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Abstract

Artificial intelligence (AI) has enormous potential and is already being used by hu-
mans in various ways every day. One such application is the use of AI-powered au-
tonomous systems in search and rescue operations at sea. These systems, such as
small autonomous unmanned aerial vehicles (UAVs), can cover large areas quickly
and efficiently, potentially leading to the early detection of victims and reduced
fatalities.

However, there are several challenges that arise when using autonomous UAVs
in maritime operations, such as the ability of the vehicle to automatically land on
a seaborne platform. This thesis aims to robustly estimate the location of a land-
ing platform using the Parrot Anafi drone’s onboard sensors in potentially harsh
and challenging conditions. It uses the drone’s camera as the primary sensor and
combines data from the camera with GNSS data and other sensor data from the
Anafi drone in a constant velocity Kalman filter. The thesis employs two different
camera-based estimators, one based on deep learning and the other on more tra-
ditional computer vision techniques, in order to achieve a more robust estimation.

The thesis findings indicate that the full estimation system is reliable enough
to track the position of the platform, even when it is not visible to the camera,
in both indoor and outdoor environments on land. The system can handle large
platform movements, but some minor adjustments to the platform’s design may
be necessary to make it even more resilient to changing lighting conditions. Over-
all, this thesis presents a promising approach to using AI-powered autonomous
systems for search and rescue operations at sea.
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Sammendrag

Kunstig intelligens (KI) har enormt potensiale og blir allerede brukt av mennesker
på ulike måter hver dag. Et slikt anvendelse er bruk av AI-drevne autonome sys-
temer i søk og redningsoperasjoner til sjøs. Disse systemene, som små autonome
ubemannede luftfartøy (UAVer), kan dekke store områder raskt og effektivt, noe
som kan føre til tidlig oppdagelse av ofre og reduserte dødstall.

Det er imidlertid flere utfordringer som oppstår når man bruker autonome
UAVer i maritim operasjon, slik som evnen til kjøretøyet til å lande automatisk
på en sjøbasert plattform. Denne oppgaven har som mål å robust estimere po-
sisjonen til en landingsplattform ved hjelp av Parrot Anafi drone’s onboard sen-
sorer i potensielt krevende og utfordrende forhold. Det bruker drone’s kamera som
primærsensor og kombinerer data fra kameraet med GNSS-data og annen sensor-
data fra Anafi dronen i en konstant hastighet Kalman filter. Oppgaven benytter
to ulike kamerabaserte estimatorer, en basert på dyp læring og den andre på mer
tradisjonelle datasyn-teknikker, for å oppnå en mer robust estimering.

Oppgavens funn indikerer at hele estimeringssystemet er pålitelig nok til å
spore plattformens posisjon, selv når den ikke er synlig for kameraet, både i in-
nendørs og utendørs miljøer på land. Systemet kan håndtere store plattformbeveg-
elser, men noen mindre justeringer i plattformens design kan være nødvendig for
å gjøre den enda mer motstandsdyktig mot endringer i lysforholdene. Overord-
net gir denne oppgaven en lovende tilnærming til bruk av AI-drevne autonome
systemer for søk og redningsoperasjoner til sjøs.
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Chapter 1

Introduction

1.1 Background and Motivation

The increase in the use of Artificial Intelligence (AI) has a large impact on so-
ciety and leads to the increase in the use of autonomous systems [5]. With the
rapid development of complex cybernetics systems, AI is something most people
utilize every day, often without them being aware of it [6]. One of the reasons AI
and Autonomous Systems (AS) are used is because they can help humans, and
in some cases also outperform humans. An example of an AS that uses AI to out-
perform humans is a robotic manufacturing system. These systems use machine
learning and computer vision technologies to automate tasks in a manufacturing
environment, such as assembly, inspection, and packaging. In many cases, robotic
manufacturing systems are able to work more quickly and accurately than human
workers [7]. AI and AS can also be used to perform jobs that are too dangerous
for us humans to perform, and computer systems also have the property of not
getting exhausted, enabling them to work longer and faster than humans [6].

One example of an AS is Unmanned Aerial Vehicles (UAV). In the later years,
there has been a large growth in both the research and use of these systems. This
is a result of their low maintenance cost, high mobility and ability to hover [8].
Commercial available UAV systems are often also equipped with high-resolution
cameras and hence sophisticated AI algorithms can therefore be used to analyze
the video data from the cameras.

One specific area where AI and AS can guide and help humans is in Search And
Rescue (SAR) missions. SAR operations need the use of people, boats, helicopters,
and aircraft. Adverse sea effects and weather conditions frequently make SAR
missions at sea, in particular, worse [9]. In SAR missions, time is a crucial factor to
reduce the loss of human life. The authors in [8] point out that using autonomous
UAV systems to speed up the search process can potentially save lives. Using UAV
systems in such search missions have the benefit of being able to cover a large area
in a short time, they are cheap in use compared with traditional aerial systems and
they perform a search without putting operators at risk [8].

Whereas autonomous UAVs offer a lot of promise to help in SAR operations,
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there are also a number of difficulties. The system must be strong enough to allow
the UAVs to fly autonomously and only transmit useful data to the rescue team
in order for them to be an aid rather than a burden. Therefore, the system must
be capable of handling every step of the search by itself, including challenging
autonomous actions like landing on a moving target. There exists a lot of research
on this particular field of autonomous landing UAVs [10].

When using a drone’s camera for detecting purposes in a maritime environ-
ment, there are also a lot of issues that come up. When a drone makes a fast
movement or is affected by a strong wind, vibrations in the drone may spread
into the video stream, resulting in a hazy appearance [11]. Stormy weather will
cause waves to partially or completely obscure floating objects, making it impos-
sible for the camera to see them. Additionally, conditions with a calm sea and
clear sky will cause water reflections, which will make it challenging to detect
floating objects [12]. Finally, by merely employing a regular camera for detecting
purposes, the search is limited to well-lit conditions.

The many challenges associated with employing camera vision for detection
while deploying autonomous UAVs in marine situations will be examined in this
thesis.

1.2 Previous work

1.2.1 Previous project development

This thesis builds upon the research on the same topic conducted in the individual
theses of Martin Falang, Peter Bull Hove and Thomas Sundvoll [1–3].

Sundvoll [3] created a drone landing platform that was to be mounted on top
of DNV’s autonomous research ship ReVolt1. The platform looked like a typical he-
licopter landing platform, but it was built with distinct features that a perception
algorithm could identify. In order to estimate the pose of the platform, Traditional
Computer Vision (TCV) techniques such as color segmentation, edge detection,
and corner detection were used. The perception-based pose estimation system
showed potential in simulations, however, the performance was reduced in real
experiments due to light conditions and noise in the images.

In order to create the perception system more robust, Hove [2] fused the pose
estimates from the approach presented by Sundvoll in [3] with the pose estimates
from a deep convolution neural network in a Constant Velocity (CV) Kalman Filter
(KF). Even though the output from the algorithm using Deep Neural Network
Computer Vision (DNN-CV) gave noisier estimates, the fused output from the KF
was more reliable than the system consisting of only the TCV pose estimates.

Hove [2] had problems with communication delay between the physical drone
and the control station, and hence Falang [1] upgraded the drone system from the
previously used AR.Drone 2.0 to a more modern Anafi FPV both from the French

1https://www.dnv.com/technology-innovation/revolt/index.html

https://www.dnv.com/technology-innovation/revolt/index.html
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drone company Parrot2. Falang in [1] wrote a communication wrapper for the
Anafi system as well as upgrading the TCV pose estimation algorithm to a new
one based on feature detection, feature matching, and homography-based pose
estimation. The new TCV pose estimation showed potential, however, it had off-
sets in all axes and was computationally heavy. The DNN-CV solution gave wrong
estimates when the drone was too close to the platform, and Falang suggested
that the DNN-CV only should be used for estimation purposes when the drone
was sufficiently far away from the platform. The final pose estimation from the
KF showed good results in simulations as well as in outdoor experiments when
the platform was stationary. However, the estimations proved inaccurate when the
platform moved or was introduced to a roll motion.

1.2.2 Perception for autonomous UAVs

There is a lot of research being done on estimating a UAV’s pose using visual
perception systems. Falanga et al. [13] present a method that is comparable to
the one Sundvoll used in [3]. Here, the landing platform is made with distinctive
features that make TCV techniques like binary thresholding and feature identifi-
cation easily deployable. The authors provide an Extended Kalman Filter (EKF)
to estimate the platform’s location, orientation, and velocity in order to deal with
time steps when the platform cannot be observed.

A similar approach is presented in [14] where the AprilTag system [15] is
used as the features on the landing platform. Here, AprilTags of different sizes
are spread throughout the landing surface. The AprilTags system was selected be-
cause it has the property of encoding a significant number of distinct IDs and has
a low misdetection rate. Choi employs the same AprilTags method in [16] for de-
tection. Using several AprilTags, where a smaller AprilTag is nested inside a larger
AprilTag. An adaptive windowing scheme expedites the detection of AprilTags by
creating a binary mask off of the most recent successful detection. The AprilTags
have also been improved such that the detection of the AprilTags is unaffected by
shadows obscuring half of the AprilTags.

A solution where a Deep Neural Network (DNN) is used to estimate the pose
of objects is presented in [17]. Here, a lightweight Convolution Neural Network
(CNN) is used to estimate the 4-DoF of gates from an uncalibrated mono-camera.
The network is able to run at 10 Frames Per Second (FPS) on an Intel UP board.
Another example of applying a DNN methodology to determining the pose of ob-
jects is seen in [18]. PoseCNN, a CNN trained to infer 6-DoF object pose esti-
mation, is presented by Xiang et al. The rotation is estimated by regressing to a
quaternion representation, and the translation vector is computed by localizing
the object center in the image.

2https://www.parrot.com/en
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1.2.3 Autonomous UAVs in SAR-missions

Due to their agility, mobility, and aerial accessibility, UAVs have been employed for
SAR missions for a number of years [19]. The danger of injury to the rescue team
is decreased and the search may be carried out much more quickly and safely by
employing autonomous UAVs.

Rudol and Doherty [20] present a method for detecting humans in color and
thermal images from a commercially available drone. Geolocating detected hu-
man locations enables the creation of a map with various points of interest. Such
a map could then be used to schedule the delivery of for instance medical supplies.
In [21] the authors explain how they can find people in avalanches faster by using
a drone fitted with an avalanche beacon. The drone searches in a grid pattern and
then automatically lands in the discovered location of a possible trapped person
and relays this location to the rescue crew.

Due to the often very large search areas in SAR missions, it is not easy to
detect or find people in images as they are small compared to the size of the
area. Persons can often also be partially covered with vegetation, and different
light conditions may make it harder to detect persons in images. In [22] the use
of deep Convolution Neural Network (CNN) detectors for detecting persons in
images from drones are investigated.

1.3 Objectives

The main goal of this thesis is to develop the use of Autonomous Systems (AS),
namely autonomous UAVs, in a comprehensive SAR operation at sea. Within this
large scope, the goal of this thesis is to address the challenge of accurately calculat-
ing the position of a landing platform. When the platform is rotating or moving, the
perception system ought to be able to determine its location. The system should
also be able to know the relative position of the platform even when the platform
is not in plain view of the camera.

1.4 Contributions

The contributions of this thesis are as follows:

• Co-authoring of a Robot Operating System (ROS) communication wrapper
for the new Application Programming Interface (API) version used with the
Parrot Anafi drone

• Refactoring and updating of the previously used code base to be compatible
with newer ROS versions

• Use of a rotation compensating transformation between frames of reference
utilizing the native ROS framework for transformations

• Use of an AprilTag detection-based pose estimation pipeline to produce fast
and accurate pose estimates
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• Integration of GNSS measurements in a North, East, Down (NED) frame as
corrective measurements in a model-based EKF

• Integration of altitude corrective measurements during the landing phase
in a model-based EKF

A communication wrapper for the new API version used with the Parrot Anafi
drone was developed. This wrapper facilitated communication between the drone
and the ROS framework, allowing for more easy control and monitoring of the
drone’s behavior. The previously used code base was also refactored and updated
to be compatible with newer ROS versions. In order to accurately track the drone’s
position and orientation, a rotation compensating transformation between frames
of reference was implemented using the native ROS framework for transforma-
tions. Additionally, an AprilTag detection-based pose estimation pipeline was de-
veloped to produce fast and accurate pose estimates for the drone. This was crit-
ical for ensuring its stable and reliable operation in a variety of scenarios. GNSS
measurements in a NED frame were also integrated as corrective measurements
in a model-based EKF, improving the accuracy of the pose estimates. Finally, al-
titude corrective measurements were integrated during the landing phase in a
model-based EKF, allowing for safe and controlled landings. Overall, the project
significantly improved the performance and reliability of the previously developed
perception system in [1].

1.5 Outline

This thesis begins with Chapter 2, which presents the theory and background ma-
terial for the work done in this thesis. The experimental setup utilized in this
thesis is then presented in Chapter 3 before Chapter 4 covers the methods used to
build the various subsystems in this thesis. Chapter 5 provides and describes the
findings of testing the perception-based posture estimation system both individu-
ally and collectively. Chapter 6 examines these findings, and Chapter 7 closes the
thesis with some final notes indicating prospective future work on the topic.





Chapter 2

Theory

The guiding theory behind this thesis is presented in this chapter. The chapter be-
gins with a description of a quadcopter’s operation and the many frames of refer-
ence used in this thesis. The chapter goes on to discuss the fundamental principle
of using a camera as a sensor by giving a model of a camera. The topic of pose
estimation is then examined utilizing both standard techniques such as feature
extraction and processing, homography matrices, and pose extraction. Further-
more, detection in images by utilizing deep neural networks is presented, before
the fundamental theory of the Kalman filter utilized in the context of this thesis
to fuse the many sensor outputs together is presented.

2.1 Quadcopters

A quadcopter is a type of unmanned aerial vehicle (UAV) with four rotors, each
powered by its own motor and propeller. As shown in Figure 2.1, the rotors of a
quadcopter are mounted in an X-shape configuration. By applying voltage to the
four DC motors, the speed of each rotor can be controlled. It is commonly assumed
that the thrust generated by each propeller is proportional to the square of its
rotation speed [23]. This means that the propellers are the dominant force acting
on the quadcopter. The force generated by each propeller is denoted as Fi in Figure
2.1. In addition to generating force, the propellers also produce angular moments.
To cancel out these moments and control the orientation of the quadcopter in the
X-Y plane, the non-diagonal propellers rotate in opposite directions, while the
diagonal propellers rotate in the same direction. This configuration allows for the
cancellation of the generated angular moments. By adjusting the force generated
by each of the four motors, the attitude of the quadcopter can be controlled. The
quadcopter’s attitude, in turn, can be used to control its position.

7
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Figure 2.1: Model of the quadcopter. Inspired by [1]

2.1.1 Frames of reference

As this is a direct continuation of the work done in [1–3], all the frames of refer-
ence are kept unchanged. The first frame is a world frame that is stationary which
is used to describe the quadcopter’s position and attitude. This frame is chosen as
a North, East, Down (NED) frame, denoted {n} and is defined as a tangent plane
on a point on Earth’s surface. The curvature of the earth can be ignored in the
frame for the sake of this thesis and the use case of the drone in SAR mission. The
NED frame has the following axis definitions according to the definitions in [24]:

• xn - Points towards true north.

• yn - Points towards true east.

• zn - Pointing downwards normal to Earth’s surface.

The second frame of reference is a body-frame attached to the quadcopter as
illustrated in figure 2.1, denoted {b}. This frame is used to describe both linear
and angular velocities. The axis of this frame can be defined as in [24] to be:

• xb - Longitude axis, pointing from the back to the front nose of the quad-
copter.

• yb - Transversal axis, pointing to the right from the longitude axis.

• zb - Normal axis, directed downwards through the quadcopter.

In addition to the two frames used to describe the motion of the quadcopter,
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the camera mounted on the drone also has its own reference frame, denoted {c}.
This frame is used to describe the objects seen in the images captured with the
camera, and its origin is in the center of the image plane. The camera frame has
multiple ways of being defined, and in this thesis, it is defined the same way as in
[25] and has the following axis:

• xc - Right in the image plane.

• yc - Down in the image plane.

• zc - Pointing straight out of the camera plane.

It becomes necessary to convert between different frames because some defi-
nitions are better expressed in particular frames. The translation vector between
the two frames’ origins, as well as the rotation between the two frames, are needed
to convert between the frames of reference. To transform a vector v given in frame
{1} to frame {0} the general expressions is a given in [24] as:

v0 = R0
1v1 + t0

1. (2.1)

In 2.1 the rotation matrix R0
1 is the rotation from frame {1} to frame {0}, and

the translation vector t0
1 is the translation from frame frame {1} to frame {0} given

in frame {0}.

2.2 Camera modeling

In order to use the camera as a sensor, a model of how the camera projects the 3D
world coordinates into pixel coordinates on the image plane is necessary. One of
the more commonly used camera models is the perspective model [25]. In the per-
spective camera model light passes through an infinite small hole and is projected
inverted on the image plane [26]. The projective camera model is also called the
pinhole model. This model is an approximation of the imaging process since a
pinhole cannot be indefinitely small in reality. However, the model is straight-
forward and mathematically convenient and offers a good approximation. Figure
2.2 depicts how the projective camera model forms images, as well of some of its
parameters.

In order to model the pinhole camera model mathematically the pinhole is
defined to be the same as what is called the optical center C. Furthermore, the
distance from the optical center to the image plane is defined to be the focal dis-

tance f. By introducing homogeneous coordinates ũ=
�

ũ ṽ w̃
�⊤

, the relationship

between the world 3D coordinates X =
�

X Y Z
�⊤

and the pixel coordinates u
= ũ/w̃ and v = ṽ/w̃ can be written in a linear manner using matrix notation.

The origin in the image plane is assumed to be at the principal point, being
the point on the image plane located in a straight line from the optical center.
However, this may not be true in practice and hence the two offset parameters
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Figure 2.2: The projective camera model

cx and cy are introduced. While the focal length f is specified in millimeters, the
pixel coordinates u and v are supplied in pixels. Therefore, in order to obtain the
pixel coordinates, the sx and sy pixel densities are supplied. When employing the
whole set of pinhole model parameters, the skew parameter s is the final effect
to consider. This will ultimately account for skew sensors and is often set to zero.
Ultimately the complete matrix K is reached, the calibration matrix, defining the
pinhole camera model in (2.2). The so-called intrinsic of the camera are contained
in this matrix [25].





ũ
ṽ
w̃



=





sx f s cx
0 sy f cy
0 0 1





︸ ︷︷ ︸

K





X
Y
Z



 (2.2)

The necessity for a link between the world coordinate frame and the camera
coordinate frame occurs because points in the 3D world are frequently presented
in the world coordinate frame. This is given in terms of a rotation matrix R and
a translations vector t. By defining the world 3D homogeneous coordinates as

X̃ =
�

X̃ Ỹ Z̃ W̃
�⊤

implicitly related to X by X = X̃/W̃ , Y = Ỹ /W̃ and Z =
Z̃/W̃ the general pinhole camera matrix of dimensions 3x4, P, can be represented
as

ũ= K
�

R t
�

︸ ︷︷ ︸

P

X̃. (2.3)
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2.3 Features in images

The practice of identifying details about a certain area in an image where the pic-
ture possesses a particular quality is known as feature detection. Numerous appli-
cations of computer vision require feature recognition and the matching of these
features such as image stitching, 3D model generation, and pose estimation [25].
Such features can for example be church spires, interesting-looking mosaics, or
doorways and are also often called key points. The way these key points are de-
scribed in computer vision algorithms is by describing how the pixels are arranged
around them. Other features in images that are easy to detect are edges, for exam-
ple, the transition from a building to the sky behind it. Such edges can be described
based on their orientation, curvature or length [25].

A commonly used method for feature detection is the Harris corner detection
[27]. This method is using corners as features. Corners in images have very large
gradients and in a neighborhood of a corner the gradient swing sharply [26].
By looking at the properties of the gradient in windows or sections of the image,
areas in the images with corners are found. The Harris corner detector scores point
based on both the magnitude and directions of gradients within these windows to
find features in terms of corners. Other methods based on the same properties of
corners but by using another scoring function exist such as Shi and Tomasi’s good
features to track [28]. One of the weaknesses of harris corner detection is that it
is not invariant to scale. Hence, matching features from Harris corner detection
from the same image with different scales/zoom levels will most likely not result
in any match between the features. Alternatives exist that can address issues, such
as Scale-Invariant-Feature-Transform (SIFT). SIFT is invariant to scale, rotations,
and partial to illumination changes and hence more robust.

Instead of using corners as features, edges can also be used as features in
images. However, as edges are spread around multiple pixels in images they are
not suited for the detection of single feature points in images but rather as a
feature of the image itself. This can for example be useful for applications where
the approach of Bag-of-Visual-Words is used [25]. Canny edge detector or Hough
transform are two examples of feature detection methods for finding edges in
images [25]. In the same way as edges, circles can be detected in images and
used as features. Hough transform can also be used to detect circles in images
[29].

Fiducial markers, also known as visual markers or artificial markers, can be
added to images to provide distinct, easily recognizable features for image pro-
cessing algorithms. These markers have highly distinctive patterns and visual char-
acteristics that make them easy to identify even in noisy or cluttered images. They
often include a particular encoding or identification number to reduce the likeli-
hood of false positives and improve accuracy [30].

One example of a fiducial marker is the AprilTag, which is a popular choice
for robotics applications due to its robustness and reliability [15]. AprilTags use a
binary encoding to represent the identification number, which is embedded in a
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black and white dot pattern that forms the visual marker. This pattern is designed
to be easily recognizable by a machine vision system, even when the marker is
partially occluded or distorted.

While fiducial markers can provide reliable and accurate results, they are not
always feasible to use. In some cases, it may not be possible or practical to add
artificial markers to existing images. In these situations, other methods such as
feature detection and matching may be used to identify distinct features in the
image. These methods may not be as reliable or accurate as using fiducial markers,
but they can still provide useful information for image processing tasks.

2.4 Pose estimation

The problem of predicting the pose of a calibrated camera from a set of n 3D
points, given in world coordinates and their associated 2D projections in the im-
age, is known as the Perspective-n-Point (PnP) problem. The six DoF in the cam-
era pose are made up of the rotation (roll, pitch, and yaw) and three-dimensional
translation of the camera with respect to the world coordinate system. One way
of solving this PnP problem is by using Direct Linear Transform (DLT) [25].

In the special case where all the world coordinate points are lying on a com-
mon plane where the z coordinate is 0, the concept of homography can be intro-
duced, leading to simplifications of the PnP problem. When a planar relationship
exists between the points in the image and the points in the real world a homog-
raphy can be applied to transform between them. The homography is essentially
a transformation involving a rotation and a translation between two frames. A ho-
mography can be represented using a 3x3 matrix, H, transforming 2D points on
a plane into image points. Furthermore, the rotation and the translation between
the two frames can be extracted from the homography matrix H.

To derive the homography matrix H, the starting point is as in (2.3) where the
relationship between 3D world coordinates given in homogeneous coordinates
and the homogeneous image points is stated.

ũ=





sx f s cx
0 sy f cy
0 0 1









r11 r12 r13 t x
r21 r22 r23 t y
r31 r32 r33 tz











X̃
Ỹ
Z̃
W̃






(2.4)

As the homography matrix is to be calculated under the assumption that all
the world 3D points lie on the same plane with Z = 0, the homogeneous world

3D coordinate vector becomes X̃=
�

X̃ Ỹ 0 W̃
�⊤

, and hence 2.4 becomes
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ũ=
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
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=


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=
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
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
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H





X̃
Ỹ
W̃



 (2.7)

where the 3x3 matrix H is the so called homography matrix.
Given planar world points and the corresponding image points, the homogra-

phy matrix can be calculated by using DLT as in [31]. The system in (2.4) is stated
on a linear form explicitly giving the transformation from the world coordinated
X by X = X̃/W̃ and Y = Ỹ /W̃ to the image coordinates u = ũ/w̃ and v = ṽ/w̃ as
follows:

u=
h11X + h12Y + h13

h31X + h32Y + h33

v =
h21X + h22Y + h23

h31X + h32Y + h33
.

(2.8)

Furthermore, (2.8) can be stated as a linear homogeneous system according
to the following

Ah= 0 (2.9)

where

A=
�

A1 · · · An
�⊤

Ai =

�

X i Yi 1 0 0 0 −X iui −Yiui −ui
0 0 0 X i Yi 1 −X i vi −Yi vi −vi

�

h=
�

h11 h12 h13 h21 h22 h23 h31 h32 h33
�⊤

.

(2.10)

The column vector h now consists of the elements in the homography matrix
H, and can be found by solving the homogeneous system in (2.9) by Singular
Value Decomposition (SVD). According to [31] the solution, h, can be found as
the the last column of V, where A = UDV⊤.

From (2.9) and (2.10) it is clear that one point correspondence (u, v) ↔
(X , Y, Z) gives rise to two independent equations in the matrices Ai . Despite hav-
ing nine entries, the homography matrix H only has eight degrees of freedom since
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it is specified up to a scaling factor. Therefore, the minimum amount of point cor-
respondences n needed to determine H is n = 4 [31]. To extract the pose from
the homography matrix, H can be premultiplied with the inverse of the intrin-
sics matrix K−1 resulting in a matrix containing candidates for the rotation and
translation:

K−1





h11 h12 h13
h21 h22 h23
h31 h32 h33



= K−1K





r11 r12 t x
r21 r22 t y
r31 r32 tz



=





r11 r12 t x
r21 r22 t y
r31 r32 tz



 . (2.11)

The columns in the last matrix in (2.11) cannot be interpreted directly as two
of the columns in the rotation matrix R and translation t. This is because of the
previously mentioned scale factor. This factor can be found by exploiting the fact
that the columns in the rotation matrix R are of length one. Hence the scale can
be found. In order to extract the full rotation matrix R and not only the two first
columns another of the rotations matrix’s properties can be used. Namely the fact
that all the column vectors in it are orthogonal, and the last column can therefore
be found as the cross product of the first and second columns. The translation
vector t can be found by dividing the last column by the previously mentioned
scale factor.

2.4.1 Iterative minimization methods

The homography matrix H can be further optimized to reduce the reprojection
error, being the distance error between a projected point using H and the mea-
sured one. Non-linear iterative optimization, such as Gauss-Newton or Levenberg-
Marquardt (LM) optimization, are typical methods for doing this [31].

Let this reprojection error for a single world-image correspondence be denoted

r(ũ,HX̃) = f (H)

by summing over all the point correspondences, i, an objective function can
be written as a function of the homography matrix H:

E(H) =
∑

i

fi(H)
2. (2.12)

The goal is now to iteratively optimize the homography H in such a way that
the total reprojection error in the objective function in (2.12) is minimized, i.e.
find a step δ such that the estimated homography matrix Ĥ is updated according
to

Ĥ← Ĥ+δ.

The Gauss-Newton method can be viewed as the classical Newton method with
a modification [32]. Instead of solving the standard Newton equations:∇2 f (H)δN =



Chapter 2: Theory 15

∇ f (H), the hessian matrix∆2 f (H) in Gauss-Newton is approximated as∇2 f (H)≈
J⊤J. Where J is the Jacobian found as a N x M matrix where n is the number of
residuals in the objective functions, and m is the number of parameters in H.
Hence to find the update step δGN in the Gauss-Newton method the following
linear system is solved:

J⊤JδGN = −J⊤ (2.13)

In the process of solving the linear system in (2.13), the matrix J⊤J has to be
inverted. It may happen that this matrix is singular and therefore not invertible.
Instead of solving the linear system in (2.13), the LM method solves the following
system:

(J⊤J+λI)δLM = −J⊤, (2.14)

where λ is a scalar that assures the matrix on the left side of the equation
does not have a rank deficiency. If the system is solved and the error decreases,
the increment is accepted, and λ is divided by a factor before the next iteration. If,
on the other hand, the value produces an increase in error, λ is increased by the
same amount, and the linear system is solved once more, and so on, until a value
that causes a decrease in error is identified. Iteration of the LM method refers to
the process of repeatedly solving the linear system for different values of λ until
an acceptable solution is found [31].

2.5 Deep Neural Networks

Deep learning is a subset of machine learning, based mainly on the concept of
Artificial Neural Network (ANN). ANN is a data structure modeled on how the
human brain functions [33]. It is made up of multiple tiny computing compo-
nents that conduct simple operations and interact with one another to get a re-
sult. These small processing units are known as "neurons," and they can contain
binary inputs and outputs, as well as more sophisticated inputs and outputs such
as floating values [33]. When a single neuron gets an input, it multiplies it by a
weight determined by the neuron’s decision-making. An input layer, one or more
hidden layers, and an output layer comprise a general ANN structure. Each layer
is made up of many neurons. An ANN is categorized as a Deep Neural Network
(DNN) when it consists of two or more such hidden layers [34]. DNNs is often
used in the area of computer vision to solve hard problems such as colorization,
segmentation, and classification [35].

The network is trained in order to determine the previously stated weights in
the network. In a so-called training set, the network is given correct relationships
between input and expected output. The network then alters its neuron weights
and biases so that the proper neuron provides output while the remainder of the
network’s decision-making is unaffected. A cost function, also known as a loss
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function or objective function, is used to determine how efficient the network is
learning. This function may, for example, represent the mean square error be-
tween the network’s input and output. In general, minimizing a function with
several variables is a challenging and computationally difficult process. As a re-
sult, updating the network weights is done iteratively, for example, by employing
gradient descent to minimize the loss function [33]. Because these deep neural
networks have the potential to be exceedingly deep, with millions or billions of
parameters, the training process becomes highly computationally costly [34]. As a
result, this training method could be enhanced to operate on Graphics Processing
Unit (GPU) in order to improve performance and reduce training time [35].

2.5.1 Convolution neural networks

Convolution Neural Network (CNN) are a type of network architecture that is par-
ticularly well-suited to image classification; they are quick to train and hence aid
in the training of deep, multi-layer networks [35]. CNNs employs filters to recog-
nize characteristics in images. A filter is a set of values that are arranged in such
a manner that they identify certain traits, such as vertical edges. A convolution
operation is performed to generate a value expressing how sure a certain feature
is present by computing the dot product of the filter and the input area where the
filter is overlapped.

Pooling layers are also included in the CNNs, in addition to the previously
discussed convolutional layers. Pooling layers are typically employed just after
convolutional layers. The pooling layers reduce the information in the convolu-
tional layer’s output by, for example, only maintaining the maximum value in a
feature map formed in the convolution layer. This last strategy is known as max
pooling [34].

2.5.2 YOLO - Real-Time Object Detection

You Only Look Once (YOLO) is an object recognition method that takes in an
image and attempts to discover all occurrences of each category. The YOLO detec-
tor uses a single neural network to predict numerous bounding boxes and class
probabilities for those boxes at the same time [36]. The YOLO network design
has various versions, one of which is YOLOv4. YOLOv4 is designed to be trained
and operated on a single conventional GPU, thus it offers both high accuracy and
rapid calculations, making it ideal for real-time applications [37].

2.6 Kalman filtering

The Kalman Filter (KF) is an approach for estimating a state and under some
assumptions, it is an optimal solution to the estimation problem. Generating an
estimate includes measurements of the system together with predictions and pre-
vious knowledge of the system. The KF is the optimal filter under the assumption
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that the system model is perfect, all the system noise is white and the covariances
and the noise are known perfectly [38]. There exists several version of the KF
including the Extended Kalman Filter (EKF) and Uncented Kalman Filter (UKF).

The standard KF consists of both a model of the system or process model as
well as a model of the measurements. The two models can be described on state
space form as follows:

xk = Axk−1 +Buk + vk, vk ∼N (0,Q) (2.15)

yk = Cxk +wk, wk ∼N (0, R) (2.16)

x0 ∼N (x̂0,P0). (2.17)

Here the matrices A and B are the noise-free system transitions matrices, de-
scribing the system transition from time k-1 to time k. Furthermore vk is the sys-
tem process noise and is assumed to be zero-mean Gaussian with variance Q. The
measurement model is described through the measurement matrix C as well as
the measurement noise wk which also is assumed to be zero-mean Gaussian with
variance R. The measurement model relates the measurement zk at time k with
the state xk at time k. Finally, the initial state x0 is normally distributed with mean
at the initial estimate x̂0 and covariance P0. In order for a solution to exist, the
Markov model assumption has to hold. This states that the current state xk only
is dependent on xk−1 as well as the measurement zk only is dependent on the
current state xk [38].

The models provided are linear, therefore the filter won’t work if either the
model dynamics or the measurement are non-linear. Hence the need of the Ex-
tended Kalman Filter (EKF) arises. The EKF is an extension to the normal KF
where the process dynamics and/or the measurement dynamics are linearized
around each estimate. Now let the transition from the state at time k-1→ k be de-
scribed by the non-linear function f(xk−1, uk) and the measurement dynamics in
the same manner as the non-linear function h(xk−1, uk) with the same noise char-
acteristics for both processes in the linear case. Hence by linearizing around the
posterior estimate x̂k−1 and the current prior estimate x̂k|k−1 using a Taylor series
expansion, the following matrices gives the linearized system dynamics according
to [38]

F(x̂k−1,uk) = Fk =
∂

∂ xk−1
f(xk−1,uk)

�

�

�

�

xk−1=x̂k−1

(2.18)

H(x̂k|k−1,uk) = Hk =
∂

∂ xk
h(xk,uk)

�

�

�

�

xk=x̂k|k−1

. (2.19)

The filtering process using the KF consists of two parts: the prediction step
and the update step. In the prediction step the state estimate x̂k|k−1 as well as the
covariance Pk|k−1 is updated according to the following
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x̂= f(xk−1,uk) (2.20)

Pk|k−1 = FkPk−1F⊤k +Q. (2.21)

In order to do the update step in an optimal way, the predicted measurement,
ẑk|k−1, given the state estimate is needed and the innovation νk is defined as

νk ≡ zk − h(x̂k|k−1) = zk − ẑk|k−1. (2.22)

For the filter to weigh how much it should correct the predicted state esti-
mate after it has received a measurement the concept of a Kalman gain Wk has
to be introduced. In the case of a linear process model as well as a linear mea-
surement model, it can be shown that this Kalman gain Wk leads to the optimal
update. This proof of optimality is lost for the situations where non-linearities are
introduced and linearizations are performed. Nevertheless, the EKF has shown to
produce very good results [38]. The Kalman gain Wk is calculated according to
the following

Sk = HkPk|k−1H⊤k +R (2.23)

Wk = Pk|k−1H⊤k S−1
k . (2.24)

Finally the state estimate x̂k and the covariance Pk can be updated with the
measurement according to

x̂k = x̂k|k−1 +Wkνk (2.25)

Pk = (I−WkHk)Pk|k−1. (2.26)
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Experimental setup

3.1 Parrot Anafi FPV drone

The drone used for the experiments in this thesis is the Anafi FPV drone from
the French drone manufacturer Parrot1. As seen in figure 3.1 the drone has four
propellers mounted at the end of foldable arms. The drone is fitted with a gimbal,
camera, and various other sensors, and it weigths 315 grams. The most relevant
aspects of the drone will be mentioned in the following sections, however, the full
specifications of the drone can be found in [39].

Figure 3.1: Parrot Anafi FPV

3.1.1 Camera and gimbal

The drone is fitted with a 4K camera capable of local storage of 24 Frames Per
Second (FPS) at a resolution of 4096 × 2160. As well as local storage the drone
also provides live streaming of the video to a phone or a computer. However, the

1https://www.parrot.com/en
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video quality when streaming is lower than the one locally stored. The streaming
video is at 30 FPS at a resolution of 1280 × 720, with a latency of 280 ms end-
to-end.

The camera is mounted on a gimbal with 2 mechanical axes and 3 electronic
axes with electronic image stabilization. The gimbal has a tilt capability of a total
of 180 degrees, enabling the camera to be tilted straight up as well as straight
down.

3.1.2 Other sensors and internal state estimation

In addition to the camera mounted on the gimbal, the drone is fitted with several
other sensors:

• Invensense MPU-6000 IMU with:

◦ 3-axis gyroscope
◦ 3-axis accelerometer

• ST Microelectronics LPS22HB barometer
• AKM AK8963 magnetometer
• U-BLOX UBX-M8030 GPS with 4 constellations:

◦ GPS L1
◦ Galileo E1
◦ Glonass L1
◦ BeiDou B1C

• Ultrasonar for height measurement. Sensor specifications not identified.
• Vertical camera MX388, fixed resolution of 640x480 used for optical flow

estimation.

For the purpose of estimating the internal states of the drone, it has a Extended
Kalman Filter (EKF) including the following states:

• Body velocities
• Attitude in Euler angles
• Accelerometer biases
• Gyro biases
• Pressure sensor bias
• Position in NED frame
• Wind on x and y axes

3.2 Other software and hardware

For reading sensor data as well as sending commands to the drone, the Parrot
Olympe Application Programming Interface (API)2 provided by parrot was used.
The version used for this thesis is version 7.3. The API can be used to control the

2https://developer.parrot.com/docs/olympe/index.html
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drone with custom programming scripts from a ubuntu machine. The API com-
municates with the drone through a set of custom message types called ARSDK-
messages. The API is not meant for closed-loop control, and hence the update
frequency of the internal states of the drone is only at 5hz. However, some meta-
data is available with the camera feed at 30 FPS.

As the previous work on the project has been developed by the use of Robot
Operating System (ROS) with ubuntu 18.04 and ROS-version Melodic, it was de-
sirable to continue with this. However as the updated version of the Parrot Olympe
required the use of python 3 (that is standard with ubuntu version 20.04), and
ROS Melodic is End-of-life in May 20233 it was advisable to change the ubuntu
version to 20.04 and to use ROS Noetic Ninjemys to improve the long time support
of the developed code.

In this thesis, the Anafi drone was accessed using the Parrot Skycontroller
34. The Anafi drone can also be accessed directly by connecting to it via WiFi.
However, as the author of [1] pointed out, lower signal latencies, as well as longer
signal range, can be expected when connecting to the Anafi drone through the
SkyController 3. The SkyController 3 was connected to the computer with USB-
C. A Komplett Khameleon provided by the institute served as the computer for all
of the experiments in this thesis. Its specifications can be found in table 3.1. In
order to be able to utilize the computer’s Graphics Processing Unit (GPU) in the
perception algorithm, the computer was installed with both CUDA for enabling
GPU acceleration and CuDNN for GPU accelerated DNN support.

Computer specifications
Manufacturer Komplett
Computer type Laptop
Model name Khameleon P9 Pro
CPU Core i7-9750H
GPU GeForce RTX 2070, 8GB
RAM 32 GB

Software spesifications
Ubuntu 20.04 Focal Fossa
Python 3.8.10
ROS Noetic Ninjemys
Parrot Olympe API 7.3
Parrot Sphinx simulator 2.9.1
Nvidia drivers 515.65.01
Cuda 11.7
YOLO V4
OpenCV 4.2.0

Table 3.1: Computer specifications and software versions used in this thesis.

3http://wiki.ros.org/Distributions
4https://www.parrot.com/us/support/anafi/how-does-the-skycontroller-3-work
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3.3 Landing platform

The landing platform utilized in this thesis was designed and built by Sundvoll in
[3]. Figure 3.2a depicts the platform. The platform has an overall diameter of 80
cm, with a white "H" in the center covering 1/3 of the entire diameter on the long
and 1/4 on the short sides. It also features a yellow circle with a diameter of 50
cm and an arrow indicating the platform’s direction. The platform is intended to
be fitted aboard a 1:20 model of the autonomous maritime vessel DNV ReVolt5 as
shown in figure 3.3.

In this thesis, the platform was enhanced with the inclusion of AprilTags. The
AprilTags were arranged in the patterns depicted in figure 3.2b, with a small April-
Tag in the center and larger ones closer to the platform’s perimeter. The AprilTags
are taken from [40] and belong to the "Tag family" tag36h11, with all markers
being square with white borders. The AprilTags were laminated and double-sided
taped to the platform.

(a) Original. Image from [1] (b) With AprilTags.

Figure 3.2: Landing platform

5https://www.dnv.com/technology-innovation/revolt/index.html

https://www.dnv.com/technology-innovation/revolt/index.html
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Figure 3.3: The platform mounted on the ReVolt. Image from [1]

3.4 Parrot Sphinx simulator

Parrot Sphinx [41] is a simulator for portraying Parrot drones. It is based on Unreal
Engine 4, a gaming engine that can render multiple environments. The simula-
tor includes multiple 3D models of all of Parrot’s drones, including the Anafi FPV
drone utilized in this thesis. The simulator attempts to make the transition be-
tween using a real drone and a simulated one as fluid as possible, with the only
difference being the IP address you provide to the drone. This version of Parrot
Sphinx is substantially different from the one the author of [1] used in his thesis.
The previous version build on the Gazebo simulator allowed for eg. the extraction
of positions of objects in the world, as well as moving other objects such as the
landing platform. This is no longer supported in the new version of the simulator,
and the simulator will not be mentioned and used that much in the development
of this thesis, nevertheless, it is still described for the sake of completeness. Figure
3.4 shows the Anafi drone standing on the platform in Parrot Sphinx simulator.
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Figure 3.4: Anafi drone and platform portrayed in Parrot Shinx

3.5 Drone lab

The drone lab at NTNU was utilized as the testing location for the work done
in this thesis. The NTNU Drone Lab is situated on the second basement level of
Elektrobygget at NTNU Gløshaugen. The drone lab is equipped with foam mat-
tresses on the floor and a net that surrounds the flight zone, giving it a secure
environment for testing as seen in figure 3.5.

Figure 3.5: Set up at the drone lab at NTNU
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3.5.1 Qualisys motion capture system

The Qualisys Motion Capture system [42] is installed at the drone lab. This sys-
tem is a precision motion capture and 3D positioning tracking system that uses
multiple cameras to detect reflective markers in a scene to determine the precise
locations and orientations of objects in it. Qualisys claims a location precision
of 1mm and an orientation accuracy of 0.1 degrees [43]. It is possible to define
objects with multiple reflecting markers and retrieve their pose in the 3D scene
relative to a calibrated world origin by using Qualisys Track Manager6. This sys-
tem is utilized in this thesis to obtain the ground truth location and orientation
of objects in the scene in order to assess the performance of the algorithms devel-
oped.

The Qualisys Motion Tracker software is installed on a separate computer from
the one that is connected to the drone. The Qualisys Motion Tracker computer
publishes the position, orientation, and speed of objects in the scene on predefined
ROS topics. The computer donnected to the Anafi drone must be able to interact
with the other computer in order to access these ROS topics. This is accomplished
through the use of a multimachine configuration in ROS, in which both machines
are connected to the same network. A WiFi router exclusively connected to the
two machines was set up to decrease latency in the communication channel. Fur-
thermore, the computer connected to the Anafi drone launches a roscore in one
terminal, while the computer running the Qualisys Motion Tracker is configured to
use this roscore on the other computer. As a result, the topics comprising the pose
and velocity data of the objects in the scene will be accessible on the computer
connected to the Anafi drone.

3.5.2 Marker placement and objects

To avoid unclear poses that might result in inaccurate system outputs from the
Qualisys Motion Tracker, the markers were set asynchronously around the axes
of the objects that were tracked. 5 markers were set around the border of the
platform, and 9 smaller markers were set on the Anafi drone body. The markers
on the Anafi drone were smaller due to weight and space limitations. They were
located on the top, back, batteries, and at the end of each leg. Figure 3.6 shows
the platform and the drone with the markers on them.

6https://www.qualisys.com/software/qualisys-track-manager/
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Figure 3.6: Anafi drone and platform with markers

3.5.3 Outdoor testing

The Civil Aviation Authority sets Norway’s drone usage regulations. Drone flying
outside requires adherence to these regulations, and every drone that weighs more
than 250 grams or includes a camera must be registered and insured. Addition-
ally, in order to be authorized to operate drones in classes A1 and A3, the drone
operator must be registered and have successfully completed an online course to
get a certificate. The author of this thesis is a registered private drone operator
with completed A1 and A3 certifications and has drone insurance through home
contents insurance.
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Methodology

4.1 Development

This section covers the development approach and provides an overview of the
system architecture.

4.1.1 Design

The starting point of the software development process for this thesis was a sizable
codebase because it is a direct descendent of the work done in [1]. Three design
concepts were specified by the author of [1]: modularity, platform independence,
and testability. The same ideas will be used to guide further development.

Modularity

The capacity of a software code base to be separated into distinct parts with stan-
dardized inputs and outputs is referred to as modularity. By following this prin-
ciple, the dependencies between various code components may be minimized,
making the code simple to maintain and fix without breaking. Every code mod-
ule is divided into its own ROS package, and the inputs and outputs are based
on standardized ROS topics, making ROS an excellent tool for this process. The
modularity principle could not be stated to have been preserved in the code base
from [1] without the need for extensive restructuring. In order to try to fix this
every module was first placed into its own package, which would eventually result
in the code base being modularized and manageable. The code base also heavily
relied on customized ROS messages when it could have utilized preset messages
that were well-known to the ROS community. In order to make the code more
intelligible for engineers who are not familiar with the code base, several of the
message types were altered to utilize standard ROS messages rather than special-
ized messages.

27
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Platform independence

In the context of software development, platform independence refers to the abil-
ity of the code base to be quickly migrated to a different hardware platform with
little to no coding modifications required. This is particularly significant in this
project since the work completed is a scaled-down representation of a real-world
SAR operation at sea. The project has to be simple to distribute to additional com-
puters and drones. By putting the drone-specific features in their own interface
and publishing all data from and to the drone on ROS-topics, the creator of [1]
upholds this idea. Additionally, a configuration file maintained in the code, makes
the change of external parameters of significance easy. The software created for
this thesis will be developed using the same approach.

Testability

The code must be able to be tested in a lab or simulation environment without
requiring changes to the algorithms themselves in order to assess the performance
of the work. Before testing the code in a real-world experiment, it is crucial to filter
out any potential bugs in the code in simulations or in the lab. Whether the drone
is a real one, one that is flown in a lab, or one that is simulated, the drone interface
package in this thesis is the same. Furthermore, regardless of the environment, in
which the drone is operated, all algorithms are the same. The only modification
is the addition of the Qualisys ground truth data. When the drone is in flight, all
data is simply recorded into rosbags1, and all assessment and transformation of
the ground truth data is done in post-process. Because the entire computational
pipeline may be heavy, this avoids using essential CPU capacity to handle this
ground truth data. In this manner, the performance of the algorithms may be
quickly assessed in the post-processing stage without significantly degrading the
computer performance.

4.1.2 Olympe ROS interface

As mentioned by Falang in [1], the Parrot Olympe API received a substantial up-
date from the version he used. The ROS interface developed by Falang was there-
fore not applicable. Additionally, as it had never been done before by Falang, it was
desirable to utilize the metadata supplied along with the camera stream. Hence,
the need of an updated version of the interface was needed. The new interface is
based on a GitHub repository previously available by the Github user andriyukr2.
This interface was originally written for a Parrot Olympe API version that was
much closer to version 7.3 than the one used in [1] for version 3.0.0. The Parrot
Olympe API unfortunately does not has a changelog, and it was, therefore, easier
to make the GitHub version compatible with Parrot Olympe API version 7.3. The

1http://wiki.ros.org/rosbag
2https://github.com/andriyukr

http://wiki.ros.org/rosbag
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interface was revised with new functionalities listed in table 4.1.

The Olympe ROS bridge consists of multiple input command topics that send
commands to the drone, and output topics containing sensor data from the drone.
The different topics are listed in table 4.2.

Revision Description

General version update
Update all API-commands to match the
ones used in Olympe version 7.3

Frame transformations Changing the frame convention from ENU to NED

Remove most of the custom ROS messages
Changing from custom messages to standard
ROS messages where possible

Add simulated GNSS-data
Pose estimates from the Qualisys system acts
as GNSS-data at the drone lab

Correcting attitude estimates
Remove the attitude measurement bias from
the Anafi drone

Extract metadata
Extract the metadata that comes along with the
camera stream and publish it on ROS topics

Utilize EventListeners dataclass
Instead of polling the sensors to get data,
utilize a new data class in the API to get
sensor readings at 5Hz.

Table 4.1: Revisions on the ROS olympe bridge

Command topics
Topic name Message type Description

/anafi/cmd_takeoff std_msgs/Empty Commands a takeoff
/anafi/cmd_land std_msgs/Empty Commands a landing
/anafi/cmd_emergency std_msgs/Empty Immediately cut all motors

/anafi/cmd_control_source std_msgs/Bool
Selects the control source. If message data is true, select the
the Olympe API as source. If false, use the SkyController as source

/anafi/cmd_rpyt olympe_bridge_msgs/AttitudeCommand *
Command reference for the internal PID-controller:
(roll, pitch, yaw rate, thrust)

/anafi/cmd_moveto olympe_bridge_msgs/MoveToCommand *
Command a desired pose for the drone:
(latitude, longitude, altitude, heading)

/anafi/cmd_moveto_ned_position geometry_msgs/PointStamped Command a desired position in NED for the drone: (x, y, z)

/anafi/cmd_moveby olympe_bridge_msgs/MoveByCommand *
Move the drone relative to the current pose:
(dx, dy, dz, dyaw)

/anafi/cmd_camera olympe_bridge_msgs/CameraCommand *
Command the camera gimbal orientation, zoom level, and start/stop
recording to internal memory card

Output topics
Topic name Message type Description

/anafi/image sensor_msgs/Image Image from the gimbal camera
/anafi/time std_msgs/Time Anafi drone timestamp
/anafi/attitude geometry_msg/QuaternionStamped Attitude of Anafi drone in quaternions (x,y,z,w)
/anafi/gnss_location sensor_msgs/NavSatFix GNSS location (lon, lat, alt)

/anafi/ned_pose_from_gnss geometry_msgs/PointStamped
GNSS location in NED.
The first GNSS-message used to initialize the frame origin (x, y, z)

/anafi/height olympe_bridge_msgs/Float32Stamped * Distance from the ground from barometer (z)
/anafi/optical_flow_velocities geometry_msg/Vector3Stamped Speed estimate from the optical flow camera (u, v, w)
/anafi/polled_body_velocities geometry_msg/TwistStamped Speed estimate from the internal EKF of the Anafi drone (u, v, w)
/anafi/link_throughput std_msgs/UInt16 Connection throughput (b/s)
/anafi/link_quality std_msgs/UInt8 Signal quality [0=bad, 5=good]
/anafi/wifi_rssi std_msgs/UInt8 Signal strength [-100=bad, 0=good] (dBm)
/anafi/msg_latency std_msgs/Float64 Message latency of rpyt-commands (s)
/anafi/battery std_msgs/UInt8 Battery percentage [0=empty, 100=full]

/anafi/state std_msgs/String
Anafi state
[’LANDED’, ’MOTOR_RAMPING’, ’TAKINGOFF’,
’HOVERING’, ’FLYING’, ’LANDING’, ’EMERGENCY’]

/anafi/pose geometry_msg/PoseStamped Timestamped message with the drone pose
/anafi/odometry nav_msgs/Odometry Drone odometry
/anafi/rpy geometry_msg/Vector3Stamped The roll, pitch yaw angled from the internal EKF of the Anafi drone

/skycontroller/command SkyControllerCommand *
If the SkyController3 is used to control the drone,
it publishes the commands from the controller

Table 4.2: Command topics and output topics from the Olympe ROS bridge. Mes-
sage types marked with ’*’ are custom messages. Table is a cooperation with the
author of [4].
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4.2 Coordinate frames and convertions

This section will specify which frame of reference the following measurements
and estimations will be provided since the thesis uses many frames of reference. It
will also explain how to transition between the most crucial frames. The different
frames are shown in figure 4.1 and the different estimations and data frames are
summarized in table 4.3.

Figure 4.1: Coordinate frames NED {n}, platform {h}, drone body {b}, and cam-
era frame {c}. Image from [1]

System Output reference frame
AprilTags pose estimate camera {c}
DNN-CV position estimate camera {c}
Kalman filter body {b}
Qualisys Motion Tracker - ground truth data NED {n}

Table 4.3: Systems and output frames of reference

4.2.1 Convertions

Camera to drone body frame

It is required to transform the estimates into the body frame before applying them
in the Kalman filter since both the DNN-CV position estimator and the Apriltags
pose estimator provide estimates in the camera frame of reference. At first, it was
attempted to position the camera on the gimbal such that it was facing directly
down within the body frame. If so, the transition from the camera to the body
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frame would require a 90-degree rotation around the z-axis. However, since the
Anafi drone’s internal controller controls the gimbal in relation to the world frame
and the gimbal stabilization algorithms maintain the gimbal’s stability in the world
frame, this was not possible to do. Initially, it was attempted to compensate for
whatever rotations the Anafi drone was going through by sending commands to
the gimbal at a rapid frequency, such as ensuring that the camera was always
pointed directly down in the body frame. The Anafi drone did not appear to ac-
knowledge the use of such quick orders, and as a result, the gimbal was unable to
keep up with the drone’s rotations.

Instead, the issue was resolved by configuring the Anafi drone’s camera to
constantly aim downward in the world frame. Hence, the internal controller in-
side the Anafi drone operating at 200hz is responsible for stabilizing the camera
gimbal at a specific angle. Additionally, it is possible to use the transform when
necessary by creating a ROS transform broadcaster3 that publishes the transform
from the camera frame to the body frame. The transform involves first a rotation
of the camera frame of 90 degrees around the z-axis of the camera frame and a
translation to compensate for the offset between camera frame origin and body
frame origin. The offset is estimated to be 70mm on the x-axis and zero on the z-
and y-axes. Thereafter it involves the rotation from the NED frame to the body,
only including the roll and pitch angles of the Anafi drone body. The gimbal can
only do pitch and roll motions; a yaw motion is not possible, hence the yaw angles
are not compensated for. The full transformation will therefore be as follows

pb = Ry,θRx ,φ(Rz,90pc + tb
c ). (4.1)

NED to drone body frame

The ground truth data from the Qualisys Motion Tracker program must be trans-
formed from the NED frame to the body frame in order to be able to assess how
well the algorithms performed. A complete rotation around the drone attitude as
described in the NED frame and a translation between the NED frame’s origin and
the drone frame’s origin are considered to constitute the NED to body transfor-
mation. The transformation will be as follows

pb = Rz,ψRy,θRx ,φpn + tb
n. (4.2)

3http://wiki.ros.org/tf2

http://wiki.ros.org/tf2
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Figure 4.2: Checkerboards used in camera calibration

4.3 Camera calibration

The camera was recalibrated to remove any issues with the previous initial cali-
bration performed by Falang in [1]. The procedure of determining the K-matrix in
(2.2) from section 4.3 is referred to as calibrating a camera. The real-world coordi-
nates of objects within it are required in order to find the intrinsic matrice K. One
of the more popular patterns to employ when calibrating a camera is the checker-
board pattern. The reason being them having sharp gradients in two directions
and the corners are always on the intersection between two checkerboard lines.
The corners of the pattern do also have stable and well-known world coordinates.
According to the directions found on [44], a 10x7 checkerboard pattern offered
online by Mark Hedley Jones was printed out in A3 format. The side length of the
individual squares was 34mm. The checkerboard was printed this large in order
to be able to detect the checkerboard at a great distance from the camera. As seen
in figure 4.2, the pattern was taped on a flat surface.

The camera on the Anafi drone’s gimbal was used to take several pictures of
the checkerboard. This was done by writing a ROS node that saved individual
images from the video stream as images in .jpeg format in 1-second intervals. To
capture the checkerboard from various angles, it was moved in 3D space. It was
first attempted to use the calibration pipeline developed by Falang in [1], however,
this pipeline contained multiple errors. Instead, a new pipeline was developed
consisting of functions from the OpenCV python library. The pipeline creates world
coordinates of the checkerboard in an equal distance grid pattern with sidelengths
given by the real-world size of the checkerboard squares. Furthermore, it detects
the corners in the checkerboard in the image and refines the pixel positions before
it uses an OpenCV function to estimate the full camera matrix. Due to the limited
amount of documentation using OpenCV with python it was not clear in which
order the corners of the checkerboard were detected. In order to cross-evaluate the
camera matrix, the camera calibration app in MATLAB4 was used. This application
allows for a more visual approach to the calibration pipeline, where the image
corners can be visualized as well with the reprojections and the estimated pose of

4https://se.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.
html

https://se.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html
https://se.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html
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the camera making it easier to verify the quality of the calibration.

4.4 Latency issues with the Anafi drone

Some serious latency issues were discovered during the initial testing of the code-
base developed Falang in [1] together with the new Parrot Olympe API. The prob-
lems were found to be caused by updates to the API, which delayed messages
coming from the drone when it also received command messages. In his thesis,
Falang claimed that he too experienced latency problems, but with the new API,
the delays ranged from a few milliseconds to several seconds, making them im-
possible to forecast. The API is not intended for closed-loop command control,
according to Parrot, who notes this in one of their forum postings5. The latency
issue is not a major issue in the creation of this thesis. This is due to the fact that
all of the algorithms created for this work only read data from the Anafi drone.
The control algorithms created by Solbø in [4] will be used in parallel with the
perception-based pose estimation algorithm established in this thesis. The issue
will consequently have a significant impact on the functionality of the entire sys-
tem composed of the methods created for this and Solbø’s thesis [4]. For a more
in-depth analysis of the latency issues with the Anafi drone, the reader is directed
to Solbø’s thesis in [4].

Actions have been taken to lower the processing requirements of the algo-
rithms created in this thesis as well as the internal latency of ROS. Before it is
employed in the subsequent algorithms, the image stream from the Anafi drone
is republished at a lower frequency of 15Hz. This will eventually result in the
algorithms continuing to provide pose estimations at a high rate, but the over-
all performance of the system, including the work done by Solbø in [4], will be
improved and the required processing power will be decreased.

4.5 AprilTag Detection and pose estimation

By identifying AprilTags on the platform and subsequently solving the PnP prob-
lem outlined in section 2.4, the AprilTag detection and pose estimation node at-
tempts to estimate the pose of the Anafi drone. This module replaces the TCV
module currently available in [1] to address its limitations. The primary problems
with the TCV module, according to the author of [1], are the high computational
costs, the sparse feature recognition while testing outdoors, and the offsets in ev-
ery axis. Further tests on it in the lab setting revealed that the TCV solution also
had a relatively poor recognition performance while the Anafi drone was going
vertically and that the output frequency was generally low.

5https://forum.developer.parrot.com/t/positionchanged-trigger-rate/10051/2

https://forum.developer.parrot.com/t/positionchanged-trigger-rate/10051/2
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To avoid potentially obscuring the detection capabilities of other modules, two
larger Apriltags of size 11.7 cm were put on the platform’s edge rather than shad-
owing its inner orange border. In addition, three smaller Apritags of size 5.4 cm
were positioned at the platform’s center, to the right of the upper corner of the "H",
and slightly to the left of the orange arrow of the platform. The larger AprilTags
were placed on the outermost border so they could be seen from a greater dis-
tance; in contrast, the smaller AprilTags can be seen at a lesser distance when the
Anafi drone gets closer to the platform. Additionally, the placement of the April-
Tags avoided obtaining coplanar features, which results in a less accurate pose
estimate.

Every corner of the AprilTags’ physical distance from the platform’s origin, the
"H"’s center, was measured in the platform coordinate system. The Qualisys Mo-
tion Tracker program stated in 3.5.1 was utilized to get accurate measurements
of the AprilTags’ corners. On each corner of the AprilTags, reflective markers were
placed, and their positions were measured. Due to the excellent precision of the
Qualisys system, this strategy will be accurate, and more precise than manual mea-
surement. Every marker contained four measurements, i.e., every corner, sorted
from corners 0-3. The corner distances were saved to a .txt-file. The distances to
the center of the different AprilTags, measured from the center of the platform,
can be seen in figure 4.3.

Figure 4.3: Platform with physical distances
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The python package available on GitHub from swatbotics6 allows users to de-
tect and identify AprilTags in images. The process begins by converting the im-
ages to grayscale, then using the package’s detection.detect() object to identify
the AprilTags. The output of this process is a dictionary containing information
about each AprilTag detected in the image, including its ID, the location of its
corners in pixel coordinates, and other relevant details. The next step is to match
the corners of the AprilTag in the image with the physical corners of the platform
in the reference frame. This involves creating two ordered lists, with the first list
containing the corner positions in pixel coordinates and the second list containing
the corresponding corner positions in the platform reference frame. This match-
ing process allows the pose of the camera to be estimated using the known 3D
positions of the corners in the reference frame and their corresponding 2D posi-
tions in the image.

By solving the PnP problem, the camera’s pose with respect to the platform
may be calculated using the point correspondences between the pixel coordinates
and 3D distances of the corners of the Apriltags. The improved OpenCV imple-
mentation decreases the pose estimation problem’s runtime. The "IPPE" flag may
be set when calling the OpenCV function solvePnP7 to use the "Inverse Perspective
Point Error" method to solve the PnP problem. This method uses an iterative ap-
proach to solve the PnP problem by first estimating the pose using the perspective-
n-point algorithm, then refining the pose estimate using a Levenberg-Marquardt
optimization. The IPPE method does not use homography estimation itself, but
rather uses the initial pose estimate obtained from the PnP algorithm as a start-
ing point for the iterative optimization process. The initial pose estimate obtained
from the PnP algorithm may be calculated using the homography-based solution
to the PnP problem when the 3D points are planar.

4.6 DNN-CV based position estimation

This section is based on the work done by Hove in [2]. Hove trained a Deep Neural
Network in the form of a You Only Look Once (YOLO) detector to detect the
three following classes: "Helipad", "Arrow" and "H". The three different classes are
shown in figure 4.4. The output from the network is thereafter used to estimate
the Anafi drone’s position relative to the detected platform. The work done by
Hove is adapted to be able to run in ROS Noetic and python 3. However, most of
the algorithms are left unchanged.

6https://github.com/swatbotics/apriltag
7https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html

https://github.com/swatbotics/apriltag
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
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Figure 4.4: Detection output from trained YOLO network showing the three
classes: "Helipad", "Arrow", and "H".

Object detection

The detection of objects in the images from the Anafi drone is done by using YOLO
v4 as in [2]. The weights used in the network as well as the general structure of the
Deep Neural Network are kept the same. The author of [2] provided two sets of
weights; one for images coming from the real drone and one set for images coming
from the simulator. The network was trained on images coming from the drone
used in [2]; the Parrot AR2.0 drone. The Darknet neural network framework [45]
serves as the YOLOv4 detector’s core. The Darknet ROS bridge at [46] allows
the integration of the output from the darknet into ROS. However, ROS Noetic
did not automatically fully accept the code in the darknet ROS bridge GitHub
repository. This is because the darknet ROS bridge in the GitHub repository can’t
be used with OpenCV 4.2.0, which is the standard OpenCV version in ROS Noetic.
The ROS package with the darknet ROS bridge used in this thesis is a fork of [46],
modified to support ROS noetic and openCV 4.2.0. The fork’s author is the GitHub
user Ar-Ray-code and is available on Github8.

Position estimate

In order to estimate the position from the bounding boxes returned from the dark-
net ROS bridge, an algorithm originally proposed in [3] is used. This algorithm
was the one used in [1, 2]. The algorithm can be seen in algorithm 1. Knowing the
center of the platform found from the "Helipad" bounding box, the pixel length
and metric length of the platform’s radius as well as the camera intrinsics from
the new camera matrix K will make it possible to estimate the position of the
platform using similar triangles. Algorithm 1 returns the position of the platform
given in the camera’s frame of reference {c}. Hence in order to transform it to the
body frame the new transformation from the camera frame of reference {c} to the

8https://github.com/Ar-Ray-code/darknet_ros_fp16/tree/noetic-fp16

https://github.com/Ar-Ray-code/darknet_ros_fp16/tree/noetic-fp16
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body frame of reference {b} was used. This transformation compensates for the
rotation of the Anafi drone as described in section 4.2.1.

Algorithm 1 Estimate position from DNN-CV detections.

1: Let cx , cy be the pixel coordinate of the platform center
2: Let r, R be the platform pixel radius platform metric radius respectively
3: procedure ESTIMATEPOSITION(cx , cy , r, R, f )
4: Let f be the camera focal length given in pixels
5: Let ox , oy be the pixel coordinates of the image center

6: ẑc ← Rf
r ▷ Similar triangles

7: dx ← ox − cx
8: dy ← oy − cy

9: x̂ c ← ẑc dx
f ▷ Similar triangles

10: ŷ c ← ẑc dy

f ▷ Similar triangles
11: return x̂ c , ŷ c , ẑc

12: end procedure

4.7 Kalman filter estimation

A Extended Kalman Filter is used to combine the pose estimates from the April-
Tag pose estimation module and the DNN-CV-based position estimate together
with sensor output from the Anafi and a dynamical model. The EKF used in this
thesis is largely based on EKF developed by Falang in [1]. However, it is updated
with new measurements, sensor data, and different measurements than the ones
Falang used in [1]. As the output from this EKF is meant to be used in the control
algorithm developed by Solbø in [4] the output of the Extended Kalman Filter is
the distance from the Anafi drone to the platform, given in the body frame. Doing
this enables the EKF estimate to be used directly as the error in the control system.
Another key factor of using a EKF to estimate the drone-to-platform distance, is
the EKFs ability to produce estimates at a much higher rate than what the esti-
mators can provide as stand-alone estimators. The EKF can produce estimates in
between every correction measurement using its prediction model. The rate of the
EKF is set to 25 Hz to make sure it provides the control algorithm with estimates
at a fast enough rate.

The state of the Extended Kalman Filter should be kept as simple as possible
according to [38], and hence it contains only three positional states and three
velocity states. The states are the position of the platform given in the body frame
and the velocity of the Anafi drone given in the body frame. The full state vector
is given as the following

x=
�

x b
h y b

h zb
h vb

d,x vb
d,y vb

d,z

�⊤
(4.3)
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Figure 4.5: Velocity estimates from Anafi drone

Furthermore, the dynamical model in the EKF is a Constant Velocity (CV)
model. The model is chosen due to its simplicity, but also its capability to pro-
vide good predictions given the assumption that the velocity is constant between
samples. This pose estimation system is meant to offer pose estimates to the drone
in a landing scenario at sea. When landing the drone on a boat at sea slow speeds
for the drone are a necessity. Furthermore, the Anafi provides two different veloc-
ity measurements at two different frequencies. It provides a velocity estimate at
30Hz based on optical flow as well as a velocity estimate at 5Hz polled from the
internal controller of the Anafi drone. The Optical flow measurement is provided
with the metadata coming from the video stream. The author of [1] did not ac-
cess this metadata in his work. Figure 4.5 shows the two velocity estimates from
the Anafi drone plotted against the ground truth velocity. The plot shows that the
optical flow estimate has a higher rate, but a change in velocity on either the x or
y-axis propagates to the other axis. This velocity estimate is therefore not desir-
able to use. The estimate at 5Hz polled from the internal EKF of the Anafi drone
is therefore the measurement used in the EKF.

According to [38] the CV model can be described in continuous time with the
following model

_x = Ax+Gn, (4.4)
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where the matrices A and G is as following

A =

�

03x3 I3x3
03x3 03x3

�

and G =

�

03x3
I3x3

�

. (4.5)

Furthermore, the process noise, n, is assumed to be white with diagonal co-
variance according to

n∼N (0,Dδ(t −τ)) where D=





σ2
x 0 0

0 σ2
y 0

0 0 σ2
z



 . (4.6)

The σ on the diagonal of the D matrix is a measure of how much acceleration
the target is expected to undergo [38]. Hence, with knowledge about the likely
acceleration in the system, the σ can be estimated roughly.

In order to correct the prediction in the EKF by the constant-velocity model,
correcting measurements are needed. The EKF in this thesis is corrected with four
different measurements in addition to the previously mentioned velocity estimate.
All five correction measurements are given in table 4.4. The AprilTag pose estimate
and DNN-CV position measurement are described in section 4.5 and 4.6 respec-
tively. The two last correction measurements are described in the two following
subsections; altitude measurement and GNSS-measurement.

Measurement Description
AprilTag pose estimate Pose estimate from the AprilTag pose estimation module
DNN-CV position estimate Pose estimate from the DNN-CV position estimation module
Velocity estimate Velocity estimate from the Anafi drone.

Altitude measurement
Distance to ground estimate from the internal EKF
of the Anafi drone.

GNSS measurement
GNSS measurement in NED converted to body frame.
Relative to init position of Anafi drone.

Table 4.4: Correction measurements in the Kalman filter

Altitude measurement

The altitude measurement comes from the Anafi drone’s internal EKF. The mea-
surement is shown to be the most accurate at lower altitudes in the descending
phase when the Anafi drone is moving straight vertically downwards. This can be
seen in figure 4.6. It can also be noted that the estimate is unusable in the initial
startup-phase, and hence cannot be used in this case. However, this is not a prob-
lem as the internal controller of the drone is responsible for the take-off of the
drone. In figure 4.6, the Anafi drone is flown to an altitude of 3 meters, and then
subjected to horizontal and vertical velocities, something that makes the inter-
nal altitude estimate untrustable. However, when the drone is moving vertically
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downwards the estimate is reliable with little uncertainty and noise. This mea-
surement is therefore only used to correct the EKF predictions when the predicted
altitude in the filter is below 1 m in the descending phase. When the Anafi drone is
below this altitude, it is in most situations in a landing scenario and the precision
has to be better than when flying at higher altitudes.

Figure 4.6: Altitude estimate from Anafi drone’s internal EKF

GNSS measurement

Without any correction measurements when the platform is not in view in the
camera the EKF would discretely integrate the velocity estimates in the Constant
Velocity model. This is known as dead reckoning and will make the uncertainty in
the filter grow [24]. In order to reduce the uncertainty when the platform is not
in view, GNSS measurements in the body frame are therefore incorporated in the
filter. The ROS Olympe interface described in section 4.1.2 publishes the GNSS-
locations in a NED frame relative to the initial position of the Anafi drone. Under
the assumption that the platform is stationary in the water, by that the ReVolt
vessel has some form of dynamical positioning system [24], and that the Anafi
drone is initiated at the platform, this GNSS-position can be used as an estimate
of the platform position. The first presumption, that the platform is not exactly
where it was when it was first seen, can be solved by conducting a search for the
platform using a search pattern centered on the initial location of the Anafi drone
or by accessing GNSS information from the ReVolt. However, this is outside the
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scope of this thesis.
The GNSS-position of the Anafi drone, given in a NED-frame, have to be con-

verted to a vector describing the position of the platform given in the body frame
to be able to use directly in the EKF. The transform publisher ROS node does
this transformation and publishes it on another topic. The transformation from
the NED-to-body vector, tn

n→b, given in the NED frame to the body-to-NED vector,
tb

b→n, given in the body frame is as follows

tb
b→n = −(Rz,ψRy,θRx ,φtn

n→b), (4.7)

where the θ ,φ, andψ describe the rotation of the Anafi drone around the x,
y, and z-axis of the world frame respectively.

To be able to test this at the drone lab at NTNU the Qualisys Motion Tracker
output is used to simulate GNSS-measurements. The measurement of the drone
position is converted to longitude, latitude and altitude, downsampled to 1Hz,
and added with white Gaussian noise. Furthermore, the ground truth NED frame
at the drone lab is rotated to have the north direction in the same direction as
what the Anafi drone reports as north.

Measurement matrices

The correction measurements come into the EKF at different times, and hence
they need to have individual measurement matrices H to tell which of the states
they should correct. The measurement matrices are as follows

HAprilTags = HDNN = HGNSS =
�

I3x3 03x3
�

(4.8)

HVeloci t y =
�

03x3 I3x3
�

(4.9)

Hal t i tude =
�

0 0 1 0 0 0
�

(4.10)

Tuning parameters

The tuning parameters of the EKF are displayed in table 4.5. The tuning is based
on empirical testing, and the measurement variances are based on their accuracy
during testing.
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Initial values
x y z vx vy vz

x0 0.0 0.0 0.0 0.0 0.0 0.0
Initial variance

σx σy σz σv,x σv,y σv,z

P0 0.01 0.01 0.01 0.01 0.01 0.01
Model uncertainty

σx σy σz σv,x σv,y σv,z

CV-model 0.1 0.1 0.1 0.1 0.1 0.1
Measurement uncertainty

σx σy σz σv,x σv,y σv,z

Velocity - - - 0.01 0.01 0.01
GNSS 2 2 2 / 4 - - -
Altitude - - 0.1 - - -
AprilTag 0.2 0.2 0.2 - - -
DNN-CV 0.3 0.3 0.7 - - -

Table 4.5: Kalman filter tuning. Note that the z-component for the GNSS-
measurement is for lab / outside respectively.

Overall system architecture

Figure 4.7: Overall system architecture

The overall system architecture is displayed in figure 4.7. In order to receive
a stronger signal, the drone is communicating with the ROS Olympe interface via
the SkyController 3 as described in section 3.2. Additionally, the ROS software



Chapter 4: Methodology 43

system has four main nodes. The GNSS measurement is published in the body
frame, together with all other transformations by the transform publisher node.
When the platform is visible, the AprilTag pose estimator and the DNN-CV position
estimator both publish their estimates. Finally, using a CV-model, the EKF node
fuses the two estimates with the GNSS signal, the velocity estimate, and, during
the landing phase, the altitude measurement.

4.8 Post-process

All data processing is carried out in post-processing, as stated in 4.1.1. The author
of [1] offered a bash script for adding certain ROS topics to rosbags. Furthermore,
using the bagpy9 python library, the topics were extracted, and the various signals
were compared and evaluated in post-processing. The bagpy package allows users
to extract every topic from a rosbag and save them as timestamped.csv files. The
data series underwent additional analysis using pandas dataframes10, and visual-
ization was carried out using the Python tools matplotlib11 and seaborn12.

9https://jmscslgroup.github.io/bagpy/index.html
10https://pandas.pydata.org/
11https://matplotlib.org/
12https://seaborn.pydata.org/

https://jmscslgroup.github.io/bagpy/index.html
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
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Results

This section contains the result from the different pose estimation algorithms de-
veloped as well as the result from the camera calibration. When evaluating the
performance of the pose estimation, every module will be presented in its own
section and the performance is evaluated on the same dataset. Finally, a test of
the system in an outdoor environment on land will be presented.

5.1 Camera calibration

The result of the camera calibration is the camera matrix K as shown in (5.1).
In comparison to the matrix Falang used in his work, this one is significantly dif-
ferent. The pipeline that the Falang employed had a number of flaws, including
failing to provide the dimensions of the checkerboard squares and interchanging
the image’s width and height. The matrix K in 5.1 was generated by the MATLAB
camera calibrator program. Visual confirmation reveals that the camera’s focal
length is close to accurate by analyzing the camera pose image supplied by the
application in figure 5.1.

K=





928.4323 0 645.9899
0 937.3226 364.8657
0 0 1



 (5.1)

45
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Figure 5.1: Camera pose in the camera calibration for a subset of the calibration
images

Furthermore, the reprojection errors of the calibration phase have a mean
reprojection error of 0.25 pixels as shown in figure 5.2. This reprojection error
points to the fact that the calibration is sufficiently accurate given the sensor size
of 1280x720 pixels. An image of the detected points with the reprojected points
can be seen in figure 5.3.

Figure 5.2: Camera calibration reprojection errors
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Figure 5.3: Detections and reprojected points from camera calibration

5.2 AprilTag pose estimator

Detection altitude of the AprilTags

Figure 5.4 shows the detection performance and the number of AprilTags detected
at different altitudes. The Anafi drone is flown outside at a slowly varying altitude
between 0m and 14m, with only vertical movement. The figure shows that the
AprilTag-based pose estimator is able to detect 1-5 tags at altitudes in the interval
[0.18m, 6.3m]. At higher altitudes, it detects the two larger AprilTags close to the
border of the platform. The detection of the two larger AprilTags when the drone
is at 6.3m is shown in figure 5.5.
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Figure 5.4: Detection altitudes of the AprilTags and DNN-CV estimator

Figure 5.5: Detection of the apriltag corners when far away from the platform.
The red dots indicate corner detections.

On the other hand, when the Anafi drone is close to the platform, it estimates
the pose down to an altitude of 18cm. This is depicted in figure 5.6. The corre-
sponding output from the camera when the drone is close to the platform at 18cm
is shown in figure 5.7. It is now only the center AprilTag that is detected.
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Figure 5.6: Detection of the apriltag corners when close to the platform

Figure 5.7: Detection performance of the AprilTags at low altitudes. The red dots
indicate corner detections.

Detection robustness

Figure 5.8a shows that the detection of one of the AprilTags is lost when a lot
of light hits the AprilTag directly from the lamps in the ceiling of the room. The
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AprilTags are laminated with glossy plastic, eventually reflecting all light from the
ceiling lamps into the camera when the platform is rotated at such an angle. Even
though one of the Apriltags is not detected, all other AprilTags are detected, and
pose estimation is not lost.

In figure 5.8b, the platform is proposed for manual movement to simulate
waves in the ocean. The platform in the figure is oriented at an extreme angle of
≈ 45 degrees around the x-axis of the platform. All AprilTags are still detected.

(a) AprilTag detection performance under
varying light conditions

(b) AprilTag detection performance under
roll platform motion

Figure 5.8

Pose estimation performance

The mean runtime of one iteration of the pose estimation pipeline, its standard
deviation, and theoretical frequency can be seen in table 5.2. The pose estimator
has a median runtime of 31 ms, and a mean runtime of 32 ms, with a standard
deviation of 15 ms. The maximal theoretical image frequency it can handle before
the estimator is the bottleneck is close to 31 Hz. Furthermore, the results of the
AprilTag-based pose estimator can be seen in figure 5.9. The figure shows that the
estimator is able to estimate the position of the platform well. The estimator has
the fewest estimates when the drone is moving quickly in the horizontal XY plane.
Nevertheless, it manages to produce some estimates even though there are quick
motions and possible motion blur in the images. The estimator is able to produce
good results when the drone is doing an opposite motion to cancel out the speed
in one direction. This is due to the rotational compensation in the transformation
from the camera frame of reference to the body frame of reference. The Root
Mean Square Error (RMSE) error of the AprilTag-based pose estimator is shown
in 5.1. The RMSE error is comparable for the X and Y axis at 7.04 cm and 6.05
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cm respectively. The RMSE error on the Z axis is the lowest at 5.72 cm. The mean
RMSE error along all three axes is 6.27 cm.

RMSE for AprilTag based pose estimator
X 7.04 cm
Y 6.05 cm
Z 5.72 cm

Total 6.27 cm

Table 5.1: Apriltags based pose estimator RMSE error

AprilTag based pose estimator
Mean runtime 32 ms

Median runtime 31 ms
Standard deviation runtime 15 ms

Theoretical frequency 30.93 Hz

Table 5.2: Apriltags based pose estimator performance metrics

Figure 5.9: Results from the Apriltag based pose estimator
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5.3 DNN-CV

Figure 5.4 in the previous section shows the detector performance from various
altitudes. In this figure the class probability threshold for the bounding boxes to
be used to estimate the position was set to 99%. However, it was tested whether
lower class probability thresholds lead to detections from larger altitudes. The re-
sult was comparable for different class probability thresholds, and the detection
range of the DNN-CV position estimator for the platform is in the interval [0.7m,
5m].

Figure 5.10 depicts the result from running the DNN-CV estimator on the same
dataset as for the AprilTag-based estimator. The detection threshold for the bound-
ing boxes to be used in the position estimator is set to 99 %. This is in order to
filter out false detections, and only use bounding boxes for detections with a high
probability of correct detection. The estimator is able to follow the general shape
of the ground truth well but suffers from an offset. Furthermore, the RMSE error
of the DNN-CV position estimator is shown in table 5.3. The RMSE is 11.43 cm,
10.20 cm, and 27.62 cm along the x, y, and z-axes respectively. The mean RMSE
error along all three axes is 16.41 cm. In figure 5.11 the output from the YOLO is
shown when the drone is flying at a high altitude. The bounding box encapsulating
the platform is not encapsulating the platform perfectly.

RMSE for DNN-CV position estimator
X 11.43 cm
Y 10.20 cm
Z 27.62 cm

Total 16.41 cm

Table 5.3: DNN-CV estimator RMSE error
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Figure 5.10: Results from the DNN-CV position estimator

Figure 5.11: Output from the YOLO network at high altitudes
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5.4 Kalman filter

Filter with all correction measurement

The result of running the EKF with all five correction measurements can be seen
in figure 5.12a and 5.12b. Figure 5.12b depicts only the EKF output, its standard
deviation, and the ground truth when all corrective measurements are used. In
Figure 5.12a, all correction measurements except the altitude correction in the
landing phase are also visualized. The EKF manages to follow the ground truth
really well. The standard deviation in the EKF output is at its largest when the
filter has to rely on only the constant velocity model as in the start and in the end.
The RMSE error is shown in table 5.4. The RMSE is 11.37 cm, 8.98 cm, and 6.22
cm in the X, Y, and Z-axis respectively. The mean error along all axis is 8.86 cm.
The error is largest in the X-axis due to this being the axis with the fastest posi-
tion alteration, and generally, the error is most significant when the drone is under
heavy acceleration in the horizontal plane highlighted for the x-axis in figure 5.13.

RMSE for Kalman filter all corrections
X 11.37 cm
Y 8.98 cm
Z 6.22 cm

Total 8.86 cm

Table 5.4: EKF RMSE error with all correction measurements
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(a) All signals displayed

(b) Only EKF and ground truth displayed

Figure 5.12: EKF output - corrected with all measurements
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Figure 5.13: Zoomed view of EKF x-axis output with all measurements under fast
drone movement

The result of the EKF filter when neither the AprilTag pose estimator nor DNN-
CV position estimator is used as corrections is shown in figure 5.14a and 5.14b.
In figure 5.14a the filter has to rely completely on the CV-model, and the filter is
only corrected with velocity measurements. The filter is very prone to errors as
it is dead reckoning, and integrating up the velocity to estimate position. The
filter uncertainty is shown to grow throughout the whole flight. On the other
hand, when the filter is corrected with the simulated GNSS-measurements the
filter uncertainty is kept at a much lower value, and the filter is less prone to
errors. This is shown in figure 5.14b.
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(a) EKF - no corrective measurements

(b) EKF - only corrections from GNSS

Figure 5.14: EKF output - limited correction measurements
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Landing phase without internal altitude measurement

(a) Without internal altitude corrections

(b) With internal altitude corrections

Figure 5.15: EKF output in landing phase
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Figures 5.15a and 5.15b show the EKF filter output when the internal altitude
measurement is not used and used, respectively. In figure 5.15a the uncertainty
grows in the z-axis in the last phase of the landing, below 20 cm. This is due to the
fact that the filter at that point doesn’t have any other correction measurement
than the velocity measurement. It, therefore, has to rely completely on the CV
model. On the other hand, in figure 5.15b when the internal altitude measurement
is used as correction in the landing phase the uncertainty in the z-axis remains low,
and the performance is upheld.

Mission away from platform

In order to verify that the filter is able to determine the position of the platform
when the platform is not in plain view in the camera, a simulated mission is per-
formed. The Anafi drone is started stationary on the platform in the corner of
the drone lab. The drone takes off and increases its height to 2 meters above the
platform before it flies away from the platform. The EKF can in this situation no
longer rely on the precise corrective measurements from either the AprilTag pose
estimator or the DNN-CV position estimator. The drone is then flown back to the
platform, and the two estimators can again produce precise estimates. This mis-
sion is shown in figure 5.16. The uncertainty in the filter is low when the platform
is in view, and high when the filter has to rely on the CV model corrected with the
GNSS measurement when the platform is not in the view of the camera.

Figure 5.16: EKF outputs from mission in the lab
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5.5 Outside testing

(a) EKF with all measurements

(b) EKF with all measurements except GNSS

Figure 5.17: EKF outputs from mission outside
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In order to test the developed algorithms at a larger scale the Anafi drone was
flown outside. The weather conditions were cloudy, with little wind present and
a temperature of 5 ◦C. The Anafi drone performs similar actions to the ones per-
formed and discussed in section 5.4. The only difference this time is that the Anafi
drone is no longer limited by the limited space of the drone lab and that real GNSS-
measurement is available. The Anafi drone takes off from the platform, flies away
from it, and performs different motions, before flying back. In figure 5.17a all mea-
surements are used to correct, including the transformed GNSS measurements.
The drift and covariance along all axes are low during the flight. The axis suffer-
ing the most from not having the platform in view is the z-axis where the estimate
is the least smooth. The filter estimate will also suffer if the GNSS measurement
is inaccurate in the z-axis and delivers an outlier measurement at the timesteps
shown in figure 5.17a at about 55 s. The filter estimate is "pulled" a little down due
to the outlier measurement. In figure 5.17b, all measurements except the GNSS
measurements are used to correct the filter. The uncertainty is growing along all
axis. However, the filter seems to be providing smooth estimates in the x and y
axis with low to no drift. The same thing cannot be observed on the z-axis. The
estimate in this direction drifts upwards and has a large spike downwards when
the platform again is in view and the two perception-based estimators provide
more accurate estimates.
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Discussion

This section discusses the results of the camera calibration as well as the result of
testing the different pose estimators, and the full EKF solution.

6.1 Camera calibration

The result of the re-calibration of the camera is as expected. The found image
centers ox = 645.9899 and oy = 364.8657 is much closer to the expected image
center one would get from a perfectly aligned optical axis. If the camera was per-
fect the center would have been at half the image height and width at ox = 640
and oy = 360. Furthermore, the mean reprojection error is low at 0.25 pixels.
This is also a good indicator that the calibration is good. Even though the mean
reprojection error is low, the camera calibration can still be improved. As the au-
thors of [47] point out, a person novice to calibrating cameras may not provide
a perfectly good training set for calibration. The camera calibration can therefore
maybe be improved by for instance using an interactive calibration pipeline with
live feedback such as AprilCal presented in [47].

In this context is it worth mentioning that the offset problem Falang faced
with the TCV-module proposed in [1] was a result of highly incorrect camera cal-
ibration. Falang used a camera matrix with a completely wrong image center and
focal length, resulting in the offsets in the pose estimates from the TCV-module
being a function of the detection altitude. According to some further testing of
the TCV-module using the newly acquired camera matrix K, the module calcu-
lated pose estimates more accurately. However, it is still very computationally and
time intensive and hardly ever generates any estimates when there is a lot of noise
in the images or extensive rotations of the platform.

63
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6.2 AprilTag-based pose estimation

The AprilTag pose estimator worked very well. It has an overall low run time,
enabling fast processing of the incoming images from the drone, and produces
pose estimates with good accuracy across all three axes. The pose estimator can
produce good estimates down to about 20 cm over the platform. The estimator is
also robust enough to still produce good estimates when the platform is subjected
to motions, such as a roll motion.

Nevertheless, some problems have to be addressed

• The module is ultimately dependent on the detection of the AprilTags. No
detections of the AprilTags at altitudes larger than 6.3 meters.

• Difficult light conditions make it harder to detect the markers due to their
glossy texture.

• Few estimates under quick attitude changes.

The detection capabilities of the detector are starting to fall off when the al-
titude is very large, at altitudes larger than 6.3 meters. This is because the larger
Apriltags on the platform no longer can be seen. Nevertheless, based on figure 5.4,
it is clear that introducing AprilTags at different sizes serves its purpose. At large
altitudes, the two large AprilTags are detected, whereas at lower altitudes when
the Anafi drone is closer to the center of the platform the smaller ones are de-
tected. To increase the detection performance at larger altitudes, the size of some
of the AprilTags could be increased or a very large AprilTag could be introduced
covering most of the platform surface. This was not done in this work due to not
interfering with the detection capabilities of the YOLO detector. The YOLO detec-
tor is trained on images of the platform without the AprilTags, and by covering up
possible features of the platform, the YOLO detector may get reduced detection
performance.

The glossy texture of the AprilTags makes them hard to detect when the light
is reflected directly off them and into the camera. This rarely occurred at the
drone lab, but it is expected to be a larger problem outside in sunny conditions.
This problem can easily be solved by for instance using matte lamination sheets.
An even better solution is by re-manufacturing the platform with the AprilTags
printed on it. This will also allow for reducing the uncertainty in the precise metric
position of the AprilTags corners. Even though the metric positions of the corners
are precisely measured with the help of the Qualisys Motion Tracker system, small
offsets from the measured values are expected as the AprilTags are taped to the
platform.

From figure 5.9 is it clear that where the estimator struggles the most is where
the drone suddenly changes attitude. The drone conducts a square motion while
being given impulse-like directions in roll, pitch, and yaw in the dataset where the
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estimator is tested. When the drone receives such prompt commands, its attitude
is quickly altered and hence the drone accelerates fast. The drone’s gimbal com-
pensates for rotation, and motion is externally imposed on the camera. Again, due
to these vibrations, the images are blurry, making it difficult for the detector to
pick up the AprilTags. However, the estimator continues to generate accurate es-
timates when the drone reaches the end of a corner and the gimbal re-stabilizes.
Additionally, it should be highlighted that such quick movements as the drone
conducts in this data set, where its velocity approaches ±0.8 m/s, are impossible
during a controlled landing and these errors should not be of great concern given
the use-case of the perception pipeline.

Despite these issues, the new estimator built on AprilTag detection outper-
forms the TCV strategy Falang presented in [1]. The RMSE from replicating move-
ments akin to those made by Falang is reduced from 17.58 cm to 6.27 cm, more
than halving. The new AprilTags-based pose estimator also has a substantially
smaller processing need, allowing it to produce estimates faster. The new AprilTag
estimator is able to produce estimates close to 31 Hz, whereas the TCV technique
created by Falang output estimates at approximately 1.5 Hz from the indoor lab
tests. The TCV approach had even worse performance and provided estimates at
0.5 Hz when tested outdoors at sea with roll movements imposed on the plat-
form. Even though the AprilTag pose estimator has not yet been tested on the sea,
the introduction of extreme roll motions of 45 degrees side-to-side movements in
the lab environment indicated that the AprilTag pose estimator could still provide
estimates. Finally, at lower altitudes, the AprilTag-based pose estimator outper-
forms the TCV approach in terms of detection capability. The TCV approaches’
detection capacities declined abruptly at lower altitudes because the platform’s
features could no longer be detected, whereas the AprilTags can be detected down
to altitudes of about 20 cm. By including AprilTags of varying sizes, the detection
performance at lower and higher altitudes can be improved even further.

6.3 Deep neural-network-based position estimation

Whereas the author of [1] found the DNN-based approach to be the best estima-
tor is it this time turned the other way around. The DNN-based position estimator
does not produce as good estimates as the AprilTag-based pose estimator. Never-
theless, it shows potential. It manages to give estimates at a good frequency and
due to the new rotational compensation from the camera frame to the body frame,
it manages to estimate the position well under heavy rotations of the drone body.
Furthermore, the estimation capabilities of the DNN-CV estimator are best when
the drone is performing slow movements and is under little acceleration in the
same way as the AprilTag-based pose estimator. However, the DNN-CV estimator
seems to produce more estimates in situations with larger accelerations than the
AprilTag-based estimator.
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As the DNN-based position estimator is largely based on the same approach
as the one used in [1] it suffers from the same problems.

• Offsets due to incorrect bounding box sizes.
• Detection performance falls off at altitudes larger than 5 meters.
• Bad position estimate capabilities at lower altitudes.

When the Anafi drone is flying at higher altitudes the output from the YOLO
network is not able to produce bounding boxes that perfectly encapsulate the
platform. As the algorithm used to calculate the position from the bounding boxes
(Algorithm 1) evaluates the ratio between the pixel radius and the metric radius
of the platform to estimate the altitude, any margins around the bounding boxes
to the platform will lead to error in the position estimate. It is evident from figures
5.10 and 5.11 that this is the case. The YOLO detector produces larger bounding
boxes than it should, and hence the estimate in the z direction will be lower than
it should. This error will also propagate into the estimates in the x and y direction,
as these are based on similar triangles where the z estimate is used. The network
could be retrained to reduce the offset in the bounding boxes from the YOLO
network at higher altitudes. The current network is a YOLOv4 network trained
by the author of [2], and the images used in the training were from the camera
of the previously used Parrot AR2.0 drone. Although the images coming from
the Anafi drone have excellent resolution, the network is trained on the lower
resolution images from the AR2.0 drone, hence the detection will not benefit from
the Anafi’s resolution. The detection performance should consequently be better
at higher altitudes if a newer network is trained on images with better resolution.
Newer versions of YOLO have also been made available since the training of the
network, where the newest and fastest network is the YOLOv7, reporting both
better inference speed and accuracy than older versions [48]. By retraining the
network, the probability of false detections will also most likely be reduced. The
problem that the algorithm produces incorrect estimates at lower altitudes is a
result of the algorithm’s requirement to see the whole platform in the image for
it to be able to calculate the pixel-to-metric radius ratio.

6.4 Kalman filter

The Extended Kalman Filter was able to fuse the two estimates from AprilTags
pose estimator and the DNN-CV position estimator together with corrective mea-
surements from the Anafi drone in a constant velocity (CV) model. The RMSE is
low, and hence the filter can be said to provide estimates at a high rate with good
precision. In situations with fast accelerations in the horizontal plane, as men-
tioned earlier, the AprilTag-based estimator provides few to no estimates and the
filter has to rely on the few corrective measurements from the DNN-CV-based esti-
mator. As the DNN-CV estimator suffers from an offset, the corrective measures are
not able to "pull" the EKF estimate as far up as it should. In addition, the velocity
measurement is updated too slowly at 5Hz to capture the drone’s rapid movement
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and consequently estimate the position correctly in situations with high accelera-
tions. The model in the filter is in other words integrating up a too-low velocity.
However, as mentioned earlier, it is unlikely that fast accelerations like this will
occur. When comparing the RMSE to the RMSE of the other two estimators, it is
larger than the RMSE of the AprilTag-based estimator. However, the error of the
AprilTag-based estimator is only calculated when the estimator provides an esti-
mate. Hence, at the large accelerations sequences, the AprilTag-based estimator
does not contribute with any error to the RMSE whereas the error of the EKF does
as it provides an estimate at 25 Hz no matter what.

The inclusion of the corrective GNSS-measurement is the most helpful when
the filter does not receive any precise correction measurements from either the
Apriltag-based estimator or the DNN-CV estimator. Due to the large measurement
covariance given to the GNSS corrections, the measurement will not influence
the filter much when the filter has correction measurements from the two much
more precise perception-based estimators. On other hand, it has been proven to
help the filter not drift too much in cases where the platform can not be seen.
The filter can be changed to use only GNSS corrections when the platform cannot
be seen and perception-based estimators cannot provide corrections. The output
of the EKF may be somewhat non-smooth when flying away from the platform
in an indoor lab environment. This is particularly evident when multiple consec-
utive simulated GNSS measurements are significantly different from the ground
truth value in the same direction, causing the estimate to deviate from the ground
truth. The simulated GNSS measurements are generated from ground truth data
obtained from a motion capture system and augmented with independent, iden-
tically distributed random Gaussian noise, which does not accurately reflect the
noise characteristics of real GNSS signals. By contrast, when the system is tested
outdoors and the EKF uses real GNSS measurements to correct the filter, the out-
put is generally smoother.

The internal altitude measurement has also been proven to be very helpful for
the filter in the landing phase when the perception-based estimators no longer can
provide any corrections. The landing phase is also the most crucial phase to having
good estimates of the altitude in order to know when to turn off the motors.

6.5 Outside testing

The Extended Kalman Filter has been demonstrated to function effectively, even
when flying outside. In the horizontal plane, the corrective GNSS estimates are
demonstrated to be the most reliable. As GNSS signals’ vertical precision is lower
than their horizontal accuracy, this is expected [49]. This is compensated for in the
filter by setting the covariance of the vertical GNSS measurement larger than for
the horizontal when flying outside. However, it might be claimed that this worse
vertical accuracy has little bearing on the use of this pose estimate approach. When
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the platform is not in plain view in the camera, the filter primarily uses the GNSS
measurements to rectify any drift in the location estimation. Therefore, everything
is fine as long as the GNSS measurements are accurate and free of systematic er-
rors and within a suitable range of the true values. When the platform is visible in
the camera’s field of vision, the correcting GNSS measurements have little impact
on the position estimate. Additionally, in the landing phase, where the need for
accurate altitude estimates is greatest, the filter uses the corrective altitude mea-
surement from the internal EKF of the Anafi.

It can be argued that the EKF output in the horizontal direction appears to be
performing impressively even when flying away from the platform and the GNSS
correction is not applied. When no corrections are provided, the estimate’s uncer-
tainty increases over the course of the sequence, but when accurate position esti-
mates from camera-based pose estimators are again provided, the estimate from
the filter doesn’t change quickly. This suggests that even without corrections, the
filter estimate does not drift. Unfortunately, this is completely dependent on accu-
rate and reliable velocity readings from the Anafi drone. In the testing conducted
outside, the drone’s velocity is kept low and there are no abrupt horizontal ac-
celerations. This is to simulate the control commands from the control algorithms
developed by Solbø in [4], which do not involve rapid step-response motions. The
drone may nevertheless be susceptible to such fast accelerations from disturbances
like the wind, even though the control algorithms may not involve them. In these
situations, it is possible that the velocity estimations won’t be as accurate, and
since the EKF relies on dead reckoning in the absence of GNSS corrections, any
velocity inaccuracies will affect the position estimate. As a result, the addition of
GNSS measurements will improve the EKF’s long-term precision and deliver ac-
curate position estimations over a wider time horizon even when the platform is
not in plain view in the camera.



Chapter 7

Conclussion and Future work

This chapter will first summarize the findings and results from this thesis. The fol-
lowing section will discuss the further work that has to be done on the perception
system before it can be claimed to be capable of aiding in a SAR mission at sea.

7.1 Conclussion

This thesis looked into how to employ two perception-based methodologies com-
bined with additional sensor data in an Extended Kalman Filter to estimate the
position of a landing platform. The ultimate objective of this thesis was to deter-
mine the location of the platform with accuracy under probable abrasive situa-
tions, even when the platform was not visible to the camera. Using a Parrot Anafi
drone, the experiments for this thesis were carried out both indoors, in a lab set-
ting, and outside.

Two distinct methodologies served as the foundation for the two camera-based
location estimate algorithms that were combined in an EKF. The first one uses
feature detection, homography estimation, and extrinsic extraction as part of a
more conventional computer vision approach. The platform used in this thesis
was altered by adding fiducial markers from the AprilTags system that are easier
to detect. This strengthened and sped up the detection pipeline. Different sized
AprilTags were used, with the smaller AprilTags being detected at lower altitudes
and the larger AprilTags being detected at higher altitudes. It was recommended
that in the future, larger AprilTags should be used to improve the capabilities for
detection at even greater altitudes. Another issue with the detection pipeline was
the inability to identify the impacted AprilTags when direct light was reflected off
the AprilTags and into the camera. As suggested, the AprilTags could in the future
be laminated with matte sheets or the platform could be remanufactured with
the AprilTags printed on it because this reflection was a direct effect of utilizing
AprilTags laminated with a glossy texture. Overall, the AprilTags-based pose esti-
mation method was able to generate precise estimates at a high rate even when
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the platform was proposed for extensive motions.

This thesis also used a DNN-CV strategy for camera-based location estimation,
which was based largely on Hove’s work in [2]. The only changes made to the al-
gorithm in this thesis were using the new focal length and image center from the
new camera calibration matrix, as well as using a new transformation from the
camera reference frame to the body reference frame, which accounts for rotations
of the Anafi drone. This technique was based on the results of a YOLO network
trained by Hove in [2], and a position estimation technique that uses the idea of
similar triangles proposed by Sundvoll in [3]. This approach faced the same prob-
lems that Falang’s system had [1], including offsets and a lack of lower-altitude
detection capability. This thesis also discovered that the detection capabilities of
this approach started to decline at altitudes greater than 5 meters. In the same
way, as Falang proposed in [1], the offset problem was proposed to be overcome
by retraining the network using images from the Anafi drone with the new plat-
form with AprilTags on it. A more recent YOLOv7 network that offers quicker
inference speed and better detection capabilities while lowering miss-detections
was suggested for the re-training. To reduce the issue of false detection, the class
probability threshold for the bounding boxes in this thesis was set at 99%.

A Constant Velocity model Extended Kalman Filter, proposed by Falang in [1],
was used to fuse the two perception-based methodologies with additional sensor
data to estimate the position of the landing platform. Instead of using the newly
available optical flow-based velocity measurement at 30 Hz, the filter used the
velocity measurements coming from the Anafi drone at 5 Hz. This was due to
the fact that the faster optical flow-based measurement was shown to be inaccu-
rate. Additionally, the filter was upgraded to include two more corrective mea-
surements: GNSS measurement and an altitude measurement during the landing
phase. In the landing phase, the two perception-based approaches were combined
with the altitude measurement to enhance vertical accuracy. The EKF has more
global navigational qualities due to the GNSS measurement that provides the x,
y, and z coordinates in a NED frame with origin at the take-off position of the
Anafi drone. Reducing drift in a dead reckoning approach has been shown to im-
prove the estimator’s long-term precision capabilities. It has been demonstrated
that the EKF’s estimates are largely accurate. However, when the Anafi drone is
subjected to rapid acceleration, the EKF is found to be the least accurate. This
is because neither of the two perception-based estimators offers very many es-
timates in these circumstances, and the velocity measurements are also at their
least reliable in these conditions. Nevertheless, the EKF provides estimates within
reasonable limits in order to perform a controlled landing.
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7.2 Future work

This section will go over the requirements the system must meet in order to be
put to use in a real-world SAR mission at sea.

In addition to the things mentioned in this thesis with adding more AprilT-
ags with a matte texture and retraining the YOLO-network, there are also other
objectives that have to be completed. Even though the position estimator yields
good results in open-loop, closed-loop control utilizing the control algorithms de-
veloped in Solbø’s thesis [4] is unworkable due to the latency problems covered
in section 4.4. Therefore, the drone must be upgraded in order for the system to
be useable in a scenario when an autonomous landing is required at sea. Close
loop control must be supported by the new drone. The most crucial part missing
from the developed perception system is the system’s ability to detect persons in
the water and report their position to a rescue team. The network utilized in the
DNN-CV approach, for example, may perform this detection. Retraining this net-
work using images of people floating in the ocean might be an effective strategy.
In this context, a search pattern to detect people in the water is also required, and
research on the most effective method of doing this must be done. Finally, the
drone’s perception system should have some kind of environmental awareness
because it should be able to operate autonomously without burdening the rescue
team. This will allow the drone to determine where it would be safe to land in the
event that it detects low battery levels or other issues. Including a segmentation
network that designates areas as safe or unsafe could accomplish this, but other
approaches may also be usable.
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