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Abstract

This thesis explores different state-of-the-art techniques for preprocessing, feature extraction, and clas-

sification of Electroencephalography (EEG) Motor Imagery (MI) data. The goal was to develop a Brain-

Computer Interface (BCI) that can accurately classify different MI tasks and interpret them into com-

mands for controlling a drone in real-time.

Accurately classifying MI poses a significant challenge, and remains an active area of research. As the

field of study is progressing, numerous approaches have been suggested. Based on a literature review,

a selection of approaches were chosen and further exploited using a Multi-objective Evolutionary Algo-

rithm called the Non-dominated Sorting Genetic Algorithm (NSGA). The NSGA algorithm was used for

optimizing subject-dependent methods. Further, Transfer Learning (TL) was used to exploit the possi-

bility of making subject-independent models.

After initial testing on the dataset consisting of 14 subjects, a subset of 4 subjects was selected. For the

offline classification, models for both 2 and 3 classes were implemented. For the 2-class classification

(right-hand and foot), subjects S03 and S09 yielded the highest accuracies. Subject S03 obtained an ac-

curacy of 100.00% with various Machine Learning (ML) methods and with the Deep Learning (DL) model

EEGnet. Subject S09 achieved accuracies as high as 93.80% with EEGnet and 87.50% with Common Spa-

tial Pattern (CSP) feature extraction and Random Forest (RF) classification. For three-class classification

(right-hand, foot, and rest), subject S03 obtained accuracies of 100.00% and 90.00% with EEGnet and

CSP-RF, respectively. Subject S09 obtained 87.50% and 65.00% with EEGnet and CSP-RF, respectively. All

results were obtained using a flat model structure. Extensive testing of different TL models showed no

significant increase in accuracy overall, except for subject S09, which achieved an accuracy of 95.00%.

For the online classification and drone actuation with two-class classification, subject S03 obtained an

accuracy of 81.67% with EEGnet and 89.17% with CSP-RF. Subject S09’s best performance led to an ac-

curacy of 84.17% using EEGnet and 82.50% using CSP-RF. When introducing the rest class, the accuracy

decreased for both subjects. The highest obtained accuracy for subject S03 was 77.27% and 72.27% for

EEGnet and CSP-RF respectively. For subject S09 it was 74.89% and 67.12% for EEGnet and CSP-RF, re-

spectively.
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Sammendrag

Denne masteroppgaven undersøker ulike state-of-the-art teknikker for preprosessering, egenskapsek-

straksjon og klassifiserings av Electroencephalography (EEG) Motorisk Innbilning (MI) data. Målet for

oppgaven var å utvikle et hjerne-datamaskin-grensesnitt (BCI) som nøyaktig kunne klassifisere ulike mo-

toriske innbilninger og tolke dem som kommandoer for å styre en drone i sanntid.

Nøyaktig klassifisering av MI-oppgaver utgjør en betydelig utfordring og forblir et aktivt forskningsom-

råde. Ettersom forskningsfeltet utvikler seg, er det også blitt foreslått en rekke tilnærminger og metoder.

Basert på en litteraturgjennomgang ble det valgt ut flere metoder som deretter ble utforsket videre ved

hjelp av en flerobjektiv evolusjonsalgoritme kalt Non-Dominated Sorting Genetic Algorithm (NSGA).

NSGA-algoritmen ble brukt til å optimalisere modeller som var subjekt-avhengige. Videre ble overførings-

læring (TL) benyttet for å lage modeller uavhengig av subjektet.

Etter innledende testing på datasettet bestående av 14 subjekter, ble en undergruppe på 4 subjekter valgt.

For offline-klassifiseringen ble modeller for både to og tre klasser implementert. For klassifiseringen

med to klasser (høyrehånd og fot), var de høyeste nøyaktighetene oppnådd med subjektene S03 og S09.

Subjekt S03 oppnådde en nøyaktighet på 100.00% med ulike maskinlæringsmetoder (ML) og med Dyp

Læringsmodellen (DL) EEGnet. Subjekt S09 oppnådde nøyaktigheter på 93.80% med EEGnet og 87.50%

med Common Spatial Pattern (CSP) egenskapekstraksjon og Random Forest (RF) klassifisering. For klas-

sifisering med tre klasser (høyrehånd, fot og hvile), oppnådde subjekt S03 nøyaktigheter på 100.00% og

90.00% med henholdsvis EEGnet og CSP-RF. Subjekt S09 oppnådde 87.50% og 65.00% med henholdsvis

EEGnet og CSP-RF. Alle resultater ble oppnådd ved bruk av en flat modellstruktur. Omfattende testing av

forskjellige TL-modeller viste ingen markant økning i nøyaktighet totalt sett, unntatt for subjekt S09, som

oppnådde en nøyaktighet på 95.00%.

For online-klassifiseringen og droneaktivering med klassifisering av to klasser, oppnådde subjekt S03 en

nøyaktighet på 81.67% med EEGnet og 89.17% med CSP-RF. Subjekt S09s prestasjon førte til en nøyak-

tighet på 84.17% ved bruk av EEGnet og 82.50% ved bruk av CSP-RF. Ved introduksjon av hvileklassen ble

nøyaktigheten redusert for begge subjektene. Den høyeste oppnådde nøyaktigheten for subjekt S03 var

77.27% og 72.27% for henholdsvis EEGnet og CSP-RF, mens for subjekt S09 var den 74.89% og 67.12% for

henholdsvis EEGnet og CSP-RF.
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Chapter 1

Introduction

1.1 Background

The human brain is composed of billions of interconnected nerve cells called neurons, and when ac-

tivated, these neurons send out signals that can be recorded using Electroencephalography (EEG). To

register these signals, electrodes that are connected to a Brain-Computer Interface (BCI) is used. BCIs

are computer systems that provide the possibility of interaction between the brain and external devices

and can be worn externally like a helmet or implanted into the brain.

MI is a neuroparadigm that can be recorded using a BCI. It occurs when a person imagines a movement,

making the field of MI research interesting for applications that can be used as neurorehabilitation, neu-

roprosthetics, and assistants for the physically impaired. In addition to being a supplement in the health

sector, it can provide value in applications like gaming, monitoring, and drone control.

As MI and other EEG signals are often noisy and prone to artifacts, making a good classification model

can be difficult. Furthermore, brain activity from other motor functions occurs in the same part of the

brain as MI signals, affecting how accurately the model can be built. These problems reduce the accuracy,

robustness, efficiency, and consistency of the MI-BCIs, making it important to develop better sensors and

improve signal processing techniques and classification methods for MI.

Further, as MI is a learnable trait, the ability to perform MI can vary a lot from subject to subject. In

addition, the occurrence of MI signals will likely not be at the same specific location of the brain, and

the brain waves may not look exactly the same for each subject. This implies that different features and

classifiers might work better for some subjects than others, making it hard to find a subject-independent

model.
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Live classification of MI signals can be performed using synchronous or asynchronous BCIs. Synchronous

BCIs, also named reactive BCIs, receive commands in specific time intervals, often after a given cue.

Asynchronous BCIs, also known as self-paced BCIs, make it possible to control a device at a subject’s own

pace. Instead of detecting specific brain signals or patterns in a specific time interval, it continuously

monitors brain activity, letting the subject interact whenever it wants. This makes a BCI more flexible.

On the other hand, asynchronous BCIs have typically performed worse than synchronous BCIs, making

it important to improve this paradigm for better communication between the user and a device.

1.2 Motivation

Based on the background, a big motivation for writing this master’s thesis stems from the potential of

conducting research on MI-BCIs which can help to improve the quality of individuals with motor impair-

ments. Moreover, such research can contribute to improving the knowledge in the field of neuropros-

thetics, making it possible to develop devices that can restore lost motor functions. Additionally, MI-BCIs

can be used in new and exciting fields where humans can interact with computers and digital devices,

exemplified by the focus of this thesis which is the actuation of a drone. Lastly, a great motivation for

carrying out this thesis is that conducting research on brain activity will advance our understanding of

the brain and how it processes information.

1.3 Objective

This thesis aims to design and implement a model to actuate and control a drone using MI-signals. As

a part of this work, a robust Machine Learning (ML) or Deep Learning (DL) model must be designed, to

ensure that the drone avoids getting uncontrollable. The system should be tested in real-time, using a

stream of data.

The problem of implementing a BCI for controlling a drone using MI signals can be broken down into the

following main objectives:

1. Research state-of-the-art algorithms for signal processing, decomposition and classification of MI

signals.

2. Implement and test different algorithms and pipelines, aiming to increase the accuracy to its high-

est.

3. Find the pipelines working best for both for classifying different MI tasks, but also separating be-

tween MI and rest state.

4. Design and implement a state machine for simple control of a drone using the best pipeline found

from the testing.

5. Make it possible to operate the drone with a stream of data.
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1.4 Approach

The objective of this thesis was approached in the following matter. First, a literature review was con-

ducted to survey the existing work performed concerning preprocessing, feature extraction, and classifi-

cation methods in the field of MI. Further, data from a public dataset was used for experimentation and

optimization of pipelines. The dataset consists of 14 subjects and after some initial testing, a subset of

subjects was chosen for further experimentation.

The different pipelines tested were based on feature extraction and classification. For feature extrac-

tion the 3 different methods Common Spatial Pattern (CSP), Discrete Wavelet Transform (DWT), and

bandpass-based feature extraction were tested, while for classification, the methods used were Random

Forest (RF), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Gradient Boosting (GB),

and EEGnet. Furthermore, the preprocessing techniques Common Average Rereferencing (CAR) and

Laplace Rereferencing were implemented to see if they could enhance performance.

To find the best pipelines, electrodes, and features, an optimization was done using the popular non-

domination-based genetic algorithm for multi-objective optimization, Non-dominated Sorting Genetic

Algorithm (NSGA). The evaluation of the different methods employed in this study was primarily cen-

tered on the accuracy score, which served as the primary metric for assessing the performance of the

predicted MI classes.

In addition to optimizing the pipelines, Transfer Learning (TL) was tested to see if transferring knowledge

from a subset of subjects to another could make good classification models. This was done for both the

DL and ML pipelines.

To be able to fly a drone in real-time, a time window optimization was conducted to find the optimal

1-second time window most suitable for the model. In addition, state machines were produced to decide

how the drone should move based on the classification done from the model.

1.5 Limitations

The primary objective of this thesis revolves around testing and optimizing different methods for signal

processing, feature extraction, classification, and electrode selection. These experiments are quite time-

consuming, resulting in constraints on the time used for live implementation and testing. Consequently,

the time allocated for conducting experiments involving drone actuation was shorter than originally de-

sired. Furthermore, due to time limitations, data collection and the construction of models enabling

real-time actuation of the drone instead of relying on a data stream were not feasible.
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1.6 Outline

The structure of this thesis is as follows: Chapter 2 presents relevant theory for the thesis, giving an ex-

planation of brain functions, and different methods used for signal processing, feature extraction, and

classification. The theory gives a foundation for the experimental results and analysis in the subsequent

chapters. Further, Chapter 3 presents a state-of-the-art literature review of research done in the field of

MI classification. In addition, it presents a review of results obtained from other studies of the dataset

used in this thesis. Chapter 4 includes a description of the dataset, tools, procedures for data acquisi-

tion, and methods used in the experiments. The experiments and their results are presented in Chapter

5 before they are discussed in Chapter 6. Chapter 6 also includes a conclusion and recommendation for

further work.
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Chapter 2

Theoretical Background

2.1 Signals From The Human Brain

2.1.1 Brain Signals and Frequency Bands of Brain Signals

The human brain is a complex system that is an interconnection of billions of nerve cells called neurons.

These neurons communicate and transfer information by employing and encoding different types of

electrical signals[1]. The oscillations of the electrical signal in the brain can be divided into five different

frequency bands. The bands are delta (δ), theta (θ), alpha (α) also called mu rhythm, beta (β), and gamma

(γ) [2]. The bands and their respective frequency range can be seen in table 2.1.

Table 2.1: Frequency bands of brain signals[3].

Frequency band Frequencies

delta (δ) < 4H z

theta (θ) 4H z −8H z

alpha (α) / mu 8H z −13H z

beta (β) 13H z −30H z

gamma (γ) > 31H z

2.1.2 Motor Cortex

The human brain is divided into four more significant regions, the frontal lobe, parietal lobe, occipital

lobe, and temporal lobe[2]. The sectioning of the brain is shown in figure 2.1. The frontal lobe can further

be divided into sections with several larger regions that are directly involved in the execution of different

motor tasks[4]. The largest part of the frontal lobe is called the primary motor cortex. The primary motor

cortex includes, among other things, the movement of feet, arms, and head. The location of the primary

motor cortex can be seen in figure 2.1.
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Figure 2.1: The human brain and its significant regions, frontal, parietal, occipital, and temporal lobe and
primary motor cortex. Illustration adapted from [2].

The locations which control different body parts can be seen in figure 2.2. From this figure, it can be seen

that the size controlling different body parts is variable and that the hand takes up much more area than

the feet. The variable sizes are dependent on how much precision the different body parts require. The

illustration shows that the location of the feet is more medial, and the hands more lateral[4].

Figure 2.2: Primary motor cortex sectioned into the respective parts of the body. The feet most medially,
hands more laterally, and face and tongue the most lateral. Illustration adapted from[4].
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2.2 Electroencephalography

EEG is a non-invasive method for examining the human brain, where the signals are sampled by plac-

ing electrodes on the scalp. The electrodes measure the direct cortical activity, which is the changes in

amplitudes of the electrical impulses. For a typical adult, the amplitudes are measured to range between

10µV −100µV [3]. The EEG signals are usually non-linear, non-Gaussian, random, and non-correlated,

and can be used to extract features from brain signals. The features extracted by the use of EEG are de-

pendent on several factors, among them the subject itself, age, and mental health [3]. EEG is commonly

used for detecting injuries or disorders in the brain, including epilepsy, sleeping disorder, depression,

tumor, stress, and trauma-related disorders[3].

2.2.1 Electrode Placement

To ensure standardization of electrode placements, a 10-20 electrode placing scheme is often used. The

use of this standardized system ensures the possibility to reproduce a recording scheme and makes it

possible to compare different studies. The 10-20 system is based on the location of the electrodes and the

underlying cerebral cortex, where the 10-20 refers to the distance to adjacent electrodes. The distance is

measured to be either 10% or 20% of the front-back or right-left distance of the skull[5]. The 10-20 placing

scheme is illustrated in figure 2.3.

An extension of the 10-20 placing scheme is the 10-10 placing scheme. The 10-10 scheme is based on,

and similar to the 10-20 scheme, but includes more electrodes in between the ones in the 10-20 system.

More specifically, it fills electrodes halfway in between the 10-20 electrodes, which makes the distance

between adjacent electrodes 10% of the front-back and right-left length of the skull[5]. The 10-10 placing

scheme is illustrated in figure 2.4.
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Figure 2.3: Illustration of the 10-20 placing
scheme, where the distance between the adja-
cent electrodes is 10% or 20% of the front-back
and left-right length of the skull. The illustra-
tion is reprinted from[5].

Figure 2.4: Illustration of the 10-10 placing
scheme, where the distance between the ad-
jacent electrodes is 10% of the front-back and
left-right length of the skull. The illustration is
reprinted from[5].

2.2.2 Artifacts in Electroencephalography

Artifacts in EEG can be divided into two categories: physiological artifacts, and non-physiological arti-

facts. The physiological artifacts originate from the body itself, and the most common artifact of this type

is eye blinks, eye movements, head movements, heartbeats, and muscular noise. The non-physiological

artifacts originate from the environments around the subject[5].

Physiological Artifacts

Ocular Artifacts also known as eye movement and eye blinks can be easily detected in EEG for conscious

subjects, as the movement will give rise to a large electrical potential. This electrical potential might of-

ten be characterized by anterior location, bilateral and synchronized appearance, and is linearly summed

upon the EEG signal[5]. Using extra electrodes above and below the eye can help to identify the ocular

artifacts. There are also different decomposition and regression methods suggested for removing these

artifacts and still preserving the information of the EEG signal[5].

Electromyography artifacts are often caused by muscular movements, these can be identified as high-

frequency and spiky activities. The muscular movements usually involved are located in the frontalis and

temporalis muscles, whereas activity in the frontalis is usually involved in forced eye closure and photic

simulation. Jaw clenching, chewing, and bruxism involve movement in the temporalis muscles [5]. Con-

traction of the frontalis muscles might appear as a "railroad track", while temporalis contraction might

appear as a burst of activities[5]. To avoid and/or minimize the effect of these types of artifacts, the sub-
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ject can get instructions to keep the mouth open and try to focus the look in one place, i.e. at a fixation

cross on a screen.

Electrocardiographic artifacts are artifacts that originate from the heart. These artifacts occur more often

for subjects that are overweight, have short necks, and for babies. This is due to the fact that the dipole is

located closer to the recording electrodes and is able to transmit the current to a higher level. To reduce

this artifact, one linked ear montage can be used [5].

Perspiration artifact appears as very low-frequency, about 0.5H z, and very low-amplitude waves. This

type of artifact arises due to unwanted electrical connections between the electrode on the scalp. Move-

ments of the subject might also cause the electrodes to move and cause artifacts[5]. Therefore, giving the

subject guidelines for keeping the movement to a minimum can remove or reduce this type of artifact.

Non-physiological Artifacts

Interference from the power supply is one of the most common non-physical artifacts, which in Europe

is at 50H z. For reducing this artifact, shielding of cables and shielded recording rooms can be used. An-

other way to remove this artifact is to apply a notch filter for removing the 50H z frequency[5].

Poor electrode placement might be the origin of another non-physiological artifact. Movements of an

electrode might cause a "pop", which means a sudden positive discharge and can be characterized as

an initial high-voltage very steep deflection, followed by an exponential decay[5]. This problem can be

avoided by proper placement and cleaning and maintenance of the equipment[5].

2.3 Motor Imagery

MI can be described as the result of conscious access to the content of the intention of a movement,

which is usually performed unconsciously during movement preparation[6]. In other words, MI is a men-

tal process where a movement is imagined or prepared without any muscular activity. By comparing the

conscious performance of MI and the unconscious preparation of an actually performed movement, they

will contain many of the same mechanisms and will be almost equal[6]. The oscillations in brain activity

that are recorded from the somatosensory and motor areas are known as Sensorimotor Rhythms (SMR).

When a person imagines movement, changes in SMR can be observed, typically in the alpha (α) and

beta (β) frequency bands. These changes in SMR, within a specific frequency range, are referred to as

Even-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). ERD is a decrease in

oscillatory activity, while ERS is an increase in oscillatory activity. Performing motor imagery can trigger

changes in ERD and ERS[2].
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The ERD/ERS patterns follow a homuncular organization[2], meaning that different parts of the motor

cortex or different brain regions are associated with different parts of the body and the activities carried

out by the limbs. Due to this fact, we can look at the changes in ERD/ERS for different movements. The

activity of the hand MI is located on the contralateral side, meaning that MI of the left hand will produce

most activity over electrode position C4, which is positioned on the right side. For the right hand, the

change in activity will be most visible over electrode position C3, located on the left side of the motor

cortex. Foot MI will mostly be invoked over the electrode position Cz, corresponding to the medial part

of the motor cortex[2]. Even though the ERD/ERS pattern follows a homuncular organization we cannot

separate every movement by analyzing EEG signals, this is due to the fact that some of the movements

don’t have large enough cortical areas. For instance, we are not able to separate the left foot from the right

foot or separate different fingers. The left hand, right hand, foot, and tongue have large cortical areas and

are also placed in different places on the cortex[2].

2.4 Preprocessing and Signal Decomposition

2.4.1 Filter

Notch Filter

EEG signals are affected by the non-physical artifact power-line noise which originates from the alternat-

ing main power supply. In Europe, this frequency is at 50H z, and can be removed by applying a notch

filter on the signal. The notch filter works as a narrow band-stop filter, filtering out the given frequency.

High-, Low- and Band-pass Filter

The Mu- and beta-band is said to be two of the most important frequency bands in EEG signals[2], thus

the need to filter a signal is prominent. To let through frequencies over a given threshold, a high-pass filter

can be applied, while a low-pass filter can be applied to pass through frequencies below a given threshold.

A band-pass filter will work as a combination of these and let through the frequencies between a given

high and low threshold.

2.4.2 Rereferencing

When recording data by using EEG the purpose is to measure the electrical potential at the scalp where

the electrodes are placed. One important point to take into consideration is that all measurements are

relative, that is the voltage measured at a respective electrode is relative to a reference electrode. The

reference electrode is supposed to be placed on a natural spot on the body, preferably on the head, which

is not a simple task as the human body consists of much water and is very conductive. This means

that the measurement will contain some noise. Rereferencing is a method used for changing the ref-

erence after the recording is finished in order to remove some of the noise introduced by the method of

measurement[7].
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When introducing rereferencing, a new reference is to be found after the end of the recording. This might

be done by finding an average of several electrodes, or it can be composed of the recorded electrodes.

The new reference found is subtracted from each of the electrodes. Thus, if a new electrode is chosen

as the reference, its signal will become zero. After subtracting the new reference, the electrodes do now

reflect the electrical potential between the new reference and the respective electrode[7].

Common Average Rereference

CAR is a method for increasing the Signal-to-Noise Ratio (SNR), by creating a global reference. The global

reference is found by taking the sample-by-sample average of all the electrodes[8]. The calculation of the

reference is given by the following equation [9]:

V C AR
i =V ER

i − 1

n

n∑
j=i

V ER
j (2.1)

Where V ER
i is the potential between the ith electrode and the reference and n is the number of electrodes

used[9].

Laplacian Rereference

Instead of finding one common reference, the Laplacian rereferencing method finds a new reference for

each electrode. The Laplacian rereferencing method works as a high pass filter, which enhances localized

activities while suppressing the scattering activity[10]. The method uses an approximation of the second

derivative. This approximation is done by first finding the weighted mean of the neighboring electrodes,

where the weights are the distance between the electrodes, then subtracting the weighted mean from the

electrode of interest[9]. The calculations follow the following equation from[9]:

V L AP
i =V ER

i − ∑
j∈Si

g i jV ER
j (2.2)

where,

gi j =
1

di j∑
j∈Si

1
di j

(2.3)

Si is the set of neighboring electrodes of the electrode i , for a small Laplacian placing scheme the set Si is

the nearest neighbors, and for large Laplacian, it is the set of next-nearest neighbors. di j is the distance

between electrode i and j which will be the distance to either the nearest or the next-nearest neighbor,

dependent on the size of the scheme[9].
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2.4.3 Discrete Wavelet Transform

DWT is a linear method used for decomposing a non-stationary signal into different sub-bands of wavelets,

where a wavelet is a waveform with an average value of zero and has a limited duration. In order to de-

compose the signal, it is necessary to choose a mother wavelet and the number of decomposition levels

wanted[11]. Based on the decision of the mother wavelet, the trade-off between how compactly the basis

function is localized in space and how their smoothness will vary. Based on the chosen mother wavelet, a

family of wavelets will be made. This is done by scaling and dilating the mother wavelet[12]. This process

will result in the signal being decomposed into a high-frequency part with detail coefficients and a low-

frequency part with approximation coefficients. The low-frequency part of the signal is used for making

the rest of the high-frequency levels until the predefined number of coefficients is reached[11]. In table

2.2 the resulting coefficients and frequencies of using the mother wavelet "bi-orthogonal 2.2" and four

levels of decomposition of a signal with 512H z sampling frequency are shown.

One of the advantages of using the DWT is that it captures both time and frequency. The wavelets are

localized in space, which makes the functions and operators using wavelets become spars. This trait

makes the wavelets well-suited for noise removal. Another advantage is that the use of wavelets gives a

better resolution of different frequencies, due to the varying window size[12].

Table 2.2: Frequency sub-bands for four levels of DWT decomposition for sampling frequency at 512H z.

Four levels of decomposition

Sub-band Freq. band [H z]

Detail coefficient, D1 128H z-256H z

Detail coefficient, D2 64H z-128H z

Detail coefficient, D3 32H z-64H z

Detail coefficient, D4 16H z-32H z

Approximation coefficient, A4 0H z-16H z
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2.5 Feature extraction

2.5.1 DWT- and Bandpass-based Feature Extraction

Feature extraction can be done in several different ways. One method is to use the DWT decomposi-

tion method, where the signal is split into several frequency bands. For each of these frequency bands,

a number of different features can be calculated[11]. These features will further be used in classifica-

tion. Another method is to utilize a bandpass filter. By applying this bandpass-based feature extraction

method, one single frequency band is extracted from the signals. On this band, features are extracted and

further used in the classifiers[13].

When the signal is subjected to decomposition into subbands, either through the utilization of DWT or

the bandpass method, a set of 16 features is computed on the resulting bands. These features are outlined

below:

Instantaneous Energy

Instantaneous Energy (IE) is a feature that reflects the amplitude of the signal[14], and the energy distri-

bution of each frequency band or decomposition level[11]. IE can be computed in the following manner:

f j = l og10

[
1

N j

N j∑
r=1

(w j (r ))2

]
(2.4)

where N j = N /2 j is the number of samples for band j, and w j (r ) is the wavelet coefficient at time r for

band j[11].

Teager Energy

The Teager Energy (TE) feature does as IE, giving an amplitude analysis of the signal. Moreover, it reflects

the variation in frequency[14]. TE can be computed in the following manner:

f j = l og10

[
1

N j

N j−1∑
r=1

∣∣(w j (r ))2 −w j (r −1) ·w j (r +1)
∣∣] (2.5)

where N j = N /2 j and w j (r ) reflects the same as for IE[11].

Mean

Mean is the average value of all the amplitude values across a specific time window of a given electrode

and is expressed as:

µ=
∑N

i=1 amplitudei

N
(2.6)

with N as the number of samples in the time window.
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Variance

The variance of a signal is how much each point in a signal differs from the mean, given as:

Var(x) = 1

N

N∑
i=1

(xi −µ)2 (2.7)

where N is the total number of data points in the signal, xi is the i-th data point, and µ is the mean.

Standard Deviation

Standard Deviation (SD) is the variability or spread in the data following the normal distribution. A lower

SD indicates that the data points are less spread out and that the data points are more tightly clustered

around them. SD can be represented as:

σ=

√√√√√ N∑
i=1

(µ−xi )2

N
(2.8)

where N is the total number of data points, xi is the i-th data point, and µ is the sample mean[15].

Root Mean Square

Root Mean Square (RMS) is a way of calculating the average of values of a signal at a given electrode, by

taking wach amplitude value squared and averaging over a period of time. The equation is as follows:

RMS =
√√√√ 1

N

N∑
i=1

(xi )2 (2.9)

where N is the total number of data points in the signal and xi represents the value of the i-th data point.

Peek-To-Peek

Peak-To-Peak (PTP) is the difference between the highest and the lowest value of a signal and can be

expressed as

PTP = max(x)−min(x) (2.10)

where x represents the signal.

Skewness

Skewness is a statistical measure of the asymmetry of the signal distribution, given as:

Skewness = 1

N

N∑
i=1

(
(Di −µ

σ
)4 −3 (2.11)

with Di describing each band, N as data points, µ is the mean and σ the standard deviation[16].
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Kurtosis

Kurtosis is also a statistical-based feature. The kurtosis describes the shape of a probability distribution.

For EEG signals, the kurtosis describes the peakedness or flatness of the distribution of the amplitudes[17].

K = E [(x −m)4]

E [(x −m)2]2 (2.12)

Where E is the expectation value, and m is the mean of the signal.

Hjorh Mobility

Hjort Mobility (HMO) is a way to indicate the statistical property of EEG signals in time domain and

represent the proportion of standard deviation of power spectrum. The equation is as follows[18]:

H MO =
√

var (y ′(t ))

var (y(t ))
(2.13)

Hjorth Complexity

Hjort Complexity (HCO) is a measure of change in frequency that indicated the resemblance of a signal’s

shape to that of a pure sine wave. When the signal closely resembles a sinusoid, the HCO value converges

to 1. The equation for HCO is as follows[18]:

HCO = H MO(y ′(t ))

H MO(y(t ))
(2.14)

Higuchi Fractal Dimension

The fractal dimension can be used to describe the complexity of a signal. The Higuchi Fractal Dimension

(HFD) can be used to characterize non-linear and non-stationary data[14]. It estimates the dimension of

a time-varying signal directly in the time domain. The algorithm does this by approximating the mean

length of the curve using segments of k samples[14]. HFD can be calculated in the following manner:

H = ln(|L(k)|)
ln( 1

k )
(2.15)

where L(k) is an array with the mean length of curve k defined as the following:

L(k) = 1

k

k∑
m−1

Lm(k) (2.16)

where the Lm(k) is the length of the curve, and the mean is calculated for the curve for each time interval

k [14].
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Petrosian Fractal Dimension

Petrosian Fractal Dimension (PFD) is a rapid method for calculating the Fractal dimension and is done

by translating the series into a binary sequence. Then the fractal dimension is computed as follows:

P = log10(n)

log10(n)+ log10( n
n+0.4N∆

)
(2.17)

where n is the length of the sequence and N∆ is the number of sign changes in the binary sequence.

Katz Fractal Dimension

Katz Fractal Dimension (KFD) measures the complexity or irregularity of a signal. It compares the actual

number of smaller units that make up the curve with the minimum number of units needed to replicate

a pattern of the same size. KFD can be expressed as:

K F D = log10(L)

log10(d)
(2.18)

where N is the length of the curve or sum of distances between successive points, and d is the diameter,

which is calculated as the estimated distance between the first point of the sequence and the point of the

sequence that provides the farthest distance[19].

Sevcik Fractal Dimension

Sevick Fractal Dimension (SFD) is a way of calculating the fractal dimension of a signal. N values are

sampled from a signal and subjected to a double linear transformation. This transformation maps the

signal into a unit square. Then, the total length (L) of the curve is found by taking the normalized abscissa

of the square, which is used with the total number of values N to calculate the SFD value. This calculation

is as follows[20]:

SF D = 1+ l n(L)+ ln(2)

ln(2∗N )
(2.19)

Line Length

Line Length (LL) is a geometry-based feature that measures the complexity of the signal. A high value

indicates a more complex and varying signal. It is calculated by taking the absolute value of all distances

between successive points:

L = 1

N

N−1∑
k=1

|x(k −1)−x(k)| (2.20)

where x is the EEG signal, k represents a discrete number indexing the time, and N is the total number of

points in the EEG window[21].
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2.5.2 Common Spatial Pattern

The CSP algorithm is used, with high success, for calculating spatial filters for detecting ERD and ERS. By

implementing CSP the objective is to find features that can discriminate between different classes of EEG

signals. The CSP algorithm gives the filtered signal Z which maximizes the difference in the variance of

the different classes of the EEG measurement[22]. The signal Z is given by the following equation,

Z =W T E . (2.21)

E is the raw EEG signal and W is the projection matrix. The columns in the W are the spatial filters, and

the columns in W −1 are the spatial patterns[23]. To maximize the difference between the variance of the

classes we calculate the covariance for the different classes and then combine them, this is done in the

following manner[23],

Rc1,c2 = 1

N

N∑
n−1

E n(E n)T

Tr (E n(E n)T )
(2.22)

Rc = Rc1 +Rc2. (2.23)

For the following step, a whitening matrix, P , from the eigenvalues of the covariance matrix is con-

structed,

P =
√
Λ−1

c U T
c , (2.24)

where Uc is the matrix containing the eigenvectors andΛc is the matrix containing eigenvalues. With the

whitened covariance matrices and the P matrix, we get the following,

S = PRP T (2.25)

The further eigen-decomposition of S can be expressed as,

S = BΦB T , (2.26)

withΦ as the eigenvalue matrix, and B as an optimization variable for maximizing the difference between

the classes by finding the spatial filters, V , where each of the columns is a filter. From V , filters are selected

to obtain the spatial filter W . The matrix V can be found in the following matter,

V = B T P. (2.27)

The CSP algorithm was originally only made for binary classification, but later extended to be used in

classification for multiple classes[23].
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2.6 Classification

2.6.1 Random Forest

RF is a tree-based ensemble classifier. Each tree in the classifier is dependent on a collection of random

variables. The classifier takes an input vector that represents the real-valued data with a correspond-

ing vector containing the real-value response (classes) to the input vector. The RF classifier aims to find

a prediction function for classifying the input, this prediction function is found by minimizing a loss

function[24].

The RF classifier consists of a forest of trees, where each tree in the forest is based on binary recursive

partitioning trees. Each tree starts with a root, which is the first node of the tree. This node is split into

two descendant nodes, according to the value of one of the predictor variables. This is done for every

descendant node until it reaches the terminal nodes[24].

The RF algorithm uses "Random Sampling", meaning that the algorithm randomly selects a subset of the

training data with replacement. This is also known as bootstrapping. Bootstrapping causes every tree in

the forest to be trained on a different subset of the data, making the model less sensitive to the training

data. For each tree, a random subset of the features is selected to split the node.

To classify new data points, the data is passed to all the decision trees in the forest. Further, all votes for

each class are summed up, where all the class predictions from each tree are independent of each other.

By using the majority rule, the class with the highest number of votes is assigned to the data point as

its class. With the independence of the trees and the use of the majority rule, the model is less prone to

errors and overfitting.

2.6.2 Gradient Boosting

The GB algorithm is like the RF a tree-based ensemble classifier. The basic idea behind the GB classifier is

to sequentially add new models to the ensemble, where each model is a decision tree that tries to correct

the mistakes made by the previous models (i.e. it combines multiple weak classifiers to create a strong

one). This way, the final model is a weighted combination of all the models, with each model contribut-

ing a small amount to the final result[25].

Initially, the algorithm starts with one initial decision tree that predicts the average value of the target. Af-

ter the initialization, the algorithm trains a sequence of models/trees iteratively. Each tree is built based

on the residuals from the previous model, using the different features at the nodes, and separating the

observations into branches. The residuals are calculated by exploiting the gradient of the loss function

used, and for each iteration, the models try to correct the error from the previous iteration.[25]
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After all the models are trained, a combination of the models is made for making a final classification.

This model is found by calculating a weighted sum of all the models in the ensembles, with the weights

determined by the performance of the model. To classify a new data point, the GB classifier does as the

RF classifier and runs the data point down every tree in the ensemble. Then, for making the classification,

it uses the weighted sum of all the predictions obtained from the ensemble.[25]

2.6.3 Linear Discriminant Analysis

The LDA classifier tries to find a subspace of lower dimension, compared to the original data sampled

dimension. The original data points need to be separable, which is measured by the use of mean and

variance [26]. In classification, LDA tries to find a linear combination of features that maximizes the sep-

aration between different classes of data. Originally the classifier was made for binary classification and

is done by the following matter [26]:

First, for each class, A and B, the sample means can be found:

x̄A,B = 1

NA,B

∑
x∈A,B

x (2.28)

where NA and NB is the number of samples in class A and B.

Next, to express the sample variability of each class the positive definite scatter matrices are found:

S A,B = ∑
x∈A,B

(x − x̄A,B )(x − x̄A,B )T (2.29)

The hyperplane, defined by vectorφ, is found such that when the data samples are projected the variance

will be minimal:

min
φ

= (φT S Aφ+φT SBφ) = min
φ

φT (S A +SB )φ= min
φ

φT Sφ (2.30)

The scatter matrix between the two classes can be found mathematically as:

S AB = (x̄A − x̄B )(x̄A − x̄B )T (2.31)

Now, according to Fisher’s intuition, the wish is to find a hyperplane maximizing the distance between

the means between the two classes and at the same time minimizing the variance in each class. Fisher’s

criterion can be formulated as follows:

max
φ

φT S ABφ

φT Sφ
(2.32)

Replacing the denominator with an equality constraint, φT Sφ = 1, this becomes a convex optimization

problem with a global optimum.

To further expand this classification method into a multiclass problem, we need to redefine the scatter

matrix, S = S1 +·· ·+Sn , where the inter-class matrices are defined as follows:
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S1,··· ,n =
n∑

i=1
pi (x̄i − x̄)(x̄i − x̄)T (2.33)

with pi as the number of samples in ith class, x̄i as the mean for each class and the x̄ as the total mean

calculated as:

x̄ = 1

p

n∑
i=1

pi x̄i (2.34)

Lastly, from this we can obtain φ by solving the following eigenvalue problem:

S1,··· ,nφ=λSφ (2.35)

2.6.4 Support Vector Machine

SVM tries to find a hyperplane (i.e., a decision boundary) that maximally separates the data points into

different classes. The SVM classifier separates the classes by using a kernel to transform the input data

into a higher dimensional space, where the different classes are linearly separable. After transforming the

data, the classifier tries to find a hyperplane that maximizes the distance between the hyperplane and the

closest data points. The distance is called the margin, and the data points closest to the hyperplane are

called support vectors[27].

When the data points are not separable by a hyperplane, a "soft margin" approach is introduced. This

"soft margin" approach includes a penalty term to the SVM classifier and makes the classifier allow some

misclassification. For the SVM classifier to be able to handle both linear and non-linear classification

problems, different kernels can be used for different problems, where the kernels add a dimension to the

data. The kernels do also add the benefits of being able to use input data, not in vector format, and also

being able to combine different types of data [27].

Overall, the SVM classifier tries to find the hyperplane that not only separates the data points but also

generalizes well to new data. This is achieved by minimizing the classification error and maximizing the

margin simultaneously. The SVM is a powerful classification algorithm that can handle complex datasets

and generalize well to new data[27]. Figure 2.5 shows an illustration of the SVM classifier.

20



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.5: Simple illustration of how the SVM classifier works, with respective support vectors, hyper-
planes, and margins.

2.6.5 Convolutional Neural Network

Over the past few decades, DL and Deep Neural Network (DNN) have grown to be one of the most power-

ful tools in classification[28]. DNNs are collections of neurons organized in a sequence of multiple layers.

The input to the neurons in a layer is the neuron activation from the previous layer, making a complex

nonlinear mapping from input to output. The weights of these neurons are adapted when feeding it with

the data by backpropagation[29]. One of the most commonly used DNN is the Convolutional Neural

Network (CNN), which have shown great results in various application including image detection, time

series data, and video detection[28].

A CNN can process data with a known, grid-like topology. It employs a mathematical operation called

convolution, which is a linear operation between the input and a kernel. The output of this convolution

is a feature map containing a map of activations indicating the input feature’s location and strength[30].

The convolution is done to decrease the complexity and number of connections in the network[31].

In contrast to traditional ML, CNN does not require the signal to be preprocessed in any way. The CNN

classifier can use the raw, denoised, or filtered signal to extract features and make a classification based

on the weight and biases learned during training[32]. Even without feeding the CNN with features, it has

shown to outperform traditional ML in many applications[32][33], including EEG classification[31].
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EEGnet by Lawhern et al.

EEGnet is a compact CNN specifically designed for the classification of EEG signals. The network con-

tains input and output layers in addition to two hidden layers named blocks. The blocks perform depth-

wise and separable convolution to construct a model which encapsulates well-known EEG feature ex-

traction concepts for BCI[34]. The Depthwise convolution convolves each input channel with a sepa-

rate filter, in contrast to normal 2D convolution where the convolutions are performed over all or mul-

tiple input channels[35]. The separable convolution is a depthwise convolution followed by a pointwise

convolution[34], where a pointwise convolution applies a single filter to each element of the input feature

map[36].

In addition to having convolutional steps in the blocks, they also include batch normalization and av-

erage pooling[34]. Batch normalization normalizes the input to each layer, making the training process

more stable and efficient, while avoiding the output of each layer to become too large or small. Aver-

age pooling is a method that downsamples the feature map by computing the average of values within

a window and using the resulting values in the output map. Thus, the feature map has a smaller spatial

dimension, improving computational cost and reducing the chance of overfitting[30]. To complete the

network, dropout is included to avoid overfitting[34]. Dropout is a regularization method that randomly

deactivates a percentage of the nodes during each training step[30].

The EEGnet is said to be robust as it is able to learn a wide variety of interpretable features from many

different BCI tasks. It has also been shown that it can outperform other well-known CNN classifiers for

EEG classification since it performs well on both small and large datasets[34].

2.6.6 Transfer Learning

ML and DL are widely used and successful methods in many domains and applications where past in-

formation (training data) can be used to predict an outcome[37]. These methods have traditionally been

designed to work in isolation and to solve a specific task. Thus, they have to be rebuilt every time one of

the feature-space distributions changes. To overcome these problems, TL utilizes knowledge acquired for

one task to solve related ones[38]. Thus, TL can be described as a situation where what has been learned

in one setting, can be used to improve generalization in another setting[30].

The need for TL occurs when there is a limited supply of target training data. Training on a small amount

of data can lead to a bad classification, thus transferring knowledge from one model to the other can en-

hance accuracy[37]. As well as being convenient when having a small amount of data, TL can increase

computational efficiency by either saving time and resources from having to train multiple ML models

from scratch or reducing the effort of expensive data collection and labeling[39].
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TL can be divided into three different learning strategies, based on if there is labeled data or not[39]. This

can be seen in figure 2.6, where source domain refers to the data used to train the model before the TL,

and target domain refers to the data we want to classify by using TL. In inductive TL, the target task is

different from the source task, requiring labeled data from the target domain to induce the model for use

on the target domain. On the other hand, in transductive TL the source and target tasks are the same

while the domains are different. Unsupervised TL has the same source and target domains and different

tasks, but the labeled data is unavailable in either of the domains[39].

Figure 2.6: Learning strategies for transfer learning. Adapted from [39].
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2.7 Non-dominated Sorting Genetic Algorithm

The NSGA is a type of Genetic Algorithm (GA). The GAs are inspired by Darwin’s theory about natural

evolution and natural selection also called "Survival of the fittest" [40]. Natural selection is based on the

idea that the "fittest" individuals from the populations will produce offsprings that will inherit the char-

acteristics from the parents. The next generation will evolve further, based on the genes of the previous

generation. This evolution and replacement of the generations are done iteratively by using the genetic

operators, selection, mutation, and crossover [40]. The population of a GA consists of different chromo-

somes, where the chromosomes consist of 0 and 1. Each of the chromosomes gets a value from the fitness

function, and the value assigned decides which of the chromosomes will be selected for the development

of the next generation[40].

Non-dominated sorting is based on the Pareto dominance principle and is used for sorting the solu-

tions in populations [41]. This is an important process in the selection operation of many multi-object

GAs[41]. The Pareto optimal solutions are solutions that are superior to those in the search space when all

objectives are taken into consideration, but inferior to the other solutions for one or more objectives[11].

These solutions are also called non-dominated solutions, and the rest of the solutions are called domi-

nated solutions[11].

The procedure of the NSGA-III is described in [42] and shown in figure 2.7 and can be described in the

following manner: First, the algorithm generates a random initial population of parents, Pt , and sets

a uniform reference point. The population of the next generation, Qt is then found by combinations

and mutations of different parents. After the new generation is found, this population and the parent

population are combined into a new population, Rt . Then non-dominated sorting is applied to divide the

population into non-dominated sorting levels, and from these levels selects individuals to make a new

population St . The new population St is the new parent population for the next iteration of the algorithm.

For choosing the K individuals shown in figure 2.7, some additional steps are done. Firstly normalization

of the objective values of the individuals in St , then it defines reference lines. After defining the reference

line, it calculates the perpendicular distances between the individuals in St and the reference lines. Each

individual in St is associated with a reference point according to the minimum perpendicular distance.

Then it chooses the reminding individuals based on the calculated niche count.
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Figure 2.7: Flow chart of the NSGA algorithm adapted from [42].
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Chapter 3

Literature Review

MI-classification is a field in EEG-studies that is well-researched. To get an overview of this field, different

meta-studies are reviewed. These meta-studies offer valuable insight into which pipelines have been

explored and identify those that have exhibited favorable outcomes in terms of MI classification using

ML and DL techniques. In addition, a review of the dataset is given to give a presentation of the results

obtained from the different subjects in the dataset.

3.1 State-of-the-art in Motor Imagery Classification

3.1.1 Preprocessing

In order to reduce issues related to memory requirements, computational time, system complexity, and

overfitting, fewer EEG electrodes are preferred[43]. While most studies on MI classification employ all

available electrodes within the dataset, research in this area suggests that conducting an electrode selec-

tion might either enhance the performance or not affect it in any significant way[44][45]. In fact, findings

from a survey study[46] on electrode selection conclude that the number of electrodes can on average be

reduced by up to 80% without significantly affecting classification tasks.

In addition to electrode selection, features must be extracted from the signal before classification. Ac-

cording to Aggarwal and Chugh[47], CSP and its variants are widely used in MI-based BCIs. Furthermore,

studies have shown that filter bank Common Spatial Pattern (fbCSP) consistently yields the best perfor-

mance in MI classification when compared to other methods relying on manual feature extraction[43].

Time-frequency domain feature extraction methods are also widely employed in MI-BCIs, as they enable

spectral information about the EEG signal. DWT is one of these methods which proves to be a powerful

tool due to its ability to capture different information about MI actions within the subbands[48]. Fre-

quently, band power features are calculated from these bands, as they effectively capture the change in

EEG rhythm amplitudes[49].
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The majority of the MI-signals typically lay in within the frequency range of 8−30H z[2]. For this reason,

multiple studies have shown that using a filter to extract these frequencies can enhance the results of

MI classification[13][43]. In addition, frequency filtering can serve as an effective way of removing a

large portion of the noise. Specifically, it can remove low-feature artifacts such as eye blinking, and high-

feature artifacts such as electromyography[43].

3.1.2 Classification

Machine Learning

Numerous ML algorithms have been employed in the classification of EEG-BCI signals, some with greater

success than others. SVM and LDA are two of the classifiers that have shown great results, where SVM of-

ten outperforms most classification methods[49][47]. SVM has multiple times shown better results than

LDA when classifying EEG signals, but newer studies show that adding a regularisation on LDA will im-

prove the classification, making it just as good or better than regular LDA and SVM[47][50][51].

In recent years, there has been a growing interest in tree-based classification methods, as they have

shown to outperform other popular classification algorithms, specifically in scenarios with limited avail-

able data[49]. In particular, multiple studies have shown that RF can outperform both SVM and LDA

when it comes to MI classification[52][53][54]. In addition, Xu et al.[55] showed that using GB increased

the accuracy by 13% compared to Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN)

for MI tasks, while Mirzaei and Ghasemi[56] showed that GB can outperform both SVM and LDA.

Another method that has shown great results in multi-class MI classification is to use multiple classifiers

rather than one. Studies have shown that a k-Nearest Neighborhood ensemble method can significantly

improve the accuracy compared to conventional models[47]. The method of using an ensemble of classi-

fiers has also shown superior results in online classification, according to Lotte et al.[49]. Lotte et al. also

state that adaptive LDA has been explored successfully in online classification.

Deep Learning

There are multiple DL algorithms tested on EEG signals. However, according to Altaheri et al.[43], the

most commonly adopted method is CNN based. Altaheri et al.[43] further state that CNN often outper-

forms other DL techniques when classifying MI signals[43]. Wang et al.[57] demonstrate that using a

CNN outperforms LSTM by an average of 6.55% to 12.54%. Furthermore, another study shows that CNN

outperforms both LSTM and RNN, stating that one of the reasons CNN outperforms LSTM may lie in the

possibility that LSTM can be prone to overfitting[58].
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In addition, Wang et al.[57] show that CNN outperforms SVM by an average of 3.07% to 9.05%. Another

study concludes that CNN can outperform regular ML techniques that employ fbCSP as feature extrac-

tion and LDA or SVM as classification techniques[59]. Several studies conclude the same, that CNN often

achieves better performance than standard ML[32][60].

Subjects performing MI tasks can be divided into high and low performers based on the ease of building a

classifier and the results obtained. According to Tibrewal et al.[32] using a CNN can improve classification

significantly more for low performers than for high performers, showing that Neural Network (NN) is an

important tool for MI classification. Furthermore, Lotte et al.[49] state that DL and NN can compensate

for different struggles encountered from EEG signals. Specifically, DL can improve classification accuracy

when the signal-to-noise ratio is low and the BCIs have poor reliability.

Transfer Learning

TL is a valuable approach when there is not enough labeled data to train a model, but there exists a

model where the knowledge of a domain can be transferred to the new domain. Wan et al.[61] describe

the advantages and challenges of four main methods of TL and explores their practical application in

EEG signal analysis in recent years. The four methods are domain adaption, improved CSP algorithms,

DNN methods, and subspace learning. Their research found that the main advantages of TL in EEG sig-

nal analysis are that it reduces the requirement for data and that TL can make the model more flexible,

such that it can match different individuals and tasks through adjustments[61]. On the other hand, both

Wan et al.[61] and Lotte et al.[49] state that negative transfer is a challenge that must be faced, and that

TL should be used with care, as it also may decrease performance.

To minimize the risk of negative transfer, Chen and Lu[62] purpose a method where they select appropri-

ate sources to borrow knowledge from when doing the transfer. Their results show that the classification

accuracy improves by 12.72% compared with the non-transfer method. Another study done by Ling and

Jung[63] purpose a conditional TL to facilitate a positive transfer for each subject. Their method uses

data from other subjects with similar EEG signatures to transfer knowledge. The results show that multi-

ple subjects could benefit from TL, with some subject accuracies increasing from chance level (50%) up

to 70%. In addition to these studies, multiple papers conclude that using TL on EEG data can increase

the accuracies compared to the subject-dependent counterpart[59][64][65].
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3.2 Review of Results from Dataset

A dataset collected at the Laboratory of Brain-Computer Interfaces at Graz University of Technology in

Austria is used in this thesis. It was collected for the international BCI conference in 2014 by David Steyrl,

Reinhold Scherer, Oswin Förstner, and Gernot R. Müller-Putz[66].

Steryl et al.[67] made a paper on the subjects’ performances in this dataset. The pipelines used to find

the performances are fbCSP combined with RF and fbCSP combined with Shrinkage Linear Discrimi-

nant Analysis (sLDA) for offline classification, and Discrete Fourier Transform (DFT) combined with RF

for online classification. Of the three pipelines, offline classification using fbCSP and RF gave the best

results, with median accuracies ranging from 53.33% on subject 14 to 100.00% on subject 1. On offline

classification RF gives on average 2.50% higher peak accuracy and 2.90% higher median accuracy than

using sLDA. When using online simulation, the peak accuracies are above chance level for all subjects,

ranging from 65.00% to 100.00%, showing that RF can be used for online classification[67].

From the paper of Steryl et al.[67], it can be seen that subjects S11-S14 have some of the lowest results,

with median accuracies ranging from 52.50% to 88.33% using the best pipeline. These subjects are the

focus of a paper written by Wang, Yang, and Huang[68]. Their results range from 67.00% to 87.00%, giving

higher average accuracy than Steryl et all. There are three pipelines tested in this paper, where Eucledian

Space Data Alignment is used as preprocessing on all of them. The tree pipelines consist of fine-tuned

CNN, CSP-SVM, and CSP-2DCNN, where CSP-2DCNN give the highest results. The performance of this

method is between 7.00% to 15.00% higher compared to CSP-SVM and 4.00% to 13.00% higher than fine-

tuned CNN[68].

A third paper uses two different feed-forward NN, namely Multi-layer perceptron (MLP) and Extreme

Learning Machine (ELM), to obtain results. Both of the pipelines use a method based on Riemannian

geometry obtained from 15 frequency bands from 8−24H z to calculate features that are fed to the NNs.

The results show that MLP has a higher kappa value with an average lower SD than ELM, making it better

at classification. They also show that there is a statistical difference across the subjects and that the

number of hidden units in the classifiers will affect the results[69].
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Chapter 4

Data Acquisition and System Design

4.1 Equipment

The drone used in the experiments is a Crazyflie 2.1 designed by Bitcreaze. A picture of the drone can

be seen in figure 4.1. To enable control over the drone, a Python-based Application Programming Inter-

face (API) is developed, enabling the possibility to transmit commands to the drone in real-time. Further-

more, a communication interface named Crazyradio PA serves as the conduit for establishing a wireless

link between the drone and the computer system.

Figure 4.1: Picture of the drone Crazyflie 2.1.
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4.2 Electrode Placement

Steyrl et al.[67] employs the widely adopted 10-20 system for electrode placement in their study. Specif-

ically, the three central electrodes, named C3, Cz, and C4, are positioned according to this system. In

conjunction with these center electrodes, four additional electrodes are positioned at a distance of 2.5

cm from each center electrode, as seen in figure 4.2. These supplementary electrodes can be used as a

derivation of a Laplacian rereferenicing configuration for the central electrodes, or as extra electrodes

when doing classifications. When the Laplacian rereferencing scheme is used, only the center electrodes

are used for classification.

Figure 4.2: Small Laplacian electrode placing scheme, centered at electrodes C3, Cz, and C4.Reprinted
from [67].

4.3 Data Epoch

4.3.1 Offline Epoching

The dataset used in this thesis[66] consists of eight runs per subject. Each run consists of 20 trials, with

each trial spanning a duration of approximately 10 to 11 seconds. Specifically, in each trial, a period of

5 seconds is marked as MI-task, where the first second is when the cue is shown. One second before the

cue, there is a beep to alert the subject of a new task. The remaining duration of the trial is marked as rest.

For the offline experiments, a duration of 3 seconds of task and rest data is used for analysis. This can be

seen in figure 4.3.
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Figure 4.3: Visualization of offline epoching of data. Adapted from[67].

4.3.2 Online Epoching

The EEG recordings produce a continuous stream of data, so segmentation is needed in order to align the

data stream with the structured format of the training data used to make the classification model. For the

online classification, a time window optimization is employed to determine the optimal second within

the training data that yields the highest accuracy. Further, the stream can be continuously segmented

into data of 1 second corresponding to 512 data points. This will lead to new classifications roughly every

second, as illustrated in figure 4.4

Figure 4.4: Visualization of online epoching of data.
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4.4 Data Flow

4.4.1 General Data Flow

The flow from raw EEG data to classification is shown in figure 4.5. As seen from the figure, the initial step

involves preprocessing of the raw EEG data, before the pipeline diverges into two branches based on the

employment of either DL or ML approaches. It is necessary to diverge the pipeline due to ML algorithms’

need for feature extraction before classification, which is not needed before the DL classification. Fur-

ther, in the ML branch, the data undergoes either DWT decomposition or bandpass filtering, followed by

feature extraction and classification. The DL branch undergoes an optional signal filtering, after which

the data is fed directly into the CNN classifier for classification.

Figure 4.5: Flowcharts describing the steps made from EEG signal to classification.

4.4.2 Machine Learning Flow

To prepare the signal for classification, a preprocessing technique is employed. This phase encompasses

a notch filtered at 50H z to remove the electrical interference and an optional rereferencing of the signal.

Two different rereferencing methods are tested: CAR and Laplacian rereferencing. Following this stage,

the signal undergoes either decomposition or bandpass filtering. For the DWT decomposition, 4 levels of

decomposition and the mother wavelet "Biorthogonal 2.2" is used. This results in the sub-bands shown

in table 4.1. When the signal is bandpass filtered, the frequency range is typically set to 8−30H Z , unless

anything else is given.

Table 4.1: Frequency sub-bands for four levels of DWT decomposition for sampling frequency at 512H z

Four levels of decomposition

Sub-band Freq. band [H z]

D1 128H z-256H z

D2 64H z-128H z

D3 32H z-64H z

D4 16H z-32H z

A4 0H z-16H z
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Two methods are used for feature extraction, CSP and manual calculation of 16 different features. The

application of CSP is exclusively employed following bandpass filtering, whereas the manual feature cal-

culation is conducted on both the bandpass-filtered and DWT-decomposed signals. In the case of DWT,

the 16 features are computed for each decomposition level, whereas for the bandpass filtered signal, they

are computed for the entire frequency band. From these 16 features, the NSGA algorithm is used to find

a subset of features that lead to enhanced accuracy in general across the subjects.

The classification stage involves the evaluation of four distinct classifiers, namely RF, GB, SVM, and LDA,

as they have shown promising results on MI classification. While multiple parameters can be chosen for

each classifier, the default values are primarily utilized in this study. In the SVM classifier, a linear kernel

is employed to facilitate binary classification. This way the data can be split into task and rest, and further

into the two different MI-tasks.

To minimize the potential of any dependency in the classifiers or dataset, the data is shuffled, and 10-fold

cross-validation is performed. This approach involves dividing the dataset into ten equal-sized subsets,

iteratively training the classifier on nine subsets while validating the performance on the remaining sub-

set, and repeating this process ten times with different partitioning combinations.

4.4.3 Deep Learning Flow

The same preprocessing methods employed for the ML classification are also applied to the DL classi-

fication. Following preprocessing, the signal undergoes bandpass filtering, within the frequency range

of 8-30H z, unless otherwise specified, before being inputted into the CNN classifier known as EEGnet.

Even though the EEGnet has several parameters, the default values are used in the experiments. More-

over, for the compilation of a NN in general, a loss function and optimizer must be chosen. The Adam

optimizer is employed, as it has shown high effectiveness across various applications. The choice of loss

function depends on the number of classes present in the data. For binary classification scenarios, the

Binary Cross-Entropy loss function is employed, whereas for multi-class classification, the Categorical

cross entropy loss function is utilized.

During the training of the CNN, a batch size of 16 is used, while the number of epochs is set to 100. These

parameters are selected to accelerate the training process without compromising accuracy, in addition

to ensuring that the model is thoroughly trained without causing overfitting.

In the case of subject-dependent models, the EEGnet is run 10 times, with the data shuffled before each

run to utilize different data points for training, validation, and testing for each iteration. To prevent over-

fitting and ensure a sufficient size of the test data, both the validation set and the test set consist of 25%

of the total data points.
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4.5 NSGA Settings

The NSGA algorithm requires a high number of runs to achieve optimal results. Given the significant

number of variables associated with future selection, 16 variables, and electrode selection, 15 variables, a

total of 20 populations and 200 generations are selected, resulting in a maximum of 4000 runs. Since 4000

runs can be excessive, a tolerance limit of 0.1% is introduced. This makes the algorithm terminate when

the objective space changes less than this threshold. Specifically, this criterion is calculated on the last 10

generations.

When considering pipeline selection, it becomes evident that running 4000 iterations is excessive, as

there are fewer possible combinations of the variables involved. Thus, the population number is reduced

to 10 and the generation number is reduced to 100. Further, the same tolerance limit and calculation

criterion are used as for feature and electrode selection.

For feature and electrode selection, Binary Random Sampling is employed, while for pipeline selection,

Integer Random Samplingis used. Binary Random Sampling generates a chromosome consisting of True

or False values, while Integer Random Sampling will produce numbers in between predefined ranges. In

addition, the reference direction for all the problems is set to das-dennis, as it is widely adopted. Further,

eliminating duplicates is set to True to ensure the integrity of the optimization process.

4.6 Transfer Learning

4.6.1 Deep Learning

TL is a widely employed approach for exploiting earlier knowledge to predict an outcome in a new and

similar domain. In the context of DL, TL involves training a pre-existing NN, such as EEGnet, using sub-

jects that exhibit similar EEG characteristics. Subsequently, the network is fine-tuned using a subset of

data acquired from the specific subject on which we want to do classifications.

To facilitate the fine-tuning process, each layer of the original network is made untrainable, preserving

the weights and biases obtained from the initial training phase. Then an additional trainable layer is

introduced to the model, enabling the tuning of parameters specific to the targeted subject. This model

is then trained using portions of the subject’s data before it is tested using the remaining data.

4.6.2 Machine Learning

Creating a TL model within the framework of ML involves the development of a subject-independent

model by utilizing data from multiple subjects for the training procedure. The model can then be utilized

for predicting the subject of interest. This underlines how crucial it is to develop a reliable model that

can effectively capture the fundamental aspects of the EEG signal generated by various subjects while

engaged in MI.
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4.6.3 Data splitting

For the subject-independent models developed for the TL-experiments, the data is partitioned a bit dif-

ferently than for the subject-dependent models. Where 10-fold cross-validation is used for the subject-

dependent ML models, the subject-independent models are subject to a different testing methodology.

Each subject has 8 independent files of data, thus one of these files per subject is used for testing the

TL-model and the remaining for the training of the model. This ensures that the model is trained and

evaluated on data from each of the subjects. During the final subject-independent test on an unseen

subject, each of the subject’s files containing multiple trials is classified separately. Thus, the accuracy,

True Positive Rate (TPR), and True Negative Rate (TNR) will be calculated as the average score from these

8 independent runs.

For the subject-independent models implemented using DL and the EEGnet, the data partitioning is

again a bit different, as it requires data from the unseen subject to update weights and biases prior to

the classification. To build these models, one of the files from each subject is used for testing, one for

validation and the remaining for training. When classifying the data from the unseen subject, two of

the files are used for testing and the remaining for the tuning of weights and biases. This procedure is

repeated 10 times, ensuring a robust evaluation by randomly selecting two files from the target subject

for testing during each iteration.

4.7 State Machine for Experimental Test

A state machine serves as a computational model used to represent the current state of the drone and the

permissible transitions to subsequent states. For these experiments, the classification of MI tasks is used

to facilitate the transition of the drone into different states in real-time, making the drone controllable.

The flow from EEG data stream to the actuation of the drone can be seen in figure 4.6 From this figure, it

is shown that an optimal model is made from the database consisting of previously recorded EEG data.

This model is further used for the classification of the EEG data stream, which is also one of the files

from this database. The optimal model is made based on what is found in the offline experiments. The

data processing consists of filtering, optional decomposition, and sequencing of data into 1 second for

classification. The stat machines which are used are described in the following subsections.
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Figure 4.6: Data flow for online classification of EEG data using a stream of data

4.7.1 Drone State Machine for Two-Class Classification

For the two-class MI state machine, the drone is set to either rotate 90 degrees, move forward for 1.5

seconds, or stay idle. Upon initiation, the drone lifts itself from a resting position to a stable flying state.

During this initialization phase, all classifications are temporarily disabled until the drone reaches an idle

state in mid-air. When in an idle state, the drone awaits a classification output corresponding to either

right hand or foot MI. This classification serves as a triggering event, leading the drone to transition to

the appropriate subsequent state: rotate or fly forward.

Once the action is completed, the drone reverts to the idle state, where it awaits the next task to per-

form. As for the initialization, the drone blocks new classifications until it is back to an idle state. The

visualization of the state machine can be seen in 4.7.
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Figure 4.7: State machine of a drone for two MI task classification

4.7.2 Drone State Machine for Three-Class Classification

When rest is added as the third class, the drone gains the capability to autonomously determine when it

should return to an idle position. This allows for the continuous segmentation and utilization of a data

stream to control the drone’s flight. The corresponding state machine for this process is shown in figure

4.8. Similar to the 2-class state machine, the drone blocks all classification during take-off. In addition,

to prevent potential collisions, a stopping criterion is added. This way it ensures that if foot MI occurs

repeatedly without any rotation of the drone in between, it does not collide with any obstacles.
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Figure 4.8: State machine for a drone for three classes, including 2 MI tasks and 1 rest task
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4.8 Metrics for Evaluation

As the dataset is balanced, accuracy serves as a suitable evaluation metric. Accuracy, denoted as the ratio

of correctly classified instances to the total number of instances, provides a measure of the model’s overall

performance. To ensure reliable accuracy estimation, it is essential to employ separate training and test

sets. However, the accuracy metric can be influenced by the specific data partitioning used in these sets.

To mitigate this dependency, a k-fold cross-validation technique is employed, unless otherwise specified.

In addition to accuracy, the metrics TPR, also called sensitivity, and False Positive Rate (FPR) is used for

performance evaluation. The TPR is the proportion of correctly classified positive instances, while FPR is

the proportion of incorrectly classified negative instances. The formulas are defined below:

TPR = True Positives

True Positives+False Negatives
(4.1)

FPR = False Negatives

False Positives+True Negatives
(4.2)

Furthermore, the metric specificity is also employed. Specificity, also called TNR, describes the model’s

ability for correct classification of negatives and can be defined as TNR = 1−FPR.
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Chapter 5

Results

5.1 Subject Selection

For initial testing and to gain an understanding of the dataset’s subject performance, a classification of

the raw data was conducted. In order to mitigate any potential dependency on the employed feature ex-

traction or classification methods, 5 different pipelines were employed for this initial testing phase. In the

following sections of this thesis, more pipelines shall be explored and tested. However, these pipelines

will only be tested for a smaller subset of subjects, as it is too time-consuming to test every pipeline on

every subject. Which subject and why these were selected will be stated after the initial testing.

Five classification techniques were employed for the initial testing, where each of which involved pre-

processing using two different filters, first a notch filter at 50H z, then a highpass-filtered at 0.1H z. The

subsequent techniques are listed below:

• CSP + LDA

• CSP + RF

• DWT + RF

• DWT + LDA

• EEGnet

For the initial tests, all the subbands derived from the DWT were utilized. This includes the 4 levels

of decomposition as well as the residual high-frequency coefficient. The results of the initial test are

presented in table 5.1. These results indicate significant variation among the subjects and show that

the accuracies achieved were relatively low. Further, they show that the different pipelines gave a large

range in accuracy, with the lowest recorded accuracy standing at a mere 40.63% and the highest reaching

to 89.75%. These extreme values are emphasized in bold within the table. Moreover, the two highest

average accuracies are also highlighted in bold. Specifically, these two accuracies belonged to subjects

S03 and S09, while the lowest average accuracy was obtained by subjects S06 and S08.

43



CHAPTER 5. RESULTS

Table 5.1: Classification accuracy for all the subjects in the dataset, where the preprocessing consisted of
a notch filtered at 50H z and a highpass filter at 0.1H z.

Subject CSP+LDA CSP+RF DWT+LDA DWT+RF EEGnet Average

S01 48.75% 50.63% 56.25% 56.25% 58.25% 54.03%

S02 55.63% 53.75% 55.00% 58.13% 66.00% 57.70%

S03 66.88% 63.75% 85.00% 88.75% 82.00% 77.28%

S04 56.25% 51.25% 56.88% 66.25% 68.25% 59.78%

S05 52.50% 55.00% 52.50% 53.75% 64.25% 55.60%

S06 49.38% 56.25% 53.13% 50.00% 54.25% 52.60%

S07 65.63% 61.88% 60.62% 55.00% 69.00% 62.43%

S08 43.75% 40.63% 42.75% 48.75% 53.25% 45.83%

S09 75.00% 74.38% 75.63% 78.13% 89.75% 78.58%

S10 55.00% 53.13% 59.38% 50.00% 54.50% 54.40%

S11 45.00% 43.75% 62.50% 64.38% 50.25% 53.18%

S12 50.00% 50.00% 55.63% 54.38% 55.00% 53.00%

S13 57.50% 55.00% 51.86% 48.13% 53.25% 53.15%

S14 46.25% 56.25% 46.86% 56.25% 58.75% 52.87%

For further initial testing, a bandpass filter ranging from 8 to 30H z was applied to extract the mu and beta

bands, known for exhibiting significant changes in SMR. The bandpass filter was applied preceding the

feature extraction using CSP or the signal input to the EEGnet. However, in the case of pipelines using

DWT, only the two subbands A4 and D4 were extracted instead of bandpass-filtering the signal, as they

contain the mu and beta bands. The results obtained from this experiment are presented in table 5.2.

Compared to the previous test, the accuracies were still very variable between the subjects. On the other

hand, the overall averages increased for all subjects except subject S09. For instance, subject S08 has a

prominent increase of 19.80%. Notably, subjects S03 and S09 achieved the highest accuracies, consistent

with the findings from the prior test without bandpass filtering or subband removal. Further, comparing

all accuracies for all the pipelines, the lowest accuracy obtained was 46.88% and the highest was 99.25%,

both marked with bold text in the table.
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Table 5.2: Classification performance for all the subjects in the dataset, where the preprocessing con-
sisted of either bandpass filtering or extraction of 2 DWT levels.

Subject CSP+LDA CSP+RF DWT+LDA DWT+RF EEGnet Average

S01 65.00% 60.63% 61.88% 50.00% 52.25% 57.95%

S02 66.88% 61.88% 46.88% 49.38% 78.50% 60.70%

S03 97.50% 95.63% 87.50% 86.25% 99.25% 93.23%

S04 80.63% 78.13% 66.88% 70.63% 86.50% 76.55%

S05 66.25% 66.25% 60.00% 50.00% 58.00% 60.10%

S06 75.00% 70.63% 51.25% 53.13% 81.50% 66.30%

S07 73.75% 74.38% 62.50% 56.88% 81.50% 69.80%

S08 83.13% 86.88% 59.38% 48.75% 50.00% 65.63%

S09 69.38% 83.75% 66.88% 79.38% 92.75% 78.43%

S10 61.88% 54.38% 58.13% 54.37% 68.25% 59.40%

S11 76.88% 75.00% 58.75% 63.13% 86.00% 71.95%

S12 71.88% 68.13% 55.00% 51.23% 53.00% 59.85%

S13 59.38% 55.00% 51.25% 52.50% 50.25% 53.68%

S14 59.38% 54.38% 48.13% 53.75% 55.50% 54.23%

For the subsequent sections of the thesis, four subjects were chosen for further experimentation and

model improvement. The subjects chosen were S03 and S09, as they achieved the highest overall accu-

racies. Additionally, subjects S11 and S13 were included in the selection. Subject S11 was specifically

chosen due to its initially low average accuracy of 53.18% during the first test, which increased to 71.95%

by simply applying a bandpass filter and removing bands from the DWT. It is therefore of great interest to

investigate whether an optimized pipeline can yield further improvement for this subject. On the other

hand, subject S13 was selected because it was the lowest-performing subject after the second initial test.

Similar to subject S11, it is interesting to investigate the potential for accuracy improvement through fur-

ther optimization.

The upcoming section in this thesis will use the two subbands A4 and D4 of the DWT decomposition un-

less stated otherwise. This decision is based on the findings from the initial tests, where it was observed

that the overall accuracies for the DWT-based pipelines increased when employing only two subbands

instead of all 5. Moreover, utilizing two bands would also lead to a reduction in computational complex-

ity.

45



CHAPTER 5. RESULTS

5.2 Feature Selection using NSGA

Calculating a lot of features is both computationally expensive and time-consuming. The objective of

this section was thus to use the NSGA algorithm to reduce the number of features while maintaining the

highest possible accuracy. The selection of features was done based on the accuracies obtained from the

algorithm. For the highest recorded accuracies, an investigation was carried out to determine the num-

ber of and which specific features were employed to achieve these scores. This analysis was conducted

for all four subjects and across 8 different pipelines. Utilizing different pipelines ensured that the features

chosen were not dependent on the pipeline itself, as the most important features may vary dependent on

the pipeline.

The chance level of a two-class classification is conventionally defined as 50%. However, the accuracies

obtained in initial tests were observed to be as low as 40.63%, falling below the chance level. This suggests

that the classifier is more biased towards one of the classes. While such outcomes might be expected in

an unbalanced data set, it is worth noting that the dataset utilized for this thesis is balanced, and 10-

fold cross-validation was implemented to reduce the chance of this occurring. Thus, the reason behind

these results remains unknown and has not been further investigated. Consequently, to account for these

findings, the chance level is adjusted to 60% as it represents a threshold that can be obtained purely by

chance.

The manual feature extraction process involved the application of two distinct methods: bandpass filter-

ing with a range of 8H z to 30H z and DWT subband extraction. When bandpass filtering was employed,

the features were computed based on the entire frequency band. For subband extraction with DWT, the

features were calculated for each individual subband, which in this case were A4 and D4.

To determine the optimal number of features to use, a count for each subject was made using the results

from the NSGA algorithm. The recorded results consisted of the accuracies achieved and the correspond-

ing feature subset for each classification done. Upon inspection of the results from the different sub-

jects, it became evident that the threshold representing what was a high score varied a lot. This laid the

foundation for defining four different thresholds which categorized high accuracy levels for each subject.

Specifically, for subject S03, the threshold was set to 90.00%, while for subject S09, it was 80.00%. Further,

for subject S11m the threshold was defined as 65.00%, and for subject s13, it was set to 60.00%. Based

on these established thresholds, the number of times each feature was used to obtain higher accuracies

than the thresholds for each subject was counted. This count can be seen in table 5.3.
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From this table, a pattern is revealed. None of the subjects employed either 1, 15, or 16 features to attain

accuracies higher than the established thresholds. Furthermore, the count increases until it reaches 4

or 5 features, after which it gradually declines. This pattern is further visually represented in the bar

chart shown in figure 5.1. The bar chart sums up the counts across the subjects, showing that the NSGA

algorithm most often obtained high accuracies when choosing 4 to 6 features. Upon further examination

of the accuracies achieved using 4, 5, or 6 features, the difference in accuracy was relatively small. Based

on these results, in addition to considering the computational complexity and time a consuming aspect

of feature computation, the optimal number of features was set to 4 features.

Table 5.3: Count of how many features used to obtain accuracies above the given thresholds, 90% for S03,
80% for S09, 65% for S11, and 60% for S13.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S03 0 18 254 614 786 644 504 377 244 106 31 12 1 0 0 0

S09 0 14 317 580 772 586 364 153 77 46 16 15 0 1 0 0

S11 0 23 276 641 572 450 290 117 64 33 10 11 0 0 0 0

S13 0 3 38 135 144 67 18 10 5 2 1 0 0 0 0 0

Sum 0 58 885 1970 2274 1747 1176 657 390 187 58 38 1 1 0 0
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Figure 5.1: Bar chart showing the count of the number of times a certain number of features are used to
obtain accuracies above given thresholds for all the subjects combined.
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In order to identify the four features that significantly contributed to achieving accuracies above the cho-

sen thresholds, the results of the NSGA algorithm were used to make a heat map for each subject. The

heat maps display a count of how many times each feature was selected for each of the models. The

resulting heat maps are shown in 5.2, 5.3, 5.4 and 5.5.

5.2.1 Feature Selection for Subject S03

For subject S03 the results obtained for feature selection are displayed in figure 5.2. We can see that the

four features used most times to obtain high accuracies were TE, LL, Mean, and Skewness.

Figure 5.2: Count of how many times the NSGA algorithm selects each feature to obtain an accuracy
above 90% for subject S03.
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5.2.2 Feature Selection for Subject S09

The results obtained for subject S09 showed few similarities to the ones obtained for S03, but LL is one

of the four best features for both subjects. From table 5.3 it can be seen that the four most prominent

features are LL, Kurtosis, SD, and IE.

Figure 5.3: Count of how many times the NSGA algorithm selects each feature to obtain an accuracy
above 80% for subject S09.
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5.2.3 Feature Selection for Subject S11

Table 5.4 displays the results obtained by running feature selection on subject S11. As for S09 LL, Kurtosis,

and SD were among the three of the four best features, but the order of the features differed. Further,

subject S11 had HMO as the second most prominent feature which did not appear among the four best

features for S09.

Figure 5.4: Count of how many times the NSGA algorithm selects each feature to obtain an accuracy
above 65% for subject S11.

50



CHAPTER 5. RESULTS

5.2.4 Feature Selection for Subject S13

Subject S13 was the lowest performing subject, and as we can see from table 5.5 the number of times the

features appear was overall much lower than for the other subjects. The table indicates that the four most

prominent features were Skewness, HMO, HFD, and Kurtosis.

Figure 5.5: Count of how many times the NSGA algorithm chooses each feature to obtain an accuracy
above 60% for subject S13.

The analysis of the results revealed certain similarities among the subjects, but very few. Notably, the

features LL, Kurtosis, Skewness, HMO, and SD appeared among several subjects. Specifically, LL and

Kurtosis were chosen for three out of four subjects, while Skewness, HMO, and SD were chosen for two.

Further, the remaining chosen features were subject-dependent, thus appearing only for one of the four

subjects.
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5.3 Pipeline Selection using NSGA

Due to many pipelines, the problem of identifying the optimal pipeline for each specific subject arises.

Addressing this problem, the NSGA algorithm was used, optimizing on the highest accuracy score. This

way, we were able to reduce the number of pipelines for further experiments, while also finding which

pipelines performed well across subjects. As a feature selection already was conducted, the resulting

features for each subject were used in this optimization problem. Furthermore, our previous findings

showed that extracting two of the subbands from the DWT yielded higher results than using all. Hence,

this approach was adopted using only the two relevant frequency bands in subsequent analyses.

Since the different pipelines consist of various combinations of filtering, feature extraction, number of

CSP features, and classification algorithm, the pipelines can be broken down into these four points:

• Frequency band: all, mu, mu and beta (mu-beta), beta.

• Number of CSP-features: 3-7.

• Feature extraction method: DWT, Bandpass, CSP.

• Classifier: EEGnet, RF, GB, LDA, SVM.

Not all the pipelines require all the points above, thus some conditions were added to the algorithm:

• If DWT is chosen as the feature extraction technique, the frequency band used was set to "all", making

sure the signals were not filtered before the wanted DWT bands were extracted.

• The number of CSP features was only used when CSP was chosen as the feature extraction method.

• When EEGnet was chosen as the classifier, no feature extraction method was used.

In total combining the feature extraction methods, frequency bands, number of CSP features, and classi-

fiers, with the conditions as a baseline gave a total of 104 unique pipelines.

5.3.1 Pipeline Selection for Subject S03

During the optimization process targeting subject S03, the highest accuracy score obtained was 100.00%.

This was achieved using the EEGnet architecture where the preprocessing consisted of a mu, mu-beta,

or beta bandpass filter. Despite getting the same accuracy across all three bands, a decision was made to

proceed using the mu-beta for further investigations. This choice was made as the SMR changes are said

to appear in this band and it was anticipated that the use of a wider frequency band may aid in reducing

the number of electrodes required in subsequent experiments.
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An accuracy of 99.38% was obtained when employing both SVM and LDA as classifiers. In both pipelines,

the beta band was utilized in combination with CSP as the feature extraction method. The SVM classifier

obtained this accuracy performance on two occasions, employing both 3 and 4 CSP-features, while LDA

obtained it once using 7 CSP-features. Further, subject S03 obtained an accuracy of 98.75% when em-

ploying LDA, with the beta band, and CSP with 3, 4, and 6 features. This observation potentially suggests

that the combination of LDA with CSP as a feature extraction method consistently yields high accuracy

values on average, which is interesting to further investigate in the electrode selection. Consequently, the

LDA classifier in combination with the beta band and CSP with 7 features was selected for subsequent

experiments.

5.3.2 Pipeline Selection for Subject S09

Similar to the observations made for subject S03, subject S09 also achieved the highest accuracies when

employing the EEGnet. Notably, the highest obtained accuracy was 93.80%. However, the only difference

was that S09 obtained this value using all the different frequency bands. Again, as the change in SMR is

said to appear in the mu-beta band, and with the hope that using a larger band might facilitate a reduc-

tion of the number of electrodes, we continued using EEGnet with the mu-beta frequency band in further

experiments.

The next best classifiers obtained 10% lower accuracy than the EEGnet, giving an accuracy of 83.75%.

Specifically, this accuracy was obtained utilizing two different pipelines: CSP with RF and Bandpass fea-

ture extraction with GB, both with the employment of the mu-beta frequency band. Moreover, utilizing

CSP with RF additionally obtained accuracies of 83.13%, 82.50%, and 81.88% with varying numbers of

CSP features. Based on these results, the CSP with RF pipeline was chosen for further experimentation

using 3 CSP features.

5.3.3 Pipeline Selection for Subject S11

In the case of subject S11, the highest accuracy obtained was 87.5%. This was achieved utilizing the EEG-

net classifier, employing both mu and mu-beta frequency bands. Making the same conclusion as with

S03 and S09, the decision was made to use the mu-beta band for further experiments.

The second-best accuracy score of subject S11 was 77.50% when employing CSP with 5 features, the mu-

beta frequency band, and RF classifier. Furthermore, an accuracy of 76.50% was obtained using CSP with

4 features, the mu frequency band and LDA, while an accuracy of 75.63% was achieved using CSP with 6

features, the mu-beta band and RF. Given these results, we continued to explore the combination of CSP

with 5 features, RF, and the mu-beta band.
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5.3.4 Pipeline Selection for Subject S13

In line with the trend observed across the other subjects, subject S13 obtained the highest accuracy score

of 68.60% using EEGnet classifier. On the other hand, S13 obtained this result using just the mu frequency

band, which was thus used in the subsequent experiments for this subject.

Further, the results showed that employing CSP with 7 features, in combination with the mu-beta fre-

quency band and RF classifier, yielded an accuracy score of 68.13%. The following best classifier gave

an even lower accuracy score, yielding a score of 64.38%. Thus, for further experiments, the pipeline

involving CSP with 7 features, the mu-beta band, and RF classifier was selected for further investigation.

5.3.5 Results from Pipeline Selection Across Subjects

As seen from these results, it is apparent that the performance of the DWT feature extraction method

falls short in comparison to the other employed techniques. Similar observations can be made for SVM

and GB, which do not appear among the best-performing classifiers. Notably, the results showed that the

EEGnet pipeline consistently outperforms all the other pipelines, but not always by a high percentage.

Additionally, a trend seems to be that using CSP with RF yields high accuracy scores. This trend is con-

sistent across all subjects, except for subject S03. However, on close examination of the results obtained

from subject S03, it becomes evident that the CSP-RF pipeline gives 97.50% accuracy using 3, 4, and 5

CSP features, which was not far from the highest accuracy score of 100.00%.

The findings presented in this section show that, overall, the CSP feature extraction method shows better

performance when compared to both the DWT and Bandpass techniques. On the other hand, from the

results, it seems to be few correlations on how many CSP features are needed to obtain high accuracy

scores. This suggests that the influence of the number of CSP features on accuracy is not straightfor-

ward, requiring further investigations. Moreover, the results showed that the EEGnet pipeline consis-

tently emerges as the optimal choice, both for high- and low-performing subjects, reaffirming that it is

the best pipeline for EEG classification tasks.
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5.4 Rereferencing versus Electrode Selection

The optimal pipelines found during the pipeline selection process were subjected to additional analysis

involving electrode selection and the application of the Laplacian rereferencing system. The purpose of

this analysis was to investigate if a reduction in the number of electrodes could enhance the classifica-

tion models, and to reduce the complexity of the models. The optimal pipelines found in the preceding

section are presented below:

• S03:

– bands: mu-beta, classifier: EEGnet

– bands: beta, CSP with 7 levels, classifier: LDA

• S09:

– bands: mu-beta, classifier: EEGnet

– bands: mu-beta,CSP with 3 levels, classifier: RF

• S11:

– bands: mu-beta, classifier: EEEGnet

– bands: mu-beta, CSP with 5 levels, classifier: RF

• S13

– bands: mu, classifier: EEGnet

– bands: mu-beta, CSP with 7 levels, classifier: RF

5.4.1 Laplacian Rereferencing

Upon employing Laplacian referencing combined with the pipelines above, the results displayed in table

5.4 were obtained. From this table, it is evident that there were no significant changes in the accuracies

obtained for subject S03. Specifically, the utilization of the EEGnet pipeline yielded the same results,

while a small decrease in accuracy was observed when using the pipeline with the LDA classifier.

For subject S09, a small decrease in accuracy was observed when the EEGnet pipeline was employed,

while a more drastic decrease was observed when utilizing the RF pipeline. This trend seems to be persis-

tent for the remaining two subjects as well, regardless of the pipeline used. Notably, the results obtained,

excluding S03, were mainly characterized by a drop in accuracy when introducing Laplacian rereferenc-

ing to the pipelines. For example, subject S09 experienced a drop in accuracy from 83.75% to 68.75%,

giving a decline of 15.00% when introducing the laplacian rereferencing to the pipeline based on CSP

and RF.
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It is worth noticing the high SD associated with the pipeline CSP with RF, indicating significant variability

in accuracy scores across different runs. For instance, in the case of subject S09, this variability can result

in performances ranging from relatively high to as low as random guessing. Furthermore, the results

clearly indicate that the introduction of the Laplacian rereferencing scheme does not yield improvements

in accuracy or enhance the models. Based on these results, the Laplacian rereferencing was excluded

from further experiments.

Table 5.4: Classification performance using Laplacian referencing scheme and different classification
methods. For all subjects except for S13, the EEGnet was run with both mu-beta bands, for S13 only the
mu band was used. Further, for S03, CSP with 7 features classified by LDA was used. For the remaining
subjects, CSP RF was used, and the number of CSP features used was 3, 5, and 7 for S09, S11, and S13
respectively.

Subject CSP+LDA CSP+RF EEGnet

S03 94.38% ± 4.61% - 99.50% ± 1.05%

S09 - 68.75% ± 11.79% 87.75% ± 5.33%

S11 - 63.75% ± 10.12% 69.25% ± 7.17%

S13 - 47.50% ± 16.72% 45.75%± 3.55%

5.4.2 Electrode Selection

Due to the noticeable decrease in accuracies observed using Laplacian rereferencing, an alternative method

for reducing the number of electrodes was explored. In this experiment, the NSGA algorithm was em-

ployed with the objective of achieving a high accuracy score while simultaneously minimizing the num-

ber of electrodes.

Figure 5.6 show the numbering scheme assigned to the electrodes used for recording purposes, ranging

from 1 to 15. Moreover, the center electrodes are placed according to the 10-20 system, thus having the

names C3, Cz, and C4. As earlier explained, the signal associated with foot MI tasks is often located at

the top of the head, aligning with electrodes 2, 7, 8 (Cz), 9, and 14. Further, right hand MI-signals occur

mostly on the left side of the brain, corresponding to electrodes 1, 4, 5 (C3), 6, and 13.
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Figure 5.6: Numbering of the electrodes used for recording the EEG signals. Adapted from [67].

Electrode Selection for Subject S03

As previously established, subject S03 consistently demonstrates good performance, which was also re-

flected in the results obtained in the electrode selection. When using the EEGnet, this subject obtained

100.00% accuracy with multiple combinations of electrodes. The number of electrodes associated with

100.00% accuracy varied from 2 to 14. Notably, when 2 electrodes were used, their placement consistently

occurred either in the left or middle region of the brain. In the cases involving 3 electrodes, the electrodes

were located in the left or middle part of the head most of the time, but occasionally with 1 electrode

positioned on the right side. For scenarios involving more than 3 electrodes and 100.00% accuracy, the

selection sometimes included electrodes on the right side, but never more than 2 electrodes, and always

with a greater portion from the left or middle regions.

During the execution of electrode selection utilizing CSP and RF we also obtained an accuracy of 100.00%.

However, the number of electrodes required to obtain this accuracy was higher compared to the EEGnet.

The lowest number of electrodes corresponding to 100.00% accuracy was 6, using electrodes 4, 5 (C3),

6, 7, 8 (Cz), and 10. Electrode number 10 is situated on the right side of the head, but is the furthest left

electrode in that particular section. As the number of electrodes used to achieve 100.00% accuracy in-

creased, the occurrence of right-side electrodes was more frequent. Nevertheless, the largest proportion

of electrodes was located within the left and middle sections.

Upon reducing the number of electrodes to 2, 3, 4, and 5, the accuracy decreased to 91.88%, 96.87%,

98.75%, and 99.38% respectively. These accuracies were obtained using electrodes positioned within the

left and the middle section alone. In general, the results showed that whereby the inclusion of right-side

electrodes was infrequent when few electrodes were used to obtain high accuracies.
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The findings from both the EEGnet and CSP-LDA pipelines revealed that using one single electrode re-

sulted in a big decrease in accuracy or random guessing. Furthermore, when electrode selection was

done using CSP-LDA, using 2 electrodes yielded suboptimal and low accuracies, in contrast to EEGnet.

Additionally, a trend found was that low accuracies or random guessing tended to occur more frequently

when a larger portion of electrodes was located in the right section of the head, regardless of the method

employed.

Electrode Selection for Subject S09

Subject S09 obtained its highest accuracy of 93.80% using the EEGnet. In most instances, this accuracy

was obtained using 2, 3, or 4 electrodes, although occasionally a higher number of electrodes was also

utilized. When using 2 electrodes, their location consistently occurred within the left and middle sec-

tions. However, for 3 and 4 electrodes, there was occasionally one electrode from the right section. As

in the case of subject S03, a higher number of electrodes correlated with a more frequent occurrence of

electrodes from the right side. Further, low accuracies occurred when only 1 electrode was used, or when

2 electrodes were used, with 1 or 2 of them positioned in the right section of the head. In addition, low

accuracies were occasionally observed using a higher number of electrodes. In that case, the biggest por-

tion of electrodes was located on the right side.

When using CSP and RF, a higher number of electrodes was often needed to obtain high accuracies. The

highest accuracy obtained was 87.50%, which required the use of 9 electrodes located mostly within the

left and middle sections of the head. Reducing the number of electrodes resulted in a small reduction in

accuracy, although not significantly. Notably, an accuracy of 86.25% was obtained using only 2 electrodes,

specifically electrodes 8 and 13. Overall, the analysis showed that with high accuracies above 80.00% and

the use of few electrodes, their location was in most cases located within the left and middle sections of

the head. When the classification was done using only 3 or 4 electrodes, and the electrodes were placed

either close to each other or at least one electrode placed on the right side, low accuracies occurred.

Furthermore, the classification using a single electrode resulted in random guessing.

Electrode Selection for Subject S11

Subject S11 obtained its highest accuracy of 93.80% when using EEGnet with the 3 electrodes 3, 6, and 11

(C4). Out of this selection, 2 of them are located within the right section of the head. In fact, a general

trend from this subject showed that at least 1 of the electrodes used when high accuracies were obtained

was located in the right section of the head. In addition, a few of the electrodes tended to be in the mid-

dle section. This led to the general trend indicating that accuracies were often achieved by employing

electrodes from both the left and right sections of the head. As the number of electrodes increased, the

accuracy decreased and the selection of electrodes was from all 3 sections.
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As for subjects S03 and S09, using 1 electrode resulted in low accuracies or random guessing, where the

highest obtained accuracy with one electrode was 65.60%, using electrode number 11. In addition, ran-

dom guessing was also observed when the selection of electrodes was higher than 1, but unlike S03 and

S09, the occurrence of right-section electrodes was not the crucial factor associated with the low accura-

cies.

For the context of ML-based electrode selection, it was observed that the highest accuracies obtained,

ranging from 77.50% and 79.38%, required the use of a high number of electrodes, specifically between

6 and 10. A general observation was that the electrodes chosen were predominantly located within the

middle and right sections, except electrode number 6, which is the rightmost electrode in the left section.

The highest accuracy was obtained using 10 electrodes, with 4 of them located within the right section.

Upon reducing the number of electrodes to the range of 3 to 5, the accuracy decreased to around 75.00%.

Even in these reduced selections, the chosen electrodes continued to originate from the right and middle

sections, along with the inclusion of electrode 6.

Using 1 and 2 electrodes frequently resulted in outcomes close to random guessing. For the case of 2

electrodes, the selection of electrodes tended to be placed close to each other, as exemplified by the

pairing of electrode numbers 8 (Cz) and 14. Furthermore, a score between 55.00% and 60.00% was often

achieved using 3 electrodes, without any visible pattern on which electrodes were chosen.

Electrode Selection on Subject S13

Subject S13 is by far the worst-performing subject; however, the implementation of electrode selection

yielded an enhancement in the performance to some extent. The highest accuracy of 75.00% was ob-

tained with the EEGnet in combination with 4 electrodes. This was achieved with 3 different electrode

combinations, where all, except electrode number 3, were located in the left and middle sections of the

head. By reducing the number of electrodes to 3 and 2, the accuracy decreased to 68.80% and 71.89%

respectively. When employing 3 electrodes, electrode number 3 was again used to obtain the highest

accuracy. This was also a pattern that persisted when involving a higher number of electrodes in the se-

lection. Employing a range of 5 to 10 electrodes yielded the highest accuracy of 71.89%, all using electrode

number 3. On the other hand, the remaining electrodes were primarily from the left and middle sections,

a characteristic shared with the selection of 2 electrodes.

Random guessing and low accuracies were mostly obtained using 1 electrode, but they also emerged

when 2 electrodes were used. In the case of 2 electrodes, the selection of electrodes frequently comprised

electrodes from the same section or one from the left section in combination with another from the right

section. Given that subject S13 is a bad-performing subject, a high number of the obtained accuracies

fell below the 60% threshold using all variations of electrode selection. Consequently, it was challenging

to find any further patterns contributing specifically to low performance.
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In the case of ML, the highest obtained accuracy was 68.75%. This was obtained using 9 electrodes, with 4

of them located in the right section of the head. Similarly, other high accuracies were obtained when us-

ing a high number of electrodes, yet there were non or close to no patterns to find. Reducing the number

of electrodes led to a decrease in accuracy, yielding a performance of 65.00%. As for the higher num-

ber of electrodes, no pattern emerged regarding the selection of electrodes that yielded high accuracies.

Further, in accordance with high accuracies, few patterns became apparent of which electrodes gave low

performance or random guessing, aside from the one observation being that few electrodes yielded low

results.

General Observations of Electrode Selection

For all subjects, it was observed that achieving high accuracies using ML required a higher number of

electrodes than for DL. In addition, it was also seen that the increase in accuracy was highest on DL, and

it obtained better scores than ML.

Regarding the specific electrode selections for attaining high accuracies, few patterns were observed from

the results. For subjects S03, S09, and S13, utilizing DL-techniques showed that high accuracies were

frequently associated with a larger number of electrodes positioned within the left and middle section

of the head. This observation aligns with the theory saying that foot and right hand MI occurs in these

regions. On the other hand, subject S11 seemed to need electrodes from the right side of the head to

obtain high accuracies. Further, for subjects with lower overall performance such as S13, finding any

specific pattern yielding high accuracies proved to be particularly challenging.

5.4.3 CAR Rereferencing

The results obtained from the application of Laplacian rereferencing and electrode selection showed vari-

ations in performance. Specifically, utilizing electrode selection resulted in higher accuracies, whereas

the inclusion of Laplacian rereferencing decreased the accuracies. Another rereferencing method, known

as the CAR method, offers an alternative approach. Unlike electrode selection and Laplace rereferencing,

CAR does not reduce the number of electrodes but instead employs the common average of the elec-

trodes to rereference each electrode.

In this section, the CAR method was applied to investigate if it could further enhance the performances.

To achieve this, the CAR method was applied to the optimal pipelines determined in pipeline selection, in

conjunction with the outcome of the electrode selection process. As the objective of electrode selection

was to reduce the number of electrodes utilized while obtaining a high accuracy, the trade-off between

accuracy and the number of electrodes was closely examined to find which selection to further use. The

resulting pipelines and electrodes used in this section were thus as follows:
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• S03

– Band: mu-beta, Classifier: EEGnet, Electrodes: 5 (C3) and 14.

– Band: beta, Feature extraction method: CSP with 7 features, Classifier LDA, Electrodes: 4, 5,

7, 8 (Cz).

• S09

– Band: mu-beta, Classifier: EEGnet, Electrodes: 2 and 13.

– Band: mu-beta, Feature extraction method: CSP with 3 features, Classifier: RF, Electrodes: 8

(Cz) and 13.

• S11

– Band: mu-beta, Classifier: EEGnet, Electrodes: 4, 6, and 11 (C4).

– Band: mu-beta, Feature extraction method: CSP with 5 features, Classifier: RF, Electrodes: 2,

6, 7, 8 (Cz), 11 (C4), and 14.

• S13

– Band: mu, Classifier: EEGnet, Electrodes 2, 3, 4, and 14.

– Band: mu-beta, Feature extraction method: CSP with 7 features, Classifier: RF, Electrodes 9,

10, 11 (C4), 13, and 14.

The obtained results for the classification experiment with and without CAR rereferencing are presented

in table 5.5. These results show that the accuracies obtained when applying the CAR rereferecing decrease

for the DL method EEGnet. Contrarily, the accuracies for the ML methods remain unchanged. This

observation indicates that introducing the CAR method might be excessive for the ML pipelines and have

an adverse effect on the DL pipelines. Therefore, the CAR rereferencing will be excluded from further

experiments.

Table 5.5: Results obtained with and without CAR rereferencing. Classification methods used are EEGnet
for all subjects, and CSP + RF for all subjects except S03. S03 uses CSP + LDA.

Subject rereferencing EEGnet (DL) Machine Learning

S03
without CAR 100.00% ±0.00% 98.75% ± 3.95%

CAR 99.50% ± 1.05% 98.75% ± 3.95%

S09
Without CAR 93.80% ± 3.17% 86.25% ± 8.22%

CAR 91.50% ± 3.57% 86.25% ± 8.22%

S11
Without CAR 93.80% ± 4.50% 77.50% ± 11.86%

CAR 80.75% ± 6.35% 77.50%± 11.86%

S13
Without CAR 75.00% ± 5.77% 66.88% ± 14.75%

CAR 52.75% ± 6.66% 66.88%± 14.75%
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5.5 Three-class motor imagery classification

In order to ensure reliable control of a drone using MI signals, it is crucial to prevent the model from

classifying MI when it is not present. If the model were to incorrectly identify MI when it is absent, the

behavior of the drone would become unpredictable and potentially unsafe. To address this concern, the

introduction of a third class, known as the "rest" class, becomes necessary. Consequently, the model is

extended to classify three distinct classes: 1) hand, 2) foot, and 3) rest.

To conduct these experiments, both the complete set of electrodes and the optimal set of electrodes ob-

tained through the electrode selection on two classes were tested. From the pipeline selection, it was

found that the EEGnet was the most optimal classifier for all subjects, thus it was used in this experi-

ment. Additionally, the CSP with RF emerged as the next best pipeline for all subjects except S03. Since

both the CSP with RF and CSP with LDA gave the same accuracy for S03 and as we wanted to reduce the

number of pipelines such that a more general model could be found, CSP with RF was used for all sub-

jects.

The outcomes of the 3-class classification employing both the DL and ML pipelines for all subjects are

presented in table 5.6. Analysis of these results of the DL pipeline revealed a notable decrease in accura-

cies across subjects when utilizing the optimal electrodes compared to all electrodes, except for subject

S13. Even though S13 slightly increased, it was still close to random guessing. Further, when employing

the ML pipeline, the accuracies decreased for S03 and S13, while increasing for S09 and S11 when using

the selection of the optimal electrodes. Nevertheless, the decrease in accuracy for subject S13 is relatively

small, making it less significant compared to the other results.

Further, subject S03 obtained the highest accuracies, consistent with expectations. Despite its high ac-

curacy, there was a small drop in accuracy compared to the 2-class classification. For the remaining

subjects, a clear drop in accuracies from previous experiments was observed, where the ML pipelines

gave an especially bad performance. In particular, subject S13 obtained around 40.00% accuracy using

ML pipeline and around 50.00% accuracy when using DL pipeline for both all and the optimal subset of

electrodes.
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Table 5.6: Accuracies obtained when introducing a third class, the rest class. The classifiers used are
EEGnet and RF, with all electrodes and with electrode subsets found optimal previously.

Subject Pipeline Electrodes Accuracy SD

S03

EEGnet
all 95.50% 4.26%

5(C3), 14 91.50% 3.09%

CSP + RF
all 88.75% 7.36%

4, 5, 7, 8(Cz) 80.00% 8.05%

S09

EEGnet
all 77.83% 7.00%

2, 13 76.67% 6.34%

CSP + RF
all 54.17% 9.42%

8(Cz), 13 59.16% 6.45%

S11

EEGnet
all 73.67% 5.45%

4,6,11(C4) 67.50% 6.38%

CSP + RF
all 47.92% 12.92%

2, 6, 7, 8(Cz), 11(C4), 14 53.75% 8.44%

S13

EEGnet
all 50.33% 8.05%

2, 3, 4, 14 54.50% 6.04%

CSP + RF
all 40.83% 4.40%

9, 10, 11(C4), 13, 14 40.00% 9.25%

The findings of this experiment reveal that the previous optimization of electrode selection may not be

applicable when introducing a third class. Consequently, a new electrode selection process was under-

taken to address this issue. The electrode selection was separated into two models: a flat model and a

hierarchical model.

The flat model directly classifies the 3 distinct classes, namely hand, foot, and rest. On the other hand,

the hierarchical model first classifies between rest and task and subsequently classifies between the two

different MI tasks. The structure of the flat and hierarchical models are shown in figures 5.7 and 5.8,

respectively.
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Figure 5.7: Flowcharts describing the steps of the flat classification model. Task 1 refers to the right-hand
MI, and task 2 refers to feet MI

Figure 5.8: Flowcharts describing the steps of the hierarchical classification model. Task 1 refers to the
right-hand MI, and task 2 refers to feet MI

5.5.1 Electrode Selection for Three Classes

Electrode Selection for a Flat Model

Due to the fact that electrode selection is a very time-consuming operation, it was only conducted for

subjects S03 and S09 in the following sections. The selection of subjects S03 and S09 was done based on

the good performance obtained in the previous sections. They are thus interesting subjects to experi-

ment on when classifying 3 classes, namely right hand, feet, and rest MI.
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Table 5.7 shows the results obtained from the electrode selection process for the 3-class classification.

The table clearly shows that, for both subjects and pipelines, the new electrode selection resulted in an

increase in accuracy. Further, the results implied that the EEGnet was the better classifier for 3 classes,

corresponding to 2-class classification. Subject S03 obtained an accuracy of 100.00% with the EEGnet

classifier and an accuracy of 90.00% for the CSP with RF, using the new optimal subset of electrodes. The

usage of optimal electrodes led to an increase of 4.50% and 1.25% in accuracy for the EEGnet and RF, re-

spectively. Similarly, subject S09 experienced accuracy improvements of 9.67% for EEGnet and 5.85% for

CSP + RF, by using the newly selected optimal electrodes. Despite the increase in accuracy, subject S09

performed with lower accuracy compared to subject S03, particularly with the RF classifier. Regardless,

both subjects got acceptable results, characterized by relatively high accuracies, especially when using

the EEGnet classifier.

Compared to the previous electrode selection, using the NSGA to find the electrode subset yielding the

highest accuracies, resulted in an increased number of electrodes for both subjects and pipelines when

the third class was introduced. Furthermore, the majority of electrodes were selected from the left and

middle parts of the head, aligning with the trend observed in the electrode selection for 2 classes on these

subjects. For both subjects, the highest accuracies obtained were achieved with several combinations of

electrodes, with minimal variability. The selected electrodes remained quite unchanged for a given accu-

racy and pipeline, with only minor substitutions involving their closest neighboring electrodes within the

same region. Table 5.7 presents one of the electrode combinations which was used to obtain the highest

accuracy.

Table 5.7: Accuracies obtained with NSGA, with optimized electrodes for a flat model with three classes.
The three classes are right-hand, foot, and rest.

Subject Pipeline Electrodes Accuracy

S03
EEGnet 6, 9, 14 100.00%

CSP + RF 2, 4, 5(C3), 7, 8(Cz), 14 90.00%

S09
EEGnet 2, 6, 12, 13 87.50%

CSP + RF 1, 4, 5(C3), 8(Cz), 13 65.00%

Electrode Selection for a Hierarchical Model

In the hierarchical model, the classification process is dived into two levels: classifier level 1 and classi-

fier level 2. At classifier level 2, the first electrode selection that was conducted in the previous section

remains applicable, as it focuses on the classification of the two MI tasks, namely right hand, and feet.

However, to classify the rest and task states at classifier level 1, a separate electrode selection was con-

ducted. The results of this electrode selection are shown in table 5.8.
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Upon comparing table 5.8 with table 5.7 for the flat model, a notable difference in the electrode selec-

tion can be observed. Specifically, an increase in the number of electrodes needed to obtain the highest

accuracy was observed for all pipelines in the hierarchical model, except for subject S03 using CSP + RF.

Consequently, the number of electrodes located in the right section of the head increased. Notably, sub-

ject S03, which previously did not feature any electrodes from the right section for achieving the highest

accuracy, now included one electrode from this region in the current electrode selection.

Furthermore, similar to previous electrode selection, the obtained highest accuracies were associated

with multiple subsets of electrodes with some small differences. Table 5.8 shows one combination of the

electrodes that resulted in the highest obtained accuracy for each pipeline. Another interesting observa-

tion was the consistently high accuracies attained across the subjects and pipelines. As both the level 2

classifier and the level 1 classifier obtained high accuracies, there was a hope that the hierarchical model

could yield better results compared to the flat model.

Table 5.8: Accuracies obtained with optimized electrodes for classifier level 1 in a hierarchical model.
Separating between rest and task.

Subject Pipeline Electrodes Accuracy

S03
EEGnet 6, 8(Cz), 13, 14 96.90%

CSP + RF 2, 3, 4, 5(C3), 7, 8(Cz) 90.63%

S09
EEGnet 2, 3, 4, 6, 8(Cz), 10, 13, 15 90.60%

CSP + RF 2, 4, 7, 8(Cz), 10, 12, 13, 14, 15 79.06%

In the hierarchical model, when the two classifiers were merged into a single pipeline, the electrode selec-

tions made for the two classifier levels were included. Additionally, the hierarchical model was evaluated

using all available electrodes. The recall of the various electrodes selected for the electrode subsets is

listed below, while the corresponding results are presented in table 5.9.

• S03-EEGnet

– Electrodes classifier level 1: 6, 8 (Cz), 13, 14

– Electrodes Classifier level 2: 5 (C3), 14

• S03-CSP-RF

– Electrodes classifier level 1: 2, 3, 4, 5 (C3), 7, 8(Cz)

– Electrodes Classifier level 2: 4, 5 (C3), 7, 8
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• S09-EEGnet

– Electrodes classifier level 1: 2, 3, 4, 6, 8 (Cz), 10, 13, 15

– Electrodes Classifier level 2: 2, 13

• S09-CSP-RF

– Electrodes classifier level 1: 2, 4, 7, 8 (Cz), 10, 12, 13, 14, 15

– Electrodes Classifier level 2: 8, 13

Table 5.9: Accuracies obtained from a three-class classification using a hierarchical model, separating
between rest and two different MI-tasks.

Subject Pipeline Electrodes Accuracy SD

S03

EEGnet
all 95.13% 4.24%

subset 86.88% 3.41%

CSP+RF
all 87.19% 4.93%

subsets 78.44% 6.77%

S09

EEGnet
all 77.63% 5.93%

subsets 70.63% 4.19%

CSP+RF
all 51.56% 11.03%

subsets 66.88% 4.46%

An interesting observation from this experiment is that, except for the ML pipeline applied to subject

S09, all pipelines obtained a drop in accuracy when utilizing the subset of optimal electrodes conducted

from the two electrode selections. Moreover, the accuracies achieved by the hierarchical model are lower

compared to the flat model, indicating that using a flat model is better for classifying 3 classes where two

classes are MI and one class is rest. Further, subject S09 obtained random guessing when using the ML

pipeline with all electrodes, although the SD, which was quite high, indicates a considerable variation

in performance across multiple runs. Subject S03 using EEGnet gave the highest accuracies, as for every

previous experiment. It is though worth noting that the obtained accuracies for subject S03 are lower

than those obtained in the multiple other conducted experiments.
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5.6 Classification of Motor Imagery using Transfer Learning

5.6.1 Transfer Learning using Deep Learning

TL is an up-and-coming approach for classification where knowledge gained from one domain is trans-

ferred to improve performance in another domain. In the context of EEG classification, this consists of

training a model on a set of subjects and then updating the weights and biases to enable accurate pre-

dictions on another unseen subject. This way, there is a hope that bad-performing subjects can enhance

their performance.

Subjects S03 and S09 have consistently shown good results during earlier experiments, whereas subject

S13 has shown the ability to improve, but still being the lowest-performing subject. In addition, all three

subjects have shown that their highest accuracies were obtained using a high percentage of electrodes on

the left and middle section of the brain when an electrode selection has been conducted. Therefore, there

is a potential opportunity to enhance the performance of subject S13 by employing a TL model trained

on data from subjects S03 and S09.

In all the TL-experiments performed, a bandpass filter of 8− 30H z (mu-beta band) was applied to the

data. The first TL experiment involved creating four different models, each employing a different subset

of electrodes. The first model used all the electrodes, while the remaining 3 models used the 2, 3, and 4

best electrodes from electrode selection. The specific electrodes used for each model are as follows:

• 2 electrodes

– S03: 5 (C3) and 14

– S09: 2 and 13

– S13: 2, 4

• 3 Electrodes

– S03: 2, 6, and 14

– S09: 2, 4, and 5 (C3)

– S13: 2, 4, and 9

• 4 Electrodes

– S03: 6, 8 (Cz), 9, and 14

– S09: 2, 4, 6, and 9

– S13: 2, 3, 4, 14
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The TNR, TPR, and accuracy were recorded to get an indication of which TL model performed highly.

Table 5.10 presents the scores obtained from the TL-models for the given electrode subsets. The table

includes both the initial scores of the models without any data from subject S13 being incorporated and

the classification scores of subject S13 after the model is fine-tuned to this subject. In addition, the SD of

the model’s performance when classifying S13 is provided.

Table 5.10: Accuracies, TPRs, TNRs, and SDs for TL models on subject S13, using different electrode
subsets. "Model - without S13" shows the score obtained on the model when building it using training,
validation, and a test set. "TL on S13" shows the score when the model was tuned on some of the data
from S13 and then tested on the remaining data.

Electrode selection Metrics Model - without S13 TL on S13 SD

All Electrodes

TPR 100.00% 45.00% 13.60%

TNR 90.00% 69.50% 6.50%

Accuracy 95.00% 57.25% 5.18%

2 Electrodes

TPR 100.00% 73.00% 8.12%

TNR 80.00% 62.50% 4.03%

Accuracy 90.00% 67.75% 3.54%

3 Electrodes

TPR 100.00% 35.00% 0.00%

TNR 95.00% 77.50% 4.03%

Accuracy 97.50% 56.25% 2.02%

4 Electrodes

TPR 100.00% 65.00% 3.16%

TNR 95.00% 62.50% 5.59%

Accuracy 97.50% 63.75% 1.68%

Based on the results presented in table 5.10, subject S13 showed a slight improvement in accuracy when

using all electrodes and the mu-beta band, increasing from 50.25% obtained in the initial tests to 57.25%.

However, this accuracy is still insufficient to ensure whether it was not obtained by chance. This is sup-

ported by the SD value, showing that it is possible for this model to produce random guessing values.

Similarly, using 3 electrodes yielded comparable results, with an accuracy that is not significantly higher

than what can be obtained by chance.

In contrast, using both 2 and 4 electrodes showed more promising results. Both obtained average accu-

racies above 60.00% with low SD scores. Nevertheless, these accuracies were still lower than what was

obtained by subject S13 alone during electrode selection, specifically 68.80% for 2 electrodes and 75.00%

for 4 electrodes. Thus, further experiments were conducted to explore alternative TL models that could

potentially yield an increase in the results.
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The next experiment was done using the subset of 2 electrodes, considering that the accuracy achieved

with this subset was not significantly different from the accuracy obtained from the electrode selection.

Since subject S11 was the only other participant who underwent electrode selection, a model consisting

of subjects S03, S09, and S11 was constructed to see if it could improve the results obtained in the first TL

experiment. From the electrode selection, it was shown that using electrodes 10 and 13 gave the highest

accuracy with 2 electrodes for subject S11, thus they were used in this experiment. The results obtained

are shown in table 5.11.

Table 5.11: Accuracies, TPRs, TNRs, and SDs for TL model using the subset of 2 electrodes both for the
model before the transfer and after tuned and tested on subject S13.

Metrics Model - without S13 TL on S13 SD

TPR 100.00% 51.00% 4.90%

TNR 79.67% 74.50% 1.50%

Accuracy 88.33% 62.75% 2.36%

As seen from the table 5.11, including subject S11 into the model led to a decrease in performance by

5.00% compared to the model constructed only with subjects S03 and S09. Thus, continuing on models

made from these 3 subjects was stopped. Further, it was tested whether using a higher number of subjects

would result in improved models compared to a smaller subset of subjects. Given that only 4 out of the

initial 14 subjects had undergone electrode selection, these experiments were conducted using all the

electrodes. Three different models were made in this part of the experiment. The first model was a "leave-

one-out" model, where all subjects except S13 were used to make the model. The next model consisted

of only the subjects obtaining accuracies above 65% in the initial test. Lastly, a model consisting of all

subjects obtaining a score under 65% (except S13) in the initial test was made. The results obtained from

this experiment are shown in table 5.12.

Table 5.12: Accuracies, TPRs, TNRs, and SDs for TL models using different subsets of subjects, both for
the model before the transfer and after tuned and tested on subject S13.

Subset selection Metrics Model - without S13 TL on S13 SD

Leave-one-out

TPR 86.92% 81.00% 4.36%

TNR 65.38% 49.50% 1.50%

Accuracy 76.15% 65.25% 1.75%

All above 65%

TPR 82.86% 75.00% 8.26%

TNR 81.43% 57.72% 8.62%

Accuracy 82.14% 66.36% 1.24%

All bellow 65%

TPR 64.23% 68.5% 2.29%

TNR 61.43% 66.00% 4.36%

Accuracy 62.86% 67.50% 1.75%
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As observed in the table 5.12, the highest score was obtained when employing the model composed of

all subjects whose initial scores were below 65%. However, it was still slightly lower than the result ob-

tained from the model consisting of 2 electrodes made from subjects S03 and S09. Furthermore, using the

"leave-one-out" approach and all subjects above 65% did not result in a significant decrease in accuracy

compared to the best result obtained for subject S13 in the TL-experiments. These findings suggest that

the inclusion of additional subjects, may not necessarily lead to improved performance in the TL models.

Furthermore, to investigate the applicability of TL for good-performing subjects, TL models were tested

on a subject with higher initial accuracy, namely subject S09. As shown, the highest accuracy obtained

so far by S09 was 93.80% by using electrode selection. Similar to subject S13, 3 models were constructed:

the "leave-one-out" model, the "all-above-65%" model, and the "all-under-65%" model, as previously

described. The results of these experiments are presented in table 5.13.

Table 5.13: Accuracies, TPRs, TNRs, and SDs for TL models using different subsets of subjects, both for
the model before the transfer and after tuned and tested on subject S09.

Subset selection Metrics Model - without S09 TL on S09 SD

Leave-one-out

TPR 92.31% 99.17% 1.86%

TNR 52.31% 90.83% 9.75%

Accuracy 72.31% 95.00% 4.56%

All above 65%

TPR 83.33% 98.57% 2.26%

TNR 83.33% 90.50% 8.10%

Accuracy 83.33% 94.54% 3.30%

All bellow 65%

TPR 70.00% 78.47% 8.86%

TNR 56.25% 93.33% 3.73%

Accuracy 63.13% 91.25% 3.15%

As indicated in the table, subject S09 obtained high accuracies using the TL models. Both the leave-one-

out and all-above-65% obtained higher accuracies than the initial test using all electrodes. In addition,

these two models yielded higher results compared to the electrode selection approach. When employing

the leave-one-out model, subject S09 achieved accuracies from 87.50% to 100.00%. These results are very

good, especially the accuracy of 100.00% which has not yet been achieved by this subject. In addition,

these results are highly favorable in comparison to earlier experiments, where numerous and computa-

tionally expensive steps were conducted, resulting in similar or lower performance.

The results presented in table 5.12 and table 5.13 show that it is possible to make good TL models using

the leave-one-out method. Thus, this method was tested for all the subjects to see if the trend would yield

for them all. The results are shown in table 5.14.
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Table 5.14: Accuracies, TPRs, TNRs and SDs for Leave-one-out TL models for all the subjects in the
dataset, except S09 and S13

Subject Metrics TL-Model TL on Subject SD

S01

TPR 67.69% 62.50% 36.46%

TNR 84.62% 41.50% 36.90%

Accuracy 76.15% 52.00% 4.97%

S02

TPR 97.69% 98.50% 2.42%

TNR 45.38% 41.50% 10.81%

Accuracy 71.54% 70.00% 5.27%

S03

TPR 85.38% 92.50% 5.89%

TNR 60.77% 83.00% 5.87%

Accuracy 73.08% 87.75% 1.84%

S04

TPR 98.46% 83.00% 8.56%

TNR 32.31% 56.50% 30.10%

Accuracy 65.38% 69.75% 12.55%

S05

TPR 75.38% 85.50% 6.85%

TNR 75.38% 41.00% 11.50%

Accuracy 75.38% 63.25% 4.87%

S06

TPR 98.56% 86.00% 11.50%

TNR 46.92% 59.50% 22.30%

Accuracy 72.69% 72.75% 7.02%

S07

TPR 83.85% 98.50% 2.42%

TNR 63.08% 63.00% 10.33%

Accuracy 73.45% 80.75% 5.53%

S08

TPR 73.08% 49.50% 12.79%

TNR 74.62% 73.00% 10.85%

Accuracy 73.85% 61.25% 9.30%

S10

TPR 86.92% 88.50% 10.81%

TNR 56.92% 47.50% 7.98%

Accuracy 71.92% 68.80% 7.98%

S11

TPR 85.38% 90.50% 7.98%

TNR 63.85% 60.50% 20.47%

Accuracy 74.62% 75.50% 7.80%

S12

TPR 92.31% 82.00% 14.18%

TNR 59.23% 51.00% 14.87%

Accuracy 75.77% 66.5% 6.26%

S14

TPR 75.38% 67.5% 12.96%

TNR 76.15% 55.50% 14.23%

Accuracy 75.77% 61.50% 3.94%
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The results presented in table 5.14 reveal a mixed pattern for the accuracy obtained from the leave-one-

out method. Approximately half of the subjects decreased their results compared to the initial test using

the EEGnet classifier. Interestingly, the subjects that demonstrated an improvement in accuracy were pri-

marily those who achieved close to random guessing in the initial test, now obtaining an accuracy above

60.00%. This seemed to be the trend for most of the subjects, except for S01, which stayed at random

guessing even after the transfer, and S09 which was shown to get good results from the TL-models.

These observations suggest that the effectiveness of the leave-one-out method for enhancing classifica-

tion accuracy varies among subjects. While it proved beneficial for subjects with initially poor perfor-

mance, it did not consistently lead to improvements for all individuals.

The SD associated with each subject was on average quite high, particularly for subject S01. The high

SD values indicate that the accuracies obtained from the 10 runs conducted for each subject yielded

significant variations in the accuracy. This variability suggests that different runs of the TL models can

yield both higher and lower accuracies than those obtained in the initial tests. Thus, which data the

model uses to update the weights and biases seems to be important for the accuracy of the model.

5.6.2 Transfer Learning using Machine Learning

Subject-independent models using the leave-one-out ML approach can be seen as a form of TL model.

Therefore, we also investigated whether making these types of models could yield promising results com-

pared to DL models. To investigate this, subjects S09 and S13 were evaluated using the same experimental

setup as for DL, specifically the band-pass filtering of the data between 8−30H z. Further, the pipeline

used to make the models were CSP with 7 features and RF as this was shown to give high accuracies for

all the subjects in the pipeline selection.

First, models for subject S13 were made using subsets of electrodes. As seen from the electrode selection,

a higher number of electrodes was needed to obtain high accuracies for the ML models compared to

the DL models. Specifically, subject S13 achieved the highest and second-highest accuracy when using 9

electrodes, indicating the importance of including a higher number of electrodes in the TL models. Fur-

ther, using 5 electrodes resulted in only a small decrease in accuracy compared to the 9-electrode subset.

Thus, the 3 models made for TL are composed of all electrodes, 9 electrodes, and 5 electrodes.

The electrodes associated with the highest accuracies for both the 5-electrode and 9-electrode subsets

are provided below. The corresponding results obtained from the TL models corresponding to these

electrode configurations are presented in table 5.15:
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• 5 electrodes

– S03: 3, 4, 5 (C3), 6, 8 (Cz)

– S09: 5 (C3), 8 (Cz), 13, 14, 15

– S13: 9, 10, 11 (C4), 13, 14

• 9 electrodes

– S03: 1, 3, 4, 5 (C3), 6, 7, 8 (Cz), 10, 14

– S09: 1, 2, 4, 7, 9, 12, 13, 14, 15

– S13: 2, 3, 4, 8 (Cz), 9, 10, 12, 13, 15

Table 5.15: Accuracies, TPRs, TNRs, and SDs for TL models using different subsets of electrodes, both for
the model before the transfer and when tested on subject S13.

Electrode selection Metrics Model - without S13 TL on S13 SD

All Electrodes

TPR 90.00% 7.50% 7.07%

TNR 85.00% 92.25% 7.44%

Accuracy 87.50% 51.88% 5.30%

5 Electrodes

TPR 95.00% 0.00% 0.00%

TNR 90.00% 100.00% 0.00%

Accuracy 92.50% 50.00% 0.00%

9 Electrodes

TPR 95.00% 100.00% 0.00%

TNR 85.00% 0.00% 0.00%

Accuracy 90.00% 50.00% 0.00%

The results presented in table 5.15 indicate that the subject-independent models constructed from sub-

jects S03 and S09 only achieved random guessing when classifying data from subject S13. In addition, for

both models made from the subset of electrodes, every individual data point from subject S13 got classi-

fied into the same class, resulting in 100.00% TPR or TNR, and 50.00% accuracy.

Since the results from the electrode subsets were far from what we hoped for, the leave-one-out method

was tested for subject S13 to see if it could yield better results. As for DL-models, this consisted of one

"leave-one-out", one "all-above-65%", and one "all-under-65%"-model. The results from this experi-

ment are shown in table 5.16.
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Table 5.16: Accuracies, TPRs, TNRs, and SDs for TL models using different subsets of subjects, both for
the model before the transfer and when tested on subject S13.

Subset selection Metrics Model - without S13 TL on S13 SD

Leave-one-out

TPR 71.54% 18.75% 18.85%

TNR 61.53% 88.75% 14.58%

Accuracy 66.54% 53.75% 6.41%

All above 65%

TPR 64.29% 0.00% 0.00%

TNR 80.00% 100.00% 0.00%

Accuracy 72.14% 50.00% 0.00%

All bellow 65%

TPR 60.00% 27.50% 42.34%

TNR 61.43% 63.75% 37.77%

Accuracy 60.71% 45.63% 9.80%

From the table 5.16, it can be seen that using these models yields low accuracies similar to those obtained

in the TL experiment using electrode subsets. Moreover, similar to the cases involving 5 and 9 electrodes,

the "all-above.65%" model yielded a classification of every data point into one class. In addition, the SDs

from this experiment were relatively high.

In the final experiment, an assessment was made to determine if subjects who achieved higher initial

scores could benefit from TL. For this experiment, the same tests comprising different leave-one-out

models were conducted for subject S09, with the results presented in table 5.17.

Table 5.17: Accuracies, TPRs, TNRs, and SDs for TL models using different subsets of subjects, both for
the model before the transfer and when tested on subject S09.

Subset selection Metrics Model - without S09 TL on S09 SD

Leave-one-out

TPR 71.54% 43.75% 27.74%

TNR 53.08% 83.75% 20.66%

Accuracy 62.31% 63.75% 10.61%

All above 65%

TPR 73.33% 41.25% 23.57%

TNR 75.00% 87.50% 19.09%

Accuracy 74.17% 64.38% 8.21%

All bellow 65%

TPR 60.00% 51.25% 21.00%

TNR 43.75% 55.00% 22.68%

Accuracy 51.88% 53.13% 12.23%
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Similar to subject S13, subject S09 also got low results when subjected to the different TL models. Com-

pared to the initial test, the accuracies were between 13.37% to 30.68% lower, while compared to TL us-

ing the EEGnet they were between 30.16% to 38.12% lower. This shows that subject-independent models

work worse than subject-dependent models, especially after electrode selection is done for the subject-

dependent models. In addition, these results show that TL using ML yields worse results than TL using

DL.

5.7 Online Classification with Drone Actuation

5.7.1 Time Widow Optimization

When an online classification is done, the data segmentation differs slightly from that employed in of-

fline classification. In experiments conducted prior to this section, the time period was set to 3 seconds.

However, to enable the possibility of performing live simulations, we wanted to reduce the time period

to 1 second, yielding new classifications at one-second intervals. In order to find the best time window to

use in these models, a time window optimization was performed. To reduce the time used in this section,

the number of subjects was decreased to only subjects S03 and S09.

Since the online classification was performed for both 2 and 3 classes, the time window optimization was

conducted accordingly. The resulting tables are shown below, where table 5.18 shows time optimization

results for 2 classes, and table 5.19 shows time optimization results for 3 classes. In both tables, the time

window columns indicate the specific second yielding the highest accuracy, where 0 seconds denotes the

beep moment, as shown in figure 4.3.

Table 5.18: Time window optimization for 2 classes on subject S03 and S09. Where the time window
indicates which second gives the best accuracy from the beep. The optimization is done for both all
electrodes and for the optimal electrodes found in the electrode selection.

Subject Pipeline Electrodes Time Window Accuracy

S03

EEGnet
all 4.50s - 5.50s 100.00%

5(C3), 14 3.50s - 4.50s 97.50%

CSP+RF
all 3.50s - 4.50s 99.38%

4, 5(C3), 7, 8(Cz) 3.50s - 4.50s 98.75%

S09

EEGnet
all 5.25s - 6.25s 97.50%

2, 13 7.00s - 8.00s 97.50%

CSP+RF
all 5.50s - 6.50s 95.00%

8(Cz), 13 6.25s - 7.25s 95.00%
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From table 5.18 it can be seen that S03 and S09 got their highest accuracy scores in two completely dif-

ferent time windows, where S03 has its highest scores earlier than S09. Furthermore, using the optimal

electrodes resulted in a slight decrease in accuracy for S03, whereas it remained consistent for S09. In

addition, for S09 it was also a bit bigger gap between which time window lead to the highest accuracies

when all vs optimal electrodes were used.

Table 5.19: Time window optimization for 3 classes on subjects S03 and S09. Where the time window
indicates which second gives the best accuracy from the beep. The optimization is done for both all
electrodes and for the optimal electrodes found in the electrode selection.

Subject Pipeline Electrodes Time Window Accuracy

S03

EEGnet
all 3.25s-4.25s 96.67%

6, 9, 14 4.00s - 5.00s 96.67%

CSP+RF
all 3.25s - 4.25s 88.75%

2, 4, 5(C3), 7, 8(Cz),14 3.50s - 4.50s 90.42%

S09

EEGnet
all 4.50s - 5.50s 86.67%

2, 6, 12, 13 4.50s - 5.50s 81.67%

CSP+RF
all 4.00s - 5.00s 77.92%

1, 4, 5(C3), 8(Cz), 13 5.00s - 6.00s 77.08%

From table 5.19 it can be seen that the time window used to obtain the highest accuracies for the two

different subjects was more similar compared to the 2 classes. Specifically, both of the two subjects ob-

tained their highest accuracies between 3-5 seconds after the beep. Consequently, subject S03 used ap-

proximately the same time window to obtain high accuracies as for the 2 classes, while the time window

for S09 shifted to some seconds earlier. Further, as seen from the results, subject S03 achieved higher ac-

curacies using the ML pipeline and the optimal electrodes compared to not using the optimal electrodes,

while remaining unchanged using the DL pipeline. On the other hand, subject S09 experienced a small

decrease in accuracies for both pipelines using the optimal electrodes compared to using all electrodes.

5.7.2 Actuating Drone using 2 Classes

To facilitate the streaming of 2 MI tasks for classification purposes, the rest state data was separated from

the data, resulting in a stream exclusively containing MI tasks. Specifically, the task stream consisted of

the time period between 2 and 8 seconds after the beep, as it was shown in the time window optimization

that the data before and after these points never gave a satisfactory classification of MI-tasks. Further,

the task stream was segmented into 1-second intervals, giving a new classification each second.
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Since the drone moves for 1.5 seconds when classifying foot, it ignores the new commands in this time

period avoiding making a queue of commands. Additionally, all electrodes were used as they most often

showed the highest or comparable accuracy compared to the optimal electrodes for the time window-

optimized models. To see how well the model performed, the accuracy was recorded. To identify the

time windows associated with the most accurate results, the corresponding time windows along with

their associated accuracies were also recorded. For subject S03, these results are presented in tables 5.20

and 5.21.

Table 5.20: Accuracy, TPR, and TNR obtained when actuating a drone with 2 classes, right-hand and foot
MI, for subject S03. The time window lasts from 2 to 8 seconds following the beep and is segmented into
1-second classification windows.

Classifier Metrics Accuracy

EEGnet

TPR 83.33%

TNR 80.00%

Accuracy 81.67%

CSP+RF

TPR 88.33%

TNR 90.00%

Accuracy 89.17%

Table 5.21: Accuracies obtained in the different time windows when classifying 2 MI-tasks, right-hand
and foot, for subject S03.

Pipeline Time Window Accuracy

EEGnet

2s-3s 30.00%

3s-4s 100.00%

4s-5s 100.00%

5s-6s 95.00%

6s-7s 85.00%

7s-8s 80.00%

CSP + RF

2s-3s 60.00%

3s-4s 100.00%

4s-5s 100.00%

5s-6s 95.00%

6s-7s 80.00%

7s-8s 100.00%
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As seen from the results in table 5.20, the accuracy decreased significantly from the time window-optimized

models. Still, the accuracies are quite good, with CSP+RF giving higher classification accuracy than the

EEGnet. In addition, the TPR and TNR were quite even, indicating that they classified the hand and foot

MI to the same extent.

Based on the results presented in table 5.21, it can be seen that the highest classification performance

was observed within the time window spanning from 3 seconds to 6 seconds, in addition to the second

7 to 8 for RF. During these intervals, both pipelines had accuracies ranging from 95.00% to 100.00%. In

addition, the remaining seconds yielded lower accuracies, thus being the reason for the drop in accuracy

for EEGnet in table 5.20.

The same experimental procedure was performed for subject S09, leading to the results shown in table

5.22 and table 5.23. As seen from these results, EEGnet classified better than RF in contrast to subject

S03. Remarkably, it achieved a higher accuracy score than S03 when using the EEGnet, which was the

first time subject S09 outperformed subject S03 in our experiments. Further, the results show that the

classification was to some extent biased towards the foot task, leading to a high TNR and a low TPR.

Table 5.22: Accuracy, TPR, and TNR obtained when actuating a drone with 2 classes, right-hand and foot
MI, for subject S09. The time window lasts from 2 to 9 seconds following the beep and is segmented into
1-second classification windows.

Classifier Metrics Accuracy

EEGnet

TPR 71.67%

TNR 96.67%

Accuracy 84.17%

CSP+RF

TPR 66.67%

TNR 98.33%

Accuracy 82.50%

Table 5.23 reveals that the EEGnet achieves the highest classification scores within the time window span-

ning from 4 seconds to 7 seconds, while the RF classifier attains the highest scores within the interval of

4 seconds to 8 seconds. In these intervals, both models achieved high classification scores, ranging from

95.00% to 100.00%. On the other hand, the accuracy scores were significantly lower in some of the re-

maining seconds.
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Table 5.23: Accuraies obtained in the different time windows when classifying 2 MI-tasks, right-hand and
foot, for subject S09.

Pipeline Time Window Accuracy

EEGnet

2s-3s 55.00%

3s-4s 60.00%

4s-5s 95.00%

5s-6s 100.00%

6s-7s 100.00%

7s-8s 95.00%

CSP + RF

2s-3s 55.00%

3s-4s 55.00%

4s-5s 95.00%

5s-6s 100.00%

6s-7s 95.00%

7s-8s 95.00%

5.7.3 Actuating Drone using 3 Classes

Similar to the section on actuating a drone using 2 classes, this experiment used all the electrodes and

segments the data into 1-second intervals for classification. Furthermore, the same time period was

marked as task data similar to the previous section, while the remaining data was marked as rest. The

models were constructed using the time-optimized window found in the corresponding experiment. The

resulting accuracies obtained from this experiment are shown in tables 5.24 and 5.25.

Table 5.24: Accuracy obtained when actuating a drone using 3 classes, right-hand, foot, and rest, where
the model is trained on the time optimized window. The task time lasts from 2 to 8 seconds following the
beep, the remaining data is marked as rest.

Subject Pipeline Accuracy

S03
EEGnet 68.18%

CSP+RF 65.00%

S09
EEGnet 61.19%

CSP+RF 67.12%
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Table 5.25: Accuracies obtained for the individual 3 classes, right-hand, foot, and rest, where the model
is trained on the time optimized window. The task time lasts from 2 to 8 seconds following the beep, the
remaining data is marked as rest.

Subject Pipeline Time Window Accuracy

S03
EEGnet

Hand MI 88.33%

Foot MI 71.67%

Rest 54.00%

CSP-RF

Hand MI 81.67%

Foot MI 75.00%

Rest 49.00%

S09
EEGnet

Hand MI 75.00%

Foot MI 91.67%

Rest 34.34%

CSP+RF

Hand MI 60.00%

Foot MI 85.0%

Rest 60.61%

The results from classifying 3 classes show that the accuracy decreases significantly compared to the 2-

class classification. Moreover, the classification accuracy of the rest state was on average significantly

lower for both subjects and classification methods compared to the right-hand and foot MI task, except

for subject S09 using RF. Thus, the classification of the rest state was often the leading factor for the low

accuracies obtained for all the 3 classes. Further, for S03 the classification of right hand MI gave higher

accuracies than foot MI, while the opposite was found for S09. It was also found that subject S03 gave

higher scores than subject S09 using EEGnet, while subject S09 obtained higher score than subject S03

using RF. As the classification of rest data was on average quite low, a new strategy was purposed for 3

class classifications. Instead of only relying on the previously determined 1-second time window, found

from time window optimization, for the training of the classifiers, the model was made using data from

every second within the recordings. Specifically, seconds 2 to 8 following the beep were marked as MI-

task, while the remaining was marked as rest. The results are presented in tables 5.26 and 5.27.

Table 5.26: Accuracies obtained flying a drone using 3 classes, right-hand MI, foot MI, and rest, where the
model is trained on the whole data set. Task being between 2 to 8 sec following the beep, the remaining
data is marked as rest.

Subject Pipeline Accuracy

S03
EEGnet 77.27%

CSP+RF 72.27%

S09
EEGnet 74.89%

CSP+RF 64.38%

81



CHAPTER 5. RESULTS

Table 5.27: Accuracies of the individual 3 classes right-hand MI, foot MI and rest, where the model is
trained on the whole data set. Task being between 2 to 8 seconds following the beep, the remaining data
is marked as rest.

Subject Pipeline Time Window Accuracy

S03
EEGnet

Hand MI 83.33%

Foot MI 63.33%

Rest 82.00%

CSP-RF

Hand MI 78.33%

Foot MI 70.00%

Rest 70.00%

S09
EEGnet

Hand MI 75.00%

Foot MI 88.33%

Rest 66.67%

CSP+RF

Hand MI 55.00%

Foot MI 56.67%

Rest 74.74%

These results obtained demonstrated that using all data from the subjects enhanced the accuracies com-

pared to using the time-optimized model. The classification accuracy increased for subject S03 by 9.09%

and 7.27% for EEGnet and RF respectively, while it increased by 13.70% for subject S09 using EEGnet.

On the other hand, there was a small decrease of 2.80% for subject S09 using RF. Table 5.27 also shows

that the classification of the rest state significantly improves compared to the results obtained from the

time-optimized window. On the other hand, the classification of the MI tasks decreased to some extent.

Additionally, the accuracies were still lower compared to the 2-class classification, as expected.
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5.7.4 Video of Drone Actuations

The video linked in figure 5.9 shows two test runs of the actuation of the drone, one for 2 MI classes (right

hand and foot) and one for 3 classes (right hand, foot, and rest). Both of the test runs use only a selection

of all the data in the 2 different streams, thus resulting in a bit different accuracies than those obtained

in the previous sections using the whole stream. In addition, both videos use data from subject S03. The

video can also be reached following this link: https://youtu.be/SVvtyDZMIqg

Figure 5.9: Hyperlink to the video of drone actuation using both 2 and 3 classes.
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Chapter 6

Discussion, Conclusion and Further Work

6.1 Discussion

6.1.1 Feature Selection

An examination of the heatmaps presented in figures 5.2, 5.3, 5.4, and 5.5, reveals that subjects s03, s09,

and S11 have LL as one of the four features occurring often when high accuracies were obtained. This

fact suggests that this specific feature may in general be a feature that captures the characteristics of

MI-signals well. On the other hand, LL is one of the features occurring the least times for S13. When

comparing the four subjects in general, we see that S13 is by far the worst performer. Thus, the absence

of LL for S13 might be an indication that other features are needed to capture the essence of MI-signals

for low performers.

A contradiction to the notion that some features are important for good performers while different fea-

tures are important for bad performers is seen when comparing subjects S03 and S09. Both of them are

both very good performers, but they need quite different combinations of features to obtain high accu-

racies. Furthermore, a general observation is that all four subjects exhibit different feature combinations

to obtain high accuracies, where some subjects might have a feature among the top four, while others

have the same feature among the bottom four. The randomness observed in the features highlights the

fact that feature selection is highly subject-dependent and may even vary across different sessions. This

makes it challenging to identify features that are effective for all subjects.
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6.1.2 Pipeline Selection

From the results obtained in the pipeline selection, it becomes evident that the EEGnet classifier out-

performs all the ML pipelines. The reason behind this might be that the EEGnet is specifically designed

to capture the essence in EEG signals, whereas the ML pipelines are more general methods applicable

to many different domains[70]. Additionally, within the ML pipelines, an almost consistent observation

was that the RF classifier outperformed the other classifiers for all the subjects, especially when com-

bined with features calculated using CSP. This finding correlates to what was found in the literature

review, which was that the RF classifier could outperform more conventional classifiers such as SVM and

LDA when classifying MI-tasks, especially when there is limited data.

Through the literature review, it was found that CSP has demonstrated good results when classifying MI-

tasks, which aligns with our findings from the pipeline selection. On the other hand, the literature review

also states that DWT is a powerful method as the bands can contain different information about the MI

action. This is a contradiction to our findings, showing that using DWT often yielded the worst results out

of the different feature extraction methods. Several factors could contribute to the better performance

of CSP over DWT. Firstly, CSP is effective in reducing the impact of noise and artifacts on EEG signals.

Secondly, another reason might be because we excluded some of the DWT bands after the initial test,

which might have contained important information about the EEG signal.

Further, our results showed small differences in accuracies when using different numbers of CSP features.

In theory, employing too few levels may fail to capture the complexity of a signal. Given the complexity of

EEG signals, the reasoning is that a higher number of CSP features are needed to obtain high accuracies.

This hypothesis was supported by the findings for subject S13, where the highest accuracy was achieved

when utilizing 7 CSP-features in the ML pipeline. On the other hand, for subject S03, the range of 3 to 7

features sufficiently yielded the same accuracy. Nevertheless, it is worth highlighting that subject S03 is a

high-performing subject, obtaining high accuracies despite the pipeline chosen.

The final point from the results worth attention is that to obtain high accuracies, the mu-beta band was

often used. This corresponds to the theory saying that the MI signals often occur within the frequency

band of 8H z to 30H z, corresponding to the mu-beta band. On the other hand, subject S03 gets its best

results on the ML pipeline only using the beta band, while subject S13 gets its best results on the DL

pipeline using only the mu band. This might be an indication that MI-signals might occur a bit differently

across subjects. Nevertheless, both bands are in the mu-beta band and the drop in accuracy was not

substantial when using the whole mu-beta band instead of only one part of the band.
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6.1.3 Electrode Selection

According to theoretical expectations, during the performance of right hand and foot MI tasks, signal ac-

tivation should primarily occur in the left and middle regions of the brain. Analysis of the results from

electrode selection reveals that when using few electrodes to obtain high accuracies, these two specific

sections were mostly used for subjects S03, S09, and S13. On the other hand, it was observed that subject

S11 achieved higher accuracies when using electrodes from the left and the right sections instead of the

middle and left, which contradicts the theoretical expectations. This emphasizes that the MI-signals and

collection of the signals are very dependent on the subject itself. Several factors might be the explanation

for these observations. One of which is the shape of the subject’s head, as different head shapes may

result in slightly different placements of the electrodes for each subject, leading to deviations from the

anticipated placement compared to the brain region locations. Another factor might be the physiologi-

cal differences among subjects, making a variability in where the signal origins within the brain for the

different subjects[71].

Another observation from electrode selection was that the ML pipelines needed a higher amount of elec-

trodes in order to obtain high accuracies compared to the EEGnet. One possible explanation might be

that NNs often are prone to overfitting when confronted with an excessive amount of training data, re-

sulting in a reduction in test accuracy. Reducing the number of channels can thus serve as one way

of overcoming this problem. Another explanation, as previously mentioned, the EEGnet architecture is

specifically designed to capture the essence of EEG signals, while the ML pipelines are not. Therefore,

the EEGnet might possess a greater capability to identify the essential features necessary to differentiate

between the MI tasks, thereby needing a lower number of electrodes to obtain high accuracies.

Prior to the electrode selection process, a Laplacian rereferencing technique was applied to reduce the

number of electrodes. The obtained results revealed a combination of minor and substantial decreases

in accuracy compared to the scenario where all electrodes were utilized. In addition, when CAR was in-

troduced after the electrode selection, the accuracies either reminded the same or decreased. A possible

explanation for this decrease might be that rereferencing can change the nature of the recorded signal

and alter the relationships between electrodes. Specifically, rereferencing can affect the amplitude and

polarity of the recorded signals, which in turn can affect the analysis results. Another explanation might

be that instead of removing noise, it can enhance it. This means that if a reference electrode is noisy, the

noise can be introduced in the rereferenced signal, consequently compromising the overall quality of the

data.
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6.1.4 Classification of Three Classes

Upon introducing a third class, it was observed that the overall accuracies decreased compared to the

binary classification problem. This decrease in accuracy can be considered reasonable and expected, as

a multi-class classification model has more complex decision boundaries between the classes than a bi-

nary model.

The results obtained from the 3-class classification analysis showed that the flat model gave higher accu-

racies than the hierarchical model. This outcome might be attributed to the flat model’s ability to capture

complex interactions between the features of all the classes, which might not be represented in the hi-

erarchical structure. In addition, the first step in the hierarchical model is differentiating between rest

and task, where the task is both the right hand and the foot. As the task is a combination of two different

classes, it might be harder to find any specific features to capture the essence of both, thus making it

harder to do the classification.

As seen from the results, the flat model needs more electrodes to obtain its highest values when classify-

ing 3 classes compared to 2 classes. In addition, for the hierarchical model, many electrodes are needed

to differentiate between rest and MI-task. For the flat model, the reason is probably that it is more com-

plex to classify 3 classes over 2 classes, thus more information is needed to obtain a good classification

model. For the level 1 classifier in the hierarchical model, the reason might be that it is more complex to

differentiate between rest and task, especially since the task class is a combination of two distinct classes.

Thus, more electrodes are needed to capture the essence of the MI-task class.

A surprising result obtained from the hierarchical model was that the final 3-class classification accura-

cies were higher using all the electrodes than the optimal electrodes found from electrode selection. One

reason might be that more data is needed to obtain good classifications when 3 classes are introduced,

leading to low-performing classifiers using a subset of electrodes.

6.1.5 Transfer Learning

The results obtained from the TL-models showed that S13 gets its highest accuracies using a model com-

posed of subjects S03 and S09 while employing only the 2 best electrodes selected from electrode selec-

tion. However, including S11 in the TL-model led to a decrease in accuracy. One possible explanation for

this might be that subjects S03 and S09 have more similar EEG patterns to subject S13 than subject S11.

Therefore, when introducing subject S11 to the model, it rather decreases the accuracies than increases

it. This hypothesis is backed up by the model accuracy before the transfer is done, where it can be seen

that it decreases by 27.25% when subject S11 is introduced compared to the model without subject S11.

This is supported by studies highlighting that to produce good TL models, using subjects with similar

EEG patterns are preferred[63].
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The obtained results also indicate that subject S13 achieves higher accuracy when using 2 and 4 elec-

trodes, as opposed to 3 electrodes. From the initial electrode selection on subject S13, it was found that

the accuracy using 2 electrodes was 71.90%, using 3 electrodes was 68.80% while using 4 electrodes was

75.00%. Therefore, logical reasoning can be made that using 3 electrodes leads to lower results, poten-

tially due to less precise updates of weights and biases. However, it is noteworthy that 2 electrodes out-

performed 4 electrodes despite the latter initially demonstrating better results, which appears somewhat

strange.

When subjects with initial test accuracies below 65.00% were employed, a modest improvement in per-

formance for subject S13 was observed compared to using subjects with accuracies above 65.00%. Sim-

ilarly, for the results when using subject S11 in the model, the same reasoning can be applied to these

results. Specifically, the subjects with low initial accuracies have more similar EEG patterns than those

with higher accuracies. On the other hand, subject S09 achieved its highest accuracy using the leave-

one-out method. This means that despite using subjects with potentially dissimilar EEG patterns, the

accuracy increases.

The only good-performing subject, increasing its accuracy after the leave-one-out TL-models was S09. At

variance, the remaining subjects experienced a decrease between 0.75% to 16.75%. One plausible expla-

nation for the decreases in accuracy among good-performing subjects is the potential negative impact of

including low-performing subjects, making it harder to find common patterns and thus making it harder

to predict the MI-task. In addition, a negative transfer can happen from a too-different or too-close-

looking task, making the models decrease their performance after the transfer. However, the perplexing

aspect lies in the fact that subject S09 increases its scores compared to the other good-performing sub-

jects.

Further, the TL models utilizing DL outperformed the models made utilizing ML. The primary factor for

this likely stems from the abilities of DL to update the weights and biases using some of the targeted sub-

ject data prior to the classification phase. In contrast, when performing TL using ML, there is no direct

update of the model. Thus, the model must classify based only on what is learned from the subjects used

for training.

A strange observation was found when using ML-TL models on subject S13. The results showed that us-

ing the all-above-65%, a subset of 5 electrodes, and a subset of 9 electrodes models led to a consequential

classification of all data to the same class, making the accuracy 50% and either TPR or TNR 100.00%. It

is worth mentioning that this phenomenon exclusively occurs for subject S13, which is generally con-

sidered a low-performing subject. Consequently, one possible reason for this behavior is that the other

subjects have different EEG patterns from S13, making it hard to do a classification of this subject.
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6.1.6 Online Classification with Drone Actuation

Through the process of the time window selection on two classes, it was observed that subjects S03 and

S09 required two distinct time windows to obtain their respective peak accuracies. This results from the

fact that subject S03 likely has a quicker performance of MI than subject S09. Therefore, this result indi-

cated that the remaining subjects might increase their accuracies by applying the optimal time window

specific to their MI occurrence.

Furthermore, the experiments showed that utilizing optimal electrodes resulted in a decrease in accuracy

for both the 2-class classification on subject S03 and the 3-class classification on subject S09. However,

it is important to note that the electrodes were optimized for a 3-second time window, rather than a 1-

second window. Consequently, there might be other electrodes that are optimal for different lengths of

time windows. Further, the time window shifted for S09 when classifying 3 classes compared to the clas-

sification of 2 classes. This shift suggests that the ability to distinguish the rest state from the tasks may

be easier in an earlier time window than discriminating between the two tasks individually.

During the live simulation for 2 classes, the accuracies decreased noticeably compared to the window

optimization results. The main reason for this can be seen in the tables 5.21 and 5.23, where it is shown

that not all seconds marked as tasks yield good classification results. This discrepancy likely arises from

the timing misalignment between the actual MI performance and the analysis window. Specifically, the

subject had not started performing the MI or was finished performing it before the time was up.

The 3-class classification results using the time-optimized window show a decrease in the accuracies

compared to the 2-class classification. This decline can be attributed to several factors. Firstly, classifying

3 classes is more challenging compared to classifying 2 classes. Further, the most noteworthy decrease

in accuracy stems from the low classification of the rest state. The rest state might be classified wrongly

because these seconds can be quite variable, having artifacts that are not seen in the 1-second used for

model making. Furthermore, the classification of the two MI-tasks was also not exceptionally high. This

outcome is probably the same as for 2 class classification described above.

Constructing the models utilizing all the data points within the training set resulted in improvements in

accuracy, especially for the rest class. This outcome supports the hypothesis that the essence of the rest

class may not have been fully captured when using the time-optimized window. Thus, it seems that us-

ing the time-optimized window might lack the ability to capture what is needed to classify more than 2

classes, especially the rest class. On the other hand, the accuracies for the 2 MI tasks decreased to some

extent. This can be attributed due to the training of the model, where some data marked as task might

have fitted better as rest, or opposite, making the classes less distinct.
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The results also showed that the classification of the different classes was dependent on the subject. For

subject S03, the classification accuracy of the right hand MI was higher than the feet, whereas the op-

posite was shown for subject S09. These results probably stem from the fact that subjects have different

abilities to perform MI, especially the ability to perform some MI-tasks to a greater extent than others.

6.2 Conclusion

The primary objective of this thesis was to implement a system capable of actuating a drone based on MI

signals. This was partly successfully carried out through the implementation of classification models dis-

tinguishing between two MI-task classes and two MI classes in addition to the rest. The accuracies from

these experiments indicate the need for further research to improve the reliability of the models. Particu-

larly, the aim is to minimize misclassification, ensuring that individuals, such as those with impairments,

can utilize the model efficiently and safely. The finding in this study also showed that the classification of

different MI-tasks was very subject-dependent, making it more complex to find a subject-independent

model.

Prior to the live implementation, different pipelines were tested to identify the best models for different

subjects. The steps in finding these models included feature selection, pipeline selection, and electrode

selection using NSGA. The electrode selection was compared to Laplace rereferencing and CAR. In addi-

tion, TL was tested to see if transferring knowledge across subjects could enhance the model accuracies.

From the results, it was seen that TL worked well for subject S09, but in general it did not lead to higher

scores for most of the subjects. Thus, we found that using EEGnet with optimal electrodes yielded in

general best accuracies for two-class classification.

Furthermore, the study revealed that the selection of manual features required to achieve high accura-

cies was very subject-dependent. Similarly, the optimal electrode selection for enhancing accuracy was

dependent on the subject. However, a consistent trend was observed among 3 out of 4 tested subjects,

where electrodes positioned on the left and middle sections were frequently used when a high accuracy

score was obtained, which aligns with the theory.

The highest achieved results were obtained on subject S03, achieving a 100.00% accuracy score on offline

classification. Subject S03 consistently performed well across every pipeline employed in this thesis,

compared to other subjects where the results varied more. For instance, subject S11 displayed a wide

range of accuracy scores, ranging from 43.75% in the initial test using the whole frequency band, all elec-

trodes, and CSP+RF pipeline to 93.80% using EEGnet, the mu-beta band, and the optimal 3 electrodes.

These findings underscore the effectiveness of the implemented strategies aimed to enhance accuracy.

Furthermore, they show the importance of employing comprehensive steps, similar to the ones adopted

in this study, to develop robust and high-performing models.
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Table 6.1 shows the best-obtained results from the optimization part of this thesis compared to the re-

sults from the study done by David Steryl et al.[67] and the study done by Yang, Wang, and Huang[68].

Our results were obtained by exploiting the optimal electrodes from the electrode selection, which were

as follows: subject S03 used 5(C3) and 14, subject S09 used 2 and 13, S11 used 4, 6, and 11(C4), while

subject S13 used 2, 3, 4, and 14. Meanwhile, the results from David Steryl et al. were obtained using the

Laplacian rereferencing scheme, while Yang, Wang, and Huang do not state if they use all 15 electrodes

or the Laplacian rereferencing scheme. All three studies have used different methods for obtaining the

results. Our thesis found EEGnet to be the most optimal, while David Steryl et al. obtained their highest

accuracies using fbCSP-RF. Yang, Wang, and Huang obtained their best results using Euclidean space

data alignment(EA) combined with CSP and CNN. Further, the results from table 6.1 show that our ap-

proach has given the highest accuracies for all subjects, except for subject S13. From this, it is clear that

the approaches implemented in this thesis were successful and worth looking more into.

Table 6.1: Comparison of the best-obtained results from optimization algorithms in this thesis versus
other studies on the same dataset.

Subject Our results David Steryl et al. Yang, Wang and Huang

EEGnet fbCSP+RF EA-CSP-CNN

S03 100.00% 96.67% -

S09 93.80% 81.67% -

S11 93.80% 63.33% 79.00%

S13 75.00% 88.33% 84.00%

The implementation of the three-class classifications showed that the flat model worked better than the

hierarchical. In addition, it was shown that using EEGnet yielded better results than CSP+RF for both of

the subjects S03 and S09. The highest accuracy score for subject S03 using EEGnet, optimal electrodes,

and a flat model was 100.00%. For subject S09 the highest score was obtained using the same pipeline as

subject S03, giving 87.50%.

The analysis of the results generally demonstrated that the classification and model-building process for

MI tasks are highly subject-dependent. Consequently, it is challenging to draw any general conclusions

that are applicable to all individuals performing MI. However, one of the few observations which were

throughout for every subject was that the EEGnet outperformed all the ML-techniques. Thus, it seems

that DL is a method worth focusing on.

6.3 Further Work

Many different methods for MI classification have been explored in this thesis. However, in order to as-

certain a singular method that can effectively address all MI-related tasks and enable real-time testing of

a drone, further research must be conducted.
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Firstly, the NSGA algorithm should be used for optimization on multiple parameters at once, like elec-

trodes and features. This is a very time-consuming job and has thus not been prioritized in this thesis. A

way of making it less time-consuming is to add restrictions on the algorithm, which will be an evaluation

needed to be done for further work. Another time-consuming experiment involves running all the NSGA

algorithms on each individual subject, or multiple additional subjects. This way, a pattern across subjects

might get easier to recognize, further leading to a subject-independent model.

Further, directing attention toward the development of subject-independent models and TL can lead to

models which are less computationally expensive and capable of achieving high accuracies on subjects

that have limited data available. This requires a closer examination of each individual subject’s EEG pat-

tern, with the objective of identifying which subjects to transfer knowledge from. Additionally, feature

and electrode selection for subject-independent models might contribute to better models. To accom-

plish this, conducting both electrode selection and feature selection across all subjects combined must

be done, to find the most optimal subject-independent subsets. Furthermore, for both ML and DL based

TL models, employing an electrode selection on all subjects prior to the transfer could have potentially

augmented the attained results.

The order of the experiments might have affected the results obtained. Consequently, reordering the

sequence of experiments, such as performing electrode selection before pipeline selection, could po-

tentially yield other results. Similarly, altering the sequence to conduct feature selection after electrode

selection might also yield dissimilar results. Thus, as previously suggested, a combined approach en-

compassing both feature and electrode selections might be a more optimal selection strategy.

It is worth noting that fbCSP, a variant of CSP, has shown great results in MI classification as stated in the

literature review. Therefore, the implementation and testing of fbCSP should be pursued to see if it can

enhance the results compared to those obtained from CSP. Furthermore, filter-band optimization is also

further work to be done, in addition to testing different parameters in the classifiers.

The electrode selection showed that subject S11 gets the highest accuracies when utilizing electrodes

from different sections of the head than the other subjects. To reduce this difference among subjects,

and to reduce the effect of the head shape and the shifted positions of electrodes, a step for further work

could be testing a moving flexEEG for data collection[72].

Lastly, the live simulation was only tested on an already collected data stream. Thus, an important area

for further work involves conducting experiments using an EEG recording helmet in conjunction with

a live human subject. This approach would closely mimic real-world scenarios, particularly in contexts

where the technology is intended for implementation in devices assisting individuals with paralysis or

motor impairments. Furthermore, it is imperative to develop better models yielding higher accuracies.

This advancement is important to make the classification safe and reliable for MI-based actuation of

drones, wheelchairs, and similar applications.
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