstruc-
tion to the FDK-GAN reconstruction. The red box indicates the RoI for the following
analysis.

A slight difference may be apparent in the gradient images, but further investiga-
tion of a RoI was deemed necessary. Therefore, the sand-air interface was cropped,
and is presented in Figures 10.4 and 10.5 in the case of Sobel and Laplacian edge de-
tection, respectively. Moreover, the slice presented represents one slice in a cropped
volume, for which the Sobel and Laplacian intensity distributions were plotted in
Figure 10.6. With GAN-enhancement, the Sobel-filtered interface was more visible
due to a better signal-background contrast. Moreover, less high-frequency noise was
present for FDK-GAN, as seen especially in the Laplacian-filtered interface, where
the noise dominates the FDK reconstruction. These observations were confirmed by
the intensity distributions, since the FDK-GAN Sobel distribution had generally both
higher and lower gradient values, as well as a narrower Laplacian distribution.
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Nyquist FDK FDK-GAN

Figure 10.1: An illustration of how undersampled FDK captured the dynamical process, while
fully sampled FDK suffered from dynamical artefacts. The GAN-enhanced recon-
struction was able to capture the dynamical process with better contrast and less
noise, but undersampling artefacts outside the boundaries remained.

Nyquist FDK FDK-GAN

Figure 10.2: Cross section of the hourglass top and bottom early on in the dynamical process.
As in Figure 10.1, the undersampled FDK reconstruction captured the dynamical
process, while the fully sampled FDK reconstruction suffered from dynamical
artefacts.
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Figure 10.3: A Sobel filter was applied to Figure 10.1 to highlight the sand-air interface. The
FDK-GAN reconstruction had a better contrast at the sand-air interface, but also
more present undersampling artefacts. The red box indicates the height and
width of the RoI for the analysis to follow.
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Figure 10.4: From Figure 10.3, the sand-air interface was investigated further. The included
slice is a part of a cropped volume surrounding the mentioned interface. The
FDK-GAN reconstruction had a better contrast at the sand-air interface and less
high-frequency noise.



72 temporal ct

FDK FDK-GAN

−0.02 −0.01 0.00 0.01 0.02
Intensity Difference [a.u.]

Figure 10.5: Similarly to Figure 10.4, the sand-air interface was investigated, this time apply-
ing a Laplacian filter. This filter represents the second derivative, and is therefore
more sensitive to noise. Therefore, the observation of less high-frequency noise
in the FDK-GAN reconstruction is more apparent, and supports the observation
in Figure 10.4.
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Figure 10.6: The intensity distributions of the cropped sand-air interface volume, illustrated
by Figures 10.4 and 10.5. Along the horizontal axis are the respective gradient val-
ues, and along the vertical axis are the densities of occurances. With FDK-GAN,
the Sobel-filtered interface had a higher zero-gradient peak, as well as a greater
dynamical range. This indicates a better signal-background contrast. Meanwhile,
the FDK-GAN Laplacian-filtered interface had a narrower distribution, indicat-
ing less high-frequency noise, which explains the observation in Figure 10.5.
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FDK 1 FDK-GAN 1

FDK 2 FDK-GAN 2

Figure 10.7: Missing wedge reconstructions. One full revolution of projections was divided
into two reconstructions, and thereby two time stamps. The red shape marks
the real hourglass shape without undersampling artefacts. As seen in all figures,
FDK-GAN provided contrast enhancement and noise reduction.

In an effort to further maximise the temporal resolution, missing wedge reconstruc-
tion was performed. This was performed regardless of the resulting undersampling
artefacts, as the aim was to visualise the sand-air interface with minimal temporal
blurring. Due to the reduced scan time, the gradient visibility was expected to be in-
creased. The mentioned reconstruction from one full revolution was divided into two
time stamps with 7 projections each, with the middle projection being shared. The
inner slices of the mentioned wedge reconstructions are shown in Figure 10.7. Due
to the double hourglass edges introduced by the heavy undersampling, the static
hourglass shape from the fully sampled reconstruction was drawn in red.

Despite the undersampling, few artefacts were present inside the hourglass, and it
was still possible to distinguish the sand-air interface. Figure 10.8 compares the gradi-
ent in the different time stamps, both with and without GAN-enhancement. The dif-
ference between the time stamps was also of interest, and is included in Figure 10.9.
This time the GAN-enhancement was able to increase the gradient visibility, and the
difference between the time stamps was more pronounced. It should also be noted
that the gradient was more intense in the wedge reconstruction, Figure 10.8, than the
full revolution reconstruction, Figure 10.3, which agreed with the proposed hypothe-
sis that enhanced temporal resolution would create a more intense sand-air interface.
More importantly, however, was the resolved sand-air interface in the second time
stamp, which was not present in the full revolution reconstruction. As opposed to
the information in Figure 10.4, where the curved part of the sand-air interface was
blurred in time, the missing wedge reconstruction was able to resolve two distinct
curvatures, thereby uncovering how the whirlpool in the hourglass propagated.
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Figure 10.8: The sobel filter was applied to the sand-air interface in the wedge reconstructions.
and the dynamical process of the sand-air interface was enhanced. It is clear that
the interface has descended in the second time stamp, with an accelerated drop
in the centre. The additional temporal resolution also uncovered the sand-air
interface presented in the second time stamp, which was not resolved in the full
revolution reconstruction.
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Figure 10.9: To further illustrate the movement of the sand-air interface, the difference be-
tween the two time stamps was calculated. The dark line illustrates the presence
of a sand-air in the first reconstruction, while the bright line shows where the
sand-air interface has descended in the second reconstruction.
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Nyquist FDK FDK-GAN

Figure 10.10: Vertical slice of the hourglass neck, reconstructed from FDK on all 715 projec-
tions, FDK on 52 projections, and GAN-enhanced FDK on 52 projections, respec-
tively. The upper red line marks the one retrived line profile, and the box marks
the region of interest from which quality metrics were calculated.

10.2 reconstruction enhancement of hourglass

In addition to the investigation of the dynamical processes of the 4D-CT experiment,
the spatial quality of the GAN-enhanced reconstructions was also assessed. The gen-
erator found, as mentioned, weights that resulted in satisfactory validation loss, struc-
tural similarity, and pleasing human perception. A 256 cubed region of interest was
enhanced using the trained generator, and no binning of pixels was performed, unlike
Section 10.1.

Figure 10.10 shows a vertical slice of the hourglass neck reconstructed from FDK in-
cluding all 715 projections, FDK including the first 52 projections, and GAN-enhanced
FDK including the first 52 projections, respectively. The given number of projections
was effectively an undersampling factor of 14 with respect to the ground truth, or 8
with respect to the width of the region. Since this undersampling factor was the same
as the one applied during training, the peak performance of the GAN was expected
at this number of projections. The fully sampled slice contained a fade in the upper
part of the hourglass, indicating dynamical effects that have not been captured due to
the long scan duration. In contrast, the undersampled FDK reconstruction captured
the early phase of the dynamical process, but suffered from severe undersampling
artefacts, and much high-frequency noise. These artefacts were reduced in the GAN-
enhanced FDK reconstruction, as nearly no undersampling artefacts remained. One
important aspect of the data post-processing was the normalisation of data. In com-
parison of slices from the three reconstructions, the GAN-enhanced reconstruction
was re-normalised into the range of the fully sampled reconstruction.

When assessing an almost static cross section of the hourglass, the importance of re-
construction enhancement was demonstrated. As shown in Figure 10.11, the trained
GAN removed undersampling artefacts, high-frequency noise, and increased the
MSSIM from 0.37 to 0.80. Further visualisation of the elimination of high-frequency
noise due to GAN-enhancement is shown in Figure 10.12, where the line profile of
the neck is plotted for the three reconstructions. The enhancement displayed a lower
variance in the line profile, especially in the low-intensity region, at the same time
as the contrast was enhanced. To evaluate the independent pixel-wise loss, the re-
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Nyquist FDK: 0.37 FDK-GAN: 0.80

Figure 10.11: A static cross section in the early phase of the 4D-CT scan. Because this region
remained static, the fully sampled Nyquist reconstruction may function as a
ground truth. The GAN ensured an increase in MSSIM from 0.37 to 0.80 for the
FDK reconstruction consisting of 52 projections.

spective difference maps of the static cross sections are shown in Figure 10.13. The
difference maps subtracts the undersampled reconstructions from the ground truth,
and the metric included is the peak signal-to-noise ratio. Here, the GAN-enhanced
reconstruction displayed a only slighter lower pixel-wise loss than the undersam-
pled reconstruction. The intensity values were generally slightly low compared to the
ground truth, which may be due to the fact that the FDK-GAN applied some blurring,
thereby reducing the max intensities, which would affect the renormalisation of the
GAN-enhanced reconstruction.

As mentioned, the enhancements presented had the same undersampling factor as
the training dataset. However, it would be beneficial to investigate the performance
of the GAN when applied to a higher and lower undersampling factors. Therefore,
the MSSIM, global SSIM, and PSNR were calculated before and after enhancement
for undersampled reconstructions ranging from 1 to 8 revolutions. The global SSIM
in the volume marked by the red box in Figure 10.10 is plotted in Figure 10.14. Ad-
ditionally, the MSSIM score was averaged over all slices in the volume. To illustrate
the increase in performance, Figure 10.15 relates the SSIM, PSNR, and MSSIM of the
GAN-enhanced reconstruction to the FDK reconstruction by calculating the relative
increase in the respective metrics.

Finally, an analysis of the frequency content of the reconstructions was performed.
The Fourier Sheell Crosscorrelation (FSC) (3.19) was calculated for all mentioned
number of projections before and after GAN-enhancement. The left subplot in Figure
10.16 presents the FSC curves for the undersampled FDK reconstruction, and the
right subplot presents the FSC curves for the GAN-enhanced reconstruction.
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Figure 10.12: A line profile across the static cross section of the hourglass neck, as shown in
Figure 10.11. 52 projections were used for the undersampled reconstructions,
compared to 715 projections for the fully sampled reconstruction. Enhanced
contrast and blurring of outliers were observed in the GAN-enhanced recon-
struction. Therefore, features and high-frequent noise were in most cases not
the same order of magnitude, which was the case for the undersampled recon-
struction.

FDK: 23.83 FDK-GAN: 24.74
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Figure 10.13: PSNR illustrated by a difference map of the pixel-wise loss between the under-
sampled reconstructions and the ground truth, as shown in Figure 10.11. As also
illustrated in Figure 10.12, the GAN-enhanced reconstruction ensured a higher
PSNR than the undersampled reconstruction, but the blurring effect resulted in
a generally lower pixel intensity than the ground truth.
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Figure 10.14: The global SSIM was calculated for the volume marked by the red box in Figure
10.10. For each cross section in this volume, the MSSIM was calculated, and
the average MSSIM across all slices is shown. The optimal performance was
observed close to the training undersampling factor of 8.
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Figure 10.15:
The global PSNR was calculated for the volume marked by the red box in Figure
10.10. The scores for SSIM and MSSIM were calculated as described in Figure
10.14. From the data, the respective performance increases were calculated, and
are shown. Again, the optimal performance was observed around the training
undersampling factor of 8.
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Figure 10.16: FSC calculated for different number of projections before and after GAN-
enhancement. The volume represented by the red box in Figure 10.10 was used
for the analysis. Processing steps included three-dimensional Fourier transform,
shifting the zero-frequency point to origo, and calculating the FSC for each
unique integer spatial frequency. Moreover, a floating mean of the FSC was plot-
ted, using the 4 prior and posterior frequencies at each point. This was done
to reduce the noise in the plot. FDK-GAN reconstructions had generally higher
correlation at lower frequencies up to the Nyquist frequency, where the spatial
frequencies suddenly became uncorrelated.
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Table 10.1: The SIRT algortihm managed to produce reconstructions with the following SSIM,
MSSIM, and PSNR scores. The algortihm was limited to 100 iterations, which
corresponded to a computational time of less than 20min using GPU-acceleration.
The volume represented by the red box in Figure 10.17 was used for the analysis.

SIRT

Projections SSIM MSSIM PSNR

26 0.94 0.36 22.23

52 0.96 0.39 23.44

10.3 hour glass iteratively reconstructed

An alternative to analytical reconstruction is iterative reconstruction, which is known
to produce less noise and undersampling artefacts when the undersampling is high.
Therefore, a similar analysis to the one performed in Section 10.2 was performed on
reconstructions of the hourglass using 100 iterations of the SIRT algorithm for 26 and
52 projections, respectively. Initially, only 50 iterations of were performed, but the
reconstructions were still early in the convergence process after 10 minutes of com-
putation. The reconstructions with 100 iterations were completed in less than 20min
using GPU-acceleration, which was deemed an acceptable computational time. Corre-
spondingly to Figures 10.10, 10.11, 10.12, and 10.13, the iterative reconstruction data
are shown in Figures 10.17, 10.18, 10.19, and 10.20, respectively. The upper red line
in Figure 10.17 indicates the cross section shown in Figure 10.18. Furthermore, the
encapsulated region within the red box illustrates again the height and width of the
volume which is considered static, and thus was used to calculate the global SSIM,
PSNR, and MSSIM in Table 10.1, where the latter metric is an average over all two-
dimensional slices in the volume. Generally, the iterative reconstruction performed
better than the analytical reconstruction, as expected. This came at the cost of in-
creased computational time, less contrast and blurred edges. The latter is visualised
both at the sharp interface between the hourglass and the background in Figure 10.19,
and in the difference map in Figure 10.20, where there was a positive difference right
outside the hourglass boundaries, and a negative difference inside the hourglass.
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Nyquist 26 Projections 52 Projections

Figure 10.17: Vertical slice of the hourglass neck, reconstructed from FDK on all 715 pro-
jections, SIRT on 26 projections, and SIRT on 52 projections, respectively. It is
important to remember that blurring is typically included in iterative recon-
structions, as shown in this figure. Only 100 iterations were performed in order
to complete the reconstructions within 20 minutes each.

Ground Truth 26: 0.47 52: 0.50

Figure 10.18: A static cross section in the early phase of the 4D-CT scan. Because this region
remained static, the fully sampled Nyquist reconstruction may function as a
ground truth. The MSSIM values with respect to the ground truth are listed. In-
cluding more projections resulted in a more accurate reconstruction, as shown
in the figure. However, there is a probability that too few iterations were in-
cluded in the SIRT reconstructions, but only 100 iterations were performed in
order to complete the reconstructions within 20 minutes each.
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Figure 10.19: A line profile through the static cross section shown in Figure 10.18. Both re-
constructions suffered from blurring and smooth edges rather than sharp tran-
sitions and good contrast. However, the reconstruction with 52 projections was
better in this regard than the reconstruction with 26 projections. 100 iterations
were performed for the SIRT reconstructions.

26 PSNR: 22.09 52 PSNR: 23.03
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Figure 10.20: The difference map between the fully sampled Nyquist reconstruction and the
SIRT reconstructions. The smoothed out edges became more apparent in this
figure, as the region outside the hourglass had a positive difference, while the
region immediately inside the hourglass had a negative difference.
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10.4 enhancement of undersampled sandstone reconstruction

The enhancement ability of the GAN trained on a diverse set of simulated and experi-
mental data was assessed by applying it to a static CT reconstruction of the sandstone
sample. It is important to understand that the weights of the generator were the same
in this section as in Sections 10.1 and 10.2. The ground truth was obtained by recon-
structing the full dataset, 935 projections divided into 55 revolutions of 17 projections,
utilising the analytical FDK-algorithm. Figure 10.21 compares the ground truth to the
undersampled and enhanced reconstructions, respectively. Added to the comparison
is a reconstruction using the iterative SIRT algorithm with 150 iterations. A higher
number of iterations than in Section 10.3 was deemed necessary because of the com-
plexity of the sandstone sample relative to the hourglass sample. The number beside
the reconstruction technique indicates the MSSIM compared to the ground truth, and
it becomes clear that the SIRT algorithm benefitted from the increased number of
iterations, as it achieved the highest MSSIM. As in Section 10.2, the GAN outputted
a reconstruction with better contrast, less high-frequency noise, and better visual per-
ception than the undersampled FDK reconstruction.

The effectiveness of the GAN at different undersampling factors was also investi-
gated. The result is shown in Figure 10.22, where the SSIM and the MSSIM values
for reconstructions with varying number of projections are plotted. Interestingly, the
span in which the GAN was effective was much narrower for the sandstone sample
than the hourglass sample. It provided an enhancement of 25% to 60% when the
undersampling factor was above 8, while the reconstruction actually worsened for
lower undersampling factors.

Figures 10.23, 10.24, and 10.25 further exemplify the noise-canceling ability of the
GAN by comparing the line profiles of the ground truth, the undersampled recon-
struction, the iterative reconstruction, and the enhanced reconstruction for different
lines of interest. It is evident that the SIRT reconstruction also reduced the noise, but
at the cost of blurring the image, while contrast-enhancement was achieved by the
GAN. At the same time, the GAN had a tendency to enhance outliers of the FDK
reconstruction as well, making the line profile somewhat unstable. The Iterative re-
construction, on the other hand, correctly reconstructed most parts of the sandstone,
but the intensity drop within cracks was not nearly as sharp as in the ground truth.

This instability is apparent in Figure 10.26, which illustrates the pixel-wise loss be-
tween the ground truth and the undersampled reconstructions. As shown in Figures
10.23, 10.24, and 10.25, the SIRT algorithm managed to minimise the pixel-wise loss,
only struggling in region of sudden change, while the two other algorithms had a
higher noise-level.

Other training sessions were also performed, where the GAN found other weights
that produced better results for the sandstone sample. However, this came at the cost
of the peak performance for the hourglass sample presented in Section 10.2. These
training sessions are presented in Appendix C, and include training exclusively on
another CT scan of the sandstone sample, reconstructed from 50 projections. More-
over, a training session using spatial dimensions 643 with batchsize 4, as apposed to
the 1283 and batchsize 1, is also included. These results will be elaborated upon in
the mentioned appendix, but shortly summarised it was confirmed that satisfactory
enhancement was possible for the sandstone sample, as well.



84 temporal ct

Ground Truth FDK: 0.34 SIRT: 0.62 FDK-GAN: 0.47

Ground Truth FDK: 0.28 SIRT: 0.65 FDK-GAN: 0.44

Ground Truth FDK: 0.28 SIRT: 0.52 FDK-GAN: 0.40

Figure 10.21: The figure compares the fully sampled FDK reconstruction to the reconstruc-
tions obtained from 34 projections utilising the FDK algorithm, the SIRT algo-
rithm, and the FDK-GAN procedure. As shown, the GAN was able to reduce
some noise, but has enhanced streaking artefacts as well as vital details. After
150 iterations, the SIRT reconstruction was able to reduce noise at the cost of
blurring the image, and achieved the highest MSSIM, which is the value dis-
played together with the reconstruction method.
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Figure 10.22: The global SSIM score of the region of interest, as well as the MSSIM score
from convolving with a 11×11 Gaussian kernel. Enhancement was actually only
observed for undersampling factors above 8, while the reconstruction worsened
for lower undersampling factors. In terms of MSSIM, the GAN provided an
output MSSIM score of approximately 0.46 to 0.50 regardless of the quality of
the input. This tendency is in stark contrast to the hourglass sample. However,
GAN weights that provided better results for the sandstone sample were also
obtained, and will be presented in Appendix C.
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Figure 10.23: The GAN was able to provide some noise-cancelling, but not in the same way as
the SIRT algorithm. However, the GAN was able to enhance the contrast of the
undersampled reconstruction, even though it also enhanced some of the outliers.
FDK, SIRT, and FDK-GAN were all reconstructed from 34 projections.
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Figure 10.24: The GAN was able to provide some noise-cancelling, but not in the same way as
the SIRT algorithm. In this instance, elements of the effects of the GAN outper-
formed the SIRT algorithm, like enhancing the cracks and presenting the rough
texture of the sandstone. This was not captured by the SIRT algorithm, which
instead blurred the image. FDK, SIRT, and FDK-GAN were all reconstructed
from 34 projections.
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Figure 10.25: A line profile that exposes the weakness of the SIRT algorithm. Even though the
line profile of the ground truth varied rapidly, the SIRT algorithm reconstructed
a smooth line profile with much less variance. The GAN followed the ground
truth more closely, but also had a higher noise-level. FDK, SIRT, and FDK-GAN
were all reconstructed from 34 projections.
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Figure 10.26: A difference map where the intensity values of the ground truth have been sub-
tracted from the undersampled reconstruction intensities. Naturally, the SIRT
algorithm had the lowest pixel-wise loss, displayed through PSNR. The GAN,
on the other hand, was generally slightly below the ground truth in terms of
intensity, which may be an effect of the renormalisation of the data.
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Ground Truth SIRT: 0.49 SIRT-GAN: 0.79

Ground Truth SIRT: 0.63 SIRT-GAN: 0.67

Figure 10.27: From left to right: the ground truth, an undersampled SIRT reconstruction, and
the GAN-enhanced SIRT reconstruction, where both the training data and the
input data were SIRT reconstructions. The upper cross sections are from the
hourglass sample, reconstructed from 100 iterations using 26 projections. The
lower cross sections are from the sandstone sample, reconstructed from 150

iterations using 34 projections. The SIRT-GAN provided contrast enhancement,
and reduced blurring, but failed to remove the worst streaking artefacts.

10.5 iterative reconstructions with gan-enhancement

It was noticed that, as the literature suggests, that the SIRT algorithm was more ro-
bust at handling undersampled data than the FDK algorithm. However, the SIRT al-
gorithm was also more computationally expensive, requiring 150 iterations to achieve
a result better than the FDK-GAN. At the same time, the GAN had difficulties sep-
arating the noise from the actual signal in heavily undersampled FDK-data. These
circumstances led to the idea of training the GAN on undersampled and uncon-
verged SIRT reconstructions, which proved successful. Figure 10.27 illustrates the
result of applying the GAN to an undersampled SIRT reconstruction. It recovered the
air-glass-sand interface for the hourglass cross section, and produced enhanced con-
trast between the sandstone and the cracks in the sandstone sample. These features
are further exemplified in the line profiles included in Figures 10.28 and 10.29

However, in the case of the sandstone sample, streaking artefacts from the SIRT
reconstruction remained after enhancement, as seen in the extension of the crack in
Figure 10.27. Moreover, the structural similarity only increased slightly. Therefore, the
spatial frequencies of the reconstructions were assessed by FSC, similarly to the anal-
ysis that resulted in Figure 10.16. In contrast to the mentioned analysis, the FSC was
this time calculated for both samples, and compared SIRT reconstructions with SIRT-
GAN reconstructions. Additionally, FDK reconstructions and FDK-GAN reconstruc-
tions were included for reference. The FSC curves of the reconstructions produced
fundamentally by the SIRT algorithm are situated in the left subplot of Figure 10.30,
while the FDK reconstructions are situated in the right subplot. From the figure, it
was confirmed that the SIRT algorithm is more robust at handling undersampled data
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Figure 10.28: The line profile was retrieved from a static cross section of the hourglass sample.
100 iterations were performed using 26 projections. It is clear that the sharp
edges of the hourglass were recovered by the SIRT-GAN. However, the intensity
range remained lower than the ground truth, as the highest intensities were not
recovered. The SIRT-GAN’s intensities were slightly above the ground truth in
the background, and slightly below the ground truth inside the hourglass.
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Figure 10.29: The line profile was retrieved a static cross section of the sandstone sample. 150
iterations were performed using 34 projections. The SIRT-GAN provided con-
trast enhancement of the crack. It also provided the main low-level features of
the ground truth. However, the mean intensity was lower than the ground truth,
which may be a result of the renormalisation. Because the line depicted retrieved
intensities from both the centre and the edge of the sample, it is possible to see
the effect of beam hardening.
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Figure 10.30: A comparison of the FSC of different samples and different methods is included
in this figure. The number of projections was kept constant at 26 for the hour-
glass sample and 34 for the sandstone sample. This corresponded to two full
revolutions, respectively. The FSC curves of the respective SIRT reconstructions
are shown in the left subplot, with the corresponding FSC curves of FDK recon-
structions situated on the right. GAN-enhancement resulted in a slight improve-
ment at lower spatial frequencies, but a collapse at the Nyquist frequency. This
collapse was greater with GAN-enhancement than without. For the sandstone
sample, the GAN improvement was negligible. The SIRT-GAN reconstruction
of the hourglass had a correlation above 0.9 up till a Nyquist frequency fraction
of approximately 0.4.

than the FDK algorithm, as the correlation was generally higher in the left subplot.
The same tendency as in Figure 10.16 was observed, namely that the GAN provided
an enhancement for lower spatial frequencies, but collapsed for higher spatial fre-
quencies. Another interesting tendency appeared for the hourglass sample beyond a
spatial frequency of one half Nyquist frequency. Enhancement correlation was better
than its respective input in the case of FDK, but worse in the case of the SIRT. The
GAN-enhanced sandstone reconstructions, on the other hand, underperformed be-
yond one half Nyquist frequency in both cases, and only a positive vertical shift in
the correlation differentiated the SIRT-GAN from the FDK-GAN.
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T E M P O R A L C T P E R F O R M A N C E

11.1 temporal resolution

First and foremost, one key to satisfactory temporal resolution in the temporal CT
experiment was the golden ratio V3 scanning procedure. The procedure was nicely
situated between standard CT and original golden angle sampling in terms of scan
time, as seen in Figure 8.8. With this minimal increase in scan time, the number of
projections included in a given time stamp could easily be increased or reduced by
integer multiples of the number of collected projections per revolution. This allowed
for investigating the maximal temporal resolution, as performed in Section 10.1, or to
reconstruct with the lowest number of projections that the GAN could handle, as per-
formed in Section 10.2. Finally, despite being designated for undersampled CT, the
derived scanning procedure was also applicable for CT following the Nyquist crite-
rion, as each new revolution would provide unique projections that would contribute
to new information in the reconstruction. One of the drawbacks with the procedure
was, however, the discretised reconstruction flexibility, and that one had to carefully
choose the number of projections per revolution. Ultimately, this became a compro-
mise between the maximal number of projections per time and the best flexibility a
posteriori.

The latter was chosen for the temporal CT experiment of the hourglass. To enable
great flexibility in the data analysis, the number of projections per revolution was
chosen to be 13, resulting in an appropriate temporal resolution of 49 s. It was also a
priori assumed to be the absolute lower limit of projections that would provide work-
ing reconstructions. Anyway, because of the low number of projections per revolution,
it was important that an odd number of projections were obtained per revolution. To
elaborate, it was preferred that the projections were not directly opposing each other.
Even though directly opposing projections are supposed to provide new information
when performing cone-beam CT, it was observed that more unique information and
better reconstructions were acquired when using an odd number of projections per
revolution. As shown in Figure 10.2, for instance, the coverage of the sample was
surprisingly good with only 13 projections. This result was part due to the binning
of pixels in the projections, which was performed to increase the temporal resolution,
and to enable the FDK-GAN to enhance the entire hourglass in one forward pass.
As discussed in Section 9.3, the performed binning effectively halved the sampling
requirements, thereby reducing the undersampling artefacts of the resulting recon-
struction.

The maximal temporal resolution was then achieved, as seen in Figure 10.7, by
splitting the revolution into two parts with 7 projections each, and reconstructing
based on wedges with 180◦ coverage each. As expected, the reconstructions suffered
from heavy undersampling artefacts, but a temporal resolution of approximately 26 s
was achieved. Theoretically, the temporal resolution in the case of 13 projections per
reconstruction could also be enhanced by utilising this missing wedge strategy. If
one were to consider a CT scan with 25 projections per revolution, the scan would

91
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then have a temporal resolution of 69 s, as shown in Figure 8.6. However, reconstruc-
tions with a temporal resolution of 36 s could be realised with the mentioned missing
wedge strategy, which is an improvement of 48%. Here, any introduction of missing
wedge artefacts are assumed to be negligible relative to the extensive aliasing already
present. With this assumption, the flexibility in the post-processing would not be af-
fected, as it would simply be possible to add and subtract half revolutions to a given
time stamp.

As demonstrated by the investigation of the sand-air interface in Section 10.1, the
golden ratio V3 scanning procedure enabled reconstructions with increasingly high
temporal resolution. The same strategy is applicable for studies of flow in porous
media. For instance, an initial reconstruction with satisfactory spatial resolution could
be performed to identify the regions of interest with dynamical artefacts. Then, a
series of smaller time stamps with lower spatial resolution could be reconstructed to
better resolve the flow dynamics in these regions of interest.

11.2 spatial enhancement of hourglass

The second essential key to a successful temporal CT scan was the FDK-GAN. Fig-
ures 10.4, 10.5, 10.6, 10.8, and 10.9 demonstrated how the FDK-GAN enhanced the
dynamical process while at the same time removing pixel noise. The qualitative as-
sessment presented was supported by the intensity distributions in Figure 10.6, since
the FDK-GAN resulted in a greater dynamical range of gradient intensities than the
FDK reconstruction, and a narrower Laplacian distribution without prevalent and
predominant high-frequent noise.

However, the reconstructions in Section 10.1 observed little aliasing removal in
comparison to the results presented in Section 10.2. Instead, the FDK-GAN had a ten-
dency to enhance the undersampling artefacts. One probable reason for this was the
discrepancy between the undersampling factor used in the binning experiment rela-
tive to the training undersampling factor. The effective undersampling factors were
32 and 59 for the binned hourglass before and after the wedge reconstructions, respec-
tively. Evidently, the magnitude of the intensity of the undersampling artefacts scaled
with the undersampling factor. Therefore, it would be difficult for the GAN to distin-
guish between the undersampling artefacts and the actual signal, especially since it
was trained on a lower undersampling factor. This tendency was also observed in Fig-
ure 10.15, as the trained GAN was particularly effective at enhancing the hourglass
sample reconstructed from 52 projections, which corresponds to the training under-
sampling factor of 8. This is further visualised in the frequency domain in Figure
10.16. As a result of the GAN-enhancement, all hourglass reconstructions ranging
from 52 to 104 projections were enhanced to a similar level. With further elevated
undersampling factors, on the other hand, the GAN provided enhancement, but the
FSC curves of these reconstructions showed a generally lower correlation with the
ground truth. This tendency also seems to support the fact that the GAN in these
cases failed to distinguish between undersampling artefacts and true signals.

It is also important to realise that the relation between the chosen temporal resolu-
tion and the corresponding spatial resolution is highly sample-dependent. The hour-
glass sample mainly consists of air, sand, and glass. The fact that these materials had
nice contrast to one another, and were distributed in separate regions, is one prob-
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able explanation to why it was manageable to reconstruct and assess the sand-air
interface without more undersampling artefacts. Moreover, the GAN was probably
particularly adapted to handle the simple and homogeneous hourglass sample. As
shown in Figure 5.1, half of the data, namely the simulated data, were very similar
homogeneous objects with bright contrast. More homogeneous regions result in less
undersampling artefacts, as sharp edges correspond to high frequencies in Fourier
space, which cannot be accurately described with a too low sampling frequency [13].

In order to reconstruct with fewer projections, the SIRT algorithm was utilised. The
line profiles in Figures 10.19 and 10.28 were, however, clear indications that the it-
erative reconstruction resulted in loss of signal, because of smoothed out transitions
together with the loss of contrast. These features are common artefacts associated
with iterative reconstruction techniques, and were therefore no surprise [29]. How-
ever, these artefacts can be reduced by increasing the number of iterations, but this
would also increase the computational cost.

Instead, a GAN trained at elevated undersampling factors using the FDK algo-
rithm could be a better alternative for this sample. However, this would include an
enhanced difficulty for the generator part of the GAN, since the undersampling arte-
facts would be more severe, while the discriminator would have an easier task. Sub-
sequently, the outcome of the training could more easily be mode collapse, as the
generator would fail to produce realistic reconstructions. This would therefore re-
quire careful reconsideration of the model and training procedure, which was not
prioritised. With that being said, if the magnitude of the undersampling artefacts are
equal to the magnitude of the actual signal, the GAN would not be able to distinguish
between the two. Essentially, the trained GAN is just a sequence of optimised filters
convolved with the input volume. These filters are optimised to perform feature ex-
traction [59], and in the case of the U-net generator, also feature enhancement and
concatenation. An extremely simplified example of the learned filters of the genera-
tor could be the following. If the GAN has learned to feature extract and enhance
the signals with the highest intensity, because the undersampling artefacts intensities
were only a fraction of the signal intensities, noise in an evaluated reconstruction
with near-signal magnitude would end up also being enhanced. Likewise, true sig-
nals with low intensities would be suppressed, as the GAN would have learned that
these signals are noise. These two drawbacks, though simply described, are consid-
ered the ultimate limitations of convolutional neural networks, and is why attention
and transformers, mentioned in Section 3.4, are considered the next step within this
topic [52].

Therefore, the amount of undisturbed information provided to the GAN is essential
for its performance, as suggested by the SIRT-GAN versus the FDK-GAN for the
sandstone sample, illustrated by the FSC curves in Figure 10.30. Because the input
contains more information, the enhancement becomes more accurate. However, one
would like to avoid the use of iterative reconstruction methods in the first place,
as they are computationally expensive. The alternative to better input reconstructions
could be to provide additional information, such as the sinogram of the CT scan. This
was performed by [48], and enabled enhancement with more information present.
A more elaborated discussion on the possibilities of such an approach is, however,
reserved for the last section of this chapter.
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11.3 spatial enhancement of sandstone

As presented in Section 10.4, the sandstone sample was more challenging than the
hourglass sample. From the line profiles in Figures 10.23, 10.24, and 10.25, it is ev-
ident that the FDK-GAN reduced the influence of outliers from the original FDK
reconstruction, and that the main signal, the crack, was contrasted from the back-
ground. One should also notice that the FDK-GAN reconstruction for the most part
seemed to correlate with the ground truth, but due to an input signal rich in outliers,
the FDK-GAN reconstruction tended to overestimate the variation of the signal.

In contrast, the background variance presented by the SIRT algorithm resembled
the ground truth more closely, while the cracks were heavily underestimated. With
the GAN trained using the dataset of undersampled SIRT reconstructions in Fig-
ure 5.5, most of the main background features were captured. The SIRT-GAN also
enhanced the cracks, but not as much as the FDK-GAN. The general impression of
these results is either that the training dataset was too diverse, resulting in too careful
enhancement.

Alternatively, the updates of weights were too noisy when performing online learn-
ing, as explained in Section 2.2, which would be an indication to increase the batch
size. Tests were performed for these hypotheses, with findings presented in Appendix
C. To shortly summarise the results in Appendix C, model weights with improved
performance for the sandstone sample were found in both cases. However, these mod-
els underperformed relative to the original model for the hourglass sample. Moreover,
undersampling artefacts were still present in the reconstructions, but these became
less prominent for 85 projections. As already mentioned in Section 11.1, this may be
because of the training undersampling factor in relation to the testing undersampling
factor. It should be noted that the region of interest for the sandstone sample includes
the edge of the sample, which means that a region with more undersampling than
the hourglass sample has been depicted. Nevertheless, the tests demonstrated that
enhancement of the sandstone sample was possible, even with the original dataset.

Considering the performance variance of the derived FDK-GANs, there is a possi-
bility that too few training iterations were performed, resulting in no performed final
fine-tuning of the generator weights. This will, however, be further investigated in
the following chapter.

11.4 comparison to the literature

A comparison between the developed three-dimensional GAN and similar architec-
tures in the literature is of great relevance in order to assess the spatial enhancement
ability of the model. It would be natural to compare with the TomoGAN architec-
ture [33], as much inspiration was retrieved from this work. A comparison between
the two is especially relevant in order to uncover any weaknesses or strengths in the
transition to a 3D convolutional network.

The most relevant results to compare would be the enhancement of the hourglass
presented in this work with the enhancement of the simulated data presented in [33].
In the paper, one randomly created simulated dataset of circles was used for training,
while the test dataset was randomly created from a different seed. As mentioned,
the hourglass reconstruction was enhanced by a model trained using a mixture of
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experimental and simulated data. In this regard, it can be argued that the GAN in this
work obtained a more general enhancement ability than the TomoGAN. Moreover,
by comparing the listed slice SSIM values, it is clear that the performance of the two
models were fairly similar. Both models produced reconstructions with SSIM values
of approximately 0.9, which dropped to approximately 0.8 for undersampling factors
of 25 to 32.

It is also interesting how the TomoGAN elimated the undersampling artefacts at
elevated undersampling factors. No undersampling artefacts were observed at an un-
dersampling factor of 25, corresponding to 64 projections, for the 1024× 1024 input
slices. At this level of undersampling, the FDK-GAN considered undersampling arte-
facts as signal, and enhanced them. Furthermore, by comparing the TomoGAN line
profiles to the FDK-GAN line profile of the hourglass, it is clear that the TomoGAN
trained on simulated data learned to only enhance the most prominent signals, and
consider the rest as noise. The FDK-GAN was much more careful in this regard. Con-
sequently, there is reason to believe that the TomoGAN would struggle to enhance
data where a third signal intensity were present. Hence, the TomoGAN trained on
simulation data seems to be somewhat over-adapted.

Nonetheless, the so-called CTTR model developed in [49] was trained on more
complex medical data, and was able to recover high-quality reconstructions. It should
be noted that the CTTR architecture differed from the mentioned GANs by being an
ordinary convolutional neural network without a discriminator. Instead, the sinogram
was added as part of the network input, making it a transformer with the ability to
exploit attention [52]. Attention allows the network to assign significance to each input
feature. With this strategy, a global SSIM of 0.86 was achieved for an undersampling
factor of 25, corresponding to 30 projections for 512 wide slices. This transformer
architecture should be considered in future work. To elaborate, there is definitely a
possibility to replace the generator of the GAN with the convolutional transformer
network presented in [49].

The transformation to 3D with this implementation, however, would not be triv-
ial, as the entire reconstruction slice and corresponding sinogram would have to be
provided to the transformer. Due to memory limitations, this would probably not
be possible without binning and a limited height of the volume. For the purpose of
studying dynamical processes in 3D, it is imperative for the continuity in the recon-
structed volume to utilise three-dimensional convolutional neural networks instead
of two-dimensional [56]. The flow in dynamical experiments tends to go from top to
bottom, deeming it necessary to not just convolve in the XY-plane, but also along the
Z-axis. For this reason, it is important to notice the fact that the enhanced reconstruc-
tions presented in Figure 10.21, for instance, exhibited equally good quality along
the vertical axis as in the horizontal plane. Here, the power of three-dimensional con-
volutional neural networks was demonstrated, as discontinuities in the Z-direction
can be a typical weakness of two-dimensional convolutional neural networks, while
three-dimensional neural networks ensure continuity in the third dimension [56].

Consequently, typical reconstructions with a width of 1024 pixels would have to be
binned to at least a width of 512 pixels. Then, to compensate for the feature increase
from having 512× 512 slices, the length of the third dimension would theoretically
have to be reduced to 8. However, with memory optimisation and discarding of the
perceptual loss term, which up to this point has not been used in this work, the third
dimension could be prolongated.
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Finally, it should be noted that the desired generalisation emphasised in this work
exceeds what was presented in [49], as the CTTR model was solemnly trained on
lung data. Moreover, the splitting of training and testing data was performed across
patients, which means that very similar slices were present in both the training and
the testing dataset, as lung reconstructions should be fairly similar across different
patients. This could also be a challenge in the theoretical 3D implementation of the
proposed CTTR-GAN, as the training dataset size would drastically be reduced. The
idea of providing unaltered sinogram information to the enhancement network is
nevertheless interesting, because of the shown dependency on input data quality.
This natural next step will be considered in future work.



12
3D C O N V G A N

For the sake of emphasising the three-dimensional feature extraction of the developed
enhancement model, the model is named 3DConvGAN.

12.1 initial training on simulated data

As an initial test of the derived enhancement model, the model was trained on sim-
ulated data reconstructed from 100 projections, effectively having an undersampling
factor of 4. No perceptual loss was included in the loss function, and the model was
trained for 500 epochs. This allowed for fast training, and each elapse of the training
took approximately 0.7 s. Considering evaluation of 10 samples in each epoch, the
training took approximately 1h. The MSE loss was weighted so that it was approx-
imately equal to the adversarial loss initially. However, this loss term was relatively
quickly reduced, making the adversarial loss the dominant loss term. The discrimina-
tor loss stagnated at approximately 1.39, caused by providing a score of 0, effectively
guessing on both real and fake samples.

Moreover, one instance of augmented ground truth, undersampled reconstruction,
and enhanced validation reconstruction are included in Figure 12.1. As shown in the
figure, the model was able to enhance the contrast of the undersampled reconstruc-
tion. Consequently, SSIM was increased from 0.385 to 0.859, while the pixel-wise loss
was slightly increased from a PSNR of 26.0 to 26.6. In terms of MSSIM with a kernel
size of 11, the score increased from 0.14 to 0.23.

Ground Truth Input Output

Figure 12.1: The effect of the model after initial training for 500 epochs on the simulated
dataset. Enhancement of the augmented validation sample in the simulated
dataset resulted in a great increase in global SSIM, from 0.385 to 0.859, while
the pixel-wise loss and the MSSIM increased slightly from 26.0 to 26.6 and 0.14
to 0.23, respectively.

For the purpose of further optimisation, the effect of the model was manually eval-
uated by comparing a central 256 cubed region of a fully sampled reconstruction with
the corresponding undersampled reconstruction before and after GAN-enhancement.
A comparison of the ground truth, undersampled reconstruction, and enhanced re-
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construction for 26 and 78 projections, respectively, is shown in Figure 12.2. Like the
validation enhancement in Figure 12.1, the model managed to remove undersampling
artefacts from the least undersampled reconstruction, while much remained for the
reconstruction containing only 26 projections. In both cases, the GAN increased the
contrast between the interfaces, and reduced the high-frequency noise. This interme-
diate result indicated that representative data had been produced, and that the archi-
tecture was able to learn its designated task. However, as seen in the enhancement at
78 projections, the weak strip of sand in the neck of the hourglass was interpreted as
noise, and was therefore removed. The model therefore had to be trained further to
avoid this behaviour.

Ground Truth

Input

Output

Ground Truth

Input

Output

Figure 12.2: The effect of the model after initial training for 500 epochs on the simulated
dataset. The left column presents the centremost neck region of the hourglass
reconstructed from 26 projections, while the right column is retrieved from the
same region, but reconstructed from 78 projections. These number of projections
correspond to an undersampling factor of approximately 15 and 5, respectively.
With respect to the listed ground truth, the relative undersample factors are ap-
proximately 27.5 and 9, respectively.

12.2 training of optimised model

As explained in Section 6.4, transfer learning was used to train optimised models.
The model mentioned in Section 12.1 was used as initialisation for further training
using both the FDK 5.2 and SIRT 5.5 datasets. Two instances of transfer learning are
shown in Figure 12.3, where the loss curve of the initial training is included in a). The
resulting model was then used as initialisation for training on the FDK dataset 5.2,
for which the generator loss is included in b), and the discriminator loss is included
in c). Likewise, the generator loss and discriminator loss were included for training
on the SIRT dataset 5.5 in d) and e), respectively. A general increase in generator
loss was observed for both datasets, as well as a general decrease in discriminator
loss. This was an indication that the discriminator catched up with the pre-trained
generator. To further investigate the dynamics of the discriminator, the discriminator
evaluation scores of real and fake reconstructions were plotted for both datasets in
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Figure 12.3: a): The validation loss curve of the initial training of the model on simulated
data.
b): The development of the generator loss when the trained model was used as
initialisation for training of the GAN on undersampled FDK reconstructions.
c): The development of the discriminator loss during the same training as in b).
d): The development of the generator loss when the trained model was used as
initialisation for training of the GAN on undersampled SIRT reconstructions.
e): The development of the discriminator loss during the same training as in d).

Figure 12.4. Included in the figure are the average scores during the first and last
epoch of training, respectively. The trend of the discriminator score was similar for
both datasets, where the score of the real reconstructions increased, while the score
of the fake reconstructions slightly decreased. A score close to zero is an indication
of a coin flip, while a high positive score is an indication of confidence in the realness
of the input.

12.3 experiences from initial training

The results of the initial training of the model were promising. Without much hy-
perparameter tuning, the model was able to enhance the validation data, as seen in
Figure 12.1. However, some weaknesses were also discovered. The most significant
weakness was the lack of generalisation of the model. This became apparent when
the model was tested on the hourglass and the sandstone samples. Even though
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Figure 12.4: From top to bottom, the discriminator score during training of the GAN on
undersampled FDK reconstructions and undersampled SIRT reconstructions, re-
spectively. For each loop of updates, the last iteration of the generator and dis-
criminator updates were stored, respectively. The average of the collected values
within each epoch were then plotted.

the enhancement of the hourglass sample was satisfactory, the enhancement of the
sandstone sample was worse than the original undersampled reconstruction. When
comparing the training data to the test samples, one probable cause for this was the
lack of intensity and contrast variation in the training data. Because the training data
was mostly black or white, it could better enhance the abrupt edges of the hourglass
than the dark gray cracks of the sandstone. The significant difference between global
SSIM and MSSIM was also noted during validation. Globally, it was observed that
the model increased the contrast between the background and white features of the
validation data, and that the correlation coefficient was high, because the lower half
of the image was mostly dark, while the local correlation in the upper part of the
image was lower due to imperfectly reconstructed circles, for instance. Therefore, the
resulting global SSIM score was high, while the MSSIM score was much lower. The
distortions in the undersampled images would be more significant in the view of a
11× 11 gaussian kernel than in a global evaluation.

With that being said, the low MSSIM score could also be a result of interpolation
artefacts from the rotation performed in the data augmentation. A visual inspection
confirmed that interpolation artefacts were present during training, causing blurring
and imperfect edges. However, with regard to the limited size of the dataset, the
rotation augmentation was still necessary to increase the effective dataset size.

Moreover, from assessing the training process in the log data, illustrated in Fig-
ure 12.3 a), it was supposed that the discriminator was somewhat weak, as it often
guessed randomly. Therefore, the number of output channels in the final convolu-
tional layer of the discrmiminator was increased from 4, which was the case in the
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original TomoGAN [33], to 16. A compression from 256 to 4 channels seemed to be
an aggressive feature selection with the potential of limiting the training capability
of the GAN, as explained in Section 2.6. Another reason for increasing the number
of output channels was the fact that training was performed using twice the number
of input features relative to the original TomoGAN. Adjusting the importance of the
adversarial loss term relative to the MSE loss term was also necessary to prevent the
generator from blurring the output. The model trained initially was actually trained
with a too high MSE loss term weight, essentially making it an ordinary neural net-
work. With this setting, there was a high probability that the generator would end
up completely blurring the output after some epochs, an indication of mode collapse,
described in Section 2.6. A stronger discriminator together with a lower MSE loss
term weight was therefore expected to improve the training process.

Additionally, it was believed that a scheduling of the learning rate could be ben-
eficial, hoping for a more fine-tuned training of the model in the last parts of the
training. A cosine annealing schedule was therefore implemented, where the learn-
ing rate would essentially drop like a cosine function from a top learning rate at
epoch 0 to the lowest designated learning rate at the final epoch [40].

More importantly, however, was the relation between generator updates and dis-
criminator updates. Based on the fact that the discriminator was essentially incapable
of distinguishing between real and fake data after only 200 iterations in Figure 12.3
a), a more dynamical training algorithm was deemed necessary. Instead of trying
different numbers of generator updates per discriminator update, a condition for
which the generator updates would continue, with a corresponding condition apply-
ing to the discriminator, was implemented. To prevent infinite loops, this would reset
after iterating through the entire dataset. Moreover, two hyperparameters were in-
troduced, indicating the maximal number of generator and discriminator updates in
a row, respectively. To elaborate, the generator should perform updates as long as
the adversarial loss was above 0.69, which is the mark of random guessing in BCE
loss (2.5). Since the discriminator loss consisted of two BCE terms, its threshold was
set to 1.38. Based on the desired loss curve oscillations in Figure 12.3 b) and c), the
implementation was deemed beneficial for the training process.

Finally, training was resumed on data that was more heavily undersampled, to
further adapt the model to even more undersampling artefacts. Because the Tomo-
GAN paper [33] demonstrated the abilities of perceptual loss, a perceptual loss term
limited to the first few layers of the ResNet50 neural network was added to the loss
function [25]. The perceptual feature extractor was limited to the first few layers of the
ResNet50 neural network due to memory limitations. Unfortunately, this loss term in-
hibited the training process, and was disregarded. A discussion of this is included in
Section 12.6.

12.4 evaluation of optimised weights

There is reason to believe that optimal and achievable generalisation across numer-
ous samples with unique characteristics has yet to be found. The FDK-GAN model
used in Chapter 10 showed a bias towards being optimised for the hourglass sam-
ple, while another FDK-GAN model trained using batchsize 4 and input dimensions
of 643 voxels, included in Appendix C, showed a bias towards the sandstone sam-
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ple. The aspect of broad generalisation is therefore still a challenge, which is not
frequently mentioned in the literature, as the supervised machine learning models
for CT imaging found in the literature are usually trained on a dataset of very similar
samples. For instance, the model might be two-dimensional, and may therefore be
trained using slices of only one reconstruction of the same type of sample [33]. In
other cases the task of the model is to segment a special organ or tissue, and the
model is therefore trained on multiple similar samples of the same organ or tissue
[49].

12.5 hyperparameters

The fine-tuning of hyperparameters is a vital part of training a machine learning
model, and sufficient time should be allocated to this task [41]. However, due to the
many hyperparameters of the model, and the limited time of the project, the hyper-
parameters have not been thoroughly optimised, as this would require a significant
amount of time. Not only would it be time-consuming to perform the hyperparam-
eter search, it could be a manual and tedious challenge to evaluate what settings
produced the best results, because of the amount of output data together with the
need for human visual perception to evaluate the enhancement. Strategies of hyper-
parameter optimisation include grid search and stochastic search [11]. The first is to
create many combinations of hyperparameters, and train the model on each com-
bination to find a suitable combination. The latter is similar to grid search, but the
combinations are randomly selected.

Instead, most of the hyperparameters, such as adjustments to the model architec-
ture, choice of optimiser, learning rate scheduler, cropping variance, reasonable data
augmentation, choice of activation function, and choice of loss functions have been
chosen based on experience, intuition, and what is found to be effective in the lit-
erature [6]. The hyperparameters that have been attempted optimised were the loss
function weights and the strength relation between the generator and the discrimina-
tor. As mentioned in Section 12.3, undesirable effects occurred when the loss function
weights were not properly tuned. For instance, a too high weight on the MSE loss re-
sulted in blurring of the enhanced reconstruction, because outputting the average
pixel value is one way to minimise MSE loss. Conversely, not including the MSE loss
resulted in output not resembling the input reconstruction at all.

Nevertheless, an optimal combination of hyperparameters have probably not been
found, and the model or the training process could likely be improved by a differ-
ent set of hyperparameters. In such a hyperparameter search, the most important
parameters to tune would be the loss function weights, which is the major disad-
vantage of combining multiple loss functions. For instance, a stable training process
with a perceptual loss was never found. However, as demonstrated in the literature,
the perceptual loss function contributed to the performance of the model [33]. With
the 3DConvGAN, however, it consistently resulted in mode collapse by blurring the
output, which will be further discussed in the next section.
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12.6 architecture

Even though the utilised architecture was heavily inspired by the architecture of the
TomoGAN [33], the many adaptations to the model have to be addressed. Some were
a matter of preference and intuition, while others were necessary to successfully make
the transition from 2D to 3D.

The first difference between the two models was the choice of activation function.
Here, the ordinary ReLU activation function was replaced by the parametric ReLU
variant. The latter has the ability to adjust the slope of the activation function for
input values x < 0 at the cost of one additional learnable parameter. The variant
was proposed by [24], and was found to provide a slim performance increase in the
original paper. In the case of 3DConvGAN, it was chosen to ensure that the dying
ReLU problem would not occur. For neurons with negative output, the ReLU activa-
tion function will output zero, and the neuron will therefore no longer contribute to
the network [19]. A slim increase in computational cost was considered a reasonable
trade-off for insurance against this issue.

Another adaptation of minor importance was an adaptive average pooling layer
in the connection between the convolutional layer and the fully connected layer of
the discriminator. With this implementation, the GAN should in theory be able to
perform training on input data of any size divisible by 8. However, the effects of this
layer were not thoroughly evaluated in the cases of heavily increased or decreased
input sizes. This is nevertheless of minor importance, as the number of input features
to the fully connected layer were tuned to be reasonable for the training input size of
128× 128× 128.

Secondly, an increase in number of output channels in the final convolutional layer
of the discriminator was made based on interpretation of the initial training loss
curve in Figure 12.3 a). This increase accounted for both the increased number of
input features of 3DConvGAN relative to TomoGAN, together with a strengthening
of the discriminator, as described in Section 12.3. It was, however, never determined
whether this change contributed to an enhanced performance of the model.

On the other hand, it was very difficult to train the GAN from scratch after hav-
ing implemented this change, as the discriminator would outperform the generator.
Moreover, the discriminator loss curve in Figure 12.3 c) and e) would suggest that the
discriminator was quite strong, as the loss quickly decreased despite the pre-training
head start of the generator.

However, this tendency is not necessarily an issue. As shown in Figure 12.4, the
decrease in discriminator loss was predominantly caused by an increase in the score
for real samples. A hypothetical interpretation of the discriminator based on this
observation, would be that it was confident in its ability to recognise real samples,
possibly because of the complete absence of undersampling artefacts.

Nevertheless, when presented with fake samples, it was not overly confident, which
could be because of the generator enhancement. Here, a discriminator score on un-
enhanced samples would be valuable for comparison. Anyway, this relation between
the generator and the discriminator can be interpreted as a sign of a progressing ad-
versarial training process, where there is still room for generator improvement [20].
It is also important to note that only the loss calculated before switching between
generator and discriminator was calculated, which would typically imply that only
the optimal performance of the respective networks has been presented. Therefore,
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the mean and variance of the loss curves would generally be lower than if all loss
calculations were saved. Anyway, observations of printing to screen during training
supported generally the tendencies presented here, and there seems to be enough bal-
ance between the generator and the discriminator to ensure a stable training process.

Thirdly and most importantly, the limitations associated with the transition from
2D to 3D have to be addressed. As a consequence of this transition, the memory
consumption, the number of learnable parameters, and the computational time all
increased significantly. Since it was decided to train the model on a single GPU, the
memory consumption was a major concern, as 24GB of memory was the absolute
maximum available GPU memory.

The first constraints from the limited GPU memory was that online learning with a
batch size of 1 was the only viable option. As mentioned in Section 2.2, this enhances
training speed, which is beneficial given the computational time of 3DConvGAN,
at the cost of noisy updates and a vulnerability to outliers. It should be noted that
a batch size of 4 was tested, and is presented in Appendix C. To enable this, the
input dimensions were halved along each axis. With this setting, the generator found
weights that resulted in a satisfactory enhancement for 85 projections of the sandstone
sample.

Another issue resulting from the memory constraint was the perceptual loss term.
Perceptual loss requires a deep pre-trained neural network with many million of pa-
rameters, which involves a significantly extended computational graph, and therefore
a large memory consumption. Moreover, considering that the input size of each size
had to be increased to 224× 224× 3, it was soon realised that a full worthy percep-
tual loss term was not feasible. Instead, only the first few layers of the pre-trained
ResNet50 network was utilised [25]. Consequently, it was difficult to evaluate how
accurate the loss term was, and how it contributed to learning. Anyway, it seemed
to correlate with the MSE loss term. The result of this implemented perceptual loss
term was blurring during training if the weighting was not close to zero. This un-
desired effect could imply that the weighting of loss terms involving independent
pixel-wise loss, as mentioned in Section 12.3, was too high. Therefore, this loss term
was discarded entirely.

A proposed solution to the problem is firstly to choose the smallest pre-trained
network possible, but include all feature extraction layers to ensure the quality of the
extracted features. Next, a batch of 8 to 16 slices should be evaluated in the perceptual
loss. In this way, at least some valuable perceptual information could be fed to the
generator, without the immense memory consumption.
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C O N C L U S I O N

13.1 conclusion

In conclusion, a laboratory 4D-CT technique consisting of golden ratio sampling and
a generative adversarial network reconstruction enhancer was developed. This tech-
nique allowed for satisfactory reconstructions of the hourglass sample using only 52
projections, corresponding to an undersampling factor of 8, the same as the training
undersampling factor of the GAN. The experimental temporal resolution of the con-
ducted experiment with this number of projections was 196 s, but by applying the
discussed propositions for optimisation, the temporal resolution could be improved
to approximately 120 s for the same number of projections by reconstructing twice
per revolution, so that a sampling frequency of 103 projections per revolution could
be chosen.

If flexibility in the post-processing were prioritised, one would instead choose a
lower number of projections per revolution at the cost of a longer scan time. With
such a choice, a proposed data analysis strategy where an initial reconstruction with
good spatial resolution were to be performed, following by a series of increasingly
undersampled reconstructions to resolve the fastest dynamics, would be possible.

When accepting severe undersampling, a theoretically achievable temporal resolu-
tion of 26 s was found to be possible by obtaining reconstructions using 7 projections
covering 180◦. With this degree of undersampling, specifically fewer than 51 projec-
tions when reconstructing the sandstone sample, it was shown that an increase in
exposure time would greatly increase the exposure ratio, which seemed to be some-
what linked to the quality metrics used to assess reconstructions; namely SSIM, PSNR,
and MSSIM.

The developed GAN was important for enhancing contrasts, reducing noise, and if
the undersampling factor did not exceed 8, removing streaking artefacts. More impor-
tantly, its three-dimensional symmetry preserved continuity in all three dimensions,
which is considered a necessary requirement when studying flow along the Z-axis,
which is typically the case for such 4D-CT experiments.

To put things into perspective, instead of studying dynamical processes using only
2D projection data with temporal resolution in the order of seconds, or only studying
slow processes in volumes due to Nyquist sampling requirements, the developed
technique has provided the flexibility to study dynamical processes in volumes with
an adjustable temporal resolution in the order of minutes. Consequently, both slow
and fast processes can be studied from the same scan, and the location and direction
of the process can be determined in all three dimensions.
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13.2 future work

The GAN-enhancement is still in need of further optimisation to uncover how to
best find network weights for the removal of undersampling artefacts, particularly
streaking artefacts. Suggestions for future work has been discussed in the previous
chapters, but the main aspects shortly summarised are the following.

Firstly, training with elevated undersampling factors is required to improve the
GAN performance for heavy undersampling. For this purpose, another dataset has
to be acquired where the reconstruction quality is ensured to be uniformly poor.
Adaptations to the training process and GAN architecture should be performed to
account for the shifted relation between the generator and discriminator, as an in-
creased undersampling factor will result in a more challenging task for the generator.

Secondly, an increased dataset size will increase the probability that the dataset
probability distribution will represent the probability distribution of all samples en-
countered during application of the GAN. With a larger dataset, possibly together
with minibatch training if applicable, there is also an increased probability that a
more universal compromise of enhancement is reached.

Thirdly, a set of hyperparameters that maximises the capacity of the generator
and discriminator, respectively, and enables fine-tuning of weights at the end of the
training procedure should be found through stochastic search or grid search.

Finally, given the restriced GPU memory at hand, the GAN architecture should be
optimised to prioritise the most important components for performance. For instance,
a choice should be made in terms of perceptual loss versus batch size. It is also worth
deciding whether the enhancement procedure is in need of additional input, such as
the sinogram data of the scan, because it has been implied that peak enhancement
performance is related to the information provided by the input data. It was discussed
whether investigations concerning the advantages of attention would be fruitful in
the development of a more robust enhancer [52]. One proposition mentioned was to
replace the U-net architecture with a transformer architecture that could exploit both
the undersampled reconstruction and the measured sinogram.

Despite the need for further optimisation, a natural next step would be to apply
the developed technique to an advanced 4D-CT experiment. In this way, an extended
understanding of the technique’s capabilities and limitations could be obtained.

Furthermore, with an achieved optimised architecture and training procedure, only
small adaptations should be required to solve entirely new tasks. These tasks could
all provide valueable insights, and should be investigated. For instance, the most re-
latable task would be reconstruction segmentation, where the GAN would be trained
to pixel-wise segment the reconstruction into the different phases present [63]. With
such an analysis tool, the dynamics could more easily be quantified. The disadvan-
tage of this approach is the immense amount of manually labelled data required for
training.

Finally, it was experienced that improvements in terms of quantitative image qual-
ity metrics that resemble human visual perception would be beneficial. Even though
it would be a side quest in the development of optimal 4D-CT, it would not only
be interesting, but in fact important, to investigate how to best quantify image qual-
ity in 3D and 4D. Currently, weaknesses in all metrics used have been exposed. For
instance, PSNR is not sensitive to blurring, a distortion that humans tend to notice
[27]. Additionally, there is the aspect of how to best quantify the quality of a 4D re-
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construction, which is a task that has not yet been addressed. Advances in the field
of deep learning could be applicable, for instance transfer learning of a pretrained
network to derive a loss term more resembling human perception, a perceptual loss
term [33]. Experiments with different loss terms at the end of such a feature extrac-
tion, for instance MSE, SSIM, or a correlation metric, could further improve this deep
image quality assessment. To include the time domain into this metric, a pre-trained
sequence based neural network, such as a recurrent neural network or a transformer,
could possibly be used to capture this feature, given the current complexity of net-
works such as ChatGPT [39].
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A
A P P E N D I X A

a.1 the quantum mechanics of x-ray absorption

For the most complete description of the role of X-ray radiation in CT, a quantum me-
chanical description of X-ray absorption is required. Quantum Mechanics introduces
the quantisation of light, in the form of photons, which allows for a more intuitive
description. However, a sufficient description of this evolves around several lenghty
derivations, well explained by Robin Santra [46], Nina Rohringer [43], and Jan Malte
Slowik [50]. Therefore, big leaps between the essential aspects are instead included
in this section. This derivation is also heavily based upon the quantum mechanical
explanation used during the project thesis on Small Angle X-ray Scattering Tensor To-
mography (SAXSTT). Logically, the focus of this derivation will be X-ray absorption,
as this is the most relevant for CT, while X-ray scattering was more relevant in the
project thesis.

A quantum mechanical system must be described by a Hamiltonian. The system
consists of X-rays, matter, and interactions between them. The total Hamiltonian Ĥ
is therefore a sum of a matter Hamiltonian Ĥpart, a radiation field Hamiltonian Ĥrad,
and an interaction Hamiltonian Ĥint,

Ĥ = Ĥpart + Ĥrad + Ĥint. (A.1)

The Hamiltonian of the electromagnetic field, Ĥrad, follows from the quantisation
of the vector potential Â, adopting the Coulumb gauge, ∇ · Â = 0. Applying the
assumptions of free, coherent, and monochromatic X-rays, the vector potential is ex-
pressed as

Â(r) =
∑
k,λ

√
2π

Vωkα2

(
âk,λϵk,λe

ik·r + â†k,λϵ
∗
k,λe

−ik·r
)

. (A.2)

The essential parameters from Equation (A.2) are the creation and annihilation opera-
tors, â†k,λ and âk,λ, respectively. These operators are used to describe absorption as an
annihilation of a photon. Moreover, the normalisation constant reveals the electromag-
netic field to be similar to the well-known "Harmonic Oscillator" [35]. Consequently,
Hrad becomes

Ĥrad =
∑
k,λ

(
 hωkâ

†
k,λâk,λ

)
. (A.3)

The Hamiltonian of the matter, Ĥpart, is the sum of the kinetic energy operator,
potential energy operator, and the electronic Hamiltonian operator:

Ĥpart = T̂N + V̂NN + Ĥel. (A.4)

These are, though, of no particular interest concerning the process of absorption, and
are therefore not elaborated upon.

The interaction Hamiltonian, Ĥint accounts for the interaction between the electro-
magnetic field and the matter. It can be shown that interactions between an electro-
magnetic field and charges q may be accounted for by performing the substitution
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p → p − qA [35]. Eventually, the interaction Hamiltonian is revealed to have a term
linear and a term quadratic in the vector potential Â:

Ĥint ∼ p̂ · Â + Â
2

. (A.5)

As the first term is only linear in Â, it can only account for absorption of X-rays
through annihilation of photons. The second term is quadratic, and therefore ac-
counts for annihilation and subsequent creation of photons. This follows from squar-
ing Equation (A.2), which gives terms on the form a

†
k,λak,λ.

Furthermore, second quantisation is more fitting for describing the electronic Hamil-
tonian and the interaction Hamiltonian when the system consists of many electrons,
as the Hamiltonian in second quantisation is independent of the number of electrons
[43]. Here, Fock states are introduced, and the annihilation and creation operators are
replaced by annihilation and creation field operators. The electronic density operator
n̂(r) may be expressed in terms of these field operators as

n̂(r) = ψ̂†(r)ψ̂(r). (A.6)

Next, the interaction Hamiltonian is considered a small time-dependent pertur-
bation. From the Time-Dependent Perturbation Theory in the interaction picture, the
transition rate ΓIF is derived from the transition amplitude squared. It is given as

ΓIF = 2πδ (EF − EI)

∣∣∣∣∣〈F ∣∣Ĥint
∣∣ I〉+∑

M

〈
F
∣∣Ĥint

∣∣M〉 〈
M

∣∣Ĥint
∣∣ I〉

EI − EM + iϵ
+ ...

∣∣∣∣∣
2

, (A.7)

where ϵ is a small positive number, and M is a state in between the initial and final
state.

With the transition rate derived from time-dependent perturbation of the interac-
tion Hamiltonian, X-ray absorption can be investigated. X-ray absorption will in this
case be defined as the process where the final state of the photon field is NEM − 1,
where NEM is the Fock state of the photon field before the process. Put plainly, this
means that absorption is, as mentioned, annihilation of one photon [46]. If ΨNel

F is the
electronic state of the system after the process, one describes the absorption process
by evaluating the transition rate (A.7) with the final state expressed as

F =
∣∣∣ΨNel

F

〉
|NEM − 1⟩ . (A.8)

By skipping the intermediate calculations, one arrives directly at the absorption
cross section, σF, which is given as

σF(kin, λin) =
4π2

ωin
αδ

(
E

Nel
F − E

Nel
I −ωin

)
×
∣∣∣∣〈ΨNel

F

∣∣∣∣∫ d3xψ̂†(x)eikin·xϵkin,λin ·
∇
i
ψ̂(x)

∣∣∣∣ΨNel
I

〉∣∣∣∣2 ,
(A.9)

with the essential parameters being α, kin, and ϵ. They denote the fine-structure
constant, the incoming wave vector, and the polarisation of the wave, respectively.
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This cross section expression may be simplified by introducing orthonormal spin
orbitals φ. By these definitions, the absorption cross section may be written as

σF(kin, λin) =
4π2

ωin
αδ

(
E

Nel
F − E

Nel
I −ωin

)
×
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p,q

〈
φp
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i
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Ψ

Nel
F

∣∣∣ĉ†pĉq

∣∣∣ΨNel
I
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2

,
(A.10)

where ĉ†p and ĉq are the annihilation and creation operators for the spin orbitals,
respectively.

a.2 introduction to github repository

All code can be found, in its raw and unedited form, in the GitHub repository
https://github.com/RubenDragland/4D_CT. A short illustration of the workflow as-
sociated with the repository is given in the file workflow.ipynb. This section is a short
description of the different folders and files in the repository. Most of the necessary
packages and libraries for the Python scripts can be found in the respective require-
ments.txt files.

3DTomoGAN

This folder contains code for the three-dimensional GAN, and model.py is where the
generator and discriminator are defined using Pytorch [40]. Included in this folder
is also code for loading the data during training, including data augmentation tech-
niques. The actual scripts for training, with prefix gym, can also be found; one general
version and one for training on a specific dataset. Additionally, scripts for training on
distributed GPUs are denoted with the prefix ddp. The utils.py file holds useful func-
tions for the training process and the evaluation process.

Analysis

The data analysis can be found in folders that include the word analysis, and is written
using Jupyter Notebooks.

CT

The folder named CT holds everything involving the TIGRE toolbox, and therefore
anything related to projections and reconstructions. The files with preprocessing as
prefix were used for preprocessing of CT measurements. Processed projections were
utilised further in data_making.py where training datasets and 4D reconstructions can
be made. The used CT geometries were also defined in this file.

https://github.com/RubenDragland/4D_CT




B
H O U R G L A S S 3D - M O D E L A N D T I M E S E R I E S

As a final demonstration of the capabilities of 4D-CT using golden ratio sampling
and deep neural network enhancement, the four dimensions of the hourglass scan
are included in this appendix. A three-dimensional model of the sand-air interface
in the hourglass sample is included in Figure B.1 to provide a three-dimensional
visualisation of the fascinating flow pattern, where some sort of whirlpool is formed.
The movement of the sand-air interface is also illustrated in a time series of the 4D-CT
scan, presented in Figure B.2. For the purpose of simplicity, the time series consists
of 2D slices instead of entire 3D reconstructions. Finally, if you as the reader have not
yet scanned the QR codes on the front page of this thesis, you are encouraged to do
so now. Enjoy!

Figure B.1: A three-dimensional model of the sand-air interface in the hourglass sample is
shown. The interface is shown from different azimuthal and polar angles. Note
that the surface detection algorithm clearly struggled somewhat due to noise and
dynamical artefacts in the undersampled reconstruction. The model is a visualisa-
tion of the flow pattern in the hourglass sample, where some sort of whirlpool is
formed.
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120 hourglass 3d-model and time series

217 s 434 s 651 s 868 s

1085 s 1302 s 1519 s 1736 s

1953 s 2170 s 2387 s 2604 s

Figure B.2: A time-resolved illustration of the dynamics within the hourglass sample is shown.
The middlemost slice of the 3D reconstruction is shown for each time step. 52 pro-
jections were used in each time step, as this gave the optimal compromise between
temporal and spatial resolution. Note, however, that 13 projections were collected
per revolution for the benefit of flexibility in the post-processing. Therefore, the
observed temporal resolution was 217 s, and undersampling artefacts were almost
completely diminished by the GAN. The time series revealed that the flow pattern
of the sand was some sort of whirlpool.



C
A D D I T I O N A L G A N T R A I N I N G A N D T E S T I N G

c.1 gan with prior knowledge of static content

To address the challenge of achieving proper reconstruction enhancement with regard
to the sandstone sample, inspiration was drawn from the literature. One reconstruc-
tion algorithm for undersampled dynamical CT reconstructions with sparsity in the
time domain is the PICCS algorithm [10]. This algorithm combines a high-quality
static reconstruction of the matrix and a low-quality reconstruction of the dynamical
process. These constraints can be assumed and applied to the application of the GAN
to better describe the complex probability distribution of the sandstone sample. In
a final effort to maximise the performance of the GAN, it was trained solemnly on
the sandstone sample. The ground truth was a FDK reconstruction from the 1000
golden ratio sampled projections obtained in an initial testing of the derived sam-
pling procedure. The input data was a undersampled SIRT reconstruction using 150
iterations and 34 projections, effectively a relative undersampling factor of 29. Addi-
tionally, the GAN was also re-trained using only the sandstone sample reconstructed
from 50 projections using FDK. Table C.1 provides a quantitative comparison of the
different GAN enhancements in the entire 2563 volume. It has to be noted that the
pixel-wise loss was very high compared to the previous results, indicating the pres-
ence of outliers during renormalisation. This would also affect the other metrics, as
both structural similarity indexes used compare the mean intensities. Moreover, cross
sections in the XY-, XZ-, and YZ-planes are shown in Figure C.1 for the fully sampled
ground truth, the FDK-GAN, and the SIRT-GAN, respectively. These cross sections
confirm that the features of the fully sampled ground truth were mostly recovered by
the GANs, even though some noise and blurring were still present.

Table C.1: The global SSIM, MSSIM, and PSNR of the GAN enhancement of the sandstone
sample are shown. This time, the GAN was trained only using prior knowledge of
the sandstone sample from another CT scan.

Prior Knowledge GAN

Projections SSIM MSSIM PSNR

85 FDK-GAN 0.76 0.64 15.15

34 SIRT-GAN 0.54 0.63 11.45
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122 additional gan training and testing

Ground Truth (935) FDK-GAN: 0.65 (85) SIRT-GAN: 0.73 (34)

Ground Truth (935) FDK-GAN: 0.67 (85) SIRT-GAN: 0.70 (34)

Ground Truth (935) FDK-GAN: 0.61 (85) SIRT-GAN: 0.58 (34)

Figure C.1: The ground truth, the FDK-GAN trained on the sandstone sample, and the SIRT-
GAN trained on the sandstone sample are shown from left to right, respectively.
MSSIM values are listed above each slice, together with the number of projections
used for the reconstruction in parenthesis. This time the number of projections
used for the FDK-GAN was 85, while the number of projections used for the
SIRT-GAN was 34. The FDK-GAN managed to resemble the ground truth with
minor streaking artefacts with an undersampling factor of 13 at the sample edge,
while the SIRT-GAN provided the highest enhancement to be recorded in this
project given the severe undersampling factor of 32 at the sample edge. As has
been the case when presenting the sandstone sample, the XY-plane is shown in
the first row, while the XZ-plane and YZ-plane are shown in the second row and
third row, respectively.
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c.2 sandstone enhancement after minibatch training

One additional training session similar to the one presented in Section 10.2 was per-
formed. The motivation behind the test was to observe enhanced training stability,
and to find a model that would perform generally better for both the hourglass and
sandstone sample. Therefore, a natural adjustment was to utilise a minibatch size of 4
instead of 1. Due to memory limitations, this meant spatial dimensions of 643 instead
of 1283 had to be used.

After only 15 epochs of training in addition to the pre-training performed on sim-
ulated data, a set with weights was saved because of promising enhancement of the
validation data. For the sandstone sample, the MSSIM after enhancement improved
compared to the previous results in Section 10.21. On the other hand, streaking arte-
facts remained for all number of projections used, but were less pronounced for the
reconstruction from 85 projections, as shown in Figure C.2. However, the hourglass
sample was not enhanced as well as the previous results in Section 10.2. This is an in-
dication that the training of the GAN in most cases has been ended prematurely, and
that whether the stored weights were optimal for the hourglass or sandstone sample
was a matter of coincidence. To elaborate, it is possible that the training progress of
the GAN would alternate between converging for the hourglass sample and the sand-
stone sample. However, convergence towards a compromise between all samples is
desired. Therefore, as mentioned in Section 12.6, more emphasis on the fined-tuned
training of the GAN, exemplified through increased batch size, is necessary in future
work.



124 additional gan training and testing

Ground Truth 17: 0.52 34: 0.58 51: 0.61 85: 0.64

Ground Truth 17: 0.53 34: 0.59 51: 0.62 85: 0.65

Ground Truth 17: 0.46 34: 0.50 51: 0.54 85: 0.60

Figure C.2: The ground truth compared to the GAN-enhanced reconstructions of the sand-
stone sample for increasing number of projections. Each slice is described with
the following format: projections: MSSIM. The GAN was trained on the complete
dataset 5.2 using a minibatch size of 4 instead of 1. For this reason, the spatial di-
mensions of the input and output data were reduced to 643 instead of 1283. This
resulted in improved results compared to the previous results in Figure 10.21.
With 85 projections, the undersampling given the width of the sample was 13, the
obtained MSSIM was 0.64, and streaking artefacts were somewhat reduced by the
GAN.
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