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Summary

The intermittency of renewable power generation from wind and solar is challenging as
it can cause severe issues for grid safety and reliability. Demand-side flexibility (DSF) from
aggregated electric water heaters (EWHs) is a promising solution to mitigate this challenge,
as the load of residential EWHs can be shifted to periods with a high share of renewable gen-
eration present to supply the load. However, as good business cases still need to be improved
for aggregators with EWHs, this work investigates how aggregators can maximise flexibility
from EWHs.

A review of previous work assesses three pillars for aggregators with EWHs; modelling of
EWHs, market participation with EWHs and other flexible resources, and optimisation prob-
lems concerning EWHs. The review indicates significant differences in modelling accuracy,
setups for market participation and optimisation techniques applied in problems with EWHs.
It is also evident that many technical challenges and barriers must be overcome for aggregators
to control and optimise EWHs to achieve significant flexibility. One of the major challenges is
to model the non-linear temperature dynamics of the EWHs accurately and computationally
efficiently, which is essential to extract the maximum amount of flexibility with a low risk of
cold water for consumers.

This work aims to find the best trade-off between the amount of flexibility, accuracy in mod-
elling and computational efficiency for an optimisation problem created from scratch with
aggregated residential EWHs. A 10-layer stratified temperature model with a one-minute res-
olution is used for up to 100 EWHs, assumed to be part of a portfolio of flexible resources
applied in a balancing market. A genetic algorithm (GA) maximises flexibility and, coincid-
ently, revenue from the EWHs, and handles the non-linear EWH temperature model with
high accuracy. Additionally, three different reconnection strategies are applied to manage the
aggregated load of many EWHs connected to the grid simultaneously.

The results indicate that aggregators can provide up to 5.8 kWh of flexibility per EWH per
day using the GA. This can translate to revenue of up to 1.5 EUR per day per EWH when
applying prices from manual frequency restoration reserve (mFRR) markets of January 2023.
The GA performs well for providing a high amount of flexibility, modelling accurately and
being computationally manageable for a low number of EWHs. However, its simulation time
scales poorly with many aggregated EWHs in the portfolio. In comparison, the simulation
time of a simplified reference algorithm scales linearly with the number of EWHs and can
therefore be useful for aggregators with a high number of EWHs in their portfolio.

The results also indicate that it is possible to apply the reconnection strategies without neg-
atively affecting flexibility or peak load. All of the reconnection strategies implemented in
the simulations resulted in higher or equal average flexibility than those without reconnection
strategies. Additionally, two reconnection strategies significantly reduced peak load compared
to the simulations without reconnection strategies.
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Sammendrag

Usammenhengende kraftproduksjon fra vind- og solenergi kan være utfordrende for strømnettet.
Forbrukerfleksibilitet fra aggregerte elektriske varmtvannsberedere er en lovende løsning for å
h̊andtere denne utfordringen, ettersom varmtvannsberedere hos forbrukere kan skifte forbruk
til perioder med høy andel fornybar kraftproduksjon. Ettersom det behøves bedre forret-
ningsmodeller for aggregatorer med varmtvannsberedere, undersøker dette arbeidet hvordan
aggregatorer kan maksimere forbrukerfleksibilitet fra aggregerte varmtvannsberedere.

En oversikt over tidligere forskningsarbeid vurderer tre hovedtemaer for aggregatorer med
varmtvannsberedere. Det første temaet er modellering av berederne, det andre deltakelse
i markeder med beredere og andre fleksible ressurser, og det tredje er optimeringsproble-
mer knyttet til beredere. Oversikten viser betydelige forskjeller i modelleringsnøyaktighet,
oppsett for markedsdeltagelse og bruk av optimeringsmetoder. Det kommer ogs̊a frem at
mange tekniske utfordringer må løses og barrierer m̊a brytes for at aggregatorer i større grad
skal kunne kontrollere og optimere varmtvannsberedere til forbrukere for å oppn̊a en betydelig
mengde fleksibilitet. En av de største utfordringene er å modellere beredernes ikke-lineære
temperaturdynamikk nøyaktig og med lav kjøretid, som er avgjørende for å f̊a ut mest mulig
fleksibilitet med lav risiko for kaldt vann hos forbrukerne.

Denne masteroppgaven tar sikte p̊a å finne den beste avveiningen mellom mengden fleks-
ibilitet, nøyaktighet i modellering og lavest mulig kjøretid til algoritmene for et problem laget
fra bunnen som maksimerer fleksibilitet fra varmtvannsberedere. En modell med ti temper-
aturlag og ett minutts tidsoppløsning brukes for å nøyaktig modellere opptil 100 beredere.
Deretter antas det at berederne gir fleksibilitet ved å delta i et nordisk balansemarked. For å
maksimere fleksibiliteten og dermed inntektene for aggregatoren, brukes en genetisk algoritme
for å h̊andtere beredernes ikke-lineære temperaturdynamikk med høy nøyaktighet innenfor en
rimelig kjøretid. Deretter blir det benyttet tre ulike gjentilkoblingsstrategier for å h̊andtere
situasjoner der mange beredere er tilkoblet nettet samtidig, som kan ha negative konsekvenser
for nettet.

Resultatene viser at aggregatorer kan forvente å oppn̊a en energimengde p a opptil 5.8 kWh
med fleksibilitet per bereder per dag. Dersom denne fleksibiliteten anvendes p̊a balansemark-
edet kan aggregatorer forvente å f̊a en inntekt fra markedet p̊a opptil 1.5 EUR per bereder
per dag, med balansemarkedspriser fra januar 2023. Mens den genetiske algoritmen fungerer
bra for å gi mye fleksibilitet, modellere nøyaktig og ha en brukbar kjøretid for et lavt antall
beredere, skalerer kjøretiden d̊arlig for en portefølje med mange beredere. Til sammenligning
skalerer en forenklet referansealgoritme lineært med antall beredere og kan derfor være bedre
egnet for en portefølje med et høyt antall beredere.

Resultatene indikerer ogs̊a at gjentilkoblingsstrategiene ikke p̊avirker mengden fleksibilitet eller
den aggregerte topplasten til berederne p̊a en negativ måte. Alle gjentilkoblingsstrategiene
implementert i simuleringene resulterte i høyere eller lik gjennomsnittlig fleksibilitet sam-
menlignet med simuleringene uten gjentilkoblingsstrategi. I tillegg viste to av gjentilkob-
lingsstrategiene en betydelig reduksjon i aggregert topplast sammenlignet med simuleringene
uten gjentilkoblingsstrategier.
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1 Introduction

1.1 Background

In accordance with the Paris Agreement, the effects of climate change can be reduced by increasing
the share of renewable energy production [2]. However, the intermittent nature of solar and wind
power can cause issues for grid operators, such as voltage instabilities and congestion. While grid
enforcement has traditionally been the solution to many problems in the grid, the European Green
Deal has recently highlighted ”flexibility” in the energy system as an essential solution and part
of the future power grid [3].

Flexibility refers to changing power production or consumption in response to a signal to provide
a grid service [4]. Demand-side flexibility (DSF) is particularly promising, as consumers can shift
energy consumption to periods with more renewable production. Additionally, DSF can lead to
lower and less volatile electricity prices for consumers [5].

On the demand side, the Nordic region is characterised by high electrification, including the
widespread use of electric vehicles (EVs) and heating systems, where residential thermal power
consumption significantly contributes to the total electricity consumption. As a result, thermal
residential resources have a high potential to provide DSF in the Nordic region [5]. In Norway, the
transmission system operator (TSO) has recently facilitated flexibility from thermal resources by
making changes to the balancing markets [6].

1.2 Motivation

Residential electric water heaters (EWHs) are excellent thermal resources for flexibility as they
have been estimated to have a flexibility potential of 600 MWh/h in the morning hours in Norway
[7]. In February 2023, on behalf of the Norwegian government, The Energy Commission emphas-
ised the importance of shifting load from EWHs away from the hours with peak load, indicating a
political will to facilitate flexibility from EWHs [8].

EWHs have many advantages compared to other flexible resources. They have high theoretical
flexibility potential, with estimates of 120 GWh or 20 GW daily in the EU [9]. EWHs also have
high availability, are continuous in operation, have easy access to control and can store heat energy
for a long time [10], [11].

From the grid perspective, load from EWHs contributes significantly to the peak load, as it is
highly correlated with other loads [11]. Shifting the load from peak hours is not only beneficial for
the grid but often also for consumers because of lower electricity prices and tariffs. Therefore, the
objective in most literature on flexibility from EWHs is minimising electricity costs for consumers
by load shifting.

In 2023, the European Network of Transmission System Operators (ENTSO-E) suggested that
investments in flexible resources, like EWHs, must accelerate [12]. When many flexibility re-
sources like EWHs are available, they can be aggregated and applied in balancing markets, for
example, manual frequency restoration reserve (mFRR) markets [13]. Aggregating many EWHs is
beneficial as it can simplify control algorithms and contribute better to achieving bids above the
minimum bid size in markets [14].

Entities that can aggregate flexible assets and offer flexibility in electricity markets, directly or
through a third party, are referred to as flexibility aggregators [15]. The aggregators must overcome
many barriers and technical challenges to deliver flexibility into the markets, particularly within
regulation, grid-wise and related to consumers. Another significant challenge is the non-linear
temperature model of the EWHs, making it computationally challenging to perform optimisation
of the EWHs. By modelling the temperature dynamics non-linearly using a stratified temperature
model, aggregators can extract more flexibility with higher accuracy. Still, they must find good
algorithms to deal with the computational complexity of this modelling.

3



1.3 Problem statement

This work investigates the research question of how aggregators can maximise flexibility from a
group of residential EWHs using a non-linear accurate stratified temperature model. It is assumed
that an aggregator applies flexibility as bids in an mFRR-market using a genetic algorithm (GA).
In addition to flexibility maximisation, this work applies three reconnection strategies to avoid
simultaneous reconnection and manage the peak load from the EWHs. At last, it is applied
mFRR-prices, identifying potential market revenue from the flexible energy of EWHs.

1.4 Contributions

This work aims to contribute with the following to relevant scientific communities:

• Present an optimisation problem to maximise flexibility from residential EWHs.

• Develop a GA and a reference algorithm from scratch to solve the optimisation problem
and apply reconnection strategies to the problem.

• Solve the optimisation problem with 24 use cases, asses the flexibility that can be
provided for aggregators with EWHs for these use cases, and evaluate the trade-off
between flexibility from the EWHs and the computational efficiency and accuracy of
the algorithms.

1.5 Outline

This work consists of nine chapters. Chapter 2 explains relevant theory on EWHs, flexibility,
aggregators, electricity markets and techniques to solve optimisation problems with EWHs. Then,
Chapter 3 presents a literature review on modelling EWHs, market participation for aggregators
and optimisation techniques relevant to problems with EWHs. Chapter 4 is a comprehensive
chapter on the methodology explaining the research problem of this work, while Chapter 5 presents
the case study to which the research problem is applied. Then, Chapter 6 presents a selection of
the results from the case study, with a discussion in Chapter 7. Finally, Chapters 8 and 9 provide
a conclusion and suggestions for future work.
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2 Theory

The theory chapter is divided into three sections. Section 2.1 covers the design, operation, function-
alities and modelling of EWHs, thereunder the single-zone and stratified models. Section 2.2 covers
essential theoretical aspects of flexibility and market participation for aggregators, and lastly, suit-
able optimisation methods for optimisation problems relevant to EWH-aggregators are presented
in Section 2.3. It can be noted that Section 2.1 and Section 2.2 are based on the specialisation
project for this master’s thesis, with additional input on the stratified models in Section 2.1 [1].

2.1 Electric water heaters (EWHs)

This section first presents the design, operation, and functionalities of EWHs. Then, the two
popular types of EWH models, the single-zone and the stratified models, are described with math-
ematical modelling, typical values of parameters and how the parameters can be estimated, and
the advantages and disadvantages of the two models. For simplicity and computational efficiency,
it can be assumed that the temperature in the tank is uniform. Therefore, the EWH can be repres-
ented as one thermal zone, and this type of modelling is known as single-zone modelling. However,
the single-zone temperature model does not accurately represent the temperature dynamics of the
EWHs. The tank can instead be divided into multiple zones or layers, and this type of modelling
is also known as multi-zone or multi-layer [16].

2.1.1 Design, operation, and functionalities

A traditional EWH consists of a water inlet, water outlet, thermostat, isolated top cover, one or
multiple heating elements and mixing-, pressure relief- and safety valves [17]. A model of OSO
Hotwaters SAGA-series S 300-product with this content is depicted in Figure 1. Most EWHs have
one resistive heating element with negligible losses. The EWHs work by hot water being drawn
through the water outlet at a temperature Tout while cold water comes in through the water inlet
at Tin. Combined with constant heat losses to the environment, this leads to an overall loss of
temperature and energy in the tank. When consumers use a significant amount of hot water, or it
has passed a long enough time since the last heating process occurred, the temperature registered
by the thermostat will go below a specific temperature, Tlow, initiating a new heating process.
The heating element then supplies the EWH with constant power until the thermostat registers
the temperature Thigh. The set point for Thigh is 75 °C, with Tlow being a few degrees lower for
most products in the Norwegian market [18]. However, the temperatures are significantly lower in
most other countries, as the Norwegian heaters are typically made of stainless steel that can handle
higher temperatures [19]. The set-point temperatures are high enough to ensure consumers hot
water and avoid the risk of developing the legionella bacteria, but not too high as heating losses
to the environment increase with temperature.
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Figure 1: A model of the EWH SAGA S 300 from OSO Hotwater with its components, taken from
[1] based on [17]

Some new products, like OSO Charge, have smart features [20]. This smartness can be a part of a
new EWH or an extension of existing products. The smart features can include temperature sensors
and voltage, current, and frequency measurements at a high sampling rate. Although EWHs with
these smart systems typically cost 10-20% more than regular EWHs, it is facilitated in Norway
as ENOVA supports the purchase of such smart water heaters with 5000 NOK [9], [21]. Smart
EWHs can be controlled with a scheduling plan based on electricity prices to save electricity costs.
Additionally, controlling EWHs based on voltage in the local grids has been proven successful in
pilots [22]. However, despite the many advantages, smart EWHs are still not implemented on
a large scale. A cheaper and more mature alternative is to control existing EWHs with a plug
capable of overriding the thermostat [23].

2.1.2 Single-zone model: energy balance and parameters

In the single-zone model, the physical energy balance of an EWH can be modelled as a first-order
differential equation, with the state variable for temperature above the thermostat, T [15]. The
temperature gradient dT

dt can then be modelled as proportional to the energy delivered by the
heating element, QH , the energy lost by water withdrawal, Qflow, and heat loss due to differences
in temperature in the tank and ambient surroundings, Qloss. This energy balance is illustrated
in Figure 2 and shown in equation (1), where Cp is the heat capacity of the hot water tank.
The equation can be written in more detail as in Equation (2). Further, Table 1 presents the
parameters represented with typical values and an estimate of uncertainty level, and the sources
and assumptions for the typical values and uncertainty levels. The main drawback of the single-
zone model is that it inaccurately represents the temperature dynamics of the EWH.
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Figure 2: Energy balance in a single-zone temperature modelled EWH with one heating element
[24]

Cp ∗ dT

dt
= Qflow +Qloss +QH (1)

Cp ∗ dT

dt
= ρ ∗Wr ∗ cp ∗ (Tin − T ) +G ∗ (Tamb − T ) +QH (2)

Table 1: Parameters used for modelling EWHs, including typical values and estimating the un-
certainty level of the parameters. Additionally, it is presented the source of information and the
assumptions for the typical values and uncertainty

Symbol Name
Typical
value

Unit
Uncertainty
level of
parameter

Ref. Assumptions

ρ Water density 997 kg/m3 Low [25] Based on Tamb

cp
Specific heat
capacity of water

4186 J/kg°C Low [26] -

Tamb
Ambient
temperature

24 °C Medium [18]
Norwegian
conditions

Tin Inlet temperature 10 °C Medium [27] -
V Volume of tank 200 L High [17] -

Cp
Heat capacity
of the EWH

8.44·105 J/°C High - Cp = cp ∗ ρ ∗ V

G
Heat loss
coefficient

1.36 W/°C High [17]

Corresponding
to a rated
heat loss
of 66 W

QH
Heating element
of the EWH

2000 W High [17] -

Wr
Water drawn
per time instant

0-0.20 L/s Very high [28]
Typical value
for a shower
is 0.20 L/s

Most parameters are, to some degree, uncertain. Hot water usage is classified as very uncertain,
as it includes many different applications like showers, bathing, food preparation, hand washing,
dishwashers, and washing machines [29]. As the parameters are uncertain, they must be estimated
in a sufficiently accurate way to optimise flexibility from the EWHs.
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2.1.3 Stratified models: extending the energy balance equation

The main reason there are temperature differences in the tank is that when hot water is drawn from
the top, cold water replaces it at the bottom. As a result, there is often a clear physical separation
of cold and hot water in the tank called the thermocline [30]. This separation is usually below
the heating element, and when hot water is drawn at the top, the thermocline moves upwards,
approaching and often triggering the thermostat. In some cases, it also passes the height of the
thermostat. Other reasons for temperature differences are convection, heating of the water near
the heating element, and differences in water density. With multiple withdrawals of hot water, the
physical processes create varying temperatures in the tank, from cold at the bottom to hot at the
top.

In contrast, several physical processes work against stratification [31]. First, de-stratification due
to heat losses is based on Newton’s cooling law, stating that the heat losses are higher where the
temperature is higher [32]. Secondly, conduction occurs between water of different temperatures
and between water and the tank’s walls. Lastly, there is buoyancy in the water when the tank’s
heating element is placed such that the water temperature is higher near the heating element than
above [33].

Thermal zones or mathematical layers can model the temperature differences in the EWHs. While
the representation of thermal zones is based on physics, the mathematical layers, denoted as l, can
represent one of N perfectly mixed layers of equal volume, Vl. Further, Qflow,l and Qloss,l can
represent energy flow and heating loss in each layer, while QH,l and Qconv,l can represent added
energy from the heating element and convection in each layer, respectively. Using this notation,
the layers with heating elements will rapidly increase in temperature when the EWH is turned
on. It can be assumed that the temperatures in each layer above the heating element achieve a
temperature equal to the average temperature of the considered layers to capture the buoyancy
effect [34]. This non-linear effect can be represented as Qbuoyancy,l [34].

To represent the multi-layer model mathematically, equation (1) can be extended to equation
(3), with Qconv,l given values as in Table 2. Kl is the conductivity coefficient between the layers,
found to have a typical dimensionless value of 2.21 using 10 layers [33]. With the use of Qflow,
Qconv and Qenv to represent energy flow, convection and heating losses to the environment, and
two heating elements to provide QH , Figure 3 illustrates the energy balance in a stratified 10-layer
model [33].

Cp ∗ dTl

dt
= Qflow,l +Qloss,l +QH,l +Qconv,l +Qbuoyancy,l (3)

Table 2: Representation of the added energy for a layer due to convection for the different layers

Layer Q conv, l
Bottom layer Kl ∗ (Tl+1 − Tl)
All layers between bottom and top Kl ∗ (Tl+1 + Tl−1 − 2 ∗ Tl)
Top layer Kl ∗ (Tl−1 − Tl)
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Figure 3: Energy balance in a stratified 10-layer model with two heating elements [33]

2.2 Market participation with flexible resources

This section presents how EWHs can be applied as flexible resources in markets. As aggregators
are essential to delivering flexibility, the concepts of flexibility and the role of aggregators are first
defined. Then, market participation relevant to the flexibility aggregators is presented, emphasising
flexibility markets and balancing markets in the Nordics.

2.2.1 Flexibility

Flexibility can be defined as changing the production or consumption of power in response to a
signal to deliver a grid service [4]. There are several drivers for flexibility, which can be differen-
tiated between the production-based, grid-based, and demand-based drivers. On the production
side, a significant concern is that renewable energy generation from wind and solar is intermittent
and uncertain. From the grid operator’s perspective, this contributes to power imbalances and
frequency deviations. The grid operators are also concerned with voltage fluctuations, congestion
and bidirectional power flows, which can be handled by flexible energy to some extent. On the
demand side, flexibility is largely driven by advancements in metering, information- and commu-
nication technologies (ICT), and active consumer behaviour.

Different flexibility services can be provided primarily to DSOs and TSOs, but also to balance
responsible parties (BRPs) and prosumers. The Norwegian Water Resources and Energy Director-
ate (NVE) distinguishes three flexibility services in the distribution grid, which are all relevant to
the DSOs [9]. These are voltage control, grid capacity management, and congestion management.
The gains of these services for the DSOs can be to delay or avoid investments in the grid, optimise
asset use and reduce grid losses. For TSOs, to avoid grid problems like blackouts, it is essential to
maintain the balance of the power system. In practice, this is done by control actions to keep the
frequency near the set point of 50 Hz.

There are many ways to characterise flexible resources. The flexible resources can be charac-
terised by their parameters, which can be defined as power, reaction duration, ramping capacity,
up-, and down-ramping rates, direction, service duration, energy capacity, recovery duration, and
rebound effect [35]. In this context, the rebound effect refers to turning many applications on sim-
ultaneously after being turned off earlier. Moreover, EWHs have high energy capacity and thermal
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inertia between Thigh and Tlow, allowing them to provide a significant amount of power with a
long service duration [18]. As EWHs are curtailable, they can delay heating in periods with high
load and shift it to periods with lower stress on the grid. Crucially, this is possible without neg-
atively affecting user temperature comfort or creating significant rebounds [7]. Therefore, EWHs
are well suited to deliver flexibility by shifting load or delivering frequency response by frequency
containment reserves (FCR) or frequency restoration reserves (FRR) [33], [36], [37].

2.2.2 Flexibility aggregators

Flexibility aggregators can be defined as entities that offer flexibility in electricity markets, encour-
age consumers to participate, and link suppliers and purchasers of flexibility [15]. The aggregators
typically participate in the flexibility value chain as the link between prosumers and buyers. Figure
4 illustrates the buyers as grid operators in the balancing market where the aggregator compensates
prosumers for their flexible resources, which, in the illustration, can be identified as PVs and bat-
teries. Then, in trade for capacity, power, or energy, the aggregator can reserve and activate
this flexibility to the grid operators for compensation. Moreover, it can be differentiated between
technical and commercial aggregators, where BRPs are classified as commercial aggregators [38].
Independent aggregators (IA) and aggregators with other roles are also distinguished. To increase
market competition, it is desirable to achieve an energy system with IAs [39].

Figure 4: Flexibility value chain from an aggregator’s perspective, simplified to include the buyers
as grid operators, sellers as prosumers and the aggregator in between [40]

Missing aggregators is a barrier to flexibility enabling [41]. On top of this, there are several barriers
for the aggregators to take significant roles to enable flexibility. These barriers include consumer
trust, complexity, regulations and market structures. According to the technology company Flex-
tools, the main barriers for both technical and independent aggregators are the following [42]:

Barriers for technical aggregators

• Difficulty in delivering standard equipment.

• Consumer scepticism to installations.

• Difficulty identifying the BRP in aggregating small loads in markets.

• Flexibility is not converted due to limitations in bids per BRP/station group in the
TSO markets.
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Barriers for independent aggregators

• Difficulty in accessing markets without an agreement with the BRP.

• Restrictions on which markets to access and flexibility services to deliver.

• Limited acceptance and possibility to test the role in the existing market.

Some of the identified barriers are especially relevant for EWHs. This includes regulatory and
market-related barriers, ranked as the most urgent for the deployment of flexibility in the Nether-
lands [43]. While the lack of standards is highlighted on the regulatory side, it lacks transparency
and market design for the market-based barriers. Further, policy-related issues and dealing with
imbalance-costs in the market are essential. Lastly, smart meter data must be possible to access,
as this data is a crucial resource for aggregators.

While there are many barriers for aggregators, there are also many technical challenges. These
include baseline estimation, rebound effects and asset degradation. Another challenge is cold load
pick-up, which refers to the transient surge in the load that occurs when disconnected thermal
loads, such as EWHs, are reconnected. [44]. Lastly, the complexity in administration and the
financial settlement, thereunder compensation to suppliers, are particularly challenging for IAs
[39].

2.2.3 Balancing markets

Traditionally, flexibility has been traded in balancing markets, part of a larger structure of energy
markets typically run by the TSO for energy security. Energy markets can be differentiated based
on commodities like electricity and gas, where the different types of electricity markets are organ-
ised with varying time horizons, like day-ahead, future markets, intra-day, and balancing markets.
In the balancing markets, balancing prices are generated based on information and bids from BRPs
on surplus and deficit for generation and load.

The Nordic balancing markets are divided into time frames based on reserves. The fastest re-
serves are fast frequency reserves (FFR), reacting automatically within a second or two when there
is low inertia in the power system. The other reserves are related to the control actions of primary,
secondary, and tertiary control. These control actions are implemented sequentially, using power
to recover frequency, as seen in Figure 5 [45]. When there is a drop in frequency, the primary
control activates by rapidly increasing power production or reducing load. The opposite control
action can also be initiated when the system frequency gets too high. Frequency containment re-
serves (FCR) react automatically within seconds for primary control, while secondary and tertiary
control actions can be initiated to relieve the primary control and get the frequency back to its
set point. For secondary control, restoration reserves (FRR) activate automatically (aFRR) or
manually (mFRR) within minutes, and for tertiary control, restoration reserves react manually
within tens of minutes. It is common to relate the aFRR markets to secondary control actions and
the mFRR markets to tertiary control actions.
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Figure 5: Frequency restoration for the TSO by primary, secondary, and tertiary control actions
[45]

mFRR markets are fitting for the aggregation of EWHs because the activation of EWHs is in a
feasible time frame of seconds to minutes. In the Nordics, the mFRR market provides tertiary
reserves for frequency and congestion management and is further divided into a balancing market
(RKM), and a capacity option market (RKOM) [46]. Both the up-regulation of increased pro-
duction or reduced demand and the down-regulation of reduced production or increased demand
are viable in the mFRR-market [46]. Based on the results of the eFleks-project, flexibility will be
facilitated in the Nordic mFRR-markets in the coming years, primarily driven by the EU package
Clean Energy for all Europeans [6]. In addition, the Nordic TSOs are currently creating a new
automatic mFRR-market, changing from 1-hour to 15-minute intervals [47]. The Norwegian TSO
Statnett has also claimed that the minimum bid size will be reduced from 5 and 10 MW to 1
MW in 2023 and that entry to the market should be more accessible for independent aggregators.
Further, the common platform of the manually activated reserves initiative (MARI) aims to create
an efficient European mFRR-market in the coming years [48].

2.2.4 Flexibility markets

Flexibility markets are emerging as an alternative class of markets for flexibility. Compared to
balancing markets, the flexibility markets are especially well suited for trading flexibility on smal-
ler scales, like regional and local levels. A flexibility market can consist of a flexibility market
operator (FMO) that provides a market platform for flexibility operators (FO), also known as
flexibility providers, to acquire flexibility from flexibility sources. Several types of FOs can be
identified, including DSOs and BRPs. However, the trend is towards aggregators acting as the FO
[39], [49]. While the FO acquires flexibility, The FMO provides a platform to which the flexibility
can be traded.

NODES is an example of an existing FMO in the Nordics. The NODES flexibility market concept
is shown in Figure 6 [50]. The figure shows that the TSOs can buy flexibility from reserve mar-
kets, to which microgrids can sell, while BRPs can purchase and sell to day-ahead and intra-day
markets. Further, DSOs and aggregators can buy and sell flexibility through NODES directly.
Aggregators must also establish flexibility contracts with prosumers that dispatch their flexibility
resources. Today, the flexibility marketplace of NODES is partly functioning in Norway. While it
has proven successful in some projects, it needs volume and liquidity to be fully functional [51].
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Figure 6: A model of the NODES marketplace concept for flexibility [50]

The processes of flexibility markets are not universal but can be explained in the following six steps
[52].

1) Establishment of contracts between aggregators and trading partners like prosumers and DSOs.

2) Baseline estimation. For EWHs, this is expected electricity usage for the next period without
flexibility. The baseline estimation is essential, as it can lead to conflicts between consumers and
system operators due to opposing interests. While the consumer might want to claim a higher
baseline and thus get compensated more when less energy is used at a specific time, the system
operators might want to claim the opposite to compensate less.

3) Bidding to a flexibility marketplace, also called the planning phase.

4) Market clearing and validation from the market. Validation can happen through multiple
iterations back and forth with the bidding. For example, the DSO might want to validate if bids
violate grid constraints. However, there are many established ways of market clearing, as seen for
local market clearing methods in Figure 7 [53]. This figure presents the methods by architecture,
algorithm, method and solvers. The centralised optimisation methods with direct algorithms are
the most common and are used in NODES. These include traditional methods like mixed-integer
linear or quadratic programming (MILP and MIQP), and are ideally solved using a commercial
solver [54]. Alternatively, the problem can be solved using metaheuristic methods such as genetic
algorithms (GA), particle swarm optimisation (PSO) and simulated annealing (SA), as seen in
Figure 7.
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Figure 7: Local market clearing methods by architecture, algorithm, method and solvers [53]

5) Activation and operation of flexibility. This step concerns the delivery of flexibility or power
over time, analogous to the intra-day market compared to the day-ahead market. Statnett has
specific protocols for activation in the RK mFRR market, like the start and stop of activation
within a time interval [55].

6) Settlement. A financial settlement is needed for billing. This is relevant as the buyer must
be able to validate flexibility activation and aggregators must calculate and settle flexibility with
the buyers, which can be BRPs, TSOs and DSOs.

2.3 Optimisation of mixed-integer problems

Optimisation can be defined as finding solutions to a problem, in most cases, the best or optimal
solution, given an objective function and a list of constraints. When aiming at the best solution
to a problem, optimisation can be defined mathematically as the minimisation or maximisation of
some function with constraints on the decision variables [56]. Unwanted values for these variables
can be modelled as constraints or penalties in the objective function. The class of optimisation
problems having continuous, binary and integer decision variables or requirements is called mixed-
integer problems [57]. When the variables are related linearly in the constraints, the problem can
be formulated as a mixed-integer linear problem, where the objective function and all constraints
are linear. Modelling problems linearly is beneficial as it is much easier to solve than non-linear
problems. Problems can also be extended to mixed-integer quadratic problems using quadratic
terms in the objective function. Problems with linear or quadratic objective functions and linear
constraints are within the class of convex problems, which are significantly easier to solve than
non-convex problems [56].

Traditionally, the optimisation methods used for mixed-integer problems have been within the
class of exact methods, also known as complete methods [58], [59]. These methods can guarantee
an optimal solution and be computationally efficient for mixed-integer linear problems, especially
when using a commercial solver [54]. However, when problems are non-linear, approximate meth-
ods can be better suited. One class of approximate methods, rapidly growing within the domain
of mixed-integer non-linear problems, are metaheuristics [58], [60]. Metaheuristics do not guaran-
tee an optimal solution but can, in some cases, provide a good trade-off between optimality and
computational efficiency [58]. However, there is still significant difficulty in scaling and applying
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the methods to real-life problems.

An aggregator with flexible resources like EWHs can maximise flexibility or revenue using exact
or approximate optimisation techniques. These techniques should in theory solve to an optimal
or near-optimal solution accurately and computationally efficiently, so they can be run more often
and scaled for many resources. In the optimisation problem of this work, the EWH temperature
is continuous. At the same time, the bidding quantities in the market are integers, and the power
supply of the EWHs is either on or off, making the operational status of the EWH a binary variable.
Therefore, maximising flexibility from EWHs for aggregators can be formulated as a mixed-integer
problem. Consequently, this section presents relevant exact and metaheuristic methods to solve
the mixed-integer problem of this work.

2.3.1 Exact methods

A wide range of exact optimisation methods can be applied to solve mixed-integer problems. These
include dynamic programming (DP), mixed-integer linear programming (MILP) and model pre-
dictive control (MPC). DP and MILP are mathematical optimisation methods, where MILP uses
computationally efficient recursive algorithms, such as branch-and-bound or cutting planes [57].
While branch-and-bound guarantees optimality but can struggle with computational efficiency for
large-scale problems, cutting plane methods can be more efficient but do not guarantee optimal-
ity. More efficient methods, like branch-and-cut, have been developed for large-scale use and are
available in optimised commercial solvers like Gurobi. While DP and MILP are mathematical
optimisation methods, MPC is a control strategy that solves a finite horizon open-loop optimal
control problem at each instant, using the current state as the initial state for the next iteration
[61]. MPC problems often use a quadratic objective function, penalising unwanted large devi-
ations for decision variables. MPC generally provides a good trade-off between performance and
robustness to uncertainty. It is, therefore, good at handling real-time operations and feedback [61],
[62].

2.3.2 Metaheuristics

A metaheuristic method can be defined as an approximate high-level algorithmic framework that
aims to find good solutions to complex problems [58]. Metaheuristics use probability, memory, or
local search-based approaches to explore the solution space efficiently. Metaheuristic methods are
generally non-deterministic, not problem-specific, and are often beneficial for non-linear problems
[59].

There are many challenges with the use of metaheuristics. Firstly, it can be challenging to choose
the correct method, as metaheuristics do not have a universally applicable design methodology
and perform differently for different criteria, like accuracy, computational efficiency, simplicity and
flexibility [58]. Secondly, there is a challenge in weighing intensification up against diversification.
While intensification means prioritising good solutions, diversification means prioritising diverse
solutions. Thirdly, tuning the parameters of the considered problem can be time-consuming.

Metaheuristics can be divided into local search-based methods and constructive methods [58],
[59]. Common local search-based methods include simulated annealing (SA) and tabu search (TS).
These methods only store one candidate solution at each time and are also known as single-state
methods [60]. While SA is simple to understand and implement, TS is often better at finding good
solutions quicker, given the correct tuning of parameters [60], [63].

In contrast to the single-state methods, constructive methods are population-based, meaning they
evolve a population of candidate solutions. It is often applied genetic operators, such as crossover
and mutation, to create new generations of solutions by the survival-of-the-fittest principle. These
methods can, therefore, also be referred to as evolutionary computation. Common evolutionary
methods include genetic algorithms (GA) and particle swarm optimisation (PSO) [59], [60], [63].
Evolutionary methods are generally simple and do not require high problem-specific knowledge.
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On the downside, finding suitable parameters can be difficult and time-consuming, and the evol-
utionary methods can have difficulty scaling [64], [65]. Additionally, the search mechanisms in
evolutionary methods can get stuck in locally optimal solutions, which limits the ability to find
globally optimal solutions to problems. It is also difficult to debug the results using evolutionary
methods. For example, it can be difficult to know if a solution from an evolutionary method is
globally or locally optimal.

Of the evolutionary methods, GAs are well suited to find near-optimal solutions to problems
with binary decision variables or good solutions to mixed-integer problems [66], [67]. Conversely,
GAs can have inconsistent convergence to good solutions [57]. In contrast to GAs, PSO methods
are better at finding good solutions to continuous problems.

A GA can consist of four steps: deciding parameters, applying a crossover function, perform-
ing mutation and selecting the best individuals for the next generation [63], [66], [67]. At first, a
list of binary attributes and their starting values are decided. For simplicity, the starting values
are often set at random binary values. The attributes of an individual determine the fitness value
for this individual, as the attributes are included in the objective function. The objective function
is, therefore, also known as the fitness function or the evaluate function. One method of including
the objective function of an optimisation problem into a GA or another evolutionary method is
a penalty-based approach [68]. If using a penalty-based GA, the objective function can subtract
penalties for each constraint violation, thus requiring numbers for the penalisation of each con-
straint. Moreover, it is decided the number of generations and individuals per generation. The
remaining parameters are the probabilities for crossover, mutation and bit-flip mutation [60].

After deciding the parameters, a crossover function can be initiated, creating a new generation
from scratch with a size equal to that of the current generation. The crossover between two par-
ents can be performed based on a crossover probability, where new individuals are generated based
on the parents’ attributes. Then, the new generation of individuals can be subject to mutations.
Using a bit-flip mutation probability, mutations can occur for some individuals in the new pop-
ulation, swapping the binary values of some attributes for those individuals [60]. Then, the new
generation, having been subject to crossover and mutation, can be compared to the old genera-
tion. If the best individual in the new generation has higher fitness than the best individual in
the old generation, the new generation can be accepted or else declined. The fitness value for an
individual can be determined as the value of the objective function for a maximisation problem,
with the subtraction of penalties for constraint violations, if any.

Algorithm 1 gives an example of how a penalty-based GA with operations for crossover and muta-
tion can look.
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Algorithm 1 An example of a penalty-based genetic algorithm

Set the attributes and their starting values.
Decide the number of generations and individuals per generation.
Decide the probabilities for crossover (pcrossover), mutation (pmutation) and bit-flip mutation
(pbit−flip).
Set penalties for each constraint violation.
for every generation in number of generations do

Divide the generation of individuals into two halves, creating pairs of parents.
for each pair do

Clone the parents’ attributes into two children, one from each parent.
Obtain the fitness value fmaxparents to the individual with the highest fitness value
in this generation.
Generate p1 as a random float number from 0 to 1.
if p1 ≤pcrossover then

Replace the attributes of the two children with the results of a two-point random
crossover between the parents.

end if
end for
for every child in number of individuals do

Generate p2 as a random float number from 0 to 1.
if p2 ≤pmutation then

for every attribute in number of attributes do
Generate p3 as a random float number from 0 to 1.
if p3 ≤pbit−flip then

Perform mutation by swapping the attribute to the opposite binary value.
end if

end for
end if

end for
Obtain the fitness value fmaxchildren to the individual with the highest fitness value
in the new generation.
if fmaxchildren > fmaxparents then

Replace the old generation with the new generation.
end if

end for

2.3.3 Summary of optimisation methods

Table 3 summarises the classification, and main advantages and disadvantages of common meth-
ods for solving mixed-integer programming problems. It is provided sources of information on the
advantages and disadvantages. Further, it is differentiated into the exact and metaheuristic meth-
ods, where the metaheuristic methods are differentiated into local-search-based and evolutionary
algorithms.
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Table 3: A summary of methods relevant for mixed-integer optimisation problems. The summary
includes classification, and each method’s main advantage and disadvantage

Method Sources Classification
Main
advantage

Main
disadvantage

MILP [57] Exact Computational efficiency Handle non-linearity

MPC [61] Exact Handle uncertainty Handle non-linearity

DP [69] Exact Handle stochasticity Computational efficiency

SA [63]
Metaheuristic,
local search

Simple implementation Performance

TS [60], [63]
Metaheuristic,
local search

Computational efficiency
Ability to find
optimal solutions

GA [66], [67]
Metaheuristic,
evolutionary

Handle non-linear
binary problems

Handle
continuous problems

PSO [64]
Metaheuristic,
evolutionary

Handle non-linear
continuous problems

Handle
binary problems

Generally, metaheuristics are suitable when the exact methods cannot handle the problem due to
complexity or non-linearity. The choice of method for a current problem also heavily depends on
the problem’s characteristics. It is also possible, and often beneficial, to combine several methods,
for example, local search and evolutionary metaheuristic methods. Additionally, it is essential to
make the algorithms simple and flexible to be considered for real-life applications.
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3 Literature Review

The literature review chapter presents the primary considerations for modelling EWHs in Section
3.1, the market participation with flexible resources in Section 3.2, and optimisation techniques
relevant to problems concerning EWHs in Section 3.3. Each section is summarised with partic-
ularly applicable literature. Sections 3.1, 3.2.1 and 3.3 are based on the literature review of the
specialisation project for this master’s thesis with expansions of market design and optimisation
methods [1].

3.1 Modelling of EWHs

This section presents an overview of how the temperature of the EWHs is modelled in relevant re-
search and how the input data and parameters have been obtained. The single-zone and stratified
models are used frequently, and while it is evident that the single-zone model is more computation-
ally efficient, the stratified models are more accurate. On the contrary, a wide range of methods
is applied to obtain the necessary input data and parameters to model the EWHs accurately.

3.1.1 Single-zone vs stratified modelling

Single-zone models are easier to set up for optimisation and more computationally efficient than
stratified models [34]. This is evident by the research results, where a single-zone model incor-
porating some information on stratification was found 50 times more computationally efficient
than the corresponding multi-layer model [34]. On the other hand, due to the higher accuracy
of the temperature and power in the EWHs, many researchers apply stratified models, especially
10-layer models [33], [36], [70]. The 10-layer model has been found to be a good trade-off between
accuracy and computational efficiency. It accurately captures the heating process of the water
over an extended period. It is, therefore, also appropriate for integrating with electric grids over
time [33], [70]. Stratified models have also notably performed better than single-zone models at
predicting temperature, particularly in the higher region of the EWH [16]. The high accuracy in
the temperature predictions has been applied to save electricity costs for the consumer, where a
multi-layer model provided 30% cost savings with only linear constraints and 40% with non-linear
constraints [34]. Although problems with non-linear constraints have achieved better results than
those with linear constraints, non-linear constraints have largely been avoided due to being very
computationally challenging.

3.1.2 Obtaining input data and parameters

There are several challenges within the modelling of EWHs, as the data and parametric values
of hot water usage, EWH temperature and power are only rarely available. Advanced grey-box
control strategies for the aggregation of EWHs have been suggested, for example, combining the
differential equation of the water heater temperature from equation (3) with neural networks [71].
The model thus allows the handling of large data quantities and simultaneously captures the water
heaters’ physics. Still, a significant challenge is that hot water usage heavily affects the flexibility
predictions [72]. Therefore, different methods to estimate hot water usage is suggested, for example
using Markov chains based on the probability and mean duration of water extraction events with
two-hour intervals, where both probability and duration peak at 6-8 pm [15]. While power can be
estimated based on AMI data, temperature profiles can be modelled by the physical process of the
EWH. For prediction of the flexibility from EWHs, strategies based on neural networks have been
more common in recent years [29], [71], [73].
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3.1.3 Summary of applicable literature for modelling of EWHs

Particularly relevant literature investigating the control and modelling of EWHs is presented in
Table 4. The summary consists of the source of information, the primary challenge addressed,
the temperature model or models used, and the main input data with its country of origin. The
overview is ordered by the magnitude of the main challenges addressed: load shifting, rebound
effects, uncertainty and user comfort.

Table 4: Summary of articles for EWH control- and modelling, consisting of the main challenge
addressed, temperature models used, main input data and its country of origin

Ref.
Main challenge
and how it is adressed

Temperature
model

Main
input data

Input data
origin

[33] Load shifting solved with DP Multi-layer Measured power Canada

[34]
Load shifting by state estimation
performing laboratory experiments

Single-zone
and
multi-layer

Measured power,
temperature and
hot water usage

Austria

[36] Load shifting solved with MPC Multi-layer Electricity price Denmark

[74]
Load shifting by state estimation
performing laboratory experiments

Single-zone Measured power Canada

[15]
Rebound effects incorporated
in a LP-optimisation constraint

Multi-layer Measured power Canada

[18]
Rebound effects evaluated by
parameter characterisation
and scenario analysis

Single-zone Measured power Norway

[13]
Uncertainties handled by
chance-constrained optimisation

Single-zone Hot water usage Belgium

[16]
User temperature comfort
handled by parameter estimation

Single-zone
and
multi-layer

Measured
temperature

Canada

Both single-zone and multi-layer models are used frequently, and the input data and their country
of origin are highly varying. The main challenges include grid considerations like load shifting and
rebound effects, as well as other challenges like user comfort and uncertainty in modelling and
optimisation.

3.2 Market participation with flexible resources

This section first presents the experienced barriers to market participation for aggregators of EWHs,
emphasising the access and control of the resources. Then, experiences with market participation
for aggregators in relevant research and real-life projects are presented.

3.2.1 Experienced barriers for market participation with EWHs

Many barriers to market participation by EWH aggregators have been experienced. These include
having access to the resources directly or indirectly and being able to control the resources. Based
on the literature, the main experienced barriers to market participation by EWH aggregators can
be characterised in the following five categories [11], [13], [43].

• Consumer considerations. A significant challenge for the aggregators is to be allowed
by consumers to control their EWHs. It is argued that EWHs cannot be controlled by
aggregation but should instead be controlled individually to ensure minimal impact
on user temperature comfort [75]. EWH manufacturers may not allow aggregators
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to risk violating user comfort for their customers either. Combined with legionella
risk, many consumers are therefore sceptical of their EWH being controlled externally
by aggregators [16]. This barrier of consumer trust for aggregators is visible in the
results of a Norwegian survey, where it was asked who would be most trusted for the
temporary disconnection of an EWH, heating system, or EV for a shorter period [76].
The answers were 34% on BRPs, 43% on DSOs, 18% on smart house suppliers, and
15% on independent aggregators. The survey results indicate that consumers trust is
an issue for aggregators.

• Uncertainty. The input data on hot water usage, power, and temperature of the
EWHs are often uncertain, and thus, the flexibility from the EWHs is very uncertain
[62], [77]. There is also often high model uncertainty when inaccurate models are used,
like the single-zone models. Model uncertainty also comes from using numerical solvers
and discretising time to solve the differential equation, represented in Equation (1). The
discretisation of time creates significant uncertainty, especially when done over a long
period [70], [78].

• Grid considerations like cold load pick-up and rebound effects can create significant
stress on the grid [18], [44], [79]. While rebound effects have been largely avoided
in the literature as it is difficult to model and not usually necessary for aggregators to
implement, it has been suggested different reconnection strategies to mitigate the effects
of cold load pick-up [44].

• Regulations. EU regulation is a decisive factor for the potential of EWH flexibility and
storage in Europe. In an evaluation report commissioned by NVE, the requirements on
energy efficiency in COMMISSION REGULATION (EU) No 814/2013 is particularly
decisive, as these requirements can reduce the volume and flexibility of EWHs [9].

• Market design. ENTSO-E highlights how the market design should be changed for the
future [12]. Investments in resources and integrating the resources with the markets will
create higher liquidity, which is currently a big issue in flexibility markets. Additionally,
the market design must better include grid constraints and consumer considerations.

3.2.2 Experience of market participation with flexible resources

Many have investigated the flexibility of EWHs and other flexible resources. Table 3.2.2 summar-
ises particularly relevant experiences, most of them research projects. The summary includes the
project, country of origin, most recent active year of the project, use of EWHs, the volume of
power traded in a market, the type of market, main participants and type of grid service delivered.
Some of the projects do not use EWHs but are still relevant because of the market participation
and grid services.
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Table 5: A summary of market participation for aggregators, with available information on the
project name, country of origin, last active year, if EWHs are included, the typical trading volume
of the flexible resources, market type, grid service and main participants in the project.

Ref. EWHs Project Origin Year
Typical
trading
volume

Market
and grid
service

Participants

[13] Yes - Belgium 2021 70 kW

FCR-
balancing
and
frequency
control

TSO

[37] Yes - Austria 2015 2 kW

FCR-
balancing
and
frequency
control

TSO,
IA

[80] Yes EMPOWER EU 2018 1 kW

Local
flexibility
and
congestion
management

DSO,
IA

[81] Yes Smart Senja Norway 2023 -

Local
flexibility
and
congestion
management

DSO,
BRP

[51] No NorFlex Norway 2022 3000 kW

Local
flexibility
and
mFRR-
balancing
and
congestion
management

TSO,
IA

[82] No Sthlmflex Sweden 2023 100 kW

Local
flexibility
and
congestion
management

DSO,
TSO,
IA

[83] No iPower Denmark 2015 -

Flexibility
and
congestion
management

DSO,
IA

[84] No IntraFlex UK 2021 10 kW

Flexibility
and
congestion
management

DSO,
BRP,
IA

Several projects have been completed recently or are active in many European countries. Some
projects have used one or several EWHs, participating in flexibility or balancing markets to deliver
frequency control or congestion management as grid services. For example, in the Smart Senja
project, 30 smart EWHs were recently rolled out to contribute to congestion management by a
BRP for the DSO in a NODES-based local flexibility market [81], [85]. Both TSOs and DSOs are
active as flexibility buyers, while BRPs and IAs have aggregated and sold flexibility in markets.
Moreover, there is a large difference in trading volumes considered, ranging from 1 kW to 3000
kW.
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3.3 Optimisation problems with EWHs

Different optimisation methods, objectives, and constraints have been used for related research
problems to this work. This section presents the main findings from these experiences, mainly con-
cerning the methods, objectives and constraints, and briefly concerning uncertainty and stochasti-
city.

3.3.1 Methods

For optimisation problems with EWHs and other flexible resources dynamic programming (DP),
mixed-integer linear programming (MILP), model predictive control (MPC) and metaheuristic
methods have been applied. Contrary to MILP and MPC, variations of DP have been used to
handle non-linearity but have proven computationally inefficient [33], [86]. In contrast, MILP has
been efficient for scheduling problems with different DERs, like EVs, space heaters and also EWHs,
but it is limited to linear problems [57] [77] [80] [87]. MPC has also been efficient for linear EWH
scheduling, for example, to minimise electricity costs subject to temperature constraints and heat
balance [36], [73], [78].

Some metaheuristic methods have been applied to optimise flexible resources when the problems
have been too computationally expensive to solve with an exact method within a reasonable simu-
lation time, which is often the case for problems with non-linear constraints. Although not applied
directly at EWHs, local search-based metaheuristic methods have been applied in the energy do-
main. For example, a custom hybrid SA has been used for a grid scheduling problem involving
EVs [88]. For this problem, the simulation time was reduced from 26 hours with a deterministic
technique to one minute, with only a 0.1% difference in the objective value. In contrast, GAs have
been applied with less success, lacking performance and computational efficiency compared to a
MILP for a linear multi-layer modelled EWH problem [57].

3.3.2 Objectives

A wide range of objectives for optimisation with aggregated resources is found in the literature.
These objectives include load shifting, congestion management, and frequency and voltage regu-
lation [33]. Most studies minimise energy consumption or energy costs [89], [90]. For the studies
with market participation, it is most often maximised profit, having the possibility to trade in one
or several markets [87], [91], [92]. For example, EWHs have been applied to FCR markets [13].
Some also consider user temperature comfort. In one study, it is scheduled on the day-ahead and
capacity market for a load aggregator of air conditioning. User comfort is handled as a linearised
quadratic term in the objective function to penalise large deviations computationally efficiently
[93].

3.3.3 Constraints

Different constraints are used in optimisation problems with EWHs. These include effects on the
grid, like rebound effects, and user comfort temperature. Although these issues can be represented
as part of the objective function, they are most commonly represented in the constraints.

Grid constraints are included in [70], where the operation of an electric boiler is constrained
during the evening peak hours when there is grid congestion and under-voltages in the considered
low-voltage grid. Grid effects are also successfully captured in [94], investigating DSO-aggregator
interaction. A clustering algorithm to select an effective grouping of resources to deliver flexibility
services to the grid solved 90% of the considered grid problems. The rebound effect is studied
in detail in [18], where five flexibility activation scenarios are used, and the impact on relevant
parameters is quantified. In [33], the rebound effects are reduced by clustering EWhs based on
behaviour.
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Some include an absolute limit for user comfort temperature as a constraint; for example, temper-
atures of 65 °C and 66 °C as in [77] and [78], respectively. On the contrary, [95] allows violation
of user comfort with the argument that large margins can increase the demand response poten-
tial if users allow some change in comfort. Figure 8 illustrates this trade-off, where savings are
achieved due to lower minimum temperature and low penalty for under-heated water [77]. Here,
the decisions were mainly based on temperature and hot water withdrawal.

Figure 8: Trade-off between user temperature comfort and savings on electricity costs for EWHs
[77]

Another technical challenge modelled in the literature is asset degradation, most commonly used
for batteries [87], [96].

3.3.4 Uncertainty and stochasticity

Some relevant research includes uncertainty or stochasticity, often the uncertainty of electricity
prices and the stochasticity of intermittent renewable energy generation [97]. Scenarios or prob-
ability distributions with various goals, formulations, and stochastic solution methods have rep-
resented uncertainty and stochasticity. For example, stochastic optimisation is used for EWHs in
a MILP-problem [77]. Some studies also compare deterministic models with robust or stochastic
models. In one study, stochastic MPC minimises energy consumption, as the deterministic ap-
proach overestimated the flexibility potential and provided greater risk to users’ thermal comfort
[98]. Therefore, computationally reasonable approaches to quantify demand flexibility under un-
certainty are essential in future research.

3.3.5 Summary of particularly relevant literature

Table 6 summarises the main takeaways from the literature that concerns aggregator optimisation
for a population of EWHs. The main takeaways are summarised based on the resources considered,
the method used, the objective, the main constraints in the optimisation problem and uncertain-
ties, if any.
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Table 6: Summary of articles for optimisation of EWH for aggregators, with the representation of
resources considered, choice of EWH model, the method used, objective, main constraints in the
optimisation problem and uncertainties, if any.

Ref Resources
EWH
model

Method Objective
Main
constraints

Main
uncertainty

[33] 73 EWHs Multi-layer DP
Minimise
peak load

Rebound
effects

Temperature

[36]
Heat pump
+ EWH

Multi-layer MPC
Minimise
electricity
costs

Temperature -

[86] One EWH Multi-layer DP
Minimise
electricity
costs

Temperature -

[57] 20 EWHs Single-zone
MILP,
GA

Minimise
electricity
costs

Temperature -

[77] One EWH Single-zone MILP

Minimise
electricity
costs and
user
discomfort

Temperature,
power

Hot water
usage

The literature is diverse on models, methods, objectives, constraints and inclusion of uncertainty.
Most optimise to reduce electricity costs subject to comfort temperature constraints. Unlike most
literature, [33] captures an aggregated number of EWHs with a multi-layer model. The objective
here is, however, to minimise peak load, and the problem does not include any market particip-
ation. It also allows user comfort temperature violations, to the extent that the temperature is
reduced to 45 °C up to 10% of the time.

To the author’s knowledge, it has not successfully been optimised a group of multi-layer mod-
elled EWHs for market participation in available research. It is, therefore, a research gap in
simultaneously capturing accurate modelling, user temperature comfort and market participation
for an aggregated number of EWHs.
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4 Method

The chapter dedicated to the methodology is composed of five sections. The first one, Section 4.1,
details the notation applied in this work. The second one, Section 4.2, then explains the modelling
approach of the EWHs and the modelling-based constraints in the optimisation problem. Then,
Section 4.3 presents the actions of aggregators, including reconnection strategies, and the market-
based constraints used in the optimisation problem. Section 4.4 explains the optimisation method
with an overview of the algorithms used to solve this work’s optimisation problem. Finally, Section
4.5 presents this thesis’s use cases and simulations.

4.1 Notation

This section presents the notation used for the optimisation model, presented with sets, indices,
parameters and variables.

4.1.1 Sets

Hours in the planning horizon: H

Bidding periods in the planning horizon: J

Modelling periods for power and temperature in the planning horizon: T

EWHs: K

Temperature layers modelled in the EWH: L

Modelling periods for power and temperature in a bidding period: M

Modelling periods for power and temperature for the DSO to validate a bid: V

4.1.2 Indices

Time steps of hours: h

Time steps of bidding periods: j

Time steps of modelling periods for power and temperature: t

Representation of an EWH: k

Representation of a temperature layer: l

4.1.3 Problem parameters

The maximum temperature on the thermostat: Tmax

The minimum temperature on the thermostat: Tmin

Minimum temperature for comfort: Tcomf

Baseline power profile: Pbaseline
k,t for k ∈ K for t ∈ T
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Power of heating element per EWH : Phe

The number of modelling periods of power and temperature for the DSO to validate bids: DSOV

Minimum bid size to deliver for the aggregator: Pmin

Time steps of modelling periods for power and temperature in the bidding period: B

mFRR bid prices: λmFRR
j for j ∈ J

4.1.4 Variables

Continuous variables

Temperature: xk,t,l for k ∈ K for t ∈ T for l ∈ L

Binary variables

Bid contribution: δbidk,j for k ∈ K for j ∈ J

Operational status of the EWH: δpower
k,t for k ∈ K for t ∈ T

4.2 Modelling of EWHs

This subsection first presents the temperature models used in this work. Then, the modelling
constraints used in the optimisation problem are explained. Lastly, the model uncertainty from
EWH modelling is quantified.

4.2.1 Temperature models

Two different EWH temperature models are used in this work. Primarily, a multi-layer model with
ten temperature layers of equal volume accurately represents the EWH to extract more flexibility
and reduce consumers’ risk of cold water. One heating element is placed in layer 1, second from the
bottom, while the thermostat is set in layer 3, fourth from the bottom, based on the layout of the
EWHs from OSO Hotwater [17]. The energy balance in the model is similar to equation (3), where
the time is divided into one-minute intervals to compute the temperature and energy dynamics
accurately. The energy balance equation is solved at each time instant using a fourth-order Runge-
Kutta method as an initial value problem. Secondly, this work compares the multi-layer model
with an equivalent single-zone model to validate the accuracy and performance of the multi-layer
model. Due to a lack of real-world data, both the temperature and the power is estimated in both
models.

Figures 9, 10, and 11 represent all layers’ temperatures in three different EWHs before optim-
isation using the multi-layer model. The EWHs are denoted as EWH1, EWH2 and EWH3, with
different starting temperatures and hot water usage.
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Figure 9: Temperature for all layers for EWH1 over 24 hours with a one-minute resolution multi-
layer model

Figure 10: Temperature for all layers for EWH2 over 24 hours with a one-minute resolution multi-
layer model
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Figure 11: Temperature for all layers for EWH3 over 24 hours with a one-minute resolution multi-
layer model

The temperature of EWH1 is layer-dependent, although the temperatures in the top layers are
often similar due to the buoyancy effect. Layer 0 at the bottom is significantly colder than the
others due to the cold water being brought in at this layer, and because the layer is below the ther-
mostat at all times and below a thermocline most of the time. EWH1 completes five heating cycles
seen by the time instants where the upper and middle layers increase rapidly in temperature. In
contrast to the first EWH, the second and third EWH complete only three and four heating cycles,
respectively. This is because the hot water usage associated with these EWHs is lower than EWH1.

Figures 12, 13 and 14 represent the temperatures for the same EWHs with the same hot wa-
ter usage, using the single-zone model.

Figure 12: Temperature for all layers for EWH1 over 24 hours with a single-zone model
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Figure 13: Temperature for all layers for EWH2 over 24 hours with a single-zone model

Figure 14: Temperature for all layers for EWH3 over 24 hours with a single-zone model

While EWH1, EWH2 and EWH3 completed five, three and four heating cycles with the multi-layer
model, they completed only four, two and three with the single-zone model. The single-zone model
underrepresents the need for heating to the extent that each EWH completes one less heating cycle
per EWH over 24 hours than with the multi-layer model. The EWHs are also turned on for different
lengths of time over the 24-hour horizon. While the multi-layer model resulted in the EWHs being
turned on approximately 20% of the time, this number was 17% for the single-zone model, which
is 15% less time than the multi-layer model. This showcases that EWHs have a higher theoretical
flexibility potential for up-regulation by reduced consumption when using the multi-layer model.

4.2.2 Constraints from the EWH modelling

Equation (4) represents the temperature dynamics for each EWH as in equation (3):

xk,t,l = xk,t−1,l + f(xk,t−1,l∈L) (4)
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f(xk,t−1,l∈L) represents the temperature gradient for k ∈ K, t ∈ T and l ∈ L. The temperat-
ure gradient is a function of the temperature in the previous time instant for all the layers, which
is non-linear in three different ways:

• To model buoyancy, the layers in the 10-layer model are mixed. It is assumed that
all layers must always have a temperature higher than the layer below. Suppose the
heating leads to any layer having a higher temperature than the layer above. In that
case, the temperature in both these two layers is set at the average temperature of the
two layers. This rule-based approach makes the modelling non-linear.

• As a precautionary move to avoid increased asset degradation, an EWH must complete
a heating cycle before being eligible to bid again after making a continuous flexibility
contribution. Completing a heating cycle means that when an EWH is turned on, it
must stay turned on until it reaches the maximum temperature or is bid. If it is bid
and consequently turns on later, it must stay turned on until it reaches the maximum
temperature. This rule is also non-linear in its formulation.

• To ensure that the EWHs’ temperatures follow the thermostat’s non-linear dynamics,
the rule-based function ensures that the EWH turns off at Tmax or when bidden. Fur-
thermore, equation (4) also ensures that the EWH turns on at Tmin, or as soon as a bid
is completed, given that the temperature is between Tmin and Tcomf . The temperature
of the thermostat layer is therefore constrained to the allowable temperature range of
the EWH, as in equations (5) and (6):

xk,t,6 ≥ Tmin − (Tmin − Tcomf ) ∗ δbidk,j (5)

xk,t,3 ≤ Tmax (6)

Here, the temperature is constrained for k ∈ K and t ∈ T , based on the bids for j ∈ J .

4.2.3 Model uncertainty

There are several factors contributing to model uncertainty. The model uncertainty is reduced
substantially by having short time intervals, using an efficient numerical algorithm, and with a 10-
layer representation. Still, the placement of the heating element and thermostat provides significant
model uncertainty.

4.3 Market participation for an aggregator with EWHs

This chapter explains the market context of this work. Firstly, it is suggested how aggregators
with EWHs can operate in a market setting. Then, it is presented the market-based constraints
used in the optimisation problem of this work.

4.3.1 Actions from aggregators

This work assumes that an aggregator with EWHs acts in the Nordic capacity-based mFRR-
market for up-regulation. Figure 15 simplifies this process to five main actions from aggregators
with EWHs.
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Figure 15: Block diagram for the actions of the aggregator, consisting of baseline generation,
preliminary bidding, updated bidding per hour, resource activation per along the way, and com-
pensation to consumers based on financial settlement

First, the aggregator must report a baseline of its aggregated power to the system operators before
the next day starts. The system operator can be a TSO, DSO, or both. In the Nordic mFRR-
market for up-regulation, the system operator is the TSO. However, as the AMI data is available
for the DSOs, it can be assumed that the baseline is also reported to the DSO.

Secondly, the aggregator can submit preliminary bids for the coming 24-hour planning period
in the mFRR-market before the start of the planning period. The Norwegian TSO must receive
these bids within 21:30 before the next day [55]. Then, as the third action, aggregators can submit
new bids or update current bids within 45 minutes of each hour in the planning horizon.

Before activating flexibility along the way, the aggregator should receive the results of the market
settlement and the decision on activation volumes. Then, as the fourth action, it can be assumed
that the aggregator can activate flexibility by overriding the thermostat of the EWHs. The ag-
gregator is assumed only to turn the EWH off to deliver up-regulation in the market. It is also
assumed that the aggregator decides when the EWHs are turned on when reconnection strategies
are used.

This work applies three reconnection strategies to mitigate cold load pick-up and investigate its
effects on the optimal solution and peak load. All three strategies are based on one EWH turning
on every five minutes after providing flexibility. The reconnection for an EWH occurs after the
EWH has provided flexibility and has been turned off. The strategies are different from each other
by the order in which the EWHs are turned on, which are the following:

• Random selection of the EWHs.

• Selection of the EWHs with the lowest temperatures first.

• Selection of the EWHs with the lowest expected temperature 30 minutes after the
flexibility provision. The expected temperature is equal to the current temperature and
the expected change in temperature, assuming the EWHs are turned off, which is largely
a function of hot water usage.

Before the last main action for the aggregators, the system operators should verify how much
flexibility was activated. Then, action 5 for the aggregator concerns consumer compensation based
on a financial settlement process. The consumer compensation should be based on comparing load
with the baseline to validate how much flexibility the aggregator activated from the consumer and,
thus, how much the aggregator and consumer should be compensated for.
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4.3.2 Market-based constraints

It can be assumed that the flexibility from the EWHs must be above a defined minimum size
directly when aggregated by the aggregator or sent to a third party. This ensures the aggregator
can deliver large enough bids in the mFRR-market or large enough energy quantities to a third
party acting in the mFRR-market. The minimum bid size constraint for k ∈ K and j ∈ J is
presented in equation (7):

Phe ∗
∑
n∈K

δbidn,j ≥ Pmin ∗ δbidk,j (7)

It is also assumed that an EWH can only provide flexibility if it is supposed to heat the en-
tire bidding period in the baseline. This is represented mathematically for k ∈ K and j ∈ J in
equation (8).

δbidk,j ≤ 1

B

∑
t∈M

P baseline
k,t (8)

Further, it is assumed that it must pass a certain time so that the system operators can validate
that the EWHs were turned off after being turned on initially. This is represented mathematically
in equation (9).

δbidk,j ≤ δbidk,j−1 +
1

DSOV
∗
∑
t∈V

δpower
k,j∗B−t (9)

Lastly, it is assumed that each EWH cannot bid and heat simultaneously in every bidding period.
This is represented mathematically as in equation (10).

δpower
k,j + δbidk,j ≤ 1 (10)

4.4 Optimisation method

This section presents the optimisation method used in this work. The method consists of collect-
ing input data, generating a baseline, and then solving and updating the optimisation problem
iteratively. Figure 16 presents an overview of the method with four parts.
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Figure 16: Block diagram of the method used in this work, consisting of the collection of input
data, baseline generation, solving and updating the problem iteratively and obtaining the wanted
results

Part 1 concerns this work’s input data, presented in Chapter 5. Part 2 is the baseline generation,
presented as a distinct subsection. Then, parts 3 and 4 concern how the optimisation problem is
solved iteratively. This work’s optimisation problem is presented in two subsections; one for the
mathematical formulation of the optimisation problem and one for the algorithms used to solve it.

4.4.1 Baseline generation

Based on the input data, a power and temperature baseline is created following the temperature
dynamics from equation (4), within the boundaries of inequalities (5) and (6). This means that
when an EWH reaches Tmin, the EWH turns on in the current time step and stays on until Tmax

is reached, and then turns off and stays off until Tmin is reached again. It is assumed that the
baseline is reported to the DSO after completion. In Figure 17, the aggregated baseline power
profile with 100 EWHs for one 24-hour simulation using the multi-layer model is shown.

Figure 17: Aggregated baseline power profile for 100 EWHs over 24 hours using the multi-layer
model
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In this simulation, slightly more than 10% of the EWHs are turned on at the start, as the aggregated
power is above 20 kW. Then, there is a distinct peak in the morning and even higher peaks in the
afternoon and evening, almost reaching 100 kW, equivalent to slightly less than half of the EWHs
being turned on simultaneously.

4.4.2 Mathematical formulation of the optimisation problem

The mathematical formulation of the optimisation problem consists of an objective function and
the constraints deduced in previous chapters. The primary objective of the work is to maximise
flexibility from the EWHs, which can be represented as max z =

∑
k∈K

∑
j∈Jδ

bid
k,j , where indi-

vidual bid contributions are maximised. A complete mathematical formulation of the problem can
be written as the following:

max z =
∑

k∈K

∑
j∈Jδ

bid
k,j

subject to

(1) xk,t,l = xk,t−1,l + f(xk,t−1,l∈L) for k ∈ K for t ∈ T for l ∈ L

(2) xk,t,3 ≥ Tmin − (Tmin − Tcomf ) ∗ δbidk,j for k ∈ K for t ∈ T

(3) xk,t,3 ≤ Tmax for k ∈ K for t ∈ T

(4) Phe ∗
∑

n∈K δbidn,j ≥ Pmin ∗ δbidk,j for k ∈ K for j ∈ J

(5) δbidk,j ≤ 1
B

∑
t∈M P baseline

k,t for k ∈ K for j ∈ J

(6) δbidk,j ≤ δbidk,j−1 +
1

DSOV ∗
∑

t∈V δpower
k,j∗B−t for k ∈ K for j ∈ J

(7) δpower
k,j + δbidk,j ≤ 1 for k ∈ K for j ∈ J

4.4.3 Solving the optimisation problem iteratively with a GA and a reference al-
gorithm

Based on the baseline of power and temperature, the optimisation problem is solved with a GA
and a simplified reference algorithm. The reason the optimisation problem cannot be solved by
an exact method as formulated in section 4.4.2 is that constraint (1) from equation (4) is non-
linear. Adapting the non-linear constraint to a linear constraint would imply non-optimality and
infeasible solutions. Therefore, metaheuristic algorithms like the GA are better suited than exact
methods for this problem, as the metaheuristic methods can handle non-linear constraints. Of the
metaheuristic algorithms, the GA fits this problem as it is well suited to handle binary variables,
which is the case for the bid contributions and operational status of the EWHs. Therefore, a GA
is primarily used in this work. More specifically, this work uses a penalty-based GA, meaning
the objective function from Section 4.4.2 also subtracts penalties for each constraint violation in
each solution run through the objective function. The penalties ensure that most or all optimal
solutions are feasible, depending on how significant the penalties are. In addition to the GA, a
simple reference algorithm was developed to compare and validate the performance of the GA.

When using the GA for a problem like this, bids can be optimised based on prices, minimum
bid size constraints and other criteria. However, the problem of this work is too computationally
intensive if solved over the entire planning horizon. Additionally, the algorithm should be updated
regularly, as it is unknown if the flexibility will activate along the way, and the power and tem-
perature profiles are subject to significant uncertainty. Therefore, the problem of this is solved
iteratively through the planning horizon. Algorithm 2 shows how the problem is solved.
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Algorithm 2 Solving the optimisation problem iteratively with a genetic algorithm

Generate a baseline of power and temperature over the 24-hour planning horizon.
for every optimisation period do

Solve the problem of Section 4.4.2 with a GA, for example as presented in Algorithm 1,
generating flexibility in the form of bid contributions per EWH.
Remove infeasible bid contributions, if any.
Based on the resulting bids, update the power and temperature profiles for the next bidding
period.

end for

After the baseline, the iterative GA includes three steps:

• Solve the optimisation problem as presented in Section 4.4.2 for a certain optimisation
period. The length of the optimisation period is low enough to be computationally
manageable and long enough to optimise bids based on certain criteria, which in this
case, is the minimum bid size constraint. This work uses an optimisation period of two
hours, providing a good trade-off.

• For each period, check if the optimal bids are feasible, meaning they do not violate
any constraints, and remove the constraint-violating bids, if any. This check is done as
the penalty-based GA does not guarantee feasible solutions if the penalty is too low.
Additionally, it allows checking if the bids are initiated along the way, so the power and
temperature schedules can be updated accordingly.

• Simulate the updated prediction for power and temperature schedules for the coming
period, assuming no bids. Then, the power and temperature are used as input for the
next iteration of the GA.

While the GA applies optimisation to find the most flexibility subject to the constraints, the
reference algorithm is based on simple rules. This significantly reduces the algorithm’s simulation
time compared to metaheuristic or exact methods. Algorithm 3 shows how the reference algorithm
is applied.

Algorithm 3 Solving the optimisation problem iteratively with a reference algorithm

Generate a baseline of power and temperature over the 24-hour planning horizon.
for every bidding period do

for every EWH do
Set preliminary bid contribution if constraints (1)-(3) and (5)-(7) are satisfied.

end for
Remove all bid contributions if constraint (4) is violated.
Based on the resulting bids, update the power and temperature profiles for the next bidding
period.

end for

As in the GA, the power and temperature in the reference algorithm are first imported from the
baseline. Then, for each bidding period in the 24-hour planning horizon, a bid contribution is
preliminarily added for every EWH that does not violate any of the constraints (1)-(3) or (5)-(7) if
bidden. Then, if the number of bids satisfies constraint (4) concerning the minimum bid size con-
straint, all the bids are kept, else they are discarded for that bidding period. After this constraint
check, the power and temperature are updated based on the bids, and the algorithm goes to the
next bidding period.

The advantage of the reference algorithm is its simplicity and computational efficiency. The main
disadvantages are that the method does optimise bids for prices and coordinates bids based on the
minimum bid sizes. It does, therefore, not dispatch flexibility optimally over time.
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4.5 Use cases and simulations

This section presents the use cases and simulations conducted in this work. Each use case has
a distinct temperature model, optimisation method, and number of EWHs run a certain number
of times on different hardware with different starting values. However, the simulations also have
several aspects in common. For all simulations, the minimum bid size, Pmin, corresponds to 10% of
the EWHs being turned on. This power quantity equals 2 kW for the simulations with 10 EWHs,
6 kW for the simulations with 30 EWHs and 20 kW for the simulations with 100 EWHs. While
many combinations of the mentioned considerations exist, this work has selected 24 combinations.
Figure 18 summarises the step-wise process of choosing these use cases. The main steps of simula-
tions, marked in blue, have a multi-layer temperature model and use the GA as the optimisation
method. In parallel, two steps are marked red to verify the multi-layer GA to a single-zone model
and a reference algorithm as the optimisation method.

For simplicity, the numbers of generations and individuals per generation for every optimisation
period in every simulation using the GA are equal to a fixed integer multiplied by the number
of feasible bids for that period, denoted as scaling factor. The number of feasible bids over the
optimisation period is the sum of feasible bids in each bidding period, which for every bidding
period is equal to the sum of EWHs being turned on in the baseline in the entirety of that bidding
period. For example, with a portfolio of 10 EWHs in the period 04:00-06:00, if one of them is
turned on between 04:03 and 04:32 and one from 04:29 to 05:03, then the number of feasible bids
for that bidding period is three, consisting of the first EWH in the bidding period 04:15-04:30, and
the second EWH in the periods 04:30-04:45 and 04:45-05:00. With this example, the simulations
using a scaling factor of one would run for three generations with three individuals per generation.
However, if the simulations used a scaling factor of two, it would run for six generations with six
individuals per generation and similarly for nine with a scaling factor of three. In comparison
to running a fixed number of generations and individuals per generation, this solution will run
for more generations, with more individuals per generation in the periods where there are many
available bids, and therefore crucial to maximising the flexibility, and for a lower number of gener-
ations, with fewer individuals per generation when there is little or no flexibility to find, reducing
the simulation time substantially. For simplicity, this work uses scaling factors equal to one, two
or three to illustrate the differences in flexibility and simulation time when doubling and tripling
the number of generations and individuals per generation in the GA.

All simulations were conducted by use of Python 3.10. The Deap library was used for the simula-
tions with the GA, while the reference algorithm did not use any external libraries. All simulations
were run on servers from the Idun cluster by NTNU High Performance Computing Group with
one compute node with an eight mpi process and 10 GB memory.
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Step 1: Use cases
1-3. A thorough
analysis of the
GA with the

multi-layer model
with 10 EWHs

Step 2: Use cases 4-6.
Testing the scalability
of the multi-layer GA
to 30 and 100 EWHs

Step 3: Use
cases 7-9.
Comparing
the GA to the
reference al-
gorithm

Step 4: Use
cases 10-15.
Comparing
the multi-layer
model to the
single-zone
model

Step 5: Use cases
16-24. Improvement

of the problem
by investigation
of reconnection

strategies with 10,
30 and 100 EWHs

Step 6: Adding
mFRR-prices to
the obtained flex-
ibility to quantify
potential revenue
for the aggregator

Step 7: Comparing
the results of all simu-
lations to quantify the
trade-off between the
amount of flexibility
and computational
efficiency for solv-
ing the problem

Figure 18: Flow chart of the optimisation algorithm, consisting of the main activities with the
multi-layer GA in blue and the verifications to the multi-layer GA in red.
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4.5.1 Step 1: Use cases 1-3 for 10 EWHs with a multi-layer temperature model and
GA as optimisation method

This work first thoroughly analyses the performance with the GA using ten multi-layer modelled
EWHs. In use cases 1-3, ten simulations are conducted for ten sets of random starting temperatures
and power, 100 for each use case. This is primarily to quantify the main results for the problem
with a large sample size to account for the randomness of the GA and the starting values for
power and temperature. In most other use cases, the number of simulations is reduced to ten for
computational reasons. For direct comparison between the scaling factors, use cases 1-3 are only
differentiated by having a scaling factor of 1, 2 and 3, respectively.

4.5.2 Step 2: Use cases 4-6 for 30 and 100 EWHs with a multi-layer temperature
model and GA as optimisation method

Use cases 4-6 primarily investigate the trade-off between flexibility and simulation time for the GA
when increasing the number of multi-layer modelled EWHs. 30 EWHs are applied in use cases
4 and 5, where ten simulations are conducted with one simulation per ten sets of starting values
for power and temperature. To investigate the trade-off between optimality and computational
efficiency with 30 EWHs, use cases 4 and 5 have scaling factors of 1 and 2, respectively. Then,
use case 6 similarly has ten simulations but with 100 EWHs and a scaling factor of 1. Scaling
factors 1 and 2 are used for 30 EWHs and only 1 for 100 EWHs because it is very computationally
expensive to conduct simulations simultaneously with many EWHs and a high scaling factor.

4.5.3 Step 3: Use cases 7-9 for 10, 30 and 100 EWHs with a multi-layer temperature
model and a reference algorithm as optimisation method

To validate the performance and simulation times of the GA, use cases 7-9 solves the same problem
as in use cases 2, 5 and 6 with the reference algorithm rather than the GA. The problem is solved
for 10, 30 and 100 EWHs to assess the performance of the GA compared to the reference algorithm
for different numbers of EWHs in the portfolio. As the reference algorithm cannot produce different
results for a set of starting values for power and temperature, ten simulations were conducted for
each use case, each with a unique set of starting values for power and temperature.

4.5.4 Step 4: Use cases 10-15 for 10, 30 and 100 EWHs with a single-zone temper-
ature model for both optimisation methods

To validate the multi-layer temperature model, use cases 10-15 have the single-zone temperature
model using the GA and reference algorithm alternately, with 10, 30 and 100 EWHs. The simu-
lations with the GA have scaling factors of 2, 2 and 1, which directly compare to use cases 2, 5
and 6, respectively. These use cases are chosen because their scaling factors lead to good trade-offs
between flexibility and simulation time for 10, 30 and 100 EWHs. To compare with an equal
number of simulations as in the compared use cases, 100 simulations in use case 10 are conducted
for a direct comparison with use case 2. Likewise, ten simulations are conducted in use cases 11-15,
each with unique starting values for power and temperature.

4.5.5 Step 5: Use cases 16-24 for 10, 30 and 100 EWHs with a multi-layer temper-
ature model, GA as optimisation method and reconnection strategies

Three reconnection strategies are applied for 10, 30 and 100 multi-layer modelled EWHs using
the GA in the last nine use cases. For every use case, ten simulations are performed with unique
starting values for power and temperature. Similarly to use cases 10-15, these use cases have
scaling of 2, 2 and 1 for 10, 30 and 100 EWHs, respectively.
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4.5.6 Summary of steps 1-5

Table 7 summarises the 24 use cases with temperature model and reconnection strategy, if any,
optimisation method, number of EWHs, scaling factor for the simulations using the GA and the
number of simulations conducted per use case.
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Table 7: Use cases in this work, presented with temperature model and reconnection strategy,
optimisation method, number of EWHs, scaling factor in the GA and number of simulations
conducted

Use case
Temperature
model

Optimisation
method

Number
of EWHs

Scaling
factor
in the GA

Number of
simulations

1 Multi-layer GA 10 1 100
2 Multi-layer GA 10 2 100
3 Multi-layer GA 10 3 100
4 Multi-layer GA 30 1 10
5 Multi-layer GA 30 2 10
6 Multi-layer GA 100 1 10

7 Multi-layer
Reference
algorithm

10 - 10

8 Multi-layer
Reference
algorithm

30 - 10

9 Multi-layer
Reference
algorithm

100 - 10

10 Single-zone GA 10 2 100

11 Single-zone
Reference
algorithm

10 - 10

12 Single-zone GA 30 2 10

13 Single-zone
Reference
algorithm

30 - 10

14 Single-zone GA 100 1 10

15 Single-zone
Reference
algorithm

100 - 10

16
Multi-layer +
reconnection
strategy 1

GA 10 2 10

17
Multi-layer +
reconnection
strategy 2

GA 10 2 10

18
Multi-layer +
reconnection
strategy 3

GA 10 2 10

19
Multi-layer +
reconnection
strategy 1

GA 30 2 10

20
Multi-layer +
reconnection
strategy 2

GA 30 2 10

21
Multi-layer +
reconnection
strategy 3

GA 30 2 10

22
Multi-layer +
reconnection
strategy 1

GA 100 1 10

23
Multi-layer +
reconnection
strategy 2

GA 100 1 10

24
Multi-layer +
reconnection
strategy 3

GA 100 1 10
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4.5.7 Step 6: Applying mFRR-prices

Based on the results of these use cases, step 6 applies mFRR-prices to quantify the potential revenue
for the aggregator based on the obtained flexibility. The mFRR-prices are important as aggregators
can be assumed to want to maximise revenue from flexibility rather than the flexibility itself. There-
fore, the objective function of the problem can be extended to max z =

∑
k∈K

∑
j∈Jδ

bid
k,jλ

mFRR
j ,

where λmFRR
j is the mFRR market price for a considered bidding period j. The power provided

by an EWH in a time instant is multiplied by the length of the time instant to obtain the energy
quantity, multiplied by the prices in monetary value per energy quantity, resulting in a monetary
value. In this work, the time is one hour, and the currency is EUR.

4.5.8 Step 7: Quantifying the results

The main results of the work are the flexible energy and revenue, as well as the algorithm’s
simulation time and change in peak load compared to the baseline. Therefore, the results of all
simulations are compared in step 7 to quantify the trade-off between the amount of flexibility and
computational efficiency for solving the problem. The flexibility is presented in kWh per EWH
per day, while the revenue is found by multiplying this with 1/1000 of the mFRR-price given in
EUR/MWh, resulting in the revenue in EUR. The algorithm’s simulation time is rounded off to the
nearest minute, while the change in peak load compared to the baseline is the percentage change
of the highest minutely peak over the planning horizon. When running several simulations per use
case, the average results, best results and standard deviations from the samples are also found.
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5 Case Study

This chapter presents the case study in this master thesis concerning EWH modelling, market
participation with EWHs, and optimisation of EWHs. The chapter is divided into three sections,
each presenting input data. The first section presents the input data for modelling EWHs, partic-
ularly the hot water usage and chosen parameters for starting power and temperature values. The
second section is dedicated to market participation, presenting three price scenarios used in this
work. Finally, the third section concerns the optimisation problem, showing the chosen dimensions
of sets and the parameters used in the GA.

5.1 Input data for the EWHs

Besides the hot water usage, the physical parameters of the EWHs are equal to those in Table 1.
In addition, the conductivity coefficient for each layer in the model has a dimensionless value of
2.21, equal to that used for a 10-layer model in relevant literature [33]. The temperature setpoints
of the thermostat are set at typical values for Norwegian operation; 70 °C and 75 °C, respectively
[24]. To represent user comfort, a temperature of 65 °C is used, as in relevant literature [77]. This
temperature is considered in layer 5, the sixth layer starting from the bottom, located in the middle
of the tank.

5.1.1 Hot water usage

To represent Nordic behaviour, the hot water usage is synthetically generated from a stochastic
load model from Sweden, last updated in 2018 [99], [100], [101]. The model is based on hot water
withdrawals for bathing, showering and miscellaneous activities. As standard parameters, 16 L per
minute is used for six minutes to represent bathing, 10 L per minute for four minutes to represent
showering and 4 L per minute for two minutes to represent miscellaneous activities. The miscel-
laneous activities occur with a 1% likelihood per minute and represent the many minor withdrawals
from food preparation, hand washing, dishwashers and washing machines. Unlike other activities,
bathing and showering are based on time-of-use data [29].

This work uses data for 100 EWHs for up to five days. The data is mainly based on the standard
parameters of the stochastic load model, with some minor changes, including using 14 L instead
of 16 L for bathing. For approximately 92% of the minutes, no hot water is extracted. Of the
minutes with withdrawals, 94% of the occurrences are at 4 L, while only 5% of the withdrawals
are 10 L, and 1% 14 L. The average minutely withdrawals for 24 hours are shown in Figure 19.
For comparison purposes, as most of the literature presents the hot water usage hourly, Figure 20
presents the average hourly withdrawals for 24 hours. Lastly, all elements in the hot water usage
are scaled such that the share of time the EWHs are turned on is around 20%, which represents a
realistic operation of the EWHs [13].
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Figure 19: Average hot water usage [L]
per minute over 24 hours from the
aggregated profile of 100 EWHs from Sweden
[99], [100], [101]

Figure 20: Average hot water usage [L]
per hour over 24 hours from the
aggregated profile of 100 EWHs from Sweden
[99], [100], [101]

The hot water extraction has a distinct peak in the morning and an even higher and long-lasting
peak in the afternoon. The profile of hot water usage matches well compared to relevant literature
[15], [33].

5.1.2 Starting values of power and temperature

To investigate likely starting values of xk,0,l and δpower
k,0 , the start temperatures were first set at

xk,0,l = (Tmax + Tmin)/2, while δpower
k,0 for each EWH had a 10% chance of being equal to 1, e.g.

the EWH being turned on at the start. Then, ten simulations of the baseline for five days each
were conducted to find the typical values of xk,t,l and δpower

k,0 at 00:00 after five days. The average
values for temperature in each layer and the standard deviation in each layer were registered to
obtain a distribution of the temperatures.

The end values for power and temperature were interpreted as the starting values for power and
temperature at the beginning of the planning horizon. The average share of EWHs turned on
at 00:00 after five days was 9.2% for the multi-zone model and 10.6% for the single-zone model.
Based on these results, the EWHs were given a 10% chance of being turned on at the start of the
planning horizon. For simplicity, the starting temperature in each layer for each EWH was set
as a random sample from a standard Gaussian distribution with an expected value of the average
temperature with a standard deviation equal to the average found for that considered layer. Table
8 displays the average temperatures at 00:00 for each of the ten layers between the 100 EWHs
after running a five-day simulation with the multi-layer model. The standard deviations for these
values are also included. For the corresponding single-zone model, the average temperature was
73.4 °C with a standard deviation of 1.4 °C.

Table 8: Average temperatures and standard deviation of the 100 EWHs after five days of simu-
lation using the multi-layer temperature model

Layer 1 2 3 4 5 6-10
Average temperature (°C) 24.2 59.6 69.9 73.3 74.2 74.4
Standard deviation (°C) 5.3 9.3 4.5 1.6 0.7 0.5
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5.2 Price scenarios in the mFRR-market

In addition to the minimum bid size, the parameters related to the market are the mFRR-prices.
Although not part of the optimisation algorithm, this work applies three different price scenarios
after the optimisation process. For simplicity, these were all chosen among the available data for
hourly mFRR-prices for the price area NO1 from January 2023 [102].

• Scenario 1: Average prices. The average mFRR-price for January 2023 in NO1 was
128.34 EUR/MWh. To represent this price through a typical day, it is used the prices
of January 10th 2023, which had an average price of 128.84 EUR/MWh. This day had
a minimum price of 55.77 EUR/MWh and a maximum of 170.00 EUR/MWh.

• Scenario 2: Volatile prices. To represent a day with volatile prices, it is used the prices
of January 19th 2023 with an average price of 187.56 EUR/MWh, a minimum of 102.31
EUR/MWh and a maximum of 700.00 EUR/MWh.

• Scenario 3: High prices. The highest average price in January 2023 occurred on January
23rd 2023 at 243.33 EUR/MWh, with a minimum of 134.10 EUR/MWh and a maximum
of 700.00 EUR/MWh.

5.3 Optimisation parameters

This section presents the dimensions of sets in the optimisation problem and the parameters used
in the GA.

5.3.1 Dimensions of sets

Because the hot water usage is given in hourly values over one day, it is used a 24-hour plan-
ning horizon. Consequently, the number of bidding periods is 96, assuming four bidding periods
each hour. The number of modelling periods for power and temperature is assumed to equal the
number of minutes in the planning horizon, which is 1440. This equals 15 modelling periods of
power and temperature per bidding period. The number of layers is ten, and the number of minutes
for bid validation is five. The dimensions of sets used in this case study are, therefore, the following:

Hours in the planning horizon: H = 24

Bidding periods in the planning horizon: J = 96

Modelling periods for power and temperature in the planning horizon: T = 1440

Temperature layers modelled in the EWH: L = 10

Modelling periods for power and temperature in a bidding period: M = 15

Modelling periods for power and temperature for the DSO to validate a bid: V = 5

5.3.2 Parameters used in the GA

This work applies a penalty-based GA as it is presented in Algorithm 1. In addition to the attrib-
utes, the GA uses five parameters: the number of generations and individuals per generation and
the probabilities for crossover, mutation and bit-flip mutation. Penalties are also applied in the
objective function and random starting values for the attributes. The attributes in this problem
are, for each EWH in each bidding period in an optimisation period, whether the EWH is bidden in
that bidding period. If an EWH is bidden in a bidding period, then the attribute’s value is equal to
1, and 0 otherwise. The number of attributes per individual equals the number of EWHs multiplied
by the number of bidding periods in the optimisation period, which is eight 15-minute periods over
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two hours. This summation makes the number of attributes equal to 80 for the simulations with 10
EWHs in the portfolio, 240 with 30 EWHs in the portfolio and 800 with 100 EWHs in the portfolio.
The starting values for the attributes are, for simplicity, all set random binary values of one or zero.

As presented in Chapter 4.5, the number of generations and individuals per generation is chosen
based on the number of feasible bids for each optimisation period. While these values vary for each
period, the other parameters remain constant for each simulation. Of the constant parameters, this
work uses a mutation rate of 0.2 and a crossover rate of 0.8, as commonly found in the literature
[103], [104]. Although the bit-flip mutation probability is typically recommended at the inverse of
the number of attributes, which would be 1/80, 1/240 and 1/800 with 10, 30 and 100 EWHs in
the portfolio, this work uses a bit-flip mutation probability of 1/20 to ensure more mutations of
attributes [105]. This ensures diversification is prioritised sufficiently against intensification in the
search for good solutions.

For simplicity, the penalties for each constraint violation are set at one, aiming to be high enough
to ensure most constraint-violating bids are removed and low enough to not lose out on promising
solutions that barely violate one or more constraints along the way. Then, when each optimisa-
tion period ends, if any of the bids in the final solution from that optimisation period violate any
constraint, these bids are removed from the solution.
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6 Results

This chapter includes the most important results from the simulations of the 24 use cases used in
this work. Section 6.1 presents the results from the multi-layer GA. Section 6.2 then compares these
results to the reference algorithm and Section 6.3 to the single-zone model, using both algorithms.
Further, the results of the multi-layer GA with three different reconnection strategies are presented
in Section 6.4. Lastly, mFRR-prices are added in Section 6.5, and the results are summarised in
Section 6.6.

6.1 Results with the multi-layer genetic algorithm

6.1.1 Use cases 1, 2 and 3 - 10 EWHs

Use cases 1, 2 and 3 with 10 EWHs, a GA and a multi-layer model were all run for 100 simulations
with ten sets of identical starting values and 10 EWHs per simulation. Table 9 presents the results
from these use cases as the average, highest average and highest recorded flexible energy of the 100
simulations, average simulation time and average change in peak load compared to the baseline.
Here, the highest average means the average of the ten highest recordings, one per each set of
identical starting values. Then, Figure 21 shows the distribution of achieved flexible energy among
the 100 simulations, where each of these use cases had a standard deviation of 0.4 kWh/EWH.

Table 9: Results from use cases 1, 2 and 3 with the multi-layer GA - 10 EWHs

Use
case

Scaling

Average
flexible
energy
[kWh/
EWH]

Highest
average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

1 1 3.8 4.4 4.8 5 8%
2 2 4.3 5.0 5.4 20 4%
3 3 4.4 5.0 5.3 42 5%

Figure 21: Results from use cases 1, 2 and 3 showing the distribution of average and best values
for flexible energy per EWH. The results are presented as box plots with a box from the first to
the third quartile, a vertical line representing the median, and outliers represented as dots.
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The flexibility in use case 2 was, on average, 13% higher than in use case 1 and 14% for the best
simulation. However, use case 2 had a simulation time four times as high as use case 1. Moreover,
the increase in peak load was 4% less compared to use case 1. On average, the flexibility in use
case 3 was 16% greater than in use case 1 and 14% higher for the best simulation. However, it
took ten times as long to run. The increase in peak load was 3% lower in use case 3 than in use
case 1. Compared to use case 2, the level of flexibility provided by use case 3 was similar, but the
simulation time and peak load were significantly higher.

6.1.2 Use cases 4 and 5 - 30 EWHs

Use cases 4 and 5 with a GA and a multi-layer model were all run for ten simulations and 30
EWHs. Table 10 presents the results from these use cases as the average, highest and standard
deviation of the recorded flexible energy between the ten simulations, average simulation time and
average change in peak load compared to the baseline.

Table 10: Results from use cases 4 and 5 with the multi-layer GA - 30 EWHs

Use
case

Scaling

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Standard
deviation
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

4 1 2.9 3.3 0.3 73 4%
5 2 3.3 3.8 0.2 187 7%

On average, the flexibility in use case 5 was 14% higher than in use case 4 and 15% higher for the
best simulation, although the simulation time was 2.5 times longer. However, the increase in peak
load was 3% higher compared to use case 4.

Compared to use case 1, which has the same scaling factor for 10 EWHs, use case 4 provided
a total flexibility that was 2.2 times higher, although approximately 24% less per EWH. The sim-
ulation time for use case 4 was around 18 times higher than for use case 1, and the increase in
peak load compared to the baseline was similar to use case 1.

Compared to use case 2, which has a scaling factor of 2 for 10 EWHs, the total flexibility in
use case 5 was 2.3 times higher, although approximately 25% less per EWH. The simulation time
for use case 5 was around nine times longer than for use case 2, and the increase in peak load
compared to the baseline was 3% higher than for use case 2. Figures 22 and 23 illustrate the total
flexibility and aggregated power for one simulation in use case 5, where the flexibility provided was
3.6 kWh per EWH.
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Figure 22: Hourly flexible energy for one simulation of 24 hours in use case 5 with 30 EWHs

Figure 23: Aggregated power before and after optimisation for one simulation of 24 hours in use
case 5 with 30 EWHs

The plots indicate that flexibility is available right from the beginning. Consequently, the ag-
gregated power in the first hour is significantly lower than in the baseline due to the provision
of flexibility from the first minute. The highest flexible power occurs around 8 pm, which is also
around when the load is highest. Moreover, even though the load profile changes, the peak load
remains identical to the baseline. Nevertheless, in this simulation, the peak load of over 30 kW
occurs a few hours later than in the baseline.

6.1.3 Use case 6 - 100 EWHs

Use case 6 of the multi-layer GA had an average flexibility of 2.5 kWh per EWH and a maximum
flexibility of 2.8 kWh per EWH, with a standard deviation of 0.2 kWh per EWH. The average
simulation time was approximately 51 hours, and the average change in peak load compared to
the baseline was 3%, with a standard deviation of 9%. The simulation time of over two days per
simulation showcases the need for computational resources and parallel simulations when having
a large number of EWHs. The total flexibility in use case 6 was 6.6 times higher than in use case
1 but 34% less per EWH. The simulation time was more than 600 times higher, and the increase
in peak load compared to the baseline was 5% less than use case 1. Figures 24 and 25 display
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the total flexibility and aggregated power for one simulation in use case 6, where the flexibility
provided was 2.7 kWh per EWH.

Figure 24: Hourly flexible energy for one simulation of 24 hours in use case 6 with 100 EWHs

Figure 25: Aggregated power before and after optimisation for one simulation of 24 hours in use
case 6 with 100 EWHs

The plots show that flexibility is provided steadily throughout the day, with a higher density in
the evening. There is a shifted and increased power peak in the morning after the optimisation,
showcasing the rebound issue. However, as the evening peak is delayed and reduced, the overall
peak load is reduced by 2%.

6.2 Results with the multi-layer reference algorithm

Use cases 7, 8 and 9 were all run for ten simulations with 10, 30 and 100 EWHs, respectively.
Table 11 presents the results from these use cases as the average, highest and standard deviation
of the recorded flexible energy between the ten simulations, average simulation time and average
change in peak load compared to the baseline.
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Table 11: Results from use cases 7, 8 and 9 with the multi-layer reference algorithm

Use
case

Number
of EWHs

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Standard
deviationx
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

7 10 3.1 3.5 0.3 < 1 11%
8 30 2.6 2.7 0.1 < 1 2%
9 100 2.4 2.6 0.1 < 1 15%

With 30 EWHs, the total flexibility was 2.5 times higher but around 16% less per EWH, and the
increase in peak load was lower compared to the baseline. For the simulations with 100 EWHs,
the total flexibility was 7.7 times as high as with 10 EWHs, but the average flexibility per EWH
was 23% less.

Although significantly faster than the GA, as all simulations were conducted in less than a minute,
the reference algorithm provided 4-30% less flexibility on average and 11-30% less for the best sim-
ulations. Additionally, the reference algorithm resulted in a higher increase in peak load than the
GA for the simulations with 10 and 100 EWHs, but a lower average peak load for the simulations
with 30 EWHs.

6.3 Results with the single-zone model

While use case 10 was run for 100 simulations, use cases 11-15 were all run for ten simulations.
Having a significant amount of samples from use case 10, Figure 26 presents the distribution of
flexibility from use case 10, which had a standard deviation of 0.1 kWh/EWH. It can be noted
that all use cases here had a standard deviation of 0.1 or 0.2 kWh/EWH. Table 12 then presents
the results from all use cases with the single-zone model. The results are presented as the average
and highest recorded flexible energy, average simulation time and average change in peak load
compared to the baseline. It can be noted that while use cases 10 and 12 with the GA used a
scaling factor of 2, use case 14 had a scaling factor of 1.

Figure 26: Results from use case 10 showing the distribution of average and best values for flexible
energy per EWH. The results are presented as box plots with a box from the first to the third
quartile, a vertical line representing the median, and outliers represented as dots.
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Table 12: Results from use cases 10-15 with the multi-layer reference algorithm

Use
case

Number
of EWHs

Optimisation
method

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

10 10 GA 2.3 2.7 1 -3%

11 10
Reference
algorithm

2.9 3.1 < 1 -6%

12 30 GA 2.0 2.4 23 6%

13 30
Reference
algorithm

2.0 2.2 < 1 16%

14 100 GA 1.7 2.0 157 7%

15 100
Reference
algorithm

1.9 2.0 < 1 8%

The results with the single-zone model suggest that the reference algorithm can find more flexibility
faster than the GA, highlighting the need for an improved GA for the single-zone model. Compared
to the equivalent multi-zone reference model, the single-zone model provided approximately 7-32%
less flexibility on average.

6.4 Results with reconnection strategies

6.4.1 Use cases 16, 17 and 18 - 10 EWHs

Table 13 presents the results of the reconnection strategies in use cases 16-18 compared to the
results of use case 2, which, similar to use cases 16-18, has a multi-layer temperature model for ten
EWHs and GA with a scaling factor of 2. However, as use case 2 was run in 100 simulations and
use cases 16-18 in ten, it is shown the average highest flexibility for use case 2 for a fair comparison.

Table 13: Flexible energy, simulation time and change in peak load with the reconnection strategies
in use cases 16-18 compared to no reconnection strategy from use case 2 - 10 EWHs

Use
case

Reconnection
strategy

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Standard
deviation
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

2 None 4.3 5.0 0.4 19 4%
16 1 4.5 5.8 0.6 20 3%
17 2 4.5 5.1 0.5 20 -6%
18 3 4.4 4.5 0.1 26 -10%

All reconnection strategies resulted in more flexibility on average than without any reconnection
strategy. However, significant deviations occurred for the best simulations, ranging from 4.5 kWh
per EWH for the third reconnection strategy to 5.8 kWh per EWH for the first. There were signi-
ficant deviations in the average change in peak load, as the second and third reconnection strategies
reduced the peak load by six and 10% on average. In comparison, the first strategy increased it by
3%, compared to a 4% increase without reconnection strategies. In contrast to the results for peak
load, the results for simulation time were more consistent, around 20 minutes for strategies 1 and
2 and around 26 minutes for strategy 3. The second and third reconnection strategies provided
similar average flexibility to the first strategy while simultaneously better accounting for the user
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temperature comfort without increasing peak load. However, the first strategy resulted in this
study’s highest recorded flexibility per EWH. Figures 27 and 28 show this simulation’s flexibility
and power profile before and after optimisation.

Figure 27: Hourly flexible energy for the simulation with the most flexibility for 10 EWHs using
reconnection strategy 1

Figure 28: Aggregated power before and after optimisation for the simulation with the most
flexibility for 10 EWHs using reconnection strategy 1

For this simulation, flexibility was found in most hours of the day, including the first and last hour,
and distinct peak flexible energy was found at around 8 am, 6 pm and 10 pm. It can also be seen
that the peak load was reduced from 14 kW to 12 kW, meaning that 6 of 10 EWHs were turned
on simultaneously after the optimisation compared to 7 of 10 before the optimisation.

6.4.2 Use cases 19, 20 and 21 - 30 EWHs

Table 14 presents the results of the reconnection strategies in use cases 19-21 compared to the
results of the fifth use case, which, similar to use cases 19-21, has a multi-layer temperature model
for 30 EWHs and GA with a scaling factor of 2.
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Table 14: Flexible energy, simulation time and change in peak load with the reconnection strategies
in use cases 19-21 compared to no reconnection strategy in use case 5 - 30 EWHs

Use
case

Reconnection
strategy

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Standard
deviation
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

5 None 3.2 3.8 0.2 187 7%
19 1 3.6 4.3 0.5 263 4%
20 2 3.4 3.9 0.3 253 2%
21 3 3.2 3.6 0.3 293 4%

On average, the use cases with reconnection strategies and 30 EWHs offered equal or more flexibility
than the simulations without reconnection strategy. The simulation time was approximately 4-5
hours with reconnection strategies and 3 hours without reconnection strategies. Moreover, all
reconnection strategies resulted in lower peak load, with an average increase ranging from 2%
to 4%, compared to 7% without reconnection strategies. While the second and third strategies
provided less flexibility than the first, they also considered user temperature comfort better without
increasing peak load more.

6.4.3 Use cases 22, 23 and 24 - 100 EWHs

Table 15 presents the average and highest flexible energy, average simulation time and average
change in peak load of the reconnection strategies in use cases 22-24. Table 15 also includes the
results of the sixth use case, which, similar to use cases 22-24, has a multi-layer temperature model
for 100 EWHs and GA with a scaling factor of 1.

Table 15: Flexible energy, simulation time and change in peak load with the reconnection strategies
in use cases 22-24 compared to no reconnection strategy in use case 6 - 100 EWHs

Use
case

Reconnection
strategy

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Standard
deviation
[kWh/
EWH]

Average
simulation
time [min]

Average
change in
peak load

6 None 2.5 2.8 0.2 3052 3%
19 1 2.5 2.7 0.3 2821 8%
20 2 2.5 2.5 0.2 2811 3%
21 3 2.5 2.8 0.2 2626 3%

All reconnection strategies provided equal average flexibility compared to case 6 without a re-
connection strategy. Moreover, the first and third reconnection strategies and use case 6 without
reconnection strategy all produced an equal change in peak load of 3%, while reconnection strategy
2 provided an 8% increase.

6.5 Applying mFRR-prices

Different numbers for the aggregator’s revenue in the mFRR-market can be found when applying
the three price scenarios to the flexibility. Using the average and best values for 10, 30 and 100
EWHs of all results, Figure 29 depicts the potential market revenue for the aggregator. The average
and best values for 10 EWHs are 4.5 and 5.8 kWh per EWH per day, for 30 EWHs are 3.5 and 4.3
kWh per EWH per day and for 100 EWHs are 2.5 and 2.8 kWh per EWH per day.
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Figure 29: Average and highest potential revenue per day from the mFRR-market for the aggreg-
ator - using three price scenarios and 10, 30 and 100 EWHs

With 10 EWHs, the aggregator can expect to make 5-15 EUR daily, depending on the price scen-
ario. For price scenario 1 with average prices, the aggregator can expect to make 5.0-7.5 EUR
depending on if the average or highest flexibility from the simulations is used. The aggregator can
expect to make 8.5-11.0 EUR daily for the second scenario with volatile prices. However, for the
volatile price scenario, this depends strongly on how flexibility is provided throughout the day.

The aggregator can expect to make around five EUR per day if all flexibility is provided in the
hour with the lowest price. With 30 EWHs in the portfolio, the aggregator can expect to make
10-30 EUR daily. Lastly, with 100 EWHs in the portfolio, the revenue is even more uncertain but
can be expected to be around 30-70 EUR daily for the aggregator, depending on the price scenario.

6.6 Summary of results

This section primarily summarises the results for the different use cases, distinguishing between
the simulations using 10, 30 and 100 EWHs. Then, the results for different numbers of EWHs are
compared. The comparisons show the used temperature model, optimisation method and there-
under scaling of the GA when used, achieved flexible energy, average simulation time and average
change in peak load compared to the baseline.

The 24 use cases resulted in varying degrees of flexibility, simulation times and changes in peak
load. The average daily flexibility per EWH ranged from 1.7 to 4.4 kWh, depending on the use
case. Some use cases provide significantly more flexibility than others but often at the cost of
longer simulation times. The average increase in peak load compared to the baseline ranged from
-3% to 16%, depending on the use case.

6.6.1 Results with 10 EWHs

Table 16 shows the results for 10 EWHs with the different methods in this work. Then, Figure 30
presents achieved flexible energy, best and average, for the use cases with multi-layer temperature
modelling, compared to the simulation times used to achieve this flexibility.
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Table 16: An overview of flexible energy, simulation time and change in peak load for the considered
methods and models - 10 EWHs

Model Method Scaling

Average
flexible
energy
[kWh/
EWH]

Highest
average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Average
simulation
time [min]

Average
change
in peak
load

Multi
-layer

GA 3 4.4 5.0 5.4 42 5 %

Multi
-layer

GA 2 4.3 5.0 5.3 19 4 %

Multi
-layer

GA 1 3.8 4.4 4.8 5 8 %

Multi
-layer

Reference
algorithm

- 3.1 - 3.5 < 1 11 %

Single
-zone

Reference
algorithm

- 2.9 - 3.1 < 1 -6 %

Single
-zone

GA 2 2.3 2.4 2.7 1 -3 %

Figure 30: Flexible energy per EWH per simulation time and number of simulations with scaling
factors of 1, 2 and 3 in the GA - 10 EWHs

For 10 EWHs, use case 3 provided the highest average flexibility. Use case 2 also showed promising
results, with 0.1 kWh per EWH less average flexibility than use case 3 but with less than half
of the average simulation time. The other use cases with 10 EWHs provided less flexibility than
use cases 2 and 3 but with shorter simulation times. Using the GA, the use cases with longer
simulation times generally provided higher flexibility without increasing the peak load. It is also
evident that the simulations with a multi-layer model provide significantly more flexibility than a
single-zone model but at the expense of increased peak load.

6.6.2 Results with 30 EWHs

Table 17 shows the results for 30 EWHs for the different methods in this work. Then, Figure 31
presents achieved flexible energy, best and average, for the use cases with multi-layer modelling,
compared to the simulation times used to achieve this flexibility.
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Table 17: An overview of flexible energy, simulation time and change in peak load for the considered
methods and models - 30 EWHs

Model Method Scaling

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Simulation
time [min]

Change in
peak load

Multi-layer GA 2 3.2 3.8 187 7 %
Multi-layer GA 1 2.9 3.3 73 4 %

Multi-layer
Reference
algorithm

- 2.6 2.7 < 1 2 %

Single-zone
Reference
algorithm

- 2.0 2.4 < 1 6 %

Single-zone GA 2 2.0 2.2 23 16 %

Figure 31: Flexible energy per EWH per simulation time and number of simulations with scaling
factors of 1 and 2 in the GA - 30 EWHs

The results for 30 EWHs show a wide range of flexibility from the different use cases. The best
results were achieved in use case 5 with the GA and multi-layer model, achieving the highest
average and best flexibility. Further, the simulation time varied significantly, with some use cases
taking less than a minute to complete while use case 5 required several hours. Opposite from the
results with 10 EWHs, the single-zone model here provides a much-increased peak load, being 16%
on average with the GA.

6.6.3 Results with 100 EWHs

Table 18 shows the average results for 100 EWHs for the different methods in this work. Then,
Figure 32 presents achieved flexible energy, best and average, for the use cases with multi-layer
modelling, compared to the simulation times used to achieve this flexibility.
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Table 18: An overview of flexible energy, simulation time and change in peak load for the considered
methods and models - 100 EWHs

Model Method Scaling

Average
flexible
energy
[kWh/
EWH]

Highest
flexible
energy
[kWh/
EWH]

Simulation
time [min]

Change in
peak load

Multi-layer GA 1 2.5 2.8 3052 3 %

Multi-layer
Reference
algorithm

- 2.4 2.5 < 1 15 %

Single-zone
Reference
algorithm

- 1.9 2.0 < 1 8 %

Single-zone GA 1 1.7 2.0 157 7 %

Figure 32: Flexible energy per EWH per simulation time and number of simulations with a scaling
factor of 1 in the GA - 100 EWHs

With 100 EWHs, the GA achieved the most flexible energy with the multi-layer model and the
lowest increase in peak load. However, its simulation time was around 51 hours. The reference
algorithm found only 0.1 kWh/EWH less flexibility on average but with a simulation time of less
than a minute. On the downside, the reference algorithm had a 15% average increase in peak load,
compared to 3% for the GA.

6.6.4 Results with reconnection strategies

For 10, 30 and 100 EWHs represented, all reconnection strategies resulted in higher than or equal
average flexibility compared to the simulations without reconnection strategies. Simultaneously,
reconnection strategies 2 and 3 reduced the peak load substantially compared to the first recon-
nection strategy and without reconnection strategies for the simulations with 10 and 30 EWHs in
the portfolio. The reconnection strategies achieved these results while simultaneously managing
cold-load pick-ups but with the drawback of an increased risk of cold water for consumers.

6.6.5 Results with mFRR-prices

When applying mFRR-prices to the obtained flexibility, the revenue for aggregators can be estim-
ated. Although the total flexibility, and thus revenue, increases with the number of EWHs, the
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flexibility and thus revenue per EWH decreases with the number of EWHs. Depending on the
price scenarios and the number of EWHs in the portfolio, this work estimates that an aggregator
can expect a revenue of 0.3 to 1.5 EUR per EWH per day.
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7 Discussion

The discussion primarily addresses the main factors impacting the optimisation results, including
the number of EWHs in the portfolio, choice of temperature models and optimisation methods,
reconnection strategies and values of parameters. Secondarily, the discussion addresses the chal-
lenges of applying the methods in the real world for aggregators.

In this case study, the number of EWHs greatly impacted the achieved flexibility, where the use
cases involving 100 EWHs provided more aggregated flexibility and less per EWH. The significant
difference in flexibility per EWH between the simulations with a different number of EWHs can be
explained by the minimum bid size constraint requiring 10% of the portfolio to bid simultaneously.
While this requires only one EWH to bid when having ten EWHs in the portfolio, it requires ten
EWHs to bid with 100 EWHs in the portfolio, thus losing out on flexibility when having nine or
fewer EWHs being possible to bid. In addition to less flexibility and revenue per EWH, signi-
ficantly longer simulation times were required for the use cases with many EWHs, exponentially
increasing with the number of EWHs using the GA. However, when using the reference algorithm,
all simulations were completed within one minute, and the simulation time increased linearly with
the number of EWHs.

Multi-layer temperature modelling yielded significantly more flexibility than single-zone temper-
ature modelling. The number of feasible bids per iteration may be one of the reasons why the
simulations with the multi-layer model outperformed the simulations with a single-zone model in
finding flexibility. Moreover, the number of feasible bids per iteration in the simulations was par-
ticularly decisive when using the GA, as the numbers of generations and individuals per generation
in the GA were chosen proportional to the number of feasible bids. While the EWHs were found
to be turned on 17% of the time with the single-zone model, the multi-layer model found, with
higher accuracy, that the EWHs were turned on 20% of the time, using the same input data as
with the single-zone model. Consequently, the numbers of feasible bids were significantly lower
for the simulations using the single-zone model. It was, therefore, less flexible energy to extract
in the simulations using the single-zone model. Additionally, as the numbers of generations and
individuals per generation in the GA were set proportional to the number of feasible bids, the GA
was less powerful for the simulations with the single-zone model.

Using the multi-layer model, the GA outperformed the reference algorithm in finding flexibil-
ity for the simulations with 10 and 30 EWHs in the portfolio. However, with 100 EWHs in the
portfolio, the GA only found 0.1 kWh more per EWH per day, but at the expense of a 51-hour
longer average simulation time. One of the reasons why the GA lacks performance with 100 EWHs
in the portfolio is the use of a scaling factor of one, compared to two with 10 and 30 EWHs in the
portfolio. Additionally, having a larger number of EWHs in the portfolio increases the number of
attributes per individual in the GA, expanding the algorithm’s search space and making it more
difficult for the GA to find optimal solutions.

Moreover, the results show that reconnection strategies can provide more flexibility and better
manage cold load pick-ups for the load from EWHs, compared to the use cases without recon-
nection strategies. Additionally, reconnection strategies 2 and 3 resulted in significantly lower
peak load for the simulations with 10 and 30 EWHs in the portfolio than those without reconnec-
tion strategies. The use cases with reconnection strategies may have performed better than those
without because of a different number of feasible bids and thus generations and individuals per
generation in the GA or because of the randomness in the GA.

The reconnection strategies also have some downsides. On average, the simulations with reconnec-
tion strategies took longer to finish than those without for the use cases with 10 and 30 EWHs,
particularly with the third reconnection strategy. The difference in computational performance
might have come from the complexity of recalculating temperatures when applying the third re-
connection strategy, which also considers the hot water usage for the next 30 minutes. However,
for 100 EWHs, the simulations with reconnection strategies took, on average, a shorter time than
those without, despite being more complex. This difference in computational performance indic-
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ates that the randomness of the GA and the performance of the assigned computational resources
are more decisive factors in the simulation times than the computational complexity of the recon-
nection strategies. Another potential issue with the reconnection strategies used in this work is
the possibility of violating the comfort temperature of the consumers outside the bidding periods.
As the strategies used in this work do not minimise the risk of cold water for the consumers, they
do not guarantee that the temperature in the EWHs remains within the comfort range.

Outside of the reconnection strategies, reducing peak load and managing rebound effects were
not prioritised. However, the problem could have gotten different results if this had been a more
significant part of the problem. On the downside, making more room for peak load reduction could
have limited the flexibility extracted from the EWHs, as flexibility maximisation would have been
given less consideration.

How the EWHs were modelled was likely decisive for the problem’s results. First and foremost, hot
water usage is decisive because it is the primary input data and input uncertainty for the problem.
Additionally, the EWHs were modelled homogeneously by having identical physical parameters.
Using a heterogeneous portfolio of EWHs could have yielded different results. Moreover, changing
the setpoint for the temperatures and placement of the heating element and thermostat might
provide a different amount of flexibility, as these considerations involve significant uncertainty and
are not optimised to maximise flexibility.

Computational efficiency could have been prioritised differently. While this work used a fourth-
order Runga Kutta method to solve the initial value problem of constraint (1), a simpler method,
such as Euler’s method, would have solved the problems faster but at the expense of less accur-
acy. Similarly, using fewer than ten layers in the multi-layer modelled would have lowered the
algorithm’s simulation time but been less accurate. However, for this work, as indicated in Figures
9, 10 and 11, and Table 8, the temperatures in the top layers were for most minutes identical, so
fewer layers could have been used without significantly reducing the accuracy of the modelling.

Lastly, the choice of parameters could have been decisive for the results. The length of the bidding
period, the period in which the GA is applied in the iterative approach, and the planning horizon
for the problem could have been particularly decisive, as these parameters were not optimised.
Although the results of this work show that a 15-minute bidding period can provide significant
flexibility, more flexibility can be provided with more frequent bidding periods, for example, one
minute. That would mean each EWH can provide flexibility in parts of each 15-minute bidding
period and not be limited to providing for the entire 15-minute bidding period. On the downside,
this change could require more computational resources for the aggregator. For the simulations us-
ing the GA, a shortened time period could have taken away the GA’s ability to optimise flexibility
concerning the minimum bid size constraint. On the other hand, an extended time period could
lead to losing the optimal choice of flexibility from each EWH within each period. Lastly, extend-
ing the planning horizon beyond 24 hours would provide a better understanding of the dynamics
of flexibility provision over a longer time. However, this would also require more computational
resources. Furthermore, extending the planning horizon beyond 24 hours could result in less av-
erage daily flexibility as some EWHs must complete a heating cycle over midnight before bidding
the next day and thus have less time to bid the next day.

A real-world implementation of flexibility from EWHs requires consideration of additional factors
not explored in this work. For example, aggregators might be concerned with backup resources
and risk management. Furthermore, implementing real-world solutions requires further integration
towards the regulations and markets. For example, market rules can determine the minimum bid
size to be submitted, significantly determining the flexibility potential. Additionally, computation
time is essential for the aggregator’s ability to act in the market, as it cannot initiate actions as
planned if its algorithm takes too long to run and can therefore lose out on revenue. Finally,
implementing real-world solutions must consider the computational resources required to solve the
optimisation problem with significant uncertainty of the computational cost. For example, the
number of EWHs for the aggregator can be higher than that considered in this study, which can
determine the computational resources required for the aggregator. In practice, aggregators must
consider the trade-off between the level of flexibility achieved and the computational resources
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required to achieve it.
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8 Conclusion

This thesis investigates the potential of EWHs as flexible energy resources for the power grid
by maximising the aggregated flexibility of the EWHs. A comprehensive theoretical framework
identifies the non-linear temperature behaviour of EWHs, technical challenges and barriers for
aggregators, and relevant optimisation techniques for problems concerning EWHs. The literature
review then reveals that most of the previous literature has aimed to control a single EWH or
used inaccurate temperature modelling for groups of EWHs, thus establishing a research gap in
the modelling of EWHs. By assessing three pillars for aggregators with EWHs, namely model-
ling, market participation and optimisation, this work highlights opportunities and challenges for
market-participating aggregators with EWHs.

To accurately maximise the flexibility provided by the aggregator, this work uses a 10-layer strat-
ified model with a one-minute resolution for up to 100 EWHs. The EWHs are assumed to be
part of an aggregator’s portfolio of flexible resources applied in an mFRR-market directly from the
aggregator or through a third party. A genetic algorithm and a reference algorithm are created
from scratch and employed to handle the non-linear behaviour of the EWHs, aiming to achieve a
good trade-off between flexibility maximisation, accurate modelling, and computational efficiency.
Furthermore, three different reconnection strategies are implemented to manage the simultaneous
aggregated load from EWHs.

The results demonstrate that aggregators can provide up to 5.8 kWh of flexibility per EWH per
day, translating to potential revenue of up to 1.5 EUR per day per EWH based on mFRR-prices in
NO1 from January 2023. A genetic algorithm with a multi-layer temperature model provides the
most flexibility of the methods in this work while simultaneously modelling the EWHs accurately.
However, the simulation time of the GA scales poorly for many aggregated EWHs. In compar-
ison, the simplified reference algorithm is fast for all numbers of EWHs and might therefore be
more suitable for aggregators with many EWHs in their portfolio. Additionally, all implemented
reconnection strategies yielded higher or equal average flexibility compared to simulations without
reconnection strategies while addressing the issue of the simultaneous connection of EWHs, but
with an increased risk of cold water for the consumers.

Several factors are essential for the optimisation results of this work and for the applicability
of EWH flexibility in real life for aggregators. The flexibility per EWH decreased substantially
with the number of EWHs in the portfolio, primarily based on how the minimum bid size con-
straint is formulated in the optimisation problem and due to the increased search space in the GA
occurring when scaling the problem size. Moreover, the choice of values for parameters, thereunder
the parameters in the GA, were not tuned for optimal performance. Therefore, this should be ad-
dressed in future research to maximise flexibility from EWHs using a GA. In practice, aggregators
face additional challenges, like risk management and computational uncertainty, which must be
adequately addressed to employ EWHs as flexible resources in the power grid.
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9 Future work

Several aspects of this master’s thesis have significant potential for further investigation. The GA
can be improved, and its parameters and penalisations can be tuned to achieve better performance.
In addition, there is great potential for future research based on this work’s modelling of EWHs,
market participation and optimisation, and the prioritisation of stochasticity and uncertainty. This
chapter presents how these areas can be addressed in future research.

The main shortcoming of this work is the remaining potential for exploration of the GA, com-
bined with the need for optimal turning of the parameters and penalisations. By using a different
type of GA, or an improved version of the penalty-based GA of this work, future research can
aim to achieve faster simulation times and better scalability of the method for a larger number
of EWHs in the aggregator’s portfolio. Moreover, as the parameters in the GA must be tuned to
achieve optimal performance, future work can systematically tune and optimise parameters and
penalisation for the different use cases and each optimisation period in the planning horizon.

Moreover, future research can investigate a hybrid of the multi-layer and single-zone temperature
models, combining the multi-layer model’s accuracy and performance with the single-zone model’s
computational efficiency. While the multi-layer model provides a more detailed representation of
the system, its high computational cost may limit its practical applications, especially at scale. On
the other hand, the single-zone model is computationally efficient but does not accurately capture
the EWHs’ temperature dynamics. By integrating the strengths of both models, it may be possible
to develop more efficient and accurate modelling. The GA could, for example, use the single-zone
model for the optimisation and the multi-layer model outside of the optimisation.

Future research can also apply the methods to different markets. The study assumes that the
EWHs are flexible resources in an mFRR-market, applying three different price scenarios to the
obtained flexibility. However, there are other markets where EWHs can provide flexibility, such
as frequency containment reserve markets or local flexibility markets. Additionally, other price
scenarios and revenue calculations can be used.

Future research can solve the problem with other suitable metaheuristic methods. While this
study compares the performance of the GA to the simplified reference algorithm, other methods,
such as PSO, might solve this problem more efficiently. Another potential for future work within
optimisation is expanding the problem to include electricity costs in the objective function. Then,
aggregators can utilise their assets efficiently by offering electricity cost reduction as an additional
service to their customers with EWHs.

At last, future work should address uncertainty and stochasticity to provide helpful insight for
aggregators. While uncertainty can be addressed by investigating computational uncertainty in
more detail, stochasticity can be addressed by applying stochastic variables in the optimisation
problem. In addition, experimenting with other values for parameters and input data can provide
aggregators with more insight into the flexibility potential of their assets.
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