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Abstract
Often viewed unfavorably as inhospitable and complex land, peatlands, in recent

decades, have risen in status as significant, long-term carbon reservoirs, acting
as vital counterbalances against global atmospheric carbon emissions. Advances
are being made in methods for global monitoring of peatland ecosystems using
multimodal photogrammetry, supporting peatland protection and restoration efforts
by quantifying peatland extend, composition, and relative health. Here, some of
the state-of-the-art metrics, models, and methods for assessing peatland status and
peatland species health and resilience to climatic changes are reviewed. Furthermore,
a new dataset is assessed with some of these methods and novel techniques for
predicting the physical bioindicator parameters. Results show great performance of
SVR models in predicting maximum photosynthesis values of peatland mesocosm
specimens.
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1 Introduction

Peat is a common term for organic soils in the histosol soil classification. Peatlands
are generally considered to be any region of wetland containing this organic soil,
usually with actively growing vegetation (i.e., grasses, mosses, shrubs) contributing
to the peat formation. The conditions under which peat develops are unique. Still,
the soil can be found in many climates and regions across the world, from the
Amazon Rainforest to northern Europe and Australia, with estimates putting the
terrestrial land share of peatland at 2.84% Xu et al. (2018).

Although commonly viewed unfavorably as untraversable and complex land,
peatlands have been found useful, historically, due to the fuel resource they provide
with their rich organic soil; once the land is drained of water, the ground can
be mined out and used as a primitive fuel or as an organic ingredient in various
products and soil amendments. Additionally, peatlands and other wetlands give
way to rich agricultural farmland after being drained; the high organic content in
the waterlogged soil is rich in nitrogen and used to grow root and salad crops.

With an international focus on climate change mitigation, peatlands are receiving
special attention for their pivotal roles in carbon emissions. When peatlands are
drained of water, they become substantial Greenhouse Gas (GHG) emitters, but
in their natural waterlogged state, they are agents of terrestrial-based biological
Carbon Dioxide Removal (CDR). This dual nature of the peatland biome being
unloosed by human intervention is not uncommon among vegetative systems
(Hicks Pries et al., 2013, 2015) and simply results from an imbalance in the growth
and decay of vegetation biomass. Still, uniquely in peatlands, human interference
through land-use changes has exacted an overarching toll on global peatlands.
These changes though are more straightforward to reverse when compared with
other artificial GHG sources.

After having been dried, mined, and abandoned, the rewetting of peatlands has
been found effective in reestablishing the primary peat-producing genus, Sphagnum
González et al. (2014). This is crucial, as Sphagnum species are uniquely responsible
for maintaining the peatland’s hydrological system to function as a terrestrial carbon
sink van Breemen (1995). And so, via rewetting, peatland restoration has become
a focus, and the need for unified, large-scale peatland monitoring is growing.
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Chapter 1 INTRODUCTION

Source: P199, CC BY-SA 3.0, via Wikimedia Commons

Figure 1.1: Typical undisturbed peatland bogs in Canada with a dense Sphagnum
acrotelm.

1.1 Peatland mapping
As part of international carbon budget modeling and resource and initiative plan-
ning, monitoring peatland cover and carbon stock on a global scale has become a
crucial necessity. Considering that peatlands store such vast reserves of carbon,
preserving still-pristine peatlands and restoring currently damaged and drained
peatlands may underpin climate change mitigation initiatives. Monitoring peat-
lands on a global scale requires scalable methods. Well-established practices in
botany and biology exist for thoroughly and extensively studying and monitoring
peatland behavior, composition, and status; however, these traditional methods
require much manpower and expertise, leaving them somewhat unfeasible for the
time being for continuous global monitoring. Therefore, monitoring methods which
utilize remotely sensed data are likely to form the most effective basis for global
peatland monitoring (Lees et al., 2018; Minasny et al., 2019).

Peatland must first be identified and mapped through some standardized
classification as a prerequisite to monitoring. Most global peatland maps are
based on disparate local soil classification systems or formed as composite maps
from several land use and soil classification maps (Minasny et al., 2019). This is
somewhat problematic for a few reasons:

1. Soil classification systems are typically organized around agronomy rather
than ecology; they usually group all organic soils into a single classification
(histosols), sometimes with subgroups for differentiating on soil acidity and
permafrost content. Peatlands would be a subgroup, ill-defined in such a

2
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Mosses and bryophytes: crucial species 1.2

system where topology and hydrology are not considered. These organic soil
classes, however, are commonly used to estimate peatland coverage.

2. Soil classification systems are disparate, with many countries having their
own system suited to their gown geology; unifying data from multiple soil
system databases can be challenging and can produce erroneous estimates.
The prevailing international system, the World Reference Base for soil re-
sources, is a good start to globally unified soil classification and hence more
accurate peatland classification. Yet, it is still not well suited for the detailed
classification of peat soils and the hydrological states influencing their carbon
flux.

Global peat area estimates vary between 3.3 and 4.6 million km2, with the cor-
responding estimates for crucial properties such as carbon stock, peat thickness,
and carbon density ranging much as well (Minasny et al., 2019). Though several
global peatland mapping estimates exist, there is significant variance among the
estimates; this is likely due to the use of the source mentioned above data which is
not explicitly intended for peatland classification.

Several classification systems are tailored to peatlands and their critical char-
acteristics; these vary in scope and cover domains such as topology, morphology,
chemical composition, botanical origin, and physical characteristics (Andriesse,
1988). These classification systems provide a more accurate accounting of peat
soil decomposition, thickness, and water availability, each of which would provide
more detailed input to peatland mapping estimates; however, these systems are
not readily available in global datasets like the more fundamental soil classification
systems. And so, detailed peatland mapping is left in a somewhat fragmented state,
with each country producing peatland estimates of varying levels of detail, quality,
and uncertainty.

According to Minasny et al. (2019), peatland mapping studies should focus on
quantifying the uncertainty in peatland predictions, validating the results, and
using more than one covariate for making the predictions. Additionally, Minasny
et al. (2019) raised a few research questions, one of which pertains to this project:
“How do current global peatlands respond to climate change?” As will be explained
in the sections below, this project deals with a moss mesocosm dataset which
contains peatland vegetation species reflectance data as a dependent variable of
drought-induced stress.

1.2 Mosses and bryophytes: crucial species
Mosses are members of the bryophyte plant group: non-vascular, seedless plants
that lack water distribution regulation capability within their tissues and systems.

3



Chapter 1 INTRODUCTION

While they are not the sole constituent of the peatland ecosystem, mosses are
a vital component nevertheless; they are so crucial that wetland classification
systems based on moss abundance have been proposed after having found that
mosses served as essential predictors of historical peatland environmental conditions
(Vitt and House, 2021). Additionally, bryophytes are known to be key predictors
of biodiversity (Zechmeister et al., 2003; Pardow et al., 2012) This brings up
interesting possibilities for detailed global wetland classification based on moss or
bryophyte abundance. Vegetation mapping via remote sensing tools is thoroughly
explored. However, classifying wetlands via moss abundance would come with new
challenges as mosses exist not only in open peatland fields but also under forest
canopies where remote sensing methods do not have direct views of moss turf.
Furthermore, the interference of fluctuating water levels with vegetation reflectance
signals can pose issues with continuously monitoring even open peat accumulating
turfs. Furthermore, existing vegetation indexs (VIs) require modifiers to accurately
quantify standard metrics for vegetation ecosystems like Leaf Area Index (LAI) for
the non-vascular species of peatlands.

1.3 Research Questions
In this project, a new hyperspectral dataset of moss mesocosms collected from peat-
land areas of differing hydrological histories is available to work with. Considering
the previously discussed status of global peatland mapping and the connections
between peatland bryophyte species and wetland ecosystem states, this project sets
out to answer, in part, the questions:

1. How do peatland bryophyte species respond to climate stresses?

2. Do hyperspectral data and spectral products derived thereof to serve as
accurate covariate predictors of health during climate stress?

3. Are absorbance signals advantageous to reflectance when modeling biochemi-
cal parameters from spectral data?

4. How do vegetation indices such as Modified Triangular Vegetation Index 2
(MTVI2) compare to spectral data in predictive ability?

5. Can moss bio-resilience be predicted from hyperspectral data?
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Dataset Background 1.4

1.4 Dataset Background
This project is based on a hyperspectral image dataset captured during a controlled
moss experimental study that began in 2018 as an extension to field studies of the
same species under similar conditions (Kokkonen et al., 2019). The dataset was
captured by faculty collaborators (Semenov, 2019), and has had some exploratory
processing performed on it including:

1. thresholding segmentation of reflectance images

2. image annotation with experiment variable modifiers

3. image annotation with reference-patch and specimen locations

4. image organization and naming according to experimental design

From this initial work on the dataset, what is utilized in this project includes
items 2, 3, and 4.

In this section, the experimental background is reviewed to explain the purpose
and potential applications of the dataset derived thereof, and the dataset, as used
in this project, is further described in detail.

1.4.1 Mesocosm drought experiment
In the original experiment from which this dataset was produced, researchers studied
the effect of peatland water-table history on dominant moss species’ acute drought
response. It was hypothesized that the moss vegetation cover from peatlands of
long-term (17+ years) dry conditions and deep water tables would have adapted to
drier conditions and therefore be more resilient to severe short-term drought than
would moss vegetation from peatlands with higher water tables or a shorter history
of dry conditions (< 17 years) (Kokkonen et al., 2023). Researchers collected 96
representative moss mesocosm samples from 3 areas in the Lakkasuo peatland
reserve (Fig. 1.2): a site with water-level-drawdown (WLD); a site with history of
low water table conditions (HDRY); and a wet bog with a history of high water
table conditions (HWET). The Lakkasuo peatland reserve where these samples
were collected is located in southern Finland; the peatland is large, containing fens,
bogs, a tree-cover area, and several experimental sites where controlled WLD has
been applied over the years.

After collection in May 2018, due to the hot summer conditions, the samples
were stored at 6◦C until the start of the experiment in August 2018. In August,
all the mesocosm samples were trimmed to even turf heights and acclimated

5



Chapter 1 INTRODUCTION

Source: National Land Survey of Finland Topographic Database 05/2023

Figure 1.2: Lakkasuo peatland site where experimental specimens were extracted.

2018

August September October November December

Acclimation Drought Recovery

C1 C2 C3 C4 C5

Session 1 Session 2 Session 3 Session 4

Figure 1.3: Data capture timeline

to standardized experimental conditions with plentiful irrigation (15 cm water
table) using water profiles corresponding to the mesocosms individual collection
sites. This period corresponds to image capture session 1 (S1). Similarly to the
experimental setup in Malenovský et al. (2015), successive stages of treatment
were then applied to the moss samples: drought/irrigation and recovery (Fig. 1.3),
with the recovery phase being assessed at three intervals throughout. In total,
there were five measurement campaigns (denoted by Cn in Fig. 1.3); C1, C2, and
C5 correspond to the successive phase’s peaks while C3 and C4 were intermediate
measurements during the recovery phase. Images were successively captured at
measurement campaign C1 , corresponding to image capture session 2 (S2), C2,
corresponding to image capture session 3 (S3), and C5, corresponding to (image
capture session 4 (S4)).

In the study, ninety-six wild moss mesocosms were collected, potted, and kept
in a controlled environment (see Fig 1.4a), where a variable treatment could be
applied to each sample. Treatment consisted of applying a varied water level to
the moss samples: 10 cm deep for control specimens and 30 cm deep for variable
specimens undergoing a simulated, short-term drought. Each moss sample was

6



Dataset Background 1.4

(a) Ninety-six mesocosms (b) Imaging enclosure (c) Varied mesocosms

Figure 1.4: Physical setup of moss mesocosms.

assessed and imaged at intervals throughout the treatment stages. Researchers
measured several biological properties and outputs from the specimens, and the
hyperspectral images were captured for post-analysis and further studies. In total,
there are 396 hyperspectral images recording the chemometric phenotyping of these
samples as they progress from their initial state through drought and on through
recovery at the end of the experiment. By the end of the experiment, some moss
samples appear completely desiccated (although still alive), others increased in
vitality, while the rest displayed a range of relative health in between depending on
the species or other experiment modifiers.

As seen in the timeline, the hyperspectral image capture sessions 2, 3, and 4
roughly correspond to the peak phase measurement campaigns C1, C2, and C5. In
contrast, image capture session 1 was taken at the beginning of the experiment
shortly after collecting and placing all the specimens.

1.4.2 Hyperspectral Images
The hyperspectral images in this dataset were captured with the VNIR Specim
IQ camera (see full manufacturer specifications (Viitakoski, 2023)). No spatial or
spectral binning was used during image capture; therefore, each image has the
camera’s full spatial resolution of 512 × 512 pixels and full spectral resolution

7
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consisting of 204 bands ranging from approximately 400 - 1000 nm. In all images,
three diffuse gray tiles were placed around the perimeter of the mesocosm specimens
to serve as ideal diffuse reflector references for performing corrections. Also, in
each image, each specimen’s modifier combination marks can be seen painted on
the ceramic pot, classifying the specimen into appropriate site history, site location,
treatment, and species categories.

Hyperspectral images were captured at four stages throughout the experiment
(see Fig. 1.3) at specimen setup, peak acclimation, peak drought, and peak recovery.
For the 96 specimens, there are a total of 396 hyperspectral images covering the
experimental stages. The sessions are summarized below:

Session 1 (S1) : This is at the start of the experiment; wild specimens are
recovered from storage, trimmed, and supplied with sufficient irrigation.

Session 2 (S2) : Captured at the peak of the acclimation phase, where all speci-
mens consistently underwent favorable conditions.

Session 3 (S3) : Captured at the peak of the drought phase, half of the specimens
underwent severe drought treatment while the other half remained in favorable
irrigation conditions.

Session 4 (S4) : Captured at the peak of the recovery phase, regular irrigation
was resumed for drought samples and continued for the control samples.

Due to the nature of hyperspectral image capture, the imaging scene configu-
ration is essential. Perhaps the most critical is illumination. To ensure sufficient
signal to noise ratio (SNR), samples must be illuminated with enough light taking
care to not overexpose the samples at any point along the spectral domain. Addi-
tionally, when in-scene white or gray references are used, care must be taken not
to overexpose the reference; in these images, gray references were used to allow
for a longer exposure integration time, 20 time units (tu) (time unit is unknown,
but assumed to be seconds), to pick up more signal from the specimens. If a
white reference is used, it is sometimes necessary, as in this case, to capture it in a
separate picture at a faster exposure time. Each session’s white reference images
in this dataset were captured with a 10 tu integration time.

To ensure a consistent lighting configuration and camera placement, researchers
constructed an imaging scaffold to mount the lights and camera onto (see Fig.
1.4b). Using the scaffold ensured that the nonuniformities in light dispersion would
be consistent from image to image, making calibration easier. It also ensured that
the camera focal distance and physical distance to the specimen were constant.
Around the scaffold, a diffuse shroud was attached; this was used to block out
external light and provide a surface to scatter light inside the scaffold diffusely.

8
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Figure 1.5: Scaffolding structure and interior

Inside the platform, the gray reference tiles were placed onto a wooden frame (see
Fig. 1.5) under which the specimens were situated.

1.5 Research Goals
With this hyperspectral dataset and the corresponding mesocosm trait measure-
ments and estimates provided from (Kokkonen et al., 2023), the primary goals of
this project are to answer the research questions posed and contribute new insights
and data to the peatland ecology research community. A brief overview of what
work was performed in this project is provided below:

1. A versatile mesocsom dataset processing pipeline was built. This includes
functions for performing all operations used in this project and described
below with extensibility built in.

2. A basic hyperspectral image web inspector was built to support viewing of
hyperspectral TIFF files,

3. The raw dataset was converted to spectral TIFFs for ease of handling.

4. All images were calibrated to a standardized unit.

5. Image noise was characterized and corrected.

9



Chapter 1 INTRODUCTION

6. A total of 22 spectral products were derived from the dataset and used to
optimize 264 mesocosm trait prediction models, over two dozen or so with
very high prediction performance.

7. Moss spectral features corresponding to climatic drought stress were identified
and used in predicting spatial maps of moss drought response.

8. Absorbance was found to produce more performant bioindicator prediction
models in certain cases than did reflectance signal.
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2 State of the art

Numerous studies and reviews in ecology, remote sensing, and other fields have
covered continuous advancements in peatland monitoring over the recent decades.
Motivations for understanding peatland status and inventory are far-ranging from
local agricultural resource planning up to national conservation efforts and beyond
into intergovernmental mandates as part of Intergovernmental Panel on Climate
Change (IPCC) carbon budget reform.

Studies on the use of remote sensing data for peatland diagnostics via moss
species reflectance signals have been in the undertaking for decades (Bubier et al.,
1997); yet recent reviews on the topic express frustration at not having reliable
means within the peatland community for assessing global peatland status (Minasny
et al., 2019) to have unified, global peatland carbon flux reports as inputs into
decision-making policies and international carbon budget planning. Literature
reviews on peatland mapping and assessment have highlighted the need for several
improvements in the existing body of work to achieve these goals (Minasny et al.,
2019; Lees et al., 2018):

1. reporting model uncertainty

2. using multiple covariants, if possible, for predictions

3. exploring the relationship of the peatland carbon cycle to climate variations

4. modeling broader sets of peatland variants rather than focusing only on
specific hyper-localized peatlands

5. including split-parameterization for ecological models, which allow for different
parameters to be applied within existing ecosystem models for vascular and
non-vascular species

6. scaling micro-scale models into repeat-mosaic models, which can potentially
serve as accurate predictors for peatlands considering their high heterogeneity
at small scales and homogeneity at larger scales

11



Chapter 2 STATE OF THE ART

Peatlands are challenging to model, particularly with remote-sensing methods, for
a few reasons:

• There is a high variation in peatland ecosystem composition and behavior.
Peatland ecosystems are commonly considered a single group, but many
subclasses affect the biome response to climatic factors.

• Water table level, perhaps the single most influential driver of peatland
ecology, is not directly accessible through remote sensing data. It has been
shown, however, that water table level (WTL) can be inferred from moss
reflectance data and other proxies (Burdun et al., 2020).

• In gross primary product (GPP) modeling of vegetation ecosystems, esti-
mating the total ecosystem respiration (Re) is difficult and biased (up to
25% (Keenan et al., 2019)). Peatlands undergo drastic changes in Re due to
degradation. Therefore, it is vital, yet difficult, to quantify this uncertain
term globally for peatland areas. Mapping peatland health would aid in this.

• Peatlands have high heterogeneity at a microscale within their ecosystems;
they are, however, homogenous at larger scales, known as repeat mosaics.

Due to these imposing challenges, primarily the inability to transfer existing
ecosystem and vegetation carbon flux models directly to peatlands, estimations
for peatland contribution to national and international carbon flux models are
thought to be very roughly over or under-estimated. This is concerning for countries
with underestimated carbon sinks from their peatland ecosystems and those with
underestimated carbon emissions from their drained and degraded peatlands.

Global carbon fixation is primarily carried out through photosynthesizing
organisms during photosynthesis; for this reason, carbon flux models are broadly
defined around GPP, the measure of total radiant energy converted to chemical
energy within an ecosystem (global or local). With photosynthesis being the primary
driver of terrestrial GPP, carbon fixation as a process within photosynthesis is very
closely related to GPP estimation. Convenient for remote sensing capabilities, the
Light Use Efficiency (LUE) model is most often used to describe the relationship
between GPP and photosynthetic processes within ecosystems:

GPP = fPAR · PAR · ϵ (2.1)

Of the total radiant energy available for photosynthetic activity, photosyntheti-
cally active radiation (PAR), some will be lost due to variables such as cloud cover,
leaf area, and topology, reducing the PAR down to a fraction of photosyntetically
active radiation absorbed in photosynthesis (f PAR). Of the total photosynthetic
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radiant energy that finally impinges on photosynthesizing organisms, a fraction of
that amount, ϵ, will be converted to chemical energy; the rest is re-emitted due
to inefficiencies, limitations around light conversion, and ecosystem respiration.
Accurately quantifying peatland and wetland soil respiration is particularly impor-
tant as ecosystems release chemical energy through respiration, both autotrophic
respiration (Ra) directly from vegetation and heterotrophic respiration (Rh) from
other sources such as soil decomposition.

Peat composition specifications and peatland inventories are often derived from
national soil data and taxonomy systems developed within national scopes by
each country’s respective efforts in soil science. At the global scale, soil science
is very diverse, and due to how it typically develops around national agricultural
initiatives, the resulting soil taxonomies, classification methods, and experimental
methodologies are just as varied and disparate as the agricultural applications
which the systems and processes are developed around.

The varied nature of peatland vegetation introduces challenges as well. North-
ern boreal peatlands are dominated by Sphagnum mosses, exhibiting as quickly
recognizable open fens and bogs. In contrast, other peatland regions may show
sedge, reed, and forest species characteristic of soil types different than peat. This
makes peatland mapping through vegetation classification not so straightforward,
as the vegetative cover is not necessarily a direct indicator of the presence of peat.
Instead, the underlying hydrological disposition of the land drives peat formation
(Rydin and Jeglum, 2013); key moss species, however, do serve as indicators of
the underlying hydrological state of a wetland and could be used as predictors
of peatland class and, therefore, an indicator of peat formation (Vitt and House,
2021). Mapping peatland species cover comes with additional challenges, such
as dealing with the interference of surface water with vegetation signals and the
location of bryophyte species underneath taller vegetation canopies; nevertheless,
accurate monitoring across all peatland regions is vital to climate change mitigation
initiatives, as some of the peatlands about which least is known and studied, such
as those in the Congo basin (Dargie et al., 2017) may contain some of the highest
amounts of carbon deposits. Peatlands are predicted to become major GHG emit-
ters shortly (Leifeld and Menichetti, 2018; Harris et al., 2022); therefore, a focus
on framing local peatland studies into the global context is vital for developing
consistent methods for tracking and predicting international peatland contributions
to carbon flux.

2.1 Key Research Directions
The following sections briefly review key studies addressing some of the current
gaps in peatland and wetland monitoring. Based on recommendations from the
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most recent reviews of peatland mapping and carbon flux monitoring, the following
research directions are highlighted here:

1. Mapping peatland vegetation bioindicators, particular vital health indicators
as they relate to climate response

2. Peatland characterization or classification via vegetation proxies

3. Quantifying peatland diversity

2.2 Mapping Peatland Bioindicators
Estimating peatland carbon flux and stock provides the knowledge needed for
carbon budgeting; part of estimating ecosystem-wide carbon flux is assessing the
biological status of dominant species in the ecosystem. Changes in vegetation
chemical composition provide insight into their photosynthesizing ability; these
chemical changes often significantly alter a plant’s absorption of light, evident in
reflectance measurements of vegetation cover, both from remote sensing data and
field spectroscopy. Tracking changes in this informs restoration efforts regarding
the effectiveness of deployed tactics and enables prioritization of targeted areas.
However, peatland health is a vague measure characterized by many metrics.
Considering Sphagnum species and their critical role in peat production, the
following studies focus on quantifying Sphagnum health responses to climatic
stresses.

2.2.1 Field-scale moss vigor with VNIR
In response to studies and reports of changes in temperature, wind speed, and ozone
across Antarctica, the IPCC recommended in 2009 to establish ongoing datasets
for the continent. Prompted by this and in anticipation of plans from the Scientific
Committee for Antarctic Research to establish research around ecosystem health
in Antarctica, Malenovský et al. (2015) performed a study on Antarctic mosses,
developing models for predicting moss bioindicators with high-resolution spectral
signals, and produced a Relative Vigour Indicator (RVI) with the results.

Although Antarctica is not known for expansive vegetation, green coastal
ecosystems do exist around the continent (Fenton, 1980; Loisel et al., 2017), and
they are particularly fragile due to the extreme, niche conditions to which they
have adapted. This study focused on two moss beds on rocky soil areas in a
coastal region near the Australian Casey Station. The authors hypothesized that
changes in moss bioindicators due to drought stress (Chlorophyll a and b (Cab),
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Table 2.1: Experiment overview

Datasets Primary (2013), 32 specimens (3 species, two collection
sites)
Auxiliary (1999), 73 specimens (1 specie)

Independent var. watering regimen
Dependent var. lab-measured Cab, LD, TWC
Covariates HIST, SPEC, SITE
Correlates VNIR (r496−719 nm, r648−719 nm, cr648−719 nm, r708−848 nm,

r708−782 nm, cr711−778 nm)
Methods SVR modeling
Scales leaf, field

Leaf Density (LD), and Turf Water Content (TWC)) would induce changes in
vegetation reflectance along the Visible and Near-Infrared (VNIR) range. With
enough correlation between the bioindicators and respective regions in VNIR, linear
models could be trained off of collected samples, and the results combined into
a composite RVI with which to identify and track wild moss bed health in the
Antarctic.

2.2.1.1 Methodology

An experimental overview is summarized in Table 2.1. The primary dataset used
in this experiment was built from 32 moss specimens collected onsite.

In the laboratory, specimens were divided into a control and an experimental
group. The control group received the regular irrigation regimen throughout the
experiment, while the experimental group underwent two stages: a six-day drought
and a twenty-five-day recovery in which the specimens were irrigated the same as
the control group.

On the last day of each stage, measurements were taken, including the ground
truths (Cab, LD, TWC) as well as spectroscopic readings covering the respective
spectral ranges (Correlates in Table 2.1), used later for modeling correlations
between spatial signals from field imaging to the specimen attributes.

After running the treatment applications over 27 days (6 days of drought
and 25 days of recovery), SVR prediction models were set up for each of the
three specimen bioindicators, using the spectroscopy-derived reflectance signals
as predictor variables, and the measured bioindicator parameters as observed
responses. For each bioindicator, Malenovský et al. (2015) used three Support
Vector Machine (SVM) variations. For the Cab bioindicator, separate models were
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set up for r496−719 nm, r648−719 nm, and cr648−719 nm. For TWC and LD, separate
models were set up for r708−848 nm, r708−782 nm, and cr711−778 nm each.

2.2.1.2 Results

After training on data collected in their experiment as well as on the data contained
in Robinson et al. (2005) and performing model tests, Malenovský et al. (2015)
observed that the following prediction variables produced the best bioindicator
predictions: cr648−719 nm for Cab, r708−782 nm for LD, and cr711−778 nm for TWC.
The best model for TWC, however, had abysmal prediction accuracy with an index
of agreement, d , of .43, and the authors concluded that this was most likely due to
lack of full radiometric signal related to TWC in their spectroscopic measurements.

The LD and Cab models were then used to evaluate hyperspectral images of
the same moss beds where the samples were collected. Bioindicators were predicted
for every moss bed pixel after masking out non-vegetation pixels using MTVI2
thresholds. A resulting RVI map was then created with the mean of each normalized
bioindicator.

2.2.2 Landscape-scale chlorophyll and nitrogen pre-
diction with VNIR

One of the most challenging aspects of accurately monitoring peatland carbon
cycle flux is the heterogeneity of the vegetation cover. Satellite imagery is typically
captured at a scale where dozens or more species will be included in a single pixel.
Spectral unmixing can help extract spectral end members. However, little work
has been done on this for peatland vegetation species. Therefore, at landscape
scales, the high heterogeneity in the typical peatland renders the standard Spectral
Vegetation Indexs (SVIs) used in many ecological landscape studies inaccurate,
eliminating SVIs as a convenient measure of peatland vegetation bioindicators
without special modification for the many variations of vegetation response. Even
at finer scales, such as imagery captured with Unmanned Aerial Vehicles (UAVs),
the species-specific SVIs for peatland species is inconsistent across the seasons as
water table levels and peatland canopy reflectances change.

Kalacska et al. (2015) took a comprehensive approach to this problem. In the
Mer Bleu peatland bog in Ottowa, Canada, they collected data from 20 assorted
peatland vegetation species from which neural network prediction models were
trained to evaluate chlorophyll and nitrogen content. Data included physical
chlorophyll and nitrogen content estimations based on field sample chemistry and
reflectance measurements, r325−1075 nm.
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Table 2.2: Kalacska et al. (2015) experiment overview

Dataset 890 data pairs (19 species, 190 specimens, temporally re-
peated over six months)

Independent var. seasonal climate factors
Dependent var. chlorophyll and nitrogen content
Covariates SPEC
Correlates VNIR (various SVI and CWT)
Methods nonlinear neural network
Scales leaf, field, aerial
Accuracy (Chl., nr.) field: .87, .73; aerial: .86, .89

2.2.2.1 Methodology

Table 2.2 summarizes a brief experimental overview. Given the challenge of predict-
ing common bioindicators across a vast collection of peatland species with a single
metric, spectral reflectance, Kalacska et al. (2015) chose to employ neural net-
works and Continuous Wavelet Transform (CWT). Neural networks are non-linear
machine learning systems beneficial for dealing with very diverse and sufficiently
sampled datasets; in this case, this approach works well for the number of samples
collected (up to 60 per species) and the number of primary covariates affecting
the prediction (19 species and multiple seasons). The CWT provides a method of
decomposing signals into base component coefficients. Various base wavelets can
be used for the transform, and certain ones work better than others depending on
the application (Cocchi et al., 2003).

Applying the CWT to a one-dimensional signal yields a two-dimensional result
(scalogram) of n wavelet coefficients for every input sample, with the value of the
coefficient corresponding to the scaled base wavelet’s correlation to the original
signal at the sample location. This method can be used to parameterize spectral
signals into a fingerprint identifier for various materials or vegetation species
Kalacska et al. (2007). Figure 2.1 demonstrates the CWT transform of a vegetation
specimen’s reflectance signal. The resulting scalograms could be analyzed for
correlation between coefficients and specimen traits if the transform was applied
across a training set of specimen reflectances. The most highly correlated coefficients
across the scalograms could be used as prediction variables for other data samples.

Kalacska et al. (2015) performed this same analysis with all the specimen
reflectance CWTs, finding which coefficients correlated the most to chlorophyll
and nitrogen levels for each month that the samples were collected. Coefficients
selected by correlation were further reduced, preserving only ones present in at
least five of the six trial months. The remaining coefficients could proxy for
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Figure 2.1: CWT of a moss vegetation sample’s reflectance signal. Top row:
scalogram of CWT coefficients; middle row: wavelet bank with 31 scales; bottom
row: moss reflectance.

underlying chlorophyll/nitrogen phenology standards across seasons and species.
These remaining coefficients were finally filtered further with Akaike’s Information
Criterion (AIC) to preserve the best modeling coefficients and used as prediction
variable inputs into the neural network.

2.3 Peatland Characterization via Vegeta-
tion Proxies

This section reviews various works exploring the characterization of certain peatland
aspects like habitat and GPP based on radiometric data from peatland vegetation.

2.3.1 Species, habitat, and moisture estimation from
VISNIR and SWIR

Peatlands can be classified based on their hydrologic disposition, with water nutrient
availability being the primary differentiating factor:
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Table 2.3: Salko et al. (2023) experiment overview

Dataset 360 samples (90 specimens, repeated at four intervals over
drought period)

Independent var. length of drought
Dependent var. moisture content
Covariates species, habitat
Correlates VIS-NIR, SWIR
Methods PCA, linear-regression, bicanonical reflectance indices
Scales leaf
Results +90% reflectance explainability from species, R2 > .8

moisture prediction with SWIR indices

1. minerotrophic: access to nutrient-rich groundwater, surface water, and pre-
cipitation

2. ombrotrophic: access to only precipitation; usually have a layer of peat so
thick that access to groundwater is inhibited

3. eu-,meso-, oligotrophic: subclasses representing decreasing levels of mineral
availability

These classifications would be very useful for improving global peatland carbon
estimates as they provide insight into the nature of vegetation growth and water
availability in a peatland; inferring these classes from remotely sensed data may
be possible, as it has been shown that WTL can be estimated from peatland
vegetation reflectance data (Burdun et al., 2020). WTL for a given peatland
area drives nutrient availability, species composition, and vegetation response to
radiation. In a recent study, researchers examined the possibility of inferring the
peatland site, among other properties, from SWIR and NIR vegetation reflectance
data (Salko et al., 2023).

2.3.1.1 Methodology

They collected 90 samples from several peatland sites: minerotrophic, ombrotrophic,
and intermediate areas with a range of nutrient levels between the first two classes.
For each sample, laboratory spectroscopic readings were taken at four intervals
throughout the experiment: 0 hours, 24 hours, 48 hours, and seven days from the
start of the experiment. Mean species conical-conical reflectance factor (CCRF)
was computed, and results were analyzed for intra- and interspecific differentiation
in signal between species and peatland site. This data was analyzed to assess the
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variance explainability of species and habitat and to compute optimal bicanonical
reflectance indices for predicting moisture content.

2.3.1.2 Results

In this study, results showed that peatland vegetation species explained more of
the variance in reflectance data (over 90%) while peatland habitat, or hydrological
classification, explained under 65% of the variance at the beginning when moss
samples were freshly collected and under 50% after one week of drying. In contrast,
the species explained more of the variance as drying progresses, with interspecies
reflectance curves differentiating more in NIR and SWIR than in VIS bands.
Furthermore, they found that in the ombotrophic samples, intraspecies variation
in reflectance was minimal, while mesotrophic and intermediate habitat areas had
high interspecies reflectance variance. They concluded that results indicate the
importance of moss species spectral libraries in classifying peatlands from remote
sensing data. Peatland vegetation species respond differently to radiative signals
than vascular species, and the intraspecies responses also vary.

2.3.2 Peatland GPP and water content estimation
With similar aims as the researchers of the experiment from which this project’s
dataset was taken, Lees et al. (2020) attempted to estimate peatland vegetation
GPP and water content using lab and field captured hyperspectral data. They
compared the effectiveness of multiple existing water content indices, finding them
correlated more to the lab measurements but suffering in accurate predicting the
lower water levels in field measurements.

For GPP estimation, they studied the correlation between existing VIs and
GPP estimates from carbon dioxide flux measurements. They found that the
VIs, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Photochemical Reflectance Index (PRI), Structurally Insensitive Pigment
Index (SIPI), and Modified Chlorophyll Index (CIm), were strongly correlated with
peatland vegetation GPP.
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3 Methodology

This chapter details the methods and processes used in developing this project.
While not all methods are discussed, the primary stages of the project’s processing
chronology are covered.

3.1 File Preparation
Before processing the dataset images and extracting spectral features, the dataset
files were first prepared with several goals in mind: convenience of inspection,
digital storage efficiency, and format and signal standardization.

3.1.1 Data file format
The Specim IQ camera saves its spatial radiance data to raw image files accompanied
by ENVI-compatible metadata header files. Using the ENVI-compatible format
for the images is common across remote sensing applications. As this project
was performed with no advanced hyperspectral imaging visualization workbench
tooling (e.g., ENVI, ArcGIS), the ENVI-compatible images were converted to
another format to make visualization and sharing of the photos convenient and
cross-platform. The TIFF image format, created for storing and transmitting
scanned documents, has come to be used in scientific applications around remote
sensing and geographical mapping, with NASA developing the GeoTIFF extension
format for use with geographically annotated raster images. TIFF files support
“subdocument” or “multi-page” structures making them particularly useful for
scientific imaging where human-vision inspired, three-channel RGB structure is not
always used.

At the start of this project, the ENVI-compatible raw image files were converted
to multi-page TIFF format files. Doing this accomplished several things: spectral
band metadata could be consolidated into the image file; an RGB image preview
could be stored in the TIFF for easy previewing on most operating systems;
there is added convenience for processing the image data as TIFF parsers exist
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in most software languages and image processing libraries; any dark frames or
white reference images for a given specimen capture could also be consolidated into
the same image file with the specimen capture. This reduces several related files
for each hyperspectral capture to one and reduces the complexity of file handling
scripting code (offloading the complexity to TIFF parsers). Also, masks and other
related image processing outputs can be stored in the multi-page TIFF. This format
was advocated by professors in the Computational Spectral Imaging department at
UEF for some of the reasons above, and for the expanded compatibility it provides
with existing image management systems in medical imaging and other fields.

Many hyperspectral images were converted, processed, inspected, and managed
daily (not just the 384 specimen hyperspectral images but also their derived images).
Some free software exists for basic visualization and pixel “Z profile” inspection
of hyperspectral images, though they are often designed to support the ENVI
formatted images or sometimes GeoTIFF images.

Most operating systems will preview the first page of a TIFF image in their
included image viewer. Still, more capable image viewers are usually needed to
page through a multi-page TIFF file, where each page stores a single slice of the
hyperspectral image cube. Some free TIFF viewers that sufficed for this and were
used in this project are IrfanView and FastStone Image Viewer.

To the author’s knowledge, no image viewers are designed to support hyperspec-
tral image inspection on hyperspectral TIFFs such as these. Some allow viewing a
single pixel value at the cursor’s coordinates; hyperspectral image viewers offering
inspection tools do not support the TIFF format. Open-source GeoTIFF viewers
either did not support basic hyperspectral Z profiling or depended on additional
system tools to be installed.

A MATLAB app, Hyperspectral Viewer, is available for essential viewing and
inspection. Still, it would need some custom connector code to read the TIFF and
provide the hyperspectral cube to the app to work with these hyperspectral TIFFS.
Additionally, MATLAB is not free to use.

Javascript is not typically used for intensive computing and image inspection;
however, a good Javascript GeoTIFF parsing and manipulation library exists, which
can read these hyperspectral TIFFS as well. With this library, a basic web app was
created to support quick Z-profile inspections of hyperspectral images throughout
the project. It may be just as easy to write a Python script to read the TIFF file,
preview it with matplotlib and plot the spectra from a selected point in the image,
but having a viewer available as a web app removes many system dependencies.
Only a modern web browser is needed to run the application.

The main view of the application is shown in Figure 3.1. Here, a single channel
of the chosen hyperspectral image is selected with the band slider and rendered
in the Viridis colormap. A pixel from the moss specimen is also selected and
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subsequently plotted in the right-hand side plot.

Figure 3.1: Hyperspectral TIFF Viewer application built in order to inspect
spectral TIFF images in this project’s dataset conveniently

3.1.2 Hyperspectral preview rendering

A benefit of using TIFF files to store the hyperspectral images is that the multi-
page feature can keep all of the hyperspectral band images independently and a
color-rendered preview image for the operating system to use as the file preview.
RGB previews are often derived most simply by extracting three channels from
the hyperspectral cube that somewhat represent the primary colors (e.g., 650 nm
for red, 550 nm for green, and 450 nm for blue) and normalizing them from 0
to 1. Any band most convenient for the application can be used (even just a
single band for grayscale). However, for this project, sRGB previews were rendered
for all dataset images (some derivative spectral images used other custom color
rendering schemes). Complete sRGB rendering details can be found in the original
specification (Anderson et al., 1996); the three steps to convert hyperspectral
reflectance images into an sRGB rendered preview are shown briefly here.

The XYZ tristimulus values for D65 illumination are first computed by inte-
grating the respective color-matching function with the light source and derived
reflectance signal from the hyperspectral images for each pixel from 360 nm to 830
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nm as in (3.1).

K =

∫ 830nm

360nm
CMFK(λ) lD65(λ) r(λ) dλ (3.1)

(3.2)
where:

K : tristimulus value (X, Y, or Z)
CMFK : color matching function for tristimulus value K

lD65(λ) : D65 illuminant
r(λ) : reflectance signal

(3.3)

Once the tristimulus values for a pixel are known, the linear sRGB values are
computed with the standard sRGB transformation matrix as shown in (3.4).Rlin.

Glin.

Blin.

 =

 3.2406 −1.5371 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

XD65

YD65

ZD65

 (3.4)

Linear sRGB values must be gamma encoded to appear natural on the typical
display monitor. Gamma encoding for sRGB is applied according to (3.5).

CP =

{
12.92Clin., Clin. ≤ 0.0031308

1.055C−1.24
lin. , Clin. > 0.0031308

(3.5)

(3.6)
where:

C is R, G, or B
(3.7)

Finally, the saturation and contrast on the sRGB images are increased slightly to
help improve detail visibility.

Rather than using the 1931 CIE color matching functions (CMFs) in (3.1), other
kinds of vision systems can render the hyperspectral images. For example, a set of
camera sensitivities could be used in place of the CMF to obtain the XYZ values
as the camera would render them. However, any other vision system besides the
human visual system (HVS) represented in the CMFs will require a separate XYZ
to RGB transformation matrix. This can be computed through linear regression
between XYZ values from the camera system’s results in (3.1) and RGBlin. values
from the CMFs results in (3.4).

24



File Preparation 3.1

Though somewhat out of this project’s scope, this was tested on some hy-
perspectral images to compare the rendering results between a camera system
and the HVS. Figure 3.2 shows renderings of dataset sample T1S01A using the
HVS, an iPhone SE sensitivities, and extracted hyperspectral bands, each with
an auto-contrast being applied afterwards. Using the same rendering techniques,
optimal illuminations could additionally be designed to maximize the specimen
features of interest Bartczak et al. (2017); English (2023).

(a) iPhone SE rendered (b) HVS rendered (c) Bands (650, 550, 450) nm

Figure 3.2: Alternate previews of the hyperspectral image of specimen T1S05B

In hyperspectral previews shown throughout the project, some are intended to
solely represent the specimen and scene according to how the HVS would perceive
the scene, and others represent radiometric values in a spatial image. Unless
otherwise noted, dataset previews will represent the specimen and scene with a
simulated HVS rather than representing radiometric data.

3.1.3 Data decorrelation and compression
While hyperspectral imaging provides unmatched spectral resolution, it comes at
the cost of enormous image sizes and somewhat redundant data. The presence of
a single chemical, for instance, chlorophyll a, will produce changes across nearly
one hundred nanometers or more in the spectral dimension of a hyperspectral
image. There is typically a target wavelength at which a peak of absorption or
reflection caused by a particular chemical can be found; for many use cases, data at
these peak wavelengths can explain most of the variation between highly sampled
radiometric signals. This affords the everyday use of “spectral indices,” which use a
limited set of spectral readings obtained from multispectral cameras to spatially
estimate specific chemometric properties of materials or qualitative characteristics
of landscapes from remote sensing data. A pitfall of relying on a small set of
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spectral readings is that unknown or unexpected covariants may be influencing the
lessons at target wavelengths without any indication of this from other spectral data
outside the captured sample set; therefore, for multispectral imaging and spectral
indices, it is essential to understand the intended application for any particular
index as well as the expected environmental constraints.

With an abundance of spectral data in a hyperspectral image, various methods
exist for reducing the data redundancy while retaining target signals and potentially
unexpected interfering signals from system covariants. One such method in everyday
use is principal component analysis (PCA). PCA is the Eigen-value decomposition
of the covariance matrix for a normalized dataset. If a dataset spans over N
dimensions, then a principal component analysis will find P components through
P=N new dimensions, all orthogonal to each other, of which the first component
maximizes dataset variance along its axis, the second maximizes the remaining
dataset variance along its axis, and so on. In a typical PCA implementation,
the number of vector dimensions, P, can be chosen arbitrarily and, following
the solution, reduced to the minimum number of vectors needed to explain the
desired amount of variance in the system. If sorted in decreasing order by their
corresponding eigenvalues, the principal components will be ranked in order of
decreasing amount of explained variance, meaning that the first several components
will explain most of the dataset variance. In contrast, the last ones will likely
represent minor influences in the dataset, such as noise or minority signals.

PCA is frequently used to decorrelate data as a preprocessing step in building
machine learning models. Although untypical, PCA can also be used as a means
of compressing image data; the images can be reconstructed for rendering by
projecting the P components back into the original dimensions by taking the dot
product of the transformed image pixel values with the P components (and adding
the dataset mean if the dataset was normalized before PCA). In this project, PCA
is utilized, among other methods, for creating spectral products from which to train
chemometric prediction models. An added benefit of the PCA spectral products
in comparison to others is that they contain nearly all of the original dataset’s
information at a fraction of the size, while other spectral products eliminate much
of the presumably extraneous data; with PCA, this allows for both a reduction
of dataset size for machine interpretation as well as compression of the original
dataset signals for human performance throughout the project.

A series of analyses on one image in the dataset was performed to understand
the tradeoffs with using PCA to represent the original data. A PCA with varying
components was used to transform the image into new data along a reduced set
of principal dimensions. The result is a new image cube for each PCA iteration
which can be stored with the same spectral tiff format used for the hyperspectral
images; in addition to the transformed data, the principal components, image
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data mean, and original hyperspectral sample wavelengths are stored with the new
image cube to allow for a reconstruction of the original data, with varying degrees
of reconstruction accuracy depending on the number of components used. The
resulting PCA data cubes were then used to reconstruct the original image, and
the moss specimen signal was visualized to inspect any distortion trends. The
results are shown in Fig. 3.3; spectra from one specimen pixel are plotted for
each of the reconstructions alongside the original uncompressed pixel signal. File
sizes of the resulting PCA cube TIFFs are plotted with the signal root mean
squared percentage error (RMSPE) concerning the uncompressed signal, revealing
the inverse relationship between the number of components used to represent an
image and the resulting error.

Other commonly used image compression algorithms, such as JPEG, could
also be used to reduce spatial correlation in the images. Decorrelated data from
PCA can be used directly in this project’s chemometric predictive models; however,
compressed spatial data from the JPEG algorithm can be used for compression only.
Nevertheless, JPEG formats of dataset images were created using varying levels of
JPEG compression quality (Qn where n varies from 5 to 100 in increments of 5).
The JPEG format does not support floating point data; to use JPEG compression,
reflectance factor images were converted from floating point into 12-bit integers
and then compressed. In Fig. 3.4, signal distortions caused by compression are
visualized along with the RMSPE and file sizes associated with each format. It
is evident that the RMSPE and file size are generally inversely related to each
other; compression levels down to 90 can remain under 1% RMSPE. However, it is
essential to note that these are statistics taken from one pixel within the image’s
specimen region. Taking the average of as few as 20 pixels within this region
brings the RMSPE of the JPEG compression formats down so low that compression
quality levels as low as 20 can remain under 1% RMSPE.

In terms of file size reduction, using JPEG compression on the dataset is then
comparable to using PCA when taking signal averaging into account, where a
JPEG compressed dataset image at a quality level of 20 is about 5% of the full
uncompressed size while the PCA data, using six components to explain more
than 99% of data variance, is about 3.5% of the uncompressed hyperspectral image
file size. Without actually performing the compression, it could be assumed that
applying the same JPEG compression level of 20 to one of the PCA images could
further reduce the image size down to .175% of the uncompressed image size, about
350 KB, with some additional compounded error.
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Figure 3.3: Signal distortion and file size reductions from using PCA as
compression. Compressed signals shown are from images reconstructed using 1
through 30 principal components, sorted in order of decreasing variance explained,
and the original floating point reflectance image. Data are extracted from 10
pixels located within the specimen region of the image. Top left: reflectance factor
plot of each compression level. Top right: crop of the top-left plot. Bottom:
RMSPE and file size for each compression level.

3.2 Hyperspectral Image Calibration

Hyperspectral images are spatial measurements of radiant energy as a function of
wavelength. Figure 3.5 illustrates a hyperspectral image as a cube, where the third
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Figure 3.4: Signal distortion and file size reductions from using JPEG com-
pression on the hyperspectral images. Formats shown are JPEG quality levels
5 through 100 in steps of 5, the original floating point image, and its 12-bit
quantization (scaled). Data are extracted from a single pixel located within the
specimen region of the image. Top left: reflectance factor plot of each format.
Top right: crop of the top-left plot. Bottom: RMSPE and file size for each format.

dimension is the spectral domain containing pixel measurements as a function of
wavelength. A raw hyperspectral cube can be represented as Cijk, denoting the
vertical and horizontal spatial axes with i and j, respectively, and the third spectral
dimension with k. The hyperspectral image can conveniently be considered a stack
of images where each image, Cij, is the camera response at the respective band,
k. As shown in Figure 3.5, value samples along the two spatial axes are typically
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referred to as samples and lines. In contrast, according to the ENVI data format,
spectral samples are usually referred to as bands.

As with any optical measurement instrument, it is beneficial to characterize the
measurement device and calibrate measurement outputs into standardized units,
considering device noise, optical defects, measurement error, and nonlinear effects.
In raw output form, hyperspectral images are given in arbitrary count units (or
au), as is the case with most digital images in raw form. However, images from
some cameras may be floating point due to spectral or spatial binning and image
averaging. The arbitrary count unit, au, represents the camera image sensor’s
digital quantization of the analog charge accumulated in the photodetector cells.
It is not a direct measurement of radiance, reflectance factor, or standardized
radiometric value. In fact, the same camera under the same spatial configuration
and viewing angle for an invariant imaged material will produce varying raw
outputs as the exposure time, scene lighting, and other environmental factors
vary. For this reason, basing chemometric prediction models on hyperspectral
data requires standardization of the specimen images into some unit of measure
independent of the scene lighting and camera properties, solely representing the
specimen properties.

Figure 3.5: Illustration of a hyperspectral image’s three dimensions: two spatial
axes and a spectral dimension.

Hyperspectral image data is often converted into reflectance factor units, often
simply denoted as reflectance units. While reflectance of a material is the ratio
of its reflected light, rs, to incident light, rn (3.8), reflectance factor of a material
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is the ratio of reflected light off of the material sample, rs, to the reflected light
off of an ideal reflector, rw (3.9). Spectral reflectance factor then is the measure
of reflectance factor as a function of the wavelength (3.10). Without additional
instruments such as integrating spheres and spectroradiometers, estimating the
reflectance of material from a hyperspectral image is challenging without knowing
the illumination’s spectral power distribution (SPD). It is much easier to standardize
the image into spectral reflectance factor by including an ideal diffuse reflector in
the imaged scene 3.6 or in a separate scene image under the same lighting and
camera configurations. Deriving this reflectance factor, value will be explained
further in section 3.2.4.

ρ =
rs

rn
(3.8)

ρf =
rs

rw
(3.9)

ρf (λ) =
rs(λ)

rw(λ)
(3.10)

Figure 3.6: Hyperspectral imaging setup configured with an in-scene calibration
reference tile where rn is the incident light onto the materials and rs and rw
are the light rays reflected off the sample and white tile, respectively. With no
measurements of the light source SPD, equation (3.10) can be used to solve for
spectral reflectance factor, ρf(λ) of the sample material.
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3.2.1 Image Noise
During operation, imaging devices are influenced by several noise sources; con-
sequently, image data is sometimes contaminated with noise that can render a
dataset severely limited if not corrected. Noise is a distortion of the input radiative
signal through various means and produces output with some error. The error may
be inconsequential if the input signal is large enough compared to the distortion
level. Conversely, suppose the input signal is low in low-light settings or under
illumination wavelengths that the sensor is weakly sensitive to. In that case, the
noise distortion magnitude can exceed the original signal’s.

SNR is a measure of the signal magnitude relative to the distortion magnitude
and is typically defined in image processing as the ratio of signal mean to standard
deviation (3.11).

SNR =
s

σ
(3.11)

It can be used as a gauge of signal quality, including image signal quality, but
to calculate it, statistical data is needed for the image. Each image sensor pixel
produces an image pixel value which is scalar for single-channel images or a vector
of n dimensions, p̂n, for multichannel cameras. Defining SNR as a signal mean to
standard deviation ratio, multiple signal samples for a given pixel must be captured
to calculate the SNR. In this dataset, no two images represent the same scene as an
input stimulus for the camera, making strict SNR irrelevant except for comparisons
between processed images and originals. This is with two exceptions. Firstly, every
hyperspectral image is recorded along with a dark frame image, where the shutter
is closed, ideally providing a spatially uniform, constant signal of zero magnitude
to the image sensor. These dark frame images ideally represent a constant input to
the camera sensor, potentially providing 384 samples for each image sensor pixel
to calculate SNR with. In Subsection 3.2.2, the dark frame correction and SNR
will be discussed further. Secondly, spatially homogeneous regions in images (areas
representing the same material under uniform lighting) could serve as multiple
samples of the same input, provided that pixel sensor behavior is uniform and any
independent noise at each pixel is random and normal.

Particularly true in CMOS image sensors, where each pixel contains its signal-
digitization circuitry; noise can occur on individual pixels independently of other
pixels. If the noise is truly random, however, two separate pixels receiving the same
input signal could serve as two samples for noise analysis. In the dataset, every
image contains three homogenous grey reference tiles. While the light dispersion
across the tiles is not uniform, small enough patches from the gray-reference tiles
could be extracted where the light uniformity could be assumed to be practically
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even. To test this, the pixel values from a small circular patch in the lower left
gray-reference tile of sample T1S01A were extracted, treated as separate samples of
the same signal, and analyzed (Fig. 3.7). Suppose the signal from the gray-reference
tile is assumed to be spatially homogeneous, and the noise source is assumed to be
the same across pixels in the gray-reference patches. In that case, the image noise
can be characterized by the deviation of each pixel from the mean, as shown in the
density plots of Figure 3.7. Looking at the plot of pixel signal deviation against
frequency, it can be seen that the deviation closely resembles a normal or Gaussian
distribution. Gaussian curves were fit to the deviation distributions of the gray-
reference pixels at each channel in the hyperspectral image to obtain the Gaussian
curves shown in Fig. 3.7 where the value frequency is plotted on a logarithmic scale.
The signal distribution would seem to imply that the hyperspectral image data has
the best quality at the extremes where the standard deviation is the lowest, but
this is the opposite.

In hyperspectral imaging, this is most evident in channels at the extremes of
the spectral range. Most image sensors have very low sensitivity near the extremes
of their sensitivity range; as hyperspectral cameras record their image channels over
very narrow spectral bands, this results in bands at the extremes of the spectral
range having meager signal power compared with the noise present in the system.

3.2.2 Dark-frame Correction

“Dark noise”, or thermal noise, is caused when the heat energy of operation or the
ambient environment causes additional photon counts to be erroneously registered in
a photodetector readout due to thermal excitation and successive electron emission
in the semiconductor material. A dark frame image characterizes this type of noise.
There is also “readout noise”, the inherent error resulting from analog-to-digital
conversion at the point where a pixel’s analog charge value is quantized into a digital
number representing the so-called photon counts. This can also be characterized in
the dark frame capture.

The dark frame capture should be taken as soon as possible before or after
the scene image, as these various sources of system noise will vary with time as
the environment changes and the instrument operates (a hotter room or longer
exposure times will cause more thermal noise). Once the dark frame is captured,
correction is simple; subtracting the dark frame noise image from the scene image,
as in (3.12), removes the noise that was added by the system.
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Figure 3.7: Sample deviation distributions of pixel values in the gray-reference
tile patch. Top row: gray-reference patch extraction location, patch zoom-in crop,
pixel intensity equalization plot. Upper right: pixel signal intensity raster. Second
row: 2D histogram of deviation as a function of wavelength. Third row: pixel
deviation as a function of wavelength and their least-squares fit Gaussian models.
Bottom row: standard deviation as a function of pixel intensity and wavelength.
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R
′
im = Rim − Rdark (3.12)

where:

R
′
im : corrected image

Rim : uncorrected image
Rdark : dark frame image

This dark frame correction was performed on all the hyperspectral radiance
images collected in this dataset. This should remove most of the noise covered
in subsection 3.2.1. The Specim IQ camera uses the “push-broom” hyperspectral
capture technique; a two-dimensional image sensor is used along with light dispersion
optics to capture both the spatial and spectral information of a single scan line
of the target. The scan line is moved across a target material to obtain a final
three-dimensional image that represents the two-dimensional spatial context and
the spectral dimension of every pixel. The Specim IQ captures a dark frame
automatically for each image by capturing several images with the shutter closed
and averaging the results. Although the dark frame image is two-dimensional in
this case 3.8, it only represents one spatial axis; the second dimension of the sensor
is used for the spectral domain. The dark frame image then corresponds to a single
spatial row. This dark frame row can then correct every spatial row in the final
three-dimensional datacube.

In Fig. 3.8, a sample dark frame and the mean and variance of dark frames
for the entire dataset are shown. Several types of noise can be inferred from the
images. The fringing bands appear most obvious as looped lines overlapping across
the sensor’s image. These are likely etaloning patterns, the result of incident light
reflecting within sensor or device coatings before being detected and interfering
with successive photons, also known as thin-film interference.

With image sensors, this can be caused by thinly ground, backlit image sensor
designs or thinly applied sensor coatings, or thin optical layers in the exterior.
When the wavelength of an incident photon exceeds the thickness of some visual
material in the camera or sensor, it reflects within the material, constructively and
destructively interfering with other incident photons. In this case, it is unclear
how the etaloning occurs in the dark frame images; perhaps it is a similar effect
produced by some other type of internal thermal noise source. Nevertheless, the
noise signal is consistent throughout the images (evident from the variance image);
this lends it to being easily removed from the dataset images with the dark frame
correction equation (3.12).
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Figure 3.8: Dataset dark frames (histograms equalized for visibility). Left:
mean; middle: individual frame; right: variance

3.2.3 Flat-field Correction
Flat-field correction aims to correct any non-uniformities in light intensity detected
at the sensor. Detected light intensity may be non-uniform because the light
source projected light on the image target unevenly or due to non-uniform spatial
sensitivity across the image sensor. It can also be caused by optical elements in lens
systems producing the vignetting effect; it may also be a combination of multiple
causes. Whatever the reason for non-uniformities in detected light intensity, it is
essential to correct this to derive a uniform signal from the imaged materials.

Given a planar sample and single image capture, the simplest way to perform
flat-field corrections is to take a second image of the scene with a spatially uniform
white material in place of the sample. The spatially uniform white material allows
the spatial non-uniformity of the light source or image sensor non-uniformities to
be recorded.

In this project’s dataset, a limited set of white reference images are available;
during hyperspectral capture, the primary focus was capturing images with in-scene
gray reference tiles consistently placed. For hyperspectral images, the result of
computing a flat-fielded result has special meaning; the flat-fielded image is a
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(a) Specimen Cs (b) White reference Cw (c) Flat-field result Cf

Figure 3.9: Example of flat-field correction where Cf = Cs/Cw Notice that any
areas not covered by the white sample become completely white in the flat-fielded
result as the pixel values in these areas remain unchanged between (a) and (b)
yielding a result of 1 when divided.

reflectance factor image. This is explained in more detail in Section 3.2.4.

3.2.4 Reflectance Derivation
Camera response is the product of illumination, material reflectance, and imaging
system net sensitivity (3.13). Additional environment and system parameters such
as atmospheric or optical system transmittance also play a role (3.13). Still, in a
laboratory setting, an imaging system’s response can be simplified to (3.14) where
a single term, ω, represents the entire product of the imaging system’s equation
terms.

ci =

∫ λmax

λmin

li(λ)ri(λ)oi(λ)ϕi(λ)ai(λ) dλ+ ϵi (3.13)

where:
i : vector of [i, k]; i specifies image sensor pixel and k specifies sensor channel

ci : camera response
ϕi(λ) : color filter transmittance

li(λ) : illuminant power distribution
ri(λ) : color sample reflectance

oi(λ) : optical system transmittance
ai(λ) : sensor sensitivity
ϵi(λ) : additive noise
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ci =

∫ λmax

λmin

li(λ)ri(λ)ωi(λ) dλ+ ϵi (3.14)

where:
ωi(λ) : composite camera sensitivity

Equation (3.14) can be simplified to a discrete form (3.15). This works well
with typical discrete output from cameras.

ci = (li · ri)
tωi (3.15)

The raw output from the hyperspectral camera is, therefore, directly dependent
on the measurement scene illumination and is, therefore, a poor basis for building
generalized machine learning models as complex illumination is difficult to reproduce
as a consistent input from experiment to experiment accurately. Instead of using
raw hyperspectral output, hyperspectral readings are often converted to relative
values of reflectance factor. Reflectance factor is the ratio of reflected radiant fluxes
from the target material and some ideal diffuse reflector. Reflectance factor is
used as an approximation of a material’s true reflectance and ideally serves as
a characterization of a material’s intrinsic radiometric features; micro-geometry
and physical composition influence the material’s reflectance, making reflectance
factor a good covariant for many phenotypes and material characteristics. As an
approximation, however, reflectance factor is not perfect; it will in some way depend
on the scene lighting, imaging instrumentation used to capture the radiance, and
the reference materials used in the derivation. If unaccounted for, various systems
noises can drastically alter a reflectance factor spectra, especially near the extreme
ends of the signal where illumination signal and sensor sensitivity are usually very
low in magnitude.

Given the camera response equation (3.15) and a hyperspectral imaged radiance
dataset, how can reflectance factor be derived? It is straightforward; the process is
the same as performing flat-field corrections as explained in Section 3.2.3. Using
the camera response equation, however, the derivation will be presented. Generally,
to solve for reflectance factor, both the camera system’s sensitivities and the light
source SPD must be known. However, a perfect reflector in an imaged scene could
be used as a proxy for the light source’s SPD. If the perfect reflector were instead
an ideal diffuse reflector, then the viewing angle for the camera and incident angle
from the light source should not influence the sensor’s incident light intensity; the
diffuse reflector would reflect the light source, however, at some ratio of the source
intensity, αi. If a highly reflective diffuse reflector is used, it could be used as an
approximation of the full light source intensity.
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Dividing the sample image pixel by the white reference image pixel, cw, will
allow the light source to be removed from the equation, given some assumptions,
and replaced by some constant scaling factor that represents the ratio of light
reflected by the reflector (in this case, approximated as 1):

ci
cw

=
(li · ri)tωi

(lw · rw)tωw
(3.16)

If the following are true or assumed, then ωi = ωw:

• pixel i is the same pixel as pixel w and ci, cw are captured in successive
images

– light source and camera system are not temporally fluctuating

• pixel i is NOT the same pixel as pixel w and ci, cw are captured in the same
image

– camera system sensitivity is spatially uniform and
– non-uniform noise has been removed

With camera system sensitivities being equivalent, (3.16) reduces to:

ci
cw

=
(li · ri)t
(li · rw)t

(3.17)

Furthermore, if the previous conditions are true or assumed, then li = lw,
with the added condition that the light dispersion must be uniform. Given these
conditions, the incident light at pixels i and w are equivalent and cancel out:

ci
cw

=
rti
rtw

=
ri
rw

(3.18)

Finally, if the diffuse reference reflectance spectra, rw, has a constant reflectance,−−→
(r)w, then the target material’s reflectance at pixel i is:

ci
cw

=
ri

−−→
(r)w

(3.19)

ri =
−−→
(r)wci
cw

=
rwci
cw

(3.20)
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Again, if the diffuse reflector is assumed to be reflecting the full light intensity,
then:

ri =
ci
cw

(3.21)

Similarly to obtaining a flat-fielded image, dividing the hyperspectral camera
response for a target material by the hyperspectral camera response for a white
diffuse reflector, given the same imaging configurations, produces the reflectance
of the target material. In reality, the diffuse reflector does not reflect the full
intensity of the light source, and it does not have a flat spectral reflectance curve;
therefore, in most calibration cases, this correction will produce the reflectance
factor. Additionally, this equation only represents a single channel for a single pixel
of the hyperspectral image; it can be applied to each pixel and each channel of the
hyperspectral image in the same way though to obtain a reflectance factor image
cube from the entire hyperspectral raw cube.

Considering the hyperspectral camera, each pixel i is a vector of p spectral
channels, ĉip, each value representing camera response in the same way described
in (3.15), except that the impinging illumination, li, is a very narrow band spectra
vector. This is because the hyperspectral camera diffracts the full range of impinging
light into constituent light waves across the one spatial axis of the camera sensor.

The two primary methods for accomplishing this reflectance factor derivation
from hyperspectral images involve placing a diffuse white reference material in the
scene. The sample material is either placed next to the reference and captured in
the same image, or the reference material can be placed in the exact location and
orientation as the sample material and caught in a second image. The advantage
to the latter method is that scene’s light nonuniformity over the white reference
material will match that of the sample image nonuniformities; dividing the raw
image by the white reference image then produces a properly flat-fielded reflectance
factor image. Using the former method, where the sample and reference sit next
to each other in the scene, complicates derivation, as the light intensity is never
perfectly uniform, and the light intensity at the reference material will not match
the intensity over the sample. Furthermore, the light intensity within each material
will not be constant.

Applying (3.21) to a hyperspectral image with some white reference available
will yield an approximation of the sample material reflectance; in Figure 3.10, a
sample hyperspectral image of a ColorChecker has been captured to demonstrate
the transformation from raw arbitrary hyperspectral values to reflectance. In the
plot, notice how the radiance values of every sample taper towards the extreme
ends of the spectra due to the decrease in camera sensor sensitivity and illumination
intensity near the extreme ends of the hyperspectral camera’s range. This implies
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that, whatever the noise in the system is, the SNR will be much more significant
at the ends of the hyperspectral cube. The derived reflectance factor is somewhat
misleading in this respect as it appears to show a much greater signal towards the
extremes, but this is due to the converging of the signals towards near-zero at the
ends of the spectra. With such a low signal value here, the image noise is influential
enough to produce likely erroneous values of reflectance factor which exceed 1.

Finally, combining everything along with dark frame correction, and standard-
izing the reflectance factor into CCRF by multiplying it by the nominal reflectance
of the white reflector, the full equation for converting a hyperspectral image, C
into a hyperspectral CCRF cube is shown in (3.22).

CCRFim = rnom · Rim − Rdark

Rwhite − Rdark

(3.22)

3.3 Specimen Segmentation
The mesocosm dataset has no spatial mask labels. Although specimen and gray tiles
are fairly consistently placed from image to image, placement is not pixel-perfect.
A segmentation method is needed to extract pixels containing specimen material
and gray reference reflectors. In Figure 3.11, the regions of interest are shown with
the specimen outlined in green and the gray tiles outlined in red.

Segmented regions need to be highly pure; small amounts of foreign material,
such as the enclosing terra cotta pot, could drastically alter predictive models based
on the images. Some options for obtaining a segmentation of the image include:

Fully-manual annotation : for each image in the dataset, draw separate masks
to isolate the specimen and gray samples.

Partially-automated annotation : annotate the location of region centroids
and extract some uniform geometry around the centroid.

Automated segmentation methods : Several automated methods exist, in-
cluding supervised and unsupervised methods.

Fully manual annotation could be the most accurate option, but it would be
time-consuming and inflexible. A decision later to alter the segmentations somehow
would render the first set of segmentations useless. Automated segmentation
methods work well in cases like this where the target materials are known and
mostly spectrally homogenous; however, as segmenting potted moss samples is
neither a common task nor the primary goal of this project, automated methods
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Figure 3.10: Preview of a ColorChecker hyperspectral image and the extracted
P patch radiances of red, green, and blue tiles from the Colorchecker along with
their derived reflectance factor using (3.21)

were decided against as testing multiple ways before obtaining a reliable result
would pose a roadblock to subsequent tasks. Partially-automated annotation was
used instead of using a set of partial annotations included with the dataset. Along
with the dataset are annotations for each image marking the spatial location of the
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Figure 3.11: Regions to be segmented: specimen (outlined in green) and gray
tiles (outlined in red).

specimen center and a point on each of the three gray reference tiles. With these
available, a consistent segmentation is simple; circular patches were drawn around
each location point to represent specimen and gray tile material.

3.4 Chemometric sensing

This section briefly explains the background theories defining the link between
chemical composition and light absorption.

3.4.1 Light absorption

Once calibrated, radiometric data obtained from hyperspectral images can be
used to correlate the chemical properties of materials in the images. Radiometric
data recorded off organic reflective surfaces, however, tend to exhibit a high
correlation among spectral samples taken closely together; furthermore, organic
materials contain a mixture of chemical compounds, each contributing potentially
overlapping absorbance spectra to the total absorbance of the material. The high
spectral correlation and mixed material absorbances manifest as broad peaks and
plateaus in the absorbance spectra. Ideally, light absorption at the atomic level
would produce extremely narrow absorption peaks at selected wavelengths where
the light energy matches the band gap energy required to excite an electron in the
material to the next energy level. Light energy is described as:
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E =
hc

λ
(3.23)

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of
the light wave. If the energy of a light photon, E, matches that of the band gap
energy for an electron, then the light wave may be absorbed if it strikes the electron.
Absorption spectra, however, indicate that light waves of a broad range of energies
are absorbed rather than just a single wavelength. Considering the absorbance
spectra of the chlorophyll a and b compounds in Fig. 3.12a, three to four absorbance
peaks can be observed for each compound, with each peak spanning up to 100
nm or more. Aside from influences from spectral capture instrumentation, several
factors cause this broad-band absorbance result.

Besides electronic vibration, there are many more energy states within the atomic
and larger molecular structures, each of which can absorb light as energy transitions
between their respective energy levels. For a large molecule like chlorophyll a,
there are quite a few unique elements and bond configurations within the structure;
for every arrangement, a potentially unique band gap energy is required to excite
electrons in the outer shells of the atoms. This can result in multiple absorbance
peaks in the Visible light spectrum (VIS) and Ultraviolet light spectrum (UV)
spectrum from a single molecular compound but does not yet explain the broad-band
distribution of absorption. Along with vibrational energy level transitions, electrons
also exhibit rotational energy levels, of which the gaps between are much smaller in
magnitude than the vibrational energy level gaps (HOLLAS, 1984). These rotational
energies act simultaneously with vibrational energies to produce a continuous band
gap energy, the variation of which resembles a Gaussian distribution around the
vibrational energy gap with the sample variance controlled by the rotational energy
gap. VIS and UV photon energies tend to match excitation levels of valence
electrons. In contrast, Infrared light spectrum (IR) photon energies tend to reach
the vibrational energy levels of the molecular structure (HOLLAS, 1984). Thus,
Ultraviolet and visible light spectrum (UV-VIS) absorbance data can generally
provide information about valence electron configurations within a molecule, while
IR absorbance data contain information about molecular characteristics.

3.4.2 Chemometric correlation
As discussed previously, compounds’ atomic and molecular structures affect how
light will be absorbed. Beer-Lambert’s law further describes the relationship
between a chemical’s light absorbance intensity and the chemical concentration
within the sample. Absorbance, formally defined as the logarithm of the ratio
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of incident to transmitted radiant power and given in (3.24), is related to molar
concentration by (3.25):

A = log
I0
I

(3.24)

A = ϵcl (3.25)

Where A is unitless absorbance, I0 is incident radiant power, I is transmitted
radiant power, ϵ is the molar absorption coefficient (M−1cm−1), c is the molar
concentration (M), and l is the length of the light path through the substance (cm).
For a constant light path length and molar concentration, the absorbance given in
(3.25) has a linear relationship to the chemical concentration.

So far, with the hyperspectral images, only the reflectance has been calculated,
taken as the ratio of reflected light off the specimen to the reflected light off of a
diffuse reference sample. There is no such measurement in the images of transmitted
light from which to calculate absorption; however, for an opaque and diffuse material,
the reflected light off the specimen can be substituted for transmitted light as a
rough approximation. Making this assumption, an absorbance hyperspectral image,

45



Chapter 3 METHODOLOGY

A, could be computed from the reflectance factor hyperspectral image, R, with
(3.26):

A = − logR (3.26)

Assuming system linearities, the absorbance hyperspectral image pixel intensities
should be proportional to the constituent chemical concentrations in the imaged
specimens.

Table 3.1: Measured and estimated mesocosm experiment values from (Kokkonen
et al., 2023)

Mesocosm Trait Range Unit

Pmax 160 - 17,200 mg CO1 m-2 day-1

Pbio 1.5e-2 - 28e-2 g cm-2

Parea 10 - 190 mm2 cm-2

3.5 Spectral Products
To assess vegetation specimen health via hyperspectral photogrammetry, several
spectral products derived from the hyperspectral dataset are compared for efficacy
in predicting vital health traits of peatland species. Spectral products are defined
in this project as simply the derivatives of the original hyperspectral dataset,
which are used for modeling and characterization of the peatland mesocosms and
habitat. Table 3.1 overviews the experiment observations from Kokkonen et al.
(2023) that are used as modeling outputs, while Table 3.2 overviews all spectral
products derived from the hyperspectral dataset as input predictors. Aside from
the reflectance and absorbance, the rest will be discussed in further sections.

The three categories of products are described below and will be discussed
throughout further sections, later to be used as inputs to machine learning models
for predicting the mesocosm bioindicator traits measured by Kokkonen et al. (2023).

raw signal: untransformed signal derived from the hyperspectral images (re-
flectance factor, absorbance, vegetation index)

normalized signal: signal that has had continuum-removal applied to normalize
it, minimizing differences between sample measurement environments

scalar signal: scalar derivations from pure signals (integration of signal)
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Table 3.2: Spectral products derived from the dataset and used in machine
learning models for predicting bioindicators from Table 3.1

Spectral Product Type Signal Range

SD raw rSD 400nm - 1000nm
CRChl. normalized crChl. 649nm - 715nm
CRSCChl. scalar crscChl. 649nm - 715nm
CRLD normalized crLD 709nm - 781nm
CRSCLD scalar crLD 709nm - 781nm
CRNIR normalized crNIR 911nm - 1000nm
CRSCNIR scalar crscNIR 911nm - 1000nm
CRRG normalized crRG 531nm - 599nm
CRSCRG scalar crscRG 531nm - 599nm
MTVI2 scalar rMTV I2 (560nm 670nm 800nm)
MTVI2sum scalar rMTV I2 (560nm 670nm 800nm)
SDA raw aSD 400nm - 1000nm
CRAChl. normalized craChl. 649nm - 715nm
CRASCChl. scalar crscChl. 649nm - 715nm
CRALD normalized craLD 709nm - 781nm
CRASCLD scalar crLD 709nm - 781nm
CRANIR normalized craNIR 911nm - 1000nm
CRASCNIR scalar crscNIR 911nm - 1000nm
CRARG normalized craRG 531nm - 599nm
CRASCRG scalar crscRG 531nm - 599nm
MTVI2 scalar rMTV I2 (560nm 670nm 800nm)
MTVI2sum scalar rMTV I2 (560nm 670nm 800nm)

Additionally, ecological response values (eco-response parameters), also used
by Kokkonen et al. (2023), were computed for this data (3.27),resistance, recovery,
and resilience:
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Resistance =
Spre − Sdst

Spre

(3.27)

Recovery =
Spst − Sdst

Sdst

(3.28)

Resilience =
Spre − Spst

Spre

(3.29)

where:
Spre : ecosystem state prior to disturbance

Sdst : ecosystem state during peak of disturbance
Spst : ecosystem state at peak of recovery after disturbance

3.5.1 Spectral Indices
Vegetation indices are useful metrics derived from reflectance data representing
various properties ranging from chlorophyll to moisture content. As the chemical
composition of a plant varies with its response to climatic changes, its reflectance
signal often changes in specific spectral ranges, which can be correlated to the
chemical change. Vegetation indices combine two or more spectral values at
the bands most sensitive to the changes the vegetation index represents. While
these indices are generalizable across many species, peatland species reflect light
differently in NIR and SWIR bands and respond differently. The spectral bands
at which changes in chlorophyll content, moisture, nitrogen, and other properties
are most pronounced do not necessarily align with those of vascular vegetation.
Therefore, vegetation indices may need to be adjusted for peatland observation.
With this being said, it has been shown through several studies that the NDVI,
along with a few other indices, may be promising as a general site-independent
peatland GPP predictor, with the caveat that nonvascular peatland vegetation
needs to have NDVI customized and calculated separately from vascular vegetation
Lees et al. (2018).

In this project, a LAI VI is utilized for two purposes: (a) threshold detection
of vegetation against backgrounds and (b) as a component in one of the spectral
products. At such a high resolution as is given in this dataset, separating vegetation
from the background signal is straightforward; each pixel usually covers a single
material, allowing each pixel signal to be treated as an individual material signal.
This is not completely true, as hidden layers of material will contribute to the single
pixel’s signal (i.e., the dirt or other materials underneath a leaf). An accurate
LAI VI, however, should produce a stark difference between a pixel of a leaf and
a pixel of dirt. Most VIs are designed for use in remote sensing where a single
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pixel may represent a large swath of land or several meters square; LAI VIs aim to
quantify the area of leaf cover represented in the pixel, typically using chlorophyll
absorption bands, without reaching a saturation limit at high leaf cover densities.
If high-resolution, leaf-scale hyperspectral images are available. One of these LAI
predictor VIs could be used to separate non-vegetation pixels from vegetation pixels,
where a vegetation pixel should exhibit very high LAI (100%) and a background
pixel should ideally exhibit a low LAI. For this purpose, MTVI2, defined in (3.30),
is utilized. Its background theory and success in predicting the LAI of various
crops are detailed by its authors (Haboudane et al., 2004).

MTVI2 =
1.5[1.2(ρ800 − ρ550)− 2.5(ρ670 − ρ550)]√
(2ρ800 + 1)2 − (6ρ800 − 5

√
ρ670)− 0.5

(3.30)

Other indices which aim to predict LAI are available; however, for this project,
MTVI2 is used as it adequately separates the moss vegetation from background
materials in test trials, is effective for high-resolution moss turf detection (Malen-
ovský et al., 2015), and mainly takes into account signal contamination from soil.
With moss canopies usually sitting close to the ground, accounting for soil signal
effects will be advantageous in accurately selecting moss pixels and quantifying the
LAI present.

The MTVI2 index was computed for all hyperspectral images using (3.30). In
Figure 3.13, the four measurement session images of specimen 01B are shown
along with their MTVI2 results which have been thresholded into bins. The
binning intervals are designed around the relationship between MTVI2 and LAI as
empirically determined by the index’s authors and shown in (3.31).

MTVI2:LAI = .2227exp(3.6566 · MTVI2) (3.31)

LAI is defined as the ratio of leaf area to ground area; its value can exceed 1
in areas where dense vegetation may contain multiple layers of overlapping leaves
competing for light. It is a critical quantity for carbon cycle modeling, often used
to estimate primary production. Bryophytes generally exhibit relatively high LAI
values, commonly ranging from 6 to 25, though it is highly dependent on the
ecosystem constraints (Proctor and Goffinet, 2008). During drought stress, moss
bryophytes typically decrease leaf area as a desiccation-resisting tactic, curling and
folding the leaves into a denser structure, reducing the effective photosynthetic
area but protecting the capitulum from excessive water loss (Zotz and Kahler,
2007; Glime, 2013). While MTVI2 is designed to predict LAI, the prediction model
should ideally be tailored to the use case. It should, nevertheless, be generally
transferrable between species as it is based on the radiometric absorptions inherent
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in photosynthesizing surfaces. As its name implies, MTVI2 is an enhanced version
of former triangular indices, where the value corresponds to the geometrical area
within a triangle formed by the reflectance values at 550nm, 670nm, and 800nm,
with an adjustment made for soil effects. These wavelengths represent the spectral
positions of the green, red, and infrared shoulders. The former triangular vegetation
index (TVI) used 750nm as the infrared shoulder; however, due to effects from the
chlorophyll absorption band widening as the concentration increased, the infrared
shoulder was moved further out to be independent of chlorophyll effects.

Looking at Figure 3.13, the shaded triangles between these three points are
shown for specimen samples from each session image of mesocosm 01B, where
the sample is spectra sample taken from a small circular area shown in red. S.
01B received irrigation from the experiment starting at measurement session 1
(T1) through session 2 (T2), like all other samples. It underwent extreme drought
treatment until session 3 (T3) and a recovery irrigation period to session 4 (T4).
The area of the MTVI2 triangles track the presumed health status of the plant
throughout the four experimental stages, with the exception that the MTVI2
values decrease even more at S4 after having been watered following the drought,
indicating that the mesocosm was either irreparably desiccated or was perhaps
dormant and reluctant to revive.

3.5.2 Signal normalization
Consistent and reproducible hyperspectral image capture is challenging due to
the nature of hyperspectral camera system designs. As explained in previous
sections, the white reference standardizes the image as much as possible. Yet, the
image signal can still contain systematic errors or offsets that make comparing
samples challenging. In machine learning, sample normalization helps minimize
these disparities’ impacts. In signal preprocessing, however, if a target section
of the spectral signal is selected for use, the signal can be internally normalized
against a convex hull. The method known as continuum removal (Clark and
Roush, 1984) has successfully been used in several remote sensing studies to process
reflectance signals before using as a predictor for bioindicators such as nitrogen
content, chlorophyll concentration, and vegetation quality (Huang et al., 2004;
Kováč et al., 2012, 2013). It is performed by simply computing a convex hull over
a region of signal and computing a modified ratio as shown in (3.32), where CRi,
ri, and rih are the is the continuum removal value, reflectance, and convex hull
value at band i respectively.

CRi = | ri
rih

− 1| (3.32)

50



Spectral Products 3.5

500 550 600 650 700 750 800

0

0.2

0.4

Wavelength (nm)

C
C

R
F

T1 T2
T3 T4

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2

4

6

8

Modified Triangular Vegetation Index (MTVI2)

Le
af

A
re

a
In

de
x

(L
A

I)

T4S01BT3S01BT2S01BT1S01B

Figure 3.13: From top to bottom: Mesocosm 01B image previews for each
session. Binned MTVI2 results. Spectra from hyperspectral reflectance image
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putation (3.30) plotted. Relationship between MTVI2 and LAI as described by
Haboudane et al. (2004), with shaded area colors corresponding to binning groups
used in the MTVI2 sample renders.
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Figure 3.15 shows an example of continuum removal being applied to mesocosm
10D. The regions it is performed over are regions of interest where chlorophyll
(λChl.), turf structure (λLD), red/green chlorophyll pigmentation (λRG), and water
content (λNIR) are suspected to exhibit effects resulting from changes in mesocosm
health. Initial inspection on reflectance signals indicated significant changes in
these spectral regions (Fig. 3.14).

It is evident from the results that signal normalization greatly aids in comparing
regions of interest in the signals from different measurement times. Broadband
absorptions strongly influence each spectral region in the source material. The
narrow-band application of continuum removal helps to isolate a spectral feature
from the dominant absorption effects in the signal.

Continuum removal was applied to all mesocosms’ reflectance and absorbance
images for the four spectral regions shown in Figure 3.15. This produced most
spectral products used in training the prediction models (all products with CRx
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Figure 3.15: Continuum-removed regions of interest in mesocosm 10D. The
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3, after the drought stress period.

notation).

3.5.3 Machine learning predictive models
Given all the spectral products compiled up until this point, it makes sense to
check if the relationships between them and the health indicator observations for
the mesocosms are reliably correlated. Clear influences on the hyperspectral data
are observed from session to session as mesocosms go from storage to sufficiently
irrigated to drought stress and recovery. As an initial inspection, the Pearson
correlation coefficients between all spectral products from Table 3.2 (except pure
signals, MTVI2sum, MTVI2Asum, and the other continuum removal scalar products)
and observed mesocosm traits from Table 3.1 were computed. The results are
separated into reflectance products in Figure 3.16 and absorbance products in
Figure 3.17 and grouped by drought and control treatment as well as peatland
site history (WLD, dry, wet), site type (fen, bog), and species. While not entirely

53



Chapter 3 METHODOLOGY

indicative of all possible correlations, as they reveal linear correlation, the Pearson
correlation coefficients indicate initial relationships between the data that may give
way to promising predictive models.

The Pearson correlation values range from -1 to 1, with -1 representing a
perfectly inverse linear relationship, 0 meaning no correlation, and 1 representing a
perfect linear correlation.

The results reveal that mesocosms from the same site types (fen and bog) and
the same species groups correlate more to the observed traits than those from
the same peatland site history. They also indicate strong correlations between
the photosynthetic capacity trait and the MTVI2, CRChl., CRLD, CRRG from the
reflectance signal, rSD and even stronger correlation to some of the same products
from the absorbance signal.

SVMs are a class of machine learning systems that have been used extensively
for decades Boser et al. (1992) across a broad range of fields Cervantes et al. (2020)
to solve high-dimensional classification and regression problems. Of interest, they
have been used with success in vegetation bioindicator prediction Tuia et al. (2011);
Pasolli et al. (2012), including assessment of bio-resilience Jafarzadeh et al. (2020).
In this project, SVMs construct hyperplanes through the input data dimensions
to linearly separate data into their known classes for classification problems or to
group the data within an epsilon margin of error for regression problems. Regression
SVMs, SVRs, were selected as this project’s machine-learning design for several
reasons. First, many spectral data products contain 20-30 dimensions, with some
containing around 200 dimensions, making an optimized method attractive. SVRs
only needs to operate on a subset of the data to construct hyperplanes, making
them potentially more efficient than standard linear regression. Additionally,
most SVR model implementations can use non-linear kernel functions on the
data for cases where linear separation is impossible. Because of the potentially
complex relationship between the spectral products and the measured bioindicator
parameters as well as the derived ecosystem traits (resilience, resistance, recovery),
the use of kernel functions may prove to be advantageous.

Detailed theory and application-specific implementations of SVMs can be found
in related literature. For this project, a standard implementation with a configurable
cost parameter (C), kernel parameters (gamma), and epsilon margins. In initial
trials, it was found that linear SVRs performed just as well as kernel SVRs in
some instances. For predicting the mesocosm traits, it was decided to compare the
performance of Radial Basis Function (RBF) kernel SVRs against linear SVRs.

An experiment was set up, pairing all spectral products from Table 3.2 as
predictors with each bioindicator parameter from Table 3.1, including the derived
resistance, recovery, and resilience traits from photosynthetic capacity values.
To build generalized, transferable predictors, the mesocosm specimens were not
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Spectral Products 3.5

grouped by site history, site type, or species as they were in the Pearson correlation
inspection. Grouping by input predictors, these classes would likely decrease
data variance and contribute to more performant models, yet they might not be
as practical for implementation in large-scale sensing. Nevertheless, these class
labels available in the dataset could be used in a subsequent experiment where
specimen origin and peatland type could be estimated from the spectral products.
A potential photosynthetic capacity predictor model would complement peatland
site predictors well. According to (Kokkonen et al., 2023), the findings from this
dataset suggest that drying peatland sites will begin to shift turf composition
towards drought-resilient species. Serving as a peatland vegetation health indicator,
photosynthetic capacity estimations could indicate early what species may come
to dominate the micro-topography of currently drought-stressed peatlands, but
this shift would vary by peatland type. It would come with changes to the overall
peatland carbon flux Belyea and Malmer (2004); Loisel and Bunsen (2020).

For the prediction models, an SVR was set up for every combination between
the six bioindicator parameters and the 22 spectral products for a total of 132
observation-prediction combinations. Additionally, the same variable combinations
were replicated for the linear SVR design for a total of 264 model combinations
altogether. With many models to train, efficient methods would be used during
the model optimization process to cut the time of model optimization down from
days and weeks to several hours.

Each model combination needed to be optimized first. The cost and kernel
parameters for the SVR will affect how efficiently and precisely it finds a solution
in the data. A set of 33 cost parameter values, [2−10, 2−9, ..., 222], and 23 kernel
gamma values, [2−18, 2−17, .., 24], were set up in a cross-fold validation grid-search
optimizer. With a total of 759 parameter combinations and K-fold cross-validation,
an efficient optimal model search method needed to be used. Successive halving
was utilized for larger prediction sets and random search for smaller prediction
sets. Successive halving trains all model configuration candidates on a small subset
of the training data. After cross-validating, the best performers continue to the
next round, where more samples are used to train. This goes on until the final
two candidates are left with a large proportion of the training samples to use for
selecting the best model.

The random search was instead used for the smaller sample-size spectral product
sets. The resistance, recovery, and resilience observations were calculated per
drought-stress-induced mesocosm over the whole course of the experiment, with one
observation value calculated using mesocosm traits from sessions 2, 3, and 4. Due
to this, session two samples were selected as the predictor of recovery, resistance,
etc., as they represent the mesocosms before drought stress and could potentially
indicate how well the specimen would respond to drought based on the current
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state. The dataset size for these ecological stress response model combinations
(eco-stress models) was 47 (the drought-variable half of the 96 mesocosms minus
one culled sample). With a low sample size, successive halving is challenging to
employ reliably without creative data augmentation. Random search optimization,
however, proves to be highly efficient with a minor reduction in optimal selection
probability (?).

Experimental data obtained from Kokkonen et al. (2023) contain observation
values for their measurement campaigns 1, 3, and 5. These measurement campaigns
correspond to hyperspectral imaging sessions 2, 3, and 4, respectively (see Fig. 1.3.
This brings the dataset size for the remaining spectral products down to 3 sessions
of 96 samples each for 287 predictor samples (288 minus one culled sample).

Initial optimization surveys augmented the datasets with a Gaussian noise
modifier. This was used to increase the sample size by 2 and 3 fold. Model scoring
from these augmented datasets did not appear to improve results reliably. A
separate experiment could subsequently be run to determine advantageous methods
for augmenting hyperspectral data for bioindicator estimation.

Before models were optimized, the individual datasets for each one needed
to be divided into training and testing data. Except for the eco-stress models,
all models have three imaging sessions worth of data. Each session replicates
the others, except that the drought treatment mesocosms receive their treatment
only in session 3; nevertheless, there are corresponding trait measurements for
this. Within each session, four groups are overlapping four sets, each one a replica
of all possible history x site x species type x treatment modifier combinations.
Considering the time series of each session as another modifier, the test set could
be built from a stratified 1/3 of the dataset (96 samples) without sacrificing any
balancing of the test data. With the thorough experimental setup given to work
with, it made sense to preserve a fully balanced replica for the test set, leaving
2/3 (192 samples minus one culled) for the training. The dataset was shuffled
and then split into stratified groups, ensuring the same proportion of all modifier
combinations, including imaging session number, were alloted. The training set
was then used in the model optimization process.

During optimization and for the final prediction, the coefficient of determination
(3.33), coefficient of determination, was used as the primary scoring method. The
explained variance was also trialed for optimization searches, finding models with
equally performant training scores as the coefficient of determination scored models,
but proving not to be as reliable when validated on the test sets. The coefficient
of determination metric can be used as a measure of how well a predictive model
explains the observation data. It measures the variance of observed data that is
explained by the predictions. It will typically range from 0 to 1, with one meaning
that all the variance is accounted for and 0 indicating that the model is simply
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Spectral Products 3.5

Figure 3.18: Scores and RMSE error for the SVRPmaxCRChl. model. The scatter
point trendline is shown in red; the perfect linear trendline is shown in black.

predicting the mean of the observations. As in this experiment, the value will
extend to negative values for very poor-performing models.

R2(y, y′) = 1−
∑n

i=1(yi − y′i)
2

(yi − y)2
(3.33)

d = 1−
∑N

i |yi − y′i|∑N
i |y′i − y|+ |yi − y|

(3.34)

where yi is the observation value for prediction y′i
and y is the mean of all yn observation values

(3.35)

To complement the coefficient of determination measure of model performance,
the Willmott index of agreement (3.34) was computed for each model’s test set
predictions. Assuming perfect predictions will be linearly related to the observations,
index of agreement measures how well the magnitude and sign of deviation in
observations agree with that of the predictions. If the observations and predictions
are plotted against each other as in Figure 3.18, where a linear fit to the points
in red can be seen aligned with the perfectly linear line, index of agreement is a
measure of how closely the red linear trendline of the data fits the perfectly linear
line.

All data was normalized to have a mean of zero and a variance of one. Upon
optimal model selection from the optimization searches, the models were refitted
onto the entire training dataset and subsequently used to predict the test set values.
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Optimization of the models was the most time-consuming task. Still, it was cut
down to around 3-4 hours of optimization time for all 264 model variants each time
the optimization was run (several trials were run and subsequent attempts to verify
and improve optimization convergence with search parameter settings). This, as
well as all other tasks in this project, were performed on a personal computer with
an Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GeForce GTX 1060
Mobile - 6 GB VRAM GPU, though the GPU was not used for most tasks.
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4 Results

Processing methods from Chapter 3 were applied to the dataset, and the resulting
spectral products were used as input variables to SVR models as predictors of
the experimental measurements and predictions of mesocosm bioindicator values
obtained from researchers (Kokkonen et al., 2023). A comprehensive experiment
was set up to answer the research questions posed earlier in Chapter 1, list 1.3.

4.1 Processed Dataset
The first result of this project work is a dataset of spectral products from the
comprehensively designed peatland mesocosm experiment (Kokkonen et al., 2023),
with the two primary products being the reflectance and absorbance hyperspectral
cubes for each of the original mesocosm raw hyperspectral images.

The original experiment by Kokkonen et al. (2023) collected a thorough sampling
of moss specimens from the three peatland sites of variable history (WET, DRY,
and WLD). At each site, samples were collected from ombrotrophic areas (bogs)
and minerotrophic areas (fens), with generalist and specialist species collected
from each site. Hyperspectral images of each specimen over the four measurement
sessions were used as the primary source of data in this project, used to derive
the (reflectance factor) of the specimens. As a reflectance product, the dataset
serves as a standard, transferrable derived product, capable of being used in further
experiments to cross-train similar existing peatland or bryophyte prediction models.
This dataset was initially used in this project to inspect variations in specimen
response to the experimentally imposed climatic factors and aided in identifying
spectral regions of interest where variations in response to climate were detected. In
Figure 4.1, the mean reflectances of all species, irrespective of their site or history,
are plotted for each measurement session. Apparent differences are observed
between species, though it is important to remember that some species (S. balticum,
S. recurvum coll., S. magellanicum) are generalist species or were collected from
multiple peatland sites with varying history or water source types. Therefore, the
average of their spectra may not reveal peculiarities between responses concerning
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the varying mesocosm environments.
To account for varying peatland sites, similar plots can be made for all samples

grouped by history or site rather than species to study the effects of peatland site
water table history and composition on the mesocosm climate responses. In this
mesocosm experiment, (Kokkonen et al., 2023) found that naturally dry and WLD
mesocosms did not display more resilience to drought than did the mesocosms
from high water table peatlands. They concluded that species from the drier
peatlands had not adapted a drought resistance, suggesting instead that peatlands
experiencing growing periods of drought would alter turf cover towards more
vascular species and hummock-adapted moss species. This would invariably have
implications for the carbon cycle of these drought-stressed peatlands. Plotting
the spectra of all grouping combinations from the dataset variables (history, site,
treatment, species) would be copious. Instead, some of the predicted health metrics
will be used to assess the performance of mesocosms across all of the experimental
variables. First, the predictive models and their results will be discussed; then,
spectral products with the strongest ability to predict some of the mesocosm
photosynthesis bioindicators will be used to plot the relative performance of all
mesocosm groupings throughout the experiment stages.

4.2 Predicting Bioindicators
SVR was selected as the machine learning model design for fitting the derived
spectral products to the measured and estimated mesocosm experiment values from
researchers’ previous study from which this dataset was derived (Kokkonen et al.,
2023). For every spectral product derived in this project (described in Table 3.2), an
SVR model was created for each of the six experiment mesocosm values (described
in Table 3.1). Hyperparameter optimization of the SVR kernel properties and the
model cost function parameter for each model combination yielded an optimal
configuration for predicting the experiment values given the particular spectral
product. This totaled over 120 models, each iteratively optimizing several hundred
parameter configuration candidates and fitting until convergence for each candidate.
Using exhaustive optimization, the models would take days to optimize and fit
on each run. Hyperparameter candidates could have been reduced to cut down
optimization time. Still, an efficient optimization method was opted for instead,
providing best-model selections, which were just as performant as exhaustively
found best models.

Linear SVR models were fitted as well along with the originally selected RBF
kernel SVR models. During the initial inspection, it was found that linear SVR
models could predict the mesocosm photosynthetic metrics fairly accurately using
some of the spectral products. The linear SVR models are less computationally
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Figure 4.1: Mean of each species over the four measurement sessions (S1-S4).
Session 3 (S3) signals are divided into wet and dry sample signals, corresponding
to the control half and variable half, respectively.
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expensive, generally optimizing and fitting more quickly than the RBF kernel SVR
models.

Models were scored based on their coefficients of determination, r2. This
measures the proportion of unbiased variance in the dependent variable (e.g., Pmax,
Pbio, etc.) that is predictable by the independent variable (e.g., Rchl, RLD, etc.).

Below, in Figures 4.2 and 4.3, the r2 and r2 are shown for all of the optimized
models’ prediction results on the test set inputs. As the mesocosm experiment
measurement values were only available for three measurement campaigns corre-
sponding to hyperspectral imaging sessions 2, 3, and 4, there were 287 (96 mesocosm
images from each session minus one culled image).

The top performing model, SVRCRAChlPmax (ranked first by r2 and second by r2),
was subsequently used to predict Pmax values for all mesocosms. Pmax is plotted
for all mesocosm hyperspectral images in Figure 4.4, grouped by their species and
imaging session. They are shown alongside the observed Pmax values obtained from
Kokkonen et al. (2023).

4.3 Spatial Health Mapping
The best predictor model was then used to spatially predict the Pmax across some
hyperspectral images. The resulting Pmax images are binned and shown alongside
the MTVI2 images, measured mesocosm Pmax and predicted Pmax of the same
samples for comparison. In Figure 4.6, control sample 01A is rendered; Pmax visibly
has a solid correlation to MTVI2.

Looking at the similarly rendered results for the drought variable mesocosm
sample 04C in Figure 4.7, the correlation to MTVI2 is repeated, with some
exceptions in areas with very low Pmax values. The S2 MTVI2 rendering exhibits
MTVI2 values of .4 − −.8 in some areas where the Pmax is only 7.5e3 − −9e3.
Remember from Figure 3.13 that MTVI2 values of .4-.8 correspond to LAI values
of around 1 to 4. LAI is crucial to ecosystem carbon flux modeling, but, if the leaf
area is not actively photosynthesizing, respiration will be reduced. Perhaps that
is revealed here with MTVI2 registering leaf area up to four layers thick in areas
where the Pmax is relatively low. In the lower range of MTVI2, it may become
insensitive and unable to differentiate some inactive vegetation.

64



Spatial Health Mapping 4.3

Pm
ax

P bi
om

P ar
ea

Resi
st.

Reco
v.

Resi
l.

CRChl

CRLD

CRRG

CRNIR

SD

CRSCChl

CRSCLD

CRSCRG

CRSCNIR

CRAChl

CRALD

CRARG

CRANIR

SDA

CRASCChl

CRASCLD

CRASCRG

CRASCNIR

MTVI2

MTVI2sum

MTVI2A

MTVI2Asum

0.78 0.31 0.11 -0.43 -1.4 0.27

0.7 0.03 0.15 -0.11 -0.91 -0.44

0.62 0.04 0.16 0.13 -0.32 -0.05

0.37 0.08 0.1 -0.6 -0.11 0.34

0.78 -0.04 0.37 -0.21 -0.1 -0.3

0.73 -0.04 0 -0.4 -0.33 -0.05

0.74 0.12 0.21 -0.12 0 -0.38

0.48 0.06 0.05 -0.73 -0.06 -0.39

0.45 -0.05 -0.11 0.02 -0.14 0.02

0.83 0.26 0.24 -0.33 -0.32 -0.06

0.73 0.28 0.03 -1 -1.8 -0.78

0.56 0.04 0.03 -0.06 -0.11 -1.4

0.37 0.18 0.02 -0.07 -0.04 0.27

0.72 -0.01 0.25 -0.48 -0.05 -0.28

0.38 0.1 0.08 -0.34 -0.09 0.01

0.68 0.05 0.24 -0.26 -0.15 -1.1

0.45 0.1 0.13 -0.27 -0.13 -1.8

0.33 -0.05 -0.03 -0.31 -0.66 0.15

0.73 0.14 0.21 -0.05 -0.17 -0.08

0.63 0.04 0.18 -0.05 -0.03 -0.09

0.61 0.12 0.14 -0.39 -0.11 -1.1

0.78 0.14 0.02 0.07 -0.11 -1.1

SVRRBF

Pm
ax

P bi
om

P ar
ea

Resi
st.

Reco
v.

Resi
l.

0.75 0.15 0.15 -0.51 0.04 0.52

0.71 0.26 0.17 -0.34 -0.16 0.22

0.38 0.08 0.02 -0.05 -0.09 0.05

0.48 0.22 0.11 -0.8 -22 0.38

0.74 0.21 0.46 -0.23 -0.07 -0.48

0.66 0.14 0.12 -0.15 -0.38 0.37

0.66 0.1 0.06 -0.18 -0.26 -0.19

0.23 -0.02 0.01 -0.29 -0.57 -0.07

0.22 -0.32 -0.02 -0.04 -0.16 0.03

0.71 -0.01 0.21 -0.77 -10 0.44

0.73 0.18 0.2 -0.11 -0 -0.52

0.57 0.16 0.16 -0.31 -0.18 0.13

0.39 0.13 0.05 -0.55 -3.5 0.23

0.75 0.46 0.43 -2.1 -0.18 -1.9

0.43 0.23 0.21 -0.54 -3.5 -0.04

0.67 0.18 0.1 -0.12 -0.09 -0.17

0.47 0.08 0.16 -0.35 -0.18 -0.05

0.4 -0.08 0.04 -0.44 -0.11 0.02

0.61 0.22 0.21 0.17 -4 0.32

0.7 0.08 0.17 -0.11 -0.25 0.14

0.6 0.11 0.06 -1 -1.6 -0.21

0.65 0.03 0.05 -0.17 -0.78 -0.14

SVRLinear

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.2: Coefficient of determination, r2 for all SVR model combinations
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Figure 4.3: Index of agreement, d, for all SVR model combinations
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5 Discussion

The results obtained in this project answer some of the posed questions and open
new ones. In response to the research questions raised throughout this report:

1. How do peatland bryophyte species respond to climate stresses?

2. Do hyperspectral data and spectral products derived thereof to serve as
accurate covariate predictors of health during climate stress?

• This has been shown

3. Are absorbance signals advantageous to reflectance when modeling biochemi-
cal parameters from spectral data?

• Results indicate that training regression models on absorbance spectral
products can produce better predictions for some parameters.

4. How do vegetation indices such as MTVI2 compare to spectral data in
predictive ability?

• In the results, MTVI2 products performed very well, as well as most of
the normalized and pure spectral products

5. Can moss bio-resilience be predicted from hyperspectral data?

• Some of the SVR models produced acceptable results for predicting the
bio-resilience of the moss species

It was particularly interesting to find that the absorbance signal could produce
better prediction results in some cases than the reflectance signal. The SVR
models with nonlinear kernels are capable of reshaping input data to separable
distributions, implying that an SVRs could produce the same results from reflectance
and absorbance signals as the absorbance is simply a log of the reflectance images.
None of the reflectance product-trained models, however, ever achieved scores
as high as did SVRPmaxCRAChl. with coefficient of determination=.83 and index of
agreement=.95.
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5.0.1 Enhancing results
The results obtained from the optimized and trained models could be improved
with additional data processing, such as augmentation. Basic limited augmentation
was trialed but did not seem to enhance model optimization.

The best predictive spectral products could be combined into one training set.
Additionally, as spectral data is highly correlated, the most significant bands for
training could be computed, reducing the size of training inputs and opening up
more possibilities for input capture systems (multispectral or even three-channel
RGB systems).

5.0.2 Further work
With the comprehensively designed mesocosm drought experiment and its associated
dataset, there are several ways to extend this study.

1. Use specimen site and history labels to train a peatland classifier model.

2. Some countries will begin to require landowners to assess their forest biodiver-
sity. This dataset can be used to build a moss species classifier. Moss species
are known to be strong indicators of ecosystem succession (Vitt and House,
2021) and biodiversity (Pardow et al., 2012; Zechmeister et al., 2003) and a
moss classifier could potentially quantify biodiversity in field-scale forestry.

3. Absorbance products were better predictors than reflectance products for
some signals and traits. An experiment could be performed to assess the
performance of absorbance VIs in comparison to standard reflectance VIs

72



Bibliography

Anderson, M., Motta, R., Chandrasekar, S., and Stokes, M. (1996). Proposal for a
standard default color space for the internet—srgb. In Color and imaging confer-
ence, volume 1996, pages 238–245. Society for Imaging Science and Technology.
Issue: 1. (cited on page 23)

Andriesse, J. (1988). Nature and management of tropical peat soils. Food &
Agriculture Org. (cited on page 3)

Bartczak, P., Fält, P., Penttinen, N., Ylitepsa, P., Laaksonen, L., Lensu, L., Hauta-
Kasari, M., and Uusitalo, H. (2017). Spectrally optimal illuminations for diabetic
retinopathy detection in retinal imaging. Optical Review, 24:105–116. Publisher:
Springer. (cited on page 25)

Belyea, L. R. and Malmer, N. (2004). Carbon sequestration in peatland: patterns
and mechanisms of response to climate change. Global Change Biology, 10(7):1043–
1052. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1529-
8817.2003.00783.x. (cited on page 57)

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 144–152. (cited on page 54)

Bubier, J. L., Rock, B. N., and Crill, P. M. (1997). Spectral re-
flectance measurements of boreal wetland and forest mosses. Journal
of Geophysical Research: Atmospheres, 102(D24):29483–29494. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/97JD02316. (cited on page 11)

Burdun, I., Bechtold, M., Sagris, V., Lohila, A., Humphreys, E., Desai, A. R.,
Nilsson, M. B., De Lannoy, G., and Mander, Ü. (2020). Satellite Determination
of Peatland Water Table Temporal Dynamics by Localizing Representative Pixels
of A SWIR-Based Moisture Index. Remote Sensing, 12(18):2936. Number: 18
Publisher: Multidisciplinary Digital Publishing Institute. (cited on pages 12 and 19)

73



BIBLIOGRAPHY

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., and Lopez, A. (2020).
A comprehensive survey on support vector machine classification: Applications,
challenges and trends. Neurocomputing, 408:189–215. (cited on page 54)

Clark, R. N. and Roush, T. L. (1984). Reflectance spectroscopy: Quan-
titative analysis techniques for remote sensing applications. Jour-
nal of Geophysical Research: Solid Earth, 89(B7):6329–6340. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/JB089iB07p06329. (cited on page
50)

Cocchi, M., Seeber, R., and Ulrici, A. (2003). Multivariate calibra-
tion of analytical signals by WILMA (wavelet interface to linear mod-
elling analysis). Journal of Chemometrics, 17(8-9):512–527. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cem.819. (cited on page 17)

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko,
Y. E., and Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo
Basin peatland complex. Nature, 542(7639):86–90. Number: 7639 Publisher:
Nature Publishing Group. (cited on page 13)

English, A. R. (2023). Automated Design of Task-Dedicated Illumination with
Particle Swarm Optimization. In 2023 IEEE 36th International Symposium on
Computer-Based Medical Systems (CBMS), pages 416–421. IEEE. (cited on page
25)

Fenton, J. H. C. (1980). The Rate of Peat Accumulation in Antarctic Moss Banks.
Journal of Ecology, 68(1):211–228. Publisher: [Wiley, British Ecological Society].
(cited on page 14)

Glime, J. M. (2013). Light: Effects of High Intensity. In Bryophyte Ecology,
volume 1. Michigan Technological University. Section: 9-3. (cited on page 49)

González, E., Henstra, S. W., Rochefort, L., Bradfield, G. E., and Poulin, M. (2014).
Is rewetting enough to recover Sphagnum and associated peat-accumulating
species in traditionally exploited bogs? Wetlands Ecol Manage, 22(1):49–62.
(cited on page 1)

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and Strachan, I. B.
(2004). Hyperspectral vegetation indices and novel algorithms for predicting
green LAI of crop canopies: Modeling and validation in the context of precision
agriculture. Remote Sensing of Environment, 90(3):337–352. (cited on pages 49, 51,
and 80)

74



BIBLIOGRAPHY

Harris, L. I., Richardson, K., Bona, K. A., Davidson, S. J., Finkelstein, S. A.,
Garneau, M., McLaughlin, J., Nwaishi, F., Olefeldt, D., Packalen, M., Roulet,
N. T., Southee, F. M., Strack, M., Webster, K. L., Wilkinson, S. L., and
Ray, J. C. (2022). The essential carbon service provided by northern peat-
lands. Frontiers in Ecology and the Environment, 20(4):222–230. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fee.2437. (cited on page 13)

Hicks Pries, C. E., Schuur, E. A., and Crummer, K. G. (2013). Thawing permafrost
increases old soil and autotrophic respiration in tundra: Partitioning ecosys-
tem respiration using δ13C and? 14C. Global Change Biology, 19(2):649–661.
Publisher: Wiley Online Library. (cited on page 1)

Hicks Pries, C. E., Van Logtestijn, R. S., Schuur, E. A., Natali, S. M., Cornelissen,
J. H., Aerts, R., and Dorrepaal, E. (2015). Decadal warming causes a consistent
and persistent shift from heterotrophic to autotrophic respiration in contrasting
permafrost ecosystems. Global change biology, 21(12):4508–4519. Publisher:
Wiley Online Library. (cited on page 1)

HOLLAS, J. (1984). FUNDAMENTALS OF MOLECULAR-SPECTROSCOPY-
BANWELL, CN. (cited on page 44)

Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R., and Foley, W. J. (2004).
Estimating foliage nitrogen concentration from HYMAP data using continuum
removal analysis. Remote Sensing of Environment, 93(1-2):18–29. Publisher:
Elsevier. (cited on page 50)

Jafarzadeh, N., Rajaee, T., Daneh Kar, A., Robati, M., and others (2020). Evalua-
tion of river bio-resilience with artificial intelligence models (case study: Aliabad
river). Iranian Water Researches Journal, 14(3):61–70. Publisher: Shahrekord
University. (cited on page 54)

Kalacska, M., Lalonde, M., and Moore, T. R. (2015). Estimation of foliar chlorophyll
and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling
from leaf to image. Remote Sensing of Environment, 169:270–279. (cited on pages
16, 17, and 83)

Kalacska, M., Sanchez-Azofeifa, G. A., Rivard, B., Caelli, T., White, H. P., and
Calvo-Alvarado, J. C. (2007). Ecological fingerprinting of ecosystem succession:
Estimating secondary tropical dry forest structure and diversity using imaging
spectroscopy. Remote Sensing of Environment, 108(1):82–96. (cited on page 17)

Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M., Torn, M.,
and Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration.

75



BIBLIOGRAPHY

Nat Ecol Evol, 3(3):407–415. Number: 3 Publisher: Nature Publishing Group.
(cited on page 12)

Kokkonen, N., Laine, A. M., Korrensalo, A., Nijp, J., Limpens, J., Metselaar, K.,
Mehtätalo, L., Männistö, E., and Tuittila, E.-S. (2023). The photosynthetic
response of lawn Sphagna to experimental drought and subsequent recovery as
impacted by moss traits and peatland ecohydrology. manuscript provided by
Kokkonen. (cited on pages 5, 9, 46, 47, 57, 58, 61, 62, 64, and 83)

Kokkonen, N. A. K., Laine, A. M., Laine, J., Vasander, H., Kurki, K., Gong, J., and
Tuittila, E.-S. (2019). Responses of peatland vegetation to 15-year water level
drawdown as mediated by fertility level. Journal of Vegetation Science, 30(6):1206–
1216. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvs.12794. (cited
on page 5)
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