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Abstract

As the world increasingly embraces digitalization, the use of virtual simulators for
educational purposes has gained widespread recognition and adoption. The traffic
school WAY has been using virtual driving simulators in their education to reduce
risk, save money, and train students on situations that rarely happen in real life. To
exploit the capabilities of virtual simulators and optimize their effectiveness, WAY
wants to personalize lessons with tailor-made content based on each student’s indi-
vidual skill level. This thesis explores the application of Procedural Content Gener-
ation (PCG) and personalized learning in the context of virtual driving simulators,
with the aim of creating varying and personalized traffic situations for WAY’s driv-
ing education. By using the skill levels provided by WAY'’s existing skill model, the
aim is to enhance learning through optimal difficulty and traffic situations tailored
to best suit the student. The selected methodology utilized when exploring the feas-
ibility of this research encompasses two phases. First, a literature review providing
an overview of the state of the art in procedural content generation and personalized
learning is conducted. Subsequently, a Design Science Research project is employed
to evaluate the suitability. The identified literature reveals a taxonomy of PCG
variations and a framework for experience-driven content generation, both forming
the foundation for the proposed model. The contributions of the Design Science Re-
search project include a semantic representation for depicting traffic situations and
driving lessons, an algorithm for generating personalized content, an analysis of the
generated content, and proposals for future research directions. The analysis was
conducted by creating scenarios of skill levels with special characteristics before an
analysis of the correlation between skill levels and trained skills and difficulty levels
was done. The results indicate that the model succeeds in personalizing content
through promising skill coverage and difficulty adjustments while also highlighting
the challenges and limitations.



Sammendrag

I takt med den gkte digitaliseringen i verden, har bruken av virtuelle simulatorer til
pedagogiske formal blitt anerkjent og tatt i bruk i stadig gkende grad. Trafikkskolen
WAY har benyttet virtuelle kjgresimulatorer i opplaeringen sin for a redusere risiko,
spare kostnader og trene elevene pa situasjoner som sjelden oppstar i virkeligheten.
For a utnytte potensialet til virtuelle simulatorer og optimalisere effektiviteten,
gnsker WAY a tilpasse undervisningen med skreddersydd innhold basert pa hver en-
kelt elevs individuelle ferdighetsniva. Denne avhandlingen utforsker anvendelsen av
Procedural Content Generation (PCG) og Personalized Learning i konteksten til vir-
tuelle kjgresimulatorer. Malet med dette er a skape varierte og personlig tilpassede
trafikksituasjoner for WAYs kjgreoppleering. Ved a benytte ferdighetsnivaene som
tilbys av WAY's eksisterende ferdighetsmodell, er malet a forbedre laeringen gjennom
optimal vanskelighetsgrad og trafikksituasjoner skreddersydd for den enkelte elev.
Den valgte metodologien som benyttes for a utforske gjennomfgrbarheten av denne
forskningen omfatter to faser. Fgrst gjennomfgres en litteraturgjennomgang som
gir en oversikt over den siste utviklingen innen Procedural Content Generation og
Personalized Learning. Deretter benyttes et forskningsprosjekt basert pa Design Sci-
ence Research for a evaluere annvendelsesomerade. Litteraturgjennomgangen avdek-
ker en klassifisering for PCG og en rammeverk for erfaringsbasert innholdsgenerer-
ing. Disse legger grunnlaget for den foreslatte modellen. Bidragene fra forsknings-
prosjektet inkluderer en semantisk representasjon for a skildre trafikksituasjoner og
kjoreoppleering, en algoritme for generering av personlig tilpasset innhold, en ana-
lyse av det genererte innholdet og tilslutt, forslag til fremtidig arbeid. Analysen
ble gjennomfart ved a skape scenarier med spesielle egenskaper for ulike ferdighets-
nivaer, fgr en analyse av sammenhengen mellom ferdighetsnivaer, trente ferdigheter
og vanskelighetsnivaer ble utfgrt. Resultatene indikerer at modellen lykkes med a
personalisere innholdet gjennom lovende dekning av ferdigheter og justeringer av
vanskelighetsgrad, samtidig som utfordringer og begrensninger blir fremhevet.
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Chapter 1

Introduction

This chapter serves as an introductory section for the thesis, providing an overview of
the motivation, problem description, research methodology, our contributions, and
the structure of the thesis. As an emerging area of research, Procedural Content
Generation (PCG) offers promising advances in developing highly interactive and
dynamic virtual worlds [36]. This Master’s thesis centers around the implement-
ation of (PCG) to generate diverse traffic scenarios for the driving school WAY,
utilizing their virtual driving simulator, built using the Unity platform. The gener-
ated traffic situations will be tailored to the WAY students, assisting them in their
preparation for obtaining their driving license. Using PCG, we can generate various
traffic scenarios that help students prepare for real-world driving situations. Further-
more, this thesis explores the concept of personalized learning within this context,
where the simulator adapts to each student’s progress and unique learning curve.
This approach ensures that students are consistently challenged according to their
skill level, thus enhancing the learning process [12]. Integrating PCG and person-
alized learning into driving simulators offers a potentially transformative approach
to driving education, creating a more engaging, immersive, and effective learning
experience for students as they work towards obtaining their driving license.

1.1 Motivation

Acquiring a driver’s license involves gaining knowledge and proficiency in a diverse
range of concepts and skills across different environments and scenarios. To en-
sure the most effective skill development, it is important to acknowledge the diverse
backgrounds of students, their varying skill sets, and their unique cognitive abilities.
Consequently, individually tailored training becomes crucial to accommodate these
differences and ensure effective learning outcomes [29]. By offering personalized ex-
periences, virtual simulators can potentially improve learning outcomes and increase
driver motivation [30], thus facilitating a faster and safer journey toward acquiring
their driver’s license.

Utilizing a virtual simulator with personalized content to teach driving and traffic
skills has several notable advantages. Firstly, the use of a virtual simulator elim-



inates the inherent risks associated with real-life driving, providing a safer learning
environment. This enables the exposure of students to more advanced and challen-
ging scenarios at an earlier stage, potentially leading to accelerated learning progress.
Another significant benefit is the ability to control and customize the traffic situation
a student encounters during the lesson, thus allowing for the design of optimal chal-
lenges for enhanced learning. Similarly, a personalized environment can ensure that
the difficulty level is appropriately adjusted to each student’s abilities and progress.
Employing a virtual simulator with automatically generated personalized content
can, in addition, reduce the monitoring demands from driving instructors. Unlike
traditional driving lessons that require a one-to-one instructor-student ratio, a vir-
tual simulator facilitates a many-to-one relationship, where instructors can guide
and support multiple students simultaneously.

WAY’s current approach involves a set of predefined generic lessons in their driving
simulator, through which students can undergo training. The selection of which
lesson should be applied is made by the instructors, who manually find a fitting
lesson for a given student and guide them to desired traffic situations to train the
student on a particular skill. By doing this, they utilize some of the benefits de-
scribed earlier. Still, the personalization of content relies heavily on the instructors’
subjective meaning and guidance in the virtual environment. In addition to the
unnecessary time spent finding optimal traffic situations both in-game and in pre-
paration for a lesson, this approach only facilitates one-to-one guidance. The manual
design of personalized training lessons for individual students is also too resource
intensive, both in terms of expenses and time requirements, rendering it impractical
for a larger group of students. However, WAY has already developed a skill model
for automatically grading the student’s performance, elaborated further in section
2.3. This skill model has a profile for each student with their respective perform-
ance on skills needed to master driving, thereby enabling the implementation of
personalized generated content.

1.2 Problem Description

Based on the motivation presented above, we have formulated the following object-
ive.

Objective Investigate the feasibility of leveraging WAY’s Unity-based simulator to
automatically generate customized virtual driving lessons tailored to in-
dividual skill levels

This objective aims to explore the potential of utilizing technology to generate per-
sonalized learning experiences in WAY’s simulator. This research seeks to determine
whether such an approach is viable and effective by examining the ability to create
lessons based on specific skill levels. The investigation will evaluate the feasibility of
automated customization, considering factors such as individualization, traffic situ-
ation representation, lesson content adaptation, and the overall impact on learning




outcomes. To aid in achieving this, we have divided the objective further down into
the following research questions:

1.2.1 Research Questions

RQ1 How can we facilitate the creation of personalized driving lessons to optimize
learning?

WAY’s existing skill model provides a solid foundation for tailoring content to indi-
viduals. Achieving a quality result necessitates a good translation of skill levels into
traffic scenarios.

RQ2 How can we effectively represent all traffic scenarios and combine them into
a driving lesson?

To enable the automatic generation of content, it is essential to establish an ad-
aptable and robust representation of traffic scenarios. This representation requires
the flexibility to effectively support the creation of every desirable situation and to
combine the scenarios into a lesson.

RQ3 How can we ensure an appropriate level of difficulty for each specific traffic
situation?

This research question explores methods to ensure that each traffic situation has an
appropriate difficulty level. The aim is to investigate how to calibrate the difficulty
level of different scenarios to match the skill level and learning demands of individual
drivers.

1.3 Research Method

To address the research questions, the selected research methodology comprises two
essential phases: a literature review and a Design Science Research (DSR). A Design
Science Research (DSR) project aims to create novel and ground-breaking artifacts,
which can be constructs, models, methods, and instantiations [4]. In this case, the
artifact will be a model for procedural content generation of traffic situations in
WAY’s virtual driving simulator. The execution of a DSR project involves several
stages, including problem identification, design and development, evaluation, and
reflection. Through talks with WAY employees and a thorough literature review,
the problem will be identified and specified to the research questions introduced
in the section above. A system will then be designed and developed in the WAY
Unity simulator, as described in chapter 5. Subsequently, the effectiveness and
usefulness of the system will be evaluated through experiments made on simulated
scenarios, introduced in chapter 6. This involves designing scenarios, collecting and
analyzing the data that can be extracted from the generated lessons, and analyzing
the gathered data to determine the system’s feasibility.




1.4 Contributions

The thesis provides a set of contributions, further discussed in section 8.2. These
contributions are as follows:

A literature review providing an overview of procedural content generation
and personalized learning in the context of virtual simulators.

A semantic representation for depicting traffic situations and driving lessons.

A model and algorithm for automatic generation of personalized content com-
patible with WAY’s unity-based simulator.

An analysis of the model and the generated content in light of the research
questions listed earlier.

Proposals for directions to extend the research in future work.

1.5 Thesis Structure

This thesis will investigate the research objective and research questions introduced
in this chapter and is structured as follows. Chapter 2 provides an introduction to
WAY, including its current utilization of the simulator, and presents the Bayesian
Network skill model employed for progress monitoring. In chapter 3, we explore
the core theoretical concepts that form the basis of the model design. Chapter 4
examines related work in the field of study and situates our research within this
context, focusing on procedural content generation and personalized learning. In
chapter 5, we establish the system requirements and present our architecture and
model. Chapter 6 showcases a set of scenarios and the corresponding results. In
chapter 7, we critically analyze the strengths and weaknesses of our solution, as
well as potential improvements and possibilities. Finally, in chapter 8, the reader
is presented with a conclusion on the research conducted and proposals for future
work.




Chapter 2

WAY

WAY is a driving school company founded in June 2015 that actively seeks to digitize
traffic training through automated feedback and virtual environments [1]. They
intend to create a more efficient, environmentally friendly, cheaper, and safer path
to acquire a class B driver’s license. This chapter aims to provide information about
WAY’s virtual driving simulators, how they conduct and create their lessons, and
their Bayesian Network that infers the skill level of their students.

2.1 Driving Simulator

Currently, WAY offers both traditional driving lessons and virtual lessons through
the use of a 3D simulator. Virtual lessons are conducted in a full-scale 360-degree
motion-based driving simulator with personal supervision from a licensed driving
instructor. A real car is installed on a platform that can simulate movements and
vibrations. The platform responds to the driver’s actions and simulates acceleration,
braking, and turning motions. This adds a physical dimension to the simulation,
enhancing the realism and immersion. The driver interacts with the simulator using
the car’s controls, such as the steering wheel, pedals, and gearshift. The simulator
software interprets the driver’s inputs and adjusts the virtual environment accord-
ingly. Real-time feedback is provided to the driver through visual cues, sounds, and
haptic feedback from the motion platform. Constructive feedback is also provided
by the driving instructor monitoring the session. After the lesson, the student’s skill
levels are inferred by a Bayesian Network, which will be introduced in section 2.3.



Figure 2.1: Screenshot from the Virtual Simulator

2.2 Lessons

The lessons the students participate in are comprehensively designed lessons that
simulate real-life environments. Lessons covering all scenarios needed to obtain your
driver’s license have been designed and created in Unity, a cross-platform game de-
velopment engine used to make video games, simulations, and other 3D applications.
A curriculum of 24 lessons has been developed, with the objective of gradually in-
creasing the complexity of each lesson. The initial lessons focus on fundamental
driving skills, such as turning and braking, while the subsequent lessons introduce
more intricate scenarios, including yielding and navigating traffic lights. The cur-
riculum follows a progression that allows drivers to build upon their foundational
skills and gradually develop their proficiency. Each lesson is designed to challenge
drivers with new concepts and situations, ensuring a well-rounded understanding of
traffic rules and practical driving techniques. Even though the curriculum, as seen
in table 2.1, initially was planned as a complete and chronological guide towards
acquiring your driver’s license, driving instructors at WAY have stated that driving
instructors must assess the student’s skill level and driving history before choosing
an appropriate lesson to maximize learning outcomes.




Lessons
1 Grunnkurs Dag 1
2 Grunnkurs Dag 2
3 Grunnkurs Dag 3
4 Grunnkurs Voksen
5 Boligmiljo
5 Boligmljo Uten Trafikk
6 Landevei - Kort Stans Ny Start
6 Landevei - Kort Stans Ny Start Advanced
7 Landevei - Stans Veikant
8 Landevei - Observasjon
9 Landevei
10 Landevei - Vinter
11 Bymiljo
12 By og motortrafikkvei
13 Landevei - Forbikjoring
14 Morkekjoring 1
15 Morkekjoring 2
16 Utrykning
17 Kartlegging
18 Tettsted Rundkjoring
OUS Kapittel 1 - Lavkontrast
OUS Kapittel 2 - Landevei
OUS Kapittel 3 - Morkekjoring
OUS Kapittel 4 - Bymiljo

Table 2.1: List of Current Lessons

Content in Unity is created and controlled through C# scripts and native Unity
game objects. WAY'’s lessons consist of a large tile resembling a realistic scenario
with multiple game objects. To create the roads on which the student drives, they
utilize a Unity tool called EasyRoads3D. EasyRoads3D is a popular Unity plugin
that allows developers to create realistic and dynamic road networks in their 3D
game environments. It provides a user-friendly interface and a range of tools to
design and generate road systems with curves, intersections, and bridges, among
others. The game world is instantiated with multiple cars and pedestrians. To
make the cars and pedestrians interact consistently with the game world, WAY has
developed its own road network software. This software ensures that pedestrians
and cars respect the road boundaries, adhere to the speed limits, and comply with
traffic rules.

2.3 Skill Model

To review the student’s performance and monitor their progress, WAY uses a Bayesian
network as a skill model. The skill network model employed at WAY adopts a
Bayesian network framework to capture causal relationships between distinct driv-
ing skills. They use evidence obtained from the driver’s performance on specific
maneuvers during the driving session to update the network.




A Bayesian network, as a probabilistic graphical model, represents variables and
their conditional dependencies utilizing a directed acyclic graph (DAG). The graph
nodes correspond to the variables in the model, whereas the edges between them
depict the relationships among these variables. Bayesian networks take advantage
of Bayes’ theorem as seen in 2.1 to model the probability of an event based on prior
knowledge of conditions that might be associated with the event. By explicitly rep-
resenting the conditional dependencies between variables, Bayesian networks enable
probabilistic inference, which allows one to predict the likelihood of an outcome
based on observed evidence.

P(B]A)P(A)

P(AIB) = =1

(2.1)

The applications of Bayesian networks span diverse fields such as artificial intelli-
gence, machine learning, decision-making, and risk analysis [18]. They prove particu-
larly valuable in scenarios characterized by uncertainty and incomplete information,
as they can effectively model intricate relationships between variables and make
probabilistic predictions based on incomplete data.

In this specific context, WAY works with two types of variables: directly measurable
evidence, called performance variables, and latent skill mastery variables. The goal
is to predict the probability distribution of the latent variables based on the observed
evidence through the model’s interdependencies.

Performance Variables

In the representation of evidence within the skill network model, they introduce
two additional nodes: the measured performance node and the actual performance
node. These nodes are interconnected through a conditional probability distribution
(CPD), which is derived based on the accuracy of the assessment system employed.
The probabilistic relationship can be seen in equation 2.2. When a driver executes a
maneuver that directly corresponds to a skill in the skill network, a pair of measured
and actual performance nodes is generated and labeled with the relevant timestamp.
Both the measured and actual performance nodes encompass performance grade
values ranging from A to F.

P<Grad€measured|Gradeactual) (22)

The actual performance node serves as a direct descendant of the corresponding skill
mastery node as described in equation 2.3. It reflects the actual level of performance
achieved by the driver concerning the specific skill being assessed. Importantly, the
CPD associated with each skill may exhibit variations due to factors such as the
level of difficulty in mastering the skill and the tolerance for errors. Consequently,
it becomes necessary to learn and infer this relationship from the available data.




P(Grade|Mastery) (2.3)

Therefore, when evidence in the form of observed performance is acquired, its influ-
ence propagates upward in the skill network, subsequently affecting the prediction
of the parent skill mastery node. This propagation of influence aids in refining the
estimation of the driver’s skill level based on the observed evidence.

Mastery Variables

Within the skill network, the skill mastery nodes are characterized by three potential
states: mastered, learning, and struggling. These nodes have the flexibility to have
an arbitrary number of parents and child skill mastery nodes, as well as associated
evidence. Typically, skill mastery nodes remain unobserved, allowing probabilistic
inference. However, in cases where a driving instructor manually overrides the skill
mastery value, such as transitioning from the learning state to the mastered state,
the respective skill mastery node becomes observed and no longer relies on the
evidence for its determination. The CPD for parental-child skill mastery defines
the interdependencies among the mastery nodes within the network described in
equation 2.4. This CPD can be established through heuristic approaches or acquired
through the analysis of a dataset generated by knowledgeable driving instructors.

P(Mastery|Parenty, Parents, ..., Parent,,), (2.4)
where Parent; € {Mastered, Learning, Struggeling} '

Furthermore, skill progression, a quantitative measure representing the network’s
belief about the skill level, is calculated by equation 2.5. It is derived as a weighted
average of the inferred beliefs associated with the skill mastery nodes. The skill
progression considers the probabilities assigned to the different states of the skill
mastery nodes and combines them accordingly.

Progression =

0 X Posterior(Mastery = Struggeling) + (2.5)
0.5 X Pposterior(Mastery = Learning) + .

1 X Pyosterior(Mastery = Mastered)

Using skill mastery nodes and their associated CPDs, the skill network model
provides a structured representation of skill states and their relationships. This
framework facilitates the integration of expert knowledge and data-driven insights,
enabling the estimation of skill levels and their progression over time.




Knowledge Transfer

In the absence of specific prior information, each driver is presumed to represent an
average driver randomly selected from the broader population of drivers. The skill
mastery nodes, being integral components of the skill network, possess prior values
based on the Parent-Children CPDs.

However, following the initial driving session, the system begins to acquire valuable
information regarding the driver’s skill levels in the form of posterior probabilit-
ies. These posterior probabilities serve as transferred knowledge within the skill
network model and are incorporated accordingly during the inference process after
subsequent driving sessions.

By utilizing these posterior probabilities as a form of acquired knowledge, the skill
network model effectively integrates the new information obtained from each driving
session, enhancing the accuracy of subsequent skill level predictions and providing
a more refined understanding of the driver’s proficiency.

10



Chapter 3

Background Theory

This chapter builds upon the project thesis, and it aims to provide the necessary
background knowledge for utilizing procedural content generation to create per-
sonalized traffic situations based on a student’s skill level. Section 3.1 introduces
Serious games and the design principles that should be adhered to when develop-
ing serious. Section 3.2 explores the concept of player modeling, which involves
capturing and analyzing player behavior and characteristics to personalize the game
experience. Section 3.3 introduces the term Procedural Content Generation. Section
3.4 presents a taxonomy for procedural content generation. This taxonomy serves
as a foundation for understanding the subsequent discussions on PCG. Section 3.5
introduces the core components of experience-driven procedural content generation.
This approach emphasizes generating content that considers the player’s experience
and skill level, aligning with the objective of creating personalized traffic situations
based on student capabilities. This knowledge forms the basis for the following
discussions and implementation of personalized traffic situations in the context of
student skill levels.

3.1 Learning in Serious Games

Serious Games are an increasingly popular way to learn new material and are used
in various areas such as healthcare, education, business, and marketing [20]. Mi-
chael and Chen describes Serious Games as games where the primary objective is
something other than providing entertainment and enjoyment to the players. With
the combination of learning strategies and game elements, serious games aim to be
more engaging and motivating than regular learning techniques. When creating ser-
ious games where the main purpose is learning, the creators want to optimize the
learning rate for every user. Greitzer et al. propose five design guideline principles
to design e-Learning and training applications:

1. Stimulate semantic knowledge. Facilitate learning by relating material to the
learner’s experiences and existing semantic knowledge structures.

11



2. Manage the learner’s cognitive load. To avoid overloading the learner’s cog-
nitive load, organize the material into smaller chunks. Make the chunks cover
material that is gradually more complex.

3. Immerse the learner in problem-centered activities. The learner should imme-
diately be provided with opportunities to work on meaningful and realistic
tasks.

4. Emphasize interactive experiences. Activities should be developed that require
the manipulation of objects to be solved. This encourages the active construc-
tion and processing of training material, which, in turn, helps build lasting
memories.

5. Engage the learner. Design learning scenarios that keep learners within a nar-
row range of difficulty, where the material is challenging but not overwhelming.

Constructing coherent knowledge structures is essential for optimizing the storage,
retrieval, and representation of information [22]. It is crucial to organize and categor-
ize the information based on existing knowledge. By connecting new information
to individuals’ own experiences and preexisting semantic knowledge structures, the
retrieval of such information can be enhanced.

Managing the learner’s cognitive load is a key concept within learning. Human
memory is divided into working memory and long-term memory, and while long-
term memory is effectively unlimited in size, working memory is very limited [28].
Therefore, it is important that learners are given time to digest and reflect on newly
learned information to transform knowledge from working to long-term memory.
Learning should be centered around learning through interactive experiences and
not through techniques such as rote learning.

When learners are engaged in problem-solving activities instead of passively di-
gesting course content, learners are compelled to think about, organize, and use the
information in ways that facilitate the active construction of meaning and help build
lasting memories. This form of learning also increases motivation.

Baecker and Buxton presents an interesting paradox about learning where it is
explained that to learn, users must have meaningful interaction with the system
but are required a certain level of knowledge and experience before they are able to
interact with the system. Research aimed at addressing this paradox proposes that
a viable solution to deal with this paradox is to encourage learners to immediately
work on realistic and meaningful tasks. Unlike other passive activities, the learner
should immediately apply prior knowledge to problems [2].

According to Greitzer et al., the fifth principle suggests the design of learning scen-
arios that keep learners in a "narrow zone” of performance difficulty. The goal
is to create training situations that challenge students, ensuring their engagement
and motivation while avoiding scenarios that are too easy or excessively difficult.
Maintaining this balance is crucial for optimizing learning outcomes and preventing
frustration or disinterest among learners. Figure 3.1 visually represents this concept,
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emphasizing the importance of finding the sweet spot where learners are appropri-
ately challenged without being overwhelmed or bored. By aligning training scenarios
with the learner’s capabilities and providing an optimal level of difficulty, educators
can promote effective learning experiences that enhance student performance and
motivation.

Hard
£
3
£ Optimal Zone for
(=] Motivation and
z Learning
1]
O
Easy
Beginning Advanced

Ability/Level of Learning

Figure 3.1: Difficulty related to Level of Learning
[12]

3.2 Player Modeling

In section 3.1, the significance of balancing game difficulty is emphasized, aiming for
a challenging experience without crossing the threshold of being excessively difficult.
To address this, games often allow players to set the difficulty level themselves. By
letting the player profile themselves, game developers hope that the player knows
themselves enough to set the correct difficulty and that the pre-made discrete-level
alternatives correspond to all player types. This can be a problem for players who
miss the insight to rank themselves correctly or who fall between the discrete altern-
atives. This problem is more prevalent in serious games [24]. Players with varying
backgrounds, skill levels, and cognitive abilities experience different learning out-
puts from different inputs, and may therefore want to use alternative approaches
to learn a skill. When employing the conventional approach of developing serious
games with static content, it often becomes impossible to implement personalized
approaches. To address these shortcomings, serious games must become more dy-
namic and player-centric [13].

If Serious Games incorporates the dynamic adjustment of game elements based
on individual player performance, it can enhance the sense of personalization and
uniqueness in the game, ultimately fostering an enhanced learning experience. To
accomplish this, serious games require a mechanism to construct player models that
accurately reflect their skills and experiences. When creating player models, the
objective is either to classify players into predefined profiles or assign them a vector
representation that represents their skills and experiences. For player classification
tasks, unsupervised learning approaches such as clustering can be employed to group
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players [6]. The concept of Player Experience Modeling, introduced by Julian [19],
presents a framework to develop such models, which will be further explored in
section 3.4.

3.3 Procedural content generation

Procedural content generation (PCG) is the algorithmic creation of game content
with limited or indirect user input [34]. In this context, game content encompasses
all elements of a game that directly influence gameplay, excluding non-player char-
acter behavior and the game engine itself [19]. Using PCG, game developers can
provide content that is adjusted to individual players based on a variety of para-
meters. PCG has been employed in games since the late 1970s. Noteworthy early
titles like Elite and Rogue displayed some of the first applications. In the case
of Rogue, it showcased one of the initial instances of using PCG to generate levels
randomly. Following these ideas, rogue-like became an established genre with house-
hold names such as Diablo and Angband basing their PCG on this genre [42]. Elite
also implemented an early-stage PCG, but contrary to the modern interpretation of
the concept, Elite’s PCG was fully deterministic and used as a form of data com-
pression [36]. PCG has, however, advanced considerably since its introduction into
games. Since the aforementioned games implemented simple algorithms to improve
the game quality of 2D environments, many different artificial theories have been ap-
plied to the field. Ranging from machine learning to evolutionary algorithms, most
have proved their worth on different occasions. Chapter 4 will elaborate further on
several of these applications.

3.4 Search-Based Procedural Content Generation

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne
introduce in Search-Based Procedural Content Generation: A Taxonomy and Survey
[39] a taxonomy of approaches and variations of PCG. These distinctions are not
always binary but can exist on a continuous spectrum, placing PCG instances closer
to one extreme or the other. The five distinctions identified are as follows:

1. Online Versus Offline

Online content generation refers to the process of creating game content dynamic-
ally during gameplay, responding to player actions, real-time events, or procedural
algorithms. It enables dynamic and adaptive experiences. Offline generation, in con-
trast, creates predetermined game content before the game is initiated, remaining
static throughout the session.

2. Necessary Versus Optional Content
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Necessary content is game content essential for progression and the player is therefore
obligated to interact with the content, whereas optional content can be avoided. The
correctness of necessary content is crucial, while the generation of optional content
comes with milder demands.

3. Random Seeds Versus Parameter Vectors

This distinction refers to the extent of control that developers have during content
generation. PCG instances exist on a continuum ranging from random seeds to
parameter vectors. On the one end, content can be generated completely randomly
with random seeds. In contrast, it can be finely controlled through various parameter
vectors.

4. Stochastic Versus Deterministic Generation

Stochastic generation introduces variation and randomness to the outcome, even
with identical input parameters. Deterministic generation, on the other hand, en-
sures consistent and predictable results with no variation. The choice between the
two depends on the desired level of variability and predictability in the generated
content.

5. Constructive Versus Generate-and-Test

A constructive generative algorithm guarantees the correctness of the generated
content by generating it based on specific rules and hard constraints. In contrast,
a generate-and-test algorithm creates content first and then tests its validity. If the
content fails the test, new content is generated and tested again until a satisfactory
result is obtained.

In addition to this taxonomy, Search-Based Procedural Content Generation: A Tax-
onomy and Survey [39] also introduces the term Search-Based Procedural Content
Generation (SBPCG). SBPCG is a special case of the generate-and-test approach
to PCG, where the algorithm explores a population of candidate content. SBPCG
has two key qualifications that differ from traditional generate-and-test methods.
Instead of simply rejecting or accepting candidate content, the search-based test
function grades the content with a quantifiable and comparable value. This test is
often referred to as the fitness function or the utility function, and the assigned value
is often referred to as the fitness of the content. The second key qualification is that
creation of new candidate content is dependent on the fitness of previously evalu-
ated content instances. The objective is to generate new content that surpasses the
fitness value of the previous instances, thereby achieving continuous improvement.
Figure 3.2 presents an overview of the approaches of the three different methods.
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3.5 Experience Driven Content (Generation

To facilitate the optimization of engagement and cognitive learning in serious games
Julian introduces the concept of Ezperience-Driven Procedural Content Generation
(EDPCGQ), consisting of four critical components.

Player experience modeling

The first component is Player experience modeling (PEM). This relates to how the
player experience should be modeled as a function of game content and player info.
A player is characterized by his playing style and his responses to events in the
game. PEM is broken further down into three sub-types, subjective PEM, objective
PEM, and gameplay-based PEM. Subjective PEM refers to data explicitly expressed
by players. Most of the time, this information is retrieved using something that
resembles a questionnaire. Objective PEM gathers information about the players
indirectly from the player’s expressed emotions and infers their respective states of
mind. Lastly, gameplay-based PEM relies on the interaction between the player and
the game for its data retrieval.
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Figure 3.3: Overview of the PCG framework
[19]

Content quality

The next component introduced is Content quality. To be able to generate high-
quality game content, it is crucial that the system can evaluate different pieces of
game content. It is common to use an evaluation function that evaluates an item of
game content and assigns it a scalar that reflects its suitability. To evaluate the game
content, the system designers first decide what properties they want to optimize. A
designer may want to design a game that is fun, engaging, and replayable. The goal
of the designer is then to create an evaluation function that reflects how much a
piece of game content can contribute to those goals. Togelius et al. [39] introduces
three classes of evaluation functions: direct, simulation-based, and interactive.

The direct evaluation function extracts a given set of features from the game content
and directly maps this to a quality value of the content. The mapping can be both
linear and non-linear and does not involve large amounts of computation. Direct
evaluation functions can be further broken down into theory-driven and data-driven
functions. The theory-driven functions are based on the creator’s intuition or theory
about the player experience. Then a mapping is created between the game content
and the experience model. An example of an approach that uses a theory-driven
evaluation function can be seen in [9]. Data-driven evaluation functions are based
on collecting data from the results that come from different types of content. Data is
typically extracted through a questionnaire or physiological measurements. The data
is then used to automatically create mappings between player experience and game
content. An example of an approach that uses a data-driven evaluation function
can be found in [26].
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In a simulation-based evaluation function, an artificial agent plays through the gen-
erated content. Features such as whether or not the agent won and how fast it won
are extracted and evaluated. This can be further broken down into static and dy-
namic simulation-based functions, where the agent in a dynamic simulation changes
during the game. In contrast, the agent in the static simulation remains static.
In an interactive evaluation function, the evaluation function evaluates the actual
gameplay of a player.

Content representation

Furthermore, there is the concept of Content representation, which addresses how
the world should be represented to facilitate the optimization of the content gen-
erator. Content representation can often be placed on a spectrum between direct
and indirect encodings. This corresponds to the concepts of Random Seeds versus
Parameter Vectors introduced in section 3.5 where the random seed is an indirect
encoding and parameter vectors are a direct encoding. A direct encoding can be a
2D grid where the content of every cell is represented. This causes a direct one-to-
one mapping between the representation and the actual game content. An indirect
encoding can be a specification of certain desired properties, such as the number of
enemies, the number of gaps, or the distance between platforms. These properties
dictate how the game world is generated. A principle within content representation,
and especially content representation related to evolutionary computation, is local-
ity. High locality means that a small change in the content representation results
in little change in the utility value and is more easily achieved with a more direct
approach to content representation.

Content generation

The final key component in the PCG framework is Content generation. Utilizing
the player model, content representation, and an evaluation function to assess the
content, the actual content can now be generated. When working with Search-
based generation [39], the content generator uses an optimization function to search
through the content space and approximate the optimal solution. Different optim-
ization functions can be applied based on the size of the search space. With a
small number of dimensions, an exhaustive search may be sufficient to provide a
robust solution to online PCG. With larger search spaces, techniques such as simple
heuristic and gradient-search algorithms and stochastic global optimization tech-
niques such as evolutionary algorithms and particle swarm optimization may be
used. When working with constructive and generate-and-test approaches to content
generation, searching through content space is not necessary. With these techniques,
the generators follow a set of constraints that make sure that the generated content
is optimal.
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Chapter 4

Related Work

This chapter provides an overview of the related work in the field while exploring
relevant methods and techniques that can be applied to generate personalized driving
lessons procedurally. The literature presented in this chapter is a combination of
papers discovered in the project thesis and additional papers explored during the
spring semester. The chapter presents the methodology employed for the literature
review in this study, followed by an exploration of various applications of Procedural
Content Generation in serious games and other environments. Additionally, the
chapter discusses relevant literature concerning personalized learning. To conclude, a
summary of key findings is presented before our contribution is positioned within the
broader context of the field of study. Table 4.2 presents a comprehensive comparison
of the reviewed literature on procedural content generation, while table 4.3 offers a
similar comparison for the literature related to personalized learning.

4.1 Method

The challenge of developing personalized lessons in a virtual simulator is closely
related to both procedural content generation, as discussed in section 3.3, and per-
sonalized learning. These connections served as the basis for the literature search
conducted in this study. The search strategy consisted of a database search with
the key terms seen in table 4.1, followed by subsequent snowball and citation search
from relevant articles [40]. The search was performed using Scopus and Google
Scholar as the primary search engines. The identified articles were then managed
and organized using the Mendeley reference management tool, allowing for efficient
storage and labeling of the retrieved literature.
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Search Terms

Procedural Content Generation
Virtual simulators

Personalized learning

Traffic scenarios

Serious games

Interactive virtual worlds

Skill enhancement

Intelligent Tutoring Systems

Table 4.1: Search Terms

4.2 Literature

This section comprises a review of various applications of PCG in diverse domains
and a set of papers relating to personalized learning.

4.2.1 Procedural Content Generation

The papers concerning PCG are discussed below and compared in table 4.2, where
the distinctions relate to the key terms introduced in sections 3.1, 3.5, and 3.4.

Answer Set Programming for Declarative Content
Specification: A Scalable Partitioning-Based Approach

Calimeri et al. [5] investigate partition-based generation techniques with Answer Set
Programming (ASP). They propose a multi-step generation algorithm to generate
2-D caves in unity. Utilizing the declarative nature of ASP, they achieve results that
are better scaleable to larger maps than search-based approaches. The algorithm
recursively generates area partitions that obey the ASP rules, resulting in a satisfying
map. Although their work demonstrated the potential of procedurally generating a
functional game world based on semantics and simple rules, it did not address the
crucial aspects of personalization and difficulty adaptation central to our research
objective.

Towards Automatic Personalised content creation for racing games

Togelius et al. [38] review the potential of procedurally generating both player models
and personalized race tracks in Towards Automatic Personalised content creation for
racing games [38]. They employ the cascading elitism algorithm, a multi-objective
artificial evolution technique, for both player modeling and track generation. The
player modeling was optimized on three fitness objectives, and the results showed
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promise in resembling human behavior. They then proceeded to generate person-
alized race tracks for the player models. To tailor the tracks to each individual,
they break down the concept of ”fun” during gameplay into discrete elements. This
approach led to the definition of three distinct fitness objectives, which they then
optimized for using the cascading elitism algorithm. The results showed promise in
generating personalized tracks and, thus, transferability to our domain. However, it
has fewer requirements and a much simpler 2-D environment.

SceGene: Bio-Inspired Traffic Scenario Generation for
Autonomous Driving Testing

Liet al. [21] argues in SceGene: Bio-Inspired Traffic Scenario Generation for Autonom-
ous Driving Testing that comprehensive tests are necessary to discover potential vul-
nerabilities in autonomous driving systems. Such extensive testing in the real world
requires several years, whereas the efficiency could be improved dramatically in a
simulation-based environment. To generate enough scenarios for training, Li et al.
introduce SceGene, a biologically inspired search-based algorithm for traffic scenario
generation [21]. The algorithm encodes traffic scenarios as genotypes and optimizes
them through genetic operations on a set of requirements. They achieve promising
results, successfully generating diverse scenarios suitable for training autonomous
systems. The method shows similarities to our case in generating simulator-based
traffic scenarios. Still, it differs in focusing on generating a diverse range of scen-
arios suited for training compared to the personalization demands that come with
our objective.

Online level generation in Super Mario Bros via learning constructive
primitives

Shi and Chen [35] propose to generate content procedurally utilizing a hybrid between
generate-and-test and constructive methods to create levels in Super Mario Bros.
They introduce the notion of constructive primitives (CP’s), which in essence, are
predefined quality building blocks for the game environment. To learn these CP’s
through active learning, they train a binary classifier in the form of a weighted
random forest (WRF). This WRF is then used to produce the CP’s through a
generate-and-test method. Once the CP’s quality is satisfactory, the complete pro-
cedural levels can be constructively generated online by sequences of CP’s with a
simple algorithm. The constructive algorithm works by receiving some specified
values for controllable parameters, which in turn determine the values of important
content features. These content features impose some restrictions to which sequences
of CP’s are valid and ensure that the resulting game levels are satisfactory. Shi and
Chen successfully managed to showcase the potential of combining predefined qual-
ity building blocks into an acceptable game world. When compared to our objective,
the method has some notable shortcomings, but the core idea of sequencing building
blocks might be applicable.
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Integrated Approach to Personalized Procedural Map
Generation Using Evolutionary Algorithms

Raffe et al. [32] investigates experience-driven procedural content generation of maps
in a unity-based 3D action-shooter game with evolutionary algorithms. The paper
decomposes the optimization process of maps into two integrated searches. The two
processes are geometry optimization and content density optimization. The goal of
the game is to get from one end of a given map to the other without succumbing
to enemies scattered around the map. When generating the geometry of a map,
they represent it as an n-ary tree structure, where each node represents a room and
each edge a corridor between rooms. In the geometry optimization process, they
utilize a genetic algorithm. Once the geometry scores sufficiently well, they proceed
to optimize content density. The possible content is divided into sub-types, and
each room has discretized properties for each sub-type that can be set to either
none, low, medium, or high. A compositional pattern-producing network then cal-
culates the content. Furthermore, they frame player modeling as a content-based
recommender system, where a classifier is trained on evaluations given by the player
previously and subsequently used to present the player with the most suited game
levels. The method described shows similarities to our domain in terms of creat-
ing levels tailored to individuals but differs in the requirements for personalization.
They also determine the density of content through discretized properties, which
could be relevant to our objective.

Toward supporting stories with procedurally generated game worlds

Hartsook et al. [14] propose a technique for automatically generating fully playable
computer role-playing games. To achieve the desired result, they introduce the
concepts of islands and bridges. Islands are areas in which meaningful actions take
place, whereas bridges are essentially transport stages where more or less random
incidents occur. They utilize an offline search-based approach and employ a genetic
algorithm to build environments consisting of a set of islands and bridges. The
fitness function is an evaluation criterion that reviews both the players’ preferences
through subjective PEM, as well as the realism decided by a transition graph. The
transition graph states how likely it is that two subtypes of islands and bridges
are adjacent. The approach showcases how search-based models can optimize for
personal preferences and presents the notion of islands and bridges. These concepts
might have relevance to our objective, particularly addressing research question one
and research question two.

Using gameplay semantics to procedurally generate player-matching game
worlds

Lopes et al. [14] presents a semantic generation framework for creating player-
matching game worlds in adaptive games [25]. The framework integrates behavior
and experience modeling, content correlation, and procedural content generation.
The chosen game for implementation is Stunt Playground, a sandbox game where

22



players can perform stunts in an arena. The behavior modeling captures the player’s
style using heuristics such as distance in the air, time in the air, average speed, and
number of flips. The experience modeling focuses on maximizing the fun factor,
considering heuristics like initial fun value, difference between behavior scales, re-
spawns, and time stopped. Content correlation tracks the relationship between
gameplay experience and observed content. The gameplay semantics, defined in the
semantic library, allow designers to specify the gameplay value of different entities.
The retrieval process matches player behavior and experience with semantic game-
play descriptions to generate player-matching content. The semantic layout solver
is employed for post-retrieval content generation, using placement rules and object
features to determine valid locations for entities in the game world. The integra-
tion of the semantic generation framework with Stunt Playground demonstrates the
practical application of adaptive gameplay and provides insights into the potential
of adapting game worlds based on player behavior and experience. Lopes et al. in-
troduces a novel approach to experience-driven content generation but differs from
the objective stated earlier in this thesis by focusing on fun instead of learning when
generating the game world.

A semantic generation framework for enabling adaptive game worlds

In A semantic generation framework for enabling adaptive game worlds, Lopes and
Bidarra introduces a framework for adaptive game worlds based on Player and Ex-
perience Models. Lopes and Bidarra defined adaptive games as games that possess
the ability to perceive and understand how players interact with them, enabling them
to dynamically adjust and adapt to cater to the individual in-game requirements
and objectives of these players, thus enhancing the overall gameplay experience.
The framework introduced can be seen in figure 4.1. It consists of 5 components,
Player and Experience Models, Game Observer, Content Utility Model, Generator,
and a Semantic library [23].
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Figure 4.1: Generation framework
[23]

Game World

The paper describes two simulated scenarios: a First Person Shooter game and
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a driving simulator. The scenario with the driving simulator represents a serious
game where a student drives around in a game world and executes instructions
from a driving instructor, where instructions are chosen based on the student’s skill
level. The framework’s application in this scenario touches upon the two research
questions, RQ1 and RQ3, but does not touch upon research question RQ2.

A semantic approach to patch-based procedural generation of urban road
networks

Teng and Bidarra [37] propose a procedural method for the generation of urban
road networks using patch-based techniques and geometric graphs. Their model
segregates road networks into main and local streets, each fulfilling different roles.
A parametric graph-growing algorithm is employed for main-street generation based
on various parameters. The local-street generation phase involves connecting initial
patches to main streets and expanding the network iteratively. A queue of poten-
tial vertices is maintained, and feasible patches are selected and appended based
on constraints. The selection process considers user-defined parameters and the
propagation direction. The method is highly dependent on the semantics of patches
described in the paper. Semantics is used to represent the features needed for con-
trollability of the road generation, and are classified into vertex, edge, and patch
categories. Patch examples are shown in figure 4.2. This paper may provide helpful
insight to answer research question R1 introduced in section 1.2 but does not intro-
duce player modeling or personalization needed to satisfy research questions R2 and
R3.
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Figure 4.2: Example of patches
[37]
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Challenge Balancing for Personalized Game Spaces

In Challenge Balancing for Personalized Game Spaces Bakkes et al., explore the
use of Al to personalize game environments for increased player participation and
enjoyment [3]. It focuses on personalizing the game space for individual players with
regard to experienced challenges, which aligns with the concept of experience-driven
procedural content generation (EDPCG). Three aspects of this personalization in-
clude challenge balancing, player modeling, and space adaptation. Challenge balan-
cing refers to adapting the game’s challenge level to a player’s skills, the term player
modeling refers to establishing models of player behavior, and space adaptation
refers to the modification of the game space in response to the user’s experience.
The researchers apply these concepts to an enhanced version of the game Infin-
ite Mario Bros, focusing on procedural content generation to optimize the player’s
individual experience in real-time gameplay. This research proposes a method to
personalize the difficulty of video games based on implicit feedback from players
without disrupting the gameplay. The process is divided into three phases: (1)
learning a global safe policy offline, where the model labels gameplay sessions with
human participants to establish an estimate of the player’s preferred challenge level,
(2) learning a feedback model offline, where a random forest decision tree classifier
is used to map gameplay observations to estimates of the player experience, and (3)
online personalization during gameplay, which uses the previously learned feedback
model to adjust the game’s difficulty based on the player’s interactions. A user
abandonment model is also integrated to enhance state-space exploration, enabling
the system to rapidly adapt to individual players’ preferences. Bakkes et al. intro-
duces an approach to challenge balancing that is relevant to research question RQ3.
However, it does not explicitly discuss learning in serious games or the semantic
representation of content to answer research questions RQ1 or RQ2.

Scenario generation for emergency rescue training games

Hullett and Mateas presented a generator for constructing emergency rescue scen-
arios with the use of PCG [16]. They envisioned a serious game where rescue workers
could train on realistic scenarios to evaluate hazards, determine the correct approach
to the situation, and identify potential areas victims could be trapped. To increase
the replayability of their scenarios, they looked at methods to dynamically generate
scenarios with a high degree of internal consistency that provided training to satisfy
given pedagogical goals. Paramount for the generation was that the PCG needed
to produce content that seemed realistic in terms of appearing like a believable res-
cue scenario while still maintaining some degree of randomness. They proposed a
solution that was built upon a hierarchical task network and qualitative physical
reasoning. The system was provided a representation of an uncollapsed structure
before applying the qualitative physical reasoning to end up with a fully collapsed
rescue scenario. This paper presents an application of procedural content generation
in a serious game but lacks the individualization required for our subjective.
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Towards player adaptivity in a serious game for conflict
resolution

Grappiolo et al. [11] explain how they created a serious mini-game for conflict resol-
ution using EDPCG. The goal of the game is to avoid and resolve conflicts between
NPCs to aid children in acquiring the soft skill of resolving conflicts. This is done
by distributing resources between the various groups of NPC’s. The mini-game re-
lies on EDPCG and employs a search-based approach to content generation. More
specifically, they use a genetic algorithm to generate subsequent levels with differ-
ent difficulties. Whenever a level is completed, the model assesses the skill level of
the student and optimizes the new level with a personalized fitness function. The
fitness function is based on an Artificial Neural Network that attempts to approx-
imate the unknown function between game-level elements and player cooperation.
There exist several similarities between this method and the requirements of our
objective. They employ PCG in a serious game with individualization and difficulty
adjustment. However, due to the lack of training data, using an ANN would not be
a feasible solution to research our objective.

Particle Swarm Optimization for procedural content
generation in an endless platform game

Grappiolo et al., Hartsook et al., Raffe et al. utilize different variants of (Genetic
Algorithms) GA’s for PCG, but Pontes et al. argue in Particle Swarm Optimization
for procedural content generation in an endless platform game [31] that another
search-based algorithm, namely Particle Swarm Optimization (PSO) can outperform
GA’s in terms of both computational demands and performance in certain domains.
In this case, the domain is a simple endless 2D platform game. The goal of the game
is to avoid death by falling into holes or landing on spikes situated on the map, as
well as gathering clock items to keep the clock from running down. The fitness for
each particle was calculated by adding a penalty for each part of the course that
was impossible with the game mechanics, as well as measuring how close it was to
the desired difficulty level. They also showed that the algorithm ran fast enough
to generate new content online, making the game never-ending. The attribute of
adapting content to the desired difficulty and the possibility of generating content
efficiently enough to make the algorithm run online are both interesting discoveries
presented by this paper. The environment is, however, significantly less complex
compared to ours, possibly limiting the transferability of the online attribute.
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Table 4.2: Comparison of PCG applications
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Shi and Chen [35] No No Constructive Weighted Online
Random Forests
Hartsook et al. [14] No Subjective Search-based Genetic Algorithm Offline
Raffe et al. [32] No Subjective, Search-based Genetic Algorithm, Offline
Recommender Compositional
System Pattern-producing
Network
Pontes et al. [31] No No Search-based Particle Swarm Online
Optimization
Hullett and Mateas [16] | Yes No Constructive Hierarchical Offline
Task Network
Grappiolo et al. [11] Yes Gameplay-based Search-based Genetic Algorithm, Offline
Artificial Neural
Network
Teng and Bidarra [37] No No Constructive Breadth-First Search | Offline
Calimeri et al. [5] No No Constructive Answer Set Offline
Programming
Togelius et al. [38] No Gameplay-based | Search-based Cascading Elitism Offline
Algorithm
Li et al. [21] No No Search-based Genetic Algorithm Offline
Lopes et al. [25] No Gameplay-based Constructive Semantic Layout Offline
Solver
Bakkes et al. [3] No Objective, Search-based Gradient Ascent Online,
Subjective Offline
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4.2.2 Personalized Learning

This subsection comprises a discussion of papers related to personalized learning,
and a comparison can be found in table 4.3. The distinctions used are User Profile,
Intelligent Tutoring System (ITS), Methods and Online Adaptation. User profile
relates to how the system updates and creates the student’s information, I'TS con-
cerns whether the paper labels the system accordingly, whether methods describe the
theoretical concepts utilized, and online adaptation refers to if the system facilitates
updating the learning recommendations during run-time.

Adaptive Tutoring on a Virtual Reality Driving Simulator

Ropelato et al. [33] introduce an adaptive tutoring system within a virtual reality
driving simulator. To create the game world, the system utilizes Unity as a 3D
game engine and employs manual creation and CityEngine to generate realistic 3D
content, including a city environment. It incorporates Al-controlled cars to simulate
real traffic scenarios and applies an Intelligent Tutoring System (I'TS). This tutoring
system guides drivers through a sequence of activities tailored to their skill level,
resulting in an interactive and effective training system for enhancing driving skills.

The ITS utilizes the concept of the Zone of Proximal Development (ZPD) to optim-
ize the training sequence of various driving activities. These activities are organized
based on exercise type and difficulty level and are used to continuously evaluate the
driver’s performance in different activities. The system selects the following activity
to be trained based on the driver’s performance. It provides directions to the next
destination by finding the closest location where the chosen activity can be chosen
by using Dijkstra’s shortest path algorithm. By adapting the training sequence,
the ITS ensures that the driver is consistently challenged at an appropriate level,
maximizing their learning potential. The system incorporates predefined activities
that are relevant to driving skills, such as stable driving on straight and curved
roads, turning at junctions, complete stops, maintaining a constant speed, and re-
acting to unexpected situations where each activity is evaluated based on specific
criteria. In contrast to the objective of this thesis, where the goal is to create an
adaptive tutoring system by generating a personalized game world, the paper by
Ropelato et al. focuses on developing an adaptive tutoring system that guides the
student through a static game world. The emphasis lies in providing guidance and
support within the existing game environment rather than dynamically generating
personalized game worlds for individual students. Both approaches aim to enhance
the learning experience, albeit with different strategies and objectives. In summary
Ropelato et al. introduces an Intelligent Tutoring System that optimizes the training
sequence of driving activities based on a student’s skill level, which is relevant to
the overall objective of this thesis.
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Personalized e-learning system using Item Response Theory

Chen et al. introduces an architecture for a personalized e-Learning System based
on Item Response Theory called PELIRT. The system consists of front-end and
back-end components where the front-end is represented by an Interface Agent that
handles communication with learners and records their behavior, while the back-end
analyzes learner abilities and selects appropriate course materials based on estimated
abilities. The system includes an interface agent for learner interaction, a personal-
ized agent with feedback and course recommendation components, and databases for
user accounts, user profiles, and course materials. The difficulty parameters of course
materials are adjusted through a combination of expert judgment and collaborative
voting by learners, and learner abilities are estimated using maximum likelihood
estimation. The course recommendation agent recommends suitable course materi-
als based on learner abilities and the information function, which is based on IRT.
Overall, PELIRT offers a personalized learning experience by adapting the course
materials to each learner’s ability level. The approach introduced by Chen et al.
implements an architecture for personalized learning that adjusts the difficulty of
the content provided to the learner, which is relevant to the research questions RQ1
and RQ3.

Constructing a personalized e-learning system based on genetic algorithm
and case-based reasoning approach

Huang et al. introduces a novel approach to using mastery learning, genetic al-
gorithms, and case-based reasoning to create a personalized e-learning system called
PLS-ML. Mastery learning is an educational method that focuses on varying the
learning material based on student ability and repeats learning material until the
students have learned the material, which is referred to as reaching the mastery level.
If learners fail to reach the mastery level in a unit, the system suggests personal-
ized curriculum sequencing using a genetic algorithm (GA). If they achieve mastery,
they move on to enrichment activities with additional topics. The results of each
curriculum sequencing and formative assessment are stored in case-based reasoning
(CBR). When learners pass the second formative assessment, they progress to the
next unit. The estimation of curriculum difficulty parameters involves a curriculum
modeling process where teachers analyze the primary concepts and design test items
for each concept. Pre-tests are conducted with examinees, and item response theory
and statistics-based BILOG programs are used to determine the difficulty paramet-
ers for the test items. The curriculum is designed based on the content of the test
items, assuming that the difficulty of the curriculum corresponds to the difficulty of
the test item, and a curriculum relation degree is calculated using the vector space
model (VSM). Each curriculum is represented as a vector, and its relevance to user
queries is measured through matching functions. Overall, the PLS-ML system aims
to provide personalized curriculum sequencing and materials to learners based on
their individual requirements, which could be transferable to personalizing driving
lessons.
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A Heuristic Algorithm for planning personalized learning paths for context-
aware ubiquitous learning

Hwang et al. [17] argue in A Heuristic Algorithm for planning personalized learn-
ing paths for context-aware ubiquitous learning that students might fail to acquire
the intended amount of knowledge in a conventional authentic learning environment
due to a lack of attention, quality information, and personalization. They propose a
context-aware ubiquitous learning (u-learning) environment to circumvent this un-
fortunate consequence. Such an environment refers to a learning environment that
leverages technology to provide educational experiences that are personalized and
adaptive. Hwang et al. highlights two key challenges that need to be addressed to
optimize learning. The first relates to finding an ideal order to learn the objectives,
hereby facilitating the student to understand connections in the field of study. The
next challenge addresses the fact that learning quality drops significantly when too
many people are educated simultaneously in real-world environments. In this partic-
ular case, they propose a heuristic algorithm for determining a personalized learning
path taking both challenges into account. This process comprises two key consid-
erations. They start with calculating the relevance between each pair of learning
objectives and proceed to find an optimal path through the learning environment
framing it as a compound traveling salesman problem considering both objective
relevance and objective crowding. When testing the implementation in real-world
environments, the initial experimental results showed good promise in motivation,
interactivity, and effectiveness. Related to our research objective, this paper ad-
dresses the customization demands, especially in line with RQ1, which examines
the most effective approaches to maximize learning outcomes. In summation, while
the crowding issue described here may not be significant in a virtual environment,
the relevance of the objectives might have transferable implications.
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Table 4.3: Comparison of Personalized learning
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Ropelato et al. [35] | Gameplay Yes Djikstra’s, Yes
Feedback Zone of Proximal
Development
Chen et al. [7] Gameplay Yes Item Response Yes
Feedback Theory
Huang et al. [15] Gameplay Yes Item Response Yes
Feedback Theory,
Genetic Algorithm,
Case-based
Reasoning
Hwang et al. [17] Questionnaire No Heuristic Object Yes
Relevance,
Traveling Salesman

4.3 Summary

The literature presented in this chapter covers various studies and approaches re-
lated to procedural content generation (PCG) and personalized learning in multiple
different contexts. Concerning PCG, the reviewed articles highlight different al-
gorithms and frameworks for generating game content. The methods introduced
cover various approaches relating to the taxonomy from section 3.4 and present ap-
plications within the context of serious games and personalization. Regarding the
literature on personalized learning, the focus is on optimizing individual learning
outcomes through adaptation to individual needs and preferences. The articles il-
lustrate different methods for enhanced learning outcomes and optimal guidance. In
the two lists below, all of the key findings are highlighted.

Procedural Content Generation

Semantics Calimeri et al. [5], Lopes et al. [25], Lopes and Bidarra [23] and
Teng and Bidarra [37] all demonstrate the potential of using semantic
rules and relationships to generate content successfully.

Personalized EA Togelius et al. [38], Hartsook et al. [14] and Raffe et al. [32]
employ various search-based evolutionary algorithms to generate person-
alized content for a given individual procedurally.

Traffic Scenario GA Li et al. [21] establishes the capability of using a ge-
netic algorithm to generate traffic scenarios by encoding the traffic scen-
arios as a genotype.
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Quality Building Blocks Shi and Chen [35] and Teng and Bidarra [37] in-
troduces the notion of quality building blocks. Even though they are
created differently, they both prove the value of utilizing these in content
generation.

Semantics and Personalization Lopes et al. [25] and Lopes and Bidarra
[23] demonstrate two possible methods to employ semantics for tailoring
content to player models.

Serious Games Hullett and Mateas [16] and Grappiolo et al. [11] showcase
two applications of PCG to serious games with success.

Personalized Learning

Dijkstra’s Optimal Path Ropelato et al. [33] presents a method for finding
an optimal route with respect to learning outcome through the environ-
ment utilizing Dijkstra’s algorithm for the shortest path.

Item Response Theory Chen et al. [7] and Huang et al. [15] introduce the
idea of Item Response Theory for deciding which skill to train next.

Objective Relevance Hwang et al. [17] discusses the importance of ordering
learning objectives and proposes a heuristic approach to solve this.

Overall, the existing literature forms a strong foundation by exploring various ap-
proaches that offer valuable insights into the procedural generation and customiz-
ation of game content. When comparing these studies to our research objective of
examining the feasibility of utilizing WAY’s Unity-based simulator to automatically
generate personalized virtual driving lessons based on individual skill levels, we find
that they touch upon certain aspects of our objective. However, none of them spe-
cifically address both the generation and optimization of content to enhance learning
outcomes. Furthermore, it is worth noting that there is no such previous research
conducted in collaboration with WAY, which adds to the novelty of our work. Thus,
this literature review serves the dual purpose of providing an overview of the field
and stating the novelty of our research.
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Chapter 5

Model

This chapter provides an overview of the system requirements and introduces the
architecture for our proposed system. The architecture is divided into four com-
ponents: Player Experience Model, Content Quality, Content Representation, and
Content Generation. Building upon the concepts established in earlier chapters, the
chapter focuses on developing a system capable of addressing the research questions
outlined in section 1.2. Additionally, the chapter delves into calculating an optimal
route through the generated game world. Overall, this chapter lays the groundwork
for the implementation and functionality of the system.

5.1 Requirements

A dynamic representation of the world and its building blocks is necessary to gen-
erate personalized traffic situations and subsequently answer the research questions
defined in section 1.2. When designing an architecture for this purpose, we have
identified six requirements that must be fulfilled.

R1 Each skill trained by the skill model must be effectively trained by at least one
predefined traffic situation within the system.

R2 The system should be capable of accurately representing all traffic situations.

R3 The system should dynamically generate traffic situations based on the output
of the skill model, adapting to the driver’s proficiency

R4 The system should ensure that the student encounters the desirable traffic situ-
ations in an order that ensures optimized learning.

R5 The system should be able to adjust its content in real-time to adapt to the
skill level of the student.
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R6 The difficulty level of each traffic situation should be adjustable to align with
the driver’s skill level, ensuring an appropriate level of challenge.

These system requirements provide a solid foundation for building a model capable
of answering our defined research questions. More specifically, system requirements
R1 and R2 relate to RQ2, R3, R4 and R5 relate to RQ1 and the remaining
system requirement R6 is related to RQ3.

5.2 Architecture

To design a system that can meet the requirements introduced in the previous sec-
tion, the architecture that is proposed in this thesis is based on the incorporation
of the four components from Experience Driven Content Generation introduced in
section 3.5, namely Player Experience Model, Content Quality, Content Represent-
ation, and Content Generation. Along with these components, we aim to follow
the five design principles introduced in section 3.1 to maximize student learning.
The system is required to be implemented in WAY’s virtual simulator. Consid-
ering the taxonomy presented in section 3.4, our proposed solution addresses the
task of generating traffic situations for driving students using offline, constructive,
and stochastic content generation. Offline generation, in this context, refers to the
process of generating an entire lesson before the student starts the simulator. The
characteristics of the Skill Model determine the use of offline generation, in contrast
to online generation. As mentioned in section 2.1, the skill level inference by the
Skill Model is done after a lesson ends and not in real-time. Therefore, the most
relevant generation type is offline generation. To promote variation, the system will
use stochastic generation. By incorporating randomness, it introduces diversity and
unpredictability into the generated outputs. This variability allows for the explora-
tion of different possibilities and the generation of unique, customized results. The
system will generate necessary content that is essential for the simulation, focusing
on elements directly relevant to the objectives and challenges. An overall architec-
ture of our proposed system can be seen in Figure 5.1. The Skill Network introduced
in section 2.3 provides a student’s skill levels to the Player Experience Model, which
is then fed to the Content Generator. The Content Generator calculates a utility
for each tile in the Tile Database using the evaluation function and the skill levels
from the player experience model. The estimated utilities are then used to generate
a personalized lesson that the student can play. After a lesson, new skill levels are
inferred, and the process can be repeated.

34



Update Skill Network

Skill Network Player Experience Model

Content Generator

Tile Library

Personalized lesson

Figure 5.1: Model Diagram

5.2.1 Player Experience Model

In section 3.5, the concept Player Experience Modeling (PEM) and the three dif-
ferent types: subjective, objective, and gameplay-based PEM are introduced. Our
proposed solution utilizes gameplay-based PEM to model the player experience. The
data on which we build our PEM come from the WAY skill model, as described in
Section 2.3. The skill network evaluates the current driver on 52 different skill met-
rics in real time based on how the student is driving and gives the student a score
between 0 and 1 for each skill. Due to limited time, we have chosen to narrow the
set of skills down to a subset of 15 skills, where a sample of the skills with belonging
skill levels can be seen in table 5.1. The skill levels provide an accurate represent-
ation of the student’s current skill level and serve as the foundation for creating
an accurate Player Model. In order to personalize traffic situations in the context
of driving skills, it is necessary to consider not only specific skills but also general
aspects. This can be achieved by incorporating content that is not directly tied to
a specific skill but affects multiple skills. To account for this general skill level, the
player model also contains the parameter Average Skill Level, which comprises the
average of all skill levels. This parameter provides a measure of the student’s overall
proficiency in driving. By considering both specific skills and the general skill level,
a more comprehensive evaluation of the student’s driving abilities can be obtained,
allowing for a more personalized and accurate representation of their skillset.
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Name Skill Level

new_start_mastery 0.553
driving_curves_mastery 0.893
tunnel_driving_mastery 0.789
gap_chance_mastery 0.378
intersection_mastery 0.867
yielding_rules_mastery 0.643
traffic_lights_rules_mastery 0.512
queue_driving_mastery 0.940
risky_animal_crossing_handling_mastery 0.489
highway_driving_mastery 0.278
overtake_mastery 0.448
speed _limit_mastery 0.992
roundabout_mastery 0.150
risky_pedestrian_handling mastery 0.489
emergency_brake mastery 0.250

Table 5.1: Example of skill levels returned from the Skill Network

5.2.2 Content Representation

To satisfy the system requirements R1 and R2, an accurate content representation
must be created to represent the game content in an efficient way that allows for
the dynamic creation of lessons. With that in mind, the following components
and semantics are proposed. The world is represented as a lesson which can contain
various amounts of chunks, which in turn consist of multiple tiles. The class diagram
in figure 5.2 shows an overview of the individual components and their semantics.

Tile

In the game world constituting a driving lesson, tiles are the fundamental building
blocks. Each tile is a self-contained unit that encapsulates a specific scenario and is
designed to represent various traffic situations the students could encounter. Inspired
by the semantics introduced in section 4.2.1, the semantics of a tile, as seen in table
5.2, is used to represent the name of the tile, the locations where roads are entering
or exiting the tile R, the specific skills trained by the tile S, its associated difficulty
D, and the different distractors the tile can contain d.

Class Tile:

Name N

Incoming/outgoing road(s) R
Can train skill(s) S

Difficulty D

Can contain distractor(s) d

Table 5.2: Tile class schema

36



Student

+ length: number

n

Has the skill levels

|
SkillLevel

+ level: number

Lesson

+ length: number

Contains

|

Chunk

+ width: number
+ depth: number

1.0

1 + density: number
+ baseTile: Tile
K
Belongs to
Contans Cotains baseTile
n
|
Skill
Tile
+ name: string 0.
+ amouniTrained: number . . | ¥ name
1. 1.5 4 difficutty -«
-~ Trains | + outgeingRoads
+ distractors

Figure 5.2: Class diagram

Where roads are exiting and entering a tile is used when tiles are combined into a
chunk to ensure that the game world is constructed in a cohesive and interconnected
manner. Each tile in the game serves the purpose of training the player in at least
one essential driving skill. The tile semantics cover what skill a given tile trains and
with what efficiency it trains the given skill, later referred to as the tile’s learning
efficiency of a given skill. To accommodate every student’s general skill level, a
predetermined difficulty, represented by a number between 0 and 1, is assigned to
each tile. The is set to either one of the values from table 5.3.

Difficulty Level

Beginner 0.15
Novice 0.30
Intermediate  0.45
Experienced  0.60
Expert 0.75

Table 5.3: Tile Difficulty

This allows for adjustment of the game world and its challenges based on the player’s
proficiency, ensuring an appropriate and engaging experience that aligns with their
skill level. A tile can also contain one or more distractors. Distractors are additional
elements that can be added to a tile to increase its difficulty. With these values,
the compatibility between the tiles and the different distractors can be controlled.
The implemented distractors are traffic and pedestrians. By designing tiles this
way, we can create individual pieces of the game world that create a consistent
experience. Examples of tiles can be observed in figure 5.3, while the instantiation
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of the available tiles is presented in Table 5.4. The column labeled Outgoing Roads
provides an overview of the initial directional configurations, but it allows for the
rotation of tiles to accommodate the generated lesson.

Tile Difficulty Outgoing Roads Distractors
U-Turn Parking Lot 0.15 Down Pedestrians
T-Intersection Traffic Lights 0.45 Down, Left, Right Pedestrians, Cars
X-Intersection Traffic Lights 0.45 Up, Down, Left, Right Pedestrians, Cars
Turn 0.15 Down, Left Pedestrians, Cars
T-Intersection 0.30 Down, Left, Right Pedestrians, Cars
Straight 0.15 Up, Down Pedestrians, Cars
Roundabout 0.45 Up, Down, Left, Right Pedestrians, Cars
Straight Curved 0.15 Up, Down Pedestrians, Cars
T-Intersection Curved 0.30 Down, Left, Right Pedestrians, Cars
Turn Curved 0.15 Down, Left Pedestrians, Cars
T-Intersection Yield 0.45 Down, Left, Right Pedestrians, Cars
T-Intersection Stop 0.45 Down, Left, Right Pedestrians, Cars
X-Intersection 0.30 Up, Down, Left, Right Pedestrians, Cars
X-Intersection Crosswalk 0.45 Up, Down, Left, Right Pedestrians, Cars
Straight Road Crosswalk 0.30 Up, Down Pedestrians, Cars
Risky Animal 0.60 Up, Down -
Highway 0.15 Up, Down Cars
Tunnel 0.30 Up, Down Cars
Overtake 0.45 Up, Down -

Queue 0.30 Up, Down -
Emergency 0.75 Up, Down Cars
Advanced Highway 0.60 Up, Down Cars

Table 5.4: Tile Details

Creating tiles as building blocks in Unity largely relies on the existing method
employed by WAY, as described in 2.2. The physical roads are generated with
EasyRoads3D, and WAY’s in-house software is utilized to create the non-physical
road network to provide consistency for cars and pedestrians.
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(a) T-Intersection Traffic Light (b) Parking Lot

(¢) Emergency (d) T-Intersection Curved

Figure 5.3: Example of Tiles

Chunk

In section 3.1, the design principle Manage the learner’s cognitive load is introduced.
To optimize learning, learning material should be organized into smaller chunks that
gradually become more complex. To comply with this, the component chunk is
introduced. A chunk consists of multiple tiles organized in a grid. The tiles within
the chunk form a road network that the student can traverse, and where the focus
is to train on a limited set of skills. Figure 5.4 shows examples of two chunks.

Another reason to introduce the concept of chunks is that tiles alone are not enough
to answer the research question RQ2. To create traffic situations that train spe-
cific skills, such as the skills overtake_mastery and tunnel_driving_mastery, or to add
traffic that seems coherent and natural, consistency is needed over several tiles, and
chunks are used to obtain this consistency. In addition, using chunks to maintain
consistency over multiple tiles is also beneficial to create traffic situations that re-
quire roads with multiple lanes. To avoid rapid changes in the number of lanes
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(a) Example of Chunk training highway skills

(b) Example of Chunk training intersection skills

Figure 5.4: Example of Chunks

between different tiles, whole chunks can be generated with the same number of
lanes to maintain consistency and continuity. To ensure that the difficulty level
of driving lessons matches the user’s skill, the chunks can be adjusted by chan-
ging parameters such as the amount of traffic and the occurrence of pedestrians.
Choosing the amount of traffic entails deciding the number of vehicles and their
movement patterns, taking into account factors such as traffic flow, congestion, and
road capacity to help simulate realistic traffic scenarios. Adjusting the occurrence of
pedestrians involves determining the amount, their behaviors, and their interactions
with the vehicles and the environment. Including pedestrians adds another layer
of realism and complexity to the simulation. Traffic and pedestrians can then be
added to all tiles within the chunk that are compatible with the different distract-
ors. By modifying these parameters, the model can introduce more distractions
and, thereby, the amount of stress imposed on the student, subsequently enhancing
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the level of difficulty for the task without directly targeting any particular skills. A
proposed mapping between general skill, traffic, and pedestrian levels can be seen
in table 5.5. A chunk’s width, length, and density can also be adjusted. The width
and length determine how large each chunk will be and, subsequently, how fast a
student can move between different chunks. The density in this context refers to
how dense traffic situations are placed in the game world. The density is used to
increase the probability of certain traffic situations. When the grid that organizes
the tiles is created, tiles with three or four exit points, such as t-intersections, x-
intersections, and roundabouts, demand a higher density because they require more
roads. Because of this, increasing the density increases the occurrence of those tiles.

General skill level Traffic Pedestrians
Beginner (0 - 0.3) None None
Intermediate (0.3 - 0.45) Low None
Advanced (0.45. - 0.6) ~ Moderate Low
Expert (0.6 - 1) High Moderate

Table 5.5: General skill level and corresponding obstacle levels

Lesson

A Lesson in our proposed model is a sequence of chunks organized to maximize the
learning outcome for a student. As discussed earlier, each chunk focuses on training
a limited set of skills, making it crucial to arrange these chunks strategically in
a lesson to provide comprehensive and incremental learning experiences. Several
principles guide the organization of chunks into lessons. First, lessons are designed
to have an appropriate length. Lessons that are too short may not provide enough
practice, and the loading time between lessons could be bothersome. Lessons that
are too long may lead to fatigue and loss of focus. In addition to the lack of focus,
the skill model is only updated after each lesson. The result of that is that the skill
levels will be increasingly outdated the longer the student drives. In figure 5.5, four
lessons with different lengths can be seen, with their corresponding number of chunks
and estimated duration in minutes. An optimal path, which will be introduced in
section 5.3, true the lesson is also visualized.
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(a) Lesson with 3 chunks, 4.5 minutes estimated duration.

(b) Lesson with 6 chunks, 9 minutes estimated duration.

(c) Lesson with 9 chunks, 13.5 minutes estimated duration.

(d) Lesson with 15 chunks, 22.5 minutes estimated duration.

Figure 5.5: Different lesson lengths
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Second, the sequence of chunks in a lesson is designed to provide variety to keep
the learner engaged. The lesson design also considers the interleaving of different
skills, in line with research showing that interleaved practice can lead to better
learning outcomes than blocked practice [10]. Combining these principles enables
the generation of lessons that are engaging, effective, and personalized for each
learner’s skill level. An example of a generated lesson can be seen in figure 5.6

5.2.3 Content Quality

To decide what constitutes high content quality, a high-quality tile is defined as one
that promotes the optimization of learning and replayability. A set of equations
that maps the skill levels, the available tiles, and their corresponding difficulties to
a scalar that reflects the tile’s suitability is presented.

The initial task involves designing a utility function that effectively captures the
compatibility between skill levels and previously chosen tiles. This utility function
plays a key role in determining which skills should be prioritized. To facilitate
understanding of the formula, the following parameters are introduced:

e U, represents the utility for a skill s.

e M, represents the student’s mastery of the skill s. This number is extracted
from the output of the skill model and is a continuous number between 0 and 1,
where 0 represents no experience with that skill, and 1 represents full mastery.

e 1 represents the weight with which the inverse mastery should be amplified.

e F, represents the frequency of skills s. Fj is the accumulated amount that
this skill has been trained in the lesson. This parameter is added to avoid
repetition.

e v represents the weight with which a skill frequently chosen should be punished.
Increasing v promotes more diversity in skill representation.

Uy = (1= M)" — (F, x v) (5.1)

The utility Uy described in equation 5.1 consists of two terms. The first term contains
the inverted learning mastery parameter M, raised to the power of u. Taking the
inverse relates to calculating 1 - M, in this context and results in higher values for
skills in which the students perform poorly. This is exponentiated by u to amplify
this property further, creating a larger difference between high-mastery skills and
low-mastery skills. The second term consists of the skill frequency F times the skill
frequency penalty weight w. This expression is subtracted from the first to penalize
skills trained earlier in the lesson. Lastly, the method ensures that no skill can be
trained in succession, adhering to the interleaving introduced in section 5.2.2.
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Figure 5.6: Generated lesson

Next, we need to devise a method to rate tiles according to how well their level of
difficulty matches the students’ current mastery of the corresponding skills. The
following parameters serve as the foundation for this operation:
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B represents the difficulty alignment reward for tile .

e M, represents the student’s level of mastery of the skill ¢ that is trained with
the highest efficiency by tile t.

T, represents the difficulty d corresponding to the tile.

e Ny represents the reward or utility when the difficulty level matches the skill
level.

A represents the decay rate and decides how quickly the reward decreases.

By = No x e »IMo Tl (5.2)

Equation 5.2 determines the reward (; a tile ¢ should receive. The expression is
known as the exponential decay function. Ny determines the reward for identical
difficulty and skill level, whereas A represents the rate at which the reward decays.
The absolute value is applied to the difference between the tile’s difficulty 7, and
the student’s mastery of the main skill M, to ensure a positive number.

The remaining step comprises a measure for tile utilities, and subsequently, this set
of parameters is defined:

U, represents the utility U for tile t.

s € t represents all the skills that tile ¢ trains.

L4 represents the tiles learning efficiency of skill s. This continuous number
between 0 and 1 tells us to what degree this tile trains the given skill.

e n,; represents the number of skills n that tile ¢ trains.

Zset LS X US

s

U= 0+ (5.3)

The equation 5.3 determines a given tile ¢’s utility. The formula summarizes the skill
utilities Uy multiplied by the learning efficiency L, for each skill that tile ¢ trains.
This score expression is divided by the number of skills trained n; to penalize tiles
that train a large set of skills. Furthermore, the difficulty reward [, is added to
the score. The resulting scalar U; represents how well the given tile fits a student.
Lastly, similar to skill utilities, the interleaving concept is incorporated, ensuring
that the base tile isn’t selected successively.
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Lesson difficulty

To analyze if the content that is represented and generated is of the appropriate
difficulty level, to ensure that RQ3 is met, we need a way to set a difficulty score
for a given lesson. We use the average base tile difficulty as a metric to analyze
the difficulty of a given lesson. The average base tile difficulty is calculated by the
formula seen in equation 5.4, where the following parameters are used:

e [, represents the difficulty score for lesson L.
e T;a represents the difficulty of tile T;.

e T;p represents the number of distractors that are added to tile T. This number
is dependent on the average skill level and the data in table 5.5.

e w represents the weight that should be multiplied by the number of distractors.

Yoy TiarTiDxw

n

Lq (5.4)

5.2.4 Content Generation

Using the content representation proposed in Section 5.2.2 and the utility function
discussed earlier, we can combine tiles and chunks in various sequences while ad-
justing the difficulty levels. This allows us to create an optimal learning experience
tailored to the individual skill level of each student.

Dynamic Content

Although the majority of this chapter has focused on the generation of static content
in the form of tiles and chunks to construct consistent, drivable game worlds, the
lesson generation process also includes the generation of dynamic content. Dynamic
content refers to all types of content that is moving and interacting with the game
world except the car the student controls. This includes objects such as pedestrians,
vehicles of different sorts, and animals. In this system, dynamic content is separated
into two types: tile-based events and distractors.

Tile-Based Events Tile-based events are dynamic content that is located on a
specific tile, has a predefined path that it follows and starts to interact with
the world when the student is approaching the tile. Numerous skills in the
skill network require particular events to happen at the correct time to provide
students with the necessary situation for skill development. For instance,
the practical training of an overtaking maneuver necessitates a slow-moving
vehicle in front, complemented by an appropriately structured road conducive
to overtaking.
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In order to facilitate these tailored learning experiences, we have created a
variety of tiles such as Overtake, Risky Animal, Straight Road Crosswalk, X-
Intersection Crosswalk, and Queue as displayed in figure 5.7. Each of these
tiles is designed to trigger specific events when the student driver approaches,
providing the relevant scenarios needed for effective skill training.

(c) Crosswalk tile with pedestrian (d) Queue

Figure 5.7: Dynamic Tiles

Distractors Distractors are additional dynamic elements designed to introduce
complexity into the learning environment, thereby increasing the level of diffi-
culty. These distractors aim to emulate the unpredictability of real-world driv-
ing and stimulate higher-level cognitive processing in student drivers. We have
categorized distractors into two main types: traffic and pedestrians. These
distractors can be incorporated into any compatible tile, further enriching the
simulation environment and adding to the realistic driving experiences for the
student. By introducing distractors, the system can adjust its content to an-
swer the system requirement R6.

Through the inclusion of both static and dynamic content in the lesson-generation
process, we have sought to create a comprehensive, immersive, and effective driver
training environment. The interplay between these elements allows for a rich and
engaging experience that is tailored to the unique learning needs of each student.

Generating a Lesson

The process of generating a personalized composition of tiles and chunks is described
in algorithm 1. This algorithm outlines the steps in constructing a lesson considering
the available tiles, the student’s skill level, and the number of chunks that should be
included in the lesson. The first step is to identify the base tile to be included for
each chunk. The function GetBaseTile(tiles) is responsible for selecting the most
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appropriate tile based on factors such as the student’s skill level and previously
chosen tiles. The GetBaseTile function determines the most suitable tile from the
available tiles provided. This is achieved by calculating a "utility’” or value for each
tile, utilizing equations 5.1, 5.2, and 5.3. This process entails a series of operations,
with the parameters and equations defined below.

e S, represents the normalized probability for each skill S to be chosen as the
next skill to train.

e T, represents the normalized probability for each tile T' to be chosen as the
next base tile.

e D, represents the drawn skill based on the probabilities .S),.

e D, represents the drawn tile based on the probabilities 7,,.

s € S, represents every skill s in the skill network .S,,.

t € D, represents every tile ¢ that trains the drawn skill Dy

Us

=0

(5.5)

The initial step, depicted in Equation 5.5, involves normalizing the utilities U, ob-
tained from equation 5.1 for each available skill. This normalization process trans-
forms the utilities into skill probabilities S, which are then utilized in the following
step.

Dy ~ (81,82, ...,5,) (5.6)

These probabilities are subsequently utilized to randomly select the desired skill to
be trained next, as outlined in equation 5.6. Once the skill is determined, the tile
utilities U, are calculated for the tiles that facilitate training of the selected skill,
following the formulas presented in equations 5.2 and 5.3.

U,
T, = SN (5.7)

After all of the tile utilities U; are obtained, they are normalized using equation 5.7
to derive tile probabilities T}, for the purpose of tile selection.

Dy~ (T, T5,...,T),) (5.8)

Lastly, a base tile is determined using equation 5.8. This approach guarantees that
the higher the utility, the higher the probability of selection while still allowing for
randomness in the process.
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The drawn base tile subsequently serves as the foundation to generate a chunk us-
ing the GenerateChunk(baseTile, skillNetwork) function. Following this algorithm
allows for the creation of a personalized learning experience that combines relevant
tiles and chunks to align with the student’s abilities and learning objectives. This
approach maximizes the effectiveness of the learning process and enhances the stu-
dent’s overall educational outcomes. An example of a generated lesson can be seen
in figure 5.6.

Algorithm 1 Generate lesson

1: function GENERATELESSON(tiles, skillNetwork, numberOfChunks)
2 for i < 0 to numberO fChunks do

3: baseT'ile < GetBaseTile(tiles)

4: GenerateChunk(baseTile, skillNetwork)

5 end for

6: end function

Generating a Chunk

During the generation of a chunk, five key considerations need to be taken into
account. Firstly, the size of the chunk needs to be determined. The second consid-
eration pertains to the density of traffic situations. Thirdly, the amount of traffic
within the chunk must be considered. The fourth consideration is the presence of
pedestrians within the chunk, and lastly, it is essential to determine which tiles
should be included in the chunk. Determining which tiles should be included in-
volves selecting the optimal tiles to maximize the optimization of learning outcomes.
The procedure of generating a chunk is described in algorithm 2.

Algorithm 2 Generate chunk

1: function GENERATECHUNK (baseTile, skillNetwork)

2 density, size < GetChunkDimensions(baseTile)

3 traf fic, pedestrians < GetDistractors(skillNetwork)

4: grid < GenerateGrid(baseTile, skillNetwork, density, size)
5 return grid,traf fic, pedestrians

6: end function

GetChunkDimensions retrieves the density and chunk size directly from a base tile
configuration mapping, where a base tile constitutes the density and dimensions of
the corresponding chunk. The mapping between base tiles and chunk dimensions
is set to facilitate the generation of the base tile within the chunk. Typically, an
intersection-like base tile will have a high density, whereas a base tile that facilitates
straight driving will have a smaller width.

GetDistractors use the general skill level to decide the appropriate difficulty and
subsequently sets the amount of traffic and pedestrians, corresponding to table 5.5.
GenerateGrid involves a more complex process, as it needs to factor in some of the
previous key considerations. This function initializes a grid with the defined size and
proceeds to populate the grid with tiles. Density decides the number and placement
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of blank grass tiles, and the remaining choices are made utilizing the skill network.
Even though the base tile serves as the main training objective, it is also beneficial
to optimize other tiles in the lesson. This is done similarly to how base tiles are
chosen, only differing in a lack of discounting selected tiles.

By addressing these five concerns, namely chunk size, density, traffic, pedestrians,
and tile selection, the generation process can effectively create chunks that offer
varied and realistic traffic situations tailored to the specific needs of the simulation.

5.3 Pathfinder

Once the lesson is entirely created, a path that guides the player around the world
is desirable. While the generated chunks with included base tiles are tailored to
train a given skill, they also include various tiles that provide training opportunities
for other skills. To guarantee that the individual currently driving visits all of the
selected base tiles, an algorithm for ensuring this is proposed.

To accomplish this, the lesson is converted to a search graph with corresponding
graph nodes. Each graph node is associated with a position, a cost, and a belonging
tile, where position addresses the placement on the grid, cost relates to how expens-
ive it is to travel to a given node, and tile addresses the tile placed on this position.
A graph node containing a base tile is called a base tile node. Once the search graph
is initialized, FindShortestPath, as seen in algorithm 3, is invoked with the search
graph, the start node, and the base tiles provided from the initial generation as the
arguments.

Algorithm 3 Optimal Path

1: function FINDSHORTESTPATH (searchGraph, start, baseTiles)

2: bestPath < empty list

3: nodesToVisit +— FindNodesToVisit(baseTiles, searchGraph, start)
4: for i from 0 to length(nodesToVisit) — 1 do

5: end < GetNode(searchGraph, nodesToVisit|[i])

6: path < Djikstra(searchGraph, start, end)

7: start < end

8: append path to best Path

9: end for

10: return bestPath
11: end function
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The algorithm is now aware of which tiles the individual should visit, but neither
the location nor path to the tiles is known. To find the location of each base tile,
FindNodesToVisit is initiated. This function is responsible for providing an array of
nodes that contain the desired base tiles in a reasonable order. The method employs
the Manhattan Distance, defined in Equation 5.9, as a heuristic to determine the
most favorable nodes to visit.

ManhattanDistance(start, end) = |start-x — end_z| + |start_y — end-y|  (5.9)

The function operates by selecting the base tile node that has the lowest Manhattan
distance from the starting node and appends it to the array. Subsequently, the
starting node is updated to the last base tile node added to the array, and the
operation is repeated. Once the algorithm knows which nodes to visit, along with
the location and order of these base tile nodes, it iterates over these nodes and, for
each node, runs Dijkstra’s algorithm [8] for the shortest path to find the optimal
path to a given base tile node. The starting node for each iteration is subsequently
changed to the target node of the previous path search. An example of a path
guiding the student through a lesson with the base tiles Roundabout, Highway, T-
Intersection, and Overtake can be seen in figure 5.8. By ensuring that each base
tile is visited in a reasonable order, this algorithm provides the student with an
effective and suitable path through the game world, thereby addressing R4. As a
consequence of this path, the system also prevents prolonged driving on the same
chunk.
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Figure 5.8: Visualized path through a lesson
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5.4 Summary

In this chapter, a set of system requirements derived from the research questions
are introduced. These system requirements form the basis for the architecture. The
architecture design follows the Experience Driven Content Generation framework
and is subsequently divided into Player Experience Modeling, Content Representa-
tion, Content Quality, and Content Generation. In Player Experience Modeling, the
utilization and integration of the existing skill network from section 2.3 is explained.
When it comes to Content Representation, it is paramount that the representation
supports the capability of representing all traffic situations, thus facilitating answer-
ing RQ2. Content quality introduces essential utility functions utilized in Content
Generation to ensure optimal content creation based on the student’s skill level.
Lastly, a pathfinder algorithm is presented that aids the system in ensuring that
desirable traffic situations are encountered.
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Chapter 6

Experiment and results

This chapter presents the conducted experiment and the resulting outcomes. The
chapter is divided into a section describing the experimental plan, followed by an
elaboration of the experimental setup, where four distinct scenarios and vital con-
figurations are introduced. The last section presents the experimental results.

6.1 Experimental Plan

The goal of the experiment conducted in this thesis is to determine if the system
designed in chapter 5 can answer the research questions RQ1 and RQ3 introduced
in section 1.2. To reiterate, the two relevant questions are listed below.

1. How can we facilitate the creation of personalized driving lessons to optimize
learning?

2. How can we ensure an appropriate level of difficulty for each specific traffic
situation?

To address the questions, we aim to create diverse scenarios that reflect students
with varying skill levels. Subsequently, we will use the proposed system to generate
lessons tailored to the skill levels in each scenario and then make a comparison
between the generated lessons. This comparative analysis will enable us to gain
insights into the effectiveness of the different lessons for students with distinct levels
of proficiency. Creating our own scenarios is motivated by the following two factors:

1. Controlling Variables: In a simulation, the researcher has complete control
over the conditions and variables. By creating scenarios, we can create diverse
skill models to better highlight the strengths and weaknesses of the system.

2. Reproducibility: Simulation-based research often offers better reproducib-
ility compared to real-world experiments. By creating your own scenarios,
you can precisely recreate and replicate specific driving situations, ensuring
consistent testing conditions.
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6.2 Experimental Setup

This section will provide an overview of the experimental setup and the implementa-
tion of the experiment, including the input data used. Included in the experimental
setup are the creation of scenarios and the definition of learning efficiency config-
urations. The experiments will involve the generation of a total of 40 customized
driving lessons, with 10 lessons designed for each of the four distinct scenarios and
each lesson containing 15 chunks.

6.2.1 Scenarios

To optimize the impact of our findings, we have devised four distinct scenarios, each
depicting a student with a corresponding skill model that emulates the Skill Net-
work’s output. By manipulating the variables and constructing our own scenarios,
we can effectively highlight the system’s advantages and limitations. This shifts
the primary concern in scenario design away from realism and instead emphasizes
exploring edge cases that unveil these strengths and weaknesses.

Scenario 1 - Low Proficiency

The first scenario depicts a novice student who lacks prior driving experience. This
is reflected in their skill levels, all of which are below average values, as illustrated
in table 6.1. Seeing as this student has rather similar skill levels for each skill,
the model should manage to generate a diverse portfolio of lessons with suitable
difficulty.

Name Skill Level
new _start 0.23
driving_curves 0.35
tunnel_driving 0.16
gap_chance 0.22
intersection 0.24
yielding rules 0.20
traffic_lights_rule 0.19
queue_driving 0.29
risky_animal_handling 0.19
overtake 0.15
speed_limit 0.29
roundabout 0.21
risky_pedestrian_handling 0.14
highway_driving 0.26
emergency_brake 0.19

Table 6.1: Scenario 1 - Skill Levels
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Scenario 2 - Low Proficiency with Strengths

The second scenario exemplifies a student with below-average overall proficiency
but with a few outlier skills in which the student excels. The skill levels for this
scenario are outlined in table 6.4. Specifically, the student demonstrates strong
performance in yielding rules, roundabout, and highway_driving. To optimize the
learning experience, the generated portfolio of lessons should prioritize training for
the remaining skills, focusing on appropriate difficulty levels while avoiding notable
training in the aforementioned proficient skills.

Name Skill Level
new_start 0.23
driving_curves 0.21
tunnel_driving 0.31
gap_chance 0.28
intersection 0.33
yielding rules 0.86
traffic_lights_rules 0.35
queue_driving 0.26
risky_animal _handling 0.28
overtake 0.25
speed_limit 0.25
roundabout 0.82
risky_pedestrian_handling 0.34
highway _driving 0.78
emergency_brake 0.25

Table 6.2: Scenario 2 - Skill Levels

Scenario 3 - High Proficiency with Weaknesses

The third scenario, represented by the skill levels in table 6.3, features a student
with an overall high average proficiency. However, this student also possesses a few
outlier skills with low values. Notably, the skills of tunnel_driving, queue_driving,
and highway_driving are areas in which the student performs poorly. The generated
results are expected to exhibit a bias toward prioritizing the training of these skills
with an adequate level of difficulty.
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Name Skill Level

new_start 0.67
driving_curves 0.69
tunnel driving 0.32
gap_chance 0.56
intersection 0.79
yielding_rules 0.85
traffic_lights_rule 0.78
queue_driving 0.25
risky_animal handling 0.70
overtake 0.68
speed_limit 0.84
roundabout 0.74
risky_pedestrian_handling 0.92
highway _driving 0.19
emergency_brake 0.77

Table 6.3: Scenario 3 - Skill Levels

Scenario 4 - High Proficiency

The fourth and final scenario depicts a highly experienced student who has accumu-
lated significant driving experience, resulting in elevated skill level values as outlined
in table 6.2. To adapt to the needs of this proficient learner, the generated driving
lessons should ideally be diverse in nature and offer appropriate levels of difficulty
that align with the student’s advanced skill set.

Name Skill Level
new _start 0.73
driving_curves 0.68
tunnel_driving 0.65
gap_chance 0.63
intersection 0.82
yielding_rules 0.74
traffic_lights_rules 0.81
queue_driving 0.64
risky_animal_handling 0.70
overtake 0.63
speed_limit 0.80
roundabout 0.77
risky_pedestrian_handling 0.68
highway_driving 0.66
emergency_brake 0.72

Table 6.4: Scenario 4 - Skill Levels
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6.2.2 Parameters and Configurations

During the execution of the experiments, it is necessary to determine the previously
introduced parameters and some notable configurations. Subsection 5.2.3 introduces
equation 5.1, which calculates the skill utility u,, and equation 5.2, which computes
the difficulty alignment reward ;. The selection of the desired skill for training
involves the utilization of the skill utility, which depends on the parameters v and
v. Once the skill is chosen, all suitable base tiles are assigned a utility score U; as
described in equation 5.8. The difficulty alignment reward influenced by Ny and A
is used to boost the scores for these base tiles according to difficulty compatibility.
The weight u is used to represent the difficulty of the distractors when calculating
lesson difficulty. In the experiments, these parameters are defined based on the
values presented in table 6.5.

Parameter Value

U 2
v 0.05
w 0.005
Ny 0.1
A 5

Table 6.5: Parameter Values

This choice of parameters should ensure that there exists a reasonable relationship
between the skill utilities, base tile utilities, and difficulty alignment rewards. The
consequent equations can be seen below.

U, = (1 — M,)* — (F, x 0.005) (6.1)
By = 0.1 x e ®*IMs—Tal (6.2)
L, x U,
U= b+ z:setn— (6.3)
t

Figure 6.1a shows the resulting rewards for difficulty match |M, — T, and figure
6.1b shows how the skill utilities are affected by skill mastery M, and skill training
frequency Fj.

Furthermore, the learning efficiency L configuration introduced in subsection 5.2.2
needs to be determined. This configuration indicates the effectiveness of a specific
type of tile in training a particular skill, and the mapping is estimated based on
empirical experience. A comprehensive overview of these values can be found in
table 6.6.
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Straight 0.1] - - - - - - - - - - - - - -
Straight Crosswalk 0.1] 0.6] - - - - - - - - - - - - -
Straight Curved 0.1] - 0.6] - - - - - - - - - - -
Turn 0.1] - 06| - - - - - - - - - - - -
Turn Curved 0.1 - 0.6| - - - - - - - - - - - -
T-Intersection 0.1/ - - 1.0] - - - - - - - - - - -
X-Section 0.1] - - 1.0] - - - - - - - - - - -
Roundabout 0.1/ - - - 1.0] - - - - - - - - - -
U-Turn 0.1] - - - - 0.1] - - - - - - - - -
T-Intersection Curved 0.1] - 0.5 1.0} - - - - - - - - - - -
T-Intersection Yield 0.1 - - 09| - - 1.0] 0.5 - - - - - - -
T-Intersection Stop 0.1] - - 0.9] - 0.5]| 0.5] - - - - - - - -
X-Intersection Traffic Lights | 0.1 - - 0.9] - 04] - - 1.0] - - - - - -
T-Intersection Traffic Lights | 0.1 - - 0.9/ - 04| - - 1.0] - - - - - -
X-Intersection Crosswalk 0.1 - - 1.0] - 04 04] - - - - - - - -
Highway 0.1 - - - - - - - - 1.0/ - - - - _
Advanced Highway 0.1] - - - - - - 0.5] - 1.0] - - - - -
Overtake 0.2] - - - - - - - - - 1.0] - - _ -
Queue - - - - - - - - - - - 1.0] - - -
Emergency 0.1 - 0.2] - - - - - - - - - 0.9 - -
Tunnel 0.1] - - - - - - - - - - - 1.0] -
Risky Animal 0.1] - - - - - - - - - - - 04] - 1.0

Table 6.6: Skills Trained by Tiles

29




Lastly, subsection 5.2.4 introduces the concept of a base tile configuration mapping,
where each base tile is linked to a set of dimensions that are used to generate the
corresponding chunk. These mappings are created to effectively represent the desired
training environment for each base tile. The process of creating these mappings
involved testing different parameters to determine the most favorable outcomes.
The mappings can be found in table 6.7, and tiles with the same foundational
structure, such as T-Intersection with and without traffic lights, will share identical
dimensions.

BaseTile Density Width Depth
U-Turn 0.5 12 7
T-Intersection 0.7 13 7
X-Section 0.8 12 7
Turn 0.4 11 6
Straight 0.4 3 8
Roundabout 0.8 13 6
Tunnel 1.0 3 6
Emergency 1.0 2 6
Highway 1.0 1 6
Advanced Highway 1.0 11 6
overtake 1.0 3 6
Queue 1.0 3 6
Animal Crossing 0.6 12 6

Table 6.7: BaseTile Configuration

6.3 Experimental Results

This section aims to present the application of our system when used with the four
scenarios described in the previous section as input. To demonstrate the capabilities
of the system, we have generated 10 lessons for every scenario. We will start by
introducing one example of the generated lessons for each scenario, with screenshots
of the lesson with the optimal path visualized, the name of the base tiles the lesson
consists of, and some examples of interesting base tiles within the lesson. This
section will also analyze and compare the generated lessons to gain insights into
their effectiveness for students with different levels of proficiency through statistical
analysis.

6.3.1 Generated Lessons

To provide more insight into the lessons that are generated, we here provide one
example of a generated lesson from each of the four scenarios that were introduced
in section 6.2, together with the optimal path that was calculated for the lesson,
and the base tiles that the path takes the student to.
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Scenario 1 - Low Proficiency

In S1 - Low Proficiency, the lesson seen in figure 6.3 is the first generated lesson
with the calculated base illustrated. Figure 6.2 displays screenshots from four of the
base tiles in the generated lesson. Here we can see that the lesson consists of a wide
variety of tiles, with no traffic or pedestrians added.

(a) T-Intersection (b) Yielding T-Intersection

(c) Tunnel (d) Advanced Highway

Figure 6.2: Basetiles generated from S1 - Low Proficiency
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Overtake

Risky Animal

Tunnel

T-Section

Yielding T-
Section

Roundabout

Risky Pedestrian

Tunnel

X-Section

Roundabout

Risky Animal

T-Section

Risky
Pedestrian

Advanced
Highway

Tunnel

Figure 6.3: Lesson generated from S1 - Low Proficiency
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Scenario 2 - Low Proficiency with Strengths

Figure 6.5 visualizes an example of a generated lesson with the optimal path visu-
alized. In figure 6.4, the screenshots of four of the base tiles in the lessons are
displayed. We notice that none of the three skills that the student is proficient in,
yielding, roundabout, and highway, is trained.

Overtake Risky Animal

T-Intrsection Curved T-Intersection Traffic Light

Figure 6.4: Base tiles generated from lesson S2 - Low Proficiency with Strengths
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T-Intersection
Curved
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Queue
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Risky
pedestrian
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Traffic Ligh

Risky Pedestrian

Emergency

Queue
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Risky Animal

T-Intersection

Queue

Risky
Pedestrian

P

Overtake

Figure 6.5: Lesson generated from S2 - Low Proficiency with Strengths
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Scenario 3 - High Proficiency with Weaknesses

In figure 6.7, the generated lesson is depicted, accompanied by a visualized path
to assist the student. The screenshots shown in figure 6.6 provide insights into the
traffic situations, which incorporate challenging elements to increase the difficulty
level. We notice a high occurrence within the tiles that train the skills the student
is inexperienced in. This will be discussed more in section 6.3.2.

(c) T-Intrsection Traffic Light

Figure 6.6: Base tiles generated from lesson S3 - High Proficiency with Weaknesses
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Advanced
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Figure 6.7: Lesson generated from S3 - High Proficiency with Weaknesses
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Scenario 4 - High Proficiency

In S4 - High Proficiency, the first generated lesson can be observed in figure 6.9.
Figure 6.8 showcases a selection of intriguing tiles from the lesson. The Roundabout
Tile, depicted in figure 6.8a, serves as one of the base tiles in the lesson, featuring
added traffic as a distractor to challenge the high skill level of the student. Figures
6.8¢c, 6.8d, and 6.8b display base tiles with additional traffic and pedestrians acting
as distractors.

/777111 e

E——— F
— — —
—

—

: _M..

(¢) Curved T-Intersection (d) X-Intersection Traffic Light

Figure 6.8: Base tiles generated from lesson High Proficiency
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Figure 6.9: Lesson generated from Scenario 4 - High Proficiency
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6.3.2 Statistical Analysis

The purpose of the statistical analysis is to gain insights that can address our re-
search questions. We seek to investigate whether the lessons generated by the system
exhibit a correlation with the skill levels of the students in order to determine if per-
sonalized lessons are being provided. Additionally, we aim to assess the system’s
ability to generate driving lessons with suitable difficulty levels by analyzing the dif-
ficulty levels of the generated lessons and exploring any potential correlations with
the skill levels of the students.

Skill Coverage

The objective of figure 6.10 is to illustrate the connection between the skill level
of the student and the skills targeted in the generated lessons. Radar charts are
utilized to visually represent the skill level of the student in relation to the skills
covered in each lesson. To determine the extent of training for each skill, the values
described in table 6.6 are summed for every choice of base tile. The cumulative
representation is based on the aggregation of data from the 10 lessons generated for
each scenario, with the skill coverage normalized to improved visualization.

Based on the radar charts, several key observations can be made regarding the con-
nection between the skill level of the student and the skills trained in the generated
lessons. Firstly, it is evident that the intersection skill is heavily favored across
scenarios SI1 - Low Proficiency, S2 - Low Proficiency with Strengths, and S4 - High
Proficiency, with no apparent reason found in the skill levels. Furthermore, in S/ -
High Proficiency, there is a noticeable bias toward training certain skills despite the
skill levels being evenly distributed.

Moreover, there appears to be some correlation between the skill levels of the student
and the skills trained in S2 - Low Proficiency with Strengths and S3 - Low Proficiency
with Strengths. For low skill levels, the radar charts demonstrate an increase in the
training intensity and a subsequent decrease for high skill levels. For example, the
skills Highway driving, Queue driving and Tunnel driving are trained more than
all other skills in S8 - High Proficiency with Weaknesses, while the skill levels are
significantly lower than the rest. This suggests a promising ability to target desired
skills while avoiding excessive training in already proficient areas.
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Low Proficiency Low Proficiency with Strengths

Roundabout Roundabout
Intersection Highway driving  —— g‘k“’l‘l“i‘:\f‘e‘f Trained Skills Intersection Highway driving
Traffic lights #lles Em¥cgency brake Traffic lights #lles Emvxgency brake

Yielding rgiles Quéyie drivingYielding riles Quéye driving

Overtake Gap chance  Overtake Gap chance

Speed limi Dri¥ing curves Speed limy Driving curves

Risky pedestrian handtimg Tunnel driving Risky pedestrian handting Tunnel driving

New start New start
High Proficiency with Weaknesses High Proficiency
Roundabout Roundabout

Intersection Highway driving Intersection Highway driving

Traffic lights rlles Emexgency brake Traffic lights #lles Em¥xgency brake

Yielding rfiles Queéyie drivingYielding riles Quéye driving

Overtake Gap chance  Overtake Gap chance

Speed lim DriFing curves Speed lin Driving curves

Risky pedestrian handting Tunnel driving Risky pedestrian handting Tunnel driving

New start New start

Figure 6.10: Radar diagram

Skill Training Frequency

The heatmap depicted in Figure 6.11 offers a visual representation showcasing the
frequency at which each skill is trained in the generated lessons. It is generated by
accumulating the total training received by each skill throughout the lessons. This
plot provides valuable insights into the patterns and trends observed in skill training,
offering a clear view of the distribution and interplay of different skills throughout
the lessons.

The observations from the plots indicate that the distribution of trained skills varies
across the different scenarios. S3 - High Proficiency with Weaknesses displays a
more focused selection of trained skills, while S1 - Low Proficiency and S4 - High
Proficiency demonstrate a relatively balanced distribution. In S2 - Low Proficiency
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with Strengths, there is also a varied distribution of trained skills, but there is a
tendency to avoid skills in which the student excels. These patterns align well with
the corresponding skill levels, as scenarios S1 - Low Proficiency, S2 - Low Proficiency
with Strengths, and S4 - High Proficiency require training across a broader range of
skills compared to scenario S3 - High Proficiency with Weaknesses. Furthermore, the
plot serves to substantiate the assertion of the intersection skill receiving an extensive
amount of training, as it consistently appears at a high frequency throughout the
lessons.
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Figure 6.11: Heatmap base skills trained

Difficulty Adjustment

The aim of figure 6.12 is to visually represent the relationship between the diffi-
culty level of the generated lessons and the skill levels corresponding to the different
scenarios. Each plot in the figure presents the average skill level of the student
in the given scenario, the average base tile difficulty per generated lesson, and the
average base tile difficulty for the entire simulation. The lesson difficulty is cal-
culated according to the formula 5.4. This visualization provides insights into the
alignment between skill levels and difficulty levels, allowing for an assessment of the
appropriateness of the generated lessons.
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As illustrated in the plots, it is evident that the model effectively adjusts the diffi-
culty level based on the overall skill level. Nevertheless, certain inconsistencies can
be observed. Upon comparing the average difficulty and average skill level across the
four scenarios, it becomes apparent that the model accurately aligns the generated
content with the average skill level in S2 - Low Proficiency with Strengths and 5
- High Proficiency. However, it encounters difficulty in producing content that is
sufficiently easy for S1 - Low Proficiency. Furthermore, in the case of S3 - High
Proficiency with Weaknesses, it would be reasonable to expect a significantly lower
average difficulty level, despite the accurate alignment with the average skill level.
This expectation arises from the observation that the model succeeds in training the
skills in which the scenarios showcase weaknesses, as depicted in figure 6.10. This
should ideally result in considerably lower difficulty for those specific tiles compared
to the overall skill level.
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Figure 6.12: Difficulty plot
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Skill Probabilities

Figure 6.13 presents the normalized cumulative probabilities depicting the likelihood
of selecting specific skills. These probabilities are derived by accumulating the skill
utilities associated with each chosen base skill across multiple simulations and sub-
sequently normalizing them to ensure a total sum of one. The plot provides insights
into the average probability of selecting each base skill whenever a base skill choice
is encountered.

In S1 - Low Proficiency, the plot reveals a relatively uniform probability distribution,
which aligns with the skill levels observed within the scenario. Furthermore, S2 -
Low Proficiency with Strengths and S3 - High Proficiency with Weaknesses exhibit
a preference for selecting skills in which the student performs poorly or avoiding
skills in which the student excels, reflecting the underlying skill models. However,
the graphical representation for S/ - High Proficiency demonstrates an uneven dis-
tribution, introducing some inconsistency with the generally comparable skill levels
observed within the scenario.

73



0.08 0.104
0.07
0.08
§ 006 8
0.05 |
g 3 0.06
& &
S 0.04 3
N &
s 'S 0.04
£ 0.03 E
o o
=z z
0.02
0.02
0.01
O-OOEmecmmmcnw.eumcnw OIOO-ﬁmU)qJ:mV!UlUSGJ.‘;‘umc\q)
g ¢ £ © 5o & O ¢ £ ¥ £ 3 £ ¢ X s ¢ £ Q2 5 ¥ O ¢ ¢ X £ 3 c £ X
2235 s 8332558 £ 3535 ¢ 2235 s 83323558 f£ 3535 ¢
5 E2 gt =€ R L S 8 2 E S S E 2 gt =8 R LS 8 BB E S
2 3% ¢ § 28 9% g £ 7% T e T > 2 25 ¢ 3 28 % 5 £ 9% T s T >
2 23 2 5g£ 5 g <38 g 5 < » 0 2 235 a5 £ E e =3 2 5 < >0
£ c © e o o =1 - Q c © £ c © - o C_h =1 —_ Q =3 c o c
> ¢ 0 £ T = v @ n 2 s 2 9% 2 c 0 £ @9 T g g2 n 2 s 2 %
£ S s v 2 E - £ 2 = S s v 3 E =z £ D
a F g O £ £ 9 g a F g O £ 5 2 ¢
© © o T E © © v T E
= z ] = = > 3 w
K} I~ @ =%
-4 2 x >
I} I
o [-4
Skills Skills
(a) S1 - Low Proficiency (b) S2 - Low Proficiency with Strengths
0.25 0.101
w 0.20 » 0.08
3 L
i 3
8 2
S 015 © 0.06
a. a
o o
[ [
= N
T T
2010 £ 0.04
£ E
o o
=z =4
0.05 0.02
000- + v o @ c u wn o o (] = £ o o Q 000- k-4 n o o c wn w o o [ = £ o o o
§ ¢ £ ¢ 6 ¢ @ ¢ £ X E 323 £ £ X s ¢ £ ¢ 56 @ 9 £ £ X g 3 £ £ X
% 2 5 5 8 2 32 3% 8 £ 85 3 © % 2 5 5§ 58 32 2 5 5 £ £ 835 5 0
3 = < g = = = -g g hel © .g = Q 3 = < 5 bt - = -g g-; ° © E = <
i oSt 2252882323 o2t 2252882
2 £¢ 8§ 2323 °2 3t 7@ ¢ 2 £ ¢ g 235533 °%a3¢c4@ ¢
> c 0o g g = Y2 w2 s 3 g 5 ¢ 0 g =T g2 w o2 & = g
£ 5 s ¢ 3 E £t £ 9 c 5 s ¢ 3 £ 5 5 =
a = E O 72 2 ¢ o F g O £ 7 2 g
’g © g T E g © g T E
g g z g
-3 2 x >
) 3
o o<
Skills Skills
(c) S3 - High Proficiency with Weaknesses (d) S4 - High Proficiency

Figure 6.13: Skill Utilities plot

Base Tiles

Figure 6.14 illustrates the accumulated base tile choices for each of the four scen-
arios. The plots depict the frequency of tile selections throughout the simulations,
providing insights into the model’s tendencies when it comes to choosing base tiles
for each scenario. The bar chart allows for a visual comparison of the base tile
choices across scenarios, highlighting the varying patterns and tendencies present
within the model’s decision-making process.

The plots display some noteworthy observations. Firstly, S1 - Low Proficiency ex-
hibits the highest degree of diversity in tile selection, as indicated by the range
of 15-16 occurrences for the most frequently chosen tile. S2 - Low Proficiency with
Strengths and S4 - High Proficiency showcases a somewhat lower degree of diversity,
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aligning with the previous observations but deviating from the expectation for S4 -
High Proficiency. Lastly, S3 - High Proficiency with Weaknesses demonstrates the
most pronounced bias towards selecting certain tiles, with the most popular tile re-
trieving over 40 selections. In addition, neither SI1 - Low Proficiency, characterized
by relatively high diversity, nor S4 - High Proficiency exhibit a uniform distribution
of selected base tiles. This lack of uniform dispersion persists despite the presence

of evenly distributed skill levels in both scenarios.
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6.4 Summary

In this chapter, the experimental setup and results aimed at assessing the system’s
ability to address the research questions have been presented. Four scenarios have
been defined to represent students with different skill levels, and the generated
lessons for each scenario are presented. Furthermore, a statistical analysis was per-
formed on the resulting data, with all of the key observations summarized in the list
below:

Skill Coverage Key observations from the radar chart in figure 6.10:

SC1 The intersection skill is prominently favored in S7 - Low Proficiency, S2
- Low Proficiency with Strengths, and S4 - High Proficiency, despite no
apparent correlation with skill levels.

SC2 S/ - High Proficiency exhibits a bias towards training specific skills,
disregarding the evenly distributed skill levels.

SC3 S2 - Low Proficiency with Strengths and S8 - High Proficiency with
Weaknesses demonstrate a correlation between skill levels and skills trained,
with increased training intensity for low skill levels and decreased intens-
ity for high skill levels.

Skill Training Frequency Key observations from the heatmap in figure 6.11:
STF1 Scenario 3 shows promise in prioritizing the training of skills in which

the student struggles.

STF2 S1 - Low Proficiency, S2 - Low Proficiency with Strengths, and S/ -
High Proficiency exhibit a more balanced distribution of trained skills,
aligning with the skill levels.

STF3 The intersection skill receives extensive training across all scenarios,
reinforcing the observations from the radar chart in Figure 6.10.
Difficulty Adjustment Key observations from the line chart in figure 6.12:
DA1 The model generally adjusts the difficulty level based on the overall skill
level, showing promise in its adaptation.

DA2 The model encounters challenges in generating sufficiently easy content
for S1 - Low Proficiency.

DA3 S3 - High Proficiency with Weaknesses should ideally have a signific-
antly lower average difficulty due to weaknesses in specific skills training,
as observed in Figure 6.10.

Skill Utilities Key observations from the bar chart in figure 6.13:

SU1 S1 - Low Proficiency displays a relatively uniform probability distribu-
tion that corresponds to the skill levels.
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SU2 S2 - Low Proficiency with Strengths and S3 - High Proficiency with
Weaknesses show a preference for selecting skills in which the student
performs poorly and avoiding skills in which the student excels, aligning
with the related skill levels.

SU3 S4 - High Proficiency exhibits an uneven distribution of skill selection,
deviating from the related skill levels.

Base Tiles Key observations from the horizontal bar chart in figure 6.14:

BT1 S1- Low Proficiency demonstrates the highest degree of diversity in tile
selection, reflecting the skill levels.

BT2 52 - Low Proficiency with Strengths and S4 - High Proficiency display
similar degrees of tile diversity, which is lower than S7 - Low Proficiency
but higher than S8 - High Proficiency with Weaknesses.

BT3 S3 - High Proficiency with Weaknesses shows the most pronounced bias
towards selecting certain tiles that train the skill levels with low profi-
ciency.

BT4 Neither S1 - Low Proficiency nor S4 - High Proficiency, both with evenly
distributed skill levels, exhibit a uniform dispersion of selected base tiles.

Overall, these findings enhance our understanding of the system’s capabilities in
optimizing learning outcomes in the context of virtual driving education. The ob-
servations will be discussed in detail in the next chapter.
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Chapter 7

Discussion

This chapter delves into the discussion and evaluation of the implementation and
subsequent results. Initially, the research questions will be examined, followed by a
comprehensive evaluation of the model. Finally, the validity of the research will be
deliberated upon.

7.1 Research Questions Revisited

This section will revisit the research questions in light of the results and implemented
model. Reflections on how these affect the satisfiability of the research question will
be presented.

RQ1 How can we facilitate the creation of personalized driving lessons to optimize
learning?

Personalized driving lessons were generated through a system that utilized an in-
dividual student’s skill levels to determine the selection of tiles. The observations
presented in section 6 offer insights as to whether the system succeeds in personal-
izing content in an intelligent manner.

When analyzing the radar chart in figure 6.10 and heatmap in figure 6.11, obser-
vations SC1 and STF3 show a disproportionately high frequency of intersection
training, which suggests potential biases in the model’s generation of traffic scen-
arios. This could be due to an excessive amount of tiles that train the intersection
skill. Of the implemented tiles, 8 out of 24 tiles trained the intersection skill, which
likely contributes to the high amount of accumulated training.

Furthermore, in S1 - Low Proficiency, which represents a student with a generally
low proficiency across all skill levels, the anticipated outcome would be an equal
distribution of training for every skill. The observation STF2 from heatmap in
figure 6.11 indicates this by presenting balanced distribution of trained skills. Ad-
ditionally, observations SU1 and BT1 from the bar chart in figure 6.13 displaying
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the skill probabilities and the horizontal bar chart from figure 6.7 for selected base
tiles reinforce this impression further. The results for S4 - High Proficiency should
display similar attributes, seeing as S4 - High Proficiency contains evenly distrib-
uted skill levels with high proficiency. There are, however, some irregularities in
the observations, indicating otherwise. In the radar chart 6.10, the results exhibit a
noticeable bias towards training specific skills as described in observation SC2. The
skill probability bar chart 6.13 substantiates this observation with SU3. A possible
explanation can be found in the skill utility formula 6.1. To elevate the probabilities
of selecting skills in which a student shows low proficiency, the inverse skill level is
raised to a factor w. In the experiments, this factor was set to 2, as seen in table
6.5. The operation succeeds in amplifying the probabilities but is not stable in terms
of maintaining the relationship across the scenarios. This is due to the non-linear
nature of squaring, which magnifies differences between smaller values to a greater
extent than between large values.

The analysis of S2 - Low Proficiency with Strengths and S8 - High Proficiency with
Weaknesses yield promising observations. The skill coverage radar chart in 6.10
displays prowess in training the skills in which S% - High Proficiency with Weaknesses
lacks proficiency and avoiding the skills that S2 - Low Proficiency with Strengths
masters, underscored in observation SC3. The heatmap 6.11 and bar chart 6.13
reinforce this belief with observations STF1, STF2, and SU2, all indicating that
the model accomplishes personalizing training in a promising manner targeting these
two cases.

When addressing the concept of optimized learning, the facilitation of the design
principle ”Manage the learner’s cognitive load” discussed in subsection 3.1 aims to
enhance learning by effectively regulating the cognitive load associated with each
chunk. While this approach intends to optimize the learning process, determining
its effectiveness without conducting comprehensive testing on real-world subjects is
challenging.

RQ2 How can we effectively represent all traffic scenarios and combine them into
a driving lesson?

In chapter 5, a design for a system to construct traffic scenarios was presented. By
creating premade tiles in Unity and combining them into chunks, which in turn get
combined into a lesson, the system offers a robust representation capable of training
a wide variety of skills. When implementing these building blocks, a hybrid model
incorporating the concepts of static chunks and dynamic chunks was created and
utilized. The static chunks represented traffic scenarios that spanned over larger
areas, such as a highway or a tunnel. These chunks were designed as single-tile
chunks, serving as the foundation for the entire traffic situation. Dynamic chunks
were implemented as described in chapter 5 by combining multiple tiles into a grid,
ensuring all the roads are connected. Ideally, the larger static chunks would also
be generated dynamically. This would require significantly higher emphasis on con-
sistency across tiles, as traffic situations such as emergency and overtake rely on a
cohesive set of connected tiles to function correctly.
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Furthermore, the model’s exclusive dependence on human input for defining the tile
configurations for size in table 6.7, learning efficiency in table 6.6, and difficulty
in table 5.4 could impose certain limitations. A more balanced approach could be
achieved by applying machine learning techniques or feedback loops to progressively
adjust the configurations based on the outcomes of each driving lesson, thereby
optimizing the scenario representation over time.

As briefly mentioned in section 5.2, the focus in this thesis is on the generation of
necessary content. In the current system, the focus on the environment and the
aesthetics of the generated content is minimal due to limited time. This limits the
system from being able to represent traffic scenarios such as night driving, urban
driving, and driving in weather conditions such as fog or heavy rain.

Finally, when examining the horizontal bar chart depicted in figure 6.14, there are
consistently some base tiles favored for each of the four scenarios. Regarding the
unevenly distributed skill levels from scenarios S2 - Low Proficiency with Strengths
and especially S3 - High Proficiency with Weaknesses, observations BT3 and BT2
could make sense. However, the evenly distributed S1 - Low Proficiency and S5/
- High Proficiency should potentially exhibit a more balanced selection than what
was discovered in observation BT4. The matter is not as pressing in S1 - Low
Proficiency, as indicated by the relatively high diversity detected in observation
BT1, but it still remains noteworthy. A possible explanation for this can be found
in the learning efficiency table 6.6. Given that some tiles train a significantly larger
number of skills than others, they naturally have a higher cumulative probability of
being chosen. Nonetheless, it can be argued that this outcome aligns with real-world
dynamics, where such property also holds true.

RQ3 How can we ensure an appropriate level of difficulty for each specific traffic
situation?

The system strives to achieve appropriate difficulty by assigning specific difficulties
to each tile as illustrated in 5.4 while also dynamically adjusting the overall diffi-
culty using distractors. The line chart depicted in figure 6.12 demonstrates that
the average difficulty of the simulation adapts in response to the skill levels. This
observation DA1 indicates that the process of generating lessons effectively tailors
the tasks to the student’s proficiency level, providing more complex and challenging
assignments as needed.

However, the model encounters issues when tasked to generate sufficiently easy con-
tent for S1 - Low Proficiency as described by observation DA2. This can be due
to a lack of easy enough tiles or simply inaccurate tile initialization described in
table 5.4. Additionally, observation DA3 indicates that S8 - High Proficiency with
Weaknesses ideally should exhibit significantly lower average difficulty due to its fo-
cus on training skills in which the student struggles. One potential explanation for
this discrepancy could be that the distractors are determined based on the average
difficulty rather than the skill level associated with the selected skill, thereby raising
the difficulty for the entire lesson.

The use of these distractors introduced an additional layer of complexity in difficulty
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assessment, as the presence of distractors could significantly alter the perceived dif-
ficulty of a particular traffic situation. The model could potentially be enhanced
by incorporating a more sophisticated system for managing distractor-related diffi-
culties, such as an adaptive mechanism that adjusts the frequency and complexity
of distractors based on the student’s proficiency and performance.

Furthermore, determining the appropriate difficulty level for each traffic situation
poses inherent challenges due to the difficulty assessment’s highly subjective and
context-dependent nature. In the current model, difficulty levels were initially
defined based on empirical experience, and further improvements could be made
through testing and iterative refinement.

7.2 Model Evaluation

When creating a system that is capable of personalizing virtual driving lessons to
optimize learning, several design decisions had to be made. In this section, we will
evaluate the decisions made, which include the system requirements, architecture,
and various components of the proposed model. The evaluation aims to assess the
effectiveness and suitability of these decisions in addressing the research questions
and achieving the desired outcomes.

The proposed architecture, based on the Experience Driven Content Generation
framework, provides a comprehensive approach to address the system requirements
described in section 5.1 and achieve the desired outcomes. The four components
of the architecture, namely the Player Experience Model, Content Representation,
Content Quality, and Content Generation, form an interconnected system that en-
sures personalized learning experiences for driving students.

Player Experience Model

The Player Experience Model, utilizing gameplay-based Player Experience Modeling
(PEM), captures the skill levels of the student and provides a comprehensive rep-
resentation of their driving abilities, laying the foundation for the system to answer
system requirement R3. By considering both specific skills and the general skill
level, the model accurately assesses the student’s proficiency. By considering both
specific skills and the general skill level, the model captures a comprehensive evalu-
ation of the student’s driving abilities. In addition to modeling the skill levels of the
students, other metrics such as engagement, focus, and learning style could also be
modeled and used as a basis for the generation of content, as seen in [38], [14] and
[25]. This could lead to higher engagement and an improved learning experience.

Content Representation

The Content Representation component, incorporating tiles, chunks, and lessons,
allows for the dynamic creation of game worlds that provide diverse and intercon-
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nected traffic situations. The use of chunks facilitates the management of cognitive
load and gradual complexity in the learning process. Additionally, the representa-
tion of tiles with semantics related to skills, difficulty, and distractors ensures the
generation of relevant and engaging content. It provides the necessary flexibility to
incorporate all existing traffic situations, adhering to the system requirement R2. In
the existing representation, each distinct traffic scenario is created as a separate tile.
For instance, a t-intersection and a t-intersection with a yielding sign are considered
two distinct tiles. A more dynamic approach would be to use the fundamental struc-
ture of the tile, such as a t-intersection, as the base and then incorporate different
objects onto it based on the semantics of the tile. This alternative method allows
for content generation in a more flexible and efficient manner, aligning better with
the fulfillment of system requirement R1. By adding dynamic and static objects to
the fundamental structure of a traffic situation, it would also be easier to adjust the
difficulty of the tile to the level of the student, compared to the distractor-induced
difficulty implemented to comply with system requirement R6.

Content Quality

The incorporation of Content Quality through utility functions and skill mastery
assessment ensures the optimization of learning outcomes and promotes replayabil-
ity. By considering the compatibility between skill levels, tile difficulties, and skill
frequencies, the model selects tiles that match the student’s skill level and avoids
excessive repetition. This enhances the effectiveness of the learning process and
maximizes the educational value of the generated content. As mentioned previ-
ously, the evaluation functions introduced require several manually tuned weights.
These manually tuned weights could introduce unwanted biases.

Content Generation

Content Generation, guided by the defined utility functions and algorithms, com-
bines the available tiles and chunks in a personalized manner. The algorithm for
generating lessons strategically selects tiles based on the student’s skill level and skill
frequencies. By employing this process, the generated content is carefully tailored
to match the student’s abilities, offering practical skill training that is both enga-
ging and appropriately challenging. Still, the generation lacks somewhat in terms of
ordering the chunks to ensure an incremental learning experience. The model incor-
porates interleaving when selecting base tiles, but an optimal relationship between
the different tiles is not explored. Furthermore, due to skill level inference after
the lesson ends, the current model utilizes offline generation. However, an online
approach, where the lessons could be dynamically adjusted based on the student’s
performance during the lesson, would have been more in tune with system require-
ment R5. With the online generation of chunks, content could be generated based
on the newest skill levels that account for how the student performed in the previous
traffic situations, leading to a faster adaptation to the student’s skill level.

To promote variation, the system utilizes stochastic generation. By incorporating
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randomness, it introduces diversity and unpredictability into the generated outputs.
This variability allows for the exploration of different possibilities and the generation
of unique, customized results. While stochastic generation can enhance diversity and
unpredictability in the generated outputs, it can also result in a loss of control. The
randomness introduced may lead to unexpected or undesired outcomes that may not
align with the intended objectives or constraints of the system. This loss of control
can pose challenges in ensuring the generated content meets specific requirements or
aligns with predefined guidelines. Therefore, careful consideration and fine-tuning of
the stochastic generation process are necessary to strike a balance between desired
variation and maintaining control over the generated content.

While the proposed system relying on constructive generation successfully generates
personalized driving lessons, the exploration of other methodologies, such as search-
based generation, could potentially improve the system’s efficiency and effectiveness.
For example, the use of evolutionary algorithms and particle swarm optimization
could introduce a higher degree of variability and potential for optimization, as seen
in [31], [11], [14] and [21].

Pathfinder

In section 5.3, an optimal path is calculated to ensure that the student approaches
the lesson in an efficient manner. The inclusion of this path serves the purpose of
guiding the student to the base tile within a chunk and through the other chunks
of the lesson, thereby attempting the fulfillment of system requirement R4. The
path succeeds in guaranteeing that the student encounters desirable traffic situ-
ations. Still, the order in which the base tiles are visited depends on distance rather
than optimized learning, subsequently lacking somewhat compared to the desired
outcome. Additionally, the fact that the student has to drive through non-optimal
tiles within a chunk could be an indicator that the content generation is suboptimal
and that the pathfinder is a required tool to compensate for that limitation. Never-
theless, in this context, the pathfinder still serves an essential function in ensuring
that the student has satisfactory progress through the lesson. Furthermore, even
though not tested in this research, the pathfinder algorithm facilitates invoking the
path generator during run-time with different base tiles, thereby enabling online
alteration of desirable traffic situations.

In summary, the decisions made in the Model chapter demonstrate a thoughtful
and comprehensive approach to addressing the research questions and achieving the
desired outcomes. The proposed system requirements, architecture, and compon-
ents provide a solid foundation for building a model that delivers personalized and
compelling learning experiences in virtual driving simulators.

7.3 Validity Evaluation

The experiment conducted aimed to investigate the suitability of automatic person-
alized content generation as an alternative to static lesson generation in the context
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of virtual driving simulators. To verify the validity of the research, the experiment is
reviewed in light of the four validity threats introduced by Wohlin et al. [41], namely
conclusive validity, internal validity, construct validity, and external validity.

7.3.1 Conclusive Validity

Conclusive validity pertains to the extent to which the causal relationships between
experiments and observations are warranted. In the context of this project, con-
clusive validity is supported by the valuable insights obtained from the analysis of
the generated plots. These plots, derived from a large number of generated lessons,
provide a robust foundation for drawing conclusions and identifying patterns and
trends in the data.

However, it is essential to recognize that conclusions drawn from the experiment
are limited to the specified scenarios. The algorithm’s results could yield other
observations when tested on different scenarios or on real-life subjects. In addition
to a narrow test base, the scenarios might not represent real-life students in a realistic
manner. Seeing as the scenarios are developed to test constructed edge cases, this
might be unrepresentative of the skill levels that the skill model actually provides.
For instance, low proficiency is in this thesis characterized by skill levels in the
range of 0.14 to 0.35, but this could be an unrealistic depiction of low proficiency.
Consequently, caution should be exercised when generalizing the findings to broader
populations.

7.3.2 Internal Validity

Internal validity, although not the most relevant for this project, refers to whether
the outcomes in an experiment can be attributed to the specific interventions or
modifications implemented. Most threats to internal validity relate to uncontrol-
lable interference or disturbance when gathering results. The experiment conducted
in this research relied on running an identical algorithm on predefined scenarios,
thereby eliminating most of the threats to internal validity. However, overfitting by
excessively tailoring the model to suit the designed scenarios is a possible limitation
that needs to be validated.

7.3.3 Construct Validity

Construct validity refers to the extent to which the concepts, theories, or constructs
used in the experiment accurately represent the underlying phenomena being stud-
ied. In the context of this experiment, several potential challenges could impact the
construct validity. Firstly, it is demanding to verify appropriate difficulty without
testing on real-world subjects. In addition, it is challenging to conclude that con-
stitutes a greater perceived difficulty for a given individual, as some students might
find certain elements more difficult than others. Furthermore, setting the correct
initialization for tile difficulty, learning efficiency, and distractor levels should be
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done more intelligently and subsequently authenticated. In summation, to enhance
the construct validity of the research, a more exhaustive approach is required.

7.3.4 External Validity

External validity addresses the concept of generalizing the causal relationships to
real-world populations. Considering the experiment is conducted in collaboration
with WAY, utilizing their existing skill model and creating the algorithm in Unity
compatible with the existing solution, generalization to the real world should be a
relatively unchallenging obstacle. However, as mentioned earlier, the causal rela-
tionships would benefit from a more exhaustive experiment before being introduced
in a commercial environment.
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Chapter 8

Conclusion and Future Work

This chapter provides the reader with a conclusion and suggestions for future work.
The conclusion is structured around the research questions and the project’s validity,
whereas the section related to future work proposes some possibilities for further
research identified throughout the thesis.

8.1 Conclusion

This master thesis proposes an automatic personalized content generation model
compatible with WAY’s unity-based simulator. The model adapts content based on
an individual student’s skill levels, aiming to optimize learning by providing students
with appropriate difficulty and tailored traffic situations. Implementing this model,
we wanted to investigate the research objective and subsequent research questions
described in section 1.2.

In chapter 7, the research questions are revisited and evaluated in light of the model
design and key observations from the results chapter. Regarding RQ1, the results
provide strong indications of successful personalization of driving lessons. There
are a couple of irregularities in the observations relating to uneven training for S4 -
High Proficiency and an excessive amount of intersection training. Still, both have
straightforward explanations and do not undermine the remaining promise shown.
However, when addressing the optimization of learning, the experiment is inconclus-
ive, as this would require thorough tests conducted with real-world subjects.

Concerning RQ2, the result proves the value of a semantic-based representation in
this research context, although the distinction between dynamic and static chunks
is suboptimal. Moreover, the representations’ dependence on human input for con-
figuration leaves room for improvement. However, despite some weaknesses, the
representation successfully depicts all the traffic situations we saw fit to include,
thereby answering the research question in a satisfactory manner.

The final research question RQ3 pertains to ensuring appropriate difficulty levels
relative to an individual’s skill levels. The results demonstrate a clear correlation
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between the student’s skill levels and the difficulty corresponding with the generated
content. Nevertheless, the statistical analysis brings to light certain challenges con-
cerning the impact of distractor-induced difficulty and the subjective configuration
of tile difficulties and learning efficiency. In order to enhance the precision of the
relationship, it is necessary to incorporate a wider variety of tiles and devise a more
intelligent method for deciding configurations.

Upon evaluating the experiment’s validity in section 7.3, the findings indicate sat-
isfactory levels of conclusive, internal, and construct validity, despite elaboration
on some possible threats for each of them. However, there are certain limitations
pertaining to construct validity that are suboptimal. These limitations are intercon-
nected with other challenges, highlighting the necessity for comprehensive real-world
testing to drive further improvements.

8.2 Contributions

In this research, we have made some noteworthy contributions. Firstly, a literature
review on procedural content generation and personalized learning in the context
of virtual simulators gives a detailed outline of the research field. Furthermore, a
semantic representation for depicting traffic situations is provided. This represent-
ation is mainly designed from the perspective of driving lessons but can be utilized
in a wider context. Moreover, a model and algorithm for the automatic generation
of personalized content is introduced. This model is compatible with WAY’s Unity-
based simulator and skill model, thereby shortening the deployment time. Included
in the algorithm is also a method for reviewing the content in relation to a student’s
skill levels, which is possibly applicable to other domains. In addition, the thesis
offers an analysis of the generated content and reviews results against the research
questions presented. Lastly, proposals for future work based on this research are
suggested.

8.3 Future Work

For future work, there are several interesting approaches to continue this research.
Firstly, since the model is implemented in collaboration with WAY, hereby ensur-
ing compatibility with existing technology, this facilitates a great opportunity to
test the model on real-world subjects. This could aid in fine-tuning the configura-
tions proposed for the presented model and potentially uncover additional insights.
Moreover, a comprehensive test in collaboration with WAY could open for general-
izing the content generation algorithm to real-world applications.

As touched upon in the discussion, the system only generates necessary content. In
the future, implementing content generation that can adjust the environments from
rural to urban, and implement different weather and time of day, could add another
dimension to the realness of the lessons.
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Furthermore, some alternative approaches can be reviewed. The literature in sec-
tion 4 established a broad application of search-based algorithms for personalized
procedural content generation. Such methods could be applicable to this research
as well and possibly yield better results. Another intriguing perspective to consider
in this research is the concept of online generation. Due to limitations in the timing
of the skill inference model, this was not applicable in this particular research but
would likely yield intriguing findings. This could be attempted by either further
exploration of the papers presented in related work proposing online methods or by
utilizing the functionality of the pathfinder algorithm to update the path during a
lesson while the student receives live feedback on performances.

Finally, there is potential for further exploration in the representation of traffic
scenarios. If a greater level of consistency across several tiles could be attained, it
could open for the removal of static chunks, as well as the possibility of utilizing
the fundamental road structure of a tile as the base and dynamically adjusting the
remaining content to suit the student’s needs.
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