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Abstract

The differential Breit-Rosenthal (BR) effect was calculated for the 6p2 3P1,2

and 1D2, and 6p7s 3P1 states in Pb I. The mean squared radius
〈
r2n
〉
of the nu-

clear Fermi charge distribution was varied by between−1.466(fm)2 and +0.779(fm)2

from the 207Pb reference isotope, accounting for the whole isotope range[1]. A
linear fit λ⟨r2n⟩ was made with the results, where the proportionality constants
in units of %fm−2 were estimated to be λ(6p2 3P1) = −0.083(2), λ(6p2 3P2) =
−0.009(4), λ(6p2 1D2) = 0.09(2) and λ(6p7s 3P1) = −0.065(3). Calculations
were done based on multiple CSF expansions of various sizes, and the results
indicate that large, computationally expensive computations are not necessary
in calculations of the BR effect, as long as proper convergence towards the ex-
perimental hyperfine structure constant A has been achieved in the reference
isotope.

In addition, calculations varying the nuclear skin thickness by ±0.1fm and
+0.2fm from the default value 2.3fm were done. These deviations correspond
to one and two standard deviations in the skin thickness obtained by fitting to
scattering data [3, p. 31-36]. Resulting deviations in the calculated hyperfine
structure constant A were found to be of order 1% of the BR effect for all states.
Moreover, the calculated λ-values varied by an order of magnitude or more less
than the uncertainty in the determination of λ. The results strengthen the belief
that the skin thickness does not affect the BR effect much, as long as the skin
thickness is fairly similar between isotopes, indicating that the linear fit λ⟨r2n⟩
approximates the BR-effect well.

All calculations were done with the GRASP2018 [5] software package, using
an extended grid as recommended for heavy elements by [4] and [12]. Some
identical calculations were done with both the extended and default grid, and
similar results obtained, indicating that the computationally cheaper default
grid may be sufficient for hyperfine anomaly calculations in heavy elements.
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Chapter 1

Introduction

1.1 Motivation and Background

Atoms are basic building blocks of matter, consisting of a nucleus of protons
and neutrons, and a cloud of electrons surrounding it. The electrons are con-
fined to be in certain energy states with discrete energy levels, as described by
quantum mechanics. When interacting with electromagnetic radiation the atom
may absorb or emit energy only in certain discrete quantities, corresponding to
electrons moving between the allowed energy levels. The allowed energy tran-
sitions depend on the characteristics of the nucleus and electron cloud, leading
to unique lines in the absorption and emission spectra for each type of atom.
Study of atomic spectra can thus be used to identify elements and analyze their
properties. Such study plays a fundamental role in understanding the proper-
ties and behavior of matter at the atomic and molecular levels, for example in
astrophysics where it is used to obtain information about the composition and
behaviour of celestial objects.

Theoretical calculations based on quantum mechanics can be used to predict
the electron configurations, energy levels and various properties of atoms and
thus provide insight into the underlying physical principles governing atomic
systems, and help interpret the experimentally observed spectra.

One property of interest is the hyperfine structure, which are tiny split-
tings of the allowed electronic energy levels into several very close lying levels
that result from weak electric and magnetic interactions between the nucleus
and electrons. These levels can be resolved with high-resolution spectroscopy
techniques like nuclear magnetic resonance (NMR). By measuring the hyperfine
structure splitting, information about e.g. the nuclear magnetic moment may
be extracted. This extraction involves theoretical calculations taking into ac-
count the distribution of electric charge and magnetization in the nucleus. The
nuclear magnetic moment in the theoretical model is then obtained by fitting
to the experimental data.

The nuclear magnetic moment can also be measured directly using NMR.
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However, this requires a certain lifetime of the nucleus and is not possible for
sufficiently unstable nuclei. It may however, be possible to measure the hy-
perfine structure of these nuclei using laser spectroscopic methods. Since the
hyperfine splittings are directly proportional to the nuclear magnetic dipole mo-
ment, these may be used to obtain the latter, when compared to the hyperfine
splittings in a stable reference nucleus with known magnetic dipole moment.
These comparisons involve taking the ratio between the hyperfine strucure con-
stants A1 and A2 of the two nuclei, which cannot be done exactly due to the
differential hyperfine anomaly, arising due to the different sizes of the nuclei.

The uncertainty this anomaly introduces has traditionally been ignored due
to its small order. However, development of technology in laser spectroscopy
means that accuracy is now such that the hyperfine anomaly has become sig-
nificant. Some of the uncertainty can be accounted for by calculating a few
corrections, including the Breit-Rosenthal (BR) correction due to the extended
nuclear charge distribution. These calculations thus improves the accuracy of
nuclear magnetic moment determination in unstable nuclei.

1.2 Structure of Thesis

This thesis presents work including calculations of the BR correction to the
hyperfine anomaly for the 6p2 3P1,2 and 1D2, and 6p7s3P1 states between 207Pb
and other isotopes, as modelled by changing nuclear radius. The many-electron
wave function is approximated as a linear combination of configuration state
functions (CSFs), which represent important electron configurations. Multiple
CSF expansions of varying sizes are used to compute the BR-correction and the
results compared to assess the necessity for large, computationally expensive
calculations. Furthermore, the effect of varying the nuclear skin thickness is
investigated.

Chapter 2 gives an introduction to atomic structure calculations using quan-
tum theory. The impossibility of exact analytical solutions is discussed, and
some approximations and numerical methods are introduced. Chapter 3 gives
an introduction to the relativistic atomic theory on which the calculations in
this thesis are based, particularly the multi-configuration Dirac-Hartree-Fock
(MCDHF) method and the configuration interaction (CI) method used in the
calculations. Moreover, chapter 4 gives an introduction to the hyperfine struc-
ture, particularly the magnetic dipole interaction, and how the hyperfine struc-
ture constants may be calculated theoretically, as well as a description of the
hyperfine anomaly. Chapter 5 concludes the theory part, with an introduction
to the General Relativistic Atomic structure Package 2018 (GRASP2018)[5],
used in the computations.

The next chapters considers the computations performed. Chapter 6 con-
cerns the calculation of electronic wave functions in the reference isotope 207Pb.
Chapter 7 concerns the parametric study of the Breit-Rosenthal (BR) effect,
where the hyperfine structure constants were calculated for different nuclear
radii to model the isotope range of lead. Some lessons learned from the work,
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particularly the application of GRASP2018 in hyperfine anomaly calculations,
are also presented. Conclusions drawn from the results of the study are pre-
sented in chapter 8. Finally, the thesis is concluded with a norwegian language
summary in chapter 9.

1.3 Unit System

In this thesis, atomic units are used. Here the reduced Planck’s constant h̄, the
electron rest mass me, and charge e and the factor 4πϵ0 are set to 1. The speed
of light c becomes 1/α, where α is the fine-structure constant. The unit for
energy is the Hartree (Ha) where Ha= h̄2/(mea

2
0).
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Chapter 2

Non-Relativistic Atomic
Theory

Atoms are bound states of a nucleus of protons and neutrons, and electrons
surrounding them. The exact quantum state of an atomic electron is commonly
specified with a set of quantum numbers. These are the principal quantum
number n specifying the energy level, the azimuthal quantum number l specify-
ing the orbital shape, the magnetic quantum number m specifying the orbital
orientation and the spin quantum number s specifying the spin. Electrons with
the same n are in the same shell, electrons with the same nl are in the same
subshell and electrons with the same nlm are in the same orbital. The electron
configuration of an atom is given by the notation

(n1l1)
w1(n2l2)

w2 ...(nmlm)wm ,

where wi is the number of electrons in the subshell nili. The distribution of
electrons in the atom is crucial for understanding atomic properties and chemical
behaviour. Electrons tend to occupy the lowest energy levels (ground state), but
can be excited to higher energy levels by absorbing energy, leading to temporary
excited states.

2.1 Hydrogen

Hydrogen is the simplest atomic system that exists. It is the only atom, and
one of very few quantum systems, whose Hamiltonian eigenvalue equation can
be solved analytically. Thus exact wave functions can be obtained, and on
the whole all effects may be calculated. This may be done by considering the
electron moving in the spherically symmetric Coulomb potential V̂ (r) = −1/r
of the much heavier proton located at the origin. Expressing the Hamiltonian
in spherical coordinates gives
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Ĥ = −1

2

∂2

∂r2
− 1

r

∂

∂r
+

L̂
2

2r2
− 1

r
,

where the first two terms of the kinetic energy concerns movement in radial
direction while the last term concerns rotation about the origo. This Hamil-

tonian commutes with both L̂
2
and L̂z since it has angular dependency only

through the angular momentum term. L2 and Lz are thus constants of mo-
tion and there exists simultaneous eigenfunctions of energy, angular momentum
squared and angular momentum projection. Such simultaneous eigenfunctions
must have the form

ψ(r, θ, ϕ) = R(r)Ylm(θ, ϕ).

Only the radial wave function R(r) is affected by the potential V̂ (r), while
the angular part Ylm is identical for all spherically symmetric potentials. By
separating the variables in this way it becomes possible to solve the radial and
angular parts separately and then combine them. Inserting into the Schrödinger

equation Ĥψ = Eψ, using the known eigenvalues l(l + 1) of L̂
2
and doing a

variable shift u(r) ≡ rR(r) yields a one-dimensional radial equation [9, p. 140]

−1

2

d2u

dr2
+

[
l(l + 1)

2

1

r2
− 1

r

]
u(r) = Eu(r).

This is a second order partial differential equation which can be solved an-
alytically. Doing this yields the exact wave functions of the hydrogen atom [9,
p. 152]

ψnlm =

√(
2

na

)3
(n− l − 1)!

2n[(n+ l)!]3
e−r/na

(
2r

na

)l[
L2l+1
n−l−1

2r

na

]
Y m
l (θ, ϕ).

Moreover, the allowed energies are given by the Bohr-formula [9, p. 149]

En = − 1

2n2
, n = 1, 2, 3, ... (2.1)

A complete derivation is provided by e.g. Griffiths [9, p. 145-152]. It is
clear that while the wave functions depend on all three quantum numbers, the
energies are determined by the principal quantum number n alone. It is easily
seen that the ground state energy of hydrogen is E1 = − 1

2 Ha.

2.2 Helium

The next simplest atom is helium, which is a three-body system consisting of
the nucleus and two electrons. The Hamiltonian of a two-electron system with
a point nucleus at the origin is
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H =
1

2
∇2

1 +
1

2
∇2

2 −
Z

r1
− Z

r2
+

1

r12
,

with Z = 2 for helium. Here r12 ≡ |r1 − r2| is the distance between electron
1 and 2, and the term 1/r12 is the Coulomb potential energy between electrons
i and j in atomic units. If the electron-electron repulsion is disregarded, each
electron in helium can have a binding energy of maximum 2 Ha, equal to Z2 = 4
times the ionisation energy 1

2 Ha for hydrogen, yielding the minimum energy
−4 Ha.

However, with the electron-electron interaction included the Hamiltonian is
non-separable, and as a result no product solutions on the form Ψ(r1, r2) =
ψ1(r1)ψ2(r2) can be found. This means that the eigenvalue equation

H =

[
1

2
∇2

1 +
1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12

]
Ψ(r1, r2) = EΨ(r1, r2),

cannot be separated into smaller, individually solvable constituents. In fact
even the classical three-body problem, e.g. a star with two planets mutually
attracted by gravity and with initial positions and velocities known, has no
general analytical solution.

2.3 Many-Particle Atoms

For atoms with Z > 2 electrons, finding exact eigenfunctions and eigenenergies is
even more hopeless than for helium. Instead one must resort to approximations
and numerical solutions. In the following, a few such methods are discussed.

2.3.1 Variational Method

Approximate eigenfunctions and eigenenergies may be obtained by choosing a
trial wavefunction |ψ(α)⟩, where α is a variational parameter, and minimizing
the energy functional, i.e. setting δE(ψ) = 0 under variations of the parameter
α. Here

E(α) =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

≥ E0,

is the expectational value of the energy in the state |ψ⟩, which for any state
is larger or equal to the ground state energy E0. The resulting parameter that
minimize the energy gives an approximation to the true wave function, and the
corresponding energy is an upper bound to the true energy.

As an example the ground state energy of hydrogen, Enlm = E100 is ob-
tained. The wave function of the hydrogen ground state is spherically symmet-
ric, has no nodes and vanishes as r → ∞. A natural trial function with these
properties is

ψ(r, θ, ϕ) = e−r/α.
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The energy is then

E(α) =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

= −
⟨ψ| 12∇

2 + 1
r |ψ⟩

⟨ψ|ψ⟩

=
1

2α2
− 1

α
.

Where it was used that

⟨ψ|ψ⟩ =
∫ ∞

0

4πr2e−2r/αdr = πα3

− ⟨ψ|1
2
∇2|ψ⟩ = 4π

α2

1

2

∫ ∞

0

r2e−2r/αdr =
π

2
α

− ⟨ψ|1
r
|ψ⟩ = −

∫ ∞

0

re−2r/αdr = −πα2.

Minimizing the energy with respect to α gives

dE

dα
= − 1

α3
0

+
1

α2
0

= 0 ⇐⇒ α0 = 1 =⇒ E(α0) = −1

2
,

which recovers the exact ground state energy E1 obtained from the Bohr-
Formula in equation 2.1.

2.3.2 Hartree Method

The many-body problem may be simplified into single-particle approximations
by assuming independent electrons, such that the wave function of the electronic
system can be expressed as a product of the wave functions of the individual
electrons:

Ψ(r1, ..., rN ) =

N∏
i=1

ψi(ri).

The atomic structure is then described by single-particle states (orbitals) ψi

in an effective potential V̂ (ri), which consists of the electrostatic attraction from
the nucleus, and an effective mean field created by theN−1 other electrons. The
Pauli exclusion principle is accounted for by all electrons being in different states,
although the product wave function is not guaranteed to be anti-symmetric in
particle coordinates, which is required to describe physical states. The charge
density of electron i is −|ψi(ri)|2 in atomic units, and thus the potential felt by
electron k is

V̂ (rk) = V̂n(rk) +
∑
i ̸=k

∫
dri

|ψi(ri)|2

rki
,
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where rik ≡ |ri−rk| and the nuclear potential is V̂n(rk) = −Z/rk for a point
nucleus approximation. Its wave function then satisfies a Schrödinger equation
with this potential term:

Ĥkψk(rk) =

[
− 1

2
∇2

k + V̂ (rk)

]
ψk(rk) = Ekψk(rk).

The variational method may be used to find stationary states of the average
Hamiltonian ⟨Ψ|Ĥ|Ψ⟩ of the electronic system, with the constraint that the
wave function is normalized. In the independent electron picture this means
that each electronic wave function has to be normalized:∫

dr|ψi(r)|2 = 1.

The expectation value of the Hamiltonian in the product state is

⟨Ψ|Ĥ|Ψ⟩ =
N∑
i=1

∫
driψ

∗
i (ri)

(
− 1

2
∇2

i + V̂n(ri)

)
ψi(ri)

+
1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)ψ

∗
j (rj)

1

rij
ψi(ri)ψj(rj).

Here the first term represents the kinetic energy of the electrons plus the
electron-nucleus interaction, while the second term is the Hartree contribution,
also known as the direct contribution, which represents the average Coulomb
interaction between the electrons.

Given this expression for the average Hamiltonian, the Lagrange multiplier
method may be applied to minimize with the normalization constraints. The
energy functional is

E
[
{ψi}; {λi}

]
= ⟨Ψ|Ĥ|Ψ⟩ −

∑
i

λi

(∫
dri|ψi(ri)|2 − 1

)
,

where {λi} are the Lagrange multipliers. These are multiplied by the con-
straints that ensure the electronic wave functions are normalized. To obtain
the set of orbitals {ψi} that minimize the total energy, the set of functional
derivatives {δE/δψi} and {δE/δψ∗

i } must be set equal to zero. Here δψi and
δψ∗

i may be taken as independent variations.
As an example the complex conjugate part of the variation is calculated,

starting with the kinetic- and nuclear potential energy term

δ

δψ∗
k(rk)

[ N∑
i=1

∫
driψ

∗
i (ri)

(
− 1

2
∇2

i + V̂n(ri)

)
ψi(ri)

]

=

N∑
i=1

∫
driδikδ(ri − rk)

(
− 1

2
∇2

i + V̂n(ri)

)
ψi(ri) =

(
− 1

2
∇2

k + V̂n(rk)

)
ψk(rk),
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where it was used that δψ∗
i (ri)/δψ

∗
k(rk) = δikδ(ri − rk). Moreover, the

functional derivative of the direct-contribution is

δ

δψ∗
k(rk)

[
1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)ψ

∗
j (rj)

1

rij
ψi(ri)ψj(rj)

]

=
1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjδikδ(ri − rk)ψ

∗
j (rj)

1

rij
ψi(ri)ψj(rj)

+
1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)δjkδ(rj − rk)

1

rij
ψi(ri)ψj(rj)

=
1

2

N∑
j=1

∫
drjψ

∗
j (rj)

1

rkj
ψk(rk)ψj(rj) +

1

2

N∑
i=1

∫
driψ

∗
i (ri)

1

rik
ψi(ri)ψk(rk)

=

N∑
i=1

∫
dri

|ψi(ri)|2

rik
ψk(rk).

And finally, the Lagrange multiplier terms yield

δ

δψ∗
k

[
−

N∑
i=1

λi

(∫
dri|ψi(ri)|2−1

)]
= −

N∑
i=1

λi

∫
driδikδ(ri−rk)ψi(ri) = −λkψk(rk).

Putting it all together yields the Hartree equation for electron k:

(
− 1

2
∇2

k + V̂n(rk)

)
ψk(rk) +

N∑
i=1

∫
dri

|ψi(ri)|2

rik
ψk(rk)− λkψk(rk) = 0.

The N equations can not simply be solved separately, since each solution
for one electron changes its orbital, which in turn changes all other orbitals.
A self-consistent set of orbitals must be sought, such that when put into the
potential they reproduce themselves as solutions. In practice this is done by
solving the equations iteratively. Naturally, the orbitals {ψi} that enter into
the expression for the potential energy are not known, so a starting potential
must be chosen. The wave functions are then calculated and the new effective
potential obtained from the N states with minimized energy, and so on until
convergence. Such a computational method is called a self-consistent field (scf)
procedure and the resulting set of orbitals is said to be self-consistent.

2.3.3 Hartree-Fock Method

The Hartree method may be extended to the Hartree-Fock (HF) method by
forcing the N -electron wave function to have correct anti-symmetry in the par-
ticle coordinates. Again the independent electron picture is considered, and
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the Schrödinger equation is approximated as a set of single-particle PDEs. The
anti-symmetry requirement can be satisfied by assuming the exact N -body wave
function can be approximated by a Slater determinant of N -spin orbitals

ψ(ri, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(ri) ψ1(rj) . . . ψ1(rN )
ψ2(ri) ψ2(rj) . . . ψ2(rN )

...
...

. . .
...

ψN (ri) ψN (rj) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣ .
where 1√

N !
is a normalization factor. The Slater determinant wave func-

tion has a few properties. If two electron coordinates are exchanged, then two
columns are interchanged, and interchange of two columns in a determinant
gives sign change. The slater determinant thus ensures that the wave function
is anti-symmetric under exchange of two particle coordinates. Furthermore, if
two of the one-particle states are identical, e.g. ψ1 = ψ2, then two lines in the
determinant will be identical, and a determinant with two identical lines is zero.
This ensures the Pauli exclusion principle is satisfied: two fermions cannot be
in the same one-particle state.

With the Slater determinant wave function the following expression for the
average Hamiltonian is obtained

⟨Ψ|Ĥ|Ψ⟩ =
N∑
i=1

∫
driψ

∗
i (ri)

(
− 1

2
∇2

i + V̂n(ri)

)
ψi(ri)

+
1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)ψ

∗
j (rj)

1

rij
ψi(ri)ψj(rj)

− 1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)ψ

∗
j (rj)

1

rij
ψj(ri)ψi(rj).

The first two terms are the same as in the Hartree approximation and the
final term is the exchange contribution, a purely quantum mechanical effect,
which for fermions is due to the Pauli repulsion caused by the anti-symmetrization
requirement.

Stationary states of the average Hamiltonian ⟨Ψ|Ĥ|Ψ⟩ may be obtained
with the variational method, subject to the same normalization constraints as
for the Hartree approximation. The energy functional will thus be identical
to the Hartree method, except for the added exchange term. The functional
derivative of the exchange contribution is carried out as
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δ

δψ∗
k(rk)

[
− 1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)ψ

∗
j (rj)

1

rij
ψj(ri)ψi(rj)

]

= −1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjδikδ(ri − rk)ψ

∗
j (rj)

1

rij
ψj(ri)ψi(rj)

− 1

2

N∑
i=1

N∑
j=1

∫
dri

∫
drjψ

∗
i (ri)δjkδ(rj − rk)

1

rij
ψj(ri)ψi(rj)

= −1

2

N∑
j=1

∫
drjψ

∗
j (rj)

1

rkj
ψj(rk)ψk(rj)−

1

2

N∑
i=1

∫
driψ

∗
i (ri)

1

rik
ψk(ri)ψi(rk)

= −
N∑
i=1

∫
driψ

∗
i (ri)

1

rik
ψk(ri)ψi(rk).

The remaining terms are identical to the results for the Hartree-approximation
and thus the Hartree-Fock equations are

(
− 1

2
∇2

k + V̂n(rk)

)
ψk(rk) +

N∑
i=1

∫
dri

|ψi(ri)|2

rik
ψk(rk)

−
N∑
i=1

∫
driψ

∗
i (ri)

1

rik
ψk(ri)ψi(rk)− λkψk(rk) = 0.

As for the Hartree-method, the set of equations must be solved iteratively to
obtain a self-consistent set of orbitals. However, even numerically there is usu-
ally need for further approximation, e.g. rotational invariance may be assumed
such that the spin-angular part is given by spinors and spherical harmonics,
leaving only the radial part to be solved.

2.3.4 Electron Correlation

The Hartree- and Hartree-Fock methods are mean-field approximations, which
means they neglect many-body correlations between particles. They often give
good approximations for systems with weak interactions between particles, but
become less accurate for strongly interacting systems. The Hartree-Fock energy
EHF is the most accurate that can be obtained within the framework of the
independent-particle model, and to exceed it the correlated motion of the elec-
trons must be treated [11, p. 76-77]. The correlation energy may therefore be
defined as the difference between the exact energy eigenvalue of the Schrödinger
equation, and the approximate Hartree-Fock eigenvalue [6, p. 23]

Ecorr ≡ Eexact − EHF.
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Electron correlation is divided into static and dynamic correlation. Static
electron correlation are effects that arise from the long-range electron-electron
interactions and the correlation due to the occupation of degenerate or near-
degenerate orbitals. It is associated with the long-range rearrangement of the
electron cloud [6, p. 23]. Dynamic electron correlation is short range and arises
from the singularity of the 1/|ri − rj |-term where ri → rj [6, p. 23]. It in-
volves the dynamic rearrangement of electrons due to continuous motion and
interactions.
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Chapter 3

Relativistic Atomic Theory

A treatment based on the Schrödinger equation is valid only in the non-relativistic
limit, which suffices to explain empirical observations in certain cases, especially
for light elements. However, relativistic effects become increasingly important
for heavier elements, where the speeds of the electrons can approach a significant
fraction of the speed of light, such that their kinetic energies become comparable
to their rest mass energies. As a result, the relativistic effects can significantly
affect the atomic properties and spectroscopic data.

The most important relativistic effect in atomic structure computations is
the relativistic mass correction, which causes the electron to move faster than
predicted by the non-relativistic theory, resulting in a contraction of electron
orbitals and an increase in the effective nuclear charge. Another important
relativistic effect is the spin-orbit coupling, which arises from the interaction
between the motion of the electron and its spin. This effect causes the energy
levels of the atom to split into fine structure levels, which can be observed in
the atomic spectra.

Rather than being solutions to the Schrödinger equation, the eigenfunctions
of half integer spin particles are in the relativistic treatment solutions to the
Dirac equation. The one-electron Schrödinger orbitals ψi are then replaced by
one-electron Dirac orbitals ϕi which satisfy the single-particle Dirac equation
ĤDϕ = Eϕ, where ĤD is the Dirac Hamiltonian. In atomic units it is given by

ĤD = cαi · pi + βic
2 + V̂ (r), (3.1)

where α and β are the Dirac matrices αi =
(

0 σi
σi 0

)
for i ∈ {1, 2, 3}, and β =(

I2 0
0 −I2

)
. pi = −i∇ is the momentum operator for electron i, and c is the speed

of light. The first two terms are the Dirac kinetic energy operators while the last
is the potential term. As in the non-relativistic case, no analytic solution to the
eigenvalue equation ĤDΦ = EΦ is possible for sufficiently complex many-body
systems, and numerical methods must be used.
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3.1 Many-Particle Atoms

3.1.1 Central Field Approximation

In the central field approximation each electron is assumed to move indepen-
dently in a spherically symmetric potential field generated by the nucleus plus
an effective central potential field accounting for the average Coulomb repulsion
between electrons in the atom. The potential energy of electron i is then given
by

V̂i(ri) = V̂n(ri) + V̂eff(ri).

The effective potential term is derived by averaging the electron-electron
interactions over all possible electron configurations. The central field Hamilto-
nian is

ĤCF =

N∑
i=1

[
cαi · pi + (βi − I4)c

2 + V̂i(ri)
]
.

As there are no direct interactions between the electrons, each operator acts
on the subspace of a single electron and we are in the independent particle
picture. Thus the solutions to the eigenvalue equation can be constructed as
product of solutions to the one-electron eigenvalue equations such that

|Φ⟩ =
N∏
i=1

|ϕi⟩ .

Moreover, the total energy eigenvalue E can be approximated as the sum of
the one-electron energy eigenvalues E =

∑
iEi.

The kinetic energy term cαi · pi may be expressed in spherical coordinates
as [8, p. 136]

cαi · pi = −icσr
(
∂r +

K̂ + 1

r

)
,

where σr = σ ·er =
(

cos θ sin θe−iϕ

sin θe+iϕ − cos θ

)
. The operator K̂ = −1−σ ·l = −(1−

Ĵ2 − l̂2 − ŝ2) has spherical spinor eigenfunctions with eigenvalues κ [8, p. 133].
The eigenvalue equations for the spherical spinors are then K̂Ωlsjm = κΩlsjm,
where

κ =

{
−(l + 1) for j = l + 1

2

l for j = l − 1
2 .

Furthermore, in a spherically symmetric potential V̂ (r) the solutions to the
Dirac equation has the general form of spin-orbitals [7, p. 254]

ϕnlsjm(q⃗) =
1

r

[
Pnlj(r)Ωlsjm(θ, ϕ)
iQnlj(r)Ωl̃sjm(θ, ϕ)

]
,
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where Pnlj(r) and Qnlj(r) are the large and small components of the radial
function, so named since in the non-relativistic limit, the large component tends
to dominate, while the small becomes negligible. Moreover, Ωlsjm(θ, ϕ) are
the spinor spherical harmonics which are constructed from the coupling of the
spherical harmonics Ylml

(θ, ϕ) with the spinors χ 1
2 ,ms

as

Ωlsjm(θ, ϕ) =
∑

ml,ms

〈
l,
1

2
;ml,ms

∣∣∣∣j,mj

〉
Ylml

(θ, ϕ)χ 1
2 ,ms

.

Here
〈
l, 12 ;ml,ms

∣∣j,m〉
is the Clebsch-Gordan (CG) coefficient that gives

the probability amplitude of spin- and orbital angular momenta
∣∣ 1
2 ,ms

〉
and

|l,ml⟩ coupling to a total angular momentum |j,mj⟩. Moreover, the spinors
are χ 1

2 ,
1
2
=

(
1
0

)
and χ 1

2 ,−
1
2
=

(
0
1

)
. The spin-orbitals are single-electron wave

functions that account for both the electron spin and its motion in the nuclear
potential.

The spin-orbitals can be rewritten as [7, p. 254]

ϕnκm(q⃗ ) =
1

r

[
Pnκ(r)Ωκm(θ, ϕ)
iQnκ(r)Ω−κm(θ, ϕ)

]
.

The nκm quantum numbers are equivalent to nljm, and uniquely describe
each Dirac orbital. If a solution to the Dirac equation has this form, then the
radial functions Pnκ and Qnκ satisfy the coupled radial equations [11, p. 56]

(V (r)− Enκ)Pnκ(r)− c

(
d

dr
− κ

r

)
Qnκ(r) = 0,

c

(
d

dr
+
κ

r

)
Pnκ(r) +

(
V (r)− 2c2 − Enκ

)
Qnκ(r) = 0.

The energy level Enκ is (2j+1)−fold degenerate due to the (2j+1) possible
values of mj for the same nlj = nκ. The degenerate orbitals constitute a
subshell. In the relativistic treatment the electron spin affects the energy such
that for each non-relativistic subshell nl with l ̸= 0, there are two nlj = nκ
relativistic subshells, where j can take either of the two values l − 1

2 and l + 1
2 .

The notation for the relativistic electron configuration is then

(n1l1−)w1−(n1l1+)w1+...(nmlm−)wm−(nmlm+)wm+,

where nili± denotes the subshell with ji = li ± 1
2 . Frequently, the non-

relativistic notation is used even when relativistic theory is considered. The
specific relativistic subshells involved then depend on the total angular momen-
tum of the state.

3.1.2 Configuration State Functions

Analogous to the Hartree-Fock wave function, the relativistic N -body wave
function can be approximated by a Slater determinant of the one-electron spin-
orbitals
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Φ(r1, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ1(r2) . . . ϕ1(rN )
ϕ2(r1) ϕ2(r2) . . . ϕ2(rN )

...
...

. . .
...

ϕN (r1) ϕN (r2) . . . ϕN (rN )

∣∣∣∣∣∣∣∣∣ .
As in the non-relativistic case, the Slater determinant ensures the wave func-

tion is anti-symmetric with respect to the interchange of any two electron co-
ordinates, and that each spin-orbital must be distinct to yield a non-zero wave
function.

The total angular momentum J should be conserved in a free atomic system,
and therefore the N -body wave function should be an eigenfunction of the total
angular momentum squared Ĵ2 and total angular momentum projection Ĵz,
with corresponding eigenvalues J(J + 1) and MJ . Single Slater determinants
are rarely such eigenfunctions. However, eigenfunction may be constructed as
linear combinations of Slater determinants with the same set of niκi quantum
numbers and different mi quantum numbers. These are configuration state
functions (CSFs)

Φ(ΓPJMJ) ≡ |ΓPJMJ⟩ ,

where P = (−1)
∑

i li is the parity and Γ represents all other information
necessary to uniquely describe the state.

In the relativistic treatment the one-electron spin and orbital angular mo-
menta are intrinsically coupled in the four-component spinors. The total angular
momentum J of the electronic system is then obtained by consecutively coupling
the one-electron angular momenta: J =

∑
i ji =

∑
i(li+ si), called jj-coupling.

A given combination of angular quantum numbers S, L and J is called a level,
and is indicated by a term symbol on the form 2S+1LJ . Relativistically, only
J is a good quantum number, such that eigenstates of Ĵ2 and Ĵz are generally
linear combinations of states with the same J , but different L and S. The term
symbol then refers to an eigenstate where 2S+1LJ is the most important com-
ponent. A level has (2J+1) possible microstates, which is the statistical weight
of the level.

The CSFs are required to be orthonormal
〈
ΓiPiJiMJi

∣∣ΓjPjJjMJj

〉
= δij ,

which is ensured if the one-electron spin-orbitals are orthonormal.

3.1.3 Atomic State Functions

Single CSFs correspond to a specific electron configuration and only captures
the independent motion of electrons within the assigned orbitals, not electron
correlation. However, more accurate approximations to the exact wave func-
tions can be constructed as linear combinations of CSFs. By including CSFs
corresponding to a broader range of electron configurations with appropriate
weighting, the resulting expansion may incorporate electron correlation effects.
In fact, the set of CSFs that can be constructed from a set of one-electron or-
bitals that span the full one-electron Hilbert space will span the full electronic
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Hilbert space. Thus, any eigenstate may be expressed as a linear combination
of CSFs. Attaining perfect accuracy this way would generally require an infinite
expansion, but arbitrary precision can be reached with a finite number, if the
most important CSFs are chosen. Such an expansion is called an atomic state
function (ASF) [8, p. 43]:

Ψ(ΓPJMJ) ≡ |ΓPJMJ⟩ =
Ncsf∑
i=1

cΓi
|ΓiPJMJ⟩ . (3.2)

where Ncsf is the number of CSFs included in the expansion. The ASF is

ensured to be an eigenstate of Ĵ2 and Ĵz by including only CSFs with the same
J and MJ in the expansion. Moreover, to ensure a well defined parity, all CSFs
are also required to have the same parity P . The expansion coefficients can be
organized in a vector cΓ = (c1, ..., cNCSF

)T which then represents the state fully
in the given CSF basis.

3.2 Multi-Configurational Dirac-Hartree-Fock Method

The Hamiltonian of the N -electron system can be approximated by the Dirac-
Coulomb (DC) Hamiltonian, where the one-electron effects are given a full
relativistic treatment while the two-electron interactions are described by the
Coulomb attraction as in the non-relativistic theory. The DC Hamiltonian is
then given by

ĤDC =

N∑
i=1

[
cαi · pi + (βi − I4)c

2 + V̂n(ri)
]
+

N∑
i=1

∑
i<j

1

rij
,

where the one-electron operators are the Dirac Hamiltonian operators from
equation 3.1, where the electron rest mass has been subtracted. The most im-
portant relativistic effects are the one-electron effects which are thus given a full
relativistic treatment. The two electron operators 1/rij are the Coulomb poten-
tial energy between electrons i and j, which may receive relativistic corrections
later.

If the exact N -electron wave function is approximated by an ASF expanded
in a set of known CSFs as in equation 3.2, the approximation is optimized
in a scf iteration with the multi-configuration Dirac-Hartree-Fock (MCDHF)
equations. Similarly to the non-relativistic Hartree and Hartree-Fock equations
discussed in chapter 2, these are obtained by applying the variational principle
to the energy functional.

The interaction energies associated with the interactions between CSFs can
be used to construct a matrix representation of the Hamiltonian. The energy
of the state |ΓJ⟩ is [13, p. 12]

EΓJ = ⟨ΓJM |ĤDC|ΓJM⟩ = 1√
2J + 1

⟨ΓJ |ĤDC|ΓJ⟩ =
1√

2J + 1
c †
ΓJH cΓJ ,
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where H is the Hamiltonian matrix with the reduced elements [13, p. 12]

Hαβ = ⟨ΓαJ | |ĤDC| |ΓβJ⟩ =
∑
ab

tαβab I(a, b) +
∑

abcd;k

vαβabcd;kR
k(ab; cd).

where tαβab and vαβabcd;k are angular coefficients arising from the angular inte-
gration associated with the one-electron and two-electron operators in the DC
Hamiltonian, respectively. The indices a and b represent the quantum numbers
naκa and nbκb of the radial orbitals. Moreover, I(a, b) are one-electron radial
integrals given by [13, p. 13]

I(a, b) = δκaκb

∫ ∞

0

[
Pnaκa(r)Vn(r)Pnbκb

(r)− cPnaκa(r)

(
d

dr
− κ

r

)
Qnbκb

(r)

+ cQnaκa
(r)

(
d

dr
+
κ

r

)
Pnbκb

(r) +Qnaκa
(r)

(
Vn(r)− 2c2

)
Qnbκb

(r)

]
dr.

And, finally Rk(ab; cd) are two-electron radial integrals, so-called Slater in-
tegrals [13, p. 13]

Rk(ab; cd) =

∫ ∞

0

[
Pnaκa

(r)Pncκc
(r) +Qnaκa

(r)Qncκc
(r)

]
1

r
Y k(bd; r)dr,

where Y k(ab; r) are the relativistic Hartree-functions that describe the electron-
electron interaction between orbitals in terms of the radial distance r between
them, and the angular momentum quantum number k. These are given by

Y k(ab; r) = r

∫ ∞

0

rk<
rk+1
>

[
Pnaκa

(s)Pnbκb
(s) +Qnaκa

(s)Qnbκb
(s)

]
ds,

where the rk< term represents the smaller of the two radial distances r and

s, and rk+1
> the larger. The radial functions are required to be orthonormal.

The overlap integral between electrons in orbitals a and b being unity leads to
the radial orthonormality condition [13, p. 13]

Cab =

∫ ∞

0

[
Pnaκa(r)Pnbκb

(r) +Qnaκa(r)Qnbκb
(r)

]
dr − δnanb

= 0.

If multiple states with different total angular momentum J are targeted si-
multaneously, which is usually the case, the energy functional can be constructed
as a statistically weighted average of the states. If NASF is the number of states,
the energy functional becomes [13, p. 13]
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E
[
{ci}, {Pi}, {Qi}

]
=

∑NASF

i=1

√
2J i + 1 ⟨ΓiJi|ĤDC |ΓiJi⟩∑NASF

i=1 (2J i + 1)
+
∑
a,b

δκaκb
λabCab,

where in the first term the numerator gives the statistical weight of the
states and the denominator normalizes the contribution from the numerator
to obtain an average energy. In the second term λab represents a matrix of
Lagrange multipliers associated with enforcing the orthonormality condition
between different orbitals.

To obtain the MCDHF equations the energy functional must be minimized
with respect to the variational parameters, which are the set of radial compo-
nents {Pi} and {Qi}, and mixing coefficients {ci}. Given cΓJ , the stationary
condition for the radial functions yields [13, p. 13]

ωa

 V (a; r) −c
(

d
dr − κa

r

)
c

(
d
dr + κa

r

)
V (a; r)− 2c2

[
Pnaκa

(r)
Qnaκa

(r)

]
=

∑
b

ϵabδκaκb

[
Pnaκa

(r)
Qnaκa

(r)

]
,

where ωa is the generalized occupation number of orbital a, allowing for
fractional occupation, and ϵab is an energy parameter related to the Lagrange
multipliers. As in the non-relativistic Hartree-Fock method the potential V (a; r)
consists of both a nuclear direct contribution and an exchange contribution

V (a; r) = Vn(r) + Y (a; r) +X(a; r).

The MCDHF equations are solved iteratively to obtain a self-consistent set
of radial orbitals.

3.3 Configuration Interaction

The expansion coefficients cΓi
of the ASF are optimized by first diagonalizing the

Hamiltonian matrix H in the basis of the chosen radial functions and updating
the coefficients to obtain the eigenvalues and eigenvectors which correspond to
the interaction energies and expansion coefficients, respectively. The eigenvalue
problem is [13, p. 4]

Hc = Ec,

where H is the matrix of the Hamiltonian in the CSF space spanned by
the CSFs from which the ASF is contructed. After the final orbital basis is
obtained with the scf procedure, the expansion coefficients cΓi

may be adjusted
to account for additional corrections by introducing further terms to the Hamil-
tonian, beyond the DC approximation.
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3.3.1 Breit and QED Corrections

The instantaneous Coulomb interaction is an incomplete description of the
electron-electron interactions in relativistic atomic structure. The leading order
correction to the Coulomb interaction in the DC Hamiltonian, valid to order
α2, is the transverse photon interaction which is a relativistic correction that
accounts for magnetic interactions and retardation effects caused by the finite
speed of the exchanged virtual photons. This effect is especially important in
systems with high atomic number and nuclear charge, where the electrons ex-
perience strong Coulomb interactions. Here the transverse photon interaction
can significantly affect the electronic structure and the accuracy of theoretical
calculations. The Hamiltonian for the interaction is [4, p. 34]

HT = −
N∑
i<j

[
αi ·αj

cos(ωijrij/c)

rij
+ (αi · ∇i)(αj · ∇j)

cos(ωijrij/c)− 1

ω2
ijrij/c

2

]
,

where ωij is the angular frequency of the virtual photon exchanged between
electrons i and j, assumed to be the difference in orbital energies [4, p. 35]. This
is a poor approximation for multiply occupied orbitals and correlation orbitals
[4, p. 35], and therefore the correction is often computed in the low-frequency
limit by multiplying by a scale factor (often 10−6). In the short frequency limit
this reduces to the Breit interaction [6, p. 6]

HBreit = −
N∑
i<j

1

2rij

[
(αi ·αj) +

(αi · rij)(αj · rij)
r2ij

]
.

Adding this leading order correction to the DC Hamiltonian yields the Dirac-
Coulomb-Breit (DCB) Hamiltonian

HDCB = HDC +HBreit.

Further corrections from quantum electrodynamics (QED) like vacuum po-
larisation and self-energy can also be added to the Hamiltonian. Vacuum po-
larisation results from the creation of virtual electron-positron pairs in the vac-
uum, which modifies the electron energy levels by interacting with them. The
self-energy is the energy correction due to interaction with virtual photons emit-
ted and reabsorbed by the electron. The QED corrections are typically small
compared to other atomic structure effects, but they become important for
high-precision atomic spectroscopy, such as in measurements of the fine- and
hyperfine structure.

If such corrections are added to the Hamiltonian in the CI method, it is said
to be a relativistic configuration interaction (RCI).
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Chapter 4

Hyperfine Structure

The hyperfine interaction arises from the coupling of the magnetic moments
of the nuclear- and electronic spin angular momenta. Preferred orientations of
electrons are caused by the nuclear magnetic field interacting with the magnetic
moment of the electron cloud, breaking the spherical symmetry. This spatial and
magnetic structure of the nucleus leads to electromagnetic multipole moments
which interact with the electron cloud. These interactions are the hyperfine in-
teractions. The corresponding splittings of the energy levels resulting from these
interactions are called hyperfine splittings. The Hamiltonian of the hyperfine
interaction can be written as a multipole expansion [8, p. 459]

Hhfs =
∑
k≥1

Tk ·Mk

where Tk and Mk are rank k spherical tensor operators, which operate on
electronic- and nuclear wavefunctions |ΓjJMJ⟩ and |ΓiIMI⟩, respectively. The
k = 1 term is the magnetic dipole term and the k = 2 term is the electric
quadrupole term. Higher order terms can often be neglected.

4.1 Magnetic Dipole Interaction

The electronic magnetic dipole operator in an N -electron atom can be written
as a sum over one-electron operators [13, p. 16]

T(1) =

N∑
j=1

t(1)(j) =

N∑
j=1

−i
√
2αr−2

j

(
αααjC

(1)(θj , ϕj)

)
,

where α is the fine structure constant, αααj is a Dirac matrix and C(1) is a

spherical tensor with components C
(1)
q =

√
4π
3 Y1q, where Y1q are the spherical

harmonics and q = 0,±1. Moreover, the nuclear tensor operator M1 = µ⃗I is
related to the nuclear magnetic dipole moment µI via
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µI = ⟨ΓiII|M(1)|ΓiII⟩ .

The magnetic dipole moments can generally be experimentally determined
with high accuracy.

The total angular momentum of a free atomic system is conserved, and thus
the system can be described with stationary eigenstates of F̂ 2 and F̂z, where
F̂ = Î+ Ĵ is the total angular momentum operator of the entire atomic system.
Such eigenfunctions are given as coupled wave functions

|ΓiΓjIJFMF ⟩ =
∑

MIMJ

⟨IJMIMJ |IJFMF ⟩ |ΓiIMI⟩ |ΓjJMJ⟩ , (4.1)

where the Clebsch-Gordan coefficient ⟨IJMIMJ |IJFMF ⟩ gives the proba-
bility amplitude of the nuclear state |ΓiIMI⟩ and the electronic state |ΓjJMJ⟩
coupling to the total state |ΓiΓjIJFMF ⟩. The eigenvalue of F̂ is denoted F .

The hyperfine interaction couples both angular momenta I⃗ and J⃗ such that
the orientation of I⃗ is no longer independent of the orientation of J⃗ . This lifts
the degeneracy of the energy levels, and yields a dependence on F . F can take
any value |I − J |, |I − J |+1, ..., I+J , where each value correspond to a specific

orientation of I⃗ with respect to J⃗ .
If the hyperfine energies are small compared to the fine structure energies,

which is usually the case, the interaction can be treated as a first order pertur-
bation, where the zero-order wave functions are given by equation (4.1). Using
this the diagonal and off-diagonal magnetic dipole interaction energies between
nuclear and electronic basis states are [14, p. 3]

EM1(J, J
′) = ⟨ΓiΓjIJFMF |T(1) ·M(1) |ΓiΓjIJ

′FMF ⟩ ,

where J ′ = J, J−1, accounting for the magnetic dipole nature of the interac-
tion. The diagonal energies describe the interaction within the same electronic
state but with different nuclear spin states, while the off-diagonal energies de-
scribe the interaction between different electronic states with different nuclear
spin states. T(1) is an irreducible tensorial operator whose matrix elements

⟨ΓjJMJ |T (k)
q |ΓJ′J ′MJ′⟩ can be factorized via the Wigner-Eckhart theorem.

Defining the reduced matrix elements in the Brink and Satchler version of the
theorem gives [13, p. 10]

⟨ΓjJMJ |T (k)
q |ΓJ′J ′MJ′⟩ = (−1)J−MJ

√
2J + 1

{
J k J ′

−MJ q MJ′

}
⟨ΓjJ | |T(k)| |ΓJ′J ′⟩ ,

where (−1)J−MJ is a phase factor that accounts for the transformation
properties of the CG coefficients under sign changes of the projection quan-
tum numbers, and

√
2J + 1 is a degeneracy factor that arises because there can

be multiple states with the same angular momentum J . The 2 × 3 array is a
Wigner 3j-symbol that relates the coupling of three angular momenta to form
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a fourth angular momentum. The matrix elements of the irreducible operator
are thus expressed as a product of a 3j-symbol and the reduced matrix ele-
ment ⟨ΓjJ | |T(k)| |ΓJ′J ′⟩ which is simply a proportionality factor independent
of MJ ,MJ′ and q. This makes it possible to relate matrix elements of com-
plex operators to simpler operators, greatly simplifying calculations. Using this
relation the magnetic dipole interaction energy can be written [14, p. 4]

EM1(J, J
′) = (−1)I+J′−F

√
(2J + 1)(2I + 1)W (I, J ′; I, J ;F, 1)

⟨ΓjJ | |T(1)| |ΓjJ
′⟩ ⟨ΓiI| |M(1)| |ΓiI

′⟩

where W (I, J ′; I, J ;F, 1) is a Racah W -coefficient. Now the F dependence
may be factorized out and the interaction energy expressed in terms of the
hyperfine interaction constant A as [14, p. 4]

AJ =
µI

I

1√
J(J + 1)

⟨ΓjJ | |T(1)| |ΓjJ⟩

AJ,J−1 =
µI

I

1√
J(2J − 1)

⟨ΓjJ | |T(1)| |Γj(J − 1)⟩ .

Furthermore, the interaction energies are now

EM1(J, J) =
1

2
AJC,

EM1(J, J − 1) =
1

2
AJ,J−1[(K + 1)(K − 2F )(K − 2I)(K − 2J + 1)]

1
2 ,

where C = F (F + 1)− J(J + 1)− I(I + 1) and K = I + J + F .
If the wave function is approximated with an ASF expanded in jj-coupled

CSFs as in equation (3.2), the diagonal and off-diagonal magnetic dipole hyper-
fine structure constants can be written [14, p. 4]

AJ =
µI

I

1

[J(J + 1)]
1
2

∑
r,s

crcs ⟨ΓrPJ | |T(1)| |ΓsPJ⟩

AJ,J−1 =
µI

I

1

[J(2J − 1)]
1
2

∑
r,s

crcs ⟨ΓrPJ | |T(1)| |ΓsP (J − 1)⟩ .

where the evaluation reduces to the calculation of matrix elements between
CSFs. Angular recoupling may be set up to reduce the matrix element ⟨ΓrPJ | |T(k) |ΓsPJ

′⟩
to terms involving single-particle orbitals as [14, p. 4]

⟨ΓrPJ | |T(k) |ΓsPJ
′⟩ =

∑
a,b

dkab(rs) ⟨naκa| |t(k)| |naκa⟩ .
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The single-particle matrix elements can in turn be factorized into a reduced
angular matrix element and a radial integral [14, p. 4]

⟨naκa| |t(1)| |nbκb⟩ = −α(κa + κb) ⟨−κa| |C(1)| |κb⟩ [r−2]naκanbκb
,

where naκa etc. are relativistic subshells and

[r−2]naκanbκb
=

∫ ∞

o

r−2
[
Pnaκa(r)Qnbκb

(r) +Qnaκa(r)Pnbκb

]
dr.

4.2 Hyperfine Anomaly

In reality the nucleus has a finite extent, which will lead to a different value
for the calculated hyperfine interaction constant when compared to the value
calculated in the point nucleus approximation. The difference is known as the
hyperfine anomaly, and is made up of two parts.

4.2.1 Breit-Rosenthal Effect

The first part is caused by the deviation of the nuclear charge distribution from
the point charge approximation. A nuclear model with an extended charge
distribution will lead to a different calculated A-value than one with a nuclear
point charge model if electrons penetrate the extended nuclear volume. The
difference is called the Breit-Rosenthal (BR) effect, and is parameterized by the
Breit-Rosenthal correction ϵBR defined by the relation

A = Ap(1 + ϵBR),

where Ap is the constant for a point nuclear model. s and p1/2 electrons
have non-zero probability densities at the location of the nucleus, and are there-
fore expected to be affected by the distribution of charge in the nucleus. Other
electrons may also, due to electron-electron interactions, have a non-zero prob-
ability density at the nucleus [16, p. 2]. The BR-effect is often negligible, but
can be significant for large Z (∼ 20% for Z = 90 [2, p. 12]).

4.2.2 Bohr-Weisskopf Effect

The deviation of the magnetic moment from a point dipole approximation may
also affect the calculated value of A if electrons overlap with the distribution
of magnetization. The result of this is the Bohr-Weisskopf (BW) effect param-
eterized by ϵBW , which gives the deviation in the magnetic dipole hyperfine
interaction constant for an extended magnetisation nuclear model, compared to
that of a point dipole nuclear model. The hyperfine structure constant is then

A = Ap.d.(1 + ϵBW ),
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where Ap.d. is the hyperfine structure constant for a nuclear model with a
magnetic point dipole and a finite charge distribution. The effect is thus depen-
dent on both electronic and nuclear properties, i.e. the electronic probability
densities inside the nucleus and the distribution of nuclear magnetisation. This
effect can be used to obtain information about the distribution of magnetisation
in the nucleus [17, p. 4].

4.2.3 Differential Hyperfine Anomaly

Putting both the contributions together yields [16, p. 2]

A = Ap(1 + ϵBW )(1 + ϵBR),

where A is the experimental value of the hfs constant. The electronic wave
functions in complex atoms cannot be calculated with sufficient precision to
determine ϵBW directly [17, p. 4]. It is however possible to determine the
difference in ϵBW between two isotopes, the differential hyperfine anomaly [17,
p. 4]. Taking the ratio between two isotopes cancels Ap and yields [16, p. 2]

A1

A2
=
g
(1)
I

g
(2)
I

[1 + ϵ
(1)
BW ][1 + ϵ

(1)
BR]

[1 + ϵ
(2)
BW ][1 + ϵ

(2)
BR]

ϵ≪1
≈

g
(1)
I

g
(2)
I

[1 + ϵ
(1)
BW − ϵ

(2)
BW ][1 + ϵ

(1)
BR − ϵ

(2)
BR]

≡
g
(1)
I

g
(2)
I

[1 +1 ∆2
BW ][1 +1 ∆2

BR] ≡
g
(1)
I

g
(2)
I

[1 +1 ∆2],

where 1∆2 is the differential hyperfine anomaly between isotope 1 and 2,
divided into the BR- and BW-contributions 1∆2

BR and 1∆2
BW , respectively.
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Chapter 5

General Relativistic Atomic
Structure Package 2018

The General Relativistic Atomic Structure Package 2018 (GRASP2018) [5] is
a program package developed for performing calculations in relativistic atomic
structure. It enables calculations of atomic properties such as energy levels,
transition probabilities, oscillator strengths, lifetimes and hyperfine structure.

5.1 Defining the Nucleus

There are multiple models for the nuclear charge distribution used in atomic
structure computations. The simplest is a point charge model, where the nuclear
charge is concentrated at a single point at the center of the atom. This model
is inaccurate for complex atomic systems, but is frequently used for simple
systems, or as a starting point for more advanced calculations. Another model
is the uniform distribution model which takes into account the finite size of
the nucleus, which affects the behavior of the electronic system if electrons
penetrate the nuclear volume. This is particularly relevant in heavy elements
and high-energy experiments.

In GRASP2018 the nuclear charge distribution is modelled by a two-parameter
Fermi distribution, which has a finite size and a smooth density profile. It is
more advanced than the uniform distribution model in that it accounts for the
nuclear charge distribution having a gradual transition from the central region
to the surface, which gives a realistic description of the nuclear distribution [15,
p. 5]. The Fermi charge density is given by

ρ(r) =
ρf

1 + e(r−c)/a
,

where c is the half-density radius such that ρ(c) = 1
2ρ(0) and a is the dif-

fuseness parameter related to the skin thickness t by t = a · 4ln3 [15, p. 5].
The skin thickness is the width over which the charge density drops from 90%
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to 10% of the central value ρ(0). These parameters may be experimentally de-
termined, for example by fitting to scattering data, and they give the Fermi
model a more flexible representation of the nuclear charge distribution than the
uniform distribution model.

Experiments indicate a skin thickness of about t = 2.3 fm for most nuclei [15,
p. 5], which is also the default value for all nuclei in GRASP2018. The program
rnucleus, used to define the nuclear model, does however allow for revision of
the root mean squared radius R, which alters the half-density radius c in the
model, and the skin thickness t, which alters the diffuseness parameter a. It is
also possible to edit the output file isodata directly, and alter either of the two
Fermi parameters c and a directly.

The spherically symmetric charge distribution of the nucleus simplifies cal-
culations of the electronic wave functions. If necessary, deformations of the
nucleus can be accounted for by introducing an electric quadrupole moment,
which describes the first-order polarization of the charge distribution. Higher-
order multipole moments, such as the octupole moment, can also be used to
characterize higher-order deformations.

In GRASP2018, the magnetic moment of the nucleus is modelled as a mag-
netic point dipole at the origin.

The nuclear properties necessarily input by the user are the atomic number
Z, mass number A, spin I, dipole moment µ and quadrupole moment Q.

5.2 Generating the CSF basis for the ASF

The CSF basis is generated with the active set approach, described in the
GRASP2018 manual [4, p. 40-41], where excitations from a reference state is
done within a one-electron orbital basis. The reference is made up of important,
strongly interacting CSFs (multireference), which includes the configurations of
the targeted states, and may include other important configurations. The mul-
tireference contains only orbitals occupied by electrons, so-called spectroscopic
orbitals, while the orbitals used for substitutions are called virtual orbitals. The
latter are also referred to as correlation orbitals, as they are used to determine
correlation between electron positions. CSFs describing electron correlation
are created by substituting electron orbitals in the multireference with virtual
orbitals corresponding to excited electrons. Equivalently, the orbital in the mul-
tireference is said to be excited to the virtual orbital. The spectroscopic orbitals
are separated into core subshells and peel subshells, where core subshells are re-
quired to be fully occupied in all CSFs and the peel subshells may be allowed
substitutions from virtual orbitals. The orbital set comprising the spectroscopic
orbitals open for substitutions plus the virtual orbitals used as substitutions is
called the active set.

A series of runs may be done where the active set is systematically increased,
to achieve convergence of the expectation values. CSFs with single (S) and dou-
ble (D) substitutions constitute the most important part of the ASF, while
CSFs with triple (T) or more substitutions correspond to higher order correc-
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tions since the DC Hamiltonian consists of one- and two-particle operators,
resulting in Hamiltonian matrix elements of zero with the CSF generated by T
or more substitutions.

The list of CSFs from which the ASF is constructed is created with the
program rcsfgenerate. This program constructs all CSFs with the same parity
and total angular momentum as the reference CSF, within a set of specified rules.
These rules include which of the spectroscopic orbitals are active, meaning are
allowed orbital replacements from virtual orbitals to form new CSFs, and the
maximum number of orbital replacements allowed. Orbitals may also be set
to minimum occupation such that all CSFs generated contain the minimum or
more electrons in the given orbital.

Not all the generated CSFs interact, meaning have non-zero Hamiltonian
matrix elements, with the CSFs in the multireference. These can without much
loss of accuracy, be removed from the expansion [5, p. 42]. This removal is done
with the program rcsfinteract.

5.3 Optimizing the Wave Function

Calculation of wave functions is a multi-step procedure. Given the CSF basis
the ASF is optimized using first the MCDHF method and then (optionally)
the RCI method. The first step is calculation of the spin-angular coefficients,
done by the program rangular. The coefficients are stored in files read by the
program rmcdhf, which carries out the scf procedure. Also taken as input are
initial estimates of the radial orbitals, produced by the rwfnestimate program.
This uses the nuclear model and the given CSFs to calculate the radial functions
based on either the Thomas-Fermi (TF) approximation or screened hydrogenic
(SH) functions. Converted non-relativistic Hartree-Fock radial orbitals or radial
orbitals from a previous run may also be used. The final radial orbitals are
obtained when the solution converges to some threshold, which is calculated
as a weighted sum over changes in the radial orbitals. rmcdhf outputs the
optimized radial functions and mixing coefficients. The file with the output
radial functions, rwfn.out, is updated for each iteration such that if a run fails
one can start over from the previous iteration by copying the output file to
input with the command cp rwfn.out rwfn.inp. In the end the rci program may
be run to adjust the mixing coefficients while keeping the orbital basis fixed,
accounting for Breit and QED corrections. rci creates a restart file called rci.res,
such that if a run fails one can restart from the point of failure by running rci
with non-default settings.

5.4 Computing Observables

Once the ASF is optimized any observable can be calculated from it. For ex-
ample, the rhfs program calculates the magnetic dipole and electric quadrupole
hyperfine structure constants. Computations of the hyperfine structure con-
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Figure 5.1: A typical sequence of programs, ending with a calculation of the
hyperfine structure constant A. Arrows indicate that output files from one
subprogram is taken as input by another.

stants are done in first order perturbation theory [13, p. 5], where the zero
order wave functions are obtained with the Fermi distribution. The flowchart
in figure 5.1 gives an overview of a typical sequence of programs, ending in a
calculation of the hyperfine structure constant A.

31



Chapter 6

Computations on 207Pb

6.1 Changing Parameters in GRASP2018

Certain parameters in GRASP2018 can be altered by the user. For example,
the radial functions Pnκ and Qnκ are defined on a grid [13, p. 4]

ri =
A

Z

(
eB(i−1) − 1

)
, i = 1, ...,NNNP,

where as per the manual [4, p. 20-21], it is sometimes necessary to increase
the number of grid points for neutral heavy to super heavy elements. This may
be useful for hyperfine structure calculations, as more grid points close to the
nucleus improves the resolution of electron/nucleus overlap. No recommended
parameter values could be found for Pb, so the values recommended by Jönsson
et al. [12, p. 3] for Hg were taken as a starting point. This meant the default
number of grid points, 590 was changed to 2990, and the grid step size was
changed to H = 10−2. There was also a recommended value for the parameter
RNT, which is further divided by Z, such that the recommended value for Hg,
RNT = 10−6, divided by Z = 82 for Pb yielded roughly the employed value RNT
= 1.2 × 10−8. All the custom parameters are given in Table 6.1. The custom
grid was used for most of the calculations, although some calculations were done
with the default grid to test the necessity of utilizing the more computationally
expensive custom grid for hyperfine anomaly calculations (section 7.4).

Parameter Description Default Value Custom Value
NNNP maximum number of grid points 590 2990

H grid step size 2.0× 10−2 1.0× 10−2

RNT(207Pb) 1st non-zero grid point 2.439× 10−8 1.2× 10−8

Table 6.1: Parameters changed in the GRASP2018 Package.
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6.2 Nuclear Parameters

For computations on 207Pb the default skin thickness and rms radius were used.
These and other experimental values used to define the nuclear parameters are
given in table 6.2. Moreover, figure 6.1 shows the normalized Fermi distribution
ρ(r)/ρf for the 207Pb nuclear model as defined by these parameters.

Figure 6.1: Fermi distribution with half-density radius c and skin thickness t
for the nuclear model of 207Pb.

Moreover, experimentally obtained values of the hyperfine structure constant
for the states 6p2 3P1,

3 P2 and 1D2 and 6p7s 3P1 in 207Pb are given in table 6.3.

Z A R t I m µI

[fm] [fm] [h̄] [amu] [µN ]
82 207 5.4943(14) [1] 2.3 [15] 1/2 [18] 206.975896(13)[18] 0.5925839(9)[18]

Table 6.2: Experimental data used to define the nuclear model of 207Pb. R is
the rms charge radius, t is the skin thickness, I is the angular momentum and
µI is the magnetic moment.

A(6p2 3P1) A(6p2 3P2) A(6p2 1D2) A(6p7s 3P1)
MHz MHz MHz MHz

-2390.976(2) 2602.881(2) 609.818(8) 8802.0(1.6)

Table 6.3: Experimental values of the hyperfine structure constant for the states
6p2 3P1,

3 P2 and 1D2 and 6p7s 3P1 in 207Pb, taken from Persson [17].
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6.3 Obtaining Orbitals

Optimizing all radial orbitals together is desirable, but often not possible. In-
stead, an approach described in the GRASP2018 manual [4, p. 34] was used.
Initially the spectroscopic orbitals were optimized and kept frozen in all further
calculations. Virtual orbitals were then added and optimized in a layer by layer
fashion, where each newly added layer was optimized while keeping the previous
layers fixed.

The default threshold value of 1.56× 10−8 for convergence in the scf proce-
dure was used in all the computations.

6.3.1 Spectroscopic Orbitals

Computations were mostly done with the even parity 6p2 and odd parity 6p7s
configurations together, although some single configuration calculations were
also performed. When doing both configurations together and using the cus-
tom grid, all spectroscopic orbitals immediately achieved convergence together.
However, slight convergence problems were encountered when using the default
grid. More serious convergence problems occurred in the single-configuration
calculations, especially for the 6p7s 3P1 state.

When the spectroscopic orbitals did not achieve convergence together, sev-
eral techniques described in the manual [4, c. 13] were employed. First starting
with the inner core and gradually building the core orbitals was attempted. This
is the preferred method for converging the spectroscopic orbitals [4, p. 271], and
was mostly successful, except for the 6s and 7s orbitals. Even with the other
spectroscopic orbitals optimized together, these still did not converge when var-
ied alone. Therefore, the additional technique of increasing the nuclear charge
[4, p. 284] was used. The already optimized orbitals were kept fixed as 6s and 7s
were optimized for Z = 82.5, and then in multiple runs as the charge was grad-
ually reduced back to Z = 82. Thereafter, all spectroscopic orbitals achieved
convergence together.

6.3.2 Correlation Orbitals

The virtual orbitals were introduced in a layer by layer fashion as described in
the manual [4, p. 33-34]. Here a virtual layer means a set of orbitals where the
angular quantum number κ is different for every orbital. The orbitals included
in each layer are given in table 6.5. After convergence of the spectroscopic
orbitals, each virtual layer was introduced in turn and all orbitals in the each
layer optimized together. The previously optimized layers were then kept fixed,
while the next layer was introduced and optimized. Up to five (usually four)
virtual layers were included in the calculations. The TF approximation was
used to give initial estimates of the radial orbitals when possible. Screened
hydrogenic functions were used only for the 5f orbital, since the program failed
to generate a TF function for this orbital.
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The CSF expansions were generated with the rcsfgenerate program. Re-
moval of non-interacting CSFs using rcsfinteract was done for all expansions
generated with S and SD substitutions. However, reduction was not done for
expansions generated by allowing SDT substitutions, since all CSFs correspond-
ing to T excitations are then removed. This is because the DC Hamiltonian is
a sum over one- and two particle operators, and as such all CSFs resulting from
more than two orbital replacements will have Hamiltonian matrix elements of
zero with the CSF it was generated from. Therefore, reduction with rcsfinteract
removes all CSFs corresponding to T excitations.

After optimization of each virtual layer, the RCI procedure was done where
the transverse photon interaction, vacuum polarization and self energy correc-
tions were included in the calculations. The program calculates the transverse
photon interaction in the low frequency limit by multiplying with a scale fac-
tor, which was set to 10−6, a commonly applied value [5, p. 35]. Self energy
corrections were included for all orbitals with principal quantum number n ≤ 6.

6.4 Single Substitutions

CSFs resulting from S substitutions may be classified as either valence (v) corre-
lation or core (c) correlation based on whether the substitution was made from
a valence orbital or a core orbital. S substitutions from a core subshell corre-
spond to polarization of the core caused by the electrostatic interaction with
valence electrons [7, p. 171]. In the CF approximation closed subshells in the
inner core contribute zero to the hfs, since they have a spherically symmetric
charge distribution and thus create net zero electric and magnetic field at the
nucleus [7, p. 171]. Also closed s-subshells make zero contribution, because the
two electrons have equal spin densities with opposite directions (ms = ± 1

2 ).
However, the closed subshells can stongly affect the hyperfine structure when
polarized through Coulomb interaction with open subshells [7, p. 171]. The
exchange contribution to the interaction is attractive for core- and valence elec-
trons with the same spin orientation, which reduces the repulsion and pulls the
core electron towards the valence subshell. Polarization of s-subshells is partic-
ularly important, because when the two s-electrons have different spin densities
in the nuclear volume, a contact interaction is induced. Here a tiny distortion
can cause a major effect due to the high densities of inner s-electrons at the
nucleus [7, p. 171].

Since the hyperfine interaction is described by one-particle operators, only
CSFs corresponding to S substitutions need to be included in the ASF expan-
sion to first approximation [7, p. 171]. Therefore, the calculations based on S
substitutions were expected to capture the bulk of the hyperfine structure. S
substitutions were allowed to four layers of virtual orbitals, from all subshells
of the s- and p-symmetries excluding 1s. In the initial run, substitutions were
allowed from the valence subshells 7s, 6p and 6s, before the core subshells were
introduced in subsequent runs, in the order 5p, 5s,...,2p, 2s. For each new set of
active peel subshells calculations were done to one,...,four virtual layers. After
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optimization of each virtual layer, the RCI was done and the hyperfine struc-
ture constants calculated. The results are presented in figure 6.2. The final
configuration was used as the basis for a calculation of the BR-effect (chapter
7).

Figure 6.2: Unrestricted S substitutions allowed. Each data series correspond to
one set of active peel subshells and the four data points in each series correspond
to the 1st, ..., 4th virtual layer. The horizontal black lines in each graph indicate
the experimental value of A for the given state, and error bars of ±5%.

The runs based on S substitutions achieved convergence toward the exper-
imental A-value for all states, as the active set was increased. In the end the
results were excellent in 6p2 3P1 and 6p2 1D2, good in 6p7s3P1 and somewhat off
in 6p2 3P2. This indicates that correlation beyond the first approximation repre-
sented by S substitutions is more important in the latter state. For all four states
the final expansion, generated by allowing S excitations from 7s6sp5sp4sp3sp2sp
to four virtual layers gave the most accurate calculated A-value. The deviation
from the experimental value of A for all states is given in table 6.4.

Moreover, table 6.5 shows the orbitals included in each virtual layer, plus
the change in the calculated value of A after introduction of each virtual layer
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State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δA/Aexp[%] 0.306 -7.52 -0.00889 -1.61

Table 6.4: Error in A for the expansion generated by S excitations from
7s6sp5sp4sp3sp2sp to four virtual layers, compared to the experimentally mea-
sured value Aexp. Here δA/Aexp ≡ (Acalc −Aexp)/Aexp.

with the maximum set of active peel subshells.

Virtual Orbitals δA/A[%] δA/A[%] δA/A[%] δA/A[%]
layer 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

1st 8s 7p 6d 5f 34.34 -16.36 -47.38 8.247
2nd 9s 8p 7d 6f 10.24 0.5616 -4.878 4.351
3rd 10s 9p 8d 7f 0.8598 0.6399 -0.7323 0.1965
4th 11s 10p 9d 8f -1.548 1.070 2.239 0.1512

Table 6.5: Orbitals included in the different virtual layers. Changes calculated
relative to the value obtained at the previous layer, with S-substitutions from
7s6sp5sp4sp3sp2sp.

6.5 Double Substitutions

The correlation effects represented by CSFs generated from D substitutions are
categorized in a few ways. Valence-valence (vv) correlation means that both
substitutions are made from valence orbitals. The valence orbitals have the
least energy difference from the virtual orbitals, and are therefore expected to
contribute significantly to the improvement of the wave function. Core-core
(cc) correlation means that both substitutions are made from a core orbital.
These account for interactions between electrons in the tightly bound core,
which is particularly important in heavy atoms with many electrons, where the
core electrons are tightly packed. Core-valence (cv) correlation means that one
substitution is made from a core orbital and one from a valence orbital. These
CSFs represent polarization of the electron core caused by the valence electrons.
Deep core-valence correlation is important for calculations of hyperfine structure
[4, p. 42].

The first CSF expansions were generated with all v and vv substitutions
from the 7s, 6p and 6s valence orbitals to one,..., four layers of virtual orbitals.
Thereafter, one core subshell at the time was opened for c, cv and cc substitu-
tions, in the sequence 5p, 5s,...,3p. The RCI was performed and the hyperfine
structure constants calculated after optimization of each virtual layer. The de-
velopment of the calculated A values as the active set increases is given in figure
6.3. The figure also shows a single series based on SDT substitutions.

The calculations based on unrestricted SD substitutions lead to convergence
towards the experimental value and yielded quite good results in all states except
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Virtual Orbitals δA/A[%] δA/A[%] δA/A[%] δA/A[%]
layer 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

1st 8s 7p 6d 5f -42.4916 -8.5830 -14.0986 7.8321
2nd 9s 8p 7d 6f -0.1156 -2.5155 -18.9882 3.2410
3rd 10s 9p 8d 7f -6.2586 -3.8912 -13.7835 1.3193
4th 11s 10p 9d 8f 1.8021 2.7840 4.1572 -1.1938

Table 6.6: Orbitals included in the different virtual layers. Changes calculated
relative to the value obtained at the previous layer, with SD-excitations from
7s6sp5sp4sp.

6p2 1D2. The error between the experimental and calculated values of A using
the biggest expansion is given in table 6.7.

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δA/Aexp[%] 3.97 -2.65 29.5 -2.23

Table 6.7: Error in A for the expansion generated by unrestricted SD excita-
tions from 7s6sp5sp4sp3p to four virtual layers, compared to the experimentally
measured value Aexp. Here δA/Aexp ≡ (Acalc −Aexp)/Aexp.

In 6p2 1D2 it was clear that SD excitations from core subshells causes an
overestimation of the hyperfine structure which was not caused by S substitu-
tions alone, meaning it is an effect of cv and/or cc correlation. The tendency
is present already from activation of 5s, but here it manages to recover by the
4th virtual layer. It is possible that further virtual layers would have caused
a convergence towards the experimental also with additional peel subshells ac-
tive. It is not known why the problem arises, but it is believed to not be due to
lacking correlation involving peel subshells of the d- and f -symmetries. Runs
were attempted (not presented) where 5d, 4f , 4d and 3d were activated, which
made the problem worse and also lessened results in other states.

That the effect decreases with activation of higher virtual layers may indi-
cate that it is an effect of energy similarity between the core subshell and the
virtual subshell to which the excitation is made. The extent of mixing between
different configurations depends on their energy differences. Near-degeneracy
effects occur when two orbitals have similar energies, leading to strong electron-
electron interactions. The cv correlation may then cause the valence subshell to
contract excessively which overestimates the hyperfine structure.

In terms of accuracy, only in 6p2 3P2 did the calculations based on SD sub-
stitutions outdo the calculations based on S substitutions, strenghtening the
belief that vv and cv correlation were of importance in this state. The poorer
results in the other states is believed to be because with only S substitutions,
correlation deeper in the electron core was considered.
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6.6 Triple Substitutions

For the calculations based on allowing unrestricted SDT substitutions, only the
valence 7s, 6p and 6s orbitals were kept active because the number of CSFs in
the expansion increases very rapidly when T substitutions are allowed. Thus, it
was deemed not feasible to active core subshells in this case. Therefore, all CSFs
in the expansions corresponded to replacements of three valence orbitals with
virtual orbitals, which may be classified as valence-valence-valence (vvv) corre-
lation. The 7s, 6p and 6s orbitals were kept active and substitutions allowed to
one,...,five virtual layers. Here the extra (5th) virtual layer {12s, 11p, 10d, 8f},
not used in any other calculation, was added. After optimization of each virtual
layer, the RCI was performed and the hyperfine structure constants calculated.
The results are included as a single series in figure 6.3.

Figure 6.3: Unrestricted SD substitutions allowed, except one series with un-
restricted SDT substitutions. Each data series correspond to one set of active
peel subshells and the four(five) data points in each series correspond to the
1st, ..., 4th(5th) virtual layer. The horizontal black lines in each graph indicate
the experimental value of A for the given state, and error bars of ±5%.
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It is clear that accounting for vvv correlation did not alter the calculated A
values a lot, when compared to the calculations involving only vv correlation.
This is in agreement with expectations based on theory, as CSFs generated by T
substitutions correspond to higher order corrections. Overall, the calculations
based on SDT substitutions gave quite poor results, indicating that all core
polarization should not be neglected. Figure 6.8 shows the error between the
calculated A-values for the expansion generated by SDT excitations from 7s6sp
to five virtual layers, relative to the experimental value.

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δA/Aexp[%] -3.59 -19.2 -20.9 -8.18

Table 6.8: Error in A for the expansion generated by SDT excitations from
7s6sp to five virtual layers, compared to the experimentally measured value
Aexp. Here δA/Aexp ≡ (Acalc −Aexp)/Aexp.

6.7 Optimizing Performance

Computations were done on the authors PC and on the Idun cluster [19], us-
ing both serial and mpi versions of the GRASP2018 software. With parallel
computing it was possible to run on anywhere between one and 18 cores at one
time. It was found that read speed bottlenecks often slowed the run-time such
that adding more cores actually decreased performance. This was especially
bad in the rmcdhf program where it was found that for the default grid four
cores yielded the best performance in many cases. The custom grid appeared
to make the read-bottlenecks even worse to the point where the serial version of
rmcdhf was the quickest. These issues were not as significant in the rci program
where typically four to 10 cores were used. The rangular program had no issues
with read-bottlenecks, but was nevertheless limited in that it needs to run on
the same number of cores as rmcdhf. Fortunately, the spin-angular coefficients
are independent of the nuclear rms radius R and skin thickness t, such that
rangular must only be ran once for each CSF expansion when doing calculation
of the BR-effect (chapter 7).
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Chapter 7

Parametric Study of the
Breit-Rosenthal Effect in
Pb I

7.1 Variation in Radius

Experimental values of the rms radii R(A) of lead isotopes were taken from
Angeli and Marinova [1], who lists values for all isotopes with A = 182, ..., 214.
Beyond this an extrapolation was done to cover the entire isotope range A =
178, ..., 220. The obtained range for R(A) corresponded to a range of deviation
in the mean squared radius

〈
r2n
〉
from the 207Pb reference isotope of between

−1.466(fm)2 and +0.779(fm)2, as calculated with the relation [1, p. 2]

R2(A) = R2(A′) + δ
〈
r2n
〉A′A

.

This range was divided into 10 roughly equally spaced points for which
the hfs constant was calculated. For each calculation, all orbitals were opti-
mized through MCDHF calculations using the new nuclear parameters. Initial
estimates of radial orbitals were given by TF functions at every step. After
optimization of each virtual layer, the RCI was done and the hfs constant cal-
culated. The obtained A for every value of δ

〈
r2n
〉
was compared to the value A0

calculated with the reference parameters. With the obtained values of δA/A0,
the BR effect was approximated by the proportionality constant λ in the linear
fit λ⟨r2n⟩.

Such a parametric study of the BR effect was carried out for multiple CSF
expansions. These expansions were generated with the following rules:

1. Unrestricted SD excitations allowed from 7s6sp.
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2. Unrestricted SDT excitations allowed from 7s6sp.

3. Unrestricted SD excitations allowed from 7s6sp5sp.

4. Unrestricted SD excitations allowed from 7s6sp5sp4sp.

5. Unrestricted S excitations allowed from 7s6sp5sp4sp3sp2sp.

For each of these sets of active peel subshells four CSF expansions were cre-
ated, allowing substitutions to one, two, three and four virtual layers, respec-
tively. This yielded a total of 20 CSF expansions for which the proportionality
constant λ in the linear fit λ⟨r2n⟩ for the BR effect was calculated in the man-
ner outlined. For all expansions, λ was obtained simultaneously for all states.
This was done using linear regression with a no-intercept model, forcing the fit
through the origin. In this model, λ was calculated as

λ =

∑
i⟨r2n⟩i

(
δA
A0

)
i∑

i⟨r2n⟩2i
,

where the sum is over the values corresponding to the 10 sets of nuclear
parameters. The corresponding coefficients of correlation are

R2
0 = λ2

∑
i⟨r2n⟩2i∑
i

(
δA
A0

)2
i

.

These coefficients indicate how effectively the data points are approximated
by the linear fit, taking values between 0 and 1, where closer to 1 means bet-
ter approximation. The coefficients of correlation can thus be interpreted as
indicating how well the BR effect is represented by λ⟨r2n⟩.

As an example, the data for the expansion created by allowing SD substi-
tutions from the 7s6sp5sp subshells to four virtual layers is given in table 7.1.
The same data is represented graphically in figure 7.1, along side the calculated
linear fit for each state.

Furthermore, the proportionality constant λ in the linear fit λ⟨r2n⟩ for the
BR effect, as calculated with all 20 expansions, are shown graphically in figure
7.2. This demonstrates how the calculated proportionality constants develop
as the active set is increased. In addition, the value of λ calculated with only
the multireference CSFs is shown. All calculations were done with the extended
grid. For all the obtained λ-values, the corresponding coefficient of correlation
was R2

0 > 0.99 with a single exception being that the calculation based on SDT
excitations from 7s6sp to four virtual layers having R2

0 ≈ 0.84. All data is given
in the Appendix.
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δ
〈
r2n
〉

R δA/A0[%] δA/A0[%] δA/A0[%] δA/A0[%]

[fm2] [fm] 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

-1.466 5.3592 0.1234 0.008871 -0.1261 0.09691
-1.224 5.3817 0.1028 0.007371 -0.1051 0.08070
-0.981 5.4043 0.08209 0.005884 -0.08390 0.06445
-0.738 5.4268 0.06151 0.004398 -0.06288 0.04829
-0.493 5.4493 0.04098 0.002935 -0.04189 0.03217
-0.247 5.4718 0.02047 0.001465 -0.02093 0.01607

0 5.4943 0 0 0 0
0.259 5.5178 -0.02135 -0.001527 0.02183 -0.01676
0.518 5.5413 -0.04267 -0.003050 0.04362 -0.03348
0.779 5.5648 -0.06395 -0.004568 0.06539 -0.05019

Table 7.1: Relative change in the hfs constant δA/A0 under variation in the
mean squared radius

〈
r2n
〉
wrt the reference nucleus 207Pb, calculated with the

expansion created by allowing SD substitutions from the 7s6sp5sp subshells to
four virtual layers.

7.2 Variation in Skin Thickness

Varying the nuclear skin thickness t, and consequently the diffuseness parameter
a, alters the shape and slope of the charge distribution near the surface of the
nucleus. This corresponds to varying the higher order radial moments of the
nuclear charge distribution, beyond the rms radius R. Such calculations give
an indication of how much of the BR effect results from higher order radial
moments, and whether the linear fit is valid for the different isotopes. In order
to maintain R when varying the skin thickness, the half-density radius c is also
altered to offset the change.

Calculations varying the skin thickness were done jointly for all states, using
the extended grid. The expansion based on S excitations from 7s6sp5sp4sp3sp2sp
to four virtual layers was used, and the nuclear skin thickness was varied by
±0.1fm and ±0.2fm from the default value 2.3fm. These deviations correspond
to one and two standard deviations in the skin thickness obtained for atoms
with nucleon number A > 16 by fitting to scattering data [3, p. 31-36].

Figure 7.3 shows the relative change in the calculated hfs constant A for
all states, as the skin thickness is varied while keeping the rms radius constant
at R = 5.4943fm. Similarly to the proportionality constant λ for variation
in radius, the proportionality constant τ in the linear fit τδt is introduced for
the skin thickness. The linear fit is done with the same no-intercept model
as for λ. In units of %fm−1, the values τ(6p2 3P1) = 0.0351, τ(6p2 3P2) =
0.00327, τ(6p2 1D2) = −0.0375 and τ(6p7s 3P1) = 0.0278 were obtained. The
corresponding coefficients of correlation were all > 0.998.

Moreover, for each of the given t-values, a full calculation of the BR effect,
as represented by the linear fit λ⟨r2n⟩, was done in the manner described in
section 7.1. The values of λ obtained for the different skin thicknesses and the
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Figure 7.1: Relative change in the hfs constant δA/A0 against deviation in the
mean squared radius of the nuclear Fermi charge distribution δ

〈
r2n
〉
from the

reference nucleus with hfs constant A0. Based on the expansion generated with
SD excitations from the 7s6sp5sp subshells to four virtual layers. The red line
represents the linear fit λδ

〈
r2n
〉
.

corresponding deviations from the reference model with t = 2.3fm are presented
in table 7.2.

7.3 Even and Odd Parity

There was some worry that doing calculations with both the even parity 6p2 and
odd parity 6p7s configurations at the same time would lead to error. Therefore,
some calculations were done both with the even parity states alone, and even
and odd parity states together to compare results. These calculations were
based on SD excitations from 6sp and 6sp5sp to one,...,four virtual layers. The
difference in the calculated λ-values for the states in the 6p2 configuration are
given in table 7.3.

44



Figure 7.2: The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR
effect. Each data series correspond to one set of active peel subshells and the
four data points in each series correspond to one,...,four virtual layers. The
horisontal black line in each plot indicates the value of λ calculated with only
the multireference CSFs.

7.4 Default Grid

The extended grid recommended for heavy elements led to significantly increased
demand for computational resources. It was therefore decided to run a compu-
tation with the default grid and compare results to a corresponding computation
done with the extended grid, in order to assess the necessity of using the com-
putationally expensive extended grid in hyperfine anomaly calculations. Sin-
gle configuration calculations for 6p2 allowing SD excitations from the 6sp5sp-
subshells to one,...,four virtual layers were done with both the default and the
extended grid. The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR
effect was calculated for each of the virtual layers and results compared. The
results are given in table 7.4. The corresponding coefficients of correlation were
all > 0.986, and often > 0.999.
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Figure 7.3: Relative change in the hfs constant δA/A0 against variation δt in the
skin thickness of the nuclear Fermi charge distribution from the reference nucleus
with hfs constant A0, based on the expansion generated with S excitations from
7s6sp5sp4sp3sp2sp to four virtual layers. The straight line is the linear fit τδt.

6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δt λ δλ/λ0 λ δλ/λ0 λ δλ/λ0 λ δλ/λ0
[fm] [% fm−2] [%] [% fm−2] [%] [% fm−2] [%] [% fm−2] [%]
-0.2 -0.08295 -0.3692 -0.005156 3.600 0.09174 -0.5547 -0.06368 -0.1174
-0.1 -0.08317 -0.1013 -0.004969 -0.1632 0.09216 -0.1049 -0.06368 -0.1073
0 -0.08326 0 -0.004977 0 0.09225 0 -0.06375 0
0.1 -0.08335 0.1072 -0.004985 0.1686 0.09235 0.1109 -0.06382 0.1124
0.2 -0.08344 0.2203 -0.004994 0.3434 0.09246 0.2280 -0.06390 0.2300

Table 7.2: The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR
effect, calculated for deviations in skin thickness δt from the reference model
(t = 2.3fm).

7.5 Discussion

7.5.1 Variation in Radius

The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR effect was calcu-
lated for 20 CSF expansions of various sizes. For the 6p23P1 and 6p7s3P1 states,46



SD substitutions from 6sp

State ∆λ(1)[%] ∆λ(2)[%] ∆λ(3)[%] ∆λ(4)[%]
6p2 3P1 -0.631283 -0.688693 -0.769825 -0.343677
6p2 3P2 7.73631 14.83573 32.2143 4.04054
6p2 1D2 -9.31160 -4.63566 -6.17307 -2.44642

SD substitutions from 6sp5sp

State ∆λ(1)[%] ∆λ(2)[%] ∆λ(3)[%] ∆λ(4)[%]
6p2 3P1 0.614040 0.629629 -0.289138 0.149315
6p2 3P2 -436.589 -2.33977 5.42864 1.78836
6p2 1D2 9.65980 -10.3772 -10.9288 -4.91634

Table 7.3: Differences in the calculated proportionality constant λ in the lin-
ear fit λ⟨r2n⟩ for the BR effect for a multiconfiguration calculation with both
6p2 and 6p7s, compared to a single configuration calculation with 6p2. Here
∆λ ≡ [λ(Multi)− λ(Single)]/λ(Single), and λ(N) is the value calculated for the
expansion based on allowing excitations to N virtual layers.

State λ(1)[% fm−2] λ(2)[% fm−2] λ(3)[% fm−2] λ(4)[% fm−2]

Extended Grid
6p2 3P1 -0.08728 -0.08198 -0.08446 -0.08325
6p2 3P2 -0.002192 -0.006498 -0.003730 -0.005965
6p2 1D2 0.05575 0.07774 0.09603 0.09028

Default Grid
6p2 3P1 -0.08728 -0.08198 -0.08445 -0.08351
6p2 3P2 -0.002196 -0.006493 -0.003641 -0.005892
6p2 1D2 0.05574 0.07774 0.09606 0.08991

Difference in λ (extended to default grid)

δλ(1)[%] δλ(2)[%] δλ(3)[%] δλ(4)[%]
6p2 3P1 -0.007206 0.005355 -0.01131 0.3219
6p2 3P2 0.1948 -0.08572 -2.384 -1.218
6p2 1D2 -0.01643 0.004760 0.03460 -0.4029

Table 7.4: The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR effect,
calculated with the default and extended grid, and the difference δλ between
the grids. Based on the expansions generated by allowing SD excitations from
6sp5sp to one,...,four virtual layers.

the 20 obtained values of λ in units of %fm−2 were all ∈ (−0.08781,−0.07859),
and ∈ (−0.07231,−0.06242) respectively, with no two values having relative dif-
ference of more than ≈ 11% and ≈ 16%, respectively. Including only the values
calculated at the 4th virtual layer in each series, these intervals are reduced to
(−0.08672,−0.08252) and (−0.06803,−0.06375) with no relative error of greater
than ≈ 5% and ≈ 7%, respectively. This is considered justified since all corre-
sponding series of A-calculations in the 207Pb reference isotope achieved con-
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vergence towards the experimental value at the 4th virtual layer in both 6p2 3P1

and 6p7s 3P1. Moreover, in both states the expansions including only v, vv and
vvv correlation yielded λ-values stacked at the lower end of the latter intervals,
while the expansions adding c, cv and cc correlation yielded values towards
the upper. Since the latter expansions more accurately reproduced the experi-
mental value of A in the 207Pb reference isotope, it was decided to recommend
values slightly toward the higher end of the intervals as the correct λ-values.
Specifically, λ(6p2 3P1) = −0.083(2)%fm−2 and λ(6p7s 3P1) = −0.065(3)%fm−2

are recommended. The uncertainties are chosen to extend more than twice the
range of the aforementioned λ-values.

Furthermore, in 6p2 3P2 the BR effect was found to be practically non-
existent, albeit with a tendency for a slight negative value. The 20 calculated
values of λ in units of %fm−2 were all ∈ (−0.01119, 0.007393). Every series
did not converge toward the experimental A in the 207Pb reference isotope
for this state as the active set was increased, so putting more weight on the
4th virtual layer is questionable. All the 20 expansions underestimated A in
207Pb, and there was a clear trend observed where the greater the undershoot
of A, the higher the corresponding value of λ. If only the calculated λ-values
based on expansions that yielded a calculated A within ±5% of the experimen-
tal in 207Pb are included, the interval reduces to (−0.1119,−0.006998). Only
three expansions achieved this accuracy and they were based on SD excita-
tions from 6sp5sp4sp to one, two and four virtual layers, respectively. The
series corresponding to SD excitations from 7s6sp5sp and S excitations from
7s6sp5sp4sp3sp2sp also approached the experimental A-value as virtual layers
were added, although not reaching within 5% accuracy. Their corresponding
λ-values also converged towards a similar range. For this reason, the value
λ(6p2 3P2) = −0.009(4)%fm−2 is recommended. Again the uncertainty is cho-
sen to extend twice the interval in question. This is a remarkably low value,
and something that should be investigated in detail. It may indicate that the
hyperfine anomaly due to the BR- and BW-effect is almost zero in 6p2 3P2, since
their behavior is very similar.

In the final state considered, 6p2 1D2, all obtained values of λ were ∈
(0.02907, 0.1220) in units of %fm−2, with the greatest value being over four
times the smallest. Here it is noted that λ takes the ”wrong” sign, compared to
theoretical prediction. These were the most scattered results obtained, incuding
considerable deviation in λ within each series, as virtual layers were added. This
is in accord with 6p2 1D2 being the state with the greatest range of calculated
A-values in the 207Pb reference isotope. For example, only 5 of the 20 obtained
λ-values were based on expansions that yielded a calculated A within ±5% of
the experimental in 207Pb. Including only these 5, the interval reduces substan-
tially to (0.07750, 0.09633). If only those within ±2.5% of the experimental are
included, another two values are excluded and the interval reduces further to
(0.09225, 0.09633). It is also observed that the series with the least deviation
between the 1st, ..., 4th virtual layers, was the one based on allowing S substitu-
tions from 6sp5sp4sp3sp2sp, which was also the series with the most consistently
accurate calculated A-values in the reference isotope. In the series including cv
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and cc correlation there is some indication of convergence towards a value in
the same range, but these results are not conclusive. Here more comprehensive
calculations adding further virtual layers may be done to see if the calculated
λ-values converge. Due to these facts, the value λ(6p2 1D2) = 0.09(2)%fm−2 is
recommended.

In the end, this work strongly indicate that basing calculations of the BR-
correction on an ASF that accurately reproduces the experimentally obtained
value of the hfs constant A in the reference isotope is crucial. This was especially
clear in 6p21D2, where the wast range of obtained λ-values dramatically reduced
when removing expansions corresponding to inaccurate A-values. Moreover,
6p2 3P1 and 6p7s 3P1 had the most consistent calculated A-values near the
experimental value in the 207Pb reference isotope, and also the most consistent
calculated proportionality constant λ. The same behavior is seen within series:
where there was larger changes in the calculated A between virtual layers, there
was larger changes in the calculated λ between virtual layers.

7.5.2 Effect of Expansion Size

Calculations based on several CSF expansions were done in order to gauge the
importance of large CSF expansions in hyperfine anomaly calculations. The
MCDHF method is computationally intensive, particularly for large systems
with many electrons and as such it is of interest whether large, computationally
expensive calculations are necessary.

The smallest expansion used to calculate the proportionality constant λ was
the expansion consisting only of the multireference CSFs. When compared to
the values obtained with electron correlation included, this led to calculated
λ-values way off for all states in the 6p2 configuration, but spot on in the 6p7s
configuration. In addition, for all states in the 6p2 configuration there was
greater variance in the calculated λ-value within each series as the active set
was increased, although there was a tendency for less change at the 4th virtual
layer. To the contrary, in 6p7s 3P1 there were remarkably similar results from
the 1st, ..., 4th virtual layer in all series.

The BR effect is mostly dependent on s and p1/2 orbitals since these are the
only ones with non-zero probability densities at the nucleus, which is required
to affect the BR-correction to first order. The 6p2 configuration is more affected
by electron correlation than 6p7s, because it gets a mixing of CSFs containing
”new” s-electrons, that alter the calculated λ-value. This effect is weaker in
6p7s, since there already is an unpaired s-electron in the outer valence shell,
and the BR effect is unaffected by the principal quantum number n of the s
electron. It may be that an s-electron in the outer valence shell means smaller
CSF expansions are required for calculations of the BR effect. This should
however be studied in detail.

In conclusion, this work does not support the notion that large CSF expan-
sions are necessary in general for calculations of the BR effect, as long as the
calculated hfs constant A in the reference isotope is sufficiently converged to-
wards the experimental value. This is in accord with what Heggset and Persson
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[10] found in Hg. Here two expansions were used to calculate the BR effect
between 199Hg and other isotopes, and small differences in the results between
the minimal and maximum expansions were found.

7.5.3 Variation in Skin Thickness

The largest absolute value of the proportionality constant τ in the linear fit
τδt for variations in the nuclear skin thickness was obtained from τ(6p2 1D2) =
−0.0375%fm−1. This entails an absolute change in the calculated hfs constant
A of 0.00375% for each standard deviation (±0.1fm) in the experimental value
of t. This can be compared to the BR effect using λ(6p2 1D2) = 0.09%fm−2 and
the maximum absolute deviation in mean squared radius for the isotope range,
|δ
〈
r2n
〉
| = 1.466fm2, yielding a deviation of 0.13%. The difference in A caused

by the skin thickness is then 2.8% of the BR effect. Similar calculations for the
other states yield 2.9%, 2.5% and 2.9% of the BR effect, respectively.

Moreover, in the calculations of the BR effect, little impact on the cal-
culated λ-values was observed when varying the skin thickness. Changes of
|δλ/λ0| < 0.56% were obtained for all calculations, with the single exception
of δt = −0.2fm leading to δλ/λ0 = 3.6% in 6p2 3P2. For the four t-values
2.2fm, 2.3fm, 2.4fm and 2.5fm, δλ/λ0 showed nice linearity in t for all states.
However, for the value t = 2.1fm significant deviation was observed (max error
δλ/λ0 = 3.6% in 6p2 3P2). Due to this deviation, the calculation for t = 2.1fm
was ran twice to ensure no user mistake had been made in e.g. input to rnu-
cleus. The identical result was obtained both times and the result is therefore
believed to be correct. It is not known what causes the deviation, but it can be
noted that for t = 2.1fm the coefficients of correlation for 6p2 3P2 and 6p2 1D2

were 0.9850 and 0.9998, while for all other skin-thickness calculations they were
0.9999.

If the values calculated for δt = −0.2fm are excluded, then all calculations led
to deviations of |δλ/λ0| < 0.35%. This is one to two orders of magnitude smaller
than the error in the determination of λ and can reasonably be disregarded.
Even if the results obtained at δt = −0.2fm are correct, the maximum deviation
of 3.6% in 6p2 3P2 is still an order of magnitude smaller than the error in the
determination of λ(6p2 3P2).

All in all the presented work indicates that the skin thickness does not affect
the BR effect a lot, as long as the skin thickness does not vary much between
isotopes, and strengthen the belief that the linear fit λ⟨r2n⟩ represents the BR
effect well, in accord with what Heggset and Persson [10] found in Hg.

7.5.4 Even and Odd Parity

Calculations were done based on SD excitations from 6sp and 6sp5sp to the
1st, ..., 4th virtual layer with even parity (6p2) alone, and even (6p2) and odd
(6p7s) together. Of the eight values of λ obtained for each state, the greatest dif-
ferences between the two calculations were |δλ| ≈ 0.77% in 6p2 3P1, |δλ| ≈ 437%
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in 6p2 3P2 and |δλ| ≈ 11% in 6p2 1D2. Some of the percentage wise deviations
in 6p2 3P2 are very large because of the small absolute value of λ(6p2 3P2).

Overall, the obtained differences were often on the same order as the error
in the determination of λ. This adds an additional source of uncertainty about
the results obtained in this work, which should be kept in mind. Running odd
and even together may be problematic based on these observations, which may
be worth studying further.

7.5.5 Default Grid

One calculation was done based on expansions generated by allowing SD exci-
tations from 6sp5sp to one,...,four virtual layers using both the default and the
custom grid. The differences in the calculated values of the proportionality con-
stant λ in the linear fit λ⟨r2n⟩ for the BR effect between the grids were in most
cases less than 1%, with the greatest difference being 2.38%. These deviations
were one to four orders of magnitude smaller than the error in the determination
of λ discussed in section 7.5.1, indicating that the default grid could have been
used in the presented work without altering the obtained results by much.

However, it is clear that an error of order 1% could be relevant in certain
cases. The great range of deviations obtained (smallest 0.00476% and biggest
2.38%) also makes it plausible that certain systems may experience even greater
error. In the end, these results somewhat weaken the hypothesis that an ex-
tended grid is necessary for hyperfine anomaly calculations in heavy elements,
unless high precision is needed. Choosing between grids ultimately comes down
to the computational resources available and the required precision of the cal-
culations.

7.5.6 Future Study

In the work presented, the most computationally expensive subprogram was in
most cases rmcdhf. The TF-approximation was used to give initial estimates
of the radial orbitals in the scf procedure at every step. Quicker convergence
was achieved by using the radial orbitals obtained for an adjacent value of R
as initial estimates, but this led to unintelligible results where δA/A0 showed
no semblance of linearity in R. This may be due to errors in the wavefunc-
tions, perhaps because the program finds a local minimum. It is not known
whether this is an artifact of the system considered here, or a general problem
in GRASP2018. Further exploration in other systems may be worthwhile as
the potential computational savings are very significant. For example, for the
largest CSF expansion used as basis for a BR-calculation (SD excitations from
7s6sp5sp4sp to four virtual layers), convergence of the 4th virtual layer was
reached after 40 to 43 iterations, for the various nuclear models, when starting
from TF functions. The run-times were then in excess of 34 hours for each data
point. Having to do this once and not ten times would save ≈ 300 hours if the
nine remaining data points converged after two iterations.
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Another way to reduce the computational cost in BR-calculations may be to
reduce the number of data points. The coefficients of correlation were generally
very high (see Appendix A), providing assurance of the strength of the linear
relationship. This indicates that 10 data points were unnecessary in this work,
as removing e.g. every other data point would lead to a very slight modification
of the obtained λ-values.

In the end, a lot of unnecessary calculations were carried out. Many calcu-
lations of the BR effect were done, some of whom provided poor results. More
time ought to have been spent finding expansions that better reproduced the
experimental A-values in the 207Pb reference isotope, rather than doing quite
so many calculations of the BR effect.

WARNING. Just as the CSFs generated by allowing S substitutions repre-
sent polarisation of the CSFs in the multireference, CSFs generate by allowing
SD substitutions represent polarization of the important corresponding to S
substitutions.

WARNING. The series based on SD substitutions from 6sp5sp seemed promis-
ing in 6p21D2, and could perhaps have been extended with further virtual layers.
It is possible that this would have led to even better results.
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Chapter 8

Conclusion

The Breit-Rosenthal (BR) effect between 207Pb and other isotopes was calcu-
lated in a parametric study using a two-parameter Fermi nuclear model where
the mean squared radius ⟨r2n⟩ was varied. The hyperfine structure constant was
calculated numerically for the states 6p2 3P1,2 and 1D2 and 6p7s 3P1 using the
multi-configuration Dirac-Hartree-Fock method with the GRASP2018 software
package [5].

The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR effect was
calculated for 20 CSF expansions of various sizes, using an extended grid as
recommended for heavy elements by [4] and [12]. The work presented indicates
that a high number of CSFs in the expansion is not crucial, as long as the
expansion accurately reproduces the experimentally obtained A in the reference
isotope. The recommended λ-values based on this work are given in table 8.1.

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

λ[% fm−2] -0.083(2) -0.009(4) 0.09(2) -0.065(3)

Table 8.1: Recommended values for the proportionality constant λ in the linear
fit λ⟨r2n⟩ for the BR effect, based on this work.

Moreover, calculations were done varying the nuclear skin thickness by±0.1fm
and +0.2fm from the default value 2.3fm. Resulting deviations in the calculated
λ were an order of magnitude or more less than the uncertainty in the deter-
mination of λ. It is therefore believed that the skin thickness does not affect
the BR effect much, as long as the skin thickness does not vary much between
isotopes, indicating that the linear fit λ⟨r2n⟩ is a good approximation for the
BR-effect.
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Chapter 9

Sammendrag p̊a Norsk

Atomer er grunnleggende byggeklosser for materie, best̊aende av en atomkjerne
med protoner og nøytroner, og en sky av elektroner som omslutter den. Studie
av atomers egenskaper er av interesse b̊ade for fundamental forskning og tek-
nologiske anvendelser. Én egenskap av interesse er atomkjernens magnetiske
moment, som kan m̊ales direkte ved høy-resolusjon spektroskopiteknikker som
kjernemagnetisk resonans (NMR). Dette er dog ikke mulig for tilstrekkelig usta-
bile isotoper, fordi det krever en viss levetid for atomkjernen. I stedet m̊a indi-
rekte metoder brukes, for eksempel studie av hyperfinstrukturen.

I atomer er elektronene tvunget til å være i spesifikke, diskré energiniv̊aer,
som beskrevet av kvantemekanikk. Hyperfinstrukturen er sm̊a splittinger av
disse tillatte energiniv̊aene i flere veldig nærliggende niv̊aer som resulterer av
svake elektriske og magnetiske vekselvirkninger mellom atomkjernen og elek-
tronskyen. Det magnetiske momentet i atomkjerner med kort levetid kan finnes
fra spektroskopiske m̊alinger av hyperfinstrukturen, n̊ar disse sammenlignes mel-
lom den ustabile isotopen og en mer stabil referansenuklide med kjent magnetisk
moment. Disse beregningene involverer forholdet mellom magnetisk dipol hy-
perfinstrukturkonstantene A1 og A2 i de to nuklidene. Dette forholdet kan ikke
bestemmes eksakt p̊a grunn av den s̊akalte differensielle hyperfine anomalien,
som skyldes den forskjellige størrelsen til atomkjernene. Noe av usikkerheten
grunnet denne anomalien kan fjernes ved å beregne noen korreksjoner, inkludert
Breit-Rosenthal (BR) korreksjonen grunnet distribusjonen av elektrisk ladning
i de to kjernene.

Denne rapporten presenterer beregninger av Breit-Rosenthal (BR) korrek-
sjonen til hyperfin anomalien for tilstandene 6p2 3P1,

3 P2 og 1D2, og 6p7s 3P1

mellom 207Pb og andre isotoper. Disse ble beregnet numerisk med multikon-
figurasjon Dirac-Hartree-Fock (MCDHF) metoden ved bruk av programpakken
General Relativistic Atomic Structure Package 2018 (GRASP2018) [5]. Atomk-
jernen ble modellert ved en to-parameter Fermi-distribusjon, hvor BR-effekten
ble approsimert ved variasjon i middel kvadrert radius ⟨r2n⟩. Fermifordelingen
er
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ρ(r) =
ρf

1 + e(r−c)/a
,

der c er halv-tetthet radien slik at ρ(c) = 1
2ρ(0) og a er en diffusitetsparam-

eter relatert til hudtykkelsen t ved t = a · 4ln3 [15, p. 5].
GRASP2018 er basert p̊a approksimerte, relativistiske bølgefunksjoner kalt

atomtilstandfunksjoner (ASFs), hvor de gode kvantetallene er paritet P og to-
tal dreieimpuls J . Disse er lineærkombinasjoner av dreieimpulskoplede basis-
tilstander, s̊akalte konfigurasjonstilstandfunksjoner (CSFs), som i seg selv ogs̊a
er egentilstander av paritet og total dreieimpuls. Disse blir bygt opp av anti-
symmetriserte produkter av én-elektron Dirac spin-orbitaler, som er generelle
løsninger av Dirac-ligningen i et sentralfelt. En fullstendig relativistisk behan-
dling basert p̊a Dirac-ligningen er særlig viktig i tunge atomer, hvor relativis-
tiske effekter er store. Elektronkorrelasjon utover sentralfelt-approsimasjonen
inkluderes ved å ta med CSFs som korresponderer til et videre utvalg av elek-
tronkonfigurasjoner med passende vekting. Atomtilstandfunksjonene kan da
skrives

|ΓPJMJ⟩ =
Ncsf∑
i=1

cΓi
|ΓiPJMJ⟩ ,

der Ncsf er antall CSFs i ekspansjonen, cΓi
er ekspansjonskoeffisientene og Γ

representerer alle andre kvantetall som trengs for å unikt identifisere tilstanden.
Gitt en CSF basis, optimeres ekspansjonen med MCDHF metoden der vari-
asjonsprinsippet brukes med hensyn p̊a variasjoner i orbitalene og ekspansjon-
skoeffisientene. Energifunksjonalen konstrueres med den approsimerte, s̊akalte
Dirac-Coulomb (DC) Hamiltonoperatoren

ĤDC =

N∑
i=1

[
cαi · pi + (βi − I4)c

2 + V̂n(ri)
]
+

N∑
i=1

∑
i<j

1

rij
,

der én-elektron operatorene er de relativistiske Dirac-operatorene, mens to-
elektron operatorene approsimeres ved Coulomb frastøtning. I basisen av or-
bitalene opptimert med MCDHF metoden basert p̊a DC Hamiltonoperatoren,
kan ekstra korreksjoner legges til i en konfigurasjonsvekselvirkning. Her opti-
meres ekspansjonskoeffisientene ved å først diagonalisere Hamiltonmatrisen og
løse egenverdiproblemet Hc = Ec, der de nye egenvektorene korresponderer til
de opdaterte ekspansjonskoeffisientene. I GRASP2018 legges Breit korreksjon
og korreksjoner fra kvanteelektrodynamikk (QED) til p̊a denne m̊aten. Gitt en
ferdig optimert ASF, kan observerbase størrelser beregnes fra denne.

I det utførte arbeidet ble hyperfinstrukturkonstantene i de fire nevnte til-
standene beregnet for 10 forskjellige radier i Fermi-fordelingen. Variasjon i
middel kvadrert radius ⟨r2n⟩ korresponderte til hele isotopbredden til bly, basert
p̊a data fra Angeli og Marinova [1]. Forskjellen i beregnet A sammenlignet med
referanseradien δA/A0 for de 10 datapunktene ble beregnet sammen med pro-
portionalitetskonstanten λ i den lineære tilpasningen λ⟨r2n⟩. En slik beregning
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av λ ble gjort basert p̊a 20 forskjellige CSF ekspansjoner av varierende størrelse
og medfølgende krav til datakraft. GRASP2018 ble kompilert med en utvidet
grid, som anbefalt for tunge, nøytrale atomer av [4] og [12]. De anbefalte ver-
diene for λ i de fire tilstandene basert p̊a dette arbeidet er gitt i tabell 9.1

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

λ[% fm−2] -0.083(2) -0.009(4) 0.09(2) -0.065(3)

Table 9.1: Anbefalte verdier for proportionalitetskonstanten λ i den lineære
tilpasningen λ⟨r2n⟩ for BR-effekten, basert p̊a det presenterte arbeidet.

Resultatene indikerer at ett s-elektron i det ytre valensskallet gjør at min-
dre CSF ekspansjoner er nødvendig for beregninger av hyperfin anomali. Dette
er dog noe som bør studeres nøyere. Generelt indikerer arbeidet at store CSF
ekspansjoner ikke nødvendigvis trengs for beregninger av hyperfin anomali s̊a
lenge god konvergens mot de eksperimentelt observerte verdiene av hyperfin-
struktur konstanten A i referanseisotopen er oppn̊add.

Videre ble beregninger utført der hudtykkelsen t til atomkjernen ble vari-
ert med ±0.1fm og +0.2fm fra referanseverien 2.3fm. Dette tilsvarer ett og to
standardavvik i verdiene funnet ved å tilpasse Fermi-parameterene til eksperi-
mentelle spredningsdata [3, p. 31-36]. De resulterende variasjonene i de bereg-
nede λ var minst én størrelsesorden mindre enn usikkerheten i bestemmelsen av
λ basert p̊a variasjon i radien. Det er derfor trolig at hudtykkelsen ikke p̊avirker
BR-effekten mye, s̊a lenge hudtykkelsen ikke varierer mye mellom isotopene, noe
som indikerer at den lineære tilpasningen λ⟨r2n⟩ er en god approksimasjon for
BR-effekten.
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IP Grant. New version: Grasp2k relativistic atomic structure package.
Computer Physics Communications, 184(9):2197–2203, 2013.

57



[13] Per Jönsson, Michel Godefroid, Gediminas Gaigalas, Jörgen Ekman, Jon
Grumer, Wenxian Li, Jiguang Li, Tomas Brage, Ian P Grant, Jacek Bieroń,
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Appendix A

All Data

Table A.1 gives the proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR
effect, calculated with all the 20 CSF expansions discussed in chapter 7, along
with the corresponding coefficients of correlation.

State λ(1)[% fm−2] R2
0 λ(2)[% fm−2] R2

0 λ(3)[% fm−2] R2
0 λ(4)[% fm−2] R2

0

SD excitations from 7s6sp
6p2 3P1 -0.08396743 0.9999 -0.08487621 0.9999 -0.08551977 0.9999 -0.08558785 0.9999
6p2 3P2 -0.00349586 0.9999 -0.00398155 0.9999 -0.00303264 0.9999 -0.00326937 0.9999
6p2 1D2 0.09063272 0.9999 0.09784377 0.9999 0.10503671 0.9999 0.10369977 0.9999
6p7s 3P1 -0.06579227 0.9999 -0.06678529 0.9999 -0.06718759 0.9999 -0.06706637 0.9999

SDT excitations from 7s6sp
6p2 3P1 -0.08519381 0.9999 -0.08603834 0.9999 -0.0866651 0.9999 -0.08672204 0.9999
6p2 3P2 -0.00140463 0.9998 -0.00127042 0.9998 -0.00090658 0.9997 -0.00114026 0.8433
6p2 1D2 0.10283301 0.9999 0.11376507 0.9999 0.12200859 0.9999 0.12044316 0.9999
6p7s 3P1 -0.06587667 0.9999 -0.0668977 0.9999 -0.06746665 0.9999 -0.06803119 0.9998

SD excitations from 7s6sp5sp
6p2 3P1 -0.08781368 0.9999 -0.08249784 0.9999 -0.08420331 0.9999 -0.08363947 0.9999
6p2 3P2 0.00739268 0.9999 -0.00634062 0.9999 -0.00383911 0.9999 -0.00599735 0.9999
6p2 1D2 0.0611288 0.9999 0.06967400 0.9999 0.08556362 0.9999 0.08549159 0.9999
6p7s 3P1 -0.0661692 0.9999 -0.06510511 0.9999 -0.06533601 0.9999 -0.06566834 0.9999

SD excitations from 7s6sp5sp4sp
6p2 3P1 -0.07858507 0.9999 -0.07967823 0.9999 -0.0841265 0.9999 -0.08252524 0.9996
6p2 3P2 -0.01049925 0.9980 -0.01119126 0.9997 -0.00442032 0.9988 -0.00699838 0.9929
6p2 1D2 0.02907244 0.9984 0.04951961 0.9997 0.07360763 0.9999 0.06529916 0.9988
6p7s 3P1 -0.06532802 0.9999 -0.06467919 0.9999 -0.06537086 0.9999 -0.06532425 0.9999
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S excitations from 7s6sp5sp4sp3sp2sp
6p2 3P1 -0.08105163 0.9999 -0.08386854 0.9999 -0.08373628 0.9999 -0.08325832 0.9999
6p2 3P2 -0.00718057 0.9999 -0.0037402 0.9999 -0.00402268 0.9999 -0.00497682 0.9999
6p2 1D2 0.0775033 0.9999 0.0951952 0.9999 0.09632899 0.9999 0.09225253 0.9999
6p7s 3P1 -0.06241899 0.9999 -0.06404879 0.9999 -0.06382963 0.9999 -0.06375163 0.9999

Table A.1: The proportionality constant λ in the linear fit λ⟨r2n⟩ for the BR
effect. The values in each column correspond to substitutions to one, two, three
and four virtual layers, i.e. λ(N) is the value calculated for the expansion based
on allowing excitations to N virtual layers. Extended grid only.
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