
1
71

8
1
RU
Z
HJ
LD
Q�
8
QL
YH
UV
LW\
�R
I�6
FL
HQ

FH
�D
QG

�7
HF
KQ

RO
RJ
\

)D
FX
OW\
�R
I�Ζ
QI
RU
P
DW
LR
Q�
7H
FK
QR

OR
J\
�D
QG

�(
OH
FW
ULF
DO
�(
QJ
LQ
HH
ULQ

J
'
HS

DU
WP

HQ
W�R

I�(
OH
FW
ULF
�3
RZ

HU
�(
QJ
LQ
HH
ULQ

J

0
DV
WH
UȇV

�WK
HV
LV

5LNNH�(QJHU�'LKOH
0DULH�%DNNHQ

)OH[LELOLW\�LQ�6RODU�DQG�%DWWHU\�2II�
*ULG�6\VWHPV���&DVH�6WXG\�(FR�0R\R
(GXFDWLRQ�&HQWUH�LQ�.HQ\D

0DVWHUȇV�WKHVLV�LQ�(QHUJ\�DQG�(QYLURQPHQWDO�(QJLQHHULQJ
6XSHUYLVRU��ΖGD�)XFKV
&R�VXSHUYLVRU��-D\DSUDNDVK�5DMDVHNKDUDQ
-XQH�����





5LNNH�(QJHU�'LKOH
0DULH�%DNNHQ

)OH[LELOLW\�LQ�6RODU�DQG�%DWWHU\�2II�*ULG
6\VWHPV���&DVH�6WXG\�(FR�0R\R
(GXFDWLRQ�&HQWUH�LQ�.HQ\D

0DVWHUȇV�WKHVLV�LQ�(QHUJ\�DQG�(QYLURQPHQWDO�(QJLQHHULQJ
6XSHUYLVRU��ΖGD�)XFKV
&R�VXSHUYLVRU��-D\DSUDNDVK�5DMDVHNKDUDQ
-XQH�����

1RUZHJLDQ�8QLYHUVLW\�RI�6FLHQFH�DQG�7HFKQRORJ\
)DFXOW\�RI�ΖQIRUPDWLRQ�7HFKQRORJ\�DQG�(OHFWULFDO�(QJLQHHULQJ
'HSDUWPHQW�RI�(OHFWULF�3RZHU�(QJLQHHULQJ





Preface

This master’s thesis is a conclusion of our Master in Science (MSc) in Energy and Environmental
Engineering at the Department of Electric Energy at the Norwegian University of Science and
Technology (NTNU).

We want to express our gratitude to the Department of Electric Energy for funding our field trips to
Eco Moyo Education Centre. We also want to thank Solar Energy Without Borders for providing
us with financial support for the field trip this spring. The field trips o↵ered us valuable insights,
learning opportunities, and input data for the thesis. Additionally, we would like to express our
gratitude to our supervisor, Ida Fuchs, for her invaluable guidance and input throughout the entire
semester. Further, we want to thank our co-supervisor, Jayaprakash Rajasekharan, for providing
us with helpful feedback. We also want to thank the teachers at Eco Moyo for arranging meetings
and helping us with our data acquisition. Further, we want to thank the entire sta↵ and pupils for
sharing their daily experiences with us. Your insights have been truly valuable.

Finally, we would like to thank all our friends and family for their support. Especially our fellow
students. The past five years would not have been the same without EMIL’18.

Trondheim, June 2023

Marie Bakken Rikke Enger Dihle

i



Abstract

Accelerating rural electrification is crucial to achieve Sustainable Development Goal (SDG) number
7 by 2030. While progress has been made in reducing the number of people without electricity,
the COVID-19 pandemic and increased costs pose challenges. Kenya has made significant progress
toward universal energy access, but rural areas still lag behind. Eco Moyo Education Centre is a
Norwegian/Kenyan charity project o↵ering free primary education to underprivileged children in
the Dzunguni village in Kenya. The school has an o↵-grid solar and battery microgrid to supply
basic electricity needs in the Sta↵ Room. This thesis is based on a case study of the existing system
at the school, with data collected during field trips in November 2022 and April/May 2023. The
thesis addresses the expressed need of the school to provide electricity to additional buildings and
focuses on how flexible operation of the loads can be used to extend the system.

The case study of Eco Moyo Education Centre highlights the potential of flexible solar and battery
o↵-grid systems to optimize energy supply in rural areas. These systems are often based on unreli-
able Renewable Energy Sources (RESs), such as solar power, and Battery Energy Storage Systems
(BESSs) are typically used to compensate for periods with limited power generation. Hence, user
behavior patterns are the primary tool to increase flexibility in o↵-grid systems. The main ob-
jectives of the master’s thesis are to develop an optimization model for scheduling flexible loads
and a user-friendly early-stage Graphical User Interface (GUI) draft for end user communication.
By minimizing the disutility cost of shifting loads, the potential of Demand Response (DR) in the
shape of load shifting is investigated. The GUI incentivizes user flexibility and increases the end
user knowledge of the system.

To obtain the objectives, load profiles generated in the Remote-Areas Multi-Energy Systems Load
Profiles (RAMP) model and Photovoltaic (PV) production modeled in pvlib python serve as input
to the optimization model developed in Python Optimization Modeling Objects (Pyomo). The
purpose is to determine the optimal scheduling of flexible loads to minimize the disutility cost of
load shifting. Additional appliances are introduced to assess the feasibility of powering other build-
ings using the existing system at the school. Three scenarios are considered; Scenario 0, Scenario
1, and Scenario 2, which involve implementing zero, one, and two additional batteries, respectively.
The cost implications of di↵erent approaches are also analyzed, including a comparison with the
price of a new system. To incentivize user flexibility, the surplus energy of the system must be
visualized easily and understandably in a GUI. The GUI is an early-stage design including di↵erent
functionalities to increase the consumers’ understanding of the system and suggest flexible con-
sumption behavior. An essential part of the research is to collect realistic input data and feedback
from the end users at the school regarding flexible consumption behavior and GUI design.

This thesis demonstrates that DR is an e↵ective strategy for addressing unmet demand in o↵-grid
microgrids. By load shifting and adapting to seasonal variations, the existing system can supply
additional buildings at the school, with a cost of only 7% of the price of a new system. Most of
the year, the system can cover the additional demand with an extension of the system. However,
the main challenge occurs when the generation is drastically reduced. When including additional
batteries, the number of days when the optimization model is unable to fulfill the constraints
and cover the demand is reduced. The initial uncovered demand is decreased with additional
battery capacity, but the reduction in uncovered demand due to load shifting is persistent in all
the scenarios. Hence, load shifting mainly a↵ects the uncovered demand caused by load peaks
exceeding the system’s capacity. By including the additional batteries, the disutility of the users is
decreased. However, the cost increases to 20% and 35% of implementing a new system, with one
and two additional batteries, respectively. The user experience will be enhanced, but the lack of
financial resources at Eco Moyo Education Centre plays a vital role in the decision. Furthermore,
the GUI will contribute to cover the demand when extending the existing system at the school.
The GUI design proposal is developed in Python and presented with di↵erent functionalities to
incentivize user flexibility and increase the user’s experience and overall engagement with the
system. However, the GUI is only an early-stage draft, and further development is needed. App
implementation and weather forecasts are among the ideas for further development.
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Sammendrag

Elektrifiseringen av rurale omr̊ader må akselereres dersom FNs bærekraftsmål nummer 7 skal bli
oppfylt innen 2030. Det er gjort fremskritt for å sikre at alle har tilgang p̊a elektrisitet, men
COVID-19 pandemien og økte kostnader skaper utfordringer. Kenya har gjort betydelige fremskritt
for å sikre tilgang p̊a elektrisitet for alle, men de rurale omr̊adene henger fortsatt etter. Derfor
er o↵-grid systemer avgjørende for å sikre at flere f̊ar tilgang til p̊alitelig strømkilder. Eco Moyo
Education Centre er et norsk/kenyansk veldedighetsprosjekt som tilbyr gratis grunnskoleutdanning
til barn i landsbyen Dzunguni i Kenya. Skolen har et o↵-grid sol- og batteri mikrogrid som dekker
grunnleggende strømbehov p̊a lærerværelset. Denne masteroppgaven er basert p̊a en case-studie
av det eksisterende systemet ved skolen, med data samlet under feltarbeid i november 2022 og
april/mai 2023. Oppgaven tar for seg skolens behov for å tilby strøm til flere bygninger, ved å
fokusere p̊a hvordan fleksibel drift av laster kan brukes til å utvide det eksisterende systemet.
Videre undersøkes kostnaden ved å implementere et nytt system som en alternativ løsning.

Case-studien av Eco Moyo Education Centre trekker frem potensialet for fleksibilitet i sol- og bat-
teridrevne o↵-grid systemer til å optimere energiforsyningen i rurale omr̊ader. Disse systemene
er ofte basert p̊a ustabile fornybare energikilder, som solkraft, og batterilagringssystemer brukes
vanligvis for å kompensere for perioder med begrenset produksjon. Derfor er bruksmønstre det
viktigste verktøyet for å øke fleksibiliteten i o↵-grid-systemer. Hovedmålene for masteroppgaven er
å utvikle en optimeringsmodell for planlegging av fleksible laster og et brukervennlig grafisk bruker-
grensesnitt i tidlig fase for kommunikasjon med sluttbrukere. Ved å minimere kostnaden ved å
flytte laster, undersøkes potensialet for etterspørselsrespons i form av lastforskyvning. Det grafiske
brukergrensesnittet oppfordrer til brukerfleksibilitet og øker brukernes kunnskap om systemet.

Lastprofiler generert ved hjelp av RAMP-modellen, og PV produksjon modellert i pvlib python
er brukt som input til optimeringsmodellen. Denne modellen er utviklet i Pyomo. Målet er å
bestemme den optimale planleggingen av fleksibile laster for å minimere reduksjonen i nytteverdien
ved å flytte laster. Ytterligere laster introduseres for å vurdere om det eksisterende systemet kan
forsyne flere bygninger. Tre ulike scenarioer er simulert, Scenario 0, Scenario 1 og Scenario 2, som
innebærer implementering av null, ett og to ekstra batterier. I tillegg sammenlignes kostnadene
ved å utvide systemet med kostnadene ved å implementere et nytt system. For å oppfordre til
brukerfleksibilitet må overskuddsenergien i systemet visualiseres p̊a en enkel og forst̊aelig måte i
et grafisk brukergrensesnitt. Brukergrensesinittet er en tidlig fase av designet som inkluderer ulike
funksjonaliteter for å øke forbrukernes forst̊aelse av systemet og foresl̊a fleksibel brukeradferd. En
viktig del av studien er å samle realistiske data og tilbakemeldinger fra sluttbrukerne ved skolen
ang̊aende fleksibel brukeradferd og brukergrensesnitt design.

Denne masteroppgaven viser at etterspørselsrespons er en e↵ektiv strategi for å dekke øvrig for-
bruk. Ved flytting av last og tilpasning til sesongvariasjoner kan det eksisterende systemet forsyne
ekstra bygninger p̊a skolen, med en kostnad p̊a kun 7% av prisen p̊a et nytt anlegg. Utvidelsen
av systemet kan dekke forbruket mesteparten av året. Den største utfordringen oppst̊ar imidler-
tidig n̊ar produksjonen reduseres drastisk. Ved å inkludere ekstra batterier blir antall dager der
optimeringsmodellen ikke klarer å oppfylle kravene og dekke forbruket redusert.

Den opprinnelige udekkede etterspørselen reduseres, men reduksjonen i udekket etterspørsel p̊a
grunn av lastforskyvning er vedvarende i alle scenariene. Lastforskyvning p̊avirker hovedsakelig
den udekkede etterspørselen, som skyldes lasttopper som overskrider systemets kapasitet. Ved å
inkludere ekstra batterier øker brukerens nytteverdi. Imidlertid øker kostnaden til 20% og 35%
av implementeringen av et nytt system, med henholdsvis ett og to ekstra batterier. Brukeropp-
levelsen vil bli forbedret, men mangelen p̊a økonomiske ressurser ved Eco Moyo Education Centre
spiller en viktig rolle i beslutningen. Videre vil det grafiske brukergrensesnittet bidra til å dekke
forbruket n̊ar det eksisterende systemet p̊a skolen utvides. Designforslaget for det grafiske bruker-
grensesnittet er utviklet i Python og presenteres med ulike funksjonaliteter for å oppmuntre til
brukerfleksibilitet og øke brukerens opplevelse og engasjement med systemet. Imidlertid er det
grafiske brukergrensesnittet et tidlig utkast, og ytterligere utvikling er nødvendig. Implementering
i en applikasjon og inkludering av værmeldinger er blant ideene for videreutvikling.
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1 Introduction

1.1 Background

To achieve Sustainable Development Goal (SDG) number 7 of universal access to a↵ordable, reli-
able, sustainable, and modern energy by 2030, the pace of rural electrification needs to be acceler-
ated [1]. The number of people without electricity dropped from 1.2 billion in 2010 to 733 million
by 2020, and the majority of these people live in rural areas in Sub-Saharan Africa (SSA). How-
ever, due to the COVID-19 pandemic, the pace of progress is decreased, and the increased price of
energy and shipping has caused higher costs of transporting and production of renewable energy
resources, such as Photovoltaic (PV) modules and wind turbines. Hence, a major mobilization of
private and public capital is required to reach the people living in the least developed countries to
achieve global energy access [2].

Kenya is a leading country of economic growth in SSA, and the energy access rate has increased
from 32% to 75% of households from 2013 to 2022 [3]. Renewable energy sources constitute over
80% of the generated electricity in Kenya, and geothermal energy is the most significant source.
Due to the country’s location close to the equator, Kenya also has a huge potential for solar power,
and several solar projects are planned for 2023. However, in 2022, while the urban access rate
was 100%, the rate of electricity access in rural areas was only at 65%. Nevertheless, the usage of
stand-alone Solar Home Systems (SHSs) has rapidly increased, and this segment plays a significant
role in the electrification of rural Kenya [4]. SHSs provides the most cost-e↵ective electrification
solution, particularly for households in rural areas. These communities, often comprised of the
poorest and most vulnerable individuals, heavily rely on a↵ordable options. Hence, the price of
the electrification solutions plays a crucial role [5].

1.2 Motivation

Eco Moyo Education Centre is a Norwegian/Kenyan charity project that, as of 2022, provides free
primary education to 240 underprivileged children. The school is located in the Dzunguni village,
close to Kilifi on the Kenyan coast. Primarily, the village’s residents live in mud houses without
electricity or running water [6]. In March 2022, the school received a new solar and battery o↵-grid
system to meet the school’s basic electricity needs. The microgrid consists of seven solar panels of
450 Wp, four batteries of 200 Ah, and an inverter for Direct Current (DC) to Alternating Current
(AC) power conversion with a capacity of 3.50 kW. It powers various appliances such as lights, PCs,
tablets, phones, a printer, a fan, a TV, and smaller units in the Sta↵ Room. However, the electricity
supply in the other buildings at the school is limited to SHSs for lighting. The school received
an o↵er from a local company to build a new microgrid to supply the Sta↵ Court with electricity.
However, the costs were too high, and it was decided not to move forward with the project. The
preliminary project was written as a part of the course TET4510 Electrical Energy and Power
Systems at NTNU in the autumn of 2022, and the results revealed that the existing system has
the potential to supply additional buildings. This thesis investigates how user flexibility enables
the existing microgrid at Eco Moyo Education Centre to supply additional buildings. Hereby, Eco
Moyo Education Centre is referred to as Eco Moyo.

The International Energy Agency (IEA) states that demand-side activities should be prioritized
when it comes to creating more reliable and sustainable energy systems. To include demand side
activities with smart grid technologies are beneficial for both stakeholders in the energy value
chain and the society as a whole [7]. Based on the case study of Eco Moyo, it is possible to discuss
how flexibility in solar and battery o↵-grid systems can be utilized to optimize the energy supply
in rural areas. O↵-grid systems have proved to be challenging due to high service costs and low
a↵ordability [7]. These systems are often based on unreliable Renewable Energy Sources (RESs)
like solar power. Battery Energy Storage Systems (BESSs) are typically used to compensate for
periods with limited power generation. Hence, user behavior patterns are the primary tool to
increase flexibility in o↵-grid systems. The possibility to flexibly operate loads also enhances the
utilization of the installed capacity. Hence, flexibility in o↵-grid systems is essential to secure
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reliable energy access in rural areas. An optimization model to minimize the disutility cost of load
shifting can be used for the users to align their consumption with the available power generation. A
Graphical User Interface (GUI) that communicates optimal behavior to the end user will help the
user flexibly operate loads and enable them to make the most e�cient use of their limited energy
resources. In rural areas, limited understanding and access to technology is a major challenge. The
digital divide between urban and rural communities has rapidly increased in the past few years.
Hence, the lack of adequate technological knowledge in rural areas limits the individuals’ ability
to fully benefit from the potential that technology o↵ers.

In November 2022 and April/May 2023, field trips to Eco Moyo were conducted. Figure 1 shows
the installed PV system at the school. The first field trip revealed that the limited technological
knowledge was a challenge considering the microgrid installed at the site. The system parameters
visible on the inverter display are not understandable, and the users have limited to no knowledge
about the system. Hence, one of the contributions in this thesis is to develop an early-stage draft of
a GUI for end user communication. This GUI design proposal presents the system parameters in a
user-friendly way to incentivize user flexibility by suggesting optimal user behavior. Additionally,
The primary purpose of the second field trip was to collect data and examine the possibility
of including more buildings in the existing system, including obtaining a price estimate for the
extension. Additionally, the developed GUI draft was tested, and end user consumption behavior
and operation of the system were observed. Meetings with the teachers revealed valuable insight
into their flexibility regarding electricity and their willingness to adapt suggestions on flexible user
behavior.

Figure 1: The PV panels of the existing system at Eco Moyo in November 2022.

1.3 Objective

The objective of this master’s thesis is to investigate flexibility in rural o↵-grid microgrids based
on a case study of the solar and battery o↵-grid system at Eco Moyo Education Centre in Kenya.
The main objectives of the thesis are listed below:

• Create an optimization model in Python Optimization Modeling Objects (Pyomo) to decide
the optimal scheduling of flexible loads by minimizing the total disutility cost of load shifting
to maintain the end user experience.

• Develop an early-stage draft GUI for end user communication in Python to incentivize user
flexibility based on optimal consumption behavior patterns.

The goal of the thesis is to use the optimization model to investigate how user flexibility in the
form of load shifting can be used to extend the existing system to provide electricity to the Sta↵
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Court, the O�ce Building, and the Sta↵ Room. The costs are high for implementing a new system,
and a more a↵ordable solution, including user flexibility, is investigated. Additionally, this thesis
develops a first sketch of a GUI for end user communication to increase the system’s flexibility.
An essential part of the research is to test the interface on the specific system and optimize the
platform’s functionality based on feedback from the users at the school.

1.4 Scope

To achieve the contributions stated in Chapter 1.3, a scope is defined for this master’s thesis. The
scope is presented below:

• Model realistic load profiles with additional loads using the RAMP model and data collected
during the field trips to Eco Moyo.

• Model the production of the PV system at Eco Moyo using pvlib and input data from a
Typical Meteorological Year (TMY) from PVGIS.

• Simulate the system dispatch of the microgrid at Eco Moyo with the optimized load profiles
in Prosumpy with the modeled PV production from pvlib for three di↵erent scenarios;

– Scenario 0 considers the existing system in the Sta↵ Room with the additional load in
the Sta↵ Court and O�ce Building. This scenario investigates if the existing system is
able to supply the additional buildings when flexible user behavior is implemented.

– In Scenario 1, an additional battery is included in the existing system in the Sta↵ Room.
This scenario investigates how the additional battery capacity a↵ects the flexibility and
disutility of the consumers.

– Scenario 2 includes two additional batteries. The scenario investigates further how the
increased battery capacity a↵ects the flexibility and disutility of the consumers.

• Use the optimized load profiles to propose optimal consumption behavior patterns for
weather, climate, and seasonal variations for optimal utilization of the microgrid to cover
more of the needs at the school.

• Optimize the early-stage GUI draft based on feedback from the users at the school to in-
centivize user flexibility and suggest functionalities for o↵-grid microgrids.

• Compare the costs between di↵erent approaches of electrifying the O�ce Building and the
Sta↵ Court to find the most suitable solution.

1.5 Outline

In this chapter, the outline of the master’s thesis is presented.

Chapter 1: Introduction

The background, motivation, objective, and scope of this master’s thesis are presented in this
chapter.

Chapter 2: Theory

In this chapter, the essential theoretical background for analyzing the existing solar and battery
o↵-grid system at Eco Moyo is presented. It covers microgrids, batteries, solar energy, converters
and controllers, energy system flexibility, utility, and optimization.
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Chapter 3: Related Research and Contributions in the Field

This chapter presents related research regarding the modeling of load profiles in rural areas, energy
flexibility on the demand side, o↵-grid flexibility, and GUI development and design.

Chapter 4: Methodology

This chapter presents the methodology of this master’s thesis. The methodology includes modeling
of PV production in pvlib python and load profiles in Remote-Areas Multi-Energy Systems Load
Profiles (RAMP). Further, an optimization model to decide the optimal scheduling of flexible
loads, system dispatch in Prosumpy, and the development of an early stage GUI draft for end user
communication are presented.

Chapter 5: Case Study: Eco Moyo Education Centre in Kenya

In this chapter, the case study of the thesis is presented. Relevant information about the existing
system, buildings, and seasonal variations is described. Further, the results of the preliminary
project are presented, which establishes an essential foundation for the master’s thesis. Following,
the fieldwork is presented, with price estimates for a new system and an extension of the existing
system, flexibility ranking of appliances, availability of appliances in the area, additional findings
related to user consumption, and evaluation of the GUI design proposal. Finally, the input data
for the methodology and simulations are presented for the case study of Eco Moyo.

Chapter 6: Results

This chapter presents the results of the master’s thesis. The modeled PV production and demand
are described. Further, the results of the optimization model and annual system dispatch in
Prosumpy are analyzed. The batteries’ State of Charge (SoC) and the system’s surplus energy are
analyzed on dates when loads are shifted, or the system is unable to fulfill the constraints of the
optimization model. Further, the costs of the di↵erent approaches for electrification of the Sta↵
Court are presented. Finally, the design proposal of an early-stage GUI for end user communication
is presented, and the functionalities are visualized.

Chapter 7: Discussion

The results presented in Chapter 6 are discussed in this chapter. Additionally, the results are
compared to related research, presented in Chapter 3.

Chapter 8: Conclusion

In this chapter, a summary of the findings is provided, and concluding remarks are presented.
Furthermore, improvements and further work are stated.
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2 Theory

This chapter presents relevant theory for analyzing o↵-grid solar- and battery microgrids. Further,
energy system flexibility, the basics of optimization, and utility theory are presented. Chapter 2.1,
2.2, 2.3, and 2.4 are directly extracted from the preliminary project [8, p.5-9].

2.1 Microgrids

Microgrids are small-scale energy systems with loads and energy generation resources [9]. These
systems can be based on RESs, such as solar and wind, and they can also include devices for energy
storage. The main advantage of using microgrids is the opportunity to operate independently of the
grid, often referred to as ”autonomous” or ”o↵-grid” microgrids [9]. Nevertheless, microgrids based
on RES can also be connected to the grid, and it becomes more common to customize the systems
with applications to enable grid connection. This will increase the reliability of energy access for
consumers. Based on the power structure, microgrids can be classified into three categories; DC,
AC, and hybrid microgrids [10]. An overview of the di↵erent microgrids is presented in Figure 2.

AC Load

Bi-Directional
Converter AC busBattery

Gen. Set

(a) AC Microgrid

DC Load

PV Module

DC bus
Battery

WECS

(b) DC Microgrid

Bi-Directional
Converter

PV Module

DC busBattery

Gen. set

AC bus

AC Load

DC Load

(c) Hybrid Microgrid

Figure 2: Examples of AC, DC, and Hybrid Microgrids [11].

2.2 Batteries

Storage systems such as batteries play a significant role regarding the e↵ectiveness of renewable
microgrids [9]. Because of the intermittency of RESs, it is evident to include battery storage in
the systems to compensate for periods with reduced energy generation [12]. Batteries improve the
stability, flexibility, reliability, and power quality of microgrids [13].

Historically, the batteries used in microgrids are lead-acid because of their low costs, technical
maturity, and wide availability [11]. Gel batteries are valve-regulated, maintenance-free, lead-acid
batteries. They are highly robust and versatile and can be used in places without much ventilation
[14]. However, due to advanced research regarding lithium-ion batteries, there are substantial
cost reductions in this technology. Advanced lead-acid batteries have an increasing capability to
operate with higher e�ciency and handle more cycles [15].

2.2.1 Capacity

The capacity of a battery is a measure of the charge stored in the battery and is generally expressed
in ampere-hours (Ah). For example, a constant discharge current of 10 A can be drawn from a 10
Ah battery for one hour. The rated capacity of a battery represents the maximum capacity under
certain specified conditions. However, the actual capacity of a battery depends strongly on the
age, past charging and discharging regimes, and temperature of the battery [16].
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2.2.2 State of Charge

SoC of batteries is described as ”a restraint presenting the linkage between energy storage in the
battery and the process of discharging and charging” [10, p.38]. Further, the battery must not
be overcharged or over-discharged because this will a↵ect the e�ciency and the battery’s lifetime.
The battery operation is often between the minimum and maximum capacity [12].

2.2.3 Depth of Discharge

Depth of Discharge (DoD) of a battery is expressed as a percentage and represents the removed
capacity from a battery divided by its real capacity [17]. The relation between DoD and SoC is
represented in Equation 1.

DoD = 1 � SoC (1)

2.3 Solar Energy

Solar energy is energy from the sun’s radiation and is the most abundant of all energy resources.
The solar energy intercepted by the earth is more than 10,000 times greater than the total energy
consumption by humankind [18]. The energy is received as heat and light and can be converted
to various usable forms, such as electricity and heat [19]. PV units generate electrical energy by
transforming the radiance energy from the sun directly into electrical power.

2.3.1 Solar Radiation

The solar radiation exposed to the PV panels is highly a↵ected by the tilt and azimuth angles.
Maximizing the radiation the PV panels receive is essential to optimize the production. The tilt
angle is the angle of the PV modules from the horizontal plane. Hence, the optimal tilt is dependent
on the latitude of the location.

In countries near the equator, a low tilt angle is optimal. However, tilt angles below 10° are
unsuitable because they will make the natural rainwater run-o↵ less e↵ective. This will lead to
increased debris collection and losses in the production [20]. The azimuth of the PV panel is the
east-west orientation in degrees. It is most common to refer to an azimuth value of zero when
the PV panel faces the equator in both the northern and the southern hemispheres [21]. Further
references to the term will consider a site position in the southern hemisphere. This means that
an azimuth of 0° is towards the north, and 180° is towards the south.

2.3.2 PV Systems

Multiple PV panels can be combined into a PV system. They can be connected in series or parallel
to supply su�cient current and voltage to a system. When PV modules are connected in series,
it is referred to as a PV string. The voltage output of a PV string is increased while the current
is constant. However, when connected in parallel, the total output current of the PV module is
increased while the voltage is kept constant [22]. Some PV systems also include batteries to store
electricity for future use.

2.3.3 Solar Home Systems

Solar Home Systems (SHSs) are stand-alone PV systems to cover the demand of rural areas where
households are not connected to the grid. These systems cover basic electricity needs, such as
lighting and other low-power devices. SHSs are the only electricity available for thousands of
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people living in remote areas. Typically, a SHS consists of a PV panel, a storage technology, and
a charge controller. It provides electricity for lighting when the solar irradiation is low [23]. The
systems with the lowest installation cost are DC SHSs, which provide energy for Light Emitting
Diode (LED) lights and USB for charging. AC systems are more expensive because it requires an
inverter. However, the AC systems provide a wider range of electricity, and the storage system
usually has a higher level of capacity [24].

2.4 Converters and Controllers

Microgrids require converters and controllers to ensure high-quality power to consumers. Con-
verters regulate the discharging and charging of the battery as well as facilitate the power flow in
AC, and DC systems [11]. Inverters convert the generating DC voltage to usable AC voltage to
consumers. Other converters are rectifiers, which convert from AC to DC, and DC-DC converters,
which regulate the output DC voltage.

2.4.1 Maximum Power Point Tracker

Maximum Power Point Trackers (MPPTs) are generally used to increase the produced power of
PV systems. The basic premise is to decouple the voltage from the load and the PV array in
order to let the PV array operate at the voltage corresponding to the maximum power point. The
PV array is connected to a DC-DC converter, and the output is connected to a battery or a load
through a charge controller. The converter’s duty cycle is monitored to track the maximum power
point of the PV array as the array’s temperature, irradiance, and shading changes [11].

2.5 Energy System Flexibility

To operate properly, energy systems must continuously balance the power supply and demand.
The term energy system flexibility describes an energy system’s ability to adjust the supply and
demand to maintain the energy balance [25]. Balance in the system is essential to avoid blackouts
and keep the system frequency and -voltage stable. To succeed with the energy transition from
fossil-based production to RESs, the flexibility of power systems is crucial to secure reliable energy
access. With the integration of large-scale intermittent RESs, like hydro, solar, and wind, the
need for flexibility is increased. Conventional power systems achieve su�cient flexibility using
dispatchable power plants, such as gas turbines, that can easily connect and disconnect when
needed [26]. However, flexibility must be attained from other sources in the future energy system.
Flexibility can be divided into supply- and demand-side flexibility [27]. The supply side includes
the generation of the system, such as RESs, while the demand side is the energy consumption by
the end users, such as electrical appliances and Heating, Ventilation, and Air-Conditioning (HVAC)
systems [27].

2.5.1 Grid Ancillary Services

Grid Ancillary Services are necessary to operate a transmission or distribution system and are a
part of the supply-side flexibility. It includes power quality and regulation to secure the system’s
stability [28]. These services are also essential in the conventional power system and not necessarily
bound to integrating renewable energy sources [26].

2.5.2 Demand Side Management and Demand Response

Flexible operation of loads allows the energy demand to be adjusted according to the supply of
a system. This power adjustment by the users is known as Demand Response (DR) [29]. It can
be categorized as reducing, increasing, or rescheduling the energy demand [30] to balance the
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energy system. Figure 3 illustrates three di↵erent categories of Demand Side Management (DSM);
conservation and peak shaving, valley filling and load growth, and load shifting. Peak shaving
refers to leveling out peaks by reducing the load during peak periods, while valley filling refers
to increasing the load during o↵-peak periods. Load shifting combines these two and refers to
rescheduling the load from peak to o↵-peak periods. An example of load shifting is households
charging their electric vehicles at night. Load shifting is often beneficial compared to the two other
categories, as it allows users to utilize the same amount of power in the period and hence, the
user’s utility is maintained. For the consumers to contribute to DR, the appliances need to be
categorized. The classification of appliances is determined by whether their energy consumption
can be deferred within a certain limit to prevent inconvenience for consumers [31]. If there are
Thermostatically Controlled Loads (TCLs), this is also included in the classification, as they can
contribute to the DR.

Figure 3: Categories of DSM [30].

2.5.3 O↵-Grid Flexibility

Sustainable o↵-grid systems, meaning o↵-grid systems without a diesel generator or other con-
ventional power sources, are often based on intermittent energy sources such as wind and solar
power. Hence, uncertain and uncontrollable power generation are the main drivers of flexibility,
as dispatchable power plants can be connected and disconnected rapidly to the grid are irrelevant
in o↵-grid systems [26]. In o↵-grid systems reliant only on solar power, it is optimal for the users
to use more energy during the daytime when the PV panels produce energy due to limited storage
capacity. It is necessary to examine whether there are any high consumption patterns and whether
the patterns are evenly distributed in the o↵-grid system to ensure reliability [32]. This is espe-
cially important in rural areas, as developed areas tend to have Home Energy Management (HEM)
systems, ensuring more e�cient use of the available energy [33]. Alternative energy technologies
in a home system will increase flexibility, such as fuel-based generators, BESSs, flywheel- and fuel
cell systems [33]. User behavior patterns and BESSs are crucial elements that serve as the main
tools for enhancing flexibility in such systems.

2.6 Utility

Utility is a term used in economics to describe the satisfaction or benefit from consuming a good or
service. In practice, the utility of a consumer is impossible to measure or quantify [34]. However,
utility theory is postulated in economics to explain consumer behavior based on the premise that
individuals can always rank their choices depending upon their preferences [35]. Various models
are used to indirectly estimate the utility of an economic good [34]. After observing the choices of
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individuals, assumptions about their preferences can be drawn. This can be represented analytic-
ally by a utility function, which is a mathematical formulation that ranks the preferences of the
individual in terms of the satisfaction di↵erent consumption bundles provide. The utility theory
makes the following assumptions [35]:

• Completeness: Individuals can always rank di↵erent combinations of consumption bundles
based on preferences.

• More-is-better: If an individual prefers consumption of bundle A o↵ goods to bundle B, and
is o↵ered a bundle with more of everything in bundle A, he will choose the last bundle.

• Mix-is-better: The mix of several goods is always preferred compared to stand-alone goods.
Suppose an individual is indi↵erent to two goods, meaning either choice by itself is not
preferred over the other. Then, the mix-is-better assumption says that a mix of the two will
always be preferred.

• Rationality: If bundle A is preferred to B, and bundle B is preferred to C, then A is also
preferred to C. Meaning that the rank ordering of goods is fixed, regardless of the context
and time.

2.7 Optimization

Optimization is a tool to find the best solution among other possible solutions. The objective
function quantifies the solution’s value and is either maximized or minimized, subject to a number
of constraints. The solution of an optimization problem may be found using graphical, algebraic,
or computer-aided tools. Recently, the use of computer-aided tools is becoming a common prac-
tice, as it is e↵ective for solving large-scale problems [36]. An example of an optimization problem
is minimizing the electricity cost subject to a given demand and energy system constraints. An
optimization model where the objective function is minimized can mathematically be formulated
as presented below. The objective function to be minimized is formulated in Equation 2a. Equa-
tion 2b and 2c are inequality and equality constraints, respectively. The variables x1, x2, . . . , xN

are decision variables and are the unknown variables to be optimized.

minimize
x1, . . . , xN

f(x1, x2, . . . , xN ) (2a)

subject to

g(x1, x2, . . . , xN )  0, (2b)

h(x1, x2, . . . , xN = 0 (2c)

If the objective function and all the constraints are linear, it is called a Linear Programming (LP)
optimization problem. Otherwise, the term Non-linear Programming (NLP) is used. The classific-
ation of the optimization problem also depends on the optimization variables. If all the variables
are integers, whole numbers, the optimization problem is classified as a Integer Programming
(IP) optimization problem. Moreover, an optimization problem involving continuous optimization
variables is referred to as a Mixed-integer Programming (MIP) optimization problem. Depend-
ing on the linearity or non-linearity of a MIP problem, it is classified as a Mixed-integer Linear
Programming (MILP) or a Mixed-integer Non-linear Programming (MINLP) problem [36].
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3 Related Research and Contributions in the Field

In this chapter, related research regarding the modeling of load profiles in rural areas, energy flex-
ibility, o↵-grid flexibility, and GUI development are presented. These topics are highly relevant for
investigating flexibility in o↵-grid solar and battery systems and incentivizing flexible consumption
behavior by the end users.

3.1 Modeling of Load Profiles in Rural Areas

This chapter is directly extracted from the preliminary project, as modeling load profiles is an
essential part of simulating microgrids in rural areas [8, p.16].

Stochastic approaches are often used to model residential load profiles to include ran-
dom consumer behavior [37]. These models are often conceived for on-grid systems in
industrialized countries where the detail level and availability are higher [38]. In re-
mote areas, the input data for these models are unavailable; if they are, the accuracy is
usually not acceptable. The systems in rural areas are generally o↵-grid, and the load
profiles are generated based on interview-based information without any measured data
[39]. Models for generating load profiles in rural areas need to be customized for energy
planning instead of forecasting the loads [40]. This means that systems in rural areas
need to be adaptable to appliances unavailable in the community when the surveys and
interviews are held [38]. Even if the surveys were more detailed, it is impossible to
catch possibilities and user behavior for non-yet-existing devices.

In [40], a bottom-up stochastic approach in order to include the information based
on interviews is developed. In the model, the uncertainties were considered by using a
parameter (randomly varying) to the self-declared activity patterns from the interviews.
Despite this, this model does not allow for extending of non-electric loads, such as
cooking and heating of water. Hence, in [38], the authors propose an open-source
bottom-up stochastic model to generate load profiles located in remote areas. Their
model is based on the approach in [40] with interview-based data, but the model has
an expanded approach where the degree of stochasticity is increased [38].

3.2 Modeling of Energy Flexibility on the Demand Side

In recent research, flexibility in terms of DSM is gaining considerable attention. Due to new techno-
logy and political goals, traditional electricity systems are undergoing significant changes. Hence,
a more active demand side will be crucial for future energy systems [7]. With the development of
smart grids, the communication between the consumer and power supplier is expected to increase
due to the availability of technology enabling bidirectional communication [41]. DR aims to adapt
the consumption in response to signals controlled by the utility company. Often in the form of
variability in electricity prices. This is beneficial for both parties. Consumers can reduce their
electricity bills, and utility companies benefit from smoothing out the peak demand, resulting in
increased system reliability and reduced generation costs.

In [7], the authors aim to decide the optimal plan for utilizing flexible loads in a building. The
authors use an integrated energy carrier approach based on the energy hub concept. The goal is to
capture multiple energy carriers, converters, and storages to increase the flexibility potential. An
energy hub is an integrated system where the inputs are multiple energy carriers, like natural gas
and electricity. The output of the energy hub is services to meet loads like electricity, heating, and
cooling [7]. [41] describes an optimization model to adjust the hourly load level in response to hourly
electricity prices. The objective is to maximize consumer utility based on a simple bidirectional
communication device between the consumer and producer. Such bidirectional communication
allows the consumer to receive hourly price information and adjust the consumption to minimize
the electricity price and maximize the consumer utility. The simple LP algorithm can easily be
implemented in the Energy Management System (EMS) of a household [41]. [42] aims to achieve
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optimal energy scheduling for DR across several residences and develop an algorithm for the smart
meters to attain optimal schedules. It is based on the fact that each residence has a smart meter
communicating with the various electric devices and the utility company.

There are multiple ways of modeling flexibility on the demand side. A price elastic inverse curve
can be used. However, this is a simplification and is insu�cient to describe the dynamic flexibility
on the demand side. It does not consider that changing the load in one period also a↵ects the
demand and decision-making in later periods [7]. In [41], the authors propose a real-time electricity
demand response model with minimum daily energy consumption constrained by minimum and
maximum hourly load levels. Another solution is used in [42], where the total load is divided into
three components to model the demand side flexibility. The first component is the ”must-run”
load, which is inflexible and must be covered. The second component is the adjustable load, where
the total demand must be met over the scheduling horizon but can be rescheduled. Finally, the
third component is the load that can be cut to the dissatisfaction of the end user [42].

In [7], the authors base the model on a combination of the methods used in [41] and [42]. The loads
are split into inflexible, shiftable, and curtailable load types. The inflexible loads are the loads
where the demand must always be met. Moreover, shiftable loads are the loads where the demand
must be met but can be moved within a given time interval. Within the shiftable loads [7] further
distinguish between shiftable profile load units, where the whole load profile must be shifted, and
shiftable volume load units, where the load profile can be changed within limits as long as the
total volume is met. Finally, the curtailable loads can be reduced at the cost of the consumer’s
utility. Reducible load units are curtailable loads where the demand can be reduced to a certain
level, while disconnectable load units are loads that are either turned on or o↵ [7]. Figure 4 depicts
the di↵erent load classes used to describe the flexibility in [7]. To model the curtailable loads [7]
introduce binary decision variables. The first variable �

start gets the value 1 in the period where
the load is started. Followingly, the variable �

end gets the value 1 when the curtailable load is
stopped. Finally, the variable �

run gets the value 1 in periods when the load is turned on and not
started or stopped in the same period [7].

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Forecast

Reducible

Shiftable profile

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Disconnectable

Shiftable volume

Figure 4: Illustration of the di↵erent load flexibility classes used in [7, p.366].

In [41], the consumer utility is initially assumed to be constant throughout the hours of the day.
Hence, the consumer obtains a positive profit if the energy prices are lower than a certain limit. This
results in an average weekly utility that is 13.20% higher than without a smart grid that enables
bidirectional communication and increased DR. However, a simplified constant utility function is
not generally the case. In another case study, to obtain more realistic results, [41] model the
consumer hourly utility function by four blocks. Each block is 75 MWh, with a decreasing utility
for each block. As a consequence of the adjusted utility function, the increased utility caused
by using a smart grid is decreased. The resulting weekly average utility is 4.99% higher than
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the result obtained without bidirectional communication when modeling the consumer utility in
di↵erent blocks [41]. In [42], the authors aim to maximize social welfare, defined as the consumer’s
utility from power consumption minus the total cost of electricity from all the residences. To model
the consumer’s utility, a convex disutility function Vt(pt) is used. The function is decreasing in
the power consumption pt by the considered device, presumably with Vt(pmax

t ) = 0. The disutility
function varies in time to reflect how the importance of operating a device depends on the time.
[7] consider the consumer’s utility by including the disutility cost for curtailment of loads in the
objective function. The cost is measured in [NOK/kWh], but the specific values are not discussed
in the paper [7]. In [31], a technique for combining residential demand utilizing a multi-class
queueing system is presented. The demand is divided into blocks, and the cost of the aggregated
appliances’ power consumption is minimized. As a consequence of the demand aggregation, the
complexity of the model is reduced.

This master’s thesis includes an optimization model with several similarities to the previously
discussed models. The flexibility on the demand side is modeled by dividing the total load into
di↵erent components, similar to what is done in [7] and [42]. However, the model only separates
the loads into must-run and curtailable load types. Equal to [7], binary decision variables are
introduced to model the curtailable loads. Another big di↵erence is that the model in this project
considers an o↵-grid system, and the electricity prices are irrelevant. However, the utility function
also plays a vital role in this model. Similarly to [7], a disutility cost for curtailment of loads is
considered in the objective function. Nonetheless, in our case, it is modeled to be linear with respect
to the curtailment. Further, the load profiles in this model is implemented for each appliance, unlike
the load profiles in [31]. The di↵erence is the number of residences, as [31] collects demand data for
several residents while in this case, only data for Eco Moyo is included. However, an aggregated
load profile would have decreased the complexity of the optimization model. The mathematical
formulation of the optimization model is further discussed in Chapter 4.3.

3.3 Energy Flexibility in O↵-Grid Systems

A case study regarding DSM of o↵-grid PV microgrids in Tanzania is presented in [32]. The mi-
crogrid consists of PV panels, a charge controller, batteries, and an inverter and serves electricity
to a village. The presented work proposes a machine-learning-based DSM system which guides
e↵ective power usage. The proposed method in [32] analyzes the dominant consumption pattern,
detects anomalies, and power usage guidance. In [43], a prioritization technique to secure a con-
tinuous supply of essential loads in rural areas is presented. The proposed strategy improves the
hours of energy served to the system by improving the SoC of the battery. Several studies invest-
igate DSM strategies with di↵erent optimization processes. However, these methods require high
programming skills which can be challenging to achieve with the basic EMS systems commonly
found in rural areas [43]. O↵-grid systems in rural areas are limited by the absence of economic
incentives and household responsibility [32]. Although the methods in [32] and [43], there is a lack
of research regarding DSM of o↵-grid systems in rural areas. Nevertheless, optimal power user
guidelines can be provided and visualized to encourage user flexibility, and in this way, the user
will understand the importance of the DSM.

3.4 Design of Graphical User Interfaces

To allow the users to interact with developed systems, a GUIs is essential. Interface design plays a
significant role in user engagement, as a complicated interface adversely a↵ects the user’s experience
[44]. According to [45], a practical interface design has several factors considered, such as the
motivation and intention of the users and the user’s cultural background. The ”digital divide” is a
common term for people from deprived socioeconomic backgrounds with limited technology access,
and developing countries are particularly a↵ected by this digital exclusion gap [46]. As each GUI
needs to adapt both the system’s technology and the end user, the development of an interface is
an iterative process. Hence, no standardized development procedures ensure completely satisfied
users and a successful interface [44].
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Computers have become more integrated into people’s everyday lives, which may be problematic
for older people. For people accustomed to growing up with technology, this interaction will
be more of a routine [44]. In [47], a GUI for an intelligent alerting system at the bedside is
developed with an early user-engaged design. The median age of the participants is 35 years, and
the purpose of this work is to ”elicit iterative design feedback from clinical end users on an early
GUI prototype display” [47, p.1]. As a result of the early user feedback, the design of the interface
was fundamentally changed both in the display and functionality. Additionally, the end users gave
feedback regarding colors, fonts, and size to improve the readability [47].

Traditionally, end user knowledge of doing changes in interactive systems has been limited to
manual changes to the system settings [48]. Software personnel is needed to develop or modify new
applications in an existing system. The di↵erence in needs of people makes software development
cycles time-consuming, expensive, and slow with software professionals [49]. Hence, the aim of
end user development is described in [49] as ”empowering end users to develop and adapt systems
themselves” [49, p.2] without any programming skills. This will make the evolution of GUIs more
customized to each user and increase the user’s experience.

Several studies have investigated EMS for microgrids. [50] proposes a system-level EMS for AC/DC
microgrids in residents tested in real-time in a laboratory environment. In [51], an advanced DSM
for an e↵ective EMS is developed for smart microgrids, and [52] proposes an optimized EMS grid-
interactive hybrid microgrid based on a smart Internet-of-Things (IoT) platform. Nevertheless,
none of these studies incorporate a GUI, which limits the level of human interaction with the
systems. Hence, [53] proposes an EMS based on IoT for microgrids, including a web-based GUI
and an Application Programming Interface (API). The user-friendly GUI allows the user to be
interactive, configure internal settings, and view graphics in the web application. Further, the
home screen visualizes the SoC of the BESS and the active PV generation in real time. The PV
production is based on the average power PV generation profile, including ± 5% forecasting error
[53]. At the bottom of the page, the total generation, operation cost, and daily consumption are
presented. Despite this, there is a lack of GUI for microgrids, especially for o↵-grid systems in rural
areas. In these areas, the availability of appliances is limited. To increase the interaction between
the microgrid and the users, this thesis proposes a GUI design draft for end user communication
to visualize essential data from the system and encourage flexible user behavior. Additionally, the
visualization of the PV production in the GUI draft in this thesis is motivated by [53].

13



4 Methodology

To investigate flexibility in o↵-grid solar and battery systems, an optimization model to minimize
the disutility cost of shifting loads is created in Pyomo. The model is based on system parameters,
load profiles, and solar production. Modeling of solar production is done using pvlib, an open-
source tool in Python with weather data from PVGIS, and the load profiles are simulated using the
RAMP model. Further, the simulated load profiles are modified to reflect the simplifications in the
optimization model. The resulting load profiles from the optimization model are used to simulate
the system dispatch in Prosumpy. Finally, an early-stage GUI is developed to access real-time data
from the inverter, propose optimal consumption behavior, and present theoretical trends from the
optimization model. Figure 5 illustrates the di↵erent stages of the modeling.

Interview based data 
collection

Load Profiles in 
RAMP

Optimization 
model in Pyomo

Simplified load profiles

PV production in pvlib

Irradiation data from 
PVGIS

System parameters

Optimized load 
profiles

System dispatch in 
Prosumpy

Propose optimal user 
behavior with GUI based on 

weather, climate, and 
seasonal variations

Figure 5: Flow chart of methodology and simulations.

4.1 PV Production in pvlib python

PV production in the system is modeled using the open-source tool pvlib python. The tool is
developed on GitHub with contributors from academia, national laboratories, and private industry.
It provides core functions based on algorithms from peer-reviewed publications [54]. Multiple solar
resource datasets can be included in pvlib, and in this project, the dataset PVGIS-SARAH2 is used.
It is a solar radiation dataset from the free PVGIS database. The data are based on geostationary
satellites covering Europe, Africa, and Asia [55]. The data resolution is hourly, and the dataset
includes radiation data, sun height, air temperature, and wind speed. To create a representative
dataset, TMY for the given geographical location of the system is utilized.

To calculate the DC output from the PV system, two core functions in pvlib are used. The func-
tion temperature.faiman() is used to calculate the temperature of the PV module based on the
Faiman model. The model calculates the temperature based on the total incident irradiance, air
temperature, and wind speed, using an empirical heat loss factor [56]. Finally, the core function
pvwatts dc() is used to calculate the DC output power Pdc, based on the cell temperature Tcell,
transmitted plane array irradiance Itr and rated power Pdc0, as shown in Equation 3. The para-
meters Iref and Tref represent the reference irradiance and temperature and are set to 1000 W

m2

and 25°C, respectively. �pdc is the temperature coe�cient and is used to model how the e�ciency
of the PV module decreases at a linear rate of the temperature rise [57].

Pdc =
Itr

Iref
Pdc0(1 + �pdc(Tcell � Tref )) (3)
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4.2 Load Profiles in RAMP

Load profiles for the di↵erent appliances are modeled using the open-source stochastic RAMP
model described in [38] and presented in Chapter 3.1. The model is implemented in Python and
designed to generate load profiles in remote areas. It consists of three main layers; User Type, User,
and Appliance, as illustrated in Figure 6. Due to the stochastic model, each User has a unique
load profile consisting of independent Appliances with di↵erent behaviors [38]. The generated load
profiles will di↵er from each model run and represent the unpredictable behavior of the users.

Figure 6: Graphical sketch of the modeling layers in RAMP [38, p.435].

Table 1 provides a short description of the input parameters used for the appliances when generating
load profiles with the RAMP model. The appliance belongs to a User. Each appliance is also
associated with a time window where it is likely to be switched on during the day. To be used
as an input in the optimization model described in Chapter 4.3, the load profiles are modified to
match the simplifications. To identify the specific behavior of each load, a unique load profile is
generated for each appliance. Each appliance is also only used once during the day and always as
long as the defined user time tot use. Hence, the stochastic parameter rt, and the total user time
are not subject to random variability. The parameter func time is also set to be equal to the user
time, as the appliance always will be switched on for the duration of the user time. The parameter
freq. describes the occurrence of an appliance during a week. The frequency of an appliance is
given by the number of days during the week divided by five if the device is only used during the
weekdays and by seven otherwise.

Table 1: Input parameters for each appliance in the RAMP model.

Parameter Description
user User to which the appliance is bounded.
m Number of appliances of the specified kind.
P [W ] Power of the specified appliance.
freq.[%] Weekly frequency for use of the specified appliance.
tot use[min] Total time the appliance is on during the day.
Window Time frames in which a random switch-on of the appliance can occur.
rt[%] Percentage of total use that is subject to random variability.
fixed If ’True’ all the n appliances are kept on after the switch-on event.
wd we type Defines if the appliance is associated with weekdays or weekends.
func time Minimum time the appliance is kept on after the switch-on event.
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An important feature in the RAMP model is the attribute to model duty cycles, which makes it
possible to simulate the behavior of a fridge [38]. The operating cycle of a fridge consists of cooling
and standby mode, which repeats itself throughout the day. During the cooling period, the fridge
consumes the rated peak power until the temperature inside the fridge is su�ciently low. Then
the power consumption is drastically decreased in standby mode until the temperature has risen
through a given threshold and the cooling mode is repeated [58]. The operation cycle of the fridge
depends on several factors, like size, e�ciency, outside temperature, isolation, and user patterns.
The warming process during the standby mode will be sped up if the fridge is opened regularly or
the isolation is insu�cient. To include the variations in the duty cycles the RAMP model includes
the attribute to model di↵erent cycles that can be associated with di↵erent time frames during
the day [38]. Figure 7 illustrates three default duty cycles modeled for a fridge in the RAMP
model. The duty cycles are categorized into standard, intermediate, and intensive, depending on
user behavior and ambient temperature.

(a) Standard Cycle (b) Intermediate Cycle (c) Intensive Cycle

Figure 7: Default duty cycles of a fridge modeled in RAMP [38].

4.3 Mathematical Formulation of the Optimization Model

The optimization model is created using the Pyomo software. It is a Python-based, open-source
optimization modeling language [59]. The goal is to decide the optimal scheduling of flexible loads
in o↵-grid solar and battery microgrids, by minimizing the disutility cost of shifting loads. It is
formulated as a MILP problem. Load profiles for all the appliances generated in RAMP and PV
production from pvlib are used as input to the model. Appliances are classified into two categories;
shiftable loads and non-shiftable loads. The shiftable loads are deferrable and can be rescheduled to
reduce the peak demand. These loads are typically charging of appliances. Non-shiftable loads can
not be modified and are typically lighting and cooking. This chapter describes the mathematical
formulation of the optimization model presented below. The Python script for the optimization
model is included in Appendix F.
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minimize
⌧
move
a,t , res pvt

TX

t=0

AX

a=0

Xa · ⌧move
a,t +

TX

t=0

res pvt a 2 A, t 2 T (4a)

subject to

T�⌧aX

i=0

�a,i � 1 = 0, a 2 A, (4b)

La,t �
tX

i=0

Pa · �a,i · na = 0, t = 0, . . . , ⌧a � 2, a 2 A, (4c)

La,t �
tX

i=t�⌧a+1

Pa · �a,i · na = 0, t = ⌧a � 1, . . . , T , a 2 A, (4d)

⌧
move
a,t � �a,t · |⌧ starta � t| · na = 0, t 2 T , a 2 A, (4e)

AX

i=0

TX

j=0

Di,j �
AX

k=0

TX

l=0

Lk,l = 0, (4f)

inv2loadt � (store2invt + pv2invt) · ⌘inv = 0, t 2 T, (4g)

pv2storet + pv2invt + res pvt � pvt = 0, t 2 T, (4h)

inv2loadt � (�t +
AX

i=0

Li,t) · k = 0, t 2 T, (4i)

inv2loadt � E
inv
max · ⌘inv  0, t 2 T, (4j)

pv2storet � E
bat
max  0, t 2 T, (4k)

SOCt � SOCstart = 0, t = 0, (4l)

SOCt � SOCt�1 � pv2storet · ⌘bat + store2invt = 0, t 2 T, (4m)

SOCt � E
bat
max  0, t = 0, . . . , T � 1, (4n)

SOCt � 0.2 · Ebat
max � 0, t = T (4o)

4.3.1 Objective Function

Equation 4a formulates the objective function that minimizes the total disutility cost of shifting
loads, in addition to the residual PV production. Xa is the disutility cost of moving the appliance
with index a one time step. ⌧

move
a,t is a decision variable and describes how many time steps

appliance a has been moved. Hence, the disutility function is assumed to be linear and increasing
in the curtailment time. The residual PV production is minimized to ensure that the system
dispatch corresponds to the Prosumpy model described in Chapter 4.4, where the dispatch of the
system is performed in such a way that the self-consumption is maximized.

4.3.2 Shiftable Load Units

�a,t is a binary variable that controls the shiftable loads. The variable gets the value 1 in time step
t when appliance a is switched on. Equation 4b controls that each load only starts once during the
modeled time horizon. The limit T � ⌧a is set so that the load always will be able to run for the
whole user time. Equation 4c and 4d set the optimized load profile for appliance a in time step
t to be equal to the rated power of the appliance from the starting time when �a,t has the value
1, and for the whole user time. The decision variable ⌧

move
a,t is calculated in Equation 4e, based

on the binary decision variable and the initial start time of appliance a. Note that the variable
is assigned a value only during the time step when the appliance a is switched on. For all other
time steps, it is assigned the value 0. The decision variable ⌧

move
a,t also considers the quantity of

appliance a. The constraint defined in Equation 4f ensures that the shiftable load is moved and
never cut. After optimizing, the total shiftable load is equal to the initial shiftable demand.
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4.3.3 Power Balances

The power input and output of the internal systems must be balanced. Equation 4g is used to
balance the power input from the PV module and the batteries with the output from the inverter
to the load. The e�ciency of the inverter is also considered. Equation 4h balance the input to
the PV module with the output to the batteries, inverter, and the residual energy. The power
balance for the load is formulated in Equation 4i, and controls that the output from the inverter is
equal to the non-shiftable load and the total shiftable load for all the appliances. k is a conversion
parameter that converts the values from W to kWh.

4.3.4 Capacity Constraints

The constraints formulated in Equation 4j and 4k ensure that the energy flows in the system are
within the capacity of the components. Equation 4j limits the output from the inverter to the load
by the rated maximum output, including the e�ciency of the inverter. The input to the batteries
from the PV module is limited by the capacity of the batteries in Equation 4k.

4.3.5 Battery Constraints

The initial SoC of the battery in time step t = 0 is given by the parameter SOCstart, as formulated
in Equation 4l. For the rest of the time steps, the SoC is given by the SoC in the previous time step,
and the input from the PV module, and batteries, formulated in Equation 4m. Equation 4n limits
the maximum SoC of battery by the maximal capacity. The constraint formulated in Equation 4o
ensures that the SoC of the battery is greater than, or equal to 20% at the end of the time horizon
of the optimization. It is added in order to prevent insu�cient battery capacity for the next day.

4.4 System Dispatch in Prosumpy

This chapter describes the system dispatch simulated in Prosumpy. The initial SoC is given as
an input parameter to the model. The simulations will be used to analyze the annual dispatch
of the system. The total covered demand, uncovered demand, energy surplus, amount of energy
provided by the battery, and the average DoD will be investigated for the system before and after
optimization. If the optimization model fails to fulfill the constraints for a day, the initial load
profile will be considered when analyzing the system dispatch after optimization. The same model
is used in the preliminary project, and the following paragraph is rewritten from the project [8,
p.25-26].

The system is simulated in Prosumpy using annual PV data from pvlib and demand data from
load profiles generated in RAMP. Further, the PV data and the demand are interpolated to have
15-minute time steps. The initial system in the model is grid-connected, and the variables are
changed to simulate an o↵-grid system. Figure 8 visualizes the system and the corresponding
variables in the model. ”energySurplus” and ”notCoveredDemand” are changed variables and
were initially related to import and export to the grid. Additionally, the storage dispatch model
aims to maximize self-consumption. When the PV power is insu�cient to meet the load, the
battery is fully discharged, and when the PV power exceeds the load, the battery is fully charged
[60]. Furthermore, the total surplus energy of the system is calculated as the remaining energy from
the PV production after subtracting the self-consumed energy. The demand that is not covered by
either PV or storage is calculated as the remaining energy of the total demand minus the energy
provided by the inverter.
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Figure 8: Overview of the system with corresponding variable names in Prosumpy.

Additionally, the maximum capacity of the inverter is implemented in the model. The power
supplied to the load is not limited by the maximum capacity of the inverter. To comply with the
limit, if the power exceeds the inverter’s capacity, the energy from the storage is now reduced.

4.5 Development of the Graphical User Interface

To incentivize user flexibility, the surplus energy of the system has to be visualized in an easily
understandable way in a GUI. Usually, inverter displays are hard to understand for non-technical
sta↵. Therefore, the interface will include several features to increase the consumers’ understanding
of the energy available and suggest flexible behavior. The GUI is a first-stage proposal developed
in Python. An essential part of the development is optimize the platform’s functionalities based on
feedback from the end users. The development of the GUI is divided into two parts; the backend
and the frontend of the interface. Automatic download of the real-time data is included in the
backend and the design of the platform represents the frontend. Chapter 4.5.1 and 4.5.2 presents
the backend and the frontend development, respectively. Figure 9 visualizes the di↵erent interface
development stages. It is essential to acknowledge that the GUI is currently an initial draft, and
future improvements are necessary before the interface is usable for the end users.

GUI 
Automatic download of 
real-time data from the 

system

System parameters  

User interaction

Increases knowledge 
of the system and 
suggests flexible 

behavior

Username and 
password to the server 

connected to the 
inverter

Figure 9: The di↵erent stages of GUI development.
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4.5.1 Backend

A setup for automatically downloading real-time data from the system is presented in this chapter.
To access the system’s data, the inverter is assumed to be connected to an online server. It is
necessary for the GUI to automatically download real-time data to ensure accurate results.

Selenium is a Python package that interacts with a web browser in Python scripts automatically
[61]. Using Selenium, the script of the GUI automatically signs in and finds the correct elements
for downloading real-time data by using the html code of the server. The utilized web driver is
Google Chrome, where the driver allows one to choose the file path of the downloaded file as well
as delete files with similar names to prevent the GUI from using outdated data. Additionally,
the automation script for downloading real-time data can be run in ”headless” mode, where the
automation is invisible to the user. In the need for a validation code before signing in, a while
loop is used to continue reading the validation code until it is correct to prevent incorrect code
insertion. In order to keep the username and password confidential, the credentials are stored in
a configuration file, and the Python module ”configparser” is used to read the file. The Python
script is presented in Appendix G.

4.5.2 Frontend

The overall design of the GUI is developed in Tkinter, a standard interface package in Python.
In Tkinter, a main window, ”the root”, is created, and additional features, such as pictures, text,
and buttons, are added to the root. In this case, di↵erent buttons are made with corresponding
functionality. The act of clicking a button results in the closure of any concurrently open buttons,
thereby enhancing the user-friendliness of the platform. As a main rule, high-power appliances are
not allowed to be used simultaneously, as this most likely will exceed the maximum capacity of the
inverter. Hence, the GUI do not take care of previously requested appliances when presenting the
percentage of used capacity when an appliance is requested. Theoretical trends are also included to
incorporate the results from the optimization model from Chapter 4.3. Both the questions to the
end users and the theoretical trends will enhance user flexibility in the system. Figure 10 visualizes
the buttons described in the following paragraphs. The provided buttons o↵er suggestions for
di↵erent functionalities that can be incorporated into a GUI designed for o↵-grid systems in rural
areas. In Appendix H, the Python script for the frontend is presented.

Solar Production and demand

State of charge

Usage of high-power appliance 1

Usage of high-power appliance n

Theoretical trends and consumption 
behavior

Figure 10: Visualization of the di↵erent functionalities in the GUI draft.
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Solar Production and Demand

The first button visualizes today’s solar production and demand, and shows the percentage of
capacity used at the current time. As the real-time PV production is curtailed, the production
of the current day is based on the production modeled in pvlib based on a TMY, including a
forecasting error of ± 5%. However, the demand is real-time data from the online server. An
example of the visualization of the PV production and the demand with fictive values is given in
Figure 11.

Figure 11: An example of visualization of PV production and demand in the GUI.

State of Charge

The second button visualizes a graph of the SoC of the day, and the current SoC is presented.

Usage of High-Power Appliances

The functionality of the third button focuses on assessing the possibility of utilizing a high-power
appliance, such as an iron, a kettle, or a drill, at the given time. Each appliance will have its own
button. The system retrieves the latest tracked SoC and demand to accomplish this. Equation 5
calculates the available energy in the battery and Equation 6 calculates the energy of using the
specific appliance for time t.

Ebat = Cbat · ⌘bat · SOCnow (5)

Eappliance = Pappliance · t (6)

If Equation 7 is true, the text: ”You can use the appliance without any problem right now!” is
printed, and the percentage of energy used, including the appliance performed, is presented. If
not, the text: ”Sorry, but there is not enough capacity to use the appliance now... Try again in 15
minutes!” is printed.

Ebat > Eappliance & (Dnow + Pappliance < Cinv · ⌘inv) (7)

Theoretical Trends and Consumption Behavior

Based on the optimization model outlined in Chapter 4.3, the sixth button will display the the-
oretical trends of the current period. Together with the real-time data from the system, the end
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users will be given a comparison of the real-time data and the theoretical trend, and the input to
the optimization model will be the current date and the battery’s SoC at the beginning of the day.
This feature will be useful for the end users, especially during the seasons when the PV production
is limited.
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5 Case Study: Eco Moyo Education Centre in Kenya

Eco Moyo is a Norwegian/Kenyan charity project o↵ering free primary education to 240 children in
the Dzunguni village and is the case study of this master’s thesis. The Dzunguni village is located
close to Kilifi on the coast of Kenya and is small and impoverished. Most of the inhabitants live in
mud houses without access to electricity or running water. Eco Moyo is crucial in order to provide
primary education to the underprivileged children in the village and help the inhabitant out of
poverty. In March 2022, the school received a new solar and battery o↵-grid system to supply basic
electricity needs in the teacher’s area, the Sta↵ Room. As a part of the master’s thesis, a field trip
to Eco Moyo was conducted in April/May 2023. This fieldwork was a continuation of the previous
field trip to Eco Moyo in November 2022, which was carried out in conjunction with the preliminary
project. In this chapter, relevant information about the existing system, relevant buildings, and
seasonal variations are presented. Further, the preliminary project is presented, which establishes
an essential foundation for the thesis. Following, the fieldwork is presented, with price estimates
for a new system and an extension of the system, flexibility ranking of appliances, availability
of appliances in the area, additional findings related to user consumption, and evaluation of the
GUI. Finally, the input data for the methodology described in Chapter 4 are presented for this
specific case study. Three di↵erent scenarios are based on this input; Scenario 0, Scenario 1, and
Scenario 2, which involve implementing zero, one, and two additional batteries in the existing
system, respectively.

5.1 Existing Solar and Battery O↵-Grid System

The microgrid at Eco Moyo consists of seven solar panels of 450 Wp, four batteries of 200 Ah, and
an inverter with a capacity of 3.50 kW. Today, the system provides the Sta↵ Room with electricity
and powers a fridge, lighting, PCs, tablets, phones, a printer, a fan, and a TV. Figure 12 o↵ers an
overview of the school area at Eco Moyo. The Sta↵ Room is in the bottom right corner, with the
old PV system on the roof. This is now moved to the kitchen area and power lights. However, the
old system is unreliable, and the remaining lifetime is unknown. Table 2 presents the component
parameters of the new system installed in the Sta↵ Room. The remaining buildings use SHSs to
provide electricity for lighting. However, the battery capacity is limited to charging a few phones
and providing lighting during the evening.

Figure 4: Existing clusters at the property.

Source: J. Lervik 2022.

The figure shows the cluster containing the security building, student dorms, and kitchen marked
in green, which is next to the entrance at the site. The cluster including the housing for the director
and the belonging storage is marked in red, while the area for visitors is shown in blue. Finally,
the cluster including all buildings for school activities is shown in yellow.

Architecture

The architecture at the site is the result of a broad architectural collaboration. Adaptation to the
local climate was an important premise in the school building designs, and they allow for natural
lighting and ventilation. They provide light and air through open structures, while at the same
time o↵ering protection from rain and the sun. The natural ventilation in the buildings, through
liftings in the roofs to let the heat escape, is essential due to the strong heat at the site (EWB
et al. 2020).

Figure 5: Drone picture of parts of the property.

Source: EcoMoyo 2022a.

7

Figure 12: Overview of The Sta↵ Room and Classrooms at Eco Moyo [62, p.44].
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Table 2: Components of the PV system installed at Eco Moyo in March 2022 [63].

Description Qty. Capacity
PV Panels 7 450 Wp
Hybrid PV O↵-Grid Inverter 1 3.50 kW
Tubular Gel Battery 4 200 Ah/12.0 V

The new PV system is placed on the roof of Class 5, on the right side of the Sta↵ Room in
Figure 12. It was decided to place the panels on the roof of Class 5 due to the suitable tilt angle,
azimuth, and location close to the Sta↵ Room. The system consists of seven panels with a peak
power of 450 Wp connected in series. Resulting in a total peak power of 3, 150 W. The tilt angle
and azimuth of the panels are 6.2° and �50°, respectively [63]. Figure 13 show the PV panels on
the roof of Class 5, and the datasheet is included in Appendix A.

Figure 13: The PV panels located on the roof of Class 5 at Eco Moyo.

A battery pack of four tubular gel batteries is installed in the Sta↵ Room. Each battery has an
output voltage of 12 V and a capacity of 200 Ah. They are connected in series, resulting in a
total output voltage of 48 V and a capacity of 800 Ah. Appendix C includes the datasheet of
the batteries. Figure 14 show the inverter installed in the Sta↵ Room. It is a hybrid PV o↵-grid
inverter from the brand Growatt. It has an integrated MPPT controller and a rated output of 3.50
kW. The datasheet of the inverter is included in Appendix B.
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Figure 14: The inverter located in the Sta↵ Room at Eco Moyo.

Growatt also o↵ers an online server called ShineDesign, with real-time data from the inverter. It
displays battery percentage, PV production, and consumption, among other system parameters.
A screenshot of the online server is provided in Figure 15.

Figure 15: A screenshot of the online server, ShineDesign, connected to the inverter.

5.2 Overview of Relevant Buildings

This chapter provides an overview of the relevant buildings at Eco Moyo. In order to investigate
the possibility of incentivizing user flexibility, the system is extended to provide electricity to the
Sta↵ Court and O�ce Building. Chapter 5.2.1, 5.2.2, and 5.2.3 outline the buildings and their
designated areas of use.
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5.2.1 Sta↵ Room

As previously mentioned, the microgrid at Eco Moyo is located in the Sta↵ Room. The building
is located close to the classrooms and is frequently used by the teachers during the day. There
are currently 12 teachers working at Eco Moyo, and six of them are living at the school. Until
the afternoon, the building is used as an o�ce, where the teachers charge their computers and
phones. During the evening, the building is used as a hangout area by the teachers living at the
property. They often gather in the Sta↵ Room to watch TV or charge their belongings during
the evening. The building is also used during the weekends. However, some of the teachers leave
the property during the weekends, resulting in reduced activity. During the longer vacations, the
teachers usually leave the property, and the activity in the Sta↵ Room is limited. Figure 16 shows
the outside of the Sta↵ Room building.

Figure 16: The outside of the Sta↵ Room at Eco Moyo.

5.2.2 Sta↵ Court

The Sta↵ Court accommodates the six teachers living on the property. It is located close to the
Sta↵ Room and consists of six simple bedrooms and an outside hangout area. Currently, the only
electricity supply in the building is SHSs providing lighting. However, by installing a cable from
the Sta↵ Room to the Sta↵ Court, it would be possible to provide electricity in this building as
well. Conversations with the founder during the field trip in November 2022 revealed that it is
desired to increase the standard of living for the teachers. This will make the teacher positions
alluring and attract talented and motivated teachers. Today there is an issue that the teachers
quit if they are o↵ered a position at a public school where the terms are better. Hence, increasing
the living standard at the Sta↵ Court will help to increase the quality of education at Eco Moyo.
Figure 17 shows the outside of the Sta↵ Court.
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outsides of the Sta↵ court and the Sta↵ Room are respectively presented in Figure 26 and Figure
27.

Figure 26: Outside Sta↵ Court.

Figure 27: Outside Sta↵ Room.

5.6 Security building

Close to the school entrance, there is a security building. A guard uses this building from 19:00 to
07:00 consistently throughout the year. Figure 28 presents the outside of this building.
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Figure 17: The outside of the Sta↵ Court at Eco Moyo.

5.2.3 O�ce Building

The O�ce Building is located straight across from the Sta↵ Room and contains two o�ces. There
is no electricity supply in the building, but due to the short distance from the Sta↵ Room, an
extension cord is sometimes used to power a printer. However, this solution is not sustainable
due to the fire risk. A possible solution is to install a cable from the Sta↵ Room to the O�ce
Building. During the field trip in November 2022, the School Director expressed the need for a fan
and lighting in the o�ce. Figure 18 shows the outside of the O�ce Building.

Figure 18: The outside of the O�ce Building at Eco Moyo.

5.3 Seasonal Variations

Eco Moyo is situated in Kilifi, a coastal county characterized by a tropical climate that experiences
distinct wet and dry seasons. Primarily, the rainfall seasons are divided into two; ”long rains”
and ”short rains” season. The long rain season is the period from March through May, while the
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short rain season occurs from October through December. During January and February, Kenya
experiences the dry season, with dry weather and sunny conditions. The major rainfall season is
the long rain season which extends across large parts of Kenya [64]. Figure 19 shows the rainfall
averages and precipitation in Kilifi, displaying the di↵erent seasons clearly.

Figure 19: Historical rainfall averages for Kilifi [65].
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5.4 Preliminary Project

Simulating the existing o↵-grid system at Eco Moyo was a crucial aspect of the preliminary project.
Realistic load profiles for the Sta↵ Room were modeled using the RAMP model and data collected
during a field trip to Eco Moyo in November 2022. The production of the PV system was modeled
using pvlib and input data from PVGIS. Di↵erent scenarios were simulated using Prosumpy to
test the behavior of the microgrid and its ability to sustain additional loads.

The initial scenario in the preliminary project describes the appliances present in the Sta↵ Room
when the project was conducted. The aim of the scenario was to analyze how much of the system’s
capacity was utilized with the current loads. The loads present at the time were indoor and outdoor
lighting, charging of phones, tablets, and laptops, a TV, and a fan. Figure 20 depicts the weekly
results in Prosumpy from the simulation of week 23 in June 2019. This is during the cold season,
as described in Chapter 4.2, where the PV production is at the lowest during the year. The weekly
PV production, power consumption, SoC, and surplus energy are illustrated. The yellow graph
presents PV production; the black presents power consumption; the grey present SoC, and the
green presents energy surplus. It can be seen that the peak loads are generally seen during the
day and that the battery discharge level is insignificant. The energy surplus is large during the
day when the PV production is high.

Figure 20: Weekly results in Prosumpy for the cold season (week 23) from the base case the
preliminary project.

The simulations from the preliminary project show the immense potential for implementing addi-
tional loads without any di�culties in the existing microgrid at Eco Moyo. Based on the results
from the project, a fridge was implemented. Today there is only electricity in the Sta↵ Room, and
there is a lot of surplus energy being wasted.
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5.5 Fieldwork

The fieldwork in November involved data collection, observations of user behavior, and the oper-
ation of the existing system. The second field trip in April/May 2023 focused on obtaining price
estimates for extending the existing system and implementing a new system for electrifying other
buildings at the school. Additionally, meetings with the teachers were performed to get end users’
opinions about flexible behavior proposals, flexibility ranking of appliances, and feedback on the
GUI proposal. The availability of di↵erent appliances close to Eco Moyo was also examined to get
a reasonable insight into appliances to include in the extension of the system. Di↵erent peaks in
ShineDesign corresponding to high-power appliances were observed.

5.5.1 Extension of the Existing System

The existing microgrid at Eco Moyo is capable of providing electricity to several buildings at the
school due to its capacity. Several teachers have expressed a desire for outside lights for the school’s
outdoor area and the toilets in the Sta↵ Court. Hence, a price estimate for extending the system
from the Sta↵ Room to the Sta↵ Court is provided. The price estimate includes all the essential
supplies required for installing sockets, indoor-, and outdoor LED in the teachers’ rooms, and the
result is presented in Table 3. The price is converted from KES to USD with a conversion rate
of 0.0072, and the total cost of the extension is approximately 600 USD. A more detailed list of
supplies is provided with local valuta in Appendix D.

Table 3: Description of the price estimate for the extension of the system.

Description Qty. Total Price [USD]
Single sockets 6 10.80
Twin sockets 6 18.14
Cables - 257.8
LED bulbs 7 W 12 17.28
Light switch 6 10.37
Distribution board 1 38.16
Other necessary supplies - 238.8

5.5.2 New System in the Sta↵ Court

An alternative approach to electrify the Sta↵ Court is to introduce a new o↵-grid system designed
for similar loads as the existing system in the Sta↵ Room. However, the new system is designed
for a user time for fans of 10 hours per day, which is significantly higher than observed during the
fieldwork. As a result, the number of batteries is doubled compared to the system in the Sta↵
Room. Further description of the new system is presented in Table 4, with an estimated total
cost of approximately 8500 USD. In addition, the cost of an extra battery is estimated to cost
approximately 600 USD, covering installation labor and transportation. The system is proposed
by a local company.

Table 4: Description of the price estimate for the new system.

Description Qty.
PV module 6
Battery 8
Inverter and associated equipment 1
MPPT charge controller 1
Installation materials 1
Installation labor 1
Transport and logistics -
Other necessary supplies -
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5.5.3 Flexibility Ranking of Appliances

To better understand which appliances the end users of the system value the most, a scheme of all
the appliances was given to the teachers. This scheme aimed to get a ranking of the importance
of the appliances, where 1 is the most important, and 11 is the least important. This ranking list
is essential to establish the flexibility of the appliances, where the least flexible appliance will have
the highest disutility cost. The ranking is presented in Table 5.

Table 5: Ranking of the importance of the appliances from the teachers.

Appliance Ranking of Importance
Phone 1
Laptop 3
TV 2
Printer 9
Tablet 4
Iron 5
Kettle 7
Drill 11
Speaker 6
Radio 8
Fan 10

5.5.4 Availability of Appliances in Kilifi

As part of the fieldwork, an investigation was conducted into various appliances’ availability and
power ratings. The examination involved assessing the appliances found at the nearest supermarket
in Kilifi, which featured a range of appliances with di↵erent power ratings, such as fridges, kettles,
irons, and speakers, presented in Table 6. An iron is currently present at the school, but the power
rating is 2000 W. However, an iron with a lower power rating is found at the supermarket. The
teachers also wished for new speakers, as the old ones are broken. Unfortunately, the speakers
found at the supermarket are of bad quality, but the power rating is used as a reference.

Table 6: Appliances with corresponding power ratings found in Kilifi.

Appliance Power Rating [W]
Fridge 90
Iron 1200
Kettle 2200
Speaker 100

5.5.5 Additional Findings Related to User Consumption

When examining the existing appliances in the Sta↵ Room, the iron was tested on the system.
The objective was to detect the result in the online server, ShineDesign, and the result is presented
in Figure 21a. In the figure, a distinct peak around 10:00 indicates the usage of the iron. The
following observation is provided in Figure 21b where a peak is observed around 7:00. This peak
aligns with the power rating of a drill. Notably, the drill has a power rating of 500 W, whereas the
fridge operates at 90 W, which corresponds to the peak. Furthermore, the demand curves depicted
in both figures clearly illustrate the duty cycles of the installed fridge. Due to the continuous
recording of real-time data when loads consume energy, the horizontal axis of Figure 21a and 21b
shows di↵erent time steps.
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(a) PV production and demand from May 10th. (b) PV production and demand from May 19th.

Figure 21: Observations of di↵erent energy peaks at Eco Moyo with data from ShineDesign.

5.5.6 Evaluation of the Graphical User Interface

According to the teachers, the inverter display is hard to understand, and they were favorable to
a user-friendly GUI. The inverter’s display, visualized in Figure 22, presents di↵erent parameters
regarding PV production, load, and storage, and the end users do not consider these parameters as
crucial. Thus, the developed GUI draft should present the information in an understandable way.
The teachers emphasized the importance of presenting inverter data in percentage form, and they
responded positively to the proposal regarding optimal user behavior. Hence, the GUI is designed
to include various buttons that allow end users to inquire about the current feasibility of using
appliances such as a kettle, an iron, or a drill. They can then receive a simple yes or no response.
The developed GUI draft is more interactive than the ShineDesign server, which they do not have
access to.

Figure 22: Display of the inverter at Eco Moyo.

5.6 Input Data

The input data for Eco Moyo for the methodology, described in Chapter 4, is presented in this
chapter. This includes the site parameters for PV production in pvlib, input data for generat-
ing load profiles in RAMP, system parameters for the dispatch in Prosumpy, and input to the
optimization model. Furthermore, three di↵erent scenarios are simulated, and the load profiles
are optimized. Scenario 0 considers the existing system at Eco Moyo, presented in Chapter 5.1.
Scenarios 1 and 2 consider the system with one and two additional batteries of 200 Ah, respect-
ively. The e↵ect of the increased battery capacity is investigated in order to see how it a↵ects the
flexibility in the system, and the possibility to reduce uncovered demand.
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5.6.1 PV Production in pvlib python

To create a representative dataset for the PV production modeled in Chapter 4.1, a TMY based
on data from 2005-2020 is generated. Table 7 presents the years the data for each month in the
TMY is collected from. The location and site parameters of Eco Moyo are listed in Table 8.

Table 7: Data used for a TMY based on data from 2005-2020.

Month Year
January 2005
February 2015
March 2007
April 2006
May 2014
June 2010
July 2006
August 2012
September 2013
October 2014
November 2015
December 2008

Table 8: Location input parameters for Eco Moyo in pvlib.

Parameter Value
Latitude 3.5°S
Longitude 39.8°E
Altitude 58 m
Timezone GMT+3
Slope 6.8°
Azimuth -50°

5.6.2 Load Profiles in RAMP

When generating load profiles at Eco Moyo, only the User and Appliance layers in RAMP are used.
The buildings at the school are considered di↵erent Users while the appliances in each building are
a part of the Appliance layer. Table 9 shows the rated power of the di↵erent appliances modeled
at Eco Moyo. As discussed in Chapter 4.2, a unique load profile is generated for each appliance in
order to identify the specific behavior of each appliance. However, some of the appliances in the
Sta↵ Room and Sta↵ Court are combined to reduce the run time of the optimization model. The
power ratings of the di↵erent appliances are based on the fieldwork.

Table 9: Power rating of the appliances modeled at Eco Moyo.

Appliance Power Rating [W]
TV 70
Phone 7
Laptop 60
Fan 50
Indoor LED 9
Outdoor LED 9
Tablet 15
Fridge 90
Iron 1200
Printer 200
Kettle 2200
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In [63], an annual load profile for Eco Moyo is generated for the entire school with additional
appliances. Di↵erent seasons are established to include variations in user behavior due to the
change in temperature. The year is divided into three seasons dependent on the monthly average
temperature, presented in Table 10. In addition to the variations in temperature, the user behavior
at the school also depends on the school and visitor activity. Table 11 presents the di↵erent periods
during a year based on the seasons, school, and visitor activity. By associating di↵erent parameters
with the appliances in each period, annual load profiles can be generated using the RAMP model.

Table 10: Climate seasons defined by monthly average temperatures [63].

Season Type Temperature [°C]
Hot 27.1 - 28.5
Warm 25.1 - 26.3
Cold 24.1 - 24.9

Table 11: Time periods for the RAMP model input to establish annual load profiles [63].

Start date End date Climate Season School Activity Visitor Activity
January 1 January 31 Hot Regular High
February 1 February 7 Hot Mid-term vacation High
February 8 March 31 Hot Regular High
April 1 April 30 Hot Vacation High
May 1 May 31 Warm Regular Low
June 1 July 31 Cold Regular Low
August 1 August 31 Cold Vacation Low
September 1 September 23 Warm Regular Low
September 24 October 31 Warm Regular High
November 1 November 15 Hot Regular High
November 15 December 31 Hot Vacation High

The input parameters for the fridges at Eco Moyo are based on a specific fridge from a retailer in
Kilifi, as mentioned in Chapter 5.5.4. It has a peak power of 90 W and a yearly consumption of 231
kWh. A similar fridge is now installed at the school. In order to achieve the rated annual energy
consumption, the default duty cycles in the RAMP model are modified, as illustrated in Figure 23.
The duration of the standby mode is increased compared to the default cycles in Figure 7. Further,
the power consumption is increased to 7 W, compared to 5 W [38]. Table 12 shows the duration of
the di↵erent duty cycles, and Table 13 shows what timeframes the di↵erent cycles’ are associated
with, varying with the hot, warm, and cold seasons. All the modeled fridges at Eco Moyo are
based on the same input parameters and duty cycles.

(a) Standard Cycle (b) Intermediate Cycle (c) Intensive Cycle

Figure 23: Duty cycles of the fridges modeled at Eco Moyo.
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Table 12: Duration of the duty cycles of the fridges modeled at Eco Moyo.

Cycle Standby [min] Cooling [min]
Standard 55 10

Intermediate 50 15
Intensive 45 20

Table 13: Seasonal variations in the duty cycles of the fridges modeled at Eco Moyo.

Season Type Standard Cycle Intermediate Cycle Intensive Cycle
Hot 00:00 - 05:59 06:00 - 07:59 08:00 - 19:00

19:01 - 23:59 - -
Warm 00:00 - 06:59 07:00 - 10:39 10:40 - 16:00

16:01 - 23:59 - -
Cold 00:00 - 04:00 06:00 - 18:00 -

18:01 - 23:59 - -

The appliances with belonging parameters for the Sta↵ Room, Sta↵ Court, and O�ce Building
are presented below.

Sta↵ Room

The seasonal variations of the loads are mainly considered in the Sta↵ Room. This is the only
building with access to electricity today, and where there are observations of variations during the
di↵erent periods. The Sta↵ Room is also the only building where the demand is a↵ected by visitor
activity. Hence, the number of phones and laptops varies with the di↵erent time periods. The
Indoor LED, outdoor LED, and fridge are fixed loads, which means that the appliances are always
switched on during the entire time window each day. The load profiles of the phones and laptops in
the Sta↵ Room are simplified to include several appliances in each load profile. It is modeled four
di↵erent load profiles for the phones, where one includes four phones and the others include two
phones each. For the laptops three di↵erent load profiles are modeled. Two of them include two
laptops, and the third include four. Table 14, 15, and 16 present the input data for the appliances
in the Sta↵ Room during the hot and warm season with high visitor activity, vacations, and the
cold and warm season with low visitor activity, respectively.

Table 14: Input data for the Sta↵ Room - hot and warm season - high visitor activity.

Weekdays Weekends
Appliance P freq. tot use m Window 1 Window 2 m Window 1 Window 2
Indoor LED 9 100 - 2 06:00 - 07:00 18:00 - 23:59 2 06:00 - 07:00 18:00 - 23:59
Outdoor LED 9 100 - 2 06:00 - 07:00 18:00 - 23:59 2 06:00 - 07:00 18:00 - 23:59
Fridge 90 100 - 1 00:00 - 23:59 - 1 00:00 - 23:59 -
Phone 7 100 120 10 07:00 - 19:00 - 6 07:00 - 19:00 -
Laptop 60 100 120 8 07:00 - 19:00 - 4 09:00 - 20:00 -
TV 70 100 240 1 16:00 - 23:59 - 1 10:00 - 23:59 -
Printer 200 43 30 1 07:00 - 19:00 - 1 07:00 - 19:00 -
Tablet 15 40 120 10 10:00 - 16:00 - - - -
Iron 1200 43 30 1 12:00 - 15:00 - 1 12:00 - 15:00 -
Kettle 2200 100 15 1 10:00 - 12:00 14:00 - 17:00 1 10:00 - 12:00 14:00 - 17:00
Drill 500 60 120 1 07:00 - 16:00 - 1 - -
Speaker 100 100 120 1 15:00 - 18:00 - 1 12:00 - 18:00 -
Radio 36 100 120 1 16:00 - 22:00 - 1 12:00 - 22:00 -
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Table 15: Input data for the Sta↵ Room - vacation and mid-term vacation.

Appliance P freq. tot use m Window 1 Window 2
Indoor LED 9 100 - 2 06:00 - 07:00 18:00 - 23:59
Outdoor LED 9 100 - 2 06:00 - 07:00 18:00 - 23:59
Fridge 90 100 - 1 00:00 - 23:59 -
Phone 7 100 120 6 07:00 - 19:00 -
Laptop 60 100 120 2 07:00 - 19:00 -
TV 70 100 240 1 10:00 - 23:59 -
Printer 200 43 30 1 07:00 - 19:00 -
Tablet - - - - - -
Iron 1200 43 30 1 12:00 - 15:00 -
Kettle 2200 100 15 1 10:00 - 12:00 14:00 - 17:00
Drill - - - - - -
Speaker 100 100 120 1 12:00 - 18:00 -
Radio 36 100 120 1 12:00 - 22:00 -

Table 16: Input data for the Sta↵ Room - cold and warm season - low visitor activity.

Weekdays Weekends
Appliance P freq. tot use m Window 1 Window 2 m Window 1 Window 2
Indoor LED 9 100 - 2 06:00 - 07:00 18:00 - 23:59 2 06:00 - 07:00 18:00-23:59
Outdoor LED 9 100 - 2 06:00 - 07:00 18:00 - 23:59 2 06:00 - 07:00 18:00-23:59
Fridge 90 100 - 1 00:00 - 23:59 - 1 00:00 - 23:59 -
Phone 7 100 120 8 07:00 - 19:00 - 4 07:00 - 19:00 -
Laptop 60 100 120 8 07:00 - 19:00 - 4 09:00 - 20:00 -
TV 70 100 240 1 16:00 - 23:59 - 1 10:00 - 23:59 -
Printer 200 43 30 1 07:00 - 19:00 - 1 07:00 - 19:00 -
Tablet 15 40 120 10 10:00 - 16:00 - - - -
Iron 1200 43 30 1 12:00 - 15:00 - 1 12:00 - 15:00 -
Kettle 2200 100 15 1 10:00 - 12:00 14:00 - 17:00 1 10:00 - 12:00 14:00 - 17:00
Drill 500 60 120 1 07:00 - 16:00 - 1 - -
Speaker 100 100 120 1 15:00 - 18:00 - 1 12:00 - 18:00 -
Radio 36 100 120 1 16:00 - 22:00 - 1 12:00 - 22:00 -

Table 17: Input data for the fans in the Sta↵ Room.

Window
Appliance P freq. m tot use Hot season Warm season Cold season

Fan 50 100 2 360 12:00 - 23:59 12:00 - 23:59 12:00 - 20:00

Sta↵ Court

In the Sta↵ Court, the indoor LED and outdoor LED are fixed loads. All of the appliances are
used every day of the week, but the number of appliances is reduced during the weekends. Input
data for the appliances in the Sta↵ Court is presented in Table 18. To simplify the model, the load
profiles of the phones, laptops, TVs, and radios in the Sta↵ Court are aggregated to include three
appliances in each profile. Hence, there are two load profiles for each of the appliances mentioned
above.
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Table 18: Input data for the Sta↵ Court.

Weekdays Weekends
Appliance P freq. tot use m Window 1 Window 2 m Window 1 Window 2
Indoor LED 9 100 - 12 06:00 - 07:00 18:00 - 23:59 6 06:00 - 07:00 18:00 - 23:59
Outdoor LED 9 100 - 6 00:00 - 07:00 18:00 - 23:59 6 00:00 - 07:00 18:00 - 23:59
Phone 7 100 120 6 17:00 - 23:59 - 3 18:00 - 23:59 -
Laptop 60 100 120 6 17:00 - 23:59 - 3 18:00 - 23:59 -
TV 70 100 240 6 16:00 - 23:59 - 3 10:00 - 23:59 -
Speaker 100 100 120 1 17:00 - 20:00 - 1 09:00 - 20:00 -
Radio 36 100 120 6 17:00 - 22:00 - 3 09:00 - 22:00 -

Table 19: Input data for the fans in the Sta↵ Court.

Weekdays Weekends
Appliance P freq. tot use m Window 1 m Window 1

Fan 50 100 360 6 16:00 - 23:59 3 12:00 - 23:59

O�ce Building

The O�ce Building is only used during weekdays with regular school activity. All of the appliances
are used every day during weekdays. The input data for the appliances in the O�ce Building is
presented in Table 20.

Table 20: Input data for the O�ce Building.

Weekdays Vacations
Appliance P freq. tot use m Window 1 Window 2 m Window 1 Window 2
Indoor LED 9 100 - 2 07:00 - 17:00 - - - -
Outdoor LED 9 100 - 2 19:00 - 22:00 - - - -
Fridge 90 100 - 1 00:00 - 23:59 - 1 00:00 - 23:59 -
Phone 7 100 120 2 07:00 - 17:00 - - - -
Laptop 60 100 120 2 07:00 - 17:00 - - - -
Printer 200 100 30 2 07:00 - 17:00 - - - -
Radio 36 100 120 2 12:00 - 18:00 - - - -

Table 21: Input data for the fans in the O�ce Building.

Weekdays
Appliance P freq. tot use m Window 1

Fan 50 100 360 2 10:00 - 17:00

5.6.3 Optimization Model

The appliances in the system at Eco Moyo are divided into three categories; shiftable loads, non-
shiftable loads, and other controllable loads. The classification of the appliances are presented in
Table 22. Appliances where the purpose of load shifting is preventing overload, are classified as
high-power appliances. However, these categories are slightly modified to fit in the optimization
model, presented in Chapter 4.3. The fridges are considered non-shiftable loads, and the fans are
shiftable loads.
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Table 22: Classification, flexibility scale and purpose of load shifting for all the appliances.

Classification Flexibility Scale Purpose of Load Shifting
Load Category Appliance Low Flexibility Capacity High Flexibility Capacity Energy Saving Prevent Overload
Shiftable loads Phone x x

Laptop x x
TV x x

Printer x x
Tablet x x
Iron x x

Kettle x x
Drill x x

Speaker x x
Radio x x

Non-shiftable loads Indoor LED x x
Outdoor LED x x

Other controllable loads Fan x x
Fridge x x

To decide the optimal scheduling of the flexible loads at Eco Moyo by minimizing the disutility
cost of shifting loads, the optimization model considers a time horizon from 00:00 to 23:45 for a
given day with time steps of 15 minutes. To simulate a whole year, the model is run 365 times.
Table 23 presents the disutility cost of shifting the di↵erent appliances at Eco Moyo. The values
are based on the ranking in Table 5 from the fieldwork. Moreover, the disutility cost has no unit
as the essential factor is the ratio between the values. When the model is run for a whole year,
the initial SoC is given as the SoC in the last time step of the previously modeled day. If the
optimization model fails, meaning it is unable to fulfill the constraints, the SoC for the next day
is set to 20%.

Table 23: Disutility cost of moving the appliances one time step.

Appliance Disutility Cost
Phone 100
TV 90
Laptop 85
Tablet 65
Iron 60
Speaker 50
Kettle 30
Radio 25
Printer 20
Fan 15
Drill 10

Results from the optimization model will be used to analyze how load shifting a↵ects end user
consumption at Eco Moyo. The SoC and surplus energy will be analyzed on dates when loads are
shifted, or the system is unable to fulfill the constraints.

5.6.4 System Dispatch in Prosumpy

Table 24 presents the technical parameters for the existing system at Eco Moyo, used as input
data to the system dispatch in Prosumpy. The parameters regarding the PV system, inverter, and
batteries are found in the datasheets in Appendix A, B, and C, respectively.
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Parameter Value
PV Size 3.15 kW
Battery Capacity 9.60 kWh
Battery E�ciency 90.0%
Inverter E�ciency 93.0%
Time step 0.25
Max Power 3.50 kW

Table 24: Technical input parameters for the system at Eco Moyo in Prosumpy.

5.6.5 Development of the Graphical User Interface

As mentioned in Chapter 5.5.6, the surplus energy of the system has to be visualized in an easily
understandable way in a GUI. Real-time data is automatically downloaded from ShineDesign. The
SoC available in the server is presented in four levels from 0-100%. Hence, the accurate SoC is not
available. Additionally, the end user does not have access to ShineDesign. The inverter’s display
at Eco Moyo is hard to understand for the users, and the field trip revealed that the teachers
preferred the data in percentage. The proposed user behavior is given as questions to the end
users. As described in Chapter 4.5, di↵erent buttons for the usage of high-power appliances are
included in the GUI. At Eco Moyo, three buttons are implemented for the usage of the kettle, the
iron, and the Drill in the Sta↵ Room.
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6 Results

This chapter presents the results of the master’s thesis. The modeled PV production and demand
are described. Further, the results of the optimization model and annual system dispatch in
Prosumpy are analyzed. Three di↵erent scenarios are considered. Scenario 0 considers the existing
system in the Sta↵ Room with the additional load in the Sta↵ Court and O�ce Building. This
scenario investigates if the existing system is able to supply the additional buildings when flexible
consumption behavior is implemented. In Scenario 1, an additional battery is included. This
scenario investigates how the additional battery capacity a↵ects the flexibility and disutility of the
consumers when supplying the additional buildings. Scenario 2 includes two additional batteries
and investigates how a further increase in battery capacity a↵ects the system. The batteries’
SoC and the system’s surplus energy are analyzed on dates when loads are shifted, or the system
is unable to fulfill the constraints of the optimization model. Further, the costs of the di↵erent
approaches to the electrification of the Sta↵ Court are presented. Finally, the design proposal of
an early-stage GUI for end user communication is presented, and the functionalities are visualized.

6.1 PV Production and Demand

Figure 24 depicts the monthly PV production and demand for the modeled year in kWh. The
production is consistently higher than the demand. As expected, the results show that the PV
production is significantly decreased from April through July. This includes the long rain season
from March through May, as described in Chapter 5.3. However, in the short rain season from
October through December, the reduction in production is not as remarkable. On the other hand,
the demand is more consistent. There is a range of about 50 kWh throughout the year. Despite
the small range, the result shows that the demand reaches its maximum during the short rain
season when the production is at the minimum. The total annual demand and PV production are
3916 kWh and 6605 kWh, respectively.

Figure 24: Modeled monthly PV production and demand for the modeled year.

In Figure 25, the comparison between the real-time and modeled PV production is presented. The
real-time data obtained from the inverter does not represent the total PV production accurately
due to the curtailment by the inverter controller. In an o↵-grid system, the inverter does not
accurately measure the total PV production, as any excess energy beyond what is required to
power the load and charge the storage is not accounted for. As a result, the modeled production
is considerably higher than the recorded real-time production obtained by the inverter.
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Figure 25: Real-time and modeled PV production of May 20th, 2023.

6.2 Optimization Model

6.2.1 Scenario 0

The detailed results of the optimization of Scenario 0 are presented in Table E.38 in Appendix
E.1. There are 27 days throughout the year when the optimization model moves shiftable loads
and ensures that the demand is covered. It is mainly the kettle in the Sta↵ Room that is moved.
However, the drill, printer, and fans are also shifted occasionally. With the exception of three
dates, only one load is shifted for a few time steps. On May 24th and July 6th, two and three
fans are shifted. Table 25 shows initial and new time windows on July 7th, where eight loads are
shifted.

Table 25: Initial and new time windows after optimization July 7th in Scenario 0.

Appliance Number Building Initial Window New Window
Fan 1 Sta↵ Room 12:15 - 18:15 11:30 - 17:30
Fan 1 Sta↵ Room 12:45 - 18:45 11:30 - 17:30

Kettle 1 Sta↵ Room 16:15 - 16:30 12:45 - 13:00
Drill 1 Sta↵ Room 07:30 - 09:30 07:45 - 09:45
Fan 1 O�ce Building 10:45 - 16:45 09:30 - 15:30
Fan 1 O�ce Building 11:15 - 17:15 13:30 - 19:30
Fan 3 Sta↵ Court 16:15 - 22:15 11:30 - 17:30
Fan 3 Sta↵ Court 16:15 - 22:15 13:30 - 19:30

Figure 26 and 27 show the system dispatch of July 7th before and after optimization. In Figure 26
it can be seen that there are three di↵erent load peaks. Two of them are during the day when there
are PV production, and one is after the sun has set. The total demand increase severely during
the evening and the battery is discharged. Even though there is no uncovered demand with the
initial load profiles, the SoC is below 20% at the end of the day, and eight loads are shifted by the
optimization model. The highest peak before the optimization is caused by the kettle. Hence, the
kettle is shifted for three and a half hours to get the highest peak during the day. The drill also
has a relatively high power consumption of 500 W in the morning. However, it is only shifted 15
minutes when the PV production is slightly higher. Additionally, all the fans are shifted. The fans
in the Sta↵ Room and O�ce Building are shifted for a few time steps. However, the fans in the
Sta↵ Court are shifted for a longer time period. These load profiles include several fans, and the
time windows are during the evening. This results in lower power consumption during the evening,
and the SoC is 20% at the end of the day after optimization.
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Figure 26: System dispatch in Prosumpy July 7th before optimization in Scenario 0.

Figure 27: System dispatch in Prosumpy July 7th after optimization in Scenario 0.

Table 26 shows the results after optimization for October 20th. The uncovered demand is 247.3
Wh before optimization. Hence, the kettle is shifted for 15 minutes. Figure 28 and 29 depict the
system dispatch for 20th of October before and after optimization. Even though the battery’s SoC
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is adequate, the peak caused by the kettle exceeds the capacity of the inverter, resulting in unmet
demand. The system dispatch after optimization in Figure 29 demonstrates that by shifting the
kettle for 15 minutes, the peak is su�ciently reduced, resulting in no uncovered demand.

Table 26: Initial and new time windows after optimization October 20th in Scenario 0.

Uncovered demand Appliance Building Initial Window New Window
247.3 Wh Kettle Sta↵ Room 14:15 - 14:30 14:00 - 14:15

Figure 28: System dispatch in Prosumpy October 20th before optimization in Scenario 0.
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Figure 29: System dispatch in Prosumpy October 20th after optimization in Scenario 0.

Table E.39 and E.40 in Appendix E.1 show the days in Scenario 0 when the optimization model
fails to fulfill the constraints. In Scenario 0, there are 22 days when there is uncovered demand
with the initial load profiles, and the SoC is 0% at the end of the day. As the battery is depleted
at the end of the time horizon considered in the optimization model with the original load profiles,
the model is not able to move any of the shiftable loads to fulfill the constraints. February 3rd, the
SoC is 43.75% at the beginning of the day, but the total uncovered demand is 33.84 Wh, and the
battery is depleted by the end of the day. Figure 30 depicts the system dispatch in Prosumpy, and
it can be seen that the uncovered demand appears at the end of the day. The battery is discharged,
and the system is not able to cover the demand, as there are no PV production.
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Figure 30: System dispatch in Prosumpy February 3rd in Scenario 0.

There are 12 days in Scenario 0 where the model fails, even though there is no uncovered demand
with the original load profiles. The battery’s SoC is greater than or equal to 20% at the start of
the day on all the dates. Despite this, the battery capacity at the end of the day is insu�cient.
Hence, the constraint to ensure that the SoC is greater than, or equal to 20% is impossible to fulfill,
and the model fails. Most of the model failures occur during the period when the PV production
is drastically reduced, as described in Chapter 6.1. The model successfully meets the model’s
constraints throughout January, March, and December without any failures.

6.2.2 Scenario 1

Table E.41 in Appendix E.2 presents the detailed results of the optimization of Scenario 1. This
scenario includes an additional battery compared to Scenario 0. In Scenario 1, there are 22 days
where the optimization model moves shiftable loads to cover the demand. Similar to Scenario 0,
the kettle in the Sta↵ Room is often shifted. However, the drill, printer, and fans are shifted in
Scenario 1 as well. Loads are shifted for more than half an hour only on February 3rd. In Scenario
1, no loads are shifted on the July 7th. The system dispatch from Prosumpy in Figure 31 shows
that the additional battery capacity ensures that the SoC is greater than 20% with the initial load
profiles. Hence, the kettle is not shifted in Scenario 1.
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Figure 31: System dispatch in Prosumpy July 7th in Scenario 1.

Despite the additional battery, the kettle is still moved October 20th in Scenario 1. Table 27 show
that the uncovered demand is persistently 247.3 Wh, and the kettle is shifted 15 minutes. As the
peak caused by the kettle is higher than the capacity of the inverter, the additional battery will
not be able to cover the demand.

Table 27: Initial and new time windows after optimization October 20th in Scenario 1.

Uncovered demand Appliance Building Initial Window New Window
247.3 Wh Kettle Sta↵ Room 14:15 - 14:30 14:00 - 14:15

Table E.43 and E.42 in Appendix E.2 presents the days in Scenario 1 where the optimization
model fails. In this scenario, there are 14 days where there is uncovered demand, and the battery
is depleted at the end of the day before optimization. However, in Scenario 1, the model successfully
covers the loads on February 3rd, resulting in no uncovered demand. Table 28 shows that the fans
in the Sta↵ Court are shifted. Three of the fans are only shifted for 15 minutes, while the three
others are moved two hours forward. The system dispatch in Figure 32 shows that as a result
of the shifted loads and additional battery, the SoC of the battery is greater than 20%, and the
constraints of the optimization model are fulfilled.

Table 28: Initial and new time windows after optimization February 3rd in Scenario 1.

Appliance Number Building Initial Window New Window
Fan 3 Sta↵ Court 16:00 - 22:00 14:00 - 20:00
Fan 3 Sta↵ Court 16:15 - 22:15 16:00 - 22:00
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Figure 32: System dispatch in Prosumpy February 3rd after optimization in Scenario 1.

In Scenario 1, there are 9 days when the model fails due to insu�cient battery capacity at the end
of the day. The days of failure are reduced in this scenario, but the failures still mainly occur from
March through July.

6.2.3 Scenario 2

The detailed results of the optimization of Scenario 2 are presented in Table E.44 in Appendix
E.3. Scenario 2 includes two additional batteries, compared to the existing system in the Sta↵
Room. Similar to Scenario 1, there are 22 days throughout the year when the optimization shift
loads to cover the demand in this scenario. It is still mainly the kettle that is shifted, with a few
exceptions of the drill, printers, and fans. Despite the additional batteries, the uncovered demand
is persistently 247.3 Wh October 20th, and the kettle is shifted. The system dispatch in Prosumpy
before optimization in Figure 33 shows that the system is incapable of covering the peak caused
by the kettle, even though the SoC is close to 100%.
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Figure 33: System dispatch in Prosumpy October 20th before optimization in Scenario 2.

Due to the additional batteries, there are no loads shifted on July 7th or February 3rd in this
Scenario. The SoC is greater than or equal to 20% at the end of the day with the initial load
profiles. However, there are still days in Scenario 2 when the optimization model fails. The dates
are listed in Table E.45 and E.46 in Appendix E.3. There are eight days in this scenario when
there is uncovered demand, and the model fails due to the depletion of the battery with the initial
load profiles. The date with the highest uncovered demand is June 9th. The uncovered demand
is 2093 Wh, and the battery at the start of the day is 46.76%. The system dispatch in Figure 34
shows that the uncovered demand occurs during the evening. In Table 29, the time windows of the
fans on June 9th are listed. The table shows that the fans in the Sta↵ Room and O�ce Building
are mainly on during the time period with PV production. However, all the fans in the Sta↵ Court
are on during the evening when there is uncovered demand.
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Figure 34: System dispatch in Prosumpy June 9th in Scenario 2.

Table 29: Time windows for the fans June 9th in Scenario 2.

Building Number Window
Sta↵ Room 1 13:00 - 19:00
Sta↵ Room 1 12:15 - 18:15

O�ce Building 2 10:45 - 16:45
Sta↵ Court 6 16:15 - 22:15

In Scenario 2, the model fails due to insu�cient battery capacity at the end of the day on 10 dates,
even though there is no unmet demand. Compared to 12 days in Scenario 1, the reduction due
to an additional battery is not remarkable in this scenario. However, the days of failure in this
scenario are still mainly from March through July.

6.3 Annual System Dispatch in Prosumpy

6.3.1 Scenario 0

Table 30 presents the results from the system dispatch for Scenario 0 in Prosumpy with the
initial load profiles before optimization. The results show that 3842 kWh of the total demand is
covered, resulting in a total uncovered demand of 73.49 kWh. As the results presented are before
optimization, no load is shifted. The total energy surplus is 2075 kWh, and 2200 kWh of the total
annual consumption is provided by the battery. Further, the average DoD is 0.6278.
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Table 30: Output data from Prosumpy for the initial system dispatch in Scenario 0.

Total Covered Demand 3842 kWh
Total Uncovered Demand 73.49 kWh
Total Shifted Load 0.000 kWh
Total Energy Surplus 2075 kWh
Amount of Energy Provided by the Battery 2200 kWh
Average Depth of Discharge 0.6278

In Table 31, the results from the system dispatch in Prosumpy for Scenario 0 after optimization
are listed. The results show that 20.24 kWh of the total demand is shifted by the optimization
model. As expected, the covered demand is increased, and the uncovered demand is decreased.
However, after optimization, the uncovered demand is only reduced by approximately 2 kWh. The
total energy surplus is persistent before and after optimization, as the loads only are shifted for a
few time steps. As a result, the consumption is not remarkably increased during the time periods
when the PV production is high. Followingly, the decrease in the amount of energy provided by
the battery and the DoD is not remarkable.

Table 31: Output data from Prosumpy for the system dispatch after optimization in Scenario 0.

Total Covered Demand 3844 kWh
Total Uncovered Demand 71.30 kWh
Total Shifted Load 20.24 kWh
Total Energy Surplus 2075 kWh
Amount of Energy Provided by the Battery 2196 kWh
Average Depth of Discharge 0.6267

6.3.2 Scenario 1

The results from the system dispatch in Prosumpy for Scenario 1 before optimization are listed
in Table 32. As a result of the additional battery, the covered demand and energy provided by
the battery are increased compared to the initial system dispatch in Scenario 0. Followingly, the
uncovered demand, energy surplus, and average DoD are decreased.

Table 32: Output data from Prosumpy for the initial system dispatch in Scenario 1.

Total Covered Demand 3877 kWh
Total Uncovered Demand 38.75 kWh
Total Shifted Load 0.000 kWh
Total Energy Surplus 2036 kWh
Amount of Energy Provided by the Battery 2237 kWh
Average Depth of Discharge 0.5108

Table 33 presents the results from the system dispatch in Prosumpy after optimization for Scenario
1. The results show that 9.013 kWh of the load is shifted. Similar to Scenario 0, the uncovered
demand is reduced by approximately 2 kWh. The surplus energy is also constant in this scenario,
while the amount of energy provided by the battery and the average DoD is slightly reduced.

Table 33: Output data from Prosumpy for the system dispatch after optimization in Scenario 1.

Total Covered Demand 3879 kWh
Total Uncovered Demand 36.92 kWh
Total Shifted Load 9.013 kWh
Total Energy Surplus 2036 kWh
Amount of Energy Provided by the Battery 2235 kWh
Average Depth of Discharge 0.5102
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6.3.3 Scenario 2

Table 34 lists the results from the system dispatch in Prosumpy with the initial load profiles
for Scenario 2. As expected, the uncovered demand is remarkably reduced with two additional
batteries. Followingly, the covered demand and the amount of energy provided by the battery are
increased compared to the other scenarios. The energy surplus and the average DoD are decreased.

Table 34: Output data from Prosumpy for the initial system dispatch in Scenario 2.

Total Covered Demand 3899 kWh
Total Uncovered Demand 16.70 kWh
Total Shifted Load 0.000 kWh
Total Energy Surplus 2011 kWh
Amount of Energy Provided by the Battery 2261 kWh
Average Depth of Discharge 0.4302

The results from the system dispatch in Prosumpy after optimization for Scenario 2 are listed in
Table 35. The amount of total shifted load is slightly reduced compared to Scenario 1. Similar
to the other scenarios, the uncovered demand is reduced by approximately 2 kWh. The total
energy surplus is persistently constant, while the amount of energy provided by the battery and
the average DoD is slightly reduced.

Table 35: Output data from Prosumpy for the system dispatch after optimization in Scenario 2.

Total Covered Demand 3901 kWh
Total Uncovered Demand 14.88 kWh
Total Shifted Load 9.225 kWh
Total Energy Surplus 2011 kWh
Amount of Energy Provided by the Battery 2259 kWh
Average Depth of Discharge 0.4298

6.4 Cost Comparison for Sta↵ Court Electrification Approaches

The costs of the di↵erent approaches for electrification of the Sta↵ Court are presented in Table 36.
It reveals that the cost of extending the existing system corresponds to approximately 7% of the
costs of a new system. However, adding additional batteries of 200 Ah increase the cost by
approximately 600 USD per battery. Hence, the cost of Scenario 1 and 2 are 14% and 21% of the
costs of the new system, respectively.

Table 36: Approximately costs of di↵erent electrification approaches for the Sta↵ Court.

Approach Total Cost [USD]
Scenario 0 600
Scenario 1 1200
Scenario 2 1800
New system 8500

6.5 Graphical User Interface

The design proposal of the GUI is presented in Figure 35, and the platform’s features are im-
plemented as di↵erent buttons with di↵erent functionality. Real-time data from the inverter is
automatically downloaded each time the interface is started. Both the design, features, and down-
load of real-time data are implemented as described in Chapter 4.5, based on the feedback from the
users. The current data from ShineDesign does not include the additional appliances. However, a
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daily load profile with additional appliances from RAMP and the modeled PV production is used
as input to the GUI to describe the importance of flexibility in the extended system.

(a) Design proposal of the main window. (b) Design proposals of ”Usage of kettle”.

(c) Design proposal of ”Solar production and

demand”.

Figure 35: Design proposals of the GUI.

The structure of the main dashboard of the GUI is divided into two; the header and the functionality
menu. The header is ”ECO MOYO GUI”, including the current date and the logo of Eco Moyo.
Following, the menu is presented with six buttons with di↵erent functionalities. The first button
displays the graph of PV production and demand of the current day, as displayed in Figure 35.
The next button displays the battery’s SoC. As the ShinDesign server only provides the SoC in
four levels between 0 and 100%, the accurate SoC is not available at this time. Following, the next
three buttons investigates the possibility of using an iron, a kettle, and a drill, respectively. These
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buttons also present the percentage of energy use when using one of the mentioned appliances. The
last button is supposed to present energy consumption and production trends but is not currently
implemented in the early-stage design proposal. However, the energy trends will be based on the
optimization model presented in 6.2, where the real-time SoC and demand will be input to the
model.

If the GUI returns ”no” when a button of a specific appliance is clicked, the SoC is lower than the
energy usage of the appliance, or the total demand is greater than the inverter’s capacity. This
is visualized in Figure 35b. The GUI gives feedback to the user to try again in 15 minutes. By
waiting 15 minutes, the appliance is shifted one time step as modeled in the optimization model.
The appliance is now rescheduled, and hence, DSM is implemented in the system. Additionally, the
interface should give feedback on energy trends of the period, including recommending which ap-
pliances to use. This feedback will be especially useful during the periods when the PV production
is significantly decreased.

The user-friendly presentation of daily solar production, demand, and usage of the di↵erent ap-
pliances, both in percentage and graphically, enhances the end user’s knowledge of the system.
The possibility of observing energy trends of the period and comparing them to the current day
allows the users to stay informed about their energy consumption. With the manual load shifting
provided by the GUI when the capacity is at its limit or the SoC are low, the flexibility in the
system is increased. The GUI plays a crucial role in preventing users from exceeding the system’s
limit. Without a GUI, the users would lack the necessary information to determine if it is safe to
connect the appliances.
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7 Discussion

This chapter presents the discussion of the results obtained in this thesis. The discussion includes
the modeled PV production and demand, optimization model, annual system dispatch, cost com-
parison between di↵erent approaches for the electrification of the Sta↵ Court, and GUI design.
Furthermore, the results are compared to relevant research findings in the field.

7.1 PV Production and Demand

There are several methods for generating meteorological data, which may result in di↵erent annual
solar irradiation. Hence, the total PV production throughout a year may di↵er when using TMY
compared to other methods. Furthermore, the PV production presented in Chapter 6.1 does not
account for shading. Due to this, the overall production is not precise and may be lower than
expected in reality. Further, the results reveal that the modeled PV production is remarkably
decreased in the months of April through July. Hence, the modeling using TMY corresponds with
the seasonal variations in Kilifi, described in Chapter 5.3.

The high degree of stochasticity in the RAMP model makes the model capable of reproducing load
profiles of both the typical daily consumption as well as the day-to-day variations. Nonetheless,
it is essential to acknowledge that the input parameters used in the model are derived from con-
versations with the sta↵ during the field trips. As a result, the actual load profiles may deviate
from the simulated load profiles. Additionally, appliances not currently presented at the school are
implemented in RAMP based on the teachers’ weekly activities and observed energy consumption
behavior. Hence, the input parameters for the additional appliances may di↵er from reality, and
the total modeled demand is significantly increased compared to the demand of today.

7.2 Optimization Model

As expected, the results from the optimization reveal that mainly the kettle is shifted in all the
scenarios. This is expected as the kettle is the appliance with the highest power consumption and
often is used in the afternoon when the PV production is limited. It is also expected that the drill,
printer, and fans are shifted occasionally, based on the disutility costs associated with shifting
appliances by one time step, outlined in Table 23. The drill, printer, and fans have relatively
high power consumption and low disutility cost. Hence, the appliances are shifted in order to
fulfill the constraints in the optimization model. The disutility cost is crucial for prioritizing which
appliances to shift in the model. However, the price variation between the appliances is minimal.
Consequently, the kettle is shifted several times due to the small variations in disutility cost and its
high power rating. Nevertheless, for the end users, shifting the kettle rather than several appliances
with a lower disutility cost is a more convenient approach.

The kettle is shifted on October 20th in all the scenarios. Even though the batteries’ SoC is
su�cient, the unmet demand is persistent. The total peak, when the kettle is used, exceeds the
capacity of the inverter, resulting in uncovered demand. Hence, the kettle is shifted for 15 minutes.
The demand is reduced, and the new peak is within the limit. This is also observed in Scenario
1 and 2, where additional batteries are included. The capacity of the inverter is still limiting the
system, and the uncovered demand is persistent. Hence, increasing the number of batteries will
not cover the unmet demand caused by such load peaks. However, in these cases, DR in the form
of load shifting is a great tool to utilize the capacity of the system. By shifting the kettle for 15
minutes, the peak is severely decreased without remarkable inconvenience for the consumers.

In Scenario 0, eight loads are shifted on July 7th, even though there is no uncovered demand.
However, the loads are shifted to ensure that the SoC is greater than or equal to 20% at the end of
the day. In Scenario 1 and 2, the additional batteries ensure that all the constraints are fulfilled,
and no appliances are shifted. Due to a higher battery capacity at the start of the day, the battery
is not discharged below 20% in the evening. The constraint concerning the SoC at the end of
the day is added to prevent insu�cient battery capacity for the next day. The limit of 20% is
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chosen to ensure that the system is able to cover the non-shiftable load the following day until the
PV production is su�cient. The non-shiftable load consists of indoor and outdoor lighting in all
the buildings, and fridges in both the Sta↵ Room and O�ce Building. However, the constraint
causes failure on days where the initial load profile prevents the model from shifting loads to ensure
su�cient SoC at the end of the day. By implementing load cutting in the optimization model, this
problem can be avoided, and the total annual uncovered demand would be severely decreased after
optimization. However, the run-time of the optimization model would be significantly increased
due to non-linearity. Therefore, only the shifting of appliances is implemented in this thesis to
prevent excessive run time. The run time and the complexity of the optimization model could
have been further decreased by aggregating the load profiles. As discussed in Chapter 3.2, [31]
divide the demand into blocks to reduce the complexity of the model. However, further aggregation
of the demand would result in the shifting of several appliances at the same time. This results in
increased disutility for the end user.

On February 3rd, the model fails in Scenario 0 due to the depletion of the battery. However, in
Scenario 1, the additional battery prevents the model from failing. There is no uncovered demand,
and the fans in the Sta↵ Court are shifted forward in order to ensure su�cient SoC at the end of
the day. As the load profiles of the fans in the Sta↵ Court include three fans in each load profile, it
is expected that these are shifted compared to the fans in the other buildings. The fans in the Sta↵
Court are also more likely to be used late in the evening. Table 19 shows that the time window is
set to 16:00 - 23:59. Table 17 and 21 show that the fans in the Sta↵ Room and O�ce Building are
set to 12:00 - 23:59 and 10:00 - 17:00, respectively. As the window of the fans in the Sta↵ Court
is shorter, they are more likely to be used during the evening, than the fans in the Sta↵ Room.
This is a reasonable assumption, as the Sta↵ Court accommodates six teachers. However, the only
electricity supply in the Sta↵ Court is SHSs providing lighting. As highlighted in Chapter 3.1, a
well-known challenge when modeling load profiles in rural areas is capturing detailed user behavior
for non-yet-existing devices. However, it is a reasonable assumption that the usage of the fans in
the Sta↵ Court will be reduced when the PV production is limited.

The additional batteries in Scenario 1 and 2 lead to a reduction in the occurrence of model failure.
In Scenario 1, the model fails for a total of 23 days, which is a significant improvement compared
to the 34 days observed in Scenario 0. In Scenario 2, the model experiences failure for a total
of 18 days. The results show that the reduction is mainly on the dates when there is unmet
demand and the battery is depleted with the initial load profiles. By adding additional battery
capacity, the system is able to cover the demand for additional days. However, the number of
days when the system is able to cover the demand but the battery is depleted is not significantly
reduced. The findings in Scenario 2 demonstrate that two additional batteries do not necessarily
cover the demand when the PV production is drastically reduced. As depicted in Figure 24,
the PV production reaches its lowest point in June, while the demand remains relatively stable
throughout the year. Hence, most of the days when the model fails to fulfill the constraints are
during the period when the PV production is drastically reduced. Despite a relatively high SoC in
the morning on June 9th, there is a remarkable amount of unmet demand. Additionally, Table 29
reveals that all the fans in the Sta↵ Court are used during the evening. By restricting fan usage
in the evening, it would be possible to mitigate the level of uncovered demand. Considering that
June 9th is during the cold season described in Chapter 4.2, it is reasonable to assume that this
will not cause remarkable discomfort for the end users.

7.3 System Dispatch in Prosumpy

In the annual dispatch of the initial system in Scenario 0, a remarkable amount of unmet demand
is detected. As anticipated, the annual unmet demand is reduced after the optimization. However,
the reduction is limited to 2 kWh and is persistent for all the scenarios. The additional batteries in
Scenario 1 and 2 decrease the uncovered demand, but the reduction after optimization is persistent.
This reveals that load shifting mostly a↵ects the uncovered demand caused by load peaks. By
shifting loads, the peaks are reduced to be within the limit of the inverter, and the demand is
covered. The limited reduction in annual uncovered demand is also caused by the number of days
where the optimization model fails to fulfill the constraints. When this happens, the initial load
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profiles are used in the system dispatch. Hence, the battery is depleted at the end of the day, and
the system is unable to cover the demand on the following day. By cutting load to prevent model
failure, the total annual uncovered demand would be remarkably reduced in all the scenarios. The
amount of shifted load is remarkably decreased in Scenario 1 compared to Scenario 0. However,
there is a slight increase from Scenario 1 to Scenario 2. This is caused by the reduction in days
when the optimization model fails. The number of days with optimized load profiles is increased in
Scenario 2. Hence, the amount of shifted load is increased despite the additional battery capacity.

7.4 Cost Comparison for Sta↵ Court Electrification Approaches

For the electrification of the Sta↵ Court, the possibility of implementing a new system consisting
of PV panels, batteries, and an inverter is explored in Chapter 5.5. The estimated cost for the
system is estimated to 8500 USD, and it was decided not to move forward with the project due
to insu�cient funds. However, the new system proposal includes unlikely high usage times for the
appliances, resulting in higher costs. The overall cost will be reduced by opting for a system with
a more suitable capacity for its intended use. However, this is not an option for Eco Moyo. Their
knowledge is limited, and they are limited to the o↵er from the local company.

Alternatively, the cost of extending the existing system is only 7% of the estimated expense of
installing a new system. However, with the extended system, the high-power appliances must be
used in the Sta↵ Room due to the cable’s capacity. Based on the power rating of the high-power
appliances in the Sta↵ Room, it is evident that the cost of implementing a cable with a higher
capacity to power appliances in the Sta↵ Court would be significantly lower than purchasing a
new system. As of today, most of the high-power appliances are used in the Sta↵ Room, without
causing remarkable disutility for the users. Hence, the extension of the cable is not necessary
for the moment. However, the simulations of Scenario 0 show that the extension caused notable
uncovered demand, even when considering user flexibility in form of load shifting. However, most
of the uncovered demand is during the season with limited PV production. By adapting to seasonal
variations, the uncovered demand can be reduced.

The extension of the system with an additional battery, as simulated in Scenario 1, gives an
additional cost of about 14% of the price of implementing a new system. Further, the cost of
implementing two additional batteries, as simulated in Scenario 2, corresponds to a total cost
of close to 21% of implementing a new system. As discussed in Chapter 7.2, adding additional
batteries lead to a reduction in the occurrence of model failure. Hence, there is a decrease in the
number of days when load shifting alone fails to meet the demand. However, the optimization
model developed in this thesis only includes load shifting within the same day, and other types of
DR can also contribute to meeting the demand. The results show that the days of model failure
usually occur during periods when the PV production is limited. Extra battery capacity will not
cover the demand on such days, and the consumer must adapt in this season regardless of the
battery capacity. Observations during the fieldwork revealed that the degree of user flexibility at
Eco Moyo is high. The teachers and sta↵ are used to a limited power supply and adapting their
consumption to the seasonal variations.

7.5 Graphical User Interface

The design of the GUI draft, presented in Chapter 6.5, includes di↵erent functionalities to improve
the flexibility of end user consumption behavior. However, the interface should have been imple-
mented as an application for an enhanced user experience. Based on the provided GUI design
proposal, all the functionalities are implemented as buttons, and the teachers responded positively
to this approach. Nevertheless, the main dashboard of the interface should provide more valuable
information. This can be achieved with widgets presenting the current weather of the day, weekly
weather forecast, the actual SoC, and the percentage of energy utilization, among other relevant
information. It is essential to acknowledge that the GUI is currently in its initial draft stage, based
on feedback from the end users at Eco Moyo, without GUI design experience. Hence, this interface
may not implement crucial factors related to the user experience design.
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Following, the batteries’ actual SoC is impossible to visualize with the available data from
ShineDesign. The accessible SoC is given as four di↵erent levels from 0 to 100%. Nonetheless,
this may be solved by changing the default settings of the data logger of the inverter. Due to
the absence of accurate SoC, the implementation of the theoretical-trends-functionality is not
included in the GUI at this time. Additionally, the input demand to the optimization model is
significantly increased due to examining flexibility with several appliances. Hence, a daily load
profile with additional appliances and modeled PV production is used as input to the GUI to
describe the importance of flexibility in the extended system. Ideally, the optimization model
should also take short-term weather forecasts as input for calculating the PV production and
purpose optimal consumption behavior based on the production of the day ahead. As a result, the
end user flexibility increases, and the user experience will significantly improved.

As highlighted in related research in Chapter 3.4, obtaining early-stage user feedback on GUI
design is crucial. The ultimate goal is to enhance the user’s experience and engagement with
the system. Additionally, allowing users to customize the GUI based on their individual needs
and curiosity, creates opportunities for increased interest in the software. This enables users
to personalize their experience and choose the functionalities they wish to visualize within the
application. At Eco Moyo, the teachers’ engagement with the system varies. To address this, the
app could o↵er a standard set of functionalities, allowing users to add additional features from
a menu. With this possibility, the teachers can gain a greater awareness of their energy usage,
enhance their understanding of user flexibility, and ultimately increase their interest and knowledge
of the system.

7.6 Energy Flexibility in Rural O↵-Grid Systems

As discussed in Chapter 3.3, there is a lack of research regarding DR in o↵-grid systems. The
simulations in this thesis show that DR is an essential tool to secure reliable energy access in rural
areas. Hence, user flexibility plays a crucial role in the challenges of these systems. In remote areas,
access to reliable electricity is limited, and the ability to adapt and optimize energy consumption
is essential. The results of this thesis show that load shifting is an e↵ective strategy for DR to
cover the demand in rural o↵-grid systems. By adjusting the timing of high-power appliances, such
as kettles and irons, the users can align their energy consumption with available power generation
from intermittent sources, such as PV power. However, consumers are also reliant on adaption to
seasonal variations to cover the demand. This flexibility enables them to make the most of their
limited energy resources.

The optimization model developed in this thesis is easily adjustable to other rural o↵-grid systems.
By modifying the system parameters in Pyomo and the input parameters in RAMP, it can be used
to investigate flexibility in similar systems. The model also allows for the assessment of various
scenarios with additional storage and production capacity.
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8 Conclusions

This master’s thesis investigates flexibility in rural o↵-grid microgrids, based on a case of the solar
and battery o↵-grid system at Eco Moyo Education Centre in Kenya. The main objectives are to
develop an optimization model to decide the optimal scheduling of flexible loads by minimizing the
disutility cost of load shifting. Additionally, an early-stage GUI, developed in Python, for end user
communication to incentivize user flexibility. One of the main findings of the thesis is that DR in
terms of load shifting is an e↵ective strategy to cover unmet demand in rural o↵-grid systems, in
addition to adapting to seasonal variations. A GUI can be used to incentivize such flexibility by
increasing the interaction between the microgrid and the users.

Three di↵erent scenarios are simulated to investigate how additional battery capacity a↵ects the
load shifting and disutility of the consumer when extending the system. The first scenario considers
the existing system, and the results show that there is uncovered demand after optimizing the load
profiles. The optimization model fails to fulfill the constraints for several days, resulting in no load
shifting even when there is uncovered demand or the battery is depleted at the end of the day.
However, most of these days are during periods when the PV production is limited. By adapting
to such seasonal variations, the uncovered demand can be remarkably reduced. Simulations show
that the demand can be covered for some days simply by limiting fan usage in the evening on days
with limited power generation. By load shifting and adapting to seasonal variations, the existing
system can supply the additional buildings at a cost of 7% of implementing a new system. As
consumers in rural areas are used to adapting their consumption due to limited power supply, this
is not assumed to cause notable disutility for the users. Scenario 1 and 2 consider the existing
system with one and two additional batteries. The simulations reveal that the additional battery
capacity reduces the number of days when the optimization model is unable to fulfill the constraints.
As expected, the initial uncovered demand is decreased with additional batteries. However, the
reduction in uncovered demand due to load shifting is persistent in all the scenarios. Hence, load
shifting mostly a↵ects the uncovered demand caused by load peaks exceeding the system’s capacity.
By including the additional batteries, the disutility of the users is decreased. However, the cost
increases to 14% and 21% of implementing a new system, with one and two additional batteries,
respectively. The user experience will be enhanced, but the lack of financial resources at Eco Moyo
plays an important role in the decision.

Additionally, the GUI developed for end user communication will incentivize user flexibility and in-
crease the user’s experience and overall engagement with the system. The GUI proposal is designed
with di↵erent functionalities implemented as buttons to increase the end user’s understanding of
the system, as the current inverter display is challenging to understand for non-technical sta↵.
Furthermore, the GUI contributes to covering the demand when extending the existing system
at Eco Moyo. However, the interface should ideally be implemented as an application, with dif-
ferent widgets in the main dashboard, such as weather forecasts, actual SoC, and percentage of
energy usage. The application should also allow users to add additional features from a menu.
With this possibility, the teachers can gain a greater awareness of their energy usage, enhance
their understanding of user flexibility, and ultimately increase their interest and knowledge of the
system.

Overall, this thesis contributes to valuable insight into energy flexibility in rural o↵-grid systems.
As the developed optimization model is easily adjustable, it can also be used to investigate flexibility
in similar systems. It can be extended to include other forms of user flexibility, like load cutting or
curtailment of loads. The GUI must be implemented in a user-friendly manner to ensure usability
for end users. Additional features can be incorporated, including weather forecasts, accurate SoC,
and the ability for users to customize the dashboard to their preferences.
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[49] H. Lieberman, F. Paternò, M. Klann and V. Wulf, ‘End-User Development: An Emer-
ging Paradigm’, in End User Development, H. Lieberman, F. Paternò and V. Wulf, Eds.,
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A GCL-M8/72H Monocrystalline Module
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B Growatt PV O↵-Grid Inverter
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C Tubular Gel Battery

Appendix

A Data sheets

A.1 Solar Tubular Gel Battery 150Ah to 200Ah
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D Price Estimate for the Extension of the System

The price estimate for the extension of the system is presented in Table D.37, and the total cost
is 82,120 KES.

Table D.37: Detailed description of the price estimate for extension of the existing system at Eco
Moyo.

Description Qty. Unit price [KES] Total price [KES]
TWE 2.5 (price/m) 50 250 12,500
DB 6 way complete 1 5,300 5,300
2.5 red cable (roll) 1 5,500 5,300
2.5 black cable (roll) 1 5,500 5,500
2.5 yellow cable (roll) 1 5,500 5,500
1.5 red cable - 3,400 3,400
1.5 black cable - 3,400 3,400
Twin socket 6 420 2,520
Twin pattress box 6 100 600
Single socket 6 250 1,500
Single pattress box 6 70 420
Switch 2 gang 6 240 1,440
Hanging holder 6 260 1,560
Angle holder 6 140 840
Tape 4 75 300
LED bulbs 7 W 12 200 2,400
Junction box 7 70 490
Pipes h/g 25 220 5,500
Bends 10 45 450
Installation labour - - 23,000
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E Optimization Results

E.1 Scenario 0

Table E.38: Initial and new time windows after optimization in Scenario 0.

Date Uncovered demand Appliance Number Building Initial Window New Window
17.01 6.075 Wh Drill 1 Sta↵ Room 11:15 - 13:15 11:45 - 13:45
24.01 13.58 Wh Printer 1 Sta↵ Room 10:00 - 10:30 09:45 - 10:15
30.01 14.08 Wh Drill 1 Sta↵ Room 10:00 - 12:00 09:30 - 11:30
20.02 61.90 Wh Kettle 1 Sta↵ Room 14:30 - 14:45 14:45 - 15:00
21.02 127.9 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
23.02 10.57 Wh Kettle 1 Sta↵ Room 16:30 - 16:45 16:15 - 16:30
17.03 99.40 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
22.04 0.000 Wh Fan 1 O�ce Building 10:45 - 16:45 10:30 - 16:30
01.05 0.000 Wh Kettle 1 Sta↵ Room 15:00 - 15:15 14:45 - 15:00
22.05 15.15 Wh Kettle 1 Sta↵ Room 16:30 - 16:45 16:00 - 16:15
24.05 0.000 Wh Fan 1 Sta↵ Room 12:30 - 18:30 10:30 - 16:30

Fan 3 Sta↵ Court 16:15 - 22:15 16:00 - 22:00
03.06 41.57 Wh Kettle 1 Sta↵ Room 16:15 - 16:30 16:30 - 16:45
12.06 138.9 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
15.06 0.000 Wh Kettle 1 Sta↵ Room 15:45 - 16:00 15:00 - 15:15
06.07 0.000 Wh Fan 1 Sta↵ Room 12:30 - 18:30 12:00 - 18:00

Fan 1 Sta↵ Room 12:15 - 18:15 12:00 - 18:00
Fan 1 O�ce Building 11:00 - 17:00 10:30 - 16:30

07.07 0.000 Wh Fan 1 Sta↵ Room 12:15 - 18:15 11:30 - 17:30
Fan 1 Sta↵ Room 12:45 - 18:45 11:30 - 17:30

Kettle 1 Sta↵ Room 16:15 - 16:30 12:45 - 13:00
Drill 1 Sta↵ Room 07:30 - 09:30 07:45 - 09:45
Fan 1 O�ce Building 10:45 - 16:45 09:30 - 15:30
Fan 1 O�ce Building 11:15 - 17:15 13:30 - 19:30
Fan 3 Sta↵ Court 16:15 - 22:15 11:30 - 17:30
Fan 3 Sta↵ Court 16:15 - 22:15 13:30 - 19:30

03.09 6.900 Wh Printer 1 O�ce Building 16:15 - 16:45 16:00 - 16:30
29.09 22.65 Wh Printer 1 O�ce Building 16:15 - 16:45 16:30 - 17:00
11.10 90.08 Wh Drill 1 Sta↵ Room 13:15 - 15:15 12:45 - 14:45
20.10 247.3 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
23.10 15.32 Wh Printer 1 O�ce Building 10:00 - 10:30 09:45 - 10:15
26.10 126.8 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
08.11 118.7 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
18.11 126.6 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
19.11 8.575 Wh Fan 1 O�ce Building 11:15 - 17:15 10:45 - 16:45
26.11 111.9 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
08.12 121.6 Wh Kettle 1 Sta↵ Room 15:00 - 15:15 15:15 - 15:30
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Table E.39: Dates of optimization failure in Scenario 0 due to battery depletion.

Date Uncovered demand Battery Start
03.02 33.84 Wh 43.75%
24.04 2730 Wh 42.44%
26.04 4703 Wh 24.74%
30.04 3175 Wh 20.00%
02.05 128.4 Wh 20.97%
06.05 944.2 Wh 34.21%
12.05 2545 Wh 30.38%
19.05 5318 Wh 20.00%
25.05 2071 Wh 20.00%
26.05 505.4 Wh 20.00%
05.06 1075 Wh 20.00%
09.06 6557 Wh 20.14%
19.06 841.6 Wh 20.00%
23.06 837.2 Wh 20.00%
01.07 4917 Wh 20.00%
16.07 2010 Wh 26.06%
19.08 692.5 Wh 35.29%
11.09 471.4 Wh 38.44%
05.10 1721 Wh 26.22%
06.10 2478 Wh 20.00%
09.11 4815 Wh 28.03%
16.11 3434 Wh 25.66%

Table E.40: Dates of optimization failure in Scenario 0 due to insu�cient SoC at the end of the
day (no uncovered demand).

Date Battery Start Battery End
29.04 48.54% 13.59%
09.05 28.50% 0.9127%
18.05 27.94% 10.30%
04.06 20.54% 2.920%
16.06 20.62% 11.19%
18.06 25.26% 9.228%
22.06 28.42% 13.45%
26.06 25,61% 18.68%
30.06 31,68% 14.56%
02.07 20.00% 14.40%
10.07 32.11% 11.75%
13.10 32.73% 9.243%
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E.2 Scenario 1

Table E.41: Initial and new time windows after optimization in Scenario 1.

Date Uncovered demand Appliance Number Building Initial Window New Window
17.01 6.075 Wh Drill 1 Sta↵ Room 11:15 - 13:15 11:45 - 13:45
24.01 13.58 Wh Printer 1 Sta↵ Room 10:00 - 10:30 09:45 - 10:15
30.01 14.08 Wh Drill 1 Sta↵ Room 10:00 - 12:00 09:30 - 11:30
03.02 0,000 Wh Fan 3 Sta↵ Court 16:00 - 22:00 14:00 - 20:00

Fan 3 Sta↵ Court 16:15 - 22:15 16:00 - 22:00
20.02 61.90 Wh Kettle 1 Sta↵ Room 14:30 - 14:45 14:45 - 15:00
21.02 127.9 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
23.02 10.58 Wh Kettle 1 Sta↵ Room 16:30 - 16:45 16:15 - 16:30
17.03 99.40 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
22.05 15.15 Wh Kettle 1 Sta↵ Room 16:30 - 16:45 16:00 - 16:15
03.06 41.58 Wh Kettle 1 Sta↵ Room 16:15 - 16:30 16:30 - 16:45
12.06 138.9 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
03.09 6.900 Wh Printer 1 O�ce Building 16:15 - 16:45 16:00 - 16:30
29.09 22.65 Wh Printer 1 O�ce Building 16:15 - 16:45 16:30 - 17:00
11.10 90.08 Wh Drill 1 Sta↵ Room 13:15 - 15:15 12:45 - 14:45
20.10 247.3 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
23.10 15.33 Wh Printer 1 O�ce Building 10:00 - 10:30 09:45 - 10:15
26.10 126.8 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
08.11 118.7 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
18.11 126.6 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
19.11 8.575 Wh Fan 1 O�ce Building 11:15 - 17:15 10:45 - 16:45
26.11 111.9 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
08.12 121.6 Wh Kettle 1 Sta↵ Room 15:00 - 15:15 15:15 - 15:30

Table E.42: Dates of optimization failure in Scenario 1 due to battery depletion.

Date Uncovered demand Battery Start
24.04 497.9 Wh 43.39%
26.04 2471 Wh 39.79%
30.04 1486 Wh 31.14%
12.05 312.6 Wh 30.38%
19.05 3961 Wh 44.31%
26.05 59.04 Wh 28.16%
05.06 371.0 Wh 22.31%
09.06 4325 Wh 36.11%
19.06 227.8 Wh 20.00%
23.06 390.8 Wh 20,00%
01.07 3197 Wh 31.41%
06.10 2032 Wh 20.00%
09.11 2583 Wh 42.42%
16.11 1202 Wh 40.53%

Table E.43: Dates of optimization failure in Scenario 1 due to insu�cient SoC at the end of the
day (no uncovered demand).

Date Battery Start Battery End
02.05 34.79% 16.86%
06.05 47.34% 11.51%
25.05 34.82% 0.2627%
22.06 27.15% 15.17%
02.07 20.00% 15.52%
16.07 40.85% 1.987%
19.08 48.23% 13.80%
11.09 50.75% 15.77%
05.10 40.97% 4.579%
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E.3 Scenario 2

Table E.44: Initial and new time windows after optimization in Scenario 2.

Date Uncovered demand Appliance Number Building Initial Window New Window
17.01 6.075 Wh Drill 1 Sta↵ Room 11:15 - 13:15 11:45 - 13:45
24.01 13.58 Wh Printer 1 Sta↵ Room 10:00 - 10:30 09:45 - 10:15
30.01 14.08 Wh Drill 1 Sta↵ Room 10:00 - 12:00 09:30 - 11:30
20.02 61.90 Wh Kettle 1 Sta↵ Room 14:30 - 14:45 14:45 - 15:00
21.02 127.9 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
23.02 10.58 Wh Kettle 1 Sta↵ Room 16:30 - 16:45 16:15 - 16:30
17.03 99.40 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
22.05 15.15 Wh Kettle 1 Sta↵ Room 16:30 - 16:45 16:00 - 16:15
03.06 41.58 Wh Kettle 1 Sta↵ Room 16:15 - 16:30 16:30 - 16:45
12.06 138.9 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
03.09 6.900 Wh Printer 1 O�ce Building 16:15 - 16:45 16:00 - 16:30
29.09 22.65 Wh Printer 1 O�ce Building 16:15 - 16:45 16:30 - 17:00
11.10 90.08 Wh Drill 1 Sta↵ Room 13:15 - 15:15 12:45 - 14:45
20.10 247.3 Wh Kettle 1 Sta↵ Room 14:15 - 14:30 14:00 - 14:15
23.10 15.33 Wh Printer 1 O�ce Building 10:00 - 10:30 09:45 - 10:15
26.10 126.8 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
08.11 118.7 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
11.11 300.1 Wh Kettle 1 Sta↵ Room 14:30 - 14:45 14:45 - 15:00
18.11 126.6 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
19.11 8.575 Wh Fan 1 O�ce Building 11:15 - 17:15 10:45 - 16:45
26.11 111.9 Wh Kettle 1 Sta↵ Room 14:45 - 15:00 15:00 - 15:15
08.12 121.6 Wh Kettle 1 Sta↵ Room 15:00 - 15:15 15:15 - 15:30

Table E.45: Dates of optimization failure in Scenario 2 due to battery depletion.

Date Uncovered demand Battery Start
26.04 239.4 Wh 49.82%
30.04 228,1 Wh 35.34%
12.05 25,08 Wh 53.59%
19.05 1720 Wh 40.20%
09.06 2093 Wh 46.76%
01.07 938.7 Wh 43.04%
06.10 1530 Wh 20.41%
09.11 351.1 Wh 52.02%

Table E.46: Dates of optimization failure in Scenario 2 due to insu�cient SoC at the end of the
day (no uncovered demand).

Date Battery Start Battery End
24.04 52.83% 12.95%
25.05 45.68% 16.88%
26.05 20.00% 2.892%
05.06 35.11% 13.75%
19.06 34.58% 14.96%
22.06 25.98% 16.00%
23.06 20.00% 0.4149%
02.07 20.00% 16.27%
16.07 50.71% 18.32%
16.11 50.44% 7.688%
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F Python Script for the Optimization Model

import pyomo.environ as pyo
import pandas as pd
from pyomo.opt import SolverFactory
from init_optimize import initBaseLoad, initLoadProfiles, initPV

def optimizeLoadProfile(startDate, batteryPercentage, loadList):

'''------------- Appliance input from excel -------------'''

appliances = pd.read_csv('InputFiles/appliances.csv', sep=";", dtype = None,
index_col = 1),!

ratedPower = appliances['Power']
userTime = appliances['User Time']
userCost = appliances['User Cost']
building = appliances['Building']

'''------------- Initialize Parameters -------------'''

n_inv = 0.93
n_bat = 0.9
timestep = 0.25
batCapacity = ((4+1)*200*12)/1000
invCapacity = (3500 * 0.25)/1000
maxT = 96

baseLoad = initBaseLoad(startDate)
loadProfiles, windowStart, numItems = initLoadProfiles(loadList, startDate)
pv = initPV(startDate)
num_a = len(loadProfiles)

'''-----Declaration of sets-----'''

A = list(range(0, num_a))
T = list(range(0, maxT))

initLoad = {}
load_profiles = {}
for t in T:

initLoad[t] = baseLoad[t] + sum(load_profiles[a,t] for a in A)
for a in A:

load_profiles[a,t] = loadProfiles[a][t]

'''-----Creating Pyomo Model-----'''

model = pyo.ConcreteModel()

#Declaration of sets
model.T = pyo.Set(initialize = T)
model.A = pyo.Set(initialize = A)

#Declaration of parameters
model.ratedPower = pyo.Param(model.A, initialize = ratedPower)
model.userTime = pyo.Param(model.A, initialize = userTime/15)
model.baseLoad = pyo.Param(model.T, initialize = baseLoad)
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model.batteryPercentageStart = pyo.Param(initialize = batteryPercentage)
model.num_items = pyo.Param(model.A, initialize = numItems)
model.loadProfiles = pyo.Param(model.A, model.T, initialize =

load_profiles),!

model.pv = pyo.Param(model.T, initialize = pv * timestep)
model.n_inv = pyo.Param(initialize = n_inv)
model.n_bat = pyo.Param(initialize = n_bat)
model.batCapacity = pyo.Param(initialize = batCapacity )
model.timestep = pyo.Param(initialize = timestep)
model.invCapacity = pyo.Param(initialize = invCapacity)
model.building = pyo.Param(model.A, initialize = building, within =

pyo.Any),!

model.t_start = pyo.Param(model.A, initialize = windowStart)
model.X = pyo.Param(model.A, initialize = userCost)
model.t_end = pyo.Param(initialize = maxT - 1)

#Declaration of variables
model.demand = pyo.Var(model.A, model.T, within =

pyo.NonNegativeReals),!

model.d = pyo.Var(model.A, model.T, within = pyo.Binary)
model.store2inv = pyo.Var(model.T, within = pyo.NonNegativeReals)
model.pv2inv = pyo.Var(model.T, within = pyo.NonNegativeReals)
model.pv2store = pyo.Var(model.T, within = pyo.NonNegativeReals)
model.res_pv = pyo.Var(model.T, within = pyo.NonNegativeReals)
model.inv2load = pyo.Var(model.T, within = pyo.NonNegativeReals)
model.SOC = pyo.Var(model.T, within = pyo.NonNegativeReals,

bounds = (0, model.batCapacity)),!

model.cost = pyo.Var(model.A, model.T, within =
pyo.NonNegativeReals),!

model.t_moved = pyo.Var(model.A, model.T, within =
pyo.NonNegativeReals),!

'''----- Objective function -----'''

def cost(model):
return sum(sum((model.X[a] * model.t_moved[a,t]) for t in model.T) for a

in model.A) + sum(model.res_pv[t] for t in model.T),!

model.OBJ = pyo.Objective(rule = cost, sense = pyo.minimize)

'''----- Constraints -----'''

def applianceDaily(model, a):
i = list(range(1, int(maxT - model.userTime[a] + 1)))
return sum(model.d[a,j] for j in i) == 1

model.constraint_3b = pyo.Constraint(model.A, rule = applianceDaily)

def calculateDemand(model, a, t):
if (t <= model.userTime[a] - 2):

i = list(range(0,t + 1))
return model.demand[a,t] == sum(model.ratedPower[a] * model.d[a,j] *

model.num_items[a] for j in i),!

else:
start = int(t - model.userTime[a] + 1)
i = list(range(start, t + 1))
return model.demand[a,t] == sum(model.ratedPower[a] * model.d[a,j] *

model.num_items[a] for j in i),!
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model.constraint_3cd = pyo.Constraint(model.A, model.T, rule =
calculateDemand),!

def calculateMove(model, a, t):
return model.t_moved[a, t] == model.d[a,t] * abs((model.t_start[a] - t) *

model.num_items[a]),!

model.constraint_3e = pyo.Constraint(model.A, model.T, rule = calculateMove)

def noCut(model, a, t):
return sum(sum(model.demand[a,t] for a in model.A) for t in model.T) ==

sum(sum(model.loadProfiles[a,t] for a in model.A) for t in model.T),!

model.constraint_3f = pyo.Constraint(model.A, model.T, rule = noCut)

def balanceInverter(model, t):
return model.inv2load[t] == (model.store2inv[t] + model.pv2inv[t]) *

model.n_inv,!

model.constraint_3g = pyo.Constraint(model.T, rule = balanceInverter)

def balancePV(model, t):
return model.pv[t] == model.pv2store[t] + model.pv2inv[t] +

model.res_pv[t],!

model.constraint_3h = pyo.Constraint(model.T, rule = balancePV)

def totalLoad(model, t):
return model.inv2load[t] == (model.baseLoad[t] + sum(model.demand[a, t]

for a in model.A)) * (0.25/1000),!

model.constraint_3i = pyo.Constraint(model.T, rule = totalLoad)

def capacityInv(model, t):
return model.inv2load[t] <= model.invCapacity * model.n_inv

model.constraint_3j = pyo.Constraint(model.T, rule = capacityInv)

def maxpv2store(model, t):
return model.pv2store[t] <= model.batCapacity

model.constraint_3k = pyo.Constraint(model.T, rule = maxpv2store)

def batCharge(model, t):
if t == 0:

return model.SOC[t] == model.batteryPercentageStart *
model.batCapacity,!

else:
return model.SOC[t] == model.SOC[t-1] + model.pv2store[t] *

model.n_bat - model.store2inv[t],!

model.constraint_3lm = pyo.Constraint(model.T, rule = batCharge)

def batCapacityMax(model, t):
if t == model.t_end:

return model.SOC[t] >= model.batCapacity * 0.2
else:

return model.SOC[t] <= model.batCapacity
model.constraint_3no = pyo.Constraint(model.T, rule=batCapacityMax)

'''----- Solving the model -----'''

SolverFactory('glpk').solve(model)
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G Python Script for GUI Backend: Automatic Download of Real-Time
Data

import os
import time
import pytesseract
import configparser
import pandas as pd
from PIL import Image
from io import BytesIO
from datetime import datetime
from selenium import webdriver
import matplotlib.pyplot as plt
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.chrome.options import Options

def download_from_shineDesign():
#Path to the chromedriver
path_chromedriver = 'GUI/chromedriver'

#Including the path in the system
os.environ['PATH'] += os.pathsep + path_chromedriver

#Check if today's file already is downloaded and delete it
today = datetime.today().strftime('%Y-%m-%d')
file_name =

'Downloaded files from shine/NZH3BFA024 storage data - {today}_{today}.xls',!

if os.path.exists(file_name):
os.remove(file_name)

#The username and password is stored in config.ini to keep it confidential
config = configparser.ConfigParser()
config.read('GUI/config.ini')
username = config.get('credentials', 'username')
password = config.get('credentials', 'password')

#The url of the server
url = "https://server.growatt.com/login.do"

#Want to run the code without seeing the window ("headless" mode)
options_chrome = Options()
options_chrome.add_argument("--headless")

#Create the path where the file is to be downloaded
download_path = 'GUI/Downloaded files from shine'
preferance = {"download.default_directory": download_path}
options_chrome.add_experimental_option("prefs", preferance)

#Creating a driver in Chrome and open the url
driver = webdriver.Chrome(executable_path=path_chromedriver,

chrome_options=options_chrome),!

#Maximize the window
driver.maximize_window()
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#Open the url
driver.get(url)

#Filling out the username and password and click on the sign in button
uname = driver.find_element("id", "account")
uname.send_keys(username)

time.sleep(2)

pword = driver.find_element("id", "password")
pword.send_keys(password)

time.sleep(2)

#Find the code image element and extract the code value from it
find_code_element = driver.find_element("id", "validateCode")

#While loop to prevent error while reading the validation code
code_value = None
while not code_value:

code_image_data = find_code_element.screenshot_as_png
code_image = Image.open(BytesIO(code_image_data))
code_value = pytesseract.image_to_string(code_image).strip()

if not code_value or len(code_value) != 3:
find_code_element.click()
code_image_data = find_code_element.screenshot_as_png
time.sleep(1)
code_value = None

else:
#Fill in the value of the code
code = driver.find_element("id", "vCode")
code.send_keys(code_value)

#Find the sign-in button and click
sign_in = WebDriverWait(driver,

5).until(EC.presence_of_element_located(("id", "btnLoginSub"))),!

sign_in.click()

#Find plant button
plant = WebDriverWait(driver,

5).until(EC.presence_of_element_located(("css selector",
"a.ts_menu.ts_man[href='plant.do']")))

,!

,!

plant.click()

#Find device list element
device_list = WebDriverWait(driver,

5).until(EC.presence_of_element_located(("xpath",
"//span[@class='i18n_device_devManage']")))

,!

,!

device_list.click()

time.sleep(2)

#Find storage button
storage = driver.find_element("xpath",

"//span[@class='i18n_device_storage']"),!

storage.click()
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time.sleep(2)

#Find the element with the name NZH3BFA024
element = driver.find_element("xpath", "//tr[@id='plantStorage_NZH3BFA024']")

#The element cannot be clicked on by using driver.find_element(). The method
below creates a mouse object and double click on the row by using
JavaScript

,!

,!

driver.execute_script("var evt = document.createEvent('MouseEvents');" +
"evt.initMouseEvent('dblclick',true,true,window,0,0,"
"0,0,0,false,false,false,false,0,null);" +
"arguments[0].dispatchEvent(evt);", element)

#Find the new window with the data and switch frame
new_window = WebDriverWait(driver,

5).until(EC.presence_of_element_located(("id", 'storageHistoryDialog'))),!

driver.switch_to.frame(new_window)

#Find the export button and click
export = WebDriverWait(driver, 5).until(EC.element_to_be_clickable(("id",

'exportStorageHis'))),!

export.click()

time.sleep(2)

#Close the driver
driver.close()

H Python Script for GUI Frontend: Design in Tkinter

import tkinter as tk
import matplotlib.pyplot as plt
from PIL import Image, ImageTk
from datetime import datetime
from download_from_shine import plot_production_demand, download_from_shineDesign

#Parameters for the battery, kettle, iron, drill and inverter
bat_capacity = 4*200*12 #Wh
bat_n = 0.9
power_kettle = 2200 #W
usertime_kettle = 1/6 #h
power_iron = 2000 #W
usertime_iron = 0.5 #h
power_drill = 500 #W
usertime_drill = 0.5 #h
inv_n = 0.93
inv_max = 3500 #W

#Reference for the currently open frame to later close the frame if another
button is clicked,!

current_frame = None

'''This function includes data processing of the real-time data'''
file_name_production, file_name_soc, soc, demand, pv = plot_production_demand()
#Button 1
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def show_production_and_demand():

global current_frame

#Close the previous current frame is it exists
if current_frame:

current_frame.destroy()

#Get the data from plot_production_demand_platform_2()
file_name_production, file_name_soc, soc, demand, pv =

plot_production_demand(),!

#Open and create a Tkinter object for the image
load_image = Image.open(file_name_production)
image_object = ImageTk.PhotoImage(load_image)

#Frame for visualizing the production and demand
production_frame = tk.Frame(root, bg='#FFFFFF', highlightthickness=0)
production_frame.pack(expand=True, fill='both', side='right')

#Update the reference for the current frame
current_frame = production_frame

#Give the image a label
image_label = tk.Label(production_frame, image=image_object,

highlightthickness=0, bg='#FFFFFF'),!

image_label.image = image_object
image_label.pack()

#Calculating the percentage of demand of the max capacity of the inverter
demand_now = demand[-1]
percentage_use = (demand_now/inv_max)*100 #%

#Make a Tkinter text object and insert the text
prod_text = tk.Text(production_frame, font=('Helvetica', (16)), height=1,

highlightthickness=0, bg='#FFFFFF'),!

prod_text.tag_configure('center', justify='center')
prod_text.insert(tk.END,

'The percentage of used capacity is: {:.2f}%'.format(percentage_use),
'center')

,!

,!

prod_text.pack(pady=10)

#Make the text non-editable
prod_text.configure(state='disabled')

#Button for closing the new window
close = tk.Button(production_frame, text='Close',

command=production_frame.forget, bg='#FFFFFF',
highlightbackground='#FFFFFF')

,!

,!

close.pack()

#Button 2

def show_state_of_charge():

global current_frame
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#Close the previous current frame is it exists
if current_frame:

current_frame.destroy()

#Get the data from plot_production_demand_platform_2()
file_name_production, file_name_soc, soc, demand, pv =

plot_production_demand(),!

#Open and create a Tkinter object for the image
load_image = Image.open(file_name_soc)
image_object = ImageTk.PhotoImage(load_image)

#Frame for visualizing the production and demand
soc_frame = tk.Frame(root, bg='#FFFFFF', highlightthickness=0)
soc_frame.pack(expand=True, fill='both', side='right')

#Update the reference for the current frame
current_frame = soc_frame

#Give the image a label
image_label = tk.Label(soc_frame, image=image_object, highlightthickness=0,

bg='#FFFFFF'),!

image_label.image = image_object
image_label.pack()

#Find the current level of SoC in percent
soc_now = soc[-1] #%

#Make a Tkinter text object and insert the text
soc_text = tk.Text(soc_frame, font=('Helvetica', (16)), height=1,

highlightthickness=0, bg='#FFFFFF'),!

soc_text.tag_configure('center', justify='center')
soc_text.insert(tk.END,

'The level of the battery in percent is: {}%'.format(soc_now), 'center'),!

soc_text.pack(pady=10)

#Make the text non-editable
soc_text.configure(state='disabled')

#Button for closing the new window
close = tk.Button(soc_frame, text='Close', bg='#FFFFFF',

command=soc_frame.destroy, highlightbackground='#FFFFFF'),!

close.pack(pady=10)

#Button 3, 4 and 5

def high_power_appliances(appliance):

global current_frame

#Close the previous current frame is it exists
if current_frame:

current_frame.destroy()

#Get the data from plot_production_demand_platform_2()
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file_name_production, file_name_soc, soc, demand, pv =
plot_production_demand(),!

#Find the last tracked demand and soc
demand_now = demand[-1] #W
soc_now = soc[-1] #%

#Energy available in the battery
bat_available = bat_capacity * bat_n * soc_now

if appliance == 'iron':
#The energy of using the iron
energy_iron = power_iron * usertime_iron #Wh

if bat_available > energy_iron and demand_now + power_iron < inv_max *
inv_n:,!

text = 'You can use the iron without any problem right now! \n'
'The total percent of used capacity including the iron: {:.2f}% '
.format(((demand_now + power_iron)/inv_max)*100)

else:
text =

'Sorry, there is not enough capacity for you to use the iron now...',!

'Try again in 15 minutes!'

elif appliance == 'kettle':
#The energy of using the kettle
energy_kettle = power_kettle * usertime_kettle #Wh

if bat_available > energy_kettle and demand_now + power_kettle < inv_max
* inv_n:,!

text = 'You can use the kettle without any problem right now! \n'
'The total percent of used capacity including the kettle: {:.2f}% '
.format(((demand_now + power_kettle)/inv_max)*100)

else:
text =

'Sorry, there is not enough capacity for you to use the kettle now... ',!

'Try again in 15 minutes!'

elif appliance == 'drill':
#The energy of using the kettle
energy_drill = power_drill * usertime_drill #Wh

if bat_available > energy_drill and demand_now + power_drill < inv_max *
inv_n:,!

text = 'You can use the drill without any problem right now! \n'
'The total percent of used capacity including the drill: {:.2f}% '
.format(((demand_now + power_drill)/inv_max)*100)

else:
text =

'Sorry, there is not enough capacity for you to use the drill now... ',!

'Try again in 15 minutes!'
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#Making the frame and the text
text_frame = tk.Frame(root, bg='#FFFFFF', highlightthickness=0)
text_frame.pack(side='right', expand=True, fill='both')

appliance_text = tk.Text(text_frame, font=('Helvetica', (16)), height = 2,
bg='#FFFFFF', highlightthickness=0),!

appliance_text.tag_configure('center', justify='center')
appliance_text.insert(tk.END, '{}'.format(text), 'center')
appliance_text.pack(pady=10)

#Make the text non-editable
appliance_text.configure(state='disabled')

#Update the reference for the current frame
current_frame = text_frame

#Button for closing the new window
close = tk.Button(text_frame, text='Close', command=text_frame.destroy,

bg='#FFFFFF', highlightbackground='#FFFFFF'),!

close.pack(pady=10)

#Button 6

def show_trends():

global current_frame

#Close the previous current frame is it exists
if current_frame:

current_frame.destroy()

text = 'This is the trends of the period: '

#Making the frame and the text
text_frame = tk.Frame(root, bg='#FFFFFF', highlightthickness=0)
text_frame.pack(side='right', expand=True, fill='both')

trend_text = tk.Text(text_frame, font=('Helvetica', (16)), height = 2,
bg='#FFFFFF', highlightthickness=0),!

trend_text.tag_configure('center', justify='center')
trend_text.insert(tk.END, '{}'.format(text), 'center')
trend_text.pack(pady=10)

#Make the text non-editable
trend_text.configure(state='disabled')

#Update the reference for the current frame
current_frame = text_frame

#Button for closing the new window
close = tk.Button(text_frame, text='Close', command=text_frame.destroy,

bg='#FFFFFF', highlightbackground='#FFFFFF'),!

close.pack(pady=10)
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#Turn off plots in console
plt.ioff()

#Download real time data each time the code is running
download_from_shineDesign()

#Creating the main window
root = tk.Tk()
root.title("ECO MOYO GUI")

#Background color
#root.configure(bg='#F0FFF0') #Green
root.configure(bg='#FFFFFF') #White

#Set font
font_title = ('Helvetica', 36, 'bold')
font_date = ('Helvetica', 14)
font_button = ('Helvetica', 20)

#Label for the title
label_title = tk.Label(root, text='Eco Moyo GUI', font=font_title, bg='#FFFFFF',

fg='#669900'),!

label_title.pack(pady=15)

#Current date of today
date = datetime.today().strftime('%B %d, %Y')
date = 'July 7th, 2023'

#Label for the date
label_date = tk.Label(root, text=date, font=font_date, bg='#FFFFFF',

fg='#669900'),!

label_date.pack()

#Make canvas
canvas = tk.Canvas(root, width=600, height=500, highlightthickness=0,

bg='#FFFFFF'),!

canvas.pack()

#Logo
load_logo = Image.open('GUI/logo.jpg')
logo = ImageTk.PhotoImage(load_logo)

label_logo = tk.Label(root, image=logo, bg='#FFFFFF')
label_logo.place(relx=0.9, rely=0.0, anchor='ne')

#Making button 1 for production and demand
button_1 = tk.Button(canvas, text='Solar production and demand of today',

font=font_button, command=show_production_and_demand,
highlightbackground='#FFFFFF')

,!

,!

#Size and place of the button
button_1.config(padx=20, pady=10)
button_1.place(relx=0.5, rely=0.15, anchor='center')

#Making button 2 for state of charge
button_2 = tk.Button(canvas, text='Show the battery capacity', font=font_button,

command=show_state_of_charge, highlightbackground='#FFFFFF'),!
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#Size and place of the button
button_2.config(padx=20, pady=10)
button_2.place(relx=0.5, rely=0.30, anchor='center')

#Making button 3 for iron
button_3 = tk.Button(canvas, text='Usage of iron', font=font_button,

command=lambda: high_power_appliances('iron'), highlightbackground='#FFFFFF'),!

#Size and place of the button
button_3.config(padx=20, pady=10)
button_3.place(relx=0.5, rely=0.45, anchor='center')

#Making button 4 for kettle
button_4 = tk.Button(canvas, text='Usage of kettle', font=font_button,

command=lambda: high_power_appliances('kettle'),
highlightbackground='#FFFFFF')

,!

,!

#Size and place of the button
button_4.config(padx=20, pady=10)
button_4.place(relx=0.5, rely=0.6, anchor='center')

#Making button 5 for drill
button_5 = tk.Button(canvas, text='Usage of drill', font=font_button,

command=lambda: high_power_appliances('drill'),
highlightbackground='#FFFFFF')

,!

,!

#Size and place of the button
button_5.config(padx=20, pady=10)
button_5.place(relx=0.5, rely=0.75, anchor='center')

#Making button 6 for theoretic trends for the period
button_6 = tk.Button(canvas, text='Theoretical trends and consumption behavior',

font=font_button, command=show_trends, highlightbackground='#FFFFFF'),!

#Size and place of the button
button_6.config(padx=20, pady=10)
button_6.place(relx=0.5, rely=0.9, anchor='center')

root.mainloop()
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