
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Eirik Plahte
Christian Riksvold

Quality Assurance of Exam Grading
using Norwegian BERT Models

Master’s thesis in Informatics/Computer Science
Supervisor: Trond Aalberg
June 2023

Eirik Plahte
Christian Riksvold

Quality Assurance of Exam Grading
using Norwegian BERT Models

Master’s thesis in Informatics/Computer Science
Supervisor: Trond Aalberg
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

ABSTRACT

The exam grading process needs optimization in tandem with improvements in
technology. With Artificial Intelligence (AI) technology increasing in viability
and availability, automatic grading in the school system is on the horizon. Fully
automatic grading for answers in longer text form is however not quite achievable
yet, with the main concern being the precision of the results. AI technology
is excellent at many natural language processing tasks, but it is not devoid of
fallibility. The school system can not afford to corrupt the work of students by
using a tool with even the smallest possibilities of errors.

This thesis proposes a method that does not automatically grade the submissions,
but rather supports the examiner in the process of grading. The method is imple-
mented in an application called Transformer-based Grade Revision Tool, or TGRT.
After the grading is done, TGRT will analyze the submissions along with their
grades and flag instances where it believes the examiner has made an error. Test
subjects have admitted to being affected by time of day, mood and other personal
factors when grading papers, which can lead to inconsistencies in strictness and
thoroughness. TGRT will limit the amount of mistakes like this by comparing the
contents of the submissions by means of AI and natural language processing and
warn the examiner if the grades do not reflect the contents.

Three main aspects of this process are explored in this thesis. The first is how
to make the tool compare the answers most accurately. The technology chosen is
transformers and BERT, which are AI models. Because of the black box property
of transformers, it is hard to know why answers are considered to be similar. The
second aspect is therefore how to explain this to the examiner. This needs to be
as intuitive and easy to understand as possible for the tool to be useful in a real
setting within a non-substantial time. This leads into the final aspect, revolving
around how such a tool is perceived by the users.

The findings show that TGRT is useful at identifying errors in the grading process,
but the means of explaining the similarity has not met the desired goals. The test
subjects mostly resorted to reading the students’ full answers instead of using the
supporting features, which would lead to an increase in time needed for grading.
The tool was however sporadically excellent at pointing out mistakes the examiners
agreed with, and the test subjects were very positive to the prospect of using
TGRT in the grading process.

i

SAMMENDRAG

Sensureringsprosessen ved skoleeksamen trenger optimalisering i takt med forbedring
av moderne teknologi. Med tanke på opptrappingen av kvaliteten til kunstig in-
telligens, er automatisk karaktersetting i skolesystemet like rundt hjørnet. Helau-
tomatisk vurdering er imidlertid ikke helt oppnåelig ennå, hvor hovedproblemet
er nøyaktigheten av resultatene. Kunstig intelligens (KI) er utmerket på mange
språkbehandlingsoppgaver, men det er ikke ufeilbarlig. Skolesystemet kan ikke
risikere at elevenes arbeid kan bli urettferdig vurdert ved å bruke et verktøy med
selv de minste muligheter for feil.

Denne masteroppgaven presenterer en metode som ikke automatisk retter ek-
samensinnleveringer, men som heller støtter sensoren i karaktersettingen. Meto-
den er implementert i applikasjonen Transformer-based Grade Revision Tool, eller
TGRT. Etter at karakteren er satt, vil TGRT analysere innleveringene sammen
med karakterene deres og markere tilfeller der det mener sensoren har gjort en
feil. Testpersoner har innrømmet å være påvirket av tiden på dagen, humør og
andre personlige faktorer ved sensurering, som kan føre til uregelmessig grad av
strenghet og grundighet. Det foreslåtte verktøyet vil begrense antall slike feil ved
å sammenligne innholdet i innleveringene ved hjelp av kunstig intelligens og språk-
behandling og advare sensor dersom karakterene ikke gjenspeiler innholdet.

Tre hovedaspekter ved denne prosessen blir utforsket i denne masteroppgaven. Det
første er hvordan verktøyet kan sammenligne svarene mest nøyaktig. Teknologien
som blir brukt er transformatorer og BERT, som er KI-modeller. På grunn av
black box-egenskapen til transformatorer, er det vanskelig å vite hvorfor noen svar
regnes for å være like. Det andre aspektet er derfor hvordan man kan forklare til
sensoren hvorfor verktøyet anbefaler det den gjør. Dette må være så intuitivt og
enkelt å forstå som mulig for at verktøyet skal være nyttig i en reell setting og
uten å koste sensor for mye ekstra tid. Dette leder inn til det siste aspektet, som
handler om hvordan sensorene oppfatter TGRT.

Funnene viser at TGRT er nyttig for å identifisere feil i karakterprosessen, men
hjelpemidlene som skulle forklare likheten har ikke oppfylt ambisjonene. Test-
brukerne endte for det meste opp med å lese studentenes fullstendige svar i stedet
for å bruke sammenligningsfunksjonene som i praksis ville ført til en økning i
tiden som trengs for karaktersetting. TGRT var imidlertid sporadisk utmerket til
å påpeke feil sensorene sa seg enige i, og de var veldig positive til bruken av TGRT
i karaktersettingsprosessen.

ii

CONTENTS

Abstract i

Sammendrag ii

Contents v

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1
1.1 Motivation . 1
1.2 Project description . 2
1.3 Contributions . 3

2 Theory 4
2.1 Information Retrieval . 4
2.2 Natural Language Processing . 5
2.3 Keyword extraction . 6

2.3.1 TF-IDF . 6
2.3.2 RAKE . 7

2.4 Similarity functions . 9
2.4.1 Cosine similarity . 9
2.4.2 Jaccard similarity . 9

2.5 Machine Learning . 10
2.5.1 Recurrent Neural Network 10
2.5.2 LSTM . 11
2.5.3 Transformers . 11
2.5.4 BERT . 13
2.5.5 Siamese Networks and SBERT 15
2.5.6 Models pre-trained in Norwegian 16

2.6 Evaluation measures . 17
2.6.1 Precision and recall . 18
2.6.2 F-score . 18

iii

iv CONTENTS

2.6.3 Pearson correlation coefficient 19
2.6.4 Mean squared error . 19

2.7 Summarization methods . 20
2.8 Edit distance . 20

3 Related work 22
3.1 Automatic grading . 22

3.1.1 Using Siamese Manhattan LSTM for grading 23
3.1.2 Using different variants of BERT for grading 24
3.1.3 Calculating the robustness of three AES models 24

3.2 Similarity measures . 26
3.2.1 Long-form document matching with CoLDE 26
3.2.2 C2SA for Biomedical Semantic Text Similarity 27

3.3 Transformers . 28
3.3.1 BTI . 28

3.4 Discussion of findings . 29

4 Methods 31
4.1 Comparison algorithm . 32

4.1.1 BERT models . 32
4.1.2 Algorithm setup . 32
4.1.3 Larger models . 34

4.2 Datasets . 34
4.2.1 Format . 35
4.2.2 Custom datasets . 37

4.3 Supporting comparative features . 38
4.3.1 TF-IDF . 38
4.3.2 RAKE . 40
4.3.3 Summarizers . 41
4.3.4 OpenAI . 42

4.4 Sorting algorithm . 44
4.5 Application setup . 47

4.5.1 Client . 48
4.5.2 Server . 50

4.6 Considered additions . 52
4.6.1 Same grade with different content 53
4.6.2 Recommending specific grade shifts 53
4.6.3 Spelling errors . 54

5 Tests 56
5.1 BERT models tests . 56

5.1.1 Friction dataset results . 57
5.1.2 Tarantino datasets results 58
5.1.3 Tests on graded datasets . 61

5.2 User tests . 62
5.2.1 First user test results . 64
5.2.2 Second user test results . 65

6 Discussion 69

CONTENTS v

6.1 RQ1 Comparison algorithm . 69
6.1.1 Friction dataset . 69
6.1.2 Irrelevant variant . 73
6.1.3 Good variants . 73
6.1.4 Tarantino dataset . 74
6.1.5 Tarantino dataset with single entries 77
6.1.6 Web development dataset 78
6.1.7 Deciding on a model . 78
6.1.8 Comparison algorithm in user tests 79

6.2 RQ2 Supporting features . 80
6.2.1 First user test . 81
6.2.2 Second user test . 82

6.3 RQ3 User perception . 82
6.3.1 First user test . 83
6.3.2 Second user test . 83

7 Conclusions 86
7.1 Summary . 86
7.2 Further work . 87
7.3 Limitations . 89
7.4 In defense of viability . 90

References 92

Appendix 96

A - Code excerpts 97

B - Results from BERT models tests 119

LIST OF FIGURES

2.1 A representation of an RNN . 10
2.2 A representation of an LSTM . 11
2.3 Transformer structure . 12
2.4 Attention mechanism example . 13
2.5 An MLM process . 14
2.6 An NSP process . 14
2.7 Siamese Network example . 15
2.8 Illustration of SBERT . 16
2.9 Encoder layers in BERT . 17

4.1 BERT integration . 33
4.2 TF-IDF setup . 39
4.3 TF-IDF matrix structure . 39
4.4 Sorting process on the server . 44
4.5 Client side data structure . 45
4.6 Sequence diagram of the application layout 47
4.7 The upload page of the website . 48
4.8 The main page of the website 1 . 49
4.9 The main page of the website 2 . 50
4.10 The main page of the website 3 . 50
4.11 Main process on server . 51
4.12 Polling process . 52

5.1 Friction results 1 . 57
5.2 Friction results 2 . 58
5.3 Tarantino results 1 . 58
5.4 Tarantino results 2 . 59
5.5 Tarantino results 3 . 59
5.6 Tarantino results 4 . 60
5.7 Single Tarantino results 1 . 60
5.8 Single Tarantino results 2 . 61

vi

LIST OF TABLES

2.1 Word frequencies for every word in the text 8
2.2 Degrees for every word in the text 8
2.3 Scores for every word in the text 8
2.4 Final ranking of the candidate keywords 8

5.1 SGCC results . 62

6.1 Synonyms variants results . 70
6.2 Typo variants results . 71
6.3 Long variants results . 71
6.4 Short variants results . 72
6.5 Static variants results . 72
6.6 Kinetic variants results . 72
6.7 Irrelevant variants results . 73
6.8 Good variants results . 73
6.9 Most relevant comparison results 75
6.10 Least relevant comparison results 76
6.11 IB comparison results . 77

vii

LIST OF ACRONYMS

AES Automated Essay Scoring

AGI Artificial General Intelligence

AI Artificial Intelligence

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

C2SA Cross2Self-attention

CoLDE Contrastive Long Document Encoder

ELMo Embeddings from Language Models

GloVe Global Vectors for Word Representation

IDF Inverse Document Frequency

IR Information Retrieval

LSTM Long Short Term Memory

MLM Masked Language Model

MSE Mean Squared Error

NER Named Entity Recognition

NLP Natural Language Processing

nltk Natural Language Toolkit

NSP Next Sentence Prediction

NTNU Norwegian University of Science and Technology

NorLM Norwegian Language Model

PCC Pearson Correlation Coefficient

QWK Quadratic Weighted Kappa

RAKE Rapid Automatic Keyword Extraction

RNN Recurrent Neural Network

viii

LIST OF ACRONYMS ix

SBERT Sentence-Bidirectional Encoder Representations from Transformers

SGCC Similarity-Grade Correlation Coefficient

SSH Secure Shell

TF Term Frequency

TF-IDF Term Frequency - Inverse Document Frequency

TGRT Transformer-based Grade Revision Tool

VPN Virtual Private Network

WSD Word Sense Disambiguation

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Grading exams is an arduous and time-consuming task. Certain types of tasks
(such as multiple choice questions) can be automatically graded, but descriptive
text answers are a different matter. In several academic fields, such as in the
humanities and social sciences, answers often contain reflective discussion, and
there may be multiple equally valid ways to approach a question. The lack of one
correct answer makes it difficult if not impossible to create a tool for automatically
grading such answers in a fair and satisfactory way. There are however other ways
that AI can aid in the grading process.

When an examiner is grading a batch of exams, there are several factors that
might affect their judgement. How tired they are, their mood, the quality of the
last few exams they graded and how long their grading session has been might
all affect the judgement of the examiner, even if only subconsciously. In the case
of several examiners splitting a submission set between them, they might have
different criteria for what makes a good grade. This can lead to unfair results,
where some exams might be graded lower than they deserve, and vice versa. This
problem was observed in a study conducted in 2018, in which several instructors
graded the same set of solutions to a programming task. The results found that the
grades given were very inconsistent from one instructor to the other [1]. Moreover,
data from 2020 uncovered that 40 % of students’ appeals against grades across
ten Norwegian universities and colleges resulted in a different grade [2]. This
is further proof that mistakes often occur in the grading process. Because of
the reasons outlined above, there is a need for an automatic method of quality
assurance that can warn the examiner when they likely are about to give an unfair
grade.

1

2 CHAPTER 1. INTRODUCTION

1.2 Project description
The goal of this thesis is to examine the possibility of verifying the fairness of
grades by comparing the contents of every answer to each other. The transformer
based language model Bidirectional Encoder Representations from Transformers
(BERT), which was developed by Google and published in 2018 [3], was chosen to
extract the contents of the answers. This model has been proven to achieve state-
of-the-art results in a number of different Natural Language Processing (NLP)
tasks, and has rendered previous models such as Recurrent Neural Network (RNN)
and Long Short Term Memory (LSTM) somewhat obsolete. There are several
Norwegian variants of BERT, which were tested in their ability to create accurate
embeddings of Norwegian text answers. After creating the embeddings, cosine
similarity was used to ascertain a numeric value of how similar answers are.

Transformer-based models naturally contain a black box property, meaning that
an output is given without any indications of how it was calculated. In prac-
tice, an examiner needs to understand why an answer is graded unfairly in order
to change it. One way to accomplish this is to read both answers again and
examine them juxtaposed, but this alone could lead to a great increase in the
time needed for grading. To assist the examiner in the examination of the sim-
ilar answers, several methods that demonstrate how they are similar were also
tested. This includes extractive methods like Term Frequency - Inverse Docu-
ment Frequency (TF-IDF) and Rapid Automatic Keyword Extraction (RAKE)
that highlight important terms used in the texts, and generative methods that
generate summaries, keywords and themes based on the texts. These methods
could help the examiner understand how the answers are similar, but also how
they differ. An answer with a higher grade might include some crucial details that
the one with the lower grade does not have, which could indicate that the two
answers deserve different grades after all.

Based on the presented goals, the following research questions were decided upon:

• RQ1: How can the similarities between exam answers be calcu-
lated?

• RQ2: What features can be extracted for assisting the examiners
in analyzing similar answers?

• RQ3: How will a tool for detecting inconsistencies in grading be
perceived by examiners?

In order to answer these questions, a tool called Transformer-based Grade Revi-
sion Tool (TGRT) was developed. It consists of a server where most of the heavy
calculations are made, and a client that displays the results to a user. The result-
ing answer pairs with the highest similarity are sorted into recommendations. A
recommendation lists the answers that are deemed most similar to the answer in
question, and proposes either an increase or decrease in grade based on the grades
of the most similar answers. The examiner can then consider the recommenda-
tions, examine the reasoning behind them, and decide on a final grade.

Two types of tests were performed in this thesis. First, qualitative tests of the
different Norwegian BERT models were performed in order to judge their ability

CHAPTER 1. INTRODUCTION 3

to rank texts according to similarity, and to observe how the similarity scores
are affected by changes to the base text, such as spelling errors, synonyms, adding
irrelevant information or excluding certain parts of the text. These tests were used
as the basis for deciding which BERT model to integrate into TGRT. After the
development of TGRT was completed, two qualitative user tests were conducted
in order to observe how the tool works in practice with members of the target
group. This tested both the degree in which the test subjects agreed with the
recommendations made by the tool, and the usefulness of the supporting features.
The test subjects also provided their overall impressions of the tool and the concept
behind it.

1.3 Contributions
Automatic grading has been a widely researched field for several years, but the
use of AI to assist in the grading process by detecting inconsistent grading for
similar answers has not been explored thus far. Text similarity calculation is a
thriving area in research, but this is mainly done for English texts. Little research
has been done with Norwegian AI models, such as the different variants of BERT
that are explored in this thesis.

The contributions of this thesis are therefore as follows:

1. A review of the existing literature regarding automatic grading and the cal-
culation of text similarity.

2. A proposal of assisting exam grading by detecting instances of inconsistent
grading using BERT.

3. An analysis of how well the different Norwegian BERT rank texts by simi-
larity.

4. A proposal for extractive and generative methods to be used in order to
understand similarities between exam answers.

5. TGRT, a tool for assisting exam grading that implements the methods de-
scribed above.

CHAPTER

TWO

THEORY

To fully understand the methods and technologies used in this project, it is im-
portant to know how the theory behind them works. Not every method and tech-
nology described in this chapter was used in this project, but they all appear with
some frequency in the related work. This chapter is an expanded version of the
theory chapter from the report written in conjunction with last year’s preparatory
project [4].

2.1 Information Retrieval
Information Retrieval (IR) is a big field in computer science, which serves as a
basis for many of the concepts used in this thesis. It is relevant because ranking
the similarities between an exam answer and the rest of the answers in its set can
be thought of in the context of an IR system, where the compared answer is a
query, and the rest of the answers are the document collection.

IR can be defined as the process of finding documents of an unstructured nature
that satisfies an information need from within large collections [5]. That the data
is unstructured means that it is not arranged according to a preset data model
or schema, unlike for example the data that is stored in relational databases.
Unstructured data is stored in its native format and is not processed until it’s
being used. It can be stored in a variety of file formats, but it is usually text.

IR is based on having a query and retrieving a set of documents from a collection.
The documents in the retrieved set are considered to be relevant to the terms
found in the query. The query is often composed of words that can help identify
the relevant documents, but it can also consist of an entire document. When
trying to find documents that are the most similar to one specific document, the
latter approach is used. Most IR methods support ranking of the results based on
their relevance to the query. In order to rank the documents, similarity scores are
calculated between the input query and each of the documents.

As well as ranking of retrieved documents, IR also allows for partial matching if

4

CHAPTER 2. THEORY 5

none of the documents in the collection contain any exact matches with the query.
Aside from retrieving relevant documents, IR also covers further processing of a
set of retrieved documents, such as with clustering, which is the task of coming
up with a good grouping of the documents of a set based on their contents.

2.2 Natural Language Processing

NLP is a subfield of AI that centers around helping computers better process, in-
terpret, and understand human language and speech patterns [6]. NLP is relevant
to this thesis because several syntactic NLP tasks will be used for text prepro-
cessing, while semantic NLP tasks are relevant for conveying information to the
examiner about the content of the answers.

NLP uses algorithms to identify and interpret natural language rules so unstruc-
tured language data can be processed in a way the computer can actually un-
derstand, thereby attempting to bridge the computer-human speech gap. The
algorithms used by NLP utilize both the syntax and the semantics of language in
order to process the data, extract meaning from it, and provide a response [6].
Some syntactic techniques used by NLP include the following:

• Lemmatization: the process of grouping together the inflected forms of a
word so that they can be analyzed as a single item, identified by the word’s
lemma, or dictionary form (for example, the lemma of the words "breaks",
"broke", "broken", and "breaking" is "break").

• Word segmentation, or tokenization: dividing a large piece of continuous
text into tokens (i.e. words). In English and many other languages, this is
a trivial task, since all words are separated by white spaces [7].

• Morphological segmentation: breaks down words into smaller units called
morphemes. Morphemes express a direct meaning and cannot be further
separated into smaller parts. The word "unsegmented" can be separated
into three morphemes: "un", "segment" and "ed".

• Part of speech tagging: identifying the part of speech for each word (as in
whether it is a noun, verb, adjective etc.).

• Stemming: cutting down words to their word stem (for example, "running"
and "runs" are reduced to simply "run").

• Parsing: analysis of the grammar of a given phrase or sentence, usually by
constructing a parse tree, which represents the syntactic structure of a given
sentence.

Some semantic techniques utilized by NLP algorithms include the following:

• Named Entity Recognition (NER): determining which tokens in a text corre-
spond to proper names, and what the type of each such name is (i.e. whether
it is a person, place, organization, etc.).

• Word Sense Disambiguation (WSD): involves giving meaning to a word
based on context. Many words have several entirely different meanings,

6 CHAPTER 2. THEORY

such as the word "well", which is both a synonym of "good", and a word for
a deep hole dug to obtain water, among other things. The correct meaning
is induced by analyzing the context, i.e. the rest of the sentence.

• Terminology extraction: automatically extracting key terms from a corpus.

• Sentiment analysis: analyzing text data to identify and extract the meaning
or intent of the text.

Some examples of common NLP tasks include automatic summarization, speech
recognition, text-to-speech, autocompletion, machine translation and chatbots.

2.3 Keyword extraction
Keyword extraction is an NLP task whose goal is to extract words or phrases from a
text that are indicative of this text’s subject [8]. This is relevant for the supporting
features in TGRT, which show the similarities and differences between two text
answers in a way that is more intuitive to the examiner than only the results
from BERT. Two methods for keyword extraction were implemented: TF-IDF
and RAKE. The former is based on the vector space model and is a specific way
of weighting the vectors. The vector space model is a core concept in IR that is
also important in order to understand cosine similarity, which will be expanded on
in section 2.4. RAKE is a keyword extraction algorithm that selects key phrases
(meaning consecutive series of words) that represent the text’s content.

2.3.1 TF-IDF

One of the most common ways of categorizing documents or texts based on their
contents is with the vector space model. In the vector space model, text is rep-
resented by a vector of terms. Every term in the vocabulary then becomes an
independent dimension in a high dimensional vector space [9]. If a term is found
in a document, it gets a non-zero value in the document vector along the dimen-
sion corresponding to the term.

Combining the vectors results in a matrix where each row represents a document
and each column represents a word. In the boolean matrix model, which is one
of the simplest IR models, the cells simply indicate if the word is present in the
document or not. A step further would be to represent the documents in a Term
Frequency (TF) matrix where the amount of times a word is present in a document
is stored instead of a boolean value for whether it is present or not. The vectors
usually get normalized so that the proportions are easier to understand.

TF (t) =
nt

max(n)
(2.1)

The TF of term t is given by n amount of times the term is used in a document
(nt) divided by the maximum number of times the term is used in any document

CHAPTER 2. THEORY 7

(max(n)) [10].

Another model is for Document Frequency (DF) where instead of looking at how
many times a term is used in a document, it counts how many documents a term
is present in. This results in a variable that represents how frequently a term is
used across the documents. With a high DF, the term is likely not unique to
the document. Because it is desired to have a low DF, the Inverse Document
Frequency (IDF) is often used instead, where the higher the value, the fewer
documents the term is present in.

IDF (t) = log(
N

(DF (t) + 1)
) (2.2)

The IDF of term t is given by N amount of documents divided by the document
frequency of term t plus one, so as not to divide by zero when a term is not present
in the collection of documents. Log is used to prevent the numbers from reaching
extreme heights when the document collection is very large [11].

The IDF and the TF can be multiplied together to form a TF-IDF score. This
value represents both how often a term is used in a document and how frequent
the term is used in the other documents in a collection.

TF-IDF(t) = TF (t) · IDF (t) (2.3)

The formula for calculating TF-IDF for term t.

In many NLP tasks, it is important to remove stop words. Stop words are terms
that are used frequently in text, but carry little meaning [12]. Examples are words
like "the", "it", "not" and "a". They are removed from the calculations in order
to not increase the data size and processing time with terms that can’t represent
the document well. In TF-IDF, stop words are removed so that common filler
words will not get a high score and muddle the results.

2.3.2 RAKE

RAKE is a domain independent keyword extraction algorithm which tries to deter-
mine key phrases in a body of text by analyzing the frequency of word appearance
and its co-occurrence with other words in the text [13]. The following short text
will be used an example to explain how the algorithm works:

Keyword extraction is a subfield of text mining. It is very useful.

The algorithm starts by removing the stop words from the input text. Then the
text is split at the stop word positions and punctuation characters. Thus, the
words that occur consecutively without any stop words or punctuation characters
between them are taken as candidate keywords. These candidate keywords are
shown below, with the stop words that separate them grayed out:

8 CHAPTER 2. THEORY

Keyword extraction is a subfield of text mining. It is very useful.

Next, the frequency of all the individual words in the candidate keywords are
calculated.

Word keyword extraction subfield text mining useful
Word frequency: freq(w) 1 1 1 1 1 1

Table 2.1: Word frequencies for every word in the text

Similarly, the word co-occurrence count for every individual word is calculated.
This means that for every word, the amount of times that this word occurs in
conjunction with every other word as part of a candidate keyword is calculated.
This amount is called the degree of that word. This metric identifies words that
often occur in longer candidate keywords.

Word keyword extraction subfield text mining useful
keyword 1 1 0 0 0 0
extraction 1 1 0 0 0 0
subfield 0 0 1 0 0 0
text 0 0 0 1 1 0

mining 0 0 0 1 1 0
useful 0 0 0 0 0 1

degree: deg(w) 1 + 1 = 2 1 + 1 = 2 1 1 + 1 = 2 1 + 1 = 2 1

Table 2.2: Degrees for every word in the text

Subsequently, a final score for each word is calculated by dividing the degree by
the frequency. This score is higher for words that occur more in longer candidate
keywords than individually.

Word keyword extraction subfield text mining useful
Score = deg(w)

freq(w)
2
1
= 2 2

1
= 2 1

1
= 1 2

1
= 2 2

1
= 2 1

1
= 1

Table 2.3: Scores for every word in the text

After each word has a score, the scores for the candidate keywords are calculated
by summing the scores for their member words together. The higher the score,
the more useful of a phrase it is considered to be. Finally, the keywords are sorted
in descending order of their score value.

Keyword Score Explanation
keyword extraction 4 score(keyword) + score(extraction) = 2 + 2 = 4

text mining 4 score(text) + score(mining) = 2 + 2 = 4
subfield 1 score(subfield) = 1
useful 1 score(subfield) = 1

Table 2.4: Final ranking of the candidate keywords

CHAPTER 2. THEORY 9

2.4 Similarity functions
A key objective with this thesis is to inquire into how similarities between exam
answers can be calculated. In order to calculate a numerical value that represents
the degree of similarity between two texts, a similarity function is needed. One
such function is cosine similarity, which is based on the vector space model. This
function is compared to Jaccard’s similarity, which is another prevalent similarity
function in IR.

2.4.1 Cosine similarity

As mentioned in 2.1, IR methods usually rank the retrieved documents by rele-
vance to the query. This is done by using a similarity function that calculates
similarity scores for the input query and each of the documents. One such simi-
larity function is cosine similarity. Cosine similarity uses the vector space model,
and TF-IDF is often used as the weighting method for each term in the vector
space.

After having represented the documents and the query in the vector space model,
the cosine similarity function can be used to calculate similarity scores. The cosine
similarity between a document d and query q is calculated as follows:

cos(d, q) =
d · q
|d| |q|

=

∑N
i=1 wi(d) wi(q)√∑N

i=1wi(d)2
√∑N

i=1 wi(q)2
(2.4)

N is the length of the vectors, while wi(d) and wi(q) are the i-th values in the
vectors for the document and query, respectively. w corresponds to the weight
given to a word.

The numerator contains the dot product of the vectors for the document dj and
the query q, while the denominator contains the lengths of the vectors multiplied
by each other. To put it in simpler terms, the formula calculates the cosine of
the angle between the two vectors. The cosine is used because it has the property
of being 1.0 for identical vectors and 0.0 for orthogonal vectors. By calculating
similarity scores between the query and each of the documents, the documents can
be ranked in order of relevance. Cosine similarity can be used in other contexts
than finding the similarity between a query and a document; it is applicable as a
measure of similarity between two equal-length vectors in any situation.

2.4.2 Jaccard similarity

Another similarity measure is Jaccard similarity. Just like cosine similarity, it
outputs a number between 0 and 1. A Jaccard coefficient of 1 indicates that the
documents are identical, whereas a Jaccard coefficient of 0 indicates that there are
no tokens (i.e. words) in common between the two documents. Jaccard similarity
between document A and B is defined as follows:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(2.5)

10 CHAPTER 2. THEORY

The Jaccard similarity between two documents A and B is defined as the intersec-
tion of the two documents divided by their union.

Simply put, it is defined as the division of the number of tokens common to both
documents by the total number of tokens in both documents [14]. There are some
notable issues with using Jaccard similarity. Firstly, it does not consider term
frequency. Secondly, Jaccard does not account for the fact that rare terms in a
collection are more informative than frequent terms. These issues are resolved by
using a TF-IDF score for weighting each term in the collection. Jaccard similarity
can however be useful in cases where duplicate words do not matter.

2.5 Machine Learning
Machine learning is a subfield within AI that is dedicated to understanding and
developing methods that let machines "learn" [15]. This is mainly done by building
models based on training data, in order to make predictions or decisions without
being explicitly programmed to do so. Machine learning models are used in several
different NLP tasks. One of these models is BERT, which was implemented in
TGRT for creating embeddings for exam answers. In order to provide some context
for this model, there are several significant precursors that need to be explained,
namely RNN, LSTM, and the transformer model.

2.5.1 Recurrent Neural Network

One challenge with neural networks is to provide context for what the model
tries to understand. Looking at a sentence, the model can understand the word
"King", but not ascertain if the king is an actual king of a kingdom or if it is a
chess piece. An RNN is a version of the traditional neural networks that lets the
model memorize some of the earlier context. It works like other neural networks,
but has a memory state that goes in a loop. This way it can retain information
from earlier work.

Figure 2.1: An illustration of an RNN [16]. X represents the input term, while
h represents the output encoding. A is the cell where the calculations are made.
The cell outputs both the encoding result and a hidden weight that retains a bit
of memory for the next operation.

A problem with RNN however, is that it has a very short term memory. If the
gap between the context for the word and the word itself becomes very large, an
RNN struggles to remember it. The bigger the gap, the more it fails to connect
the information.

CHAPTER 2. THEORY 11

2.5.2 LSTM

An LSTM is a version of RNN, but has more complex calculations inside the
cell and also outputs two vectors for the next iteration: the main memory state
and the hidden state. The hidden state is the same as the output of the last
iteration.

Figure 2.2: A representation of an LSTM [16]. X represents the input term,
while h represents the output encoding. A is the cell where the calculations are
made. The two states are represented as arrows moving between the cells. In
practice, there is only one cell that updates its weights, but the figure displays
cells next to each other to illustrate the concept.

2.5.3 Transformers

Transformers are another way of performing text analysis and operations. It uses
an attention mechanism to understand the relationship of text context. They were
introduced in 2017 and have become increasingly popular since then [17].

A transformer is structured into two main sections, encoder and decoder. One
of the main calculations present in both encoder and decoder is the multi-head
attention mechanism. The attention mechanism works a lot like AI in computer
vision, which only pays attention to the most important parts of the input to save
on computational effort. A transformer creates weights for each word in a sentence
to decide which are most significant. This is done by processing the input through
many transformer layers in the encoder section.

12 CHAPTER 2. THEORY

Figure 2.3: An overview of a typical transformer structure [18].

The input of both the encoder and the decoder are represented by a form of
embedding. This embedding loses the positional information of the input sequence,
hence the injection of the positional encoding vector after the embedding in figure
2.3 [18]. The word embedding inputted to an encoder is transformed into three
vectors: queries, keys and values. They are calculated by "[...] multiplication
of the word embedding against three matrices with learned weights" [18]. The
query is the current word multiplied by a weight matrix, while the keys and values
vectors are like the key-value pairs in hash maps multiplied by the same weight
matrix. Keys are used to index the values, while the values are the information in
the input words [19]. To calculate the attention score for a word, the dot product
of the word’s query vector is calculated with the key vectors of all the words. The
result is then divided by the root of the dimension of the key vector and then
normalized with the softmax function. Lastly, this is then multiplied with the
value vectors of all the words and summed to a final score [20]. This represents

CHAPTER 2. THEORY 13

the attention score of the word by how important it is to the other words in the
sentence. It is given by the following formula [19]:

Attention(Q,K, V) = softmax(
Q ·K√

dK
)V (2.6)

Attention is calculated by using the vectors query Q, key K and value V. dk repre-
sents the dimension length of the key vector.

Figure 2.4: An example of how attention is calculated. [18]. "Action" is the
current term that calculates its attention to the other terms in a sentence. The
dot product of query vector q with each key vector is calculated and softmaxed.
Lastly it is multiplied with the value vector and added together for a sum of z
which represents the attention of "Action" with regard to the sentence "Action
gets results".

In a transformer, the attention scores are calculated many times independently of
each other in parallel, hence multi-head attention. The outputs of the attention
calculations are then concatenated and normalized. The encoder transforms the
input sequence x (x1, ..., xn), into a sequence of representations z (z1, ..., zn). The
decoder generates an output sequence from z, y (y1, ..., yn). This is done in three
parts: a masked multi-head attention mechanism where the output from each step
of the decoders is given the same attention mechanism as the encoders, but has
the section of words after the current word masked. This is because the model
should not look at what is coming up in a sentence for context, only what has
come before it. The next part is a multi-head attention mechanism that merges
the output from part one and the output of the encoders. Lastly, the decoder
post-processes the output with a fully connected feed-forward network [19]. The
final output is softmaxed to select the final probabilities of words.

2.5.4 BERT

BERT is an open source NLP model that broke records for how well it handled
language-based tasks when it came out in 2018 [17]. It uses a similar architecture
as a transformer, but only uses the encoder stack. A unique function of BERT
is that it is not only directional like transformers, but bidirectional, meaning it
looks for context both backwards and forwards.

Before BERT is used, it is pre-trained on a large corpus to learn basic language
similarities and connect words that have bindings. It can then be fine-tuned
to be especially competent in one field of knowledge. The pre-training makes

14 CHAPTER 2. THEORY

BERT suitable for several use-cases: text summarization, question answering, text
similarity, next-sentence prediction, feature extraction, masked word prediction
and more [21].

When training a language model, it can be difficult to set prediction goals. A
usual method is to make it predict the last word in a sentence, but that makes it
only take into account the context behind it and limits the potential for learning
[22]. This is why BERT is trained with primarily two strategies. The first is
Masked Language Model (MLM), where a randomly chosen word is masked out
with a [MASK] token and the model then will predict what word is masked. The
other is Next Sentence Prediction (NSP) where two sentences are passed in, and
the model will predict if they logically should be adjacent.

Figure 2.5: An illustration of an MLM process [22]. Word tokens are inputted
to the encoder where w4 is masked. The classification layer then predicts what
word should be in place of the masked token with the outputted term w′

4.

Figure 2.6: An example of an NSP process [21]. Two sentences A and B are
inputted with a separator token ([SEP]) between them. The outputted encoding
of the classification token ([CLS]) is processed by a feed forward neural network
and softmaxed to determine if the two sentences are in succession or not.

CHAPTER 2. THEORY 15

The input of BERT is structured into a sequence of tokens, where each word has
its representation. The start of an input sequence has a classifier token [CLS] and
the end of each sentence has a separator token [SEP]. In the output of MLM, the
item in place of the masked token is the predicted word in embedded form, while
in NSP the classifier will tell if they are connected. The output of the encoder
stack is passed through a classification layer, where the prediction will be made.
In case of NSP, there are two possible answers for the classifier to make; either
IsNext or NotNext. In the case of MLM, there are a lot of possibilities. The
masked word could be anything in a given dictionary.

2.5.5 Siamese Networks and SBERT

Siamese neural networks are networks that contain multiple subnetworks. The
subnetworks are structured identically with the same weights. They are usually
utilized to calculate the similarity between two items. They are trained by in-
putting triplets of items; one base item, a second that is defined as similar to the
base and a third that has very little similarity to the base item. The two pairs of
base item with similar item, and base item with dissimilar item have their similar-
ity scores calculated. The output is used for calculating a loss score for updating
the weights in both models simultaneously [23].

Figure 2.7: An example of a Siamese Network with two subnetworks measuring
image similarity. [23]

Sentence-Bidirectional Encoder Representations from Transformers (SBERT) (also
known as Siamese BERT) was presented in paper published in 2019 [24], and uses
a Siamese architecture with BERT as parallel models. The output of BERT is
pooled by a mean pooling operation to derive a fixed sized sentence embedding.
This method calculates the average values of all output vectors, but it is also pos-
sible to only use the classification token [CLS] or calculating a max-over-time of
the output vectors. The most optimal is however to use the mean method [24]. It
can be used for several purposes like large-scale semantic similarity comparison,
clustering and information retrieval via semantic search.

16 CHAPTER 2. THEORY

Figure 2.8: An illustration of how SBERT uses a Siamese architecture with
pooling layers. [25]

2.5.6 Models pre-trained in Norwegian

Norwegian Language Model (NorLM) is an initiative for developing large scale
language models for Norwegian. It is a collaboration between the SANT project
(Sentiment Analysis for Norwegian Text), NLPL (The Nordic Language Processing
Laboratory) and EOSC-Nordic (European Open Science Cloud) coordinated by
the Language Technology Group (LTG) at the University of Oslo [26]. They devel-
oped a version of BERT that was pre-trained on a Norwegian corpus. NorBERT
was released in 2021 and was trained on Norwegian Wikipedia articles both in
"Bokmål" and "Nynorsk", along with a news article corpus. In 2022, they released
NorBERT 2 with a much higher word count in training data and a vocabulary of
50 000 compared to NorBERT 1’s 30 000 [27].

The National Library of Norway has via the project "NoTraM - Norwegian Trans-
former Model" developed two BERT variants pre-trained on the Norwegian lan-
guage [28]. Their models NB-BERT-Base and NB-BERT-Large were trained to
work on all types of Norwegian, both old and modern texts and texts where foreign
languages like English are incorporated into it. To accommodate for the mixed lan-
guage support, the models build upon the multilingual version of BERT, mBERT.
In addition to mBERTs pre-training, the models got trained on the Colossal Nor-
wegian Corpus containing 18 billion words approximately. Their results show bet-
ter or on par results in most categories when compared to mBERT and NorBERT
1 [28].

As explained in subsection 2.5.3, a transformer’s encoder is built with many layers
stacked on top of each other. BERT-Base has 12 layers and BERT-Large has 24.
As shown in Figure 2.9. BERT-Large also has more attention heads, parameters
or weights and hidden layers than the base version. BERT-Base has 12 attention
heads, 110 million parameters and 768 hidden layers, while BERT-Large has 16
attention heads, 340 million parameters and 1024 hidden layers [29]. The structure

CHAPTER 2. THEORY 17

of the large and base variants extend to NB-BERT-Base and NB-BERT-Large as
well, which are tested in this thesis.

Figure 2.9: Encoder layers stacked on top of each other in BERT-Base and
BERT-Large [29].

Another offshoot of NB-BERT-Base is their SBERT model NB-SBERT-Base [30]
(hereafter referred to as NB-SBERT). It is a SentenceTransformers model trained
on the Norwegian Multi-Genre Natural Language Inference (MNLI) [31] which is
a collection of 433 000 pairs of sentences that includes textual entailment informa-
tion. The Norwegian MNLI is translated into Norwegian using Google Translate.
The dataset includes a section that is suited for training SBERT models with
triplets of base-entailment-contradiction. It also contains sections that mix both
Norwegian and English. The SBERT model maps sentences and paragraphs into
a 768 dimensional dense vector space. Because of the MNLI dataset it is trained
on, it should calculate that English and Norwegian sentence pairs with similar
meaning has a high similarity value.

2.6 Evaluation measures

Evaluation measures are ways of assessing how well a system performs. It can
both be used to describe methods for evaluating IR systems and machine learning
models. The measures described below were all used in the relevant literature
further examined in chapter 3.

In the context of IR, evaluation measures are ways of assessing how well search
results satisfy the users’ query intents. In order to evaluate this, several measures
that take the relevance of the retrieved documents into account are used. Al-
though the relevance of a document might be thought of as measurable on a scale
(some relevant documents are less relevant than others), for simplicity’s sake it
is either categorized as relevant or non-relevant. Relevance is assessed relative to
an information need, not a query [5]. It does not matter if a document contains
all the words of the given query if the user’s information need is still unfulfilled.
Three of the most common measures that are used to evaluate IR systems are
precision, recall and f-score.

18 CHAPTER 2. THEORY

2.6.1 Precision and recall

Precision is defined as the fraction of relevant documents among the retrieved
documents, which is given by the following formula:

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(2.7)

Recall is defined as the fraction of the relevant documents that are successfully
retrieved. It is given by the following formula:

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(2.8)

Precision and recall trade off against one another; for example, by retrieving every
single document in a collection, the recall will be 1 (i.e. the highest possible value),
while the precision will likely be very low. Whether to prioritize precision or recall
depends on the circumstances of the user and the system. Search engines for web
browsers typically aim for a high precision; ideally every result on the first page
should be relevant, but the average web surfer has no interest in finding every
relevant document. On the other hand, people searching their hard disks typically
want a high recall; they want to find which ever file(s) they’re looking for, and
as long as that is achieved it does not matter if they see some non-relevant files
as well. Other contexts in which recall is usually prioritized include legal and
intelligence systems [5].

2.6.2 F-score

F-score is a measure that trades off precision P versus recall R. It is a weighted
harmonic mean of P and R, and is given by the following formula [5]:

F =
1

α 1
P
+ (1− α) 1

R

=
(β2 + 1)PR

β2P +R
where β2 =

1− α

α
(2.9)

α and β are weights that are used to emphasize either precision or recall. Here
α is between 0 and 1, whereas β is between 0 and infinity. The default balanced
F-score equally weights precision and recall, which means that α = 1/2 and β = 1.
When β = 1 (which is very common), the formula on the right is simplified to the
following:

F =
2PR

P +R
(2.10)

However, using an even weighting like the one shown above is not the only option.
Values of β < 1 emphasize precision, whereas values of β > 1 emphasize recall.
The reason for using harmonic mean rather than arithmetic mean (i.e. adding P
and R together and dividing by 2) is that it would lead to some highly misleading
results. As mentioned previously, if you retrieve every document in the collection,
the recall will be 1 (R = 1), while the precision will likely be very low (P ≈ 0),

CHAPTER 2. THEORY 19

leading to an arithmetic mean of 1+0
2

= 0.5, which is misleading given that the
system just retrieved every document.

2.6.3 Pearson correlation coefficient

While the measures described above are used for evaluating IR systems where
documents are labeled as either relevant or non-relevant, other measures are used
to evaluate different systems of relevance. One such type of system would be a
machine learning model that labels every document in a set, and is evaluated by
how well its labelling corresponds to that of a human. A concrete example of such
a system is an automatic grader. An automatic grader analyzes the contents of
every exam in an exam set and gives each of them a grade. The quality of this
model can then be evaluated by calculating how the grades given by the model
correspond to those given by the examiner for the course. One way to calculate
this is to use the Pearson Correlation Coefficient (PCC).

The PCC is a parametric statistic that measures the linear relationship between
two sets of variables [32]. It is defined as the ratio between the covariance of two
variables and the product of their standard deviations. Thus, it can be thought
of as a normalized measurement of the covariance, where the result always has a
value between -1 and 1. The measure only reflects a linear correlation of variables,
and ignores other types of relationships and correlations. The PCC for a pair of
variables X and Y is defined as follows:

ρX,Y =
cov(X, Y)

σXσY

(2.11)

The PCC ρ for variables X and Y is given by the covariance cov of X and Y
divided by the product of the standard deviations σ for X and Y .

A high PCC implies that there is a strong correlation between the two variables.
In the automatic grading example described above, a high PCC would mean that
there is a strong correlation between the grades given by the AI model and the
grades given by the human examiner, implying that the model is good at grading
exams in a similar fashion to humans. Another measure that can be used to
evaluate the automatic grader is the Mean Squared Error (MSE).

2.6.4 Mean squared error

The MSE is a measure used to calculate the amount of error in statistical models.
It is defined as the average squared difference between the values observed in a
statistical study and the values predicted by a model [33]. The MSE is given by
the following formula:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2.12)

The MSE for a set of predictions and their corresponding observations is given by
the sum of the squares of all errors divided by n amount of observations, where an

20 CHAPTER 2. THEORY

error is defined as the difference between the observed value Y and the predicted
value Ŷ .

The reason for squaring the differences is to prevent a situation in which the MSE
would be 0 despite there being significant errors. Since some observations will be
higher than the prediction (meaning a positive difference), and some observations
will be lower (meaning a negative difference), there is a possibility that the differ-
ences add up to 0, which would be highly misleading. An MSE of 0 should imply
that no errors are present, which is not the case in this instance. By squaring the
differences, this problem is avoided, as it prevents any negative values from being
included in the sum.

In the automatic grading example described in subsection 2.6.3, the grades given
by the AI model can be thought of as predictions, while the grades given by the
human examiner can be thought of as observations. A low MSE would thus imply
that the AI model is good at grading exams in a similar fashion to humans.

2.7 Summarization methods

Text summarization is the process of converting a longer text into a shorter sum-
mary. The possibility of implementing a summarizer in TGRT was considered from
the start of the project because it would let the examiner get a quick overview of
the content of answers, and could thus spare them significant time. After inquir-
ing into different types of summarizers, it was decided that OpenAI’s Application
Programming Interface (API) would be used to generate abstractive summaries
for the answers. While this approach abstracts away the actual generation of the
summaries, having a grasp on the theory behind it can still be useful.

There are two main types of summarization: extractive and abstractive/genera-
tive. Extractive summarization detects the most crucial sentences and extracts
them from the text. The resulting sentences become a summary. Abstractive or
generative summarization is much more advanced, as it generates the summary
from scratch. It needs to identify the most representative parts of the text and
retell the meaning in as few words and sentences as possible. An abstractive sum-
marizer takes a lot of computing time and can be very inefficient for long texts,
but gets better and better with new technology [34].

2.8 Edit distance

The edit distance or Levenshtein distance is a measure of how similar two words or
strings are to each other [35]. This has several applications in NLP, most promi-
nently the detection of spelling errors, which was something that was considered
to be implemented in TGRT. Edit distance measures how many single-character
operations are needed to transform one string into another string. There are three
base methods of transformation that have their own cost adding to the edit dis-
tance score: insertion, deletion and substitution. The cost for addition and dele-
tion is usually one point while substitution is two. This is because substitution
can be broken down into a deletion and an addition.

CHAPTER 2. THEORY 21

An example could be to transform "Squirrel" into "Quarrel". The operations
needed are a deletion of the "s" and a substitution of the "i" with an "a". The
edit distance in this example is 3.

CHAPTER

THREE

RELATED WORK

The aim of this project is to explore how text analysis methods can be applied
for aiding exam grading by detecting instances of grading discrepancies for similar
answers. No previous research on that exact problem could be found, but the
related problem of automatically grading text exam answers has been researched
extensively. Moreover, the field of text similarity, which is very relevant for this
thesis, has also been widely researched. In order to start exploring the problem for
the thesis, it was therefore necessary to get familiar with the existing literature
and previous research that had been done in these fields. This included both
reading the literature on how AI has been utilized in the aiding of exam grading
(chiefly automatic grading), and the technology and methods that can be used
for the purpose of this thesis, such as text pre-processing, similarity functions and
transformers. This chapter is structured so that each subchapter explains the
research that has been done in a certain relevant topic. Finally, there will be a
discussion which will summarize the findings and identify key takeaways. This
chapter is an expanded version of the literature review chapter from the report
written in conjunction with last year’s preparatory project [4].

3.1 Automatic grading

The automatic grading of exams has been a thriving area in research for several
years. For the purpose of this thesis, only automatic grading of exams with text
answers is relevant, as the automatic grading of multiple choice exams is a trivial
task that has been widely implemented in the school system already. Automatic
grading systems for text answers generally use a similarity function to compare
the students’ answers to the teacher’s ideal answer. Several state-of-the-art NLP
methods have been used for the text embeddings that form the basis for comparing
answers, including LSTM and BERT, along with variants of them.

22

CHAPTER 3. RELATED WORK 23

3.1.1 Using Siamese Manhattan LSTM for grading

Bahel and Thomas [36] propose a text analysis based automated approach for
automatic evaluation of descriptive exam answers. They present an architecture
where the text similarity model is based on Siamese Manhattan LSTM (MaL-
STM).

The first step in their proposed system was for the examiners to input the questions
and their corresponding evaluation factors. The evaluation factors were chosen
based on a survey where professors were asked for important factors they consider
while evaluating an answer. The input required to evaluate the surveyed factors
were as follows:

• Ideal answer: teachers inputted an ideal answer to the question that would
be compared to the students’ answers.

• Number of words in the answer: usually the examiner expects an approxi-
mate number of words for each answer.

• Required keywords: central words that the examiner compulsorily expects
in the answers.

• Total marks allotted for each question.

The above-mentioned parameters along with the students’ answers are then loaded
into the NLP model to calculate a total score. The scoring factors of the model
are as follows:

• Size of the answer: accounts for 5 % of the total score, and is calculated
based on a perfect size x and thresholds for percentages removed from this
size.

• Language of the answer: evaluates the answer’s language, grammar and
sentence structuring, and gives it a score. This accounts for 5 % of the total
score.

• Presence of necessary keywords: checks if the answer contains the examiner’s
listed important keywords, or words with a similar meaning to these. This
accounts for 10 % of the total score.

• Similarity index of submitted answer and ideal answer: the examiner’s ideal
answer is compared to the submitted answer, and a similarity index is calcu-
lated. The model used for this is the Siamese Manhattan LSTM algorithm
(MaLSTM). The two pieces of text are first converted into individual vec-
tors of numbers through encoding. These vectors are then passed over two
LSTM subnetworks. The semantic meaning of the texts are compared in a
hidden network and the similarity index is given as output. The similarity
index accounts for 80 % of the total score.

• Copying index: finally, an index for how much of the text is copied from
other sources is calculated. This has no impact on the total score, but if the
value is over a certain threshold, the teacher is notified.

In order to test the performance of the model, the authors created a question sheet

24 CHAPTER 3. RELATED WORK

and had four students answer the questions. Scores for the answers were then
calculated by the authors’ new model, as well as with other methods, like cosine
similarity, Jaccard’s similarity and an RNN. The answers were also manually
graded by three professors. The authors’ model gave scores that were very similar
to those that the professors gave, and the MSE was the second lowest of all the
tested models, after Jaccard’s similarity.

3.1.2 Using different variants of BERT for grading

Ye and Manoharan [37] developed three automatic graders based on three different
language models. These three models all used different versions of BERT. Each
task on the exam(s) being tested has a specimen answer that is provided by the
instructor. The models generate sentence embeddings representing the meaning
of each sentence. A neural network is used to compare two sentences and discern
whether they have the same meaning or not. It takes the sentence embeddings of
the two sentences as inputs, and outputs a score or a probability representing the
level of similarity of the two sentences. There are two ways of judging whether or
not two sentences have the same meaning. The first is to use a binary classifier,
which outputs a binary value that represents either that the sentences have the
same meaning, or that they do not, based on the sentence embeddings. The other
approach is to give a rating on how similar the meanings of the two sentences are.
In this study, the latter approach was used.

The models differ in which variant of BERT they use. One of the models uses
the standard BERT, whereas the two others use RoBERTa and DeBERTa, re-
spectively. RoBERTa uses a dynamic masking pattern instead of BERT’s static
masking. It removes BERT’s next-sentence training objective, which allows it to
improve on the masked language modelling objective. It also uses 10 times more
training data than BERT. DeBERTa, on the other hand, encodes the content and
position information of a token in two separate vectors instead of just one. While
it predicts the masked tokens, it takes the absolute positions of the tokens into
account.

The models were trained on three different datasets. In order to judge the cor-
relation between the similarity rating predicted by the automatic grader and the
ground truth rating given by humans, the PCC is used. The convention is that
if the PCC is between 0.5 and 1, the correlation between the predicted rating
and the ground truth is strong. The authors tested the models for both the PCC
and the MSE. The results showed that in both of these regards, the RoBERTa
model did not perform well compared to the two others, and that the DeBERTa
model performed slightly better than the standard BERT model. However, all the
three models obtained a PCC of over 0.5, indicating that they generate similarity
ratings that correlate to a human.

3.1.3 Calculating the robustness of three AES models

Wangkriangkri et al. [38] compared three different Automated Essay Scoring
(AES) models, each of them using different text embedding methods for automat-
ically scoring essays. One of the models was based on BERT, while the other two

CHAPTER 3. RELATED WORK 25

were based on Global Vectors for Word Representation (GloVe) and Embeddings
from Language Models (ELMo), respectively. GloVe is a word embedding method
which encodes the ratio of co-occurrence probabilities between pairs of words. A
limitation of word embedding methods is that a word’s representation is the same
in all contexts. With context embedding, this limitation is addressed by encod-
ing text on a case-by-case basis and giving a unique representation to every text.
ELMo is an example of such a context embedding. It encodes texts using two
unidirectional LSTM models, whereas BERT encodes texts using a bidirectional
transformer model.

A focus of this study was to test the three models’ ability to detect adversarial
input. Adversarial input is input that is made to trick the system, and does not
fulfill the criteria of the given task(s). Examples of adversarial inputs include
well-written paragraphs repeated many times or a set of well-written sentences
randomly permuted. The models’ ability to detect these inputs is an indicator
of their robustness. In order to test this, the authors corrupted every essay in
the test set in seven different ways, creating seven altered test sets and keeping
the original set. Some of the ways in which the essays were corrupted include
removing articles or conjunctions, reversing the sentence order, removing certain
sentences and swapping words in the same sentence randomly. The authors then
developed a formula for calculating the robustness of a model. Robustness was
defined as the fractional difference between the total number of corrupted essays
scored higher than their unaltered counterpart and vice versa. The model with the
highest average robustness of all essay prompts and altered sets was designated as
the most preferred model for the task.

The results showed that the BERT-based model achieved the highest robustness,
particularly a variant with frozen weights in the embedding mechanism, although
the standard variant came in second. Furthermore, the models had higher ro-
bustness on sentence-level alterations than word-level alterations. The highest
robustness was achieved when the longest sentence in the essay was removed,
which suggests that the longest sentence contributes the most to the essay. This
is also suggested by the attention weights for the longer sentences. The ELMo-
based model achieved the lowest robustness. The authors attribute this to the
model’s predictions changing less because the changes in lower-layer features are
too subtle. The cosine similarities between the lowest-layer feature sentence vec-
tors for the word-level altered and unaltered sets were significantly lower for the
ELMo model than the GloVe model. This suggests that the alterations affected
GloVe’s embedding more than ELMo’s.

The authors did not only test the robustness of the model. They also tested
how much the models’ predictions agreed with human ratings, using Quadratic
Weighted Kappa (QWK) as a metric [39]. All the models achieved state-of-the-art
QWK, which is on par with human performance. However, the authors discovered
that by freezing the weights in the embedding layer in the GloVe-based and BERT-
based model, the QWK decreased, while the robustness increased. The authors
attribute this trade-off to the fact that the models’ embedding layers were mostly
trained on well-written passages, and thus were more sensitive to errors present
in the dataset. After fine-tuning, the models got accustomed to poor writing, and

26 CHAPTER 3. RELATED WORK

were thus less sensitive to errors. They gained a higher QWK, but were less able
to differentiate altered essays from non-altered ones.

3.2 Similarity measures

Calculating similarity scores is a fundamental aspect of the thesis for this project,
which is encapsulated in RQ 1. The problem of calculating similarities between
text exam answers can be generalized to encompass similarity calculations for any
type of text. Therefore, it was decided to review the literature for text similarity
in general. As will be seen in the descriptions of two articles below, variations of
BERT and older models like LSTM and RNN are prevalent in the field.

3.2.1 Long-form document matching with CoLDE

Jha et al. [40] identify three main challenges when finding similarities between
longer texts:

• The presence of different contexts for a specific word throughout the docu-
ment.

• Small sections of text that is contextually similar between two documents,
but dissimilar text in the other parts.

• The generalizing nature of a single global similarity measure does not capture
the diverseness of the document’s content.

To tackle these challenges, they introduce Contrastive Long Document Encoder
(CoLDE), a transformer-based framework that addresses these challenges and tries
to capture similarity at three different levels. Firstly, they aim for high-level sim-
ilarity scores between a pair of documents. Secondly, they calculate similarity
scores between different sections within and across documents. Finally, they cal-
culate similarity scores between different chunks in the same document and across
other documents. CoLDE divides a long document into different sections and uses
unique positional embeddings in order to capture the document for additional
interpretability. The authors define interpretability as "the weighted similarity
scores between different sections and different chunks of text in a document".
They use a combination of contrastive loss and a multi-headed attention layer for
different text chunks as the means to calculate this weighted similarity score.

CoLDE consists of three main components: data augmentation, data encoding
and the contrastive loss function. First the document is divided into two different
sections. To overcome BERT’s limitation of only 512 tokens per single feed-forward
pass, the authors divide each document section into multiple chunks consisting of
non-overlapping 512 tokens. These input section chunks are enhanced by unique
positional embeddings to encode the long document structure.

For the encoder part, the augmented input chunks consisting of 512 tokens are
given to BERT as input. For chunks smaller than 512 tokens, zero-padding is per-
formed. The encoded BERT chunk embeddings are then given to a bidirectional-
LSTM (Bi-LSTM) layer for aggregation. This layer uses a unique ‘multi-headed

CHAPTER 3. RELATED WORK 27

chunkwise attention’ component. It is a self-attention layer that computes atten-
tion between the BERT embeddings of different chunks consisting of 512 tokens,
both within and across sections. The chunk that plays the most important part in
computing the similarity score is the one with the highest attention weight with
regard to a query chunk. The multiheaded chunkwise attention between sections is
calculated by treating each chunk in a section as its own query. A Bi-LSTM layer
then sequentially receives the encoded BERT output of different chunks, in addi-
tion to the multiheaded chunkwise attention. This is done in order to aggregate
the segmented chunk representations so that an intermediate high dimensional
section representation can be obtained. Furthermore, this intermediate represen-
tation is given to a projection layer for reducing the dimensionality, resulting in
a final section-level representation. This is used to compute the contrastive loss
between sections across query and target documents. Finally, in order to provide
document-level similarity scores, similarity scores between different sections, and
to ensure that documents belonging to the same class are closer to each other in
the latent embedding space, supervised contrastive loss is used.

The authors tested the model on three different datasets and compared the results
to several other models, including one that used RNNs, one that used convolu-
tional neural networks and another BERT-based model. They reported precision,
recall, f-score and accuracy for each model, and found that CoLDE had the high-
est f-score and accuracy out of them all. The authors attribute this to their novel
mechanism of exploiting long documents’ structure in combination with the con-
trastive learning framework. The authors also found that CoLDE’s performance
steadily increases when the length of the documents increase. Finally, they per-
formed an ablation study where they tested the performance of the model without
certain layers or steps. One version of the model did not include the splitting
of documents into sections and without the positional embeddings in the input
documents. Instead, the entire long document was split into chunks consisting of
512 tokens and given to the data encoder module. By using the same contrastive
loss function, the authors observed a significant drop in the performance for doc-
ument matching across all three datasets. Also, to overcome BERT’s limitation of
only 512 tokens at a time, a Bi-LSTM layer is used for aggregation. The authors
observed a performance drop when not including this layer.

3.2.2 C2SA for Biomedical Semantic Text Similarity

Li et al. [41] proposed the Cross2Self-attention (C2SA) mechanism, which is com-
posed of self-attention within a single sequence and cross self-attention between se-
quences. This was integrated with bidirectional RNNs, creating the C2SA-biRNN
model. This model was taken as the downstream model of BERT for evaluat-
ing semantic text similarity between sentence pairs in biomedical literature. For
a given sentence pair, the model calculates a similarity score for these sentences
using the softmax activation function on the output of the bi-RNN layer.

A significant challenge in sequence learning is the problem of long-dependency.
This is the problem when there is a significant gap between the relevant informa-
tion of a sentence, and the point where this information is needed. As an example,
if an AI is fed the incomplete sentence "I grew up in France, and I speak fluent

28 CHAPTER 3. RELATED WORK

", and is tasked with predicting the next word (which should be "French"), the
most recent information suggests that the next word should be a language. Yet, in
order to narrow this down, the context of the word "France" from further back is
needed. Long-dependency is particularly a problem in syntactically complex and
long sentences, such as are often found in biomedical literature. This problem is
addressed with BERT’s self-attention mechanism. However, in order to obtain mu-
tual semantic information between sentences, cross-attention is more appropriate.
The authors therefore propose the C2SA mechanism, which combines advantages
of both self-attention and cross-attention.

The C2SA-biRNN achieved state-of-the-art performance in terms of PCC. The
authors attribute this performance to BERT partly solving the long-dependency
problem that exists in biomedical literature, with BERT representing abstract
and deep semantic features precisely, and the C2SA mechanism enhancing the
semantic representation between sentences.

3.3 Transformers

Transformers are a widely used tool in NLP tasks. The transformer architecture
has several advantages over older models such as RNN. One advantage is that it
has the potential to understand the relationship between sequential elements that
are far from each other. Another one is that the input data does not need to be
processed sequentially, meaning that it allows for parallelization. This means that
it can process and train more data in less time. An application of transformers
that is relevant for this thesis is the detection of similarities between texts and
explaining these similarities. One such project is described below.

3.3.1 BTI

In a recent article, Malkiel et al. [42] present BTI, which uses a pre-trained BERT
model to infer unlabeled paragraph similarities, and then produces interpretable
explanations for the similarity of two textual paragraphs. The first step in the
chain of operations is to propagate two paragraphs through a pre-trained BERT
model, which yields contextual paragraph representations. Then it calculates a
similarity score to measure the affinity between the two paragraphs, with for ex-
ample cosine similarity. Then the model calculates gradient maps for the first
paragraph’s embeddings with regard to the similarity to the second paragraph.
These gradient maps are then scaled by multiplying them with the corresponding
activation maps and summing them across the feature dimensions. This results
in a saliency score for each token in the first paragraph. These token saliency
scores are then aggregated to words, which produces word scores. Next, the same
procedure is performed again, but with the first and second paragraphs reversed.
This produces word scores for the second paragraph, calculated with regard to
the similarity with the first. Finally, word pairs are matched from both para-
graphs and scored by the importance scores corresponding with its elements and
the similarity score corresponding with the pair. The algorithm then detects and
retrieves the most important word-pairs as explanations. The similarity between
paragraph-pairs can thus be interpreted by highlighting and matching important

CHAPTER 3. RELATED WORK 29

words from every element. The highlighted words in both elements should then
decide the semantic similarity of the two paragraphs in a manner that correlates
with how a human would perceive it.

In order to test the efficacy of BTI, the authors conducted an experiment where
they tested BTI against both several other alternative methods and ablation vari-
ants, and compared the results to the results of mean opinion scoring done by five
human judges. The same test set, being comprised of 100 samples, was ranked
for all variants. Scoring was performed blindly, and the set of samples was shuf-
fled randomly. The sample interpretations were then ranked on a scale from 1
to 5. The results showed that BTI performed better than the other alternatives,
implying a better correlation with human perception. The results of the abla-
tion variants indicated the importance of using the gradients on the embedding
layer, and emphasized the importance of the multiplication between gradient and
activations.

3.4 Discussion of findings

A set of goals was presented in the introduction of this chapter, namely to re-
search both how AI models hitherto have been used in the grading process, and
the various different technologies that could potentially can be applied in this the-
sis. These technologies could be relevant for either of the two research questions
introduced in section 1.2, meaning either the calculation of similarities or the ex-
traction of features for assisting the examiner. The main findings are summarized
and discussed below.

The studies performed in [41, 38, 37, 42, 40] all use BERT, either for automatic
grading, or for finding similarities between texts. In all cases except for [37],
the BERT-based model outperformed the other models that were tested. In the
case of [37], three different variants of BERT were tested, and DeBERTa, which
encodes the content and position information of a token in two separate vectors
instead of just one, performed slightly better than the standard variant. A reason
why BERT consistently performs so well might be because it takes the context of
words into account. The output for each input token is influenced by all the input
tokens, and each token impacts the outputs of all other tokens. As mentioned
in section 2.5, BERT is also bidirectional; it looks for context both left-to-right
and right-to-left. BERT’s pre-trained representations reduce the need for many
heavily-engineered task-specific architectures, and it manages to even outperform
many such architectures [3], something that is reflected in several of the articles
referenced above.

Three of the cited articles ([36, 37, 38]) concern themselves with automatic grading
of text answers, which is not exactly what this thesis is concerned with. Yet,
they still provide for some useful takeaways. Bahel and Thomas [36] calculated a
similarity index between the examiner’s provided ideal answer and the students’
answers with the Siamese Manhattan LSTM algorithm. This is not entirely unlike
what this thesis is concerned with; instead of calculating the similarity between
an ideal answer and a student’s answer, the tool made for this thesis compares
students’ answers directly. The scores given by Bahel and Thomas’ model (largely

30 CHAPTER 3. RELATED WORK

based on the similarity index) were very similar to what was given by teachers
manually grading the tasks. However, LSTM-based models have certain issues that
are largely solved by BERT-based models; words are passed in sequentially, making
the learning process slow, and its lack of bidirectionality makes it suboptimal to
capture the true meaning of words. It can also be noted that the MaLSTM model
only achieved the second lowest MSE out of all the four models that were compared
in the study, scoring slightly lower than Jaccard’s similarity, which is a very simple
model.

The CoLDE model (which is based on BERT) by Jha et al. [40] managed to tackle
several different challenges associated with finding similarities between longer texts
by calculating similarities at section and chunk level, in addition to document level.
They also found that the performance of this model increased with the document
length, which proved to be useful for this project, as the tool developed for the
thesis is aimed at long exam answers. A unique method for handling answers
that exceeded BERT’s limit of 512 tokens was developed for this tool, which will
be explained in subsection 4.1.2. The C2SA-biRNN model proposed by Li et
al. [41] enhanced BERT’s self-attention mechanism by combining it with cross-
attention, which is more appropriate for obtaining mutual semantic information
between sentences. This could have been useful for a version of the tool devel-
oped for this thesis that is more specialized towards similarity between sentences,
since this thesis is more focused on document-level similarity than sentence-level
similarity.

Malkiel et al.’s BTI model used a pre-trained BERT model to infer unlabeled
paragraph similarities and retrieved the most important word-pairs from each
paragraph as explanations [42]. The highlighted words should dictate the se-
mantic similarity between the paragraphs in a way that humans can understand.
Something akin to this ended up being implemented in the tool produced for this
thesis, where TF-IDF terms that two exam answers have in common are displayed
in order to show the examiner exactly what the similarities between two answers
are. This will be explained in detail in section 4.3.

CHAPTER

FOUR

METHODS

This thesis proposes a set of methods for performing quality assurance for the
grading process of exams. The methods should help point out mistakes and biases
that can occur in the grading process. Examiners are humans, and humans make
mistakes. As automatic grading is not fully acquirable yet, the proposed methods
need a collaboration between humans and AI. They both have to assist each other
in order to reach the most fair final grades.

To accomplish this collaboration, a tool needed to be developed which imple-
mented the proposed methods for supporting the grading process. The tool must
be built to uphold the following criteria:

• It must be able to read and format the submissions to an exam in a large
dataset

• It must inhabit a comparison algorithm to compare the answers’ contents as
accurately as possible

• It must contain methods for extracting features from the texts that can be
used for examining similarities and differences

• It must be easy to use and display the results to the examiner in a well-
structured manner

The proposed tool, TGRT, is meant to be used after the initial grading process is
finished and the answers have received their grades. Norwegian University of Sci-
ence and Technology (NTNU)’s online exam coordinator Inspera has implemented
features for giving each answer a graded score. TGRT depends on this prereq-
uisite. If an answer’s content is to be compared to the others, it needs a graded
score. There cannot be recommendations for a change in grade if the answer has
received no grade prior. TGRT will then process the dataset and output recom-
mendations for the answers it decides should have their grades changed. Each
recommendation includes reasoning for why the answer should be regraded, by
listing every similar answer within a given threshold of similarity score. The list
of similar answers will convey a tendency of being graded either higher or lower

31

32 CHAPTER 4. METHODS

than the compared answer, indicating which way its grade should be adjusted.
Every similar answer displays supportive comparative features that attempt to
explain the similarity for the examiner.

4.1 Comparison algorithm

The basis for the project was to compare students’ answers with one another.
To do this, a comparison method was to be implemented. Research in the topic
of measuring text similarity shows an increased utilization of the BERT models
after its release in 2018 [17] as analyzed in the related work section (chapter 3).
Further reasoning as to why it was ultimately chosen as the base for the comparison
algorithm for this thesis is explained in section 3.4.

4.1.1 BERT models

BERT has been used in several projects relating to text similarity, as evident by the
related works. It was however unclear if it worked well enough with the Norwegian
language to be considered optimal for this project. After some research, several
models that were trained on large corpora in Norwegian were discovered. These
pre-trained models are described in detail in section 2.5. The models implemented
and tested in this thesis were NorBERT version 1 and 2, NB-BERT-Base and NB-
SBERT. NB-BERT-Large were initially also in this list, but it was decided that
it would be unfit for the product. The reason for this is discussed at length in
subsection 4.1.3. In order to find out how well each of the models fit the purpose
of this thesis, they all needed to be tested on appropriate datasets.

Herein lies a significant problem encountered during this project. There was no
definitive way of measuring the accuracy of the output from BERT. The text
answers were often several hundred words long and included technical terms the
researches did not deem themselves capable of fully understanding. It would have
needed an unreasonably long time to thread through all answers and create scores
between them that measured their similarity. Towards the end, the compared
answers’ similarity would be tested by letting examiners analyze the results during
user tests, but by that time the product needed a comparison method that could
reasonably well measure the difference between texts. One of the solutions to this
problem was to create custom datasets which were constructed with knowledge
in advance of what answers would be similar. This way it was known in advance
what answers the algorithm should deem similar. The constructed datasets are
discussed further in section 4.2.

4.1.2 Algorithm setup

The setup of the comparison algorithm was structured to easily change what pre-
trained BERT model would be used. The main script for testing the models
runs all the different pre-trained models considered for this project on a specified
dataset. In the final product, it would have taken far too long to compute outputs
for every model, so the testing would determine which model would give the best
results. This needed to be decided before user tests could be performed.

CHAPTER 4. METHODS 33

The script starts by importing the tokenizer and model from the specified pre-
trained model in the transformers’ library. It processes all the answers to one
question at a time by tokenizing them and adding them to input IDs and attention
mask arrays. The answers are then formatted into a single tensor and passed on
to the model. The resulting output is a list of embeddings that represent each
answer in number form. Cosine similarity is then calculated between every item in
the embeddings list. The resulting matrix contains a score that notes how similar
two answers are to each other.

Figure 4.1: How BERT is integrated into the application.

One problem with the setup was that BERT only accepted a length of 512 tokens
as input. In this case a token is a word. If any of the answers were longer than
that, the model would only process the first 512 tokens and ignore the rest. As
this would be the case quite often with long text answers, this length limit would
not hold for purposes of this thesis. The solution to this problem was to split the
text into chunks of a maximum of 512 tokens, similarly to how Jha et al. [40]
describe their experience with the same problem. The chunks are then sent to the
comparison algorithm and calculated into embeddings. The outputted embeddings
are added together and averaged. This might "flatten" the embeddings in some
cases and prevent them from swaying too far in one direction or the other, but at
least it should include all the parts of the text in the embedding.

34 CHAPTER 4. METHODS

4.1.3 Larger models

BERT has a maximum input of 512 tokens. The more tokens, the longer the
algorithm takes to calculate the results. During testing, the calculations were
often so heavy that the computer got an out of memory error. To mitigate this,
it was proposed to connect to NTNU’s server and host the back end of the code
there. This resulted in fewer out of memory errors and shorter processing time.
The processing time was still too long, however, which is why it was settled to
limit the maximum amount of tokens for input to BERT to 128. This means that
the parts of the text after the initial 128 words would be cut and not sent as input,
but because of the method of inputting longer texts described in subsection 4.1.2
this would not be a problem. The answers would be split into chunks of 128 tokens
and passed in separately to BERT, and combined again after being processed into
embeddings.

The elongated processing time was first encountered when testing NB-BERT-
Large. As explained in subsection 2.5.6, the large version is much bigger with
more attention heads, encoder layers, hidden layers and parameters. This should
have resulted in better comparisons of the texts, which might still be the case.
Early on, NB-BERT-Large was included as a potential candidate for the com-
parison algorithm. It was immediately apparent however that this model used a
lot more processing power, which resulted in the program crashing again due to
out of memory errors. The proposed solution of splitting the input to BERT into
smaller chunks worked fine with the smaller custom datasets first used. It ran
without errors, but it was still very slow and took three times as long as the other
models.

The out of memory errors emerged again when testing on a dataset with dozens
of participants. This was also a reason for hosting the program on NTNU’s local
servers in the first place. Processing time on the server was a lot quicker when
running the other models, and it even ran NB-BERT-Large. The first run of the
large model started in the middle of the day, and kept running for several hours
after the work day was complete. The next morning, the results had arrived.
The results were on par with the other models, but it does not really matter how
good they were. A processing time of several hours is unacceptable for a tool like
this. It is a balancing act to make the tool as adept as possible at comparing the
answers, while still running in a reasonable time. If the final product uses half
a day to process, it can not be expected to be used professionally. Because of
this, it was decided not to perform any further testing on NB-BERT-Large in this
thesis.

4.2 Datasets

Privacy is a big concern emerging when using students’ answers in research. Sev-
eral departments, faculties and examiners at NTNU were approached to inquire
for data to use in this research. Text answers were needed in order to test the
pre-trained models, ideally with their scores included. Many were hesitant to re-
ply, and only one person reached out to support the research with a couple of very
small datasets with about fifteen submissions each. In this case, the students had

CHAPTER 4. METHODS 35

given their permission for the answers to be used in research. This was of course
the best way to collect data, but in most exams this is not asked of the students.
The two datasets collected were exams in a course about religion, and were great
for testing the tool as they contained longer text answers. They did however not
contain the score or grade each answer received, which made analyzing the results
harder. In any case, the answers helped with developing a comparison algorithm
early on by having texts to compare and analyze. Even if the scores were unknown,
the contents of the top results could be manually analyzed for similarity.

Later on, the supervisor for this thesis provided a dataset of exam answers from
a web development course. It consisted of three substantially larger exam sets
with up to several hundred answers. The big advantage of these answers was that
they all had their scores attached. This meant that the program could be tested
on exams with many participants, while also having access to a number based
scoring system that could confirm if the results were somewhat accurate. In a
sense, the graded scores would not help determine if the answers were similar or
not as the tool was supposed to find mistakes in grades, but it would serve as a
way of verifying the results from the comparison algorithm. If two answers with a
high outputted similarity score from the algorithm had the same grade, this would
to a certain extent verify the results. The downside to this dataset was that the
subject matter was software engineering, which meant that many technical terms
and characters would be included in the answers. Programming languages with
special characters and words borrowed from English might not be the best test
material to begin with. As the BERT models for this project were trained on large
corpora of Norwegian words, they most surely would not understand the technical
meanings behind many of the terms used. This made the testing less robust, but
at least some of the questions contained text answers where the meaning could be
understood and derived from context.

4.2.1 Format

The web development exam dataset was also in a format that is standard for exam
answers exported from Inspera. Each exam set was contained in one JSON file
with a logically built up structure of all the students’ answers and scores. The
code that reads and formats the datasets for further processing would be based on
this structure. The structure is the same across all subjects, courses and exams
in NTNU. The value corresponding to the keyword "ext_inspera_manualScore"
would for instance always be the score an answer received. Another positive was
that the file was easy to export from Inspera’s database, and a corresponding file
for a given exam would therefore be available to the examiner.

The dataset reader was based on the standard format from Inspera, but there were
many prerequisites that needed to be met before the exams could be exported with
this structure. The exam needed to be held via Inspera and the answers must have
been written directly into it and not by means of handwritten texts or other files
submitted as attachments. To account for other file formats would be very difficult,
as the setup for each exam is often wildly different. The two other exam datasets
collected during testing were in PDF form, and to successfully extract the raw
text, it needed a specific formatting tool that split the full text on prompts that

36 CHAPTER 4. METHODS

were unique to that exam. This would not be feasible for a final product that
would be compatible with any type of exam.

Because the comparison method was based on a Norwegian model, the answers
also needed to be in Norwegian. All these prerequisites became a problem when
contacting test subjects. Many examiners had some of the prerequisites fulfilled,
but few had all. Many courses are taught in English at NTNU, which means most
of the students answer the exam in English as well. Calculations for math questions
and figures were also not possible for the reader to understand, so applicants that
had datasets where calculations were needed to understand the full extent of the
answer were also turned down.

The number of fitting candidates that matched all prerequisites ended up being
relatively small. In order to expand the amount of applicants, compatibility for
other types of questions were implemented. This included questions that are
often present in digital exams, like multiple choice questions. TGRT is not able to
read multiple choice questions by design, as that would not be very interesting to
compare. The purpose of multiple choice questions is to easily and automatically
be able to grade them, and Inspera already has a separate automatic grader for
these types of questions. It was therefore decided to filter out multiple choice
questions when importing the datasets. This would be done by only including
answers where the key "ext_inspera_manualScores" was present (since these are
manually graded and multiple choice questions are automatically graded).

As will be further expanded on in subsection 5.2.2, there was a problem with this
approach. There would sometimes be answers with the "ext_inspera_manualScores"
key that were actually multiple choice, since the answer text started with "simple-
Choice" followed by a string of numbers. In order to exclude these answers, other
conditional checks had to be added. The conditions for considering a question to
be valid were decided to be that the question has a list of answers larger than
zero, and the answers do not start with "simpleChoice".

A problem that occurred when processing the JSON files before giving them
to BERT as input was that there were many special characters that had to be
accounted for. Characters from the Nordic languages, such as "æ", "ø" and
"å", appeared in the JSON files as their HTML entity codes, namely "æ",
"ø", and "å", respectively. The same was the case with a wide range
of other special characters, such as "&", """ (quotation marks) and "=". Ad-
ditionally, many HTML tags were present, corresponding to the structure of the
answers. These included for example "
" (for line breaks) and "<p>" (at
the start of paragraphs). Including these HTML tags in the input to BERT would
only confuse it, so they would have to be removed before this step. To solve the
problems associated with these special characters, a step was introduced at the
end of the processing where every answer is iterated through. In this step, the
HTML entity codes and tags were replaced with their appropriate characters (or
in some cases, white spaces or empty strings).

CHAPTER 4. METHODS 37

4.2.2 Custom datasets

There were problems with all the collected datasets so far, which made it difficult to
test all the aspects needed. Two custom datasets were made in order to perform the
tests the collected datasets were not compatible with. TGRT compares answers
for one question at a time and makes no connections between questions, so the
constructed datasets only needed one question with several answers to it. The
question for the first dataset ended up being: "Explain the two main types of
friction (static and kinetic)". Some answers could then only focus on the static
friction, and others only on the kinetic friction.

The dataset was structured into four main sub categories: "Good", "Static", "Ki-
netic" and "Irrelevant". "Good" was the label for the answers that were considered
well written and would get a higher graded score. "Static" and "Kinetic" labels
specified answers that focused on only one part of the answer, that being only
static or kinetic friction. "Irrelevant" specified answers with no correlation to the
question and consisted of texts that answered what "fiction" and "faction" was.
All the categories (except for irrelevant) had variants in them labeled "synonyms",
"typos", "long" and "short" along with the "normal" version. This enabled for in-
stance testing for how BERT would handle typos, different lengths of answers and
missing core concepts present in some answers and not in others. The synonym
answers had many key words of the text replaced by words with the same mean-
ing, the typo answers had many key words spelled incorrectly, the long answers
had longer texts containing sections with unnecessary examples and extra details
not needed to answer the question, and the short answers were a bit too concise
to contain all the key information. The "Good, normal" category has more en-
tries than others to have several hits that should get a high similarity score when
comparing to another answer of the same category.

The other custom dataset consisted of descriptions of Quentin Tarantino movies
rather than answers to a question. From a pool of four movies to choose from
(Inglourious Basterds [43], Django Unchained [44], Pulp Fiction [45] and Reservoir
Dogs [46]), every "answer" contained a combination of two of the descriptions.
To further distance the vocabulary and style of writing from answer to answer,
a couple of descriptions were written by fellow students that volunteered. In
addition, a few of the descriptions were generated by ChatGPT, and some were
summaries found on the internet. The resulting dataset contained eighteen entries
where each configuration of a movie pair had three variants. This means that
every movie is present in half the entries, but a specific combination of two movies
is only present in three of eighteen entries.

Many entries in the second dataset had the movie title in the description, which
could potentially make it a lot easier for the comparison algorithm to distinguish
between them. This led to the creation of a third dataset which is the same as
the second, but with the titles removed and substituted by "The first movie..."
for instance.

The Tarantino dataset had another variant with each of the descriptions split into
two entries. This way, each of the four movies had nine different descriptions.
The dataset was created with the dual description entries, but by splitting the

38 CHAPTER 4. METHODS

descriptions into separate entries they could be used for testing the ability of the
models to compare pairs of text where each text had only one theme. This dataset
used the descriptions without the movie titles included.

4.3 Supporting comparative features

The supporting comparative features are important in communicating the simi-
larities between answers in other ways than just a numerical similarity score. The
background sections of this thesis have examined several features that might work
well for TGRT. In cases where answers are relatively short, it might be enough to
only show the raw text for each answer. For longer texts, however, there should
be some representative properties that give an overview of the longer text without
having to read the entire answer. This thesis suggests a set of supporting features
in order to achieve this. The selected features are two extractive features (TF-IDF
and RAKE) and three generative features from the OpenAI API. The features
can be helpful on their own, but additional functions using the features have also
been implemented to assist in comparing the answers.

4.3.1 TF-IDF

TF-IDF was the first supporting feature to be implemented. As described in
subsection 2.3.1, TF-IDF is intended to reflect how important a word is to a doc-
ument in a corpus. It does not explicitly explain to the user why two answers are
deemed to be similar. TF-IDF terms from two similar answers does not in itself
convey how those answers are similar, but they could with some additional calcu-
lations. Instead of showing the TF-IDF terms from the two answers separately,
TGRT shows the terms that appeared in both answers along with their TF-IDF
scores.

When the similarity scores for a question have been computed on the server,
the results are sent to the client while a new thread starts where the extractive
supporting features are calculated. The algorithm starts by loading in the stop
words list. The list has been generated by adding words manually. Some words
were included on the basis of common sense, some through testing, and some
by the recommendations made by the model implemented. After running, the
TfidfVectorizer suggests terms that maybe should be included in the stop words
list. The stop words are words to not take into account when calculating the most
unique terms for the text. They are removed mostly for optimization purposes,
but also because they can be given a high TF-IDF score by mistake.

The stop words are inputted to the TfidfVectorizer from the sklearn library along
with a function for tokenizing the text answers. This will split each text into a
separate token for each term. This process removes all special characters like punc-
tuation and commas and creates a list of all the terms. The function also includes a
lemmatization function from the spaCy library. A model called "nb_core_news_lg"
[47] is imported and loaded that compacts the terms into their lemmatized form,
as explained in section 2.2. This model is the largest of the spaCy models trained
on the Norwegian language.

CHAPTER 4. METHODS 39

The vectorizer can enable TF-IDF scores for either single or multiple terms. It was
originally set to one and two n-grams, meaning it would calculate scores for single
terms and double terms, but was for optimization purposes ultimately changed to
only work with single terms. The process of computing the extractive supportive
features is the most time-consuming, so the decisions leading to most optimization
were most often chosen. The results from the vectorizer is a matrix with TF-IDF
scores for each term in each answer or document. This matrix does not contain
the actual term, but only a numeric representation. The term in word form is then
extracted and added to the matrix. This is the basis for the TF-IDF matrix.

Figure 4.2: Setup of TF-IDF vectorizer.

Figure 4.3: The structure of the resulting TF-IDF matrix, where each element
in the list contains the TF-IDF score for a term defined by column in an answer
defined by row.

40 CHAPTER 4. METHODS

The matrix is then used in collaboration with the similarity scores calculated by
the similarity algorithm. For each pair of answers, the matrix is used as a lookup
to see which terms are present in both text answers. If a term is used in an
answer, the TF-IDF score in the corresponding element in the matrix is larger
than zero. Additionally, since people use different words to describe the same
concepts, a system to look up synonyms was implemented. If a term is present
in one text, but not the other, a lookup is performed in a separate file containing
many Norwegian synonyms. If the term has at least one synonym present in the
list, all the synonyms gets matched against the terms in the other text. This way,
words like "forsiktig" and "beskjeden" will match each other and get flagged as
the same term. The words may not always match exactly with the context and
may carry a different meaning, which is why TGRT displays the terms separated
by a slash instead of just the original term when this occurs.

If a term is present in both answers, a comparative score for this term is calculated,
which denotes how significant this term is overall across both answers. The term
score for a term that is present in both answer a and b is calculated as follows:

Term score(a, b) =
(TF-IDFa + TF-IDFb)

2
· (1− |TF-IDFa − TF-IDFb|) (4.1)

The average TF-IDF score of the term in both answers is calculated. Doing only
this would result in terms that could represent the first answer very well and the
second answer less, getting ranked higher than it should. The average score is
therefore multiplied by the difference in TF-IDF score subtracted from 1. Since
the TF-IDF score is always between 0.0 and 1.0, this multiplication factor is also
between 0.0 and 1.0. This way matches where the TF-IDF scores are very different
are punished and matches where the scores are closer are rewarded. The matched
terms and their corresponding comparative scores are then sorted by the latter
and sent to the client. Thus the TF-IDF terms that appear in both answers are
displayed in order of relative significance.

4.3.2 RAKE

In addition to showing why two answers are considered similar, TGRT should
also show how two answers are distinct, so that the user can see if one answer
is markedly better than the other. This would be done by extracting keywords
from each answer in a similar fashion to TF-IDF. By seeing keywords from each
answer side by side, the user might have an easier time investigating differences
in quality between the two answers. As TF-IDF in this implementation only
uses single terms as input, it was decided to use RAKE as the keyword extraction
method. RAKE processes the text and finds the most unique and descriptive parts
of the sentences instead of just single words. This was implemented by cloning
a GitHub repository [48], which was based on the original RAKE algorithm that
was proposed by Rose et al. [13]. Only the rake.py file was used, which contains
a class with all the functions necessary to extract candidate keywords. The code
had to be edited slightly to fit into the pipeline, but was mostly untouched.

CHAPTER 4. METHODS 41

In order to instantiate an object of the RAKE class, the path to a file containing
stop words is needed. The inputted path leads to the same stop word file as the one
used for the TF-IDF calculations. When an object of the RAKE class is instan-
tiated, a regex pattern is built that contains every stop word in the specified file.
The actual extraction of candidate keywords is done in the class method run().
This method receives the text as input, and splits the text into phrases using
punctuation characters as the delimiter. Candidate keywords are then generated
by splitting the phrases when stop words are found, and adding the words between
them to a list. Then the word scores, and finally the keyword candidate scores, are
calculated as described in subsection 2.3.2. The list of candidate keywords is then
sorted by score and returned. An instance of the RAKE class is initialized right
after the TF-IDF matrix is created. The run() method is executed, and the result-
ing list of candidate keywords is sliced so that it only includes the 25 uppermost
items, so as not to overwhelm the user with many irrelevant phrases.

As explained in subsection 2.3.2, the phrases it chooses are consecutive series of
words that are found between stop words and/or punctuation. Therefore, the
user can see at least part of the context in which the phrase it is used. In some
instances, both the text before and after a stop word in a sentence is crucial
for understanding the meaning of that sentence. Therefore, the resulting phrase
deemed as important by RAKE is not always understandable when viewed in
isolation. However, whether this is an issue or not depends on the sentence.
As will be expanded upon more in subsection 4.5.1, the user can click on any
phrase in the list in order to highlight the occurrences of that phrase in the chosen
answer, which makes it easy for the user to understand the context. The phrases
that are picked are ranked by their scores, whereby a higher score implies higher
importance.

The implementation of TF-IDF does not extract multiple consecutive words,
meaning that RAKE is better at explaining context for the terms. Precisely be-
cause TF-IDF only extracts single words, it has an advantage in that it is possible
to use it to find common keywords between two texts. This is a lot harder with
RAKE, since it is highly unlikely that two different texts have the same sequence
of multiple words. However, the meaning behind different sequences could still be
similar and therefore also display similarities between the answers.

4.3.3 Summarizers

One of the most important supporting features were always a summarizer. This
would let the user quickly read through a summary of each answer in order to get
a good overview, and enable them to distinguish between the two answers. This
is especially useful for longer text answers, which are the primary target exams
for this thesis. One problem with using summarizers as a guide for judging exam
answers is that they naturally leave out many details, and the details might be
what separates a great answer from a good answer. However, as long as the user
utilizes the summarizer as a supplement to the other functionalities, and does not
rely on it alone in order to decide whether two answers deserve different grades or
not, it can be of good use.

As explained in section 2.7, there are two main types of summarizers: extrac-

42 CHAPTER 4. METHODS

tive and abstractive. Extractive summaries consist of sentences that are already
present in the original text, whereas abstractive summaries consist of newly gen-
erated sentences that are supposed to convey the meaning of the original text
as succinctly as possible. Extractive summarizers were the easiest to implement,
as there were several ready-made implementations to choose from. Several of
them were tested in the development phase, including the summarizers created
by Natural Language Toolkit (nltk) [49] and Summa [50], which are both based
on the TextRank algorithm [51]. A problem with both of those summarizers is
that the sentences they pick from the original text are not ordered according to
when they appear in that text, leading to disjointed summaries where a sentence
from the end of the original text appears in the beginning of the summary without
any context. The reason this happens is that the TextRank algorithm only picks
the sentences it deems to be most important, and constructs the summary by
concatenating these sentences in order of importance.

A more general problem with extractive summarizers is that even if the sentences
are in order, they might leave out crucial information that is not deemed impor-
tant by the algorithm, that would otherwise have been retained if an abstractive
summarizer had been used instead. This is because abstractive summarizers are
based on deep learning, and thus gain a deeper understanding of the context of
each sentence. They can therefore summarize the content of three sentences in one
new sentence, rather than either including or excluding each of the three sentences,
like extractive summarizers do. Abstractive summarizers by nature of summaries
in general also leave out information, but can to a bigger degree insert information
into one concise sentence than extractive summarizers. Abstractive summarizers
are also trained to mimic how humans might summarize a text, and thus produce
summaries that are more readable by humans. Because of these advantages, it
was decided to implement an abstractive summarizer rather than an extractive
one, which lead to exploration of OpenAI’s API.

4.3.4 OpenAI

OpenAI is an American AI company that was founded in 2015 [52]. They con-
duct research on AI with the declared intention of ensuring that Artificial General
Intelligence (AGI) benefits all of humanity [53]. AGI refers here to a hypothet-
ical intelligent agent that can learn any intellectual task that human beings can
perform. OpenAI has developed a wide range of products based on reinforce-
ment learning and deep learning models, including video game bots and speech
recognition tools. The product that OpenAI is most known for, however, is Chat-
GPT [54], which is a chatbot that was released in late 2022. ChatGPT garnered
widespread attention in the media for its ability to provide detailed and articulate
responses to questions spanning a wide array of topics. The researchers tested
ChatGPT outside the confines of this project, and came up with the idea of using
it to generate summaries. In order to integrate an OpenAI model with TGRT
however, it was necessary to connect to an API.

OpenAI hosts an API that can be implemented in applications for a small fee for
traffic. The API will generate answers to prompts sent in. This was utilized in
order to generate summaries for the exam answers. After sending prompts that

CHAPTER 4. METHODS 43

asked it to summarize certain texts, it generated short abstractive summaries that
captured the meaning of the texts better than any of the summarizers previously
tested. The API has several models to choose from that can perform the cal-
culations needed. The model that was decided on to use for the requests was
text-davinci-003 [55], because of its ability to perform any language task with bet-
ter quality, longer output, and more consistent instruction-following than most of
the other OpenAI models.

In addition to generating summaries, themes and keywords were also generated
from the answers. The themes prompt proved to be useful, since the model gen-
erated new words for encompassing the main themes, which could help to get an
overview of the content of an answer. The keyword prompt produced results in
the same vein as TF-IDF and RAKE by selecting words that appeared in the
original texts. These were not ordered in a particular way. It was decided that
all the three types of requests (summary, themes and keywords) would be used in
the TGRT.

The calls to OpenAI were first implemented on the server, but were soon moved to
run directly from the client. The API only accepts a few requests before it charges
money for every call after that. The initial plan was to run calls to the API to
generate summaries, themes and keywords for all the answers, but this would go
beyond the limit of free requests very quickly. As some answers further down the
list of comparisons would probably never be examined, it would be unnecessary
to generate the supporting features for all answers. By moving the API calls to
the client and only calling them when the user selects an answer to examine, the
supporting features are generated only when the user needs them. The results
are then saved client side, to prevent the requests from running multiple times if
the user jumps from answer to answer in the examination process. It would have
been possible to send the requests from the server, but that would have been an
unnecessary extra step and resulted in an increase in latency.

When the user has selected a recommendation along with a compared answer, the
requests are sent. First the themes are generated, then the summary and lastly
the keywords. This was done in succession to not overwhelm the OpenAI API as
there is a limit to how fast they accept calls. The requests are built by encasing
the answer in quotation marks and concatenating it to a prompt that asks for the
AI to generate the supporting features. The prompts are written in Norwegian
and is the only thing telling the API what to return. There are no settings to
let it know what is wanted, which means that it needs to analyze and understand
that the inputted text answer is in Norwegian and return a text written in the
same language. There is no guarantee it will always understand that, but there
were no instances during testing where it misunderstood the prompt.

Because of the generative nature of the OpenAI API, the resulting features do not
have a defined format. This means for instance it could return keywords in the
form of a bullet point list, a numbered list or only listed as a sentence separated
by commas. The most common result received was a numbered list. The features
were inserted into a hash map that kept track of which answer and question they
corresponded to. The results are then displayed in a table to the user.

44 CHAPTER 4. METHODS

4.4 Sorting algorithm
An important aspect of the product is how the pairs of similar answers are sorted.
At first, the idea was that all pairs would be sorted by a combination of how
similar the answers are, and how big the discrepancy in scores is, so that the
biggest purported "mistakes" in the examination rank the highest. Upon further
consideration, it was decided that rather than just displaying a list of pairs of
answers, the answers could be sorted so that each of them would have a list of
other answers that are considered to be similar to it. Thus, the user can focus on
one answer at a time, rather than skipping around between different answer pairs
and risking forgetting their thoughts on a particular answer before encountering it
again. By comparing the answers that are similar to a certain answer, it would also
be possible for the system to give a recommendation as to whether that answer
should be scored higher or lower than it currently is. This also made it possible
to sort the recommendations in a way that displayed the recommendations that
were most certain at the top, and the recommendations with less certainty further
down. Thus, the user would be able to start with the most severe alleged mistakes
in the grading before moving on to the less severe instances.

Figure 4.4: The process of sorting the initial similarity matrix received from
BERT into a pairwise list of similar answers. The list is then filtered by the
specified criteria.

The sorting process starts right after the calculations for the similarity scores are
completed. First, the pairs of answers are all sorted by the similarity scores in
descending order. Then all the pairs in the list are iterated through in order to
filter out all pairs that do not fit the criteria for inclusion. These criteria are that

CHAPTER 4. METHODS 45

the answers must have received different grades (if not reexamining them would
be pointless), and that the similarity score between them must be above a certain
threshold (so that answers that are not sufficiently similar are excluded).

For each pair of answers, the difference between their graded score is calculated
and divided by the maximum possible graded score for normalization purposes.
The algorithm makes sure the difference is bigger than zero, as if it is equal to zero,
the two answers received the same graded score and is therefore not necessary to
examine. The server also only passes on the answer pairs where the similarity
score is above a certain threshold. Answers to a specific question often contain a
lot of the same information and can be quite similar at a base level. The algorithm
should only keep the answer pairs which contents are significantly more similar
than only the base level of similarity that is shared across most answers. Because
of this, and based on the numbers emerging during testing, the threshold was set
to 0.92.

If these conditions are fulfilled, the pair is kept in the list along with the corre-
sponding similarity score and the difference in graded score variable. Duplicate
entries are removed in order to prevent the pairs appearing in the list twice, but
in switched positions. This list is then sorted by similarity score and sent from
the server to the client (more on this in section 4.5).

After the client has received the list described above, the process of sorting the
pairs so that each answer has its own list of comparisons begins. A dictionary
for storing the data is created, where the key is the index of the answer and the
value is an object containing the text answer itself, the score it was given by the
examiner and a list of comparisons with similar answers. Each entry in this list
is an object containing the index of the comparison answer and the similarity
score between the two answers. The algorithm for structuring this data starts by
iterating through the list of similarity pairs from the server. Each answer is added
to the dictionary if it is not already present there. Then both of the answers are
added to each other’s list of comparison answers.

Figure 4.5: Data structure of the client side list of answers and their sublists of
similar answers.

46 CHAPTER 4. METHODS

Finally, a certainty score for every answer is calculated. The certainty score is a
measure of how certain the system is that the answer deserves a different score
than it was originally given by the examiner. The certainty score for the recom-
mendation for change in answer a, where Sim denotes the similarity score and g
is the graded score for a specified answer, is calculated as:

Certainty scorea =

∣∣∣∣∣ 1

|comparisons|
·
|comparisons|∑

b=1

{
ga > gb, −Simab

ga < gb, +Simab

∣∣∣∣∣
If the graded score of answer a is higher than that of the current comparison
answer, the variable is decremented by the similarity score of the two answers,
whereas if the comparison answer has been given the higher score, the variable is
incremented by the similarity score. The sum of these increments and decrements
results in a value that states how certain a recommendation is. If it is positive, it
implies that the answer deserves a higher score, and the opposite implies that the
answer deserves a lower score. The value is divided by the amount of comparisons
to normalize the output between 0.0 and 1.0. To format the value to only tell how
certain the system is of a recommendation, the absolute value is calculated.

For example, the more compared answers that have a lower grade than a, the
more certain the system is that the grade should be lowered. If there are about as
many instances of the comparison answer having a higher and a lower graded score
than the original answer, the certainty score will hover around zero, depending on
the different similarity scores. This indicates less certainty regarding whether the
original answer deserves a different score.

The final step in the sorting process is to sort the order the answers are displayed
in. A recommendation containing more compared answers with grades leaning
towards the same direction compared to the original answers grade, should be
higher up the list of recommendations. This means that if an answers’ comparison
answers tend to be graded higher than itself, it should be ranked higher than an
answer where the comparison answers are more varied in their graded scores.
The recommendations could have been sorted by certainty score, but this has the
unfortunate side effect of ranking recommendations with very few similar answers
listed as high in the list. An answer with several similar answers with pretty high
similarity scores should be ranked higher than an answer with only a few good
comparisons. As the certainty score is averaged, it performs poorly in sorting with
this in mind. The sorting score is therefore calculated as follows:

Sorting scorea =
|comparisons|∑

b=1

{
ga > gb, −1

ga < gb, +1

The recommendations are sorted by calculating a sorting score for each, in a
similar fashion to the certainty score. The only difference is that the score is
incremented and decremented by one instead of the similarity score, as the sorting
should only take into account the amount of comparisons and not the score. The
list of recommendations is sorted by sorting score.

CHAPTER 4. METHODS 47

If two recommendations have the same sorting score, the recommendation with
the highest certainty score receives precedence over the other. This algorithm also
filters out answers that have less than three comparison answers, and answers that
have a certainty score of less than 0.75 (1.0 is the highest possible value). This
filtering is done so as not to clutter the website with answers that either have very
few similar answers or cannot be said with sufficient certainty to deserve either a
higher or lower score. If the completion of the filtering process results in no If there
are no recommendations that survive the filtering process for a given question, the
website will display a message explaining this.

4.5 Application setup

Although the main focus of this thesis is concerned with finding similar answers
and explaining their similarities, it was necessary to create a graphical user inter-
face so that the product could be properly tested by people in the target group.
It was decided to build TGRT with a client-server architecture, where the client
takes the form of a website. In short, the user uploads a file containing the exam
answers to the website, which is sent to the server. The server then calculates
similarity scores for the answers and sends back the relevant pairs, followed by
the supporting features corresponding to the answer pairs. An explanation of how
the different components of the application interact with each other can be seen
in Figure 4.6.

Figure 4.6: Sequence diagram of the application layout

48 CHAPTER 4. METHODS

4.5.1 Client

The website was created using React.js [56]. React is a JavaScript library used for
creating user interfaces that was released by Meta (formerly Facebook) in 2013. It
enables developers to create reusable components for single-page applications. The
website consists of an upload page and the main page. The upload page is used
simply for uploading the dataset of exam answers, while all the main functionality
of the product is present on the main page. Aside from the feature of uploading
a file, the upload page also has a check mark for controlling whether or not the
OpenAI requests will be sent. This is just for testing purposes, to prevent too
many calls to the API during development. As a free trial of the OpenAI API
is used, where every request sent consumes part of the free tokens included in
this free trial. The OpenAI check mark is supposed to be checked, when not in a
development stage of the process. The upload page can be seen in Figure 4.7.

Figure 4.7: The upload page of the website

After the user has clicked the upload button, they are taken to the main page
of the website. This page displays the relevant recommendations as they are
consecutively received from the server. The first request to the server sends the
uploaded file, and it receives back an ID (more on this in subsection 4.5.2), and the
amount of relevant questions on the exam (multiple choice questions are excluded,
since they are irrelevant for the purposes of the product). The amount of questions
is used for initializing the bar containing all questions at the top of the page (see
Figure 4.8). The client then starts polling the server for results every ten seconds
until recommendations for all questions are received. The recommendations are
sent one by one in consecutive order.

The user can change the selected question in the bar at the top of the page, while
the list of recommendations for the selected question is displayed at the far left of
the page, in the order determined by the sorting algorithm explained in section 4.4.
If the results from the server contain no recommendations for a specified question,
a message displays this in place of the list of recommendations. The items in the

CHAPTER 4. METHODS 49

list display the index of the answer along with a colored arrow pointing up or
down if the answer should get an increased or decreased grade respectively. A
green colored arrow implies that the answer deserves an increase in graded score,
while a red arrow implies a decrease.

When selecting a recommendation in the list, that answer’s list of compared an-
swers is displayed on the right. In the main section of the screen, the user can
see an overview of the selected answer, including its text, length, graded score,
certainty score, and whether the system thinks it should be scored higher or lower.
When selecting one of the compared answers, the user can see data about both
answers side by side. The aforementioned data is displayed for both answers, as
well as the TF-IDF terms that appear in both answers with their corresponding
scores, RAKE terms and scores for both answers, and the OpenAI data (themes,
summaries and keywords for both answers). The TF-IDF and RAKE data is
polled from the server, whereas the OpenAI data is retrieved from the OpenAI
API when two answers have been selected (see Figure 4.6).

Once the OpenAI data for an answer has been retrieved from the API, it will not
try to fetch new data for the same answer even if it is part of a pair with another
combination of answers. When changing the question selected at the top of the
screen, the corresponding TF-IDF and RAKE terms are also retrieved from the
server if they have not already been received. The TF-IDF and RAKE terms have
additional functionality to examine the terms in the answer text. When selecting
a term in either the TF-IDF or the RAKE table, the terms will be highlighted
in the text representation of both answers, making it easy to compare the two
with regard to the term and see the context the terms are used in. This does not
always work optimally, as the terms listed are in lemmatized form, as described in
section 2.2. This leads to some words not matching properly in the answer text,
as the terms’ suffix and form might have been changed.

Figure 4.8: The main page of the website, with a question and an answer selected.
Due to privacy concerns, the displayed answer consists of generated placeholder
text.

50 CHAPTER 4. METHODS

Figure 4.9: The main page of the website, with a comparison answer selected.
TF-IDF and RAKE terms/scores can be seen in the bottom half of the page.

Figure 4.10: The main page of the website, with a comparison answer selected.
Here the data generated by OpenAI can be seen.

4.5.2 Server

The server uses the web framework Flask [57], which is written in Python. Flask
is considered a micro framework because it does not require particular tools or
libraries. Thus, it is quick and easy to set up. The server hosts three main
endpoints available for the client. The upload path is where the server receives
the initial request containing the exam dataset from the client. The server then
generates a unique ID as a random string of letters and numbers with a length of
five. This ID makes it easy to keep track of the data on the server, as it quickly can
become confusing since the processing is performed in multiple threads. The ID is
also used as a key for the client to fetch the correct temporarily saved data from

CHAPTER 4. METHODS 51

the server. The server responds with the generated ID and a number representing
the amount of relevant questions on the exam. This number is the result from an
analysis of all the questions in the exam and what types of answers it has. The
filtering process is described in length in subsection 4.2.1.

The server then starts a thread that performs the main calculations on the dataset.
The algorithm for this is further described in subsection 4.1.2, but simply put, it
extracts pairs of similar answers from the dataset. The resulting pairs of similar
answers are then sorted as described in section 4.4, that is, in descending order
according to similarity score, and filtering out pairs with the same graded scores,
as well as pairs with similarity scores below the threshold. This data is then tem-
porarily saved on the server, one question at a time, so that it is easily accessible
when the client starts polling.

Figure 4.11: The main process on server that runs after the initial request with
the dataset is received

When the similarity data for one question is calculated, sorted and saved, another
thread is started for extracting the TF-IDF and RAKE data for that question and
saving it on the server. The extracted features are also temporarily saved in a
separate file on the server. When the client has received the response saying that
the process has started with the generated ID and the number of valid questions,
it moves on to the polling process.

The two other endpoints of the server are for polling for answer pairs and support-
ing features. As the client has received the amount of valid questions, it knows

52 CHAPTER 4. METHODS

how many sets of results it is supposed to receive. Polling for both the answer
pairs and the supporting features are initialized at the same time, and the two
processes are very similar (Figure 4.12). Every ten seconds, the client sends a
request for the results. If the results are ready, they are sent back to the client. If
they are not ready, the server responds with the message "False", indicating that
it is not ready. Every time results for a question are received, either answer pairs
or supporting features, they are immediately displayed on the website. The client
then iterates the question it requests and continues polling every ten seconds as
long as there are questions whose data has not been received.

Figure 4.12: The polling process between client and server to fetch both answer
pairs and the extracted features. They are two separate processes, but the flow is
exactly the same.

The server is hosted on an NTNU server installed on campus. It was initially
hosted on the researchers’ own computers, but the heavy computations took too
long to process. The server is connected via a Secure Shell (SSH) and can be
accessed anywhere where NTNU’s internet is available.

4.6 Considered additions
Several functions and extensions to TGRT were discussed during development.
Some of them were decided against for different reasons that might not be imme-

CHAPTER 4. METHODS 53

diately evident. At first glance, they seem like expansions to the functionality of
TGRT that would make it perform better and be more helpful in assisting the ex-
aminers. There are however downsides that emerged as the project evolved.

4.6.1 Same grade with different content

When the project started, the innovative method had a much broader definition.
It was always supposed to double-check grading and give warnings if the grades
were unfair, but it evolved over time into a more specific use case. This was
to give warnings when the contents of the answers are similar, but the grades
are different. Early on, there were also ambitions of doing the opposite, namely
warning the examiner when the grades are similar, but the content is dissimilar.
This proved to be a bad idea on several grounds.

The main problem with this idea is that the requirements for achieving a grade are
not always set in stone. In some courses, there might be straight forward questions
with straight forward answers. This is however not always the case. If a question
asks for several aspects of a topic and the answers contain explanations for different
aspects, the answers become more complicated to compare. Even in a simple case
where each aspect is weighted equally, this would be a problem. If TGRT was
programmed to warn the examiner when the contents are different and the grades
are not, this example would result in many recommendations with faulty logic.
The graded score could be correct, but since the answers do not contain the same
information, the tool would recommend they get a different grade.

Even though TGRT was not programmed to detect dissimilar answers with the
same grade, it should in theory flag them either way. In the aforementioned
example, the grades were correct even though the content was not similar. In
cases like this, it is not desired for TGRT to flag the answer as wrong. Another
example would be that an answer was given a higher graded score than it deserved
because the answer did not contain the expected aspects of the questions needed
for that grade. In this case it is not desired for TGRT to flag the answer as too
high, but even though it is compared as very dissimilar to the other answers on that
grade level, it will not be flagged as an error simply because they have the same
grade. However, it will also be compared to the answers with different grades, and
when it is compared to be more similar to answers on a lower grade level, TGRT
will recommend that it is lowered. This means that even if it specifically does
not flag answers with similar grades and different content for that reason alone,
they are flagged in the cases where they are more similar to answers on a different
grade level.

4.6.2 Recommending specific grade shifts

The results from TGRT gives the examiner a recommendation to either increase
or decrease an answers’ graded score. A natural extension to this is to recommend
a specific amount of points to shift the score. If an answer has received a score
of 5.0 and has a high similarity score with many answers that got a graded score
of 3.0, the tool could then recommend the examiner to drop the score specifically
by two points. To calculate the difference in graded score between the answer and

54 CHAPTER 4. METHODS

the average score of the most similar answers is not difficult and could easily be
implemented. This was decided against primarily because of the implications this
entails.

TGRT is not perfect. As will be clear from the tests of the algorithm (subsec-
tion 5.1.1) to the user tests (section 5.2), there are always outliers and occasions
where it judges incorrectly. By only recommending that the answer should increase
or decrease by an unspecified amount, there is an acknowledgement that the tool
is not an automatic grader. It only gives the examiner a warning that an answer
might have been graded slightly wrong and an indication of which direction on the
scale it could be adjusted. If the tool stated exactly what grade it recommends for
an answer, it would indicate that the recommendation is objectively correct. This
could lead to examiners blindly trusting the recommendations and just accepting
what grade is suggested. Instead, TGRT wants to invite the examiner to analyze
and understand what might the discrepancies might be, so that they can draw
their own conclusions as to what the final graded score should be.

4.6.3 Spelling errors

Spelling errors are an omnipresent phenomenon in exam answers, as in every
other written medium. This might have posed a challenge to the model used in
our product, as it creates embedding vectors for each token in the input text so
that similar words have similar numbers in their embedding vectors. The presence
of spelling errors has the potential to confuse the model by obscuring words and
making them unrecognizable, so that certain embedding vectors turn out a lot
different from how they would be if the words were spelled correctly. This does
not only affect the embedding vectors either, as the TF-IDF matrix would also
look different. Instead of the same word occupying one column in the matrix, the
differently spelled versions of the same word would be found in separate columns,
and the scores given would not reflect the words’ actual frequency in the answers
being compared. It was therefore decided to investigate options to mitigate the
effects that spelling errors might have on the results generated by the different
components of the product.

A way to do this was to try to correct as many spelling errors as possible before
comparing the answers. This was tested by trying out the Python library SymSpell
[58]. SymSpell uses the edit distance algorithm described in section 2.8 to find
potential candidates for word replacements. The principle is that if a word is
spelled incorrectly, the edit distance between the incorrectly spelled word and the
correctly spelled word is probably very low (meaning that there likely is not more
than one or two letters that are different in both spellings). By analyzing the
dictionary for words within a small edit distance from the misspelled word, the
correctly spelled version of the word might be found, and can then replace the
spelling error in the text.

In order to test SymSpell a prerequisite was thus a Norwegian dictionary where
lookups for incorrectly spelled words could be done. SymSpell requires a specific
format for the dictionary to be used, namely one column for the words themselves,
and one column for the corresponding frequencies of the words. The frequencies
are calculated by counting the appearances of every word in the corpus that the

CHAPTER 4. METHODS 55

dictionary is based on. After some searching, such a dictionary was found [59],
which was posted online by the Faculty of Humanities at the University of Bergen,
and was purported to contain the most common words in the Norwegian language.
This dictionary, which is based on an unknown corpus, consisted of 462 000 words
sorted by their frequency. It contained word forms as well as conjugations for word
classes. With this dictionary in place, SymSpell was ready to be tested.

When testing, a decision had to be made on how to detect which words were to be
considered misspelled in the first place. One option was to simply replace every
word, no matter if it is misspelled or not, with the word of the highest frequency
within the set edit distance. The suggested words for replacements do not include
the word being compared itself. This turned out to not be a good option, as
that led to correctly spelled words being replaced by similar words within the set
edit distance. Another way was to amend the method described above, but only
replacing the word if the frequency of the most frequent suggested word is higher
than the frequency of the original word (if the original word is present in the
dictionary at all). While this did mitigate the problem of correctly spelled words
being replaced somewhat, it did not solve it entirely. For example, it would lead to
the word "at" (the eleventh most frequent word in the dictionary) being replaced
by "av" (the fifth most frequent word). The option that turned out to be best at
replacing only incorrectly spelled words was to only look for replacement words if
the original word is not present in the dictionary at all. Thus, the only way for
correctly spelled words to be replaced is if the word is obscure enough to not be
among the 462 000 words in the dictionary, and at least one word within the edit
distance is in the dictionary. This is a rare occurrence, as the edit distance was
set to 1. In SymSpell’s case, that means that no more than one letter could be
wrong, as substitution counts as one operation.

There was however a problem with that approach. Since the dictionary likely
is based on a large corpus where every word in all the documents are included
without any qualifications, it contains many spelling errors that appeared in the
documents (although these have very low frequencies). For example, it includes
spellings like "strker", "strmet", "polti" and "politker", which are all missing a
letter. The result of this is that if an answer contains any of the spelling errors that
are included in the dictionary, they will not be replaced, leading to the usefulness of
spell checking being somewhat reduced. Granted, there are many typical spelling
errors that do not appear in the dictionary, so the problem might not be that
significant. Moreover, when testing answers with spelling errors on the different
BERT models, it was discovered that their similarity scores were mostly very high
when comparing to their correctly spelled counterparts. As shown in Table 6.2,
they all scored higher than 0.85, and most of them higher than 0.90. This indicates
that the BERT models are able to derive meaning from incorrectly spelled words
by looking at the context of the sentence the word is being used in. Because of
this, and the problem of incorrectly spelled words being present in the dictionary,
it was decided not to implement the spell checker in the product, as it would likely
not have a significant effect on the results.

CHAPTER

FIVE

TESTS

Two types of tests were performed in order to answer the research questions. The
first type was for testing the different BERT models and how well they suited
the task of creating accurate embeddings for Norwegian text. This included some
tests for measuring similarity between texts where a desired result was known,
and some that tested different aspects of how the models reacted to textual dif-
ferences. The friction dataset had many variants of the same texts that included
for example spelling errors or word swaps with synonyms. In a similar fashion to
Wangkriangkri et al. [38], the tests on the variants would in some sense test the
robustness of the models and grant a wider knowledge of what aspects each model
emphasizes.

The other type of tests were user tests. Performing user tests would encompass
all the research questions in that they tested the chosen BERT model, how useful
the selected supporting features were, and how real examiners would respond to
TGRT and what might be interpreted as its "corrections" of their work.

5.1 BERT models tests

To test how well the models were at measuring similarity between pairs of texts, the
custom datasets explained in subsection 4.2.2 were used. The tests were performed
by choosing a specific base answer in the dataset, comparing it to every other an-
swer in the dataset, and outputting the similarity scores between them. A custom
file writer was made that output the result from all BERT versions, with each
resulting item consisting of an answers’ category variation and its corresponding
similarity score with respect to the answer being compared. The category varia-
tion determines what category the answer has, either determining what movies it
describes (in the Tarantino datasets) or what variations of the four different writ-
ten answers it consists of (in the friction dataset). The base answer is not present
in the resulting tables, as it would have gotten the top similarity score of 1.0. For
the friction dataset, two tests with different answers specified were performed. In

56

CHAPTER 5. TESTS 57

both tests, the answer specified to be calculated similarity against was one of the
answers labeled "Good, normal".

Two separate tests for the Tarantino datasets with dual descriptions were also
performed (with and without titles). The texts to be compared to were specified
to be the same across the two datasets to see if there was any difference in results.
For the first test a text containing descriptions of the movies Inglourious Basterds
and Django Unchained (shortened to "IB & DU") was chosen, and for the second
test the chosen combination was Inglourious Basterds and Pulp Fiction (shortened
to "IB & PF").

The final comparison algorithm test was performed on the custom Tarantino
dataset with split entries as explained in subsection 4.2.2. The descriptions, num-
bering 36 in total, were compared to each other. The optimal result for any model
is to have all the descriptions for the same movie at the top of the list of com-
parisons. The tests compared the entries labeled "IB 2" and "DU 2" against the
other entries.

5.1.1 Friction dataset results

The following figures are outputs from the tests of the comparison models. Each
column shows results for the specified model. Entries contain the category and the
similarity score to the answer being compared. The entries are sorted by similarity
score in descending order.

Figure 5.1: Results of comparison test with the friction dataset where the answer
being compared is "1, Good, normal" as explained in section 5.1.

58 CHAPTER 5. TESTS

Figure 5.2: Results of comparison test with the friction dataset where the answer
being compared is "2, Good, normal" as explained in section 5.1.

5.1.2 Tarantino datasets results

In the following figures, the category used as the compared entry is highlighted to
show where the most similar items thematically are listed.

Figure 5.3: Results of a comparison test with the Tarantino dataset, where the
text being compared is "IB & DU 1" (Inglourious Basterds and Django Unchained)
as explained in section 5.1.

CHAPTER 5. TESTS 59

Figure 5.4: Results of a comparison test with the Tarantino dataset without
titles, where the text being compared is "IB & DU 1" (Inglourious Basterds and
Django Unchained) as explained in section 5.1.

Figure 5.5: Results of a comparison test with the Tarantino dataset, where the
text being compared is "IB & PF 3" (Inglourious Basterds and Pulp Fiction) as
explained in section 5.1.

60 CHAPTER 5. TESTS

Figure 5.6: Results of a comparison test with the Tarantino dataset without
titles, where the text being compared is "IB & PF 3" (Inglourious Basterds and
Pulp Fiction) as explained in section 5.1.

Figure 5.7: Results of a comparison test between the single movie descriptions
from the Tarantino movies, as explained in section 5.1. The description compared
to is "IB 2".

CHAPTER 5. TESTS 61

Figure 5.8: Results of a comparison test between the single movie descriptions
from the Tarantino movies, as explained in section 5.1. The description compared
to is "DU 2".

5.1.3 Tests on graded datasets

The web development dataset obtained contained a graded score for each answer.
The graded score was usually between 0.0 and 5.0. This allowed tests of the
comparison algorithm based on the graded scores. For the sake of this test, it is
assumed that the higher similarity score given between two answers, the lower the
difference in grade should be. There are four main outcomes that the similarity
score and difference in grade could have a tendency towards:

1. High similarity score and low difference in grade

2. High similarity score and high difference in grade

3. Low similarity score and low difference in grade

4. Low similarity score and high difference in grade

1. and 4. should be rewarded as outcomes. If the similarity score is high, the
answers contain much of the same content and should have a similar grade. If
the similarity score is low, the answers contain content that is very different and
should therefore have a higher difference in grade. Similarly, 2. and 3. should
be punished as they display the opposite outcomes. The proposed measurement
Similarity-Grade Correlation Coefficient (SGCC) calculates how well the similarity
scores correspond with the graded scores. It is calculated as one numerical value
between 0.0 and 1.0 by the following formula:

SGCC =

∣∣∣∣∣Difference in graded score
Max graded score

− Similarity score

∣∣∣∣∣ (5.1)

62 CHAPTER 5. TESTS

The SGCC between two answers is calculated by subtracting the similarity score
they share from the normalized difference in their graded score and measuring the
absolute value of the result.

As displayed in the results in subsection 5.1.1, the different BERT models often
vary in their scale. NorBERT 1 often gives a higher similarity score on average
than the others and NB-SBERT often gives lower, but more spread out scores.
To test the SGCC on the models without the differences in scale, a normalized
similarity score is calculated by the following formula:

Normalized sim score =
Sim score−Min sim score

Max sim score−Min sim score
(5.2)

The normalized similarity score is calculated by subtracting the minimum similarity
score given by the BERT model used from both the similarity score in question and
the max similarity score, followed by calculating the ratio between the similarity
score in question and the maximum similarity score possible.

The normalized similarity score replaces the similarity score in Equation 5.1 and
results in a normalized SGCC, which conveys the accuracy of the similarity score
given. SGCC is meant to determine how well a model works, and the calculations
were therefore made between every answer to every question in the exam dataset.
The following formula shows how the SGCC were accumulated:

Accumulated SGCC =

|questions|∑
n=1

|answers|∑
m=1

|comparisons|∑
l=1

SGCCnml
(5.3)

The accumulated SGCC was calculated by adding up all coefficients for the simi-
larity scores between answers for every question.

After the accumulated SGCC is calculated, it is also averaged by dividing by the
amount of coefficients added together. In addition, since three exam datasets from
the web development course were collected, the SGCC was calculated for each of
them and then averaged. The results from these tests are shown in Table 5.1.

Acc. SGCC NorBERT 1 NorBERT 2 NB-BERT-Base NB-SBERT-Base
Natural order 0.17 0.15 0.15 0.14
Normalized 0.16 0.15 0.15 0.13

Table 5.1: Accumulated SGCC for both the natural order of every model and
their normalized variant.

5.2 User tests
In order to judge the legitimacy of TGRT, it needed to be tested on examiners
with a set of previously graded exams from one of their courses. Many examiners
and lecturers were contacted and invited to test the tool. This ended up being the
biggest challenge of the project. During development, it was a struggle to collect
datasets for testing the comparison algorithm, and it would be an even bigger

CHAPTER 5. TESTS 63

struggle to persuade people to test it. The research questions concerned what
model would be the best to use for comparing exam answers, how to display to the
examiner why the model deemed the answers to be similar, and how the examiners
themselves would perceive such a tool. The user tests would in essence test all of
them. If the test subjects disagreed with the recommendations because the answers
differed in content, then the comparison algorithm would have failed at its task. If
the test subjects struggled to understand why the algorithm recommended what
it did, the supporting features implemented would have failed in communicating
the nuances of each answer and their similarity. The overall response of the test
subjects would answer the third research question. Would they find the tool helpful
or insulting in pointing out mistakes in their grading?

The user tests started with an introduction to the project, what had been devel-
oped and how the test would be conducted. Surveys were held both before and
after the main testing of TGRT. The intention of the first survey was to get an
introduction of the user, with their professional information, background on the
exam they were going to use for the test and their experience with AI. An im-
portant part of the survey was to get an impression of their preconceived notions
on how useful they believed the tool could be, to contrast with their perceptions
after the test. The questions were as follows:

1. Who are you and what courses have you graded earlier?

2. From which course are the exam answers that are about to be tested?

3. What do you think of the concept of the product, and does it seem like
something you could use?

4. Do you think this tool is suitable for censoring answers in your field? Are
there any other fields of study where you can imagine it could be of greater
use?

5. Do you have any thoughts about the use of AI in censorship in the school
system?

6. Do you have any experiences with the use of AI in the past?

While one of the researchers held the survey, the other set up the server and
website for the upcoming test. The website was hosted on NTNU’s internet, so
the test subject could navigate to the hosted IP address to connect. The following
assignment was given to the test subject: "Upload the answers and find out if any
of them should have their grades adjusted up or down". The assignment itself
was very simple, but it would test the tool’s capabilities and encompass all the
different aspects of it. Follow-up questions in the survey held after the main test
was concluded would also allow the test subject to elaborate on their experience.
The tests were meant to be very informal, meaning that the test subject discussed
and commented as the test went on. The main purpose of the test was not to
test the capabilities of the user interface and if the system was intuitive on its
own, but rather to test the algorithms’ judgement and ability to convey why it
outputs the results it does. Because of this, the researchers did not shy away
from explaining the interface and helping the test subject understand the layout
if any confusion would occur. During the practical test, one of the researchers

64 CHAPTER 5. TESTS

communicated with the test subject while the other took notes and kept a lookout
on the server status.

The second survey was meant to question their experience of the tool and how it
affected their views on assisted grading. The questions were as follows:

1. What is your immediate reaction after using the product?

2. Was it easy to get an overview of the recommended grade changes?

3. Do you agree with any of the recommended grade changes?

(a) How did you experience discovering discrepancies between the scores of
two answers deemed to be similar?

4. Were there any recommendations you completely disagreed with?

(a) Do you understand why the tool recommended what it did, even if you
did not agree?

(b) Does this lessen your overall impression of the product?

(c) Do you have less faith in what the tool recommends because of this?

5. Which of the supporting features did you find most helpful in understanding
the similarities?

6. Were there any that you did not find very helpful?

7. Are there any supporting features you miss that could make the similarities
easier to understand?

8. Is there anything else you are missing that would have made the process
easier or more useful?

9. Is this a tool you would consider using?

10. Did your perception of the idea of using AI in the censorship process change?

11. Do you see any limitations with this type of tool?

12. Do you have any other feedback?

The tests were designed with the ability to perform them anywhere on NTNU’s
campus (they could also have been performed elsewhere by the means of a Virtual
Private Network (VPN)). The tests were performed physically in the test subjects’
office or office space in roughly an hours’ time.

5.2.1 First user test results

The first user test was conducted with a lecturer from NTNU’s Faculty of Medicine
and Health Sciences. Prior to the test, she had a positive inclination towards
the concept, as she thought it was difficult to be sure whether or not she was
grading her exams fairly throughout the entire examination process. She was
also positively inclined towards the adoption of AI tools in the aiding of exam
grading.

CHAPTER 5. TESTS 65

The execution of the test did not go quite as planned, since an error in the pro-
gram prevented TF-IDF and RAKE terms from being retrieved and displayed.
Thus, the only supporting features she had at her disposal were the OpenAI data.
Nonetheless, she was quite satisfied with the product. She thought that the struc-
turing and displaying of the recommendations were intuitive. Out of the five
recommendations for adjusting the grade made by the product that she examined
in detail, she agreed with three of them. While she did disagree with two of the
recommendations, she said that it was understandable that the AI did not under-
stand all the nuances of the answers, and that this did not diminish her overall
impression of the product. One of the recommendations she disagreed with had a
comparison answer that was overall quite similar, but contained small differences
that made the entire answer better at answering the question. For the second of
the recommendations she disagreed with she did not understand why the answers
were considered to be similar.

As for the supporting features, she found the summaries generated by OpenAI
very useful. However, she did not find the OpenAI-generated themes and key-
words quite as useful. She remarked that the themes tended to just replicate the
main points contained in the assignment text, while the keywords were missing
context, making it difficult to assess whether the text answered the question in a
satisfactory way based on the keywords alone.

She did have a few suggestions for improvements of the product. The main one was
that she thought it would be useful to integrate the sensor’s proposed solution into
the website, so that one could easily compare the students’ answers to this. Also,
when examining a specific comparison answer, she became interested in reading the
comparison answers of that answer. However, she did not find this answer in the
leftmost bar where the answers that are recommended to be regraded are found.
Finally, she remarked that some exam questions have multiple subquestions and
thus multiple answers, and these answers are contained in the same text string.
Having several different answers in the same string could potentially confuse the
AI, as there is no way for the system to discern exactly when one answer ends and
the next begins. She conceded this, and suggested that if TGRT were to be put
to use, the exams would have to be structured differently.

5.2.2 Second user test results

The second user test was performed with a research fellow at NTNU’s Department
of Computer Science. Because of unforeseen problems that occurred during the
execution of the test, it had to be postponed twice, so that it wasn’t until the
third meeting that a proper test was actually done. Before attempting to test
the website, he said that he thought it seemed like a useful tool and that there
are many subconscious biases which might affect an examiner when grading an
exam. He was unsure if his exams were optimal for testing the tool, as 60 %
of them consisted of programming tasks. However, he was interested in seeing
if TGRT could compare and find similarities between different pieces of code.
The exams also contained several questions where the answers were shorter texts,
which would probably be more useful for the purposes of this test, as TGRT was
developed with text in mind. When asked about his opinions on the use of AI in

66 CHAPTER 5. TESTS

the grading of exams, he said that he was positively inclined towards tools that
can make suggestions, but that there should always be a human element behind
the grading.

When starting the test in the first meeting, there were immediate problems in
the back end that prevented any data from being sent back to the client. These
problems were all related to the processing of the JSON file containing the dataset
of exam submissions. The dataset that was tested on included several multiple
choice questions, which meant that when the server was processing the data, it
looked for certain keys in the JSON file that did not exist for those questions.
This lead to an error, and the whole processing stopped. There were several other
issues as well. If a student had submitted a blank exam, their list of questions was
empty, which meant that the server tried to access a non-existent element in the
list. In addition, some unanswered questions consisted of an undefined variable
instead of an empty string, which was problematic because the code only filtered
out answers with empty strings at that time. There were attempts to fix some
of the problems on the spot, but every fixed issue lead to another one arise. The
test subject tried writing a quick script for filtering out the undesirable answers
before sending the data to the server, but to no avail. As the code needed a bigger
rewrite, it was decided to schedule a second test at a later date when the problems
were fixed.

During the second test, no errors occurred when processing the data, and the out-
put from the server was displayed on the website. However, the answers from the
first question were quite strange; they all started with "simpleChoice" followed by
a seemingly random string of characters. It turned out that these were the answers
to a multiple choice question, and that the reason the answers were processed was
that during the grading process the examiner noticed that several of the choices
were correct answers to the question. Thus, they had to go back and manually
grade the answers that were answered correctly by the new standards. This led
to these answers being registered as manually scored, and were thus interpreted
as text answers by the code.

Another issue that occurred was that many of the answers that were displayed
as having been given zero points had not actually been graded at all. It was
previously assumed that when an answer had not received a manual score, it
meant that the answer was graded with a score of zero (which was often the case).
Therefore, TGRT was programmed to automatically assign it with a score of zero.
For some unknown reason, quite a lot of answers had not been given a score by the
examiner, and were thus shown as having zero points. This lead to some confusion,
as there were several instances of pairs of answers with very similar content where
one of them had ten points and the other zero. The test subject remarked that
the answer with zero points deserved to be scored higher, and it seemed that the
product was very good at pointing out errors in the grading process. It was not
until after this had happened a few times that it was discovered that the answers
with zero points had not actually been given zero points at all.

Yet another issue with the dataset was that there often was a mismatch between
the question number in the JSON file and the actual correct question number.
This led to many answers showing up under the wrong question tab, and answers

CHAPTER 5. TESTS 67

to different questions were compared. This is a fault of the dataset and how it is
exported by Inspera. As far as what could be tested despite all the aforementioned
problems, it was evident that the NB-SBERT model was quite adept at finding
similar code answers (as was the case with the comparisons with the ungraded an-
swers described above). The test subject also found a relevant comparison between
an answer that was given 10 points, and another that was given 8 points, where he
remarked that both answers could have been given 10 points. However, because
of all the problems that occurred, it was decided to perform yet another test after
ironing out the new issues that appeared with the dataset processor.

The third and final test went a lot smoother than the first two. The processing
and displaying of data worked without any issues, and there were no instances
of ungraded answers that were automatically given 0 points. However, there still
were several multiple choice questions that had not been filtered out. It is hard to
understand fully why they were retrieved without testing further, but it could be
because of leading white space in the multiple choice answer text, which the dataset
reader did not account for. This time the questions were however correctly sorted
by the question number and were therefore easy to dismiss. The test subject agreed
with some recommendations and disagreed with others. He found several instances
of identical or nearly identical answers to the same question (for a programming
task) where the answers were graded differently.

Because the exam mainly consisted of programming tasks and most of the answers
were quite short, the test subject found limited use in the supporting features. He
found that he could often get a better overview of the answers by skimming them
than by reading the keywords extracted by the TF-IDF, RAKE and OpenAI
components. He did however find the summaries generated by OpenAI somewhat
useful, since they were surprisingly good at conveying the semantic meaning of
the code in the answers. He specified that the summaries should not be trusted
blindly, since they are generative and thus consist of different words and sentences
than the original answers. He also acknowledged that the supporting features
would be more useful for longer answers.

Overall, he found that TGRT was good at pointing out which direction the grades
should be adjusted, but there were a few cases where he thought that one of the
similarly compared answers should be adjusted in the opposite direction instead of
the recommended change. Although he disagreed with several of the recommen-
dations, he understood why the model considered them to be similar. He said that
this did not diminish his overall impression of the product, but that it probably
would if he did not understand how AI models work. He emphasized that if the
product was to be put to use, it should come with a disclaimer that specifies that
this is not an automatic grading tool, and that no recommendations should be
trusted blindly.

When asked about how intuitive he thought the website was, he responded that
most things were well explained and easy to understand except the similarity and
certainty score. It was not clear from the beginning on what the numbers meant,
but he said he gained a better understanding as the test went on. He had several
suggestions for improvement of the user interface, such as navigating between
answers using the arrow keys, and toggling between stacking two answers on top

68 CHAPTER 5. TESTS

of each other and having them side by side. While he acknowledged that he knew
that the tool was not meant to be used for programming tasks, he suggested that
if it was to be expanded for this use, it should include syntax highlighting and
color schemes for code snippets that are either unique or found in both answers.
Overall, he was pleased with the product and stated that it confirmed his view
that AI-assisted grading will become increasingly prominent in the future.

CHAPTER

SIX

DISCUSSION

The proposed TGRT has been tested in primarily two different ways. The simi-
larity algorithm has been tested with several different Norwegian BERT models,
and both this algorithm and the validity of the methods included in TGRT have
been tested with user tests. The tests were held to answer the research questions
introduced in section 1.2:

• RQ1: How can the similarities between exam answers be calcu-
lated?

• RQ2: What features can be extracted for assisting the examiners
in analyzing similar answers?

• RQ3: How will a tool for detecting inconsistencies in grading be
perceived by examiners?

6.1 RQ1 Comparison algorithm
RQ1 has mostly been researched by the similarity algorithm tests. How do the
different models compete when accounting for different aspects of texts that are
found in real answer sets? Will texts of similar lengths tend to be rated similar?
How will spelling mistakes influence the results? How accurately will the models
rank texts with varying degrees of thematic similarity? The results from each
model analyzed with respect to the different aspects will enlighten what model
succeeds above the rest at the given task. The models tested in this manner are
NB-BERT-Base, NB-SBERT-Base, NorBERT 1 and NorBERT 2 as explained in
section 4.1.

6.1.1 Friction dataset

By testing on the friction dataset, many aspects of the comparison algorithm
were tested. The variants made it possible to see how the models interpreted and
compared texts of different length, spelling errors and texts where parts of the

69

70 CHAPTER 6. DISCUSSION

answer were missing. Both the tests use an answer which was answered correctly
and with correct spelling as comparison base.

Looking at the first test results (Figure 5.1), the NB-SBERT model has all the
answers marked as "Good" on top, except for an outlier with one marked "Static"
also listed together with them. The outlier might be an unwanted effect caused by
the limitations of the dataset. In order to test the aspects previously mentioned as
separately as possible, the different answers were made to be literal variants of the
original answer. This means that the static version is just a trimmed down version
of the original answer with the kinetic portions edited out. This means that the
answer marked "Static" with a high similarity score for NB-SBERT contains a lot
of the exact same text as the base answer being compared. This is also one reason
why all the answers except for the irrelevant answers have a high similarity score.
Along with containing information about the same subject, many of the answers
contain the same language and words, meaning they naturally would be close in
similarity score. The tests on this dataset will not display how a comparative tool
calculates the similarity score between answers naturally answered to a question,
but rather show how the different aspects in the variants influence the comparison
algorithm in positive or negative ways.

The next sections will analyze the distribution of the many aspects tested by the
friction dataset. Most of the aspects tested do not necessarily have an expected
outcome that should be met in order for the comparison tool to be accurate. If the
model deems texts that have too much non-relevant information to be not that
similar to an optimal answer, it is not necessarily wrong, but rather enlightens an
aspect of how the algorithm works. The tables show similarity scores for the two
main tests that were performed. The first test had answer "1, Good, normal" as
the base answer to compare to, while the second used "2, Good, normal".

6.1.1.1 Synonyms variant

Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
Test 1 0.97 0.96 0.95 0.94
Test 2 0.98 0.98 0.98 0.96

Table 6.1: Similarity scores of the synonyms variant of the answers labeled
"Good, normal".

In the first test, all the models have the same answer on the top of their list,
namely "1, Good, synonyms". The synonyms variants should be further up the
list as they should contain the same contents as the original text, only written in
other words. The first test uses the answer "1, Good, normal" as base comparative
answer, and naturally has its synonym answer at the top. Further along the list
one can also see that the second answer "2, Good, normal" is often quite similar
in score to its synonyms variant as well. It is not always at the top of the list
compared to the base comparative answer, but that is because the contents of the
second answer is not completely equal to the first. The same will be true for the
synonyms variant of the second answer.

CHAPTER 6. DISCUSSION 71

In the second test the same general distribution is apparent, but the list is inhab-
ited more by other variants in the top sections of the list. When looking at the
scores, however, the same general result is present where the synonyms variant is
ranked close to its normal counterpart.

6.1.1.2 Typos variant

Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
Test 1 0.96 0.90 0.94 0.86
Test 2 0.92 0.85 0.91 0.94

Table 6.2: Similarity scores of the typos variant of the answers labeled "Good,
normal".

For the "typos" variants of the answers, words like "Friksjon" were changed to
"Friskjon", removing the comprehensive meaning of the word. The models are
pre-trained on the Norwegian language and should therefore register two texts
with similar structure, but words spelled differently as dissimilar. The results
show something different, however. The typo variants generally score quite high
in similarity, with the lowest being a 0.85. This would suggest that the models
account for spelling errors and can derive meaning from words by looking at the
context of the sentence as a whole. This would lead to the deprioritization of
including spelling correction as a part of the algorithm, which was something that
was considered early on. This is discussed more in subsection 4.6.3.

6.1.1.3 Long variant

Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
Test 1 0.96 0.93 0.93 0.88
Test 2 0.97 0.96 0.97 0.94

Table 6.3: Similarity scores of the long variant of the answers labeled "Good,
normal".

The long variants generally have a pretty high similarity score. The long variants
are just elongated versions of the original texts and contain all the original words.
The difference is that they have additional examples and complementary details
not really needed to answer the question. The results show that the models extract
the meaning despite all the extra details added and compare quite preferably to
the original.

72 CHAPTER 6. DISCUSSION

6.1.1.4 Short variant

Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
Test 1 0.89 0.77 0.85 0.85
Test 2 0.92 0.86 0.91 0.89

Table 6.4: Similarity scores of the short variant of the answers labeled "Good,
normal".

The results for the shorter answers were a bit more sporadic. The second version of
NorBERT especially struggles to determine the similarity between the original and
the shortened version, but all the models generally rank this variant lower than
the others. The shortened texts are often rewritten from the original answer to
compress it to as few words as possible, meaning the sentence structure is different
from the original answers. The models should examine the context and contents
of the texts, and the results should display an understanding of the material. The
shortened answers are however a bit too short and do not explain the concepts
of friction as well as the other answers. This is reflected in the similarity scores.
The models only had a little drop in similarity scores when extra information was
added in the long variants, but when information was retracted, the results showed
a noticeable drop in similarity.

6.1.1.5 Static and Kinetic variants

Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
Test 1 0.92 0.79 0.91 0.90
Test 2 0.91 0.98 0.98 0.98

Table 6.5: Similarity scores of the static variant of the answers labeled "Good,
normal".

Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
Test 1 0.94 0.92 0.90 0.75
Test 2 0.91 0.84 0.90 0.76

Table 6.6: Similarity scores of the kinetic variant of the answers labeled "Good,
normal".

Similarly to the short variants, the scores of the static and kinetic variants are
preferred to have a noticeable drop in similarity, as they too are trimmed down
versions of the original answer with parts of the answer missing. The results are
however a bit mixed. The results for the kinetic variants shows that NB-SBERT
is able to understand that a good chunk of context is missing, whereas the results
for the static variants show a high similarity across the board for all the models
except the second version of NorBERT. The first test outputs similarity scores
between 0.90 to 0.92 for all models apart from NorBERT 2 which gives 0.79. The
second test is similar with 0.98 in similarity score for all, apart from NorBERT 1

CHAPTER 6. DISCUSSION 73

which gives 0.91. These results could be because of how the answers were written.
The original answer was split into two parts of static and kinetic, with a larger
portion dedicated to explaining static friction than kinetic friction. Because of this,
it makes sense that the tests for static variants outputs high similarity between
itself and the original answer. The kinetic versions have varied results, but lower
similarity scores compared to the static versions.

6.1.2 Irrelevant variant

Answer Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT

1 Test 1 0.78 0.65 0.70 0.37
Test 2 0.74 0.63 0.68 0.30

2 Test 1 0.76 0.65 0.65 0.22
Test 2 0.76 0.61 0.64 0.19

Table 6.7: Similarity scores of the irrelevant variants of the answers labeled
"Good, normal".

The irrelevant variants are the only ones that should definitely be as low in simi-
larity score as possible, since the contents have no correlation to the base answer.
Across the tests, the irrelevant answers were very low on the results list, but
NorBERT 1, NorBERT 2 and NB-BERT-Base still graded them fairly high with
scores between 0.78 and 0.61. NorBERT 2 even ranks a shortened kinetic friction
answer as lower than both irrelevant answers, but NorBERT 1 stands out for rank-
ing the irrelevant answers highest when examining similarity scores. NB-SBERT
is the only one that outputs significantly lower scores, which conveys that the
texts are mostly dissimilar, with scores between 0.37 and 0.19.

6.1.3 Good variants

Answer Test NorBERT 1 NorBERT 2 NB-BERT NB-SBERT

1 Test 1 - - - -
Test 2 0.92 0.89 0.90 0.88

2 Test 1 0.92 0.89 0.90 0.88
Test 2 - - - -

3 Test 1 0.93 0.86 0.94 0.91
Test 2 0.90 0.84 0.90 0.87

4 Test 1 0.89 0.78 0.91 0.86
Test 2 0.89 0.82 0.91 0.85

Table 6.8: Similarity scores of good normal variants to the answers labeled
"Good, normal". (Test 1 for answer 1 and test 2 for answer 2 were removed, as
the answers were compared to themselves, which would have been 1.0)

The variants marked "Good, normal" are supposed to be well written and answer
the question most accurately. Because of this, they should preferably have a high
similarity score compared to many of the other variants. The resulting similarity

74 CHAPTER 6. DISCUSSION

scores are however a bit mixed. Ranging from 0.78 to 0.94, the results are not
exemplary, with many other variants ranked above them. This might be caused
by the other variants often containing many similar words and using a similar
sentence structure to the compared answer, while the other good normal answers
are answered independently of each other.

The tests on the friction dataset were not mainly meant to test the capabilities of
the comparison algorithm to compare similar texts, but rather to test and analyze
how the algorithm ranks different aspects like length of text, synonyms and spelling
mistakes. The four answers that answered the question well were quite different
and did not strive to be similar to each other. They were written to answer the
question properly, but there are many ways to answer a question well. As will be
discussed in subsection 4.6.1, to get a good graded score, you do not need to write
the exact same content. This is possibly why the results for the good answers are
as indecisive.

Looking at the category "Good, normal", no decisive trends were found, but when
looking at the variants marked as "Good" in contrast to "Kinetic" and "Static",
there is somewhat of a pattern. As seen in Figure 5.1 NorBERT, NorBERT 2
and NB-BERT-Base, the answers marked as "Good" with all of their variants
have a tendency to float to the top of the list, but sporadically spread further
down as well. NB-SBERT on the other hand, has all answers marked as "Good"
concentrated at the top of their list. On the second test, NB-SBERT has the
good answers more spread, but are generally further up than down. In this case,
NorBERT version 1 and NB-BERT-Base have a more concentrated section of the
good variants further up the list.

6.1.4 Tarantino dataset

The Tarantino dataset was created for the purpose of finding out how good the
different BERT variants were at finding similarities between texts with a somewhat
wider thematic range than the friction dataset. As explained in subsection 4.2.2,
each text contained a short description of two Quentin Tarantino films (out of a
pool of four specific films), with three texts for each specific combination of two
films. Ideally, when comparing a text with all the others, the two texts that have
the highest similarity score should be the two other texts in the dataset containing
descriptions of the same two films.

The results of comparing the text "IB & DU 1" (short for Inglourious Basterds
and Django Unchained) using all four BERT variants can be seen in Figure 5.3.
Ideally, "IB & DU 2" and "IB & DU 3" should be ranked the highest. As can
be seen from the table, the model that ranks these two answer the highest is NB-
SBERT by a large margin (second and third place). All the other models rank "IB
& DU 2" well within the lower half of their list, while "IB & DU 3" ranges from
being ranked third (NB-BERT-BASE) and eighth (NorBERT 1). Interestingly,
every model ranks the same text as number one, namely "IB & RD 1" (short for
Inglourious Basterds and Reservoir Dogs), which is most likely because of similar
descriptions of Inglourious Basterds contained in both texts.

As mentioned in subsection 4.2.2, a dataset that was identical to the original

CHAPTER 6. DISCUSSION 75

Tarantino dataset was created, except that all instances of the films’ names were
replaced. This was supposed to challenge the models by making it harder for them
to distinguish between the different descriptions. As can be seen in Figure 5.4, this
actually caused NorBERT 1 and NorBERT 2 to rank the relevant texts slightly
higher than they did when the names were present, whereas NB-BERT-BASE
ranked "IB & DU 2" one place lower than before, and NB-SBERT ranked the two
relevant texts the same as with the names present. All the models ranked "IB &
RD 1" the highest in this instance as well, with the exact same similarity scores
as those in Figure 5.3. The reason for the similarity scores being the same in the
two cases is that neither of the texts ("IB & DU 1" and "IB & RD 1") actually
use the films’ titles at all in the original dataset, so there was no difference when
comparing the two versions of the text. As for why "IB & RD 1" is ranked higher
than the two texts that are actually more similar to "IB & DU 1" in its themes
("IB & DU 2" and "IB & DU 3"), that is rather difficult to assess. Because of the
"black box" nature of the models it is hard to say for certain what makes all of
them consider these two answers to be the most similar, and by just reading the
answers on their own it was hard to find any obvious similarities.

Figure 5.5 and Figure 5.6 display the results when comparing "IB & PF 3" to
every other text, the former containing film titles, and the latter without. When
using film titles, NorBERT 1 ranks the relevant texts the highest of all the models
(second and third), while NB-SBERT is just below (third and fourth). Without
film titles, NB-SBERT has the same ranking, whereas NorBERT 1’s ranking of
the two texts drops to fifth and sixth place. NorBERT 2 and NB-BERT-BASE
performed a lot worse than the other two models in these tests.

Table 6.9 contains an overview of the rankings of the relevant texts for every model
and every test, as well as the average ranking for every model. NB-SBERT’s
average ranking of relevant answers is 3, which is significantly better than the
model with the second highest average ranking, which is NorBERT 1 with 6.

Base Compared NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
IB &
DU 1

IB & DU 2 12 14 14 3
IB & DU 3 8 6 3 2

IB &
DU 1

IB & DU 2 7 12 15 3
IB & DU 3 5 6 3 2

IB &
PF 3

IB & PF 1 2 9 10 3
IB & PF 2 3 3 5 4

IB &
PF 3

IB & PF 1 6 10 14 3
IB & PF 2 5 3 7 4

Average ranking 6 7.88 8.88 3

Table 6.9: Rankings of the two most relevant texts by each model.

Another way to evaluate the results is to look at how the different models rank the
texts that thematically have the least in common with the text being compared.
For the first test, this would be the "RD & PF" texts, and for the second test,
this would be "RD & DU". Ideally, these texts would be ranked the lowest for
"IB & DU" and "IB & PF", respectively, since they describe entirely different

76 CHAPTER 6. DISCUSSION

films than those. The average rankings of the least relevant texts for each model
in Figure 5.3 were calculated, and it was found that NB-BERT-BASE and NB-
SBERT gave them the same average ranking of 11.33, compared to NorBERT
1’s average of 7.66 and NorBERT 2’s average of 8.33. A table containing these
rankings, as well as the corresponding ones for the other three tests can be seen
in Table 6.10. Here it is apparent that NB-SBERT gives a lower overall average
ranking to the least thematically similar texts across all four test, implying that it
is better at discarding the least similar texts. NB-BERT-BASE is also very close
with an overall average ranking of 12.41 compared to NB-SBERT’s 12.83.

Answer Dataset NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
RD & PF With titles 7.66 8.33 11.33 11.33
RD & PF Without titles 6.66 9.66 10.66 11
RD & DU With titles 13.66 13.66 14.33 14.66
RD & DU Without titles 13.33 11.66 13.33 14.33
Overall average ranking 10.33 10.83 12.41 12.83

Table 6.10: Average rankings of all answers with the least thematic similarity to
the text being compared.

By analyzing how good the models are at ranking the relevant texts compared
to the less relevant text, it becomes apparent how adept they are at retrieving as
little irrelevant data as possible. However, there will always be a threshold for how
high the similarity score between a pair of texts has to be in order for the texts
to be considered sufficiently similar. In TGRT, this threshold was set to be 0.92.
As can be seen from the above cited figures, NB-SBERT gives consistently lower
similarity scores than the other models, with its highest score being 0.83 and its
lowest score being 0.52. All the other models range between 0.95 as the highest
score and 0.76 as the lowest score. This means that if the Tarantino dataset were
to be used on TGRT with NB-SBERT as the model, none of the pairs from these
tests would be displayed. All the other models except NorBERT 2 would return
at least some pairs with a similarity score above 0.92.

In the tests for the friction dataset, however (subsection 6.1.1), NB-SBERT gave
the highest ranked texts similarity scores more in line with the other models.
Several of the texts were given similarity scores over 0.90. This makes sense when
you consider that the texts being compared in those tests by and large were a lot
more similar to each other than the texts in the Tarantino dataset. The former
texts consisted of different variations of mostly two distinct base texts, while the
latter consisted of texts that were all distinctly formulated and structured.

From all tests of the Tarantino dataset shown above, it is clear that NB-SBERT
has the highest range in terms of similarity scores. Its highest range between the
top and bottom rankings is 0.29 and its average range across all four tests is 0.24,
compared to NB-BERT-BASE’s highest range of 0.13 (which is the highest out
of all the other three models across all four tests). The fact that NB-SBERT
has a higher range of similarity scores indicates that it is better at distinguishing
between the different texts.

CHAPTER 6. DISCUSSION 77

6.1.5 Tarantino dataset with single entries

The tests for the datasets with one movie description per entry had a very clear ten-
dency in the results. In both the rankings displayed in Figure 5.7 and Figure 5.8,
NB-SBERT is clearly the better option. Both tests show that the descriptions for
the same movie are ranked together at the top of the list. This is a general pattern
for the other models as well, but there seems to always be one or two descriptions
that the models struggle to understand. Both "DU 1" and "IB 1" are quite short
and leave out many details from the plot. In the second test, "DU 1" is further
down the list, but still barely in the top half of it, but in the first test, "IB 1" is
almost at the bottom of the rankings for all models except for NB-SBERT.

Answer NorBERT 1 NorBERT 2 NB-BERT NB-SBERT
IB 1 0.82 0.69 0.75 0.70
IB 3 0.95 0.90 0.91 0.87
IB 4 0.88 0.80 0.81 0.79
IB 5 0.94 0.90 0.90 0.92
IB 6 0.94 0.92 0.92 0.91
IB 7 0.91 0.80 0.89 0.80
IB 8 0.94 0.87 0.91 0.84
IB 9 0.93 0.87 0.90 0.87

Average 0.91375 0.84375 0.87375 0.8375

Table 6.11: Similarity scores for the same movie as the one compared to ("IB
2").

NB-SBERT understands that the descriptions labeled with the same movie con-
cern the same plot. This is also evident by the similarity score. When only looking
at the similarity scores for the similarly labeled entries that should be at the top
(Table 6.11), there is no big difference between the models. NorBERT 1 even
has a higher average ranking for the entries, and NB-SBERT has the lowest av-
erage similarity score. However, when looking at all the descriptions ranked in
Figure 5.7 the impression changes. NorBERT 1 generally gives a higher similarity
score to all the entries, with the lowest being 0.81, and all the models except for
NB-SBERT struggle to differentiate between the descriptions for different movies.
The relevant entries are generally at the top, but the differences in score between
them and the non-relevant entries are not substantial. NB-BERT-Base has given
"IB 7" 0.91 and "PF 3" 0.90 with only 0.01 in score difference. NorBERT 2 and
NB-BERT-Base both have a drop of 0.06 from the clustered section of relevant
entries and the rest. In addition, NorBERT 1, NorBERT 2 and NB-BERT-Base
have single relevant entries spread further down the rankings. NB-SBERT on the
other hand, has a noticeable drop in similarity score quality with a decrease of 0.17
from "IB 1" to "PF 1". All the entries that describe movies other than Inglourious
Basterds are given similarity scores with 0.17 or more in difference to the entries
labeled "IB".

This is a pattern that repeats when comparing to all the movie descriptions.
Although NB-SBERT in some cases does not have a clustered section at the top

78 CHAPTER 6. DISCUSSION

containing all the relevant entries, it always performs better than the other models
in differentiating the relevant and non-relevant entries.

6.1.6 Web development dataset

The web development dataset was important in development as test data that
would function as an example of data that TGRT could actually receive in a
practical setting. It would also enable tests of the comparison algorithm that
measured the accuracy of the system by comparing the similarity scores to the
graded scores. If the similarity scores were high when two answers had a similar
grade, it can be counted as a positive towards the model. The accumulated SGCC
was calculated to measure this for each model (displayed in Table 5.1). The
higher the SGCC, the better the system is performing according to the graded
scores.

The results were very similar across the models, with a range of 0.14 - 0.17 for
the natural order and 0.13 - 0.16 with normalized similarity scores. According to
the results, NorBERT 1 stands out from the rest in both tests, NorBERT 2 and
NB-BERT-Base were in the middle with the exact same score for both natural
order and normalized, while NB-SBERT has the lower coefficients. The results
should not be trusted as a definite measurement of how well the models work,
however.

SGCC measures how accurately the similarity scores match the graded scores from
the examiner. This ties in with the main purpose of TGRT, which is to find errors
in the graded scores. The SGCC can be completely wrong if the graded scores
have many errors. This does not necessarily mean that the dataset used includes
many errors, but there could be a small amount of errors that skew the results
from this test. In addition to this, the calculations of SGCC do not take into
account the problems described in subsection 4.6.1, namely that a similar grade
does not necessarily mean the content of the answer is the same. Answers can
contain different aspects of what is being asked in a question and receive the same
points for it even though they have little in common content-wise. Because of these
problems, and the fact that the SGCC’s are close to equal across the models, this
test was not considered as important in the decision of the comparison model.

6.1.7 Deciding on a model

By analyzing the tests described above, it was possible to discern how the models
differed from each other and what strengths and weaknesses they had. Thus, a
firm basis for deciding which particular model to implement in the project was
established. From the discussion provided in this section, it is clear that NB-
SBERT stands out in several ways. From the tests on the friction dataset, it
was apparent that it tended to rank the texts labeled "Good, normal" higher than
NorBERT 1 and NorBERT 2, and about as equally high as NB-BERT-BASE. This
is positive because these texts are all semantically similar, but have a different
structure and sentences. This thesis is concerned with detecting texts that convey
the same meaning, but not necessarily with the same sentences.

NB-SBERT gave very low similarity scores for the texts in the friction dataset

CHAPTER 6. DISCUSSION 79

that were totally irrelevant. For the Tarantino datasets with dual descriptions,
NB-SBERT both ranked the least relevant texts lower on average and gave them
lower similarity score than the other models, although NB-BERT-BASE was very
close in this regard. NB-SBERT gives a much higher range of similarity scores
overall, implying a better ability to differentiate the texts from each other.

When it comes to ranking the most relevant texts, NB-SBERT stood out dramati-
cally from the other models when testing the Tarantino datasets. For the datasets
with dual descriptions, the average ranking of relevant answers for NB-SBERT
was 3, compared to NorBERT 1’s 6, which had the second highest ranking. This
implies that it is better at finding texts with high semantic similarity. The tests
for single movie descriptions also reveal that NB-SBERT excels by ranking most
of the relevant entries on top of their list across all tests.

Another aspect which stood out in NB-SBERT’s favor was that for the friction
dataset, the texts with the "kinetic" label (i.e. those texts that described kinetic
energy and not static) received markedly lower similarity scores than those given
to the same texts by the other models. In other words, it was better than the
other models at noticing that a significant portion of the content was missing.
One thing that does not reflect as well on NB-SBERT is that it gave significantly
lower similarity scores for the Tarantino dataset, with none of them exceeding the
current threshold of 0.92. However, this might not be a problem, as the texts only
had the same theme, and not necessarily similar content, which would be enough
for TGRT to give a warning. Because of all the advantages of NB-SBERT, it was
chosen as the model to compare answers.

6.1.8 Comparison algorithm in user tests

Before the user tests were conducted, it was already decided on which model to
use based on the performance of the similarity algorithm tests. The user tests
can therefore work as a validation for the chosen model. The results could not
be matched against results using other models, as only the one model was used
for the tests, but the examiners’ approval could verify if the chosen model was
adequate for the purpose of this project.

During the first test, the test subject examined five recommendations. Three of
them she agreed with, which could be counted as positives towards the compari-
son algorithm. For the first of the remaining recommendations, she both disagreed
with it and did not understand why the machine would deem them to be similar.
If anyone could understand why the two answers were considered similar based on
subject matter, it would be an expert in the field. Her not knowing why the rec-
ommendation was made can only be read as the algorithm having made a mistake.
Exactly why the recommendation was made is hard to know because of the black
box nature of transformers. For the other recommendation she disagreed with, she
understood why the machine recommended as it did, as there was only a difference
in the level of details that made one answer better than the other. Differences like
this are hard to grasp by transformers, as they condense the meaning of the text
into embeddings. Details that do not change the core meaning of the text can get
lost. This is part of the reason the tool is meant as a supplementary tool and not
as an automatic grader.

80 CHAPTER 6. DISCUSSION

During the second test, the test subject found both some recommendations he
disagreed with and some he agreed with. As mentioned in section 5.2, most of
the questions on the exam being tested were programming tasks. Because of the
nature of programming, there were several cases where answers that were very
syntactically similar (and were thus considered to be similar by the algorithm)
would produce very different results if the code was to be executed. A very simple
change in one line of code could cause the entire program to stop working, meaning
that two very similar answers could be given very different scores. This is different
from normal text answers, where a slight change in one sentence is unlikely to
change the meaning of the entire answer. Because of this distinction, normal text
answers are more appropriate for the purposes of the tool. It also does not help
that the BERT model is trained on a Norwegian corpus and is not trained to
understand code.

Despite these false positives, there were several instances where TGRT recom-
mended grade adjustments for programming tasks that the test subject agreed
with. There were in fact several cases of nearly identical code snippets producing
the same output that were identified as similar by the tool, where each answer
had been graded differently. This is exactly the kind of situation that TGRT is
meant to uncover, and it indicates that a tool for uncovering grade discrepan-
cies between similar coding answers is feasible. Exploring the programming angle
more thoroughly is however outside the scope of this project. Even still, despite
the shortcomings associated with using the tool for programming tasks, the test
subject stated that he found it useful and would have liked to use it in the grading
process.

6.2 RQ2 Supporting features

In order to explain to the examiner why answers were given a high similarity score,
features from each text needed to be generated and displayed. In this thesis, sup-
porting features have been selected, and tested by experienced examiners. Are
the features helpful in any way? In most cases, the examiner using TGRT has
graded the submissions and therefore has previous knowledge of the contents. The
supporting features are supposed to give a quick overview of the two compared
answers. In this regard, the features should optimally save time for the examiner,
as they should not need to read the entire answer again. The time saved increases
the longer the text answers submitted are. The supporting features should also
give the examiner a quick way of comparing the answers with more data than
the similarity score alone. Ultimately, the supporting features should decrease
time investment needed to both get an overview of the content and make it eas-
ier to compare the answers. These were the two main considerations examined
during the user tests. The selected features implemented were unique terms from
TF-IDF and RAKE along with generated summaries, themes and keywords from
the OpenAI API.

CHAPTER 6. DISCUSSION 81

6.2.1 First user test

Before the first test, a session was held where all warnings produced by the code
were fixed. In the process of this, a conditional statement in the code for the
supporting features TF-IDF and RAKE broke and resulted in those features not
being displayed on the website. This was an easily avoidable mistake that should
have been caught in testing right before the test, but even without TF-IDF and
RAKE the test turned out to be successful. The test subject was very engaged
and eager to try out the tool, and gave helpful feedback of her experience.

As TF-IDF and RAKE were unavailable for this test, the test subject could only
comment on the supporting features from OpenAI. The summaries were helpful
in that she could read them faster than scanning through the entire text answer,
which was the main point of the supporting features. Interestingly, she found the
keywords and themes less useful. As she comments, the theme for the answers
often turn out to be a compacted version of the question in the exam. The key-
words lacked context from her perspective and were therefore not useful, TF-IDF
and RAKE would most likely also would not be as useful to her. The missing
TF-IDF terms are core terms that are present in both answers. They also lack
context, just like the keywords from OpenAI. RAKE could have been more useful,
as it often contains more than just one word, with it extracting the most unique
sequence of words. This is only speculation, as the extractive supporting features
were not available for testing.

Both in the first test and the second, the test subjects have found instances where
instead of the answer recommended for regrading, they found the answer it is
compared to as worthy of changing. The user has in several cases then skimmed
through the list of recommendations and in most cases not found it present there.
It is missing because of how TGRT sorts and limits the list of recommendations,
as explained in section 4.4. The reason for this decision was to not overwhelm
the user by giving a disproportionately long list, and also not muddy TGRT’s
credibility by giving too many recommendations with too low similarity and few
comparisons. The initial thoughts of the test subjects have been that the answers
compared are assumed to be in the recommendations list. This could be subject
to change in order to give the user enough of an overview of all the answers, while
still marking them as not recommended to regrade.

Several sub-answers to sub-questions is a problem worthy of discussion. The sub-
answers could be inputted into one or several input boxes during the exam. To
support the case of several questions answered in only one box would be a big
expansion to TGRT. To understand the structure of the answer, a separate ana-
lyzer built on AI could read it and grasp if it contains several answers based on
markings like "a, b, c..." or "i, ii, iii...", but this is beyond this project’s scope.
The dataset reader does however combine sub-answers inputted into several text
boxes into one text. To rather read these as separate answers is an expansion that
is very attainable, but would either have needed a bit of a redesign of the website
structure or letting the sub-questions have their own tab on the questions bar at
the top of the page.

Another suggestion she had was to let the examiner compare the answers to a

82 CHAPTER 6. DISCUSSION

proposed solution to the exam. This means running the proposed solution through
the model and comparing them to the submitted answers. It is not clear whether
this is a good suggestion. The purpose of TGRT is to compare the contents of
the answers and make notice if the content is similar and grades are not. If the
proposed solution to the exam is included as a document in the algorithm, it would
only serve the purpose to set the bar of the top graded answers. If answers have a
high similarity score to the proposed solution, they might deserve the maximum
score. In other situations, when examining less similar answers, it is less clear
how useful this approach would be. It might be more helpful to the examiner to
keep the proposed solution on their side while examining the results to manually
compare the answers.

6.2.2 Second user test

All the supporting features were available for the second user test. As mentioned
in section 5.2, the test subject stated that he found little use in the TF-IDF and
RAKE terms, as well as the themes and keywords generated by OpenAI. This had
a lot to do with the fact that the exam consisted mostly of programming tasks,
where there is little to be gained by looking at words or lines of code in isolation.
One might also expect that an AI-generated summary of a code snippet would
not prove to be useful, but the test subject was surprised to see that the OpenAI-
generated summaries were quite adept at describing what the code did. He did
however emphasize that such summaries should not be trusted unconditionally,
and that he needed to read the answers themselves in order to judge whether or
not a grade adjustment was needed.

The test subject suggested a couple of new features that could be implemented in a
tool that was targeted specifically towards programming tasks. These were syntax
highlighting and color schemes for diffing between two answers. The former is a
good idea, since it greatly increases the readability of the code, making it simpler
to find the part of the code that is relevant and allowing for the discovery of syntax
errors. Color schemes for diffing also seems like a useful feature, as it would allow
the examiner to see which parts of the answers that are identical and which parts
are different. This will make it even easier for the examiner to focus on the relevant
parts of the answers, which will further speed up the process. While these are all
useful features for a tool aimed at programming exams, this is well beyond the
scope of this project.

6.3 RQ3 User perception

The third research question relates to how users perceive the innovative methods
proposed by this thesis. Are examiners open to the idea of an AI quality-checking
their work? And even if an examiner is positive to the concept, how will they
experience it when the tool finds a mistake in their grading? It is important that
the examiner, being the target user, is positive to the tool. Will they find it
helpful in the grading process? The only way to test this was with practical user
tests.

CHAPTER 6. DISCUSSION 83

6.3.1 First user test

The test subject was initially positive to the concept of AI assisted exam grading.
She had experienced on a first-hand basis how hard it is to stay objective and
grade the submissions on a level playing field. Factors like time of day, day of
the week, how well-fed she was, or other personal reasons could very easily affect
how she scored the answers. She could for instance grade harsher based on small
mistakes after a long session of grading many submissions than she would at the
start of the session. This was of course a tendency she fought, and she would try
to stop herself from being biased by factors that should not influence the grading
process. She was very open to the idea of tools for supporting the grading process
with the help of AI being put to use. Students could use AI tools to gain an
advantage, and it was only natural that the examiners could also have a beneficial
relationship with AI technology.

She found the test to be interesting and found TGRT intuitive and simple to use.
As stated in section 5.2, the researchers gave an introduction to how the structure
of the website worked and gave clarifications along the way to help the test subject
understand how to test the methods most optimally, as the intuitiveness of the
website was not under scrutiny. Regardless of explanations in advance, she found
the recommendations well-structured and said it was easy to get an overview of
the data.

The test unearthed a few answers that were recommended for a different grade
than initially given, which she agreed with. She commented that she did not find
the experience degrading, nor did she experience any other negative feelings. She
saw it as human to make mistakes, and only found it interesting that the methods
uncovered them. TGRT made a few mistakes as well. She understood how the
algorithm was unable to understand the finer details of the content in one of the
cases, but not in the other. She did not find this disconcerting, nor did it sour the
overall impression of TGRT. It was understandable that the AI could not pick up
on every detail, which is a reason as to why the methods are only meant to assist
in the grading process and not to automatically adjust the grades.

In hindsight, the test subject might have not fully understood the setup and struc-
ture of the recommendations. She mostly looked at one of the comparisons given
to the recommended changed answer and made conclusions based on that alone.
There could have been more clarity in the explanation of the website and the flow
of the process. The comparisons are there to substantiate the recommendation,
and if only the top one is examined the recommendation could still be very valid,
but it might be missing some support in order to be deemed valid.

6.3.2 Second user test

Prior to the test, the test subject had a positive inclination towards the use of
AI in assisting exam grading and liked the concept of TGRT. He was concerned
with how unconscious biases might affect how exams are graded, and was acutely
aware of the need that TGRT was made to fulfill. This is similar to what the
first test subject stated and concerns how the examiner as a human is affected by
external factors. He was very excited to examine how potent and accurate the

84 CHAPTER 6. DISCUSSION

recommendations would be.

The test subject was very open to tools that can suggest changes and give helpful
tips on things that can be improved along the grading process, but stressed that
there needs to be a human element behind the grading. He had earlier attempted
to let AI tools answer exam questions to test out their functionality. The tools
were great at answering shorter concise questions, but when the questions became
more complex, the AI struggled to answer within the correct context. If AI is
to be used in any way in the grading process, a human must oversee the work
performed.

As the exam set had been graded by other examiners, the test subject’s reactions
to uncovering grade discrepancies for similar answers were not as strong as they
might have been if he had graded them. Nonetheless, he found it quite concerning
to discover these discrepancies, though he did not find it surprising. He appre-
ciated that TGRT suggested either an increase or decrease in graded score. The
indication for a change in grade was helpful, even when he concluded that it was
one of the answers compared to the recommended answer that should be graded
differently, and not the recommended answer itself.

Many of the questions were programming tasks, which meant that answers con-
tained only a program without any normal sentences or other context. The test
subject blames this fact for some of the mistakes TGRT made in comparing an-
swers. Without the context of what the programs are meant to do, it is hard for
the algorithm to understand what is a well written answer and not. One question
asked for what the output of a program would be, and specifically the outputted
order of a list of words. It is very unlikely that TGRT can compare these answers
justly, as it often dismisses the order of sentences and rather looks at the text as
a whole. Regardless, the test subject was impressed at how well the comparison
worked without context.

The recommendations the test subject disagreed with did not diminish his impres-
sion of TGRT, nor did it lessen the trust he had in the recommendations. This
was because he did not have absolute faith in the recommendations to begin with.
He emphasized the importance of the tool as a supportive measure in grading. If
TGRT was meant as an automatic grader, an absolute trust in each recommenda-
tion would have been a lot more necessary. He was however aware from the start
that this process would only measure discrepancies in the graded scores for an-
swers with similar content and suggest changes based on them. The discrepancies
that were discovered were noteworthy, and he emphasized that TGRT was great
at extracting issues that needed to be examined. He did however also mention
that if he had been an arbitrary examiner without his technical background, he
would probably be more disheartened by the errors. A final product would benefit
from a disclaimer stating that the recommendations are not inherently the correct
solution, but only an indicator for a possible discrepancy that requires further
examination.

The test subject was already convinced that AI-assisted grading would be the
future of the grading process, and did not change his opinion during the test. He
stated that it was great to see that AI could assist in this manner, and thatTGRT

CHAPTER 6. DISCUSSION 85

is a tool he would have liked to use when grading exams.

CHAPTER

SEVEN

CONCLUSIONS

7.1 Summary
This thesis has proposed methods for aiding examiners in the grading process. The
methods have been compacted into a tool that uses an algorithm for comparing
all the exam answers’ contents to each other. If any answer has content similar
to multiple answers in a higher or lower grade level, the tool would warn the
examiner about this. The application was structured with a server that calculated
the similarities and a client that displayed the findings to the user. It was tested
by two examiners using previously graded exams. The three research questions
presented in the introduction were:

• RQ1: How can the similarities between exam answers be calcu-
lated?

• RQ2: What features can be extracted for assisting the examiners
in analyzing similar answers?

• RQ3: How will a tool for detecting inconsistencies in grading be
perceived by examiners?

The chosen method of comparing the answers was to use BERT and to test differ-
ent models that were pre-trained on Norwegian corpora. As discussed in subsec-
tion 6.1.7, the model that stood out the most with regard to accurately comparing
the texts was NB-SBERT. The absence of predetermined similarity between an-
swers in the datasets made it hard to determine which model compared them most
accurately. However, a conclusion could still be reached after performing the tests
described in section 5.1. These tests examined specific aspects like length and
spelling mistakes, calculated similarity to answers that had the same grade, and
calculated similarity between answers with the same theme or parts of the same
theme. The results showed that the NB-SBERT model stood out from the rest of
the selection of models. NB-SBERT was therefore used as the selected model for
the user tests, and it performed well enough that the test subjects found several
mistakes in their own grading. How well the other models might have fared in the

86

CHAPTER 7. CONCLUSIONS 87

same user tests is difficult to ascertain, but as the calculation method gave recom-
mendations the test subjects agreed with, it can be concluded to work adequately
for this thesis’ purpose.

It was harder to conclude on the assistive properties of the supporting comparative
features that were implemented. Their purpose was to make it easier for the exam-
iner to know how the answers differ from and resemble each other without having
to examine the full texts again. The user tests demonstrated that the supporting
features had varying amounts of usefulness. The tests were not conclusive with
regard to supportive features, as technical problems occurred, and they were not
really helpful in examining code. The test subjects still agreed on the supporting
features’ value to the process, especially the summaries generated by OpenAI, as
they helped to gain an overview of the answers quickly. Overall, the tool managed
to successfully uncover mistakes that were made, but the time investment needed
was greater than hoped. Optimizations and better ways of giving the examiner
an overview quicker could be researched further.

With hardships in gathering examiners for testing the innovative methods imple-
mented, the perception of examiners is not fully tested. The two tests conducted
were held with examiners that were already positive to the idea of AI-assisted
grading. The tests did not dissuade them from that view, even if TGRT made
some mistakes the test subjects did not agree with. They were aware of the con-
cept behind TGRT of extracting compared answers with a discrepancy in grades
for answers with similar content. The user interface might indicate a bit too
boldly that the recommendations given are correct, and should be marked with a
disclaimer saying the recommendations are only indicators letting the user know
there is something worth examining. The test subjects did not experience the
process of finding errors in their grading as degrading or humiliating, but rather
found it interesting and concerning that mistakes slipped through the system.
They were both positively inclined to using the methods implemented in TGRT
to aid them in the grading process.

7.2 Further work

There are many expansions to this project that could enhance the tool, which
were deemed unfeasible for this thesis. As the comparison method was designed to
work as broadly as possible, the model was not trained any further than what was
already pre-trained on the base model. In theory, the models should understand
the subject matter better if it is pre-trained on the subject in question. It is even
possible to split the model into separate models that are each trained on different
general subjects. Because there already was a very specific set of prerequisites
necessary for the exams to work with the tool, leading to a considerably condensed
user group to test on, it was undesirable to condense it any further by only focusing
on a single subject.

In the same vein, the model could reward the use of certain terms and words per
question, as was done in the study conducted by Bahel and Thomas [36]. This way,
the similarity score between two answers could be boosted if they both contained
the same key term. This would of course need to be researched further and fine-

88 CHAPTER 7. CONCLUSIONS

tuned to not only reward the student by mentioning the term, but to make sure
the term is explained and understood in context.

This ties into another functionality that could expand the product. To understand
what the student means by specific terms, it is possible to use opinion mining and
sentiment analysis (as described in section 2.2). This entails extracting the writer’s
opinion of the subject matter, often to tell if it is negatively or positively skewed.
The possibility of including this in the project was not fully explored because
the need for it is not immediately evident. Most exams have little subjective
and opinion based answers, but strive to be objective and fact based. It might
however be useful to analyze the motivation behind key terms, or the opinions in
the text could be interesting in edge cases where the student is supposed to be
more subjective.

A way to expand the target group and have the tool be useful to more people
would be to also account for the English language. Many of the examiners that
were contacted who responded positively had to turn the offer of testing down
because all their exams were held in English. A little under half of courses taught
at NTNU are taught in English [60]. It was decided to focus on the Norwegian
language and using Norwegian models to measure textual similarity because it is
not researched nearly as much as the English models and would pose an interesting
challenge for the thesis. A possible problem with exams held in English is that
the submissions are not always written in English. Some students may choose
to submit their answers in Norwegian, which would complicate the comparison
with other students. Aside from the added process of detecting what language
an answer is written in, many problems rise that need more research and testing.
Should the dataset be split into an English set and a Norwegian set? Should one
of them be translated? Maybe the BERT models can compare across languages?
Whatever the solutions to these problems are, if the tool was to be developed
further, support for English exams should be a high priority.

One of the other reasons why examiners turned down the test was because their
exams were held either physically or were submitted as files in other formats
like PDF. The first two datasets collected were in PDF format and needed to
be manually formatted to work with TGRT. To create a dataset reader to be
compatible with every conceivable way an exam could be structured would be
close to impossible. It should however be possible to create an AI program that
scans the file and extracts only the answer the student has written and excludes all
the other data like page number and question text. In the same way, AI is capable
of understanding handwritten text and converting it into digital text. The problem
with these methods is that there is no guarantee that the conversion to digitally
formatted text is absolutely correct. The AI program could misinterpret a word
and completely change the meaning of the answer, which would be problematic
in the school system. There should be no possibility of distorting the work of
students to harm their grades.

A final thing that would improve the experience of the examiners would be to
integrate a tool like TGRT into Inspera. If an examiner wants to use TGRT they
first need to grade the exams in Inspera, then request a JSON file from the de-
partment administration, upload the file to TGRT, consider the recommendations

CHAPTER 7. CONCLUSIONS 89

made and decide on whether to regrade the answers, and go back to Inspera and
change the grades. This is a cumbersome process that could easily be simplified
by integrating it into Inspera. Then the examiner would not have to worry about
obtaining and handling any files, and they would not have to access any external
websites. There could simply be a button in Inspera to be pressed after giving the
initial grades, which would start the calculations and lead to a new page where
the recommendations for regrading would be displayed. Here the grades could be
changed directly, as opposed to having to keep track of which answers from which
exams need to be regraded. All of this would lead to a much more seamless user
experience, but this is well beyond the scope of this project.

7.3 Limitations

There are several aspects that prevented this project from reaching its full po-
tential. In some regards, this is because of the design decisions that were made,
but also because of the nature of the project and limited time and resources. A
core intention behind the methods implemented was to design them to be as in-
clusive as possible. This meant that the methods should not be optimized to fit
exams for specific courses, for instance. TGRT was not designed in order to please
one demographic while discouraging others. There are several reasons why this
decision was made. The main reason was to keep the target group eligible for
testing and dataset applicants as large as possible. Another reason was to show
that the methods work on a large scale and not just single branches of academia.
The implementation is meant as a prototype to prove that the concept works in
practice, with a target group of exams that is as broad as possible.

If the project was to be researched further and developed into an extension for
Inspera, it would be important to show that it can work well without any targeted
pre-training. Because TGRT is designed to work broadly across many domains, it
would in theory be helpful to most text answer exams without a lot of extra work
to make it compatible.

AI is applicable in a wide range of fields, but it is not without limits. This
thesis builds on the notion that automatic grading is not quite ripe for longer text
answers, and instead proposes methods that support the examiner. This has to be
thoroughly communicated to the expected user of TGRT. The recommendations
made are not entirely fallible, and it might even be too presumptuous to call
them recommendations. To call them recommendations indicates that TGRT
has the correct answer and urges the examiner to change the given grade. The
recommendation might not be accurate, as the user tests have proved with test
subjects’ disapproval of a number of recommendations given. A recommendation
only indicates that there is a pattern of discrepancies between the grades of similar
answers, with a tendency for the grades of the compared answers to be either higher
or lower than the answer recommended to change. Whether this means the answer
should be graded differently or not, is entirely up to the examiner.

A key aspect of the thesis that made the project enticing was that the similar-
ity models and comparison methods were supposed to work on Norwegian texts.
There has been little research on similarity in the Norwegian language using trans-

90 CHAPTER 7. CONCLUSIONS

former models, and with several options of BERT models that had been trained
on the Norwegian language, this was an intriguing prospect of the project. To
only work with Norwegian exams and texts did however limit the amount of po-
tential test subjects and datasets available for testing. This decision, and all the
other prerequisites that emerged when designing TGRT around the data format
from Inspera (explained in detail in subsection 4.2.1), led to a very small group
of eligible exams and examiners that were able to test the system. Only having
two user tests limited the ability to assert the robustness of TGRT, but the tests
conducted proved that the concept has merit.

Privacy issues were prevalent during the project. Contacts at NTNU were con-
cerned about the privacy of the students that have written the exam answers being
tested. It was very important during testing that the researchers had no insight in
the texts themselves, and only got excerpts from verbal communication with the
test subjects. Development of the dataset reader would have been a lot quicker if
several datasets were fully available for use. The test subjects were the only ones
that had full control of the data used in testing, and they only use the data for
examination purposes. The data temporarily saved on the server was deleted right
after each test was completed. The answers were anonymous and only contained a
candidate number connected to Inspera which got filtered out in the reading pro-
cess. If the supporting features from OpenAI were used, the answers were sent to
a web based service not under the control of the researchers. The data is assumed
to be temporarily saved, but if the tool is to be further developed, a deal would
have to be made with OpenAI to ensure that the privacy concerns of the students
are upheld.

There are many of the potential expansions for the project considered in sec-
tion 7.2 that could have been implemented if there was more time. However, this
is a master’s thesis, and to implement and test too many aspects of a subject
can muddle the thesis as a whole. The subject of reading and formatting text
from handwritten documents for the purpose of use in TGRT, for instance, would
require a large expansion of the thesis and might fit better in a separate thesis
dedicated to that subject.

7.4 In defense of viability

There are many prerequisites that need to be fulfilled in order for an exam to be
eligible for the tool:

• It must be written in Norwegian

• It must be written digitally into Inspera and not via other file formats

• It must be mostly understandable without the inclusion of formulas, figures
and images

Considering all this, one could question the legitimacy of the tool in the education
system. If the number of tests in this project is indicative of the number of
previous exams eligible for testing the tool, how can it be useful in a real life
setting with today’s exam system? A crucial part of the situation is that the test

CHAPTER 7. CONCLUSIONS 91

subjects brought exams that were conducted in the past few years. As digital
exams become more commonplace, Inspera will likely become more useful as a
tool for submitting exams directly, leading to more exams becoming eligible. The
language problem will not solve itself, but the tool can be expanded to include
an option to select what language the exam is held in. A lot more testing would
be needed to find the best model to use for English exams, but it is entirely
feasible.

The only problem not accounted for is exams where the answers are dependent
upon figures and formulas for context. It is possible that AI technology could
eventually read the figures and format it reliably enough to be a fair representation
of the students’ work. The exams where this is needed, however, are in most cases
not amongst the target group for this tool. The target exams of the tool are those
with answers consisting of longer texts rather than a lot of calculations and figures.
It is also possible to use the tool for exams that include both figures/formulas and
longer texts, and exclude the questions that contain figures or formulas. In any
case, the tool should most likely see an increase in potential exams eligible in
the near future, or can feasibly be expanded to encompass a much larger target
group.

REFERENCES

[1] Ibrahim Albluwi. “A Closer Look at the Differences Between Graders in In-
troductory Computer Science Exams”. In: IEEE Transactions on Education
61.3 (2018), pp. 253–260. doi: 10.1109/TE.2018.2805706.

[2] Maren Olava Ask Hütt. “Så sannsynlig er det å få bedre karakter om du
klager”. In: VG (Oct. 7, 2021). url: https : / / www . vg . no / nyheter /
innenriks/i/v5wPRj/saa-sannsynlig-er-det-aa-faa-bedre-karakter-
om-du-klager (visited on 06/06/2023).

[3] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: CoRR abs/1810.04805 (2018). arXiv:
1810.04805. url: http://arxiv.org/abs/1810.04805.

[4] Eirik Plahte and Christian Riksvold. “Initial report for computer assisted
exam grading”. Report written in preparation for this project. 2022.

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, 2008.

[6] Michelle Wilson. What is Natural Language Processing (NLP) and How is It
Used Today? url: https://www.hp.com/us-en/shop/tech-takes/what-
is-natural-language-processing (visited on 11/23/2022).

[7] Haoda Huang and Benyu Zhang. “Text Segmentation”. In: Encyclopedia of
Database Systems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA:
Springer US, 2009, pp. 3072–3075. isbn: 978-0-387-39940-9. doi: 10.1007/
978-0-387-39940-9_421. url: https://doi.org/10.1007/978-0-387-
39940-9_421.

[8] Tadashi Nomoto. “Keyword Extraction: A Modern Perspective”. In: SN
Computer Science 4.1 (2022), p. 92.

[9] Amit Singhal and I. Google. “Modern Information Retrieval: A Brief Overview”.
In: IEEE Data Engineering Bulletin 24 (Jan. 2001).

[10] Anirudha Simha. Oct. 6, 2021. url: https://www.capitalone.com/tech/
machine-learning/understanding-tf-idf/ (visited on 11/24/2022).

[11] Yassine Hamdaoui. TF(Term Frequency)-IDF(Inverse Document Frequency)
from scratch in python. Dec. 10, 2019. url: https://towardsdatascience.
com/tf- term- frequency- idf- inverse- document- frequency- from-
scratch-in-python-6c2b61b78558 (visited on 11/24/2022).

[12] Pradyoth SP. Decoding the Key Concepts of Stop Words, BOW, TF, and
IDF in NLP. url: https://medium.com/@sppradyoth/stop-words-bow-
tf-and-idf-7fa2898ed03e (visited on 05/02/2023).

92

https://doi.org/10.1109/TE.2018.2805706
https://www.vg.no/nyheter/innenriks/i/v5wPRj/saa-sannsynlig-er-det-aa-faa-bedre-karakter-om-du-klager
https://www.vg.no/nyheter/innenriks/i/v5wPRj/saa-sannsynlig-er-det-aa-faa-bedre-karakter-om-du-klager
https://www.vg.no/nyheter/innenriks/i/v5wPRj/saa-sannsynlig-er-det-aa-faa-bedre-karakter-om-du-klager
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.hp.com/us-en/shop/tech-takes/what-is-natural-language-processing
https://www.hp.com/us-en/shop/tech-takes/what-is-natural-language-processing
https://doi.org/10.1007/978-0-387-39940-9_421
https://doi.org/10.1007/978-0-387-39940-9_421
https://doi.org/10.1007/978-0-387-39940-9_421
https://doi.org/10.1007/978-0-387-39940-9_421
https://www.capitalone.com/tech/machine-learning/understanding-tf-idf/
https://www.capitalone.com/tech/machine-learning/understanding-tf-idf/
https://towardsdatascience.com/tf-term-frequency-idf-inverse-document-frequency-from-scratch-in-python-6c2b61b78558
https://towardsdatascience.com/tf-term-frequency-idf-inverse-document-frequency-from-scratch-in-python-6c2b61b78558
https://towardsdatascience.com/tf-term-frequency-idf-inverse-document-frequency-from-scratch-in-python-6c2b61b78558
https://medium.com/@sppradyoth/stop-words-bow-tf-and-idf-7fa2898ed03e
https://medium.com/@sppradyoth/stop-words-bow-tf-and-idf-7fa2898ed03e

REFERENCES 93

[13] Stuart Rose et al. “Automatic Keyword Extraction from Individual Docu-
ments”. In: Text Mining: Applications and Theory. John Wiley & Sons, Ltd,
2010. Chap. 1, pp. 1–20. isbn: 9780470689646. doi: https://doi.org/10.
1002/9780470689646.ch1. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/9780470689646.ch1. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470689646.ch1.

[14] Suphakit Niwattanakul et al. “Using of Jaccard Coefficient for Keywords
Similarity”. In: Mar. 2013.

[15] Tom Mitchell. Machine Learning. McGraw Hill, 1997.
[16] Christopher Olah. Understanding LSTM Networks. Aug. 27, 2015. url:

https://colah.github.io/posts/2015- 08- Understanding- LSTMs/
(visited on 11/17/2022).

[17] Britney Muller. BERT 101 - State Of The Art NLP Model Explained. Mar. 2,
2022. url: https://huggingface.co/blog/bert-101 (visited on 11/22/2022).

[18] Aayush Srivastava. What Are Transformers In NLP And It’s Advantages.
Aug. 8, 2022. url: https://blog.knoldus.com/what-are-transformers-
in-nlp-and-its-advantages/ (visited on 11/22/2022).

[19] Ria Kulshrestha. Transformers. May 29, 2020. url: https://towardsdatascience.
com/transformers-89034557de14 (visited on 11/22/2022).

[20] Jesse Vig. Deconstructing BERT, Part 2: Visualizing the Inner Workings
of Attention. Jan. 7, 2019. url: https : / / towardsdatascience . com /
deconstructing- bert- part- 2- visualizing- the- inner- workings-
of-attention-60a16d86b5c1 (visited on 05/09/2023).

[21] Jay Alammar. The Illustrated BERT, ELMo, and co. (How NLP Cracked
Transfer Learning). url: http://jalammar.github.io/illustrated-
bert/ (visited on 11/22/2022).

[22] Rani Horev. BERT Explained: State of the art language model for NLP. url:
https://towardsdatascience.com/bert-explained-state-of-the-
art-language-model-for-nlp-f8b21a9b6270 (visited on 11/23/2022).

[23] Saketh Kotamraju. An Intuitive Explanation of Sentence-BERT. June 23,
2022. url: https://towardsdatascience.com/an-intuitive-explanation-
of-sentence-bert-1984d144a868 (visited on 03/13/2023).

[24] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. 2019. arXiv: 1908.10084 [cs.CL].

[25] Amit Kayal. My journey into Sentence Transformer. Oct. 16, 2022. url:
https://dev.to/aws-builders/my-journey-into-sentence-transformer-
1b7m (visited on 03/13/2023).

[26] Say hi to NorBERT! Jan. 14, 2021. url: https : / / www . mn . uio . no /
ifi/english/research/projects/sant/news/norlm.html (visited on
11/23/2022).

[27] Vectors/norlm/norbert. url: http://wiki.nlpl.eu/Vectors/norlm/
norbert (visited on 11/23/2022).

[28] Per E Kummervold et al. “Operationalizing a National Digital Library: The
Case for a Norwegian Transformer Model”. In: Proceedings of the 23rd Nordic
Conference on Computational Linguistics (NoDaLiDa). Reykjavik, Iceland
(Online): Linköping University Electronic Press, Sweden, 2021, pp. 20–29.
url: https://aclanthology.org/2021.nodalida-main.3.

https://doi.org/https://doi.org/10.1002/9780470689646.ch1
https://doi.org/https://doi.org/10.1002/9780470689646.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470689646.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470689646.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470689646.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470689646.ch1
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://huggingface.co/blog/bert-101
https://blog.knoldus.com/what-are-transformers-in-nlp-and-its-advantages/
https://blog.knoldus.com/what-are-transformers-in-nlp-and-its-advantages/
https://towardsdatascience.com/transformers-89034557de14
https://towardsdatascience.com/transformers-89034557de14
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-bert/
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-1984d144a868
https://towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-1984d144a868
https://arxiv.org/abs/1908.10084
https://dev.to/aws-builders/my-journey-into-sentence-transformer-1b7m
https://dev.to/aws-builders/my-journey-into-sentence-transformer-1b7m
https://www.mn.uio.no/ifi/english/research/projects/sant/news/norlm.html
https://www.mn.uio.no/ifi/english/research/projects/sant/news/norlm.html
http://wiki.nlpl.eu/Vectors/norlm/norbert
http://wiki.nlpl.eu/Vectors/norlm/norbert
https://aclanthology.org/2021.nodalida-main.3

94 REFERENCES

[29] Zuhaib Akhtar. BERT base vs BERT large. url: https://iq.opengenus.
org/bert-base-vs-bert-large/ (visited on 04/25/2023).

[30] url: https://huggingface.co/NbAiLab/nb- sbert- base (visited on
03/13/2023).

[31] url: https://huggingface.co/datasets/NbAiLab/mnli- norwegian
(visited on 04/17/2023).

[32] Dandan Chen and Carolyn J. Anderson. “Categorical data analysis”. In:
International Encyclopedia of Education (Fourth Edition). Ed. by Robert
J Tierney, Fazal Rizvi, and Kadriye Ercikan. Fourth Edition. Oxford: El-
sevier, 2023, pp. 575–582. isbn: 978-0-12-818629-9. doi: https://doi.
org/10.1016/B978- 0- 12- 818630- 5.10070- 3. url: https://www.
sciencedirect.com/science/article/pii/B9780128186305100703.

[33] Ken Stewart. mean squared error. 2023. url: https://www.britannica.
com/science/mean-squared-error (visited on 05/23/2023).

[34] Shrivarsheni. Text Summarization Approaches for NLP – Practical Guide
with Generative Examples. Oct. 24, 2020. url: https://www.machinelearningplus.
com/nlp/text-summarization-approaches-nlp-example/ (visited on
11/17/2022).

[35] Dan Jurafsky. Minimum Edit Distance. Jan. 17, 2012. url: web.stanford.
edu/class/cs124/lec/med.pdf (visited on 11/24/2022).

[36] Vedant Bahel and Achamma Thomas. “Text similarity analysis for evalua-
tion of descriptive answers”. In: CoRR abs/2105.02935 (2021). arXiv: 2105.
02935. url: https://arxiv.org/abs/2105.02935.

[37] Xinfeng Ye and Sathiamoorthy Manoharan. “Performance Comparison of
Automated Essay Graders Based on Various Language Models”. In: 2021
IEEE International Conference on Computing (ICOCO). 2021, pp. 152–157.
doi: 10.1109/ICOCO53166.2021.9673585.

[38] Phakawat Wangkriangkri et al. “A Comparative Study of Pretrained Lan-
guage Models for Automated Essay Scoring with Adversarial Inputs”. In:
2020 IEEE REGION 10 CONFERENCE (TENCON). 2020, pp. 875–880.
doi: 10.1109/TENCON50793.2020.9293930.

[39] Carlo Lepelaars. Understanding The Metric: Quadratic Weighted Kappa.
Nov. 23, 2019. url: https://www.kaggle.com/code/carlolepelaars/
understanding - the - metric - quadratic - weighted - kappa (visited on
06/08/2023).

[40] Akshita Jha et al. “Supervised Contrastive Learning for Interpretable Long
Document Comparison”. In: CoRR abs/2108.09190 (2021). arXiv: 2108.
09190. url: https://arxiv.org/abs/2108.09190.

[41] Zhengguang Li et al. “Cross2Self-attentive Bidirectional Recurrent Neural
Network with BERT for Biomedical Semantic Text Similarity”. In: 2020
IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
2020, pp. 1051–1054. doi: 10.1109/BIBM49941.2020.9313452.

[42] Itzik Malkiel et al. “Interpreting BERT-Based Text Similarity via Activa-
tion and Saliency Maps”. In: Proceedings of the ACM Web Conference 2022.
WWW ’22. Virtual Event, Lyon, France: Association for Computing Ma-
chinery, 2022, pp. 3259–3268. isbn: 9781450390965. doi: 10.1145/3485447.
3512045. url: https://doi.org/10.1145/3485447.3512045.

[43] Inglourious Basterds. 2009.

https://iq.opengenus.org/bert-base-vs-bert-large/
https://iq.opengenus.org/bert-base-vs-bert-large/
https://huggingface.co/NbAiLab/nb-sbert-base
https://huggingface.co/datasets/NbAiLab/mnli-norwegian
https://doi.org/https://doi.org/10.1016/B978-0-12-818630-5.10070-3
https://doi.org/https://doi.org/10.1016/B978-0-12-818630-5.10070-3
https://www.sciencedirect.com/science/article/pii/B9780128186305100703
https://www.sciencedirect.com/science/article/pii/B9780128186305100703
https://www.britannica.com/science/mean-squared-error
https://www.britannica.com/science/mean-squared-error
https://www.machinelearningplus.com/nlp/text-summarization-approaches-nlp-example/
https://www.machinelearningplus.com/nlp/text-summarization-approaches-nlp-example/
web.stanford.edu/class/cs124/lec/med.pdf
web.stanford.edu/class/cs124/lec/med.pdf
https://arxiv.org/abs/2105.02935
https://arxiv.org/abs/2105.02935
https://arxiv.org/abs/2105.02935
https://doi.org/10.1109/ICOCO53166.2021.9673585
https://doi.org/10.1109/TENCON50793.2020.9293930
https://www.kaggle.com/code/carlolepelaars/understanding-the-metric-quadratic-weighted-kappa
https://www.kaggle.com/code/carlolepelaars/understanding-the-metric-quadratic-weighted-kappa
https://arxiv.org/abs/2108.09190
https://arxiv.org/abs/2108.09190
https://arxiv.org/abs/2108.09190
https://doi.org/10.1109/BIBM49941.2020.9313452
https://doi.org/10.1145/3485447.3512045
https://doi.org/10.1145/3485447.3512045
https://doi.org/10.1145/3485447.3512045

REFERENCES 95

[44] Django Unchained. 2012.
[45] Pulp Fiction. 1994.
[46] Reservoir Dogs. 1992.
[47] url: https://spacy.io/models/nb (visited on 05/01/2023).
[48] RAKE. Mar. 2, 2018. url: https : / / github . com / zelandiya / RAKE -

tutorial (visited on 05/30/2023).
[49] Natural Language Toolkit. Jan. 2, 2023. url: https://www.nltk.org/

(visited on 05/30/2023).
[50] summa 1.2.0. Jan. 16, 2019. url: https://pypi.org/project/summa/

(visited on 05/30/2023).
[51] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text”. In:

Proceedings of the 2004 Conference on Empirical Methods in Natural Lan-
guage Processing. Barcelona, Spain: Association for Computational Linguis-
tics, July 2004, pp. 404–411. url: https://aclanthology.org/W04-3252.

[52] Greg Brockman and Ilya Sutskever. Introducing OpenAI. Dec. 11, 2015. url:
https://openai.com/blog/introducing-openai (visited on 06/08/2023).

[53] OpenAI Charter. Apr. 9, 2018. url: https://openai.com/charter (visited
on 05/30/2023).

[54] Introducing ChatGPT. Nov. 30, 2022. url: https://openai.com/blog/
chatgpt (visited on 05/30/2023).

[55] Models. url: https://platform.openai.com/docs/models (visited on
05/30/2023).

[56] React. url: https://react.dev/ (visited on 05/30/2023).
[57] Welcome to Flask. url: https://flask.palletsprojects.com/en/2.3.x/

(visited on 05/30/2023).
[58] symspellpy. url: https://symspellpy.readthedocs.io/en/latest/

index.html (visited on 05/30/2023).
[59] Knut Hofland. Oct. 11, 1998. url: http://korpus.uib.no/humfak/nta/

(visited on 05/30/2023).
[60] url: https://www.ntnu.edu/studies/coursesearch#semester=2022&

gjovik=false&trondheim=false&alesund=false&faculty=-1&institute=-
1&multimedia=false&english=false&phd=false&open=false&courseAutumn=
false&courseSpring=false&courseSummer=false&pageNo=1&season=
spring&sortOrder=ascTitle (visited on 04/25/2023).

https://spacy.io/models/nb
https://github.com/zelandiya/RAKE-tutorial
https://github.com/zelandiya/RAKE-tutorial
https://www.nltk.org/
https://pypi.org/project/summa/
https://aclanthology.org/W04-3252
https://openai.com/blog/introducing-openai
https://openai.com/charter
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models
https://react.dev/
https://flask.palletsprojects.com/en/2.3.x/
https://symspellpy.readthedocs.io/en/latest/index.html
https://symspellpy.readthedocs.io/en/latest/index.html
http://korpus.uib.no/humfak/nta/
https://www.ntnu.edu/studies/coursesearch#semester=2022&gjovik=false&trondheim=false&alesund=false&faculty=-1&institute=-1&multimedia=false&english=false&phd=false&open=false&courseAutumn=false&courseSpring=false&courseSummer=false&pageNo=1&season=spring&sortOrder=ascTitle
https://www.ntnu.edu/studies/coursesearch#semester=2022&gjovik=false&trondheim=false&alesund=false&faculty=-1&institute=-1&multimedia=false&english=false&phd=false&open=false&courseAutumn=false&courseSpring=false&courseSummer=false&pageNo=1&season=spring&sortOrder=ascTitle
https://www.ntnu.edu/studies/coursesearch#semester=2022&gjovik=false&trondheim=false&alesund=false&faculty=-1&institute=-1&multimedia=false&english=false&phd=false&open=false&courseAutumn=false&courseSpring=false&courseSummer=false&pageNo=1&season=spring&sortOrder=ascTitle
https://www.ntnu.edu/studies/coursesearch#semester=2022&gjovik=false&trondheim=false&alesund=false&faculty=-1&institute=-1&multimedia=false&english=false&phd=false&open=false&courseAutumn=false&courseSpring=false&courseSummer=false&pageNo=1&season=spring&sortOrder=ascTitle
https://www.ntnu.edu/studies/coursesearch#semester=2022&gjovik=false&trondheim=false&alesund=false&faculty=-1&institute=-1&multimedia=false&english=false&phd=false&open=false&courseAutumn=false&courseSpring=false&courseSummer=false&pageNo=1&season=spring&sortOrder=ascTitle

APPENDIX

96

A - CODE EXCERPTS

A1 - Text formatter

def get_va l id_ques t i ons_l i s t (f i l e) :
f u l l_ s e t = f i l e [" ext_inspera_candidates "]
que s t i on s = {}
for student in f u l l_ s e t :

for ques t i on in student [" r e s u l t "] ["
ext_inspera_quest ions "] :
i f " ext_inspera_manualScores " in ques t i on :

i f " ext_inspera_candidateResponses " in
ques t i on and len (ques t i on ["
ext_inspera_candidateResponses "]) > 0
and not ((type (ques t i on ["
ext_inspera_candidateResponses "] [0] ["
ext_inspera_response "]) == ’ s t r ’ or type
(ques t i on ["
ext_inspera_candidateResponses "] [0] ["
ext_inspera_response "]) == ’ s t r i n g ’) and
ques t i on ["

ext_inspera_candidateResponses "] [0] ["
ext_inspera_response "] . s t a r t sw i t h ("
simpleChoice_")) :
que s t i on s [ques t i on ["

ext_inspera_quest ionId "]] = True
e l i f ques t i on [" ext_inspera_quest ionId "] not in

que s t i on s :
que s t i on s [ques t i on [" ext_inspera_quest ionId "

]] = Fal se
print (que s t i on s)
return que s t i on s

def pa r s e_ f i l e (f i l e) :
answers = {}
f u l l_ s e t = f i l e [" ext_inspera_candidates "]
va l i d_que s t i on s_ l i s t = get_va l id_ques t i ons_l i s t (f i l e)
pre_scores = {}

97

for student in f u l l_ s e t :
qu e s t i on_ l i s t = student [" r e s u l t "] ["

ext_inspera_quest ions "]
i f len (qu e s t i on_ l i s t) == 0 :

continue
for current_answer in que s t i on_ l i s t :

i f not va l i d_que s t i on s_ l i s t [current_answer ["
ext_inspera_quest ionId "]] or not ("
ext_inspera_manualScores " in current_answer
and len (current_answer ["
ext_inspera_manualScores "]) > 0) :
continue

answer = ""
i f " ext_inspera_candidateResponses " in

current_answer and len (current_answer ["
ext_inspera_candidateResponses "]) > 0 :
part_answers = [part_answer ["

ext_inspera_response "] for part_answer
in current_answer ["
ext_inspera_candidateResponses "] i f
isinstance (part_answer ["
ext_inspera_response "] , str)]

answer = "\n" . j o i n ([part_answer for
part_answer in part_answers])

i f current_answer [" ext_inspera_quest ionId "] not
in answers :
answers [current_answer ["

ext_inspera_quest ionId "]] = []
answers [current_answer [" ext_inspera_quest ionId "

]] . append (answer)

i f current_answer [" ext_inspera_quest ionId "] not
in pre_scores :
pre_scores [current_answer ["

ext_inspera_quest ionId "]] = []

s c o r e s = [f loat (s c o r e [" ext_inspera_manualScore "
]) for s co r e in current_answer ["
ext_inspera_manualScores "]]

pre_scores [current_answer ["
ext_inspera_quest ionId "]] . append (sum(s c o r e s)
)

A2 - Server main

98

import os
import s t r i n g
from f l a s k import Flask , f l a sh , request , r e d i r e c t , ur l_for ,

j s o n i f y
from f l a s k . l ogg ing import defau l t_handler
import l o gg ing
from f l a sk_cor s import CORS
from bert import BERT
from t f i d f import compare_tfidf , t f id f_matr ix
from u t i l s import sort_by_pre_score
from RAKE. rake import Rake
import j s on
from r eade r s . data_set_reader import

get_va l id_quest ions_l i s t , p a r s e_ f i l e
import thread ing
import random
from sbe r t_te s t import encode
from c o l o r s import CGREEN, CEND
import os
import j s on
import codecs

UPLOAD_FOLDER = ’ / ’
ALLOWED_EXTENSIONS = { ’ j son ’ }

de fau l t_handler . setFormatter (l ogg ing . Formatter (CGREEN + "%(
message) s " + CEND))

app = Flask (__name__)
CORS(app)
app . c on f i g [’UPLOAD_FOLDER’] = UPLOAD_FOLDER

def tuple_to_str ing (tuple) :
return " ("+str (tuple [0])+" , ␣"+str (tuple [1])+") "

def generate_id (l ength) :
return ’ ’ . j o i n (random . cho i c e (s t r i n g . a s c i i _ l e t t e r s) for

i in range (l ength))

def post_thread_runner (docs , s co re s , id , que s t i on) :
t a b l e s = {

" r e s u l t s " : []
}

i f len (s c o r e s) > 0 :
print ("post_thread ; ␣ i n i t ")

99

t f i d f_mat r i x_ l i s t = t f id f_matr ix (docs)
rake = Rake (stop_words_path=" stopwords . txt ")
j = codecs .open(os . cu rd i r+"/norwegian−synonyms . j son

" , " r " , " utf−8")
synonyms = json . load (j)

print ("post_thread ; ␣ f i l e ␣ read ␣ complete ")

for s co r e in s c o r e s :
t f id f_compar i son = compare_tf idf (

t f i d f_mat r i x_ l i s t , synonyms , s co r e [0] , s c o r e
[1])

comparison = []
for e l in t f id f_compar i son :

comparison . append ({
"term" : e l [0] ,
" s co r e " : e l [1] ,
" t f_idf_alpha " : e l [2] ,
" t f_idf_beta " : e l [3]

})
rake_terms_alpha = rake . run (docs [s c o r e [0]])

[: 2 5]
rake_terms_beta = rake . run (docs [s c o r e [1]]) [: 2 5]
t a b l e s [" r e s u l t s "] . append ({

"alpha_index" : s c o r e [0] ,
"beta_index" : s c o r e [1] ,
"met r i c s " : comparison ,
" rake_terms_alpha" : rake_terms_alpha ,
" rake_terms_beta" : rake_terms_beta

})

r e s = j son . dumps(tab l e s , indent=4)

i f not os . path . e x i s t s (" r e s u l t s /" + id) :
os . makedirs (" r e s u l t s /" + id)

with open(" r e s u l t s /" + id + "/" + str (ques t i on + 1) + "
_metrics . j s on " , "w") as f i l e :

f i l e . wr i t e (r e s)
f i l e . c l o s e ()

print ("met r i c s ␣ f o r ␣ ques t i on ␣" + str (ques t i on) + "␣
f i n i s h e d ")

def main_thread_runner (posted_data , id) :
f u l l_s e t , fu l l_pre_score s = pa r s e_ f i l e (posted_data)

100

for (i , question_number) in enumerate (f u l l_ s e t) :
docs = f u l l_ s e t [question_number]
pre_scores = fu l l_pre_score s [question_number]
print (f ’ { l en (docs)=} ’)
print (f ’ { l en (pre_scores)=} ’)
matr i ce s = [BERT(docs , "NbAiLab/nb−sbert−base ")]
s c o r e s = sort_by_pre_score (matr i ce s [0] , pre_scores)
t ab l e s = {

" r e s u l t s " : []
}
for s co r e in s c o r e s :

r e s u l t = {
"alpha " : docs [s c o r e [0]] ,
" beta " : docs [s c o r e [1]] ,
" alpha_index" : str (s c o r e [0]) ,
"beta_index" : str (s c o r e [1]) ,
" s c o r e_d i f f " : str (s c o r e [2]) ,
" s im i l a r i t y " : str (s c o r e [3]) ,
" alpha_score " : str (pre_scores [s c o r e [0]]) ,
" beta_score " : str (pre_scores [s c o r e [1]]) ,
" tf_idf_terms " : []

}
t ab l e s [" r e s u l t s "] . append (r e s u l t)

r e s = j son . dumps(tab l e s , indent=4)

i f not os . path . e x i s t s (" r e s u l t s /" + id) :
os . makedirs (" r e s u l t s /" + id)

with open(" r e s u l t s /" + id + "/" + str (i + 1) + " .
j son " , "w") as f i l e :
f i l e . wr i t e (r e s)
f i l e . c l o s e ()

thread = thread ing . Thread (t a r g e t=post_thread_runner
, a rgs=(
docs , s co re s , id , i))

thread . s t a r t ()

print (str (question_number) + "/" + str (len (docs)) +
"␣ f i n i s h e d ")

@app . route ("/" , methods=[’GET’])
def t e s t () :

return "He l lo ␣world"

@app . route (’ /upload ’ , methods=[’POST ’])

101

def process_data () :
po s t ed_f i l e = reques t . f i l e s [’ f i l e ’]
posted_data = json . load (po s t ed_f i l e)
va l id_ques t i ons = l i s t (ge t_va l id_ques t i ons_l i s t (

posted_data) . keys ())
#va l i d_que s t i on s = [1 , 2]
id = generate_id (5)
thread = thread ing . Thread (t a r g e t=main_thread_runner ,

a rgs=(
posted_data , id))

thread . s t a r t ()
re sponse = j s o n i f y ({ ’ id ’ : id , " va l id_ques t i ons " :

va l id_ques t i ons })
re sponse . headers . add (’ Access−Control−Allow−Orig in ’ , ’ ∗ ’

)
return re sponse

@app . route ("/ p o l l " , methods=[’GET’])
def po l l () :

id = reques t . a rgs . get (’ id ’ , d e f au l t =1, type=str)
ques t i on = reques t . a rgs . get (’ ques t i on ’ , d e f au l t =0, type

=int)
path = " r e s u l t s /" + id + "/" + str (ques t i on) + " . j son "
r e s = " f a l s e "
i f os . path . e x i s t s (path) :

with open(path , " r ") as f i l e :
r e s = f i l e . read ()
f i l e . c l o s e ()

re sponse = j s o n i f y ({ ’ r e s ’ : r e s })
re sponse . headers . add (’ Access−Control−Allow−Orig in ’ , ’ ∗ ’

)
return r e s

@app . route ("/ po l l_metr i c s " , methods=[’GET’])
def po l l_metr i c s () :

id = reques t . a rgs . get (’ id ’ , d e f au l t =1, type=str)
ques t i on = reques t . a rgs . get (’ ques t i on ’ , d e f au l t =0, type

=int)
path = " r e s u l t s /" + id + "/" + str (ques t i on) + "

_metrics . j s on "
r e s = " f a l s e "
i f os . path . e x i s t s (path) :

with open(path , " r ") as f i l e :
r e s = f i l e . read ()
f i l e . c l o s e ()

re sponse = j s o n i f y ({ ’ r e s ’ : r e s })
re sponse . headers . add (’ Access−Control−Allow−Orig in ’ , ’ ∗ ’

102

)
return r e s

A3 - BERT setup
from s k l e a rn . met r i c s . pa i rw i s e import c o s i n e_s im i l a r i t y
from t rans f o rmer s import AutoTokenizer , AutoModel
import torch
from prog re s s_pr in t e r import pr int_progres s
from t rans f o rmer s import l o gg ing
def warn (∗ args , ∗∗kwargs) :

pass
import warnings
warnings . warn = warn
l ogg ing . se t_verbos i ty_error ()

def getModel (model_string) :
return AutoTokenizer . from_pretrained (model_string) ,

AutoModel . from_pretrained (model_string)

def BERT(sentences , model_string) :
pr int_progres s (0 , model_string)
token i z e r , model = getModel (model_string)

chunks ize = 128

indexes = []
i n i t i a l i z e d i c t i ona r y to s t o r e t o k en i z ed sen tences
tokens = { ’ input_ids ’ : [] , ’ attention_mask ’ : [] }
pr int_progres s (0 . 1 , model_string)
for sentence in s en t ence s :

encode each sentence and append to d i c t i ona r y
new_tokens = token i z e r . encode_plus (sentence ,

add_special_tokens=False ,
r e turn_tensors=’ pt ’)

input_id_chunks = l i s t (new_tokens [’ input_ids ’] [0] .
s p l i t (chunks ize − 2))

mask_chunks = l i s t (new_tokens [’ attention_mask ’] [0] .
s p l i t (chunks ize − 2))

indexes . append (len (input_id_chunks))

for i in range (len (input_id_chunks)) :
add CLS and SEP tokens to input IDs
input_id_chunks [i] = torch . cat ([

torch . t en so r ([1 0 1]) , input_id_chunks [i] ,

103

torch . t en so r ([1 0 2])
])
add a t t e n t i on tokens to a t t e n t i on mask
mask_chunks [i] = torch . cat ([

torch . t en so r ([1]) , mask_chunks [i] , torch .
t en so r ([1])

])

padding
pad_len = chunks ize − input_id_chunks [i] . shape

[0]
i f pad_len > 0 :

input_id_chunks [i] = torch . cat ([
input_id_chunks [i] , torch . Tensor ([0] ∗

pad_len)
])
mask_chunks [i] = torch . cat ([

mask_chunks [i] , torch . Tensor ([0] ∗
pad_len)

])

tokens [’ input_ids ’] . extend (input_id_chunks)
tokens [’ attention_mask ’] . extend (mask_chunks)

pr int_progres s (0 . 2 , model_string)

reformat l i s t o f t en so r s in t o s i n g l e t ensor
tokens [’ input_ids ’] = torch . s tack (tokens [’ input_ids ’]) .

long ()
tokens [’ attention_mask ’] = torch . s tack (tokens [’

attention_mask ’]) . int ()

pr int_progres s (0 . 3 , model_string)

outputs = model (∗∗ tokens)

pr int_progres s (0 . 4 , model_string)

embeddings = outputs . last_hidden_state
attention_mask = tokens [’ attention_mask ’]

p r int_progres s (0 . 5 , model_string)

mask = attention_mask . unsqueeze (−1) . expand (embeddings .
s i z e ()) . f loat ()

masked_embeddings = embeddings ∗ mask

pr int_progres s (0 . 7 , model_string)

104

summed = torch .sum(masked_embeddings , 1)
summed_mask = torch . clamp (mask .sum(1) , min=1e−9)
mean_pooled = summed / summed_mask

pr int_progres s (0 . 8 , model_string)

ca l c u l a t e
adjusted_mean_pooled = []
temp = 0
for i , amnt in enumerate (indexes) :

r e s = torch . z e r o s (mean_pooled . shape [1])
for j in range (amnt) :

r e s = torch . add (res , mean_pooled [i+temp] , alpha
=(1/amnt))

i f j > 0 :
temp += 1

adjusted_mean_pooled . append (r e s)
adjusted_mean_pooled = torch . s tack (adjusted_mean_pooled

)

conver t from PyTorch tensor to numpy array
adjusted_mean_pooled = adjusted_mean_pooled . detach () .

numpy()

pr int_progres s (0 . 9 , model_string)

sims = co s i n e_s im i l a r i t y (
adjusted_mean_pooled ,
adjusted_mean_pooled

)

pr int_progres s (1 , model_string)

return sims

A4 - File manager
import p i c k l e
import os
import j s on
import codecs
import s e t t i n g s
from tabu la t e import tabu la t e

wr i t e l i s t to b inary f i l e

105

def wr i t e_ l i s t (a_l i s t , f i l e_ex t) :
s to r e l i s t in b inary f i l e so ’wb ’ mode
with open(" r e s u l t s /" + s e t t i n g s . data_set + f i l e_ext , ’

wb ’) as fp :
p i c k l e . dump(a_l i s t , fp)

Read l i s t to memory
def r e ad_ l i s t (f i l e_ex t) :

for read ing a l s o b inary mode i s important
with open(" r e s u l t s /" + s e t t i n g s . data_set + f i l e_ext , ’

rb ’) as fp :
n_l i s t = p i c k l e . load (fp)
return n_l i s t

def tuple_to_str ing (tuple) :
return " ("+str (tuple [0])+" , ␣"+str (tuple [1])+") "

def wri te_res_al l (s c o r e s) :
c a t e g o r i e s = [doc [" category "] for doc in s e t t i n g s .

raw_data i f " category " in doc]
in spera_datase t s = [" i n s p e r a_ f r i c t i o n " , "

inspera_tarant ino " , " inspera_tarantino_no_names" , "
in spe ra_tarant ino_sp l i t " , "
inspera_tarantino_split_no_names "]

i f len (c a t e g o r i e s) == 0 and s e t t i n g s . data_set in
i n spera_datase t s :
datase t = "_" . j o i n (s e t t i n g s . data_set . s p l i t ("_")

[1 :])
j = codecs .open(os . cu rd i r + "/ r eade r s /

custom_datasets /" + str (datase t) + " . j son " , " r " ,
" utf−8")

docs = j son . load (j)
c a t e g o r i e s = [doc [" category "] for doc in docs]

""" prev_el = None
p r i n t("−−−−−−" + ca t e g o r i e s [s e t t i n g s . alpha_answer] +

"−−−−−−−−−−")
f o r e l in [(c a t e g o r i e s [s [0]] , s [1]) f o r s in score s

[3]] :
i f c a t e g o r i e s [s e t t i n g s . alpha_answer] . s p l i t (" ") [0]

== "PF":
break

p r i n t (e l)
i f e l [0] . s p l i t (" ") [0] == ca t e g o r i e s [s e t t i n g s .

alpha_answer] . s p l i t (" ") [0] :
prev_el = e l

e l i f prev_el i s not None :

106

i f abs (e l [1] − prev_el [1]) > s e t t i n g s . max_drop :
s e t t i n g s . max_drop = abs (e l [1] − prev_el [1])
s e t t i n g s . ca t = ca t e g o r i e s [s e t t i n g s .

alpha_answer] + " − " + s t r (s e t t i n g s .
alpha_answer) + " − " + e l [0] + " − " +
prev_el [0] + " − " + s t r (e l [1]) + " − "
+ s t r (prev_el [1])

break """

t ab l e s = []
for i in range (len (s c o r e s [0])) :

t a b l e s . append ([(c a t e g o r i e s [s [0]] i f len (c a t e g o r i e s)
> 0 else s [0] , f ’ { s [1] : 4 . 2 f } ’) for s in [s c o r e [
i] for s co r e in s c o r e s]])

t = tabu la t e (tab l e s , headers=[’ norbert ’ , ’ norbert2 ’ , ’
nb−bert−base ’ , ’ nb−sbert−base ’])

with open(" r e s u l t s / r e s u l t s . txt " , "w") as f i l e :
f i l e . wr i t e (" datase t : ␣" + s e t t i n g s . data_set + "\

nanswer␣compared␣ to ␣" + c a t e g o r i e s [s e t t i n g s .
alpha_answer] + "\n\n")

f i l e . c l o s e ()

with open(" r e s u l t s / r e s u l t s . txt " , "a") as f i l e :
f i l e . wr i t e (t)
f i l e . c l o s e ()

def write_res_al l_with_prescores (s co re s , pre_scores) :
import warnings

with warnings . catch_warnings () :
warnings . f i l t e rw a r n i n g s (’ e r r o r ’)
va r i ance = []
variance_norm = []
for s co r e in s c o r e s :

max = 0
min = 1
max_grade = 0
for s in s co r e :

i f s [1] > max:
max = s [1]

i f s [1] < min :
min = s [1]

i f pre_scores [s [0]] > max_grade :
max_grade = pre_scores [s [0]]

v = 0

107

v_norm = 0
try :

for s in s co r e :
""" r a t i o = 1
i f pre_scores [s e t t i n g s . alpha_answer] !=

pre_scores [s [0]] :
r a t i o = 1 / abs (pre_scores [s [0]] −

pre_scores [s e t t i n g s . alpha_answer
])

v += s [1] ∗ r a t i o """
d i f f = abs (pre_scores [s e t t i n g s .

alpha_answer] − pre_scores [s [0]]) /
max_grade

v += abs (d i f f − s [1])
v_norm += abs (d i f f − ((s [1] − min) / (

max − min)))
s e t t i n g s . var iance_counter += 1

except :
print ("Error : ")
print (s e t t i n g s . raw_data [s e t t i n g s .

alpha_answer])

var i ance . append (v)
variance_norm . append (v_norm)

for (i , var) in enumerate (var i ance) :
s e t t i n g s . var i ance [i] += var

for (i , var) in enumerate (variance_norm) :
s e t t i n g s . var iance_normal ized [i] += var

def write_res_by_dif f (s c o r e s) :
c a t e g o r i e s = [doc [" category "] for doc in s e t t i n g s .

raw_data i f " category " in doc]

t ab l e s = []
for i , s c o r e in enumerate (s c o r e s) :

t a b l e s . append ((c a t e g o r i e s [s c o r e [0]] i f len (
c a t e g o r i e s) > 0 else s co r e [0] , c a t e g o r i e s [s c o r e
[1]] i f len (c a t e g o r i e s) > 0 else s co r e [1] , s c o r e
[2] , s c o r e [3] , s e t t i n g s . pre_scores [s c o r e [0]] ,
s e t t i n g s . pre_scores [s c o r e [1]]))

t = tabu la t e (t ab l e s)

with open(" r e s u l t s / resu lts_by_score . txt " , "w") as f i l e :
f i l e . wr i t e (t)
f i l e . c l o s e ()

108

def write_tf id f_matr ix (t f id f_matr ix) :
r e s = ""
for (i) in range (len (t f id f_matr ix)) :

r e s += tuple_to_str ing (t f id f_matr ix [i]) + "\n"

with open(" r e s u l t s /" + s e t t i n g s . data_set + "
_tf idf_matrix . txt " , "w") as f i l e :

f i l e . wr i t e (r e s)
f i l e . c l o s e ()

A5 - TF-IDF setup
from s k l e a rn . f e a tu r e_ext rac t i on . t ex t import Tf i d fVe c t o r i z e r
from n l tk . t oken i z e import word_tokenize
from s k l e a rn . met r i c s . pa i rw i s e import c o s i n e_s im i l a r i t y
import spacy
import s e t t i n g s

def warn (∗ args , ∗∗kwargs) :
pass

import warnings
warnings . warn = warn

nlp = spacy . load ("nb_core_news_lg")

def t oken i z e (t ex t) :
tokens = [word for word in word_tokenize (t ex t) i f len (

word) > 1]
lemmat izat ions = [nlp (token) [:] for token in tokens]
return [lem . lemma_ for lem in l emmat izat ions]

def c a l c u l a t e (docs) :
stopwords = []
with open(" stopwords . txt " , " r " , encoding="utf−8") as

f i l e :
f i l e _ l i n e s = f i l e . read ()
stopwords = f i l e _ l i n e s . s p l i t ("\n")
f i l e . c l o s e ()

t f i d f_v e c t o r i z e r = T f i d fVe c t o r i z e r (use_idf=True ,
stop_words=stopwords , t ok en i z e r=token ize ,
ngram_range=(1 , 1)) # type : i gnore

t f id f_matr ix = t f i d f_v e c t o r i z e r . f i t_trans fo rm (docs)

return t f i d f_v e c t o r i z e r , t f id f_matr ix

def term_matrix (t f i d f_v e c t o r i z e r , t f id f_matr ix) :

109

feature_names = t f i d f_v e c t o r i z e r . get_feature_names_out
()

r e s = [(word , [0] ∗ t f id f_matr ix . shape [0]) for word in
feature_names]

for doc in range (t f id f_matr ix . shape [0]) :
f eature_index = t f id f_matr ix [doc , :] . nonzero () [1]
t f i d f_ s c o r e s = zip (feature_index , [t f id f_matr ix [doc

, x] for x in f eature_index])
for (i , s) in t f i d f_ s c o r e s :

r e s [i] [1] [doc] = s

return r e s

re turns s im i l a r i t y score based on t f i d f
def t f i d f (docs) :

_, t f id f_matr ix = c a l c u l a t e (docs)

measure s im i l a r i t y o f a l l a r t i c l e s wi th cos ine
s im i l a r i t y

cosine_sim = co s i n e_s im i l a r i t y (t f id f_matr ix ,
t f id f_matr ix)

return cosine_sim

re turns t f i d f_ma t r i x wi th terms used and t f i d f score o f
each term in each document

def t f id f_matr ix (docs) :
t f i d f_v e c t o r i z e r , t f id f_matr ix = c a l c u l a t e (docs)

return term_matrix (t f i d f_v e c t o r i z e r , t f id f_matr ix)

def get_tf id f_terms (t f i d f_mat r i x_ l i s t , alpha_answer) :
r e s = [(tup [0] , tup [1] [alpha_answer]) for tup in

t f i d f_mat r i x_ l i s t i f tup [1] [alpha_answer] > 0]
return sorted (res , key=lambda x : x [1] , r e v e r s e=True)

def comparative_score (alpha_score , beta_score) :
d i f f = 1 − abs (alpha_score − beta_score)
avg = (alpha_score + beta_score) / 2
return d i f f ∗ avg

def compare_synonyms (synonyms , alpha_term , beta_terms) :
i f alpha_term [0] in synonyms :

for term in synonyms [alpha_term [0]] :
i f term in [z [0] for z in beta_terms] :

beta_term = [z for z in beta_terms i f z [0]
== term] [0]

110

return (alpha_term [0] + "/" + term ,
comparative_score (alpha_term [1] ,
beta_term [1]) , alpha_term [1] , beta_term
[1])

return None

compares two t f i d f s co re s wi th a s e t formula
def compare_tf idf (t f i d f_mat r i x_ l i s t , synonyms , alpha_answer

=−1, beta_answer=−1) :
i f alpha_answer == −1 and beta_answer == −1:

alpha_answer = s e t t i n g s . alpha_answer
beta_answer = s e t t i n g s . beta_answer

alpha = get_tf id f_terms (t f i d f_mat r i x_ l i s t , alpha_answer
)

beta = get_tf id f_terms (t f i d f_mat r i x_ l i s t , beta_answer)
r e s = []
for alpha_term in alpha :

i f alpha_term [0] in [z [0] for z in beta] :
beta_term = [z for z in beta i f z [0] ==

alpha_term [0]] [0]
r e s . append ((alpha_term [0] , comparative_score (

alpha_term [1] , beta_term [1]) , alpha_term [1] ,
beta_term [1]))

else :
synonym_res = compare_synonyms (synonyms ,

alpha_term , beta)
i f synonym_res != None :

r e s . append (synonym_res)
return sorted (res , key=lambda x : x [1] , r e v e r s e=True)

A6 - Server side sorting algorithm
import s e t t i n g s

def sort_by_pre_score (matrix , pre_scores = []) :
s c o r e s = []
for i in range (len (matrix)) :

s c o r e s . append (extract_s imi lar_answers (matrix , i))
i f len (pre_scores) < 1 :

pre_scores = s e t t i n g s . pre_scores
max_score = max(pre_scores)
print (max_score)
r e s = []
for i , s c o r e in enumerate (s c o r e s) :

for j , s in s co r e :
s c o r e_d i f f = abs (pre_scores [i] − pre_scores [j])

/ max_score

111

i f s > 0 .92 and s c o r e_d i f f > 0 and (j , i ,
s co r e_d i f f , s) not in r e s :
r e s . append ((i , j , s co r e_d i f f , s))

r e s = sorted (res , key=lambda x : x [3] , r e v e r s e=True)
return r e s

def extract_s imi lar_answers (res , answer=−1) :
i f answer == −1:

answer = s e t t i n g s . alpha_answer
sim_scores = l i s t (enumerate (r e s [answer]))
so r t i n g based on match score
s im_scores = sorted (sim_scores , key=lambda x : x [1] ,

r e v e r s e=True)
sim_scores = sim_scores [1 :]

return s im_scores

A7 - Client side sorting algorithm
export const s t ructureData = (r e s) => {

l e t data = new Map() ;
r e s . r e s u l t s . forEach ((e l) => {

i f (! data . has (e l . alpha_index)) {
data . s e t (e l . alpha_index , { t ext : e l . alpha ,

s c o r e : e l . alpha_score , comparisons : [] }) ;
}
i f (! data . has (e l . beta_index)) {

data . s e t (e l . beta_index , { t ext : e l . beta , s c o r e :
e l . beta_score , comparisons : [] }) ;

}
data . get (e l . alpha_index) . comparisons . push ({ index :

e l . beta_index , sim : e l . s im i l a r i t y }) ;
data . get (e l . beta_index) . comparisons . push ({ index : e l

. alpha_index , sim : e l . s im i l a r i t y }) ;
})
l e t h ighe s tProposa lSco re = 0 ;
data . forEach ((val , key)=> {

const proposa lScore = ca l cu l a t ePropo sa l S co r e (val ,
data) ;

h i ghe s tProposa lSco re = proposa lScore >
h ighe s tProposa lSco re ? proposa lScore :
h i ghe s tProposa lSco re ;

data . s e t (key , { . . . val , p roposa l : p roposa lScore }) ;
})
return data ;

}

112

export const sortAnswers = (data) => {
const r e s = [] ;
data . forEach ((value , key) => {

r e s . push ({ key : key , va lue : va lue }) ;
}) ;
return r e s . s o r t ((a , b) => {

l e t aCounter = 0 ;
l e t bCounter = 0 ;
a . va lue . comparisons . forEach ((e l) => {

aCounter += (data . get (e l . index) . s c o r e < a . va lue
. s c o r e ? −1 : 1) ;

})
b . va lue . comparisons . forEach ((e l) => {

bCounter += (data . get (e l . index) . s c o r e < b . va lue
. s c o r e ? −1 : 1) ;

})
return Math . abs (bCounter) − Math . abs (aCounter) | |

Math . abs (b . va lue . proposa l) − Math . abs (a . va lue .
proposa l) ;

}) . f i l t e r (e l => e l . va lue . comparisons . l ength > 2 && Math
. abs (e l . va lue . proposa l) > 0 . 75) .map((e l) => e l . key) ;

}

export const c a l cu l a t ePropo sa l S co r e = (alpha , data) => {
l e t r e s = 0 ;
alpha . comparisons . forEach (comp => {

const beta = data . get (comp . index) ;
Number(alpha . s c o r e) > Number(beta . s c o r e) ? r e s −=

Number(comp . sim) : r e s += Number(comp . sim) ;
}) ;
return alpha . comparisons . l ength > 0 ? r e s / alpha .

comparisons . l ength : r e s ;
}

A8 - Client side polling
import { us eSe tReco i l S ta t e } from "recoil" ;
import { amountOfQuestionsState , idState , metr i c sState ,

r e s u l t s S t a t e } from "./state" ;
import { structureData } from "./utils" ;

export const u s ePo l l e r = () => {
const s e t I d = useSe tReco i l S ta t e (i dS ta t e) ;
const setData = useSe tReco i l S ta t e (r e s u l t s S t a t e) ;
const s e tMet r i c s = useSe tReco i l S ta t e (met r i c sS ta t e) ;
const setAmountOfQuestions = useSe tReco i l S ta t e (

amountOfQuestionsState) ;

113

const p o l l e r = async (data) => {
l e t u r l = "http://129.241.106.76:5000/upload" ;
await f e t ch (ur l , {

method : "POST" ,
body : data ,

}) . then ((re sponse) => {
response . j son () . then ((r e s) => {

conso l e . l og (r e s) ;
s e t I d (r e s . id) ;
l e t id = r e s . id ;
setAmountOfQuestions (r e s . va l id_ques t i ons .

l ength)
l e t ques t i on = 1 ;
l e t i n t e r v a l = s e t I n t e r v a l (async () => {

l e t u r l =
"http://129.241.106.76:5000/poll?id

=" +
id +
"&question=" +
ques t i on ;

await f e t ch (ur l , {
method : "GET" ,

}) . then ((re sponse) => {
response . j son () . then ((r e s) => {

conso l e . l og (r e s) ;
i f (r e s !== fa l se) {

setData ((a r r) => [. . . arr ,
s t ructureData (r e s)]) ;

ques t i on += 1 ;
}

}) ;
}) ;
i f (ques t i on > re s . va l id_ques t i ons .

l ength) {
c l e a r I n t e r v a l (i n t e r v a l) ;

}
} , 10000) ;

l e t metr i c sQuest ion = 1 ;
l e t me t r i c s I n t e r v a l = s e t I n t e r v a l (async ()

=> {
l e t u r l = "http://129.241.106.76:5000/

poll_metrics?id=" + id + "&question=
" + metr ic sQuest ion ;

await f e t ch (ur l , { method : "GET" , }) .
then ((re sponse) => {
response . j son () . then ((r e s) => {

114

conso l e . l og (r e s) ;
i f (r e s !== fa l se) {

s e tMet r i c s ((a r r) => new Map
(ar r . s e t (metr icsQuest ion
, r e s))) ;

metr i c sQuest ion += 1 ;
}

}) ;
}) ;
i f (metr i c sQuest ion > re s .

va l id_ques t i ons . l ength) {
c l e a r I n t e r v a l (me t r i c s I n t e r v a l) ;

}
} , 10000) ;

}) ;
}) ;

} ;
return p o l l e r ;

} ;

export const useOnlyPol l e r = () => {
const s e t I d = useSe tReco i l S ta t e (i dS ta t e) ;
const setData = useSe tReco i l S ta t e (r e s u l t s S t a t e) ;
const s e tMet r i c s = useSe tReco i l S ta t e (met r i c sS ta t e) ;
const setAmountOfQuestions = useSe tReco i l S ta t e (

amountOfQuestionsState) ;

const p o l l e r = async (id) => {
conso l e . l og (id) ;
s e t I d (id) ;
l e t ques t i on = 1 ;
l e t i n t e r v a l = s e t I n t e r v a l (async () => {

l e t u r l =
"http://129.241.106.76:5000/poll?id=" +
id +
"&question=" +
ques t i on ;

await f e t ch (ur l , {
method : "GET" ,

}) . then ((re sponse) => {
response . j son () . then ((r e s) => {

conso l e . l og (r e s) ;
i f (r e s !== fa l se) {

setData ((a r r) => [. . . arr ,
s t ructureData (r e s)]) ;

ques t i on += 1 ;
} else {

c l e a r I n t e r v a l (i n t e r v a l) ;

115

}
}) ;

}) ;
} , 1000) ;
setAmountOfQuestions (ques t i on −1) ;

l e t metr i c sQuest ion = 1 ;
l e t me t r i c s I n t e r v a l = s e t I n t e r v a l (async () => {

l e t u r l = "http://129.241.106.76:5000/
poll_metrics?id=" + id + "&question=" +
metr ic sQuest ion ;

await f e t ch (ur l , { method : "GET" , }) . then ((
re sponse) => {
response . j son () . then ((r e s) => {

conso l e . l og (r e s) ;
i f (r e s !== fa l se) {

s e tMet r i c s ((a r r) => new Map(ar r . s e t
(metr icsQuest ion , r e s))) ;

metr i c sQuest ion += 1 ;
} else {

c l e a r I n t e r v a l (me t r i c s I n t e r v a l) ;
}

}) ;
}) ;

} , 1000) ;
} ;

return p o l l e r ;
} ;

A9 - OpenAI poller
export const useThemes = () => {

const themes = async (answer) => {
const requestOpt ions = {

method : "POST" ,
headers : {

"Content-Type" : "application/json" ,
Author i zat ion :

"Bearer␣{API_KEY}" ,
} ,
body : JSON. s t r i n g i f y ({

prompt : ’Hva␣er␣temaene␣for␣denne␣teksten:␣"’ +
answer + ’"’ ,

temperature : 0 . 6 ,
max_tokens : 500 ,

}) ,

116

} ;
const re sponse = await f e t ch (

"https://api.openai.com/v1/engines/text-davinci -003/
completions" ,

r equestOpt ions
) ;
const data = await re sponse . j son () ;

return data . cho i c e s [0] . t ex t ;
} ;
return themes ;

} ;

export const useKeywords = () => {
const keywords = async (answer) => {

const requestOpt ions = {
method : "POST" ,
headers : {

"Content-Type" : "application/json" ,
Author i zat ion :

"Bearer␣{API_KEY}" ,
} ,
body : JSON. s t r i n g i f y ({

prompt : ’Nevn␣stikkordene␣for␣denne␣teksten:␣"’ +
answer + ’"’ ,

temperature : 0 . 6 ,
max_tokens : 500 ,

}) ,
} ;
const re sponse = await f e t ch (

"https://api.openai.com/v1/engines/text-davinci
-003/completions" ,

r equestOpt ions
) ;
const data = await re sponse . j son () ;

return data . cho i c e s [0] . t ex t ;
} ;

return keywords ;
} ;

export const useSummary = () => {
const summary = async (answer) => {

const requestOpt ions = {
method : "POST" ,
headers : {

"Content-Type" : "application/json" ,

117

Author i zat ion :
"Bearer␣{API_KEY}" ,

} ,
body : JSON. s t r i n g i f y ({

prompt : ’Skriv␣et␣sammendrag␣av␣denne␣teksten:␣"’ +
answer + ’"’ ,

temperature : 0 . 6 ,
max_tokens : 500 ,

}) ,
} ;
const re sponse = await f e t ch (

"https://api.openai.com/v1/engines/text-davinci
-003/completions" ,

r equestOpt ions
) ;
const data = await re sponse . j son () ;

return data . cho i c e s [0] . t ex t ;
} ;

return summary ;
} ;

118

B - RESULTS FROM BERT MODELS TESTS

B1 - Friction dataset

All results from the tests performed on the friction dataset.

Figure .1: The results from comparison to answer labeled "1, Good, normal".

119

Figure .2: The results from comparison to answer labeled "1, Good, typos".

Figure .3: The results from comparison to answer labeled "1, Good, synonyms".

120

Figure .4: The results from comparison to answer labeled "1, Good, short".

Figure .5: The results from comparison to answer labeled "1, Good, long".

121

Figure .6: The results from comparison to answer labeled "1, Static, normal".

Figure .7: The results from comparison to answer labeled "1, Static, typos".

122

Figure .8: The results from comparison to answer labeled "1, Static, synonyms".

Figure .9: The results from comparison to answer labeled "1, Static, short".

123

Figure .10: The results from comparison to answer labeled "1, Static, long".

Figure .11: The results from comparison to answer labeled "1, Kinetic, normal".

124

Figure .12: The results from comparison to answer labeled "1, Kinetic, typos".

Figure .13: The results from comparison to answer labeled "1, Kinetic, syn-
onyms".

125

Figure .14: The results from comparison to answer labeled "1, Kinetic, short".

Figure .15: The results from comparison to answer labeled "1, Kinetic, long".

126

Figure .16: The results from comparison to answer labeled "1, irrelevant".

Figure .17: The results from comparison to answer labeled "2, Good, normal".

127

Figure .18: The results from comparison to answer labeled "2, Good, typos".

Figure .19: The results from comparison to answer labeled "2, Good, synonyms".

128

Figure .20: The results from comparison to answer labeled "2, Good, short".

Figure .21: The results from comparison to answer labeled "2, Good, long".

129

Figure .22: The results from comparison to answer labeled "2, Static, normal".

Figure .23: The results from comparison to answer labeled "2, Static, typos".

130

Figure .24: The results from comparison to answer labeled "2, Static, synonyms".

Figure .25: The results from comparison to answer labeled "2, Static, short".

131

Figure .26: The results from comparison to answer labeled "2, Static, long".

Figure .27: The results from comparison to answer labeled "2, Kinetic, normal".

132

Figure .28: The results from comparison to answer labeled "2, Kinetic, typos".

Figure .29: The results from comparison to answer labeled "2, Kinetic, syn-
onyms".

133

Figure .30: The results from comparison to answer labeled "2, Kinetic, short".

Figure .31: The results from comparison to answer labeled "2, Kinetic, long".

134

Figure .32: The results from comparison to answer labeled "2, irrelevant".

Figure .33: The results from comparison to answer labeled "3, Good, normal".

135

Figure .34: The results from comparison to answer labeled "4, Good, normal".

136

B2 - Tarantino original dataset

All results from the tests performed on the Tarantino dataset with two movie
descriptions per entry and titles included.

Figure .35: The results from comparison to entry labeled "IB & DU 1".

Figure .36: The results from comparison to entry labeled "IB & DU 2".

137

Figure .37: The results from comparison to entry labeled "IB & DU 3".

Figure .38: The results from comparison to entry labeled "IB & RD 1".

138

Figure .39: The results from comparison to entry labeled "IB & RD 2".

Figure .40: The results from comparison to entry labeled "IB & RD 3".

139

Figure .41: The results from comparison to entry labeled "PF & DU 1".

Figure .42: The results from comparison to entry labeled "PF & DU 2".

140

Figure .43: The results from comparison to entry labeled "PF & DU 3".

Figure .44: The results from comparison to entry labeled "RD & DU 1".

141

Figure .45: The results from comparison to entry labeled "RD & DU 2".

Figure .46: The results from comparison to entry labeled "RD & DU 3".

142

Figure .47: The results from comparison to entry labeled "IB & PF 1".

Figure .48: The results from comparison to entry labeled "IB & PF 2".

143

Figure .49: The results from comparison to entry labeled "IB & PF 3".

Figure .50: The results from comparison to entry labeled "RD & PF 1".

144

Figure .51: The results from comparison to entry labeled "RD & PF 2".

Figure .52: The results from comparison to entry labeled "RD & PF 3".

145

B3 - Tarantino without titles dataset

All results from the tests performed on the Tarantino dataset with two movie
descriptions per entry and titles removed.

Figure .53: The results from comparison to entry labeled "IB & DU 1".

Figure .54: The results from comparison to entry labeled "IB & DU 2".

146

Figure .55: The results from comparison to entry labeled "IB & DU 3".

Figure .56: The results from comparison to entry labeled "IB & RD 1".

147

Figure .57: The results from comparison to entry labeled "IB & RD 2".

Figure .58: The results from comparison to entry labeled "IB & RD 3".

148

Figure .59: The results from comparison to entry labeled "PF & DU 1".

Figure .60: The results from comparison to entry labeled "PF & DU 2".

149

Figure .61: The results from comparison to entry labeled "PF & DU 3".

Figure .62: The results from comparison to entry labeled "RD & DU 1".

150

Figure .63: The results from comparison to entry labeled "RD & DU 2".

Figure .64: The results from comparison to entry labeled "RD & DU 3".

151

Figure .65: The results from comparison to entry labeled "IB & PF 1".

Figure .66: The results from comparison to entry labeled "IB & PF 2".

152

Figure .67: The results from comparison to entry labeled "IB & PF 3".

Figure .68: The results from comparison to entry labeled "RD & PF 1".

153

Figure .69: The results from comparison to entry labeled "RD & PF 2".

Figure .70: The results from comparison to entry labeled "RD & PF 3".

154

B4 - Tarantino single descriptions dataset

All results from the tests performed on the Tarantino dataset with one movie
descriptions per entry and titles included.

Figure .71: The results from comparison to entry labeled "IB 1".

155

Figure .72: The results from comparison to entry labeled "DU 1".

Figure .73: The results from comparison to entry labeled "IB 2".

156

Figure .74: The results from comparison to entry labeled "DU 2".

Figure .75: The results from comparison to entry labeled "IB 3".

157

Figure .76: The results from comparison to entry labeled "DU 3".

Figure .77: The results from comparison to entry labeled "IB 4".

158

Figure .78: The results from comparison to entry labeled "RD 1".

Figure .79: The results from comparison to entry labeled "RD 2".

159

Figure .80: The results from comparison to entry labeled "IB 5".

Figure .81: The results from comparison to entry labeled "RD 3".

160

Figure .82: The results from comparison to entry labeled "IB 6".

Figure .83: The results from comparison to entry labeled "PF 1".

161

Figure .84: The results from comparison to entry labeled "DU 4".

Figure .85: The results from comparison to entry labeled "PF 2".

162

Figure .86: The results from comparison to entry labeled "DU 5".

Figure .87: The results from comparison to entry labeled "PF 3".

163

Figure .88: The results from comparison to entry labeled "DU 6".

Figure .89: The results from comparison to entry labeled "RD 4".

164

Figure .90: The results from comparison to entry labeled "DU 7".

Figure .91: The results from comparison to entry labeled "RD 5".

165

Figure .92: The results from comparison to entry labeled "DU 8".

Figure .93: The results from comparison to entry labeled "RD 6".

166

Figure .94: The results from comparison to entry labeled "DU 9".

Figure .95: The results from comparison to entry labeled "IB 7".

167

Figure .96: The results from comparison to entry labeled "PF 4".

Figure .97: The results from comparison to entry labeled "IB 8".

168

Figure .98: The results from comparison to entry labeled "PF 5".

Figure .99: The results from comparison to entry labeled "IB 9".

169

Figure .100: The results from comparison to entry labeled "PF 6".

Figure .101: The results from comparison to entry labeled "RD 7".

170

Figure .102: The results from comparison to entry labeled "PF 7".

Figure .103: The results from comparison to entry labeled "RD 8".

171

Figure .104: The results from comparison to entry labeled "PF 8".

Figure .105: The results from comparison to entry labeled "PF 9".

172

Figure .106: The results from comparison to entry labeled "RD 9".

173

B5 - Tarantino single descriptions dataset without titles

All results from the tests performed on the Tarantino dataset with one movie
descriptions per entry and titles removed.

Figure .107: The results from comparison to entry labeled "IB 1".

174

Figure .108: The results from comparison to entry labeled "DU 1".

Figure .109: The results from comparison to entry labeled "IB 2".

175

Figure .110: The results from comparison to entry labeled "DU 2".

Figure .111: The results from comparison to entry labeled "IB 3".

176

Figure .112: The results from comparison to entry labeled "DU 3".

Figure .113: The results from comparison to entry labeled "IB 4".

177

Figure .114: The results from comparison to entry labeled "RD 1".

Figure .115: The results from comparison to entry labeled "RD 2".

178

Figure .116: The results from comparison to entry labeled "IB 5".

Figure .117: The results from comparison to entry labeled "RD 3".

179

Figure .118: The results from comparison to entry labeled "IB 6".

Figure .119: The results from comparison to entry labeled "PF 1".

180

Figure .120: The results from comparison to entry labeled "DU 4".

Figure .121: The results from comparison to entry labeled "PF 2".

181

Figure .122: The results from comparison to entry labeled "DU 5".

Figure .123: The results from comparison to entry labeled "PF 3".

182

Figure .124: The results from comparison to entry labeled "DU 6".

Figure .125: The results from comparison to entry labeled "RD 4".

183

Figure .126: The results from comparison to entry labeled "DU 7".

Figure .127: The results from comparison to entry labeled "RD 5".

184

Figure .128: The results from comparison to entry labeled "DU 8".

Figure .129: The results from comparison to entry labeled "RD 6".

185

Figure .130: The results from comparison to entry labeled "DU 9".

Figure .131: The results from comparison to entry labeled "IB 7".

186

Figure .132: The results from comparison to entry labeled "PF 4".

Figure .133: The results from comparison to entry labeled "IB 8".

187

Figure .134: The results from comparison to entry labeled "PF 5".

Figure .135: The results from comparison to entry labeled "IB 9".

188

Figure .136: The results from comparison to entry labeled "PF 6".

Figure .137: The results from comparison to entry labeled "RD 7".

189

Figure .138: The results from comparison to entry labeled "PF 7".

Figure .139: The results from comparison to entry labeled "RD 8".

190

Figure .140: The results from comparison to entry labeled "PF 8".

Figure .141: The results from comparison to entry labeled "PF 9".

191

Figure .142: The results from comparison to entry labeled "RD 9".

192

	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Project description
	Contributions

	Theory
	Information Retrieval
	Natural Language Processing
	Keyword extraction
	TF-IDF
	RAKE

	Similarity functions
	Cosine similarity
	Jaccard similarity

	Machine Learning
	Recurrent Neural Network
	LSTM
	Transformers
	BERT
	Siamese Networks and SBERT
	Models pre-trained in Norwegian

	Evaluation measures
	Precision and recall
	F-score
	Pearson correlation coefficient
	Mean squared error

	Summarization methods
	Edit distance

	Related work
	Automatic grading
	Using Siamese Manhattan LSTM for grading
	Using different variants of BERT for grading
	Calculating the robustness of three AES models

	Similarity measures
	Long-form document matching with CoLDE
	C2SA for Biomedical Semantic Text Similarity

	Transformers
	BTI

	Discussion of findings

	Methods
	Comparison algorithm
	BERT models
	Algorithm setup
	Larger models

	Datasets
	Format
	Custom datasets

	Supporting comparative features
	TF-IDF
	RAKE
	Summarizers
	OpenAI

	Sorting algorithm
	Application setup
	Client
	Server

	Considered additions
	Same grade with different content
	Recommending specific grade shifts
	Spelling errors

	Tests
	BERT models tests
	Friction dataset results
	Tarantino datasets results
	Tests on graded datasets

	User tests
	First user test results
	Second user test results

	Discussion
	RQ1 Comparison algorithm
	Friction dataset
	Irrelevant variant
	Good variants
	Tarantino dataset
	Tarantino dataset with single entries
	Web development dataset
	Deciding on a model
	Comparison algorithm in user tests

	RQ2 Supporting features
	First user test
	Second user test

	RQ3 User perception
	First user test
	Second user test

	Conclusions
	Summary
	Further work
	Limitations
	In defense of viability

	References
	Appendix
	A - Code excerpts
	B - Results from BERT models tests

