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Abstract

This thesis aimed to analyse the association between hospital length of stay (LOS) and two dis-
tinct outcomes: mortality risk and visits to the general practitioner (GP). To accomplish this, Cox
Regression was used to assess the association between LOS and mortality risk, while Poisson Re-
gression was utilized to examine the association between LOS and number of visits to the GP, both
within 60 days following admission.

Initially, a simulation study was conducted to explore the potential presence of immortal time bias
in the analysis of association between LOS and mortality. Immortal time bias arises when patients
who die at the hospital are excluded as they do not get a proper LOS. By testing various scenarios,
the study aimed to determine if the estimated hazard ratio (HR) for LOS was influenced. The
results of the simulation study revealed a HR of approximately 3%, providing valuable insight in
the magnitude of immortal time bias.

The study population consisted of admissions to Norwegian health trusts with acute heart failure
as the primary diagnosis between 2010 and 2021. The data set contained information about age
at admission, sex, time of admission, education level and number of visits to multiple emergency
medical services within the 60 days before admission.

Furthermore, individual Cox models with varying levels of strata were computed. The primary focus
was on the hazard ratio of LOS, which was 4% for the models without strata, and 5% when strata
were added. These findings suggested the existence of additional factors, beyond immortal time
bias, that contributed to the analysis. It was reasonable to believe that the severity of the patients
acted as a confounding factor, impacting both LOS and the mortality risk. Consequently, this
could lead to incorrect conclusions regarding the association between LOS and mortality. Although
the severity of the patients is challenging to measure quantitatively, it is an essential part of the
analysis.

Lastly, Poisson Regression was used to investigate the association between LOS and visits to the
GP. The incidence rate ratio (IRR) indicated that the expected number of visits increased by 2%
for each additional day in the hospital.

By using these regression models, this thesis supplied insight into the occurrence of immortal time
bias and confounding in an analysis where the severity of the patients is unknown. The findings
may contribute to a better understanding of the relationship between LOS, mortality risk and visits
to the GP, shedding light on the complex factors in the health care system.

i



ii



Sammendrag

Denne masteroppgaven analyserer sammenhengen mellom sykehusopphold (LOS) og to forskjellige
utfall: dødelighetsrisiko og besøk hos fastlegen. For å oppn̊a dette ble Cox regresjon brukt til å
vurdere sammenhengen mellom LOS og dødelighetsrisiko, mens Poisson regresjon ble brukt til å
undersøke sammenhengen mellom LOS og antall besøk hos fastlegen, begge innen 60 dager etter
innleggelse.

Innledningsvis ble det gjennomført en simuleringsstudie for å utforske den potensielle tilstedeværelsen
av udødelighetsskjevhet i analysen av sammenheng mellom LOS og dødelighet. Udødelighetsskjevhet
oppst̊ar n̊ar pasienter som dør p̊a sykehus blir ekskludert fordi de ikke f̊ar en skikkelig LOS. Ved
å teste ulike scenarier var m̊alet å avgjøre om den estimerte relative risikoen (HR) for LOS ble
p̊avirket. Resultatene av simuleringsstudien viste en HR p̊a omtrent 3%, noe som gir verdifull
innsikt i omfanget av udødelighetsskjevhet.

Studiepopulasjonen besto av innleggelser i norske helseforetak med akutt hjertesvikt som hoved-
diagnose mellom 2010 og 2021. Datasettet inneholdt informasjon om alder ved innleggelse, kjønn,
tidspunkt for innleggelse, utdanningsniv̊a og antall besøk til flere akuttmedisinske tjenester i 60
dager før innleggelse.

Videre ble individuelle Cox modeller med varierende niv̊aer av strata beregnet. Hovedfokuset var
p̊a HR av LOS, som var 4% for modellene uten strata, og 5% n̊ar strata ble lagt til. Disse funnene
antydet eksistensen av andre faktorer, i tillegg til udødelighetsskjevhet, som bidro til analysen.
Det var rimelig å tro at pasientens alvorlighetsgrad virket konfunderende og p̊avirket b̊ade LOS
og dødelighetsrisikoen. Dette kan derfor føre til feilaktige konklusjoner om sammenhengen mellom
LOS og dødelighet. Selv om alvorlighetsgraden av pasientene er utfordrende å m̊ale kvantitativt,
er det en viktig del av analysen.

Til slutt ble Poisson regresjon brukt for å undersøke sammenhengen mellom LOS og besøk hos
fastlegen. Insidensraterisikoen (IRR) indikerte at forventet antall besøk økte med 2% for hver
ekstra dag p̊a sykehuset.

Ved å benytte disse regresjonsmodellene ga denne oppgaven innsikt i forekomsten av udødelighets-
skjevhet og konfundering i en analyse der alvorlighetsgraden til pasientene er ukjent. Funnene
kan bidra til en bedre forst̊aelse av sammenhengen mellom LOS, dødelighetsrisiko og besøk hos
fastlegen, og belyse de komplekse faktorene i helsevesenet.
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Chapter 1

Introduction

It is estimated that roughly 2% of the population in Norway lives with heart failure (HF). For
people over 75 years, this percentage is estimated to be 10% (Skogli et al. 2020). HF is a clinical
syndrome consisting of cardinal symptoms involving breathlessness and fatigue, where the heart is
not able to pump enough blood out to the body (McDonagh et al. 2021).

The disease is possible to live with, however it is described as a public health issue due to the
negative consequences it brings on the quality of life for the patients. In addition, the health care
costs related to the disease are huge and are estimated to further increase in the next couple of
years. A study done by Menon estimated that heart failure inflicted the Norwegian society cost of
48 billion NOK in 2018 (Skogli et al. 2020). They estimated that this will further increase up to 63
billion NOK in 2030 due to the increasing number of elderly people in society. The largest part of
these costs is related to the burden of disease and loss of economic growth due to the disease, but
it also includes costs for the health care system.

Heart failure is the most common cause of hospital admissions for people older than 65 years (Skogli
et al. 2020). With the increasing number of elderly people that is happening, this will cause even
more pressure on the health care system in the years to come. However, the detection of heart failure
is much better today than it was decades ago. Both the number of acute events of heart failure and
hospital length of stay (LOS) have gone down since 2005, by 45% and 58% respectively. One possible
reason for the reduction in LOS can be the Coordination Reform (”Samhandlingsreformen”), which
was implemented in Norway from 2012 (Helse- og Omsorgsdepartementet 2011). Its primary goal
was to improve the help given to the patients, and to give the municipalities more responsibility for
patients that are ready to be discharged. After the reform was implemented, studies were done to
see if the reform had any impact on LOS and the readmission rate. One study showed that the LOS
was generally shortened by 0.1 day by the reform, where the patient group of interest was patients
admitted to the hospital with heart failure, hip fracture, stroke or chronic obstructive pulmonary
disease (COPD) (Melberg and Hagen 2016). One of the main results in this study was that for
patients that were defined as ready to be discharged, the LOS was shortened significantly with 4.6
days for patients admitted with hip fracture. Patients that were defined as ready to be discharged
had also a higher readmission rate than the patients that were not defined as this, however they
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CHAPTER 1. INTRODUCTION

could not conclude that this was not a direct result of the Coordination Reform.

Several studies have been done on the association between LOS and readmission and mortality for
given diseases. In a study done by the American College of Cardiology on patients in Canada, they
looked at the association between short or long LOS and a 30-day readmission and mortality for
patients admitted with heart failure. They found that a shorter LOS was associated with a higher
rate of readmission for heart failure and cardiovascular related diseases (Sud et al. 2017). However,
a long LOS was also related to a increasing rate of readmission of all types of diseases. In addition,
they found that a long LOS gave the highest 30-day mortality risk. In this study, a short length of
stay included 1-2 days, while a long length of stay was 9-14 days. From the results of the study it
was clear that the answer to such a problem is complex and depends on several factors.

Patients suffering from heart failure will often be admitted into the hospital more than once due to
the disease. A study done by the American Heart Association found that 61.3% of patients were
readmitted due to HF within the first year after discharge. The first readmission occurred within
the first and last deciles of the survival time after discharge, where each decile was a median of
63 days in length. Looking at any readmission, taking into consideration that each patient could
have multiple hospitalizations, the largest proportion happened close to death, followed by the first
period after being discharged. This could be due to treatment after a diagnosis is set, or that
patients are in general sicker close to death. The sickness and mortality risk could also be due to
other factors than the HF itself.

1.1 Heart Failure

The most common cause of HF is high blood pressure, hypertension, and coronary artery disease,
which could be found in 75-80% of patients diagnosed with the disease in 2007 (Aarønæs et al.
2007). Other causes can be diabetes or congenital heart defect (CHD). HF can happen when the
heart is not able to pump with enough force to cover the amount of blood that the body needs.

The heart is composed of four cambers, the left atrium and the right atrium, and the left ventricle
and the right ventricle (Better Health Channel 2023). The atrium is a collecting chamber, while
the ventricle is a large pumping chamber. The left side of the heart is larger than the right side as
it does the main work by pumping oxygen-rich blood to all parts of the body. The right side’s task
is to collect blood from the body, which is low in oxygen, and to pump it into the lungs to be filled
with oxygen again.

The most common type of HF happens in the left ventricular of the heart. A HF in the left
ventricular means it has to work harder than normal to pump out enough blood to the body. If a
heart failure happens in the right side, it is usually a result of failure in the left ventricle. When this
happens, there is an increase in fluid pressure which results in a loss in pumping power for the right
ventricular (American Heart Association 2023). If this happens in a brief time span, with acute
symptoms, the patient may need urgent medical help often involving unplanned hospital admissions
or visits to the emergency room (ER).

2



1.2. HOSPITAL LENGTH OF STAY

1.2 Hospital length of stay

The average LOS has gone done for approximately one third of the countries in the EU when
comparing 2015 to 2020 (Eurostat 2023a). In Norway, the average length of stay was 5.2 days in
2020, which is a reduction of 0.3 days compared to 2015. In 2011 the average length of stay was 6.0
days, making it a reduction of nearly a day across the span of 10 years (Eurostat 2023b). This trend
of reduced LOS may be a result of hospitals improving treatment time but also due to an incentive
to reduce it. As mentioned, the Coordination Reform was implemented in Norway in 2012. As a
way of giving the municipalities more responsibility, they were fined if the could not take care of
patients that still needed help after discharge from the hospital (Hagen et al. 2013). This may have
affected the LOS as this became expensive for the municipalities to ignore.

The active reduction in LOS and the economic expense that came with the Coordination Reform
for the municipalities may have led to a change in routines for the different hospital trusts. There is
a possibility that the average LOS has changed more for some hospital trusts, while others have the
same trend over the years. The different routines make it hard to compare patients across hospital
trust, as the average can vary substantially. This can also be said for trends over the years. The
reduction of the average LOS in Norway may also be a result of an improvement in the health
care sector, which needs to be taken into consideration when analyzing data spanning a decade.
Another factor is that the LOS is sometimes short because the patient is at considerable risk of
dying, and hospitals want to avoid in-hospital deaths. This may skew the data as the patient would
probably get a higher LOS if the risk of death was lower. Other times patients may be discharged
early because they will be readmitted within a short period of time due to treatment. In total, the
LOS may say something about how sick the patient is, but exactly how is not straightforward.

Another aspect of the LOS is the fact that the process of discharging is comprehensive. Organ-
izational factors have an impact on the LOS, where departments under pressure may struggle to
discharge patients at the right time. This could skew the LOS and make it longer for some admis-
sions where the patient was ready to be discharged but stayed longer because of the department.

For an admission to have a length of stay, there is a need to condition on survival trough the
admission. Admissions where the patient died on the hospital must be filtered out, which gives the
potential of immortal time bias. This means that to be included in the analysis, the patients are
seen as ”immortal” while they are in the hospital, i.e., the outcome of interest cannot occur in this
time interval (Yadav and Lewis 2021). The removal of patients that died in the hospital, introduces
a skew in the data and can potentially lead to overestimation of the outcome of interest, which
needs to be considered when looking at the association between LOS and the 60 day mortality.

There is also a possibility of confounding in observational studies were the aim is to estimate the
causal inference between treatment and outcome. In this thesis, this may occur if LOS depends on
one or multiple components measured before admission, which are not adjusted for in the analysis.
How sick the patient is at admission could be such a component, as it can have an impact on
discharge of the patient and hence the LOS.

3



CHAPTER 1. INTRODUCTION

1.3 Analysis plan

In this thesis we will look at associations with hospital length of stay for patients admitted with
heart failure. This involves mortality and visits to the general practitioner (GP), where the interest
lies on the 60 days after a hospital admission. First, we look at the data given by the Norwegian
Patient Registry and the Norwegian Cause of Death Registry, and the general survival rate based
on the hospital admissions. Later we use this to generate data in a simulation study where the
primary aim is to investigate the possibility of immortal time bias. In addition, we want to see
what different scenarios based on the real survival rate would say about the relationship between
LOS and mortality.

Further, Cox Regression models with different features and levels of strata will be computed in
order to estimate the hazard ratio of LOS and other features on mortality. In addition, we aim to
make Poisson models for the rate of visits to a GP in the 60-day window after an admission.

This thesis consists of 6 chapters. Chapter 2 presents the available data used, and an explanatory
data analysis. In Chapter 3 the theory behind the statistical methods is described in detail, where
the focus lies on the Cox Proportional Hazards Model and Poisson Regression. The chapter also
includes an introduction to survival analysis. Chapter 4 presents the simulation study, and the
different models that were fitted to the data. The results from these approaches are presented in
Chapter 5. A discussion of the results and a conclusion can be found in Chapter 6.
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Chapter 2

Data

This chapter presents the data that was available for the thesis. It holds a description and ex-
ploration of the features used in the models. The use of the data was approved by the Regional
Committee of Ethics in Medical Research (2016/2159). All of the analyses were done on HUNT
Cloud, which is a secure environment for storage and analysis, where only relevant data was made
available for our analyses (HUNT Research Centre 2021).

2.1 Available data

The data was made available from the Norwegian Patient Registry and gave information about a
nationwide cohort of 52, 887 patients admitted to Norwegian hospitals with heart failure, between
January 1st, 2010, and December 31st, 2021. In Norway, all hospital trusts are obliged to give
information about their clinical activity to the national registry. From this registry it was possible
to obtain the sex of the patient, as well as age at admission and time of admission and discharge.

Additionally, the education level for each patient was included in the data set, where the levels are
defined according to Statistics Norway (SSB) (Statistisk sentralbyr̊a 2023). Furthermore, the data
set included information about the number of visits to the GP, out-of-hours emergency primary
health care (OOH), emergency treatment in hospital and the total LOS before and after admission.
The data also contained which hospital trust the admission was at, and a patient-ID such that it
was possible to cluster admissions by patient. However, individual patients could not be directly
identified.

The focus of this thesis is on acute admissions of HF, and hence we only included hospital stays
with ICD-10 codes I50 as primary diagnosis. In addition, date of death was collected from the
Norwegian Cause of Death Registry to know when or if patients died during the time period of
study. If a patient had multiple registered hospital stays with less than 8 hours in-between, these
stays where merged together as one assuming this is due to in-hospital moving or transfer between
hospitals. This was also done for overlapping stays, where the admission date of the first admission
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and discharge date of the last admission were used as the time interval for hospitalization. In total,
the resulting data set consisted of 84, 527 hospitalizations.

2.2 Features of interest

2.2.1 Survival rate

The data contained the days until death from the day of admission for approximately 70% of the
admissions. The other 30% of the admissions were patients that survived until at least December
31rd 2021. The admissions made it possible to compute a 60-day survival curve which is shown in
Figure 2.1. After 60 days, the average survival rate from the admissions was approximately 88%.

Figure 2.1: The figure shows the computed survival curve using the admissions in the data set.

2.2.2 Hospital length of stay (LOS)

Figure 2.2a shows the distribution of the LOS for the admissions in the data set. The range of the
feature is 1 to 14 days. Hospital stays of 0 days were removed as this mainly included short stays, and
were thought to be planned visits related to treatment and not acute admissions. Hospitalizations
of longer than 14 days were removed as it was only a few of them. The average LOS was 5.1 days
for the full data set. The LOS is defined as the total number of days spent at the hospital and can
include visits to multiple departments, if they are within 8 hours of each other. The percentage of
60-day mortality for each LOS is shown in Figure 2.2b. It shows a slight increase for longer stays
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compared to stays below the average. The increase in mortality risk is on average 0.2% per day
increase in LOS.

(a) (b)

Figure 2.2: The distribution of length of stay over the admissions, and the distribution of death
within 60 days for the length of stay.

Moreover, the number of days spent in the hospital in the 60 days before admission was also of
interest. Figure 2.3a, shows that most admissions had no prior visits in the 60-days window before
an admission. However, there were admissions registered with LOS in this time window, with some
having up to 30 days in the hospital prior to a new admission. This could give an indication of
the sickness of the patients as the admissions are only acute admissions. Figure 2.3b shows the
mortality risk for the 60 days before admission.

(a) (b)

Figure 2.3: The distribution of length of stay in the 60 days before admission, and the distribution
of death within 60 days for the length of stay.
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2.2.3 Age at admission

The feature age gave the age of the patient at admission. This is a feature that changed over
time for patients with multiple admissions, if they were from different years. Figure 2.4a shows the
distribution of age at admission, where the number of admissions increased with age and the mean
age at admission was 81.6 years. The high age at admission could indicate that the patients were
quite sick when they were admitted as the life expectancy for men and women in Norway was 80.9
and 84.4 years in 2021 respectively (Haug 2023). As there were only a few admissions of patients
over the age of 100 years, these were left out of the plots to ensure full anonymity. The percentage
of death within 60 days increased with age as seen in Figure 2.4b.

(a) (b)

Figure 2.4: The distribution of age at admission, and the distribution of death within 60 days per
year of age.

2.2.4 Health trust (HT)

The data was collected from 26 different health trusts in Norway. For some hospital trusts there
were only a few hospital admissions in the data set while others had thousands of admissions,
resulting in a wide range of admissions. The distribution of admissions can be seen in Figure 2.5a.
The trusts are scattered all over Norway, with different routines and abilities, hence we would
assume that there are systematic differences between them when it comes to the average LOS and
other factors such as capacity and demand. Even though the number of admissions varies across
the health trust, it was an insignificant variation in the probability of dying within 60 days as seen
in Figure 2.5b.

Several admissions had no registration of health trust, and these were separated into 7 different
unknown groups. As Figure 2.5a shows, 4 of them had very few admissions compared to the other
HT’s.
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(a) (b)

Figure 2.5: The distribution of admissions across the health trusts, and the distribution of death
within 60 days per health trust.

2.2.5 Time of admission

The data includes the time stamp of admission and discharge, which made it possible to extract
the year, the month, the day and the hour of admission. Figure 2.6a shows the distribution of
admissions over the years. The number of hospital admissions was even over the different years,
but with a increasing trend. The mortality was, however, constant over the years.

(a) (b)

Figure 2.6: The distribution of admissions across the years, and the distribution of death within 60
days per year.

The admissions were also evenly spread over the months. There was a slight higher rate of admis-
sions in January, May and December compared to the other months, however the differences were
not significant. Figure 2.7b shows that the mortality was the same for all months.
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(a) (b)

Figure 2.7: The distribution of admissions across the different months, and the distribution of death
within 60 days per month.

In the plots for days of the week, shown in Figure 2.8a there is a higher variability in admissions for
the different days. There were fewer admissions on the weekends compared to the rest of the week,
with a peak on Mondays. During the week, patients may visit their general practitioner (GP) if
the are feeling sick, and the GP can decide if they need to be admitted to a hospital. This is not
possible during the weekends, resulting in fewer admissions. The peak of admissions on Mondays
may be a result of this, as patients that are not acutely sick delay their visit to the GP over the
weekend. However, the mortality was constant over the week.

(a) (b)

Figure 2.8: The distribution of admissions across the days of the week, and the distribution of death
within 60 days per day.

For the hours in the day, the distribution of admissions is shown in Figure 2.9a. The figure shows
that the hospital was busiest during the day with a high peak from 11 : 00 to 15 : 00. The early
hours, between 00 : 00 and 08 : 00, had fewer admissions where these were the most acute events
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with patients needing help immediately. The argument with the GP is also valid here. It is only
possible to visit the GP during the day, leading to no referral from the GP during the late afternoon
and night. There were also some admissions that were on a holiday. These admissions were also
acute admissions as the GP is not available on holidays. There was some variation in the 60-day
mortality rate for the different hours, with lowest probability around 07 : 00− 08 : 00 which can be
seen in Figure 2.9b.

Grouping the days after the weekend or not shows that in total there was barely any difference in
the mortality as seen in Figure 2.10b. Some days of the year are also holidays, where the routines
and number of staff are similar to the ones during the weekend. However, the mortality was not
affected by this.

(a) (b)

Figure 2.9: The distribution of admissions per hour of the day, and the distribution of death within
60 days per hour.

(a) (b)

Figure 2.10: The distribution of admissions for weekday vs. weekend, and the distribution of death
within 60 days grouped by weekday or weekend.
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(a) (b)

Figure 2.11: The distribution of admissions for regular days vs. holidays, and the distribution of
death within 60 days grouped by regular day or holiday.

2.2.6 Sex

The data consisted of 45675 admissions of men and 38852 of women, which gave a fraction of 0.54
and 0.46 respectively. Figure 2.12a shows this distribution, and Figure 2.12b shows that there was
a slightly higher risk of dying within 60 days for women compared to men.

(a) (b)

Figure 2.12: The distribution of admissions for men and women, and the distribution of death
within 60 days for each sex.
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2.2.7 Education level

The highest level of education for each patient was also included in the data set, where these levels
follow the definition from SSB (Statistisk sentralbyr̊a 2023). Level 0 corresponds to no education,
level 1 is primary education and so fort. The highest education is level 8 and represents postgraduate
education. Admissions where the education level was unspecified, are represented by level 9. From
Figure 2.13a it is clear that most of the patients belong to level 2 and 3, which represents lower
secondary education and upper secondary education with basic education respectively. Education
level is an important feature when modelling mortality as there are differences in life expectancy
between people of high and low education. People with high education has a life expectancy which
is 5 − 6 years higher than people with low education following the Norwegian Institute of Public
Health (Syse et al. 2023). Figure 2.13b shows some variability in the risk of dying, with level 1 and
8 having the lowest percentage. However, this may not be representative as these levels were the
least represented levels in the data.

(a) (b)

Figure 2.13: The distribution of admissions per education level, and the distribution of death
within 60 days per level. Level 0 represents no education, level 1 is primary education and so forth.
Admissions with unknown education level is represented by 9.

2.2.8 General practitioner (GP)

The data also included visits to the general practitioner (GP), both before and after admission.
From Figure 2.14a it is possible to see that several patients visited their GP multiple times before
admission to the hospital. A fraction of patients did not visit their GP, and Figure 2.14b shows that
these patients had a slight higher probability of dying within 60 days after admission compared
to patients that had just 1 visit before admission. Figure 2.14b shows an increasing trend in
mortality as the number of visits increased, even though few admissions had over 10 visits to the
GP beforehand which should be taken into consideration.

An outcome of interest was the number of visits to the GP in the 60 days after admission. The
distribution of visits after admission followed the same shape as the distribution for visits before
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(a) (b)

Figure 2.14: The distribution of admissions for visits to the GP in the 60 days before admission,
and the distribution of death within 60 days for these visits.

admission, however the mortality rate for visits after had a decreasing trend. The mean rate of
visits to the GP after admission was 5 visits, while the median was 4. As stated, a Poisson model
with this outcome will be estimated in later chapters.

(a) (b)

Figure 2.15: The distribution of admissions for visits to the general practitioner in the 60 days after
admission, and the distribution of death within 60 days for these visits.

2.2.9 Out-of-hours primary health care (OOH)

In addition to visits to the GP, patients may have visited the out-of-hours primary health care
(OOH), most likely when the GP was not available such as on weekends or in the evenings. Nearly
half of the admissions in the data set did not have visits to the OOH in the 60 days before admission,
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and others had multiple visits in this time window. The mortality increased with the number of
visits as in Figure 2.16b, however, there were only few visits to the OOH in general which could
influence the distribution of the mortality rate.

(a) (b)

Figure 2.16: The distribution of admissions for visits to the out-of-hours primary health care in the
60 days before admission, and the distribution of death within 60 days for these visits.

2.2.10 Acute visits

There was also a possibility to visit the emergency room (ER) in the days before admission. As
Figure 2.17a shows, most admissions had no visits to the ER prior, but for a small quantity of
the admissions patients had visited the ER. As for the visits to the OOH, Figure 2.17b shows
an increasing risk in mortality as the number of visits increased, and the same argument about
uncertainty in the distribution could be used here.

All of these features of visits to different emergency medical services (EMS) were included to give
indication of the sickness of the patients when they were hospitalized and if they had been in bad
health in the months prior to an acute admission.
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(a) (b)

Figure 2.17: The distribution of admissions for visits to the emergency room in the 60 days before
admission, and the distribution of death within 60 days for these visits.

2.3 Data Exploration

In addition to the distribution of each feature, there was a need for assessment of the relationship
between them. In general, statistical models assume that there is little to no correlation between
features used in the model making. The relationship between the different features and the outcome
was also of interest as we wanted to assess if there were clear associations that could easily be seen
without the need for regression models.

2.3.1 The relationship between length of stay and age

Figure 2.4b showed that the risk of dying increased with age. Hence, there was a need to evaluate
the relationship between age and LOS as age was believed to be an important factor in the analysis
in general. Figure 2.18 shows the smoothed relationship between LOS and age. It was constant for
patients between 60 and 85 years. For elderly patients it decreased rapidly and nearly a day from
85 years to 100 years. However, this needs to be seen in context with the number of patients with
this age. There were only a few admissions of patients over 95 years, which could give uncertainty
in the estimation of the relationship. Additionally, it may be that the hospital chooses to discharge
older patients earlier than normal, in order to avoid in-hospital deaths.

2.3.2 The relationship between length of stay and health trust

For the boxplots in the next sections, the mean and standard deviation of the logarithm of the LOS
is used to estimate the width of the box and wiskers. The line is chosen to be exp(E(log(LOS)), while
the range of the box is exp(E(log(LOS))±sd(log(LOS))). The wiskers range from exp(E(log(LOS))−
3 · sd(log(LOS))) to 14, as the upper limit goes way beyond the range in the data set which is not
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Figure 2.18: The plot shows the relationship between age and average length of stay.

of interest.

Subsection 2.2.4 supplies insight in how the data was spread between the different health trusts.
In addition to the number of admissions, there was also important to look at distribution of LOS
across the different health trusts. Figure 2.19 shows boxplots for the LOS for each hospital trust.
The mean LOS varied across the different health trusts, where the lowest mean was 2.2 days and
the highest mean was 5.3 days. These differences argue that the data must be grouped by health
trusts in order to get comparable admissions in the models, such that systematic differences could
not affect the influence of LOS on the outcome.

Figure 2.19: Boxplot of length of stay for each health trust. The logarithm of LOS was used to set
the median and the ranges before the values where transformed back to a linear scale.
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2.3.3 The relationship between LOS and time

There was also reason to believe that there were differences in the mean LOS for the different years,
months and days of admissions. Figure 2.20, shows boxplots for the years of admissions. There
was only minor differences in the mean LOS, and standard deviation. The same could be said for
the month of admission, as seen in Figure 2.21. The months May, June, July and December had
slightly lower mean compared to the other months, which could be because these months include
more holidays compared to the other months.

Figure 2.20: Boxplot of length of stay for each year.

Figure 2.21: Boxplot of length of stay for each month.
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Figure 2.8a shows that there were differences in number of admissions across the days of the week,
with a clear peak on Mondays. However, Figure 2.22 shows that the mean LOS on Mondays was on
the lower side, indicating that even though many patients were admitted on a Monday, they were
discharged quite rapidly. As the days of the week went by, the mean LOS increased with a peak on
Fridays. Comparing admissions for each day of the week, adjusted for the differences between the
days.

Figure 2.22: Boxplot of length of stay for each day of the week.

2.3.4 Correlation between features

The correlation between the numerical features is shown in Figure 2.23. The figure shows minimal
correlation between LOS and the other features. The binary variable indicating whether or not a
patient died within 60 days, called death 60, had a high negative correlation with days til death
which was reasonable as these values were used to set the binary variable. The outcome variable
death 60 had also some correlation with the outcome GP 60, which showed that patients with elev-
ated risk of dying had a tendency to visit their GP before they died. There was also some negative
correlation between the visits prior to admission and days til death, indicating that multiple visits
to these EMS was associated with earlier death.

Lastly the acute pre60 and LOS pre60 had a high correlation, which is reasonable as patients that
were so sick that they need to go to the ER have in general a higher risk of being admitted to the
hospital.
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Figure 2.23: Correlation plot showing the correlation between the numerical features in the data.
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Chapter 3

Statistical Theory

In this chapter we will present the basic ideas of survival analysis, and further the theory behind the
statistical methods used in this thesis including Cox and Poisson Regression. In addition, evaluation
methods used for model selection are presented.

3.1 Survival Analysis

For studies involving a survival time, the use of ordinary regression does not work because one must
wait for the event of interest to happen and in addition it is not given that it will happen to all
individuals during the study period. The event may not ever happen to some individuals, but it
can also happen after the period. The main take is that this information will be unknown in some
sense.

Survival analysis is a much-used part of statistics for the analysis of data involving the time to an
event occurs. Often this implies time until death, but it can also be the time to a readmission to
the hospital or time until cancer is detected. The time from the initiating event, this can be the
entry time for a study or the time from when the individuals where born, to the event of interest
is denoted survival time (Aalen et al. 2008, Ch. 1).

Censoring and left truncation

An important aspect of survival analysis is the term censored or right-censored. The survival time
of a individual is censored if the event of interest does not happen during the time of study (Aalen
et al. 2008, Ch. 1). Such observations are incomplete since we will lack information about the
individual. The event may happen later in life for the individual, but this information will be
unknown. Censored survival times can also happen if the individual withdraws from the study or
is lost to follow-up. Individuals can also enter a study at various times, for instance time zero can
be when the patient is admitted to the hospital with HF or when a cancer tumor is detected. Then

21



CHAPTER 3. STATISTICAL THEORY

some patients will have a delayed entry compared to patients that entered at an earlier time. This
is also called left truncation of the data. This affects the risk set, which is the set of individuals that
have not yet experienced the event of interest or are censored at time t. The risk set will decrease
as time passes, but new individuals entering the study will increase the size of the set.

3.2 Basic definitions

3.2.1 Survival Function

One of the most essential functions in survival analysis is called the survival function, which is
a function representing the probability that the event of interest has not happened by time t.
Denoting the random variable T , the time to the event of interest i.e., the survival time, we can
write the survival function as:

S(t) = P (T > t), (3.1)

where S(t) is assumed to be continuous. In most settings, this function will go to zero as t increases.
However, for events that do not happen to all individuals, the random variable T can be infinite
and the survival function S(t) will converge to a small positive value.

3.2.2 Hazard Rate

The other important function is the hazard rate, which is the probability of experiencing the chosen
event in the small time interval [t, t + ∆t), for the individuals that have not yet experienced the
event. The hazard rate is defined by a conditional probability, where the survival time T is assumed
to have a probability density f(t). The hazard rate is defined by:

α(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+∆t) =

f(t)

S(t)
. (3.2)

If the time interval is ”infinitesimally small”, i.e., the probability of something happening immedi-
ately conditionally on the survival time t, then the hazard rate α can be written as:

α(t) = −S′(t)

S(t)
. (3.3)

The estimation of the hazard rate can be comprehensive, so the cumulative hazard rate is estimated
instead as this is easier. The cumulative hazard rate is defined as

A(t) =

∫ t

0

α(s)ds. (3.4)

This can be rewritten as

A′(t) = α(t) = −S′(t)

S(t)
, (3.5)
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which results in

S(t) = exp

{
−
∫ t

0

α(s)ds

}
= exp{−A(t)} (3.6)

by integration and using the fact that S(0) = 1 (Aalen et al. 2008).

3.2.3 Counting processes

The occurrence of events over time contributes to a set of point processes which can be described
by a counting process, where the number of events that happens are counted as they happen. An
example of such a process is the well-known Poisson process that will be described later. A counting
process consists of the pair of functions (Ni(t), Yi(t)) with

Ni(t) = the number of events happened in [0, t] for individual i,

Yi(t) =

{
1 if individual i is at risk for the event of interest just before the time t

0 otherwise.

Ni(t) is a right-continuous process and will in many problems be a binary variable with 0 until
an event of interest happens e.g., death and then become 1 (Therneau and Grambsch 2000). The
function Yi(t) is on the other hand left-continuous and is called an ”at risk” indicator. This means
that it indicates which individuals can give information about the events at a given time. It can
also be written as Yi(t) = I(t ≤ τi), with I being the usual indicator function and where τi is the
time at the end of the observation.

We also have the notations Ȳ (t) =
∑

i Yi(t) and N(t) =
∑

i Ni(t), which, in a small time interval
(t− ϵ, t], is the number of individual at risk and the total number of events respectively.

3.2.4 Nelson-Aalen estimator

The estimation of the cumulative hazard rate given in Eq. (3.4) for a non-parametric model can
be done with the Nelson-Aalen estimator. The estimator is given by

Â(t) =
∑

j:tj≤t

∆N(tj)

Y (tj)
, (3.7)

with ∆N(t) = N(t)−N(t−) being the number of events occurring at time t and tj the j-th failure
time. The estimate can be interpret as the slope which estimates the hazard rate.

3.2.5 Kaplan-Meier estimator

The survival function in Equation (3.1) can be estimated using the Kaplan-Meier estimator, for
censored data (Aalen et al. 2008, Ch. 3). Assuming we only have right-censored survival times with
no left-truncation or no tied survival times, let N(t) and Y (t) be as described in Section 3.2.3. The
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times are ordered T1 < T2 < ... for when an occurrence of the event is observed. The time interval
[0, t] is usually partitioned into k sub-intervals where 0 = t0 < t1 < t2 < ... < tK = t. Then, using
the multiplication rule for conditional probabilities one gets

S(t) =

K∏
k=1

S(tk|tk−1) =

K∏
k=1

S(tk)

S(tk−1)
. (3.8)

Each partition S(tk|tk−1) is the conditional probability that the event of interest will happen later
than tk given that it has not happened by time tk−1. The assumption of no tied events makes
it possible to divide the time interval [0, t] into such small sub-intervals that each interval only
includes one observed event and with only censoring at the right side of an interval. Thus we can
estimate the conditional probability by

S(tk|tk−1) =

{
1 , if no event is observed in (tk−1, tk]

1− 1
Y (tk−1)

= 1− 1
Y (Tj)

, if an event is observed at time Tj ∈ (tk−1, tk] .
(3.9)

This gives the estimate for Eq. (3.8):

Ŝ(t) =

K∏
k=1

S(tk|tk−1) =
∏
Tj≤t

{
1− 1

Y (tj)
,

}
, (3.10)

the Kaplan-Meier estimator. If however there are tied survival times in the data, the estimator is
given by

Ŝ(t) =

K∏
k=1

S(tk|tk−1) =
∏
Tj≤t

{
1− dN(tj)

Y (tj)

}
, (3.11)

where dN(t) = ∆N(t).

3.2.6 Martingale

The Nelson-Aalen estimator has statistical properties that can be derived from martingale theory. A
discrete-time stochastic process is defined as a family of random variables {Xt : t ∈ T} with T being
discrete (Pinsky and Karlin 2010, Ch. 1). The discrete-time stochastic process M = M0,M1, ... is
a martingale if

E(Mn|M0, ...,Mn−1) = Mn−1, n ≥ 1, (3.12)

with M0 = 0. In words, the martingale property states that the conditional expectation of a random
variable in a process, with the past given, equals the previous value (Aalen et al. 2008, Ch. 2).
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3.3 The Cox Proportional Hazard Model

In most studies, the main goal is to assess the effect of one or several explanatory variables on some
outcome of interest. When the outcome of interest is survival or some time interval of interest, with
censored data, the most used regression model is the Cox Proportional Hazard Model. The hazard
rate of individual i is assumed to take the form

αi(t|xi) = α0(t) exp (x
T
i β), for i = 1, ..., n. (3.13)

The first term, α0, is the baseline hazard which describes the shape of the hazard rate as a function
of time and is assumed to be identical for all individuals. The feature values for individual i is
denoted xi1, xi2, ..., xip and collected in the feature vector xi = (xi1, xi2, ..., xip)

T . These can either
be fixed over time or vary as time passes. The vector β = (β1, ..., βp)

T , consists of p unknown
coefficients to be determined by the model. The term exp (xT

i β) is the hazard ratio or relative risk
which describes the impact of the features on the size of the hazard rate. This is because if we take
the ratio between the hazard for two different individuals i and j, where the features are assumed
to be constant over time, we get

αi(t|xi)

αj(t|xi)
=

α0(t) exp (x
T
i β)

α0(t) exp (xT
j β)

=
exp (xT

i β)

exp (xT
j β)

,

which is independent of time (Therneau and Grambsch 2000, Ch. 3).

As with regular regression, the aim is to find a model that estimates the values in the β vector.
This estimation is based on the partial likelihood function which has the form:

PL(β) =

n∏
i=1

∏
t≥0

{
Yi(t)ri(β, t)∑
j Yj(t)rj(β, t)

}dNi(t)

. (3.14)

The term ri(β, t) denotes the risk score for individual i, and is defined as ri(β, t) = exp (xT
j β).

dNi(t) represents the increment in Ni in the time interval [t, t+∆t), where ∆t infinitesimal. Taking
the logarithm of this equation, gives the log partial likelihood written as

l(β) = log[PL(β)] =

n∑
i=1

∫ ∞

0

[
Yi(t)x

T
i β − log

(∑
j

Yj(t)rj(t)

)]
dNi(t). (3.15)

The score vector U(β) is a p× 1 vector defined as the differentiation of this equation with respect
to β:

U(β) =
∂

∂β
l(β) =

n∑
i=1

∫ ∞

0

[xi(s)− x̄(β, s)]dNi(s), (3.16)

where

x̄(β, s) =

∑
Yi(s)ri(s)xi(s)∑

Yi(s)ri(s)
(3.17)

is the weighted mean of x, the observations still at risk at time s and Yi(s)ri(s) is the weights.
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The negative differentiation of the score function with respect to β gives a p× p matrix called the
observed information matrix, and is given by

I(β) = − ∂2

∂β∂βT
l(β) =

n∑
i=1

∫ ∞

0

V (β, s)dNi(s), (3.18)

with

V (β, s) =

∑
Yi(s)ri(s)[xi(s)− x̄(β, s)]T [xi(s)− ¯x(β, s)]∑

i Yi(s)ri(s)
(3.19)

being the weighted variance at time s. The maximum partial likelihood estimator (MPLE) β̂ is
found by solving the equation

U(β̂) = 0,

and the solution β̂ is asymptotically normal distributed with mean β and variance [ϵI(β)]−1.

The equation is impossible to solve analytically, so the Newton-Raphson algorithm is used so solve
the equation iteratively (Therneau and Grambsch 2000, Ch. 3). The algorithm computes the
estimates of β following the equation:

β̂(t+1) = β̂(t) + I(β̂(t))−1U(β̂(t)), t = 0, 1, 2, ... (3.20)

where it starts with an initial guess β̂(0) and computes new estimates until convergence.

3.3.1 Stratified Cox Regression

The regular Cox regression assumes that the baseline hazard is the same for all individuals. If there
are reasons to believe that this is not true one can stratify the model, where the individuals are split
into disjoint subsets or strata. Then each strata gets a unique baseline hazard, but the coefficient
vector β is the same for all strata. The model takes the form:

α(t|xi) = αs0(t) exp (x
T
i β), (3.21)

where s = 1, .., k represents the different strata giving the distinct baseline hazards for each strata,
αs0.

The unknown coefficient vector β is computed in the same way as for the regular Cox, but now the
log partial likelihood given in Eq. (3.15) is computed for each strata and then summed up giving
the overall log likelihood:

l(β) =

k∑
s=1

ls(β).

This approach is also taken for the score vector and the information matrix used in Eq. (3.20).

The different strata are treated as a categorical variable in the model and if several strata are
included, each unique combination of these gets a unique baseline hazard. The disadvantage of
doing this compared to including it as a normal categorical feature is that the model does not
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produce any estimate of the importance of the different strata, i.e., it does not give any p-value. In
addition, if the number of strata is large the precision of the estimated coefficient vector may be
reduced and give a worse hypothesis test. On the other hand, it is the easiest way of adjusting for
confounding features. For categorical features with many levels, it may be easier to include them as
strata instead, since it gives a model that is easier to interpret and with less estimated coefficients.

The use of strata could affect the power of the Cox model as it affects the sample size. As the
number of strata increases, the number of individuals in each strata decreases which can reduce the
power of the model greatly. However, in the presence of censoring, with a high survival rate the
stratified models may end up not losing much power.

3.3.2 Important residuals for the Cox Regression

There are several residuals which are interesting when modelling the data with a Cox model, the
first of them being the martingale residuals. These are mostly used to assess the functional form
of the features used in the models (Therneau and Grambsch 2000). The second residual of interest
is the deviance, which is a normalization transform of the martingale residuals. This residual was
mostly made to identify individual outliers when plotting. The score residuals and the Schoenfeld
residuals are the other two residuals of interest. The score residuals are used to assess individual
influence and for robust variance estimation while the Schoenfeld residuals are used to check the
assumption of proportional hazard curves.

Martingale Residuals

The martingale residual is one of the most important residuals for Cox Regression, as it assesses the
functional form of the numerical features (Therneau and Grambsch 2000, Ch. 4). These residuals
are defined as

Mi(t) = Ni(t)−
∫ t

0

Yi(s)ri(β, s)α0(s)ds, (3.22)

for individual i, or with words the difference between the observed and expected number of events
for each individual over the full study time.

For a model that is fit to data, the martingale residual process is defined as

M̂i(t) = Ni(t)−
∫ t

0

Yi(s)r(β̂, s)dÂ0(s), (3.23)

where β̂ is the estimate of the MPLE and Â0(t) is the estimation of the baseline cumulative hazard
given by:

Â0(t) =

∫ t

0

dN(s)∑n
j=1 Yj(s)rj(β̂, s)

, (3.24)

where dN(t) = ∆N(t).
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For a Cox model, where there are only time-independent features the martingale residual reduces
to

M̂i(t) = δi − Â0(τi)ri(β, s), (3.25)

where δ is 0 for censored observations and 1 for uncensored observations and τi denotes the obser-
vation time for individual i (Therneau, Grambsch and Fleming 1990). The residuals take values in
the interval (−∞, 0] for uncensored observations, and in (−∞, 1] for censored observations. This
means that for plots of continuous features versus the residuals, a locally estimated scatterplot
smoothing (LOESS) curve should be parallel to a constant line in zero.

Deviance Residuals

A disadvantage with the martingale residuals, especially when the cox is a model with single events,
is the skewness of the model (Therneau, Grambsch and Fleming 1990). To have a more normal
shaped distribution of the residuals, it can be helpful to transform them. The deviance residuals
are inspired by the deviance residuals for generalized linear models, which is defined as:

D = 2(l(βsat)− l(β̂0)),

where βsat is the estimated coefficients for a model with as many coefficients as number of ob-
servations n, giving µi = yi and β̂0 is the coefficient for the estimated model (Fahrmeir et al.
2022).

The deviance residuals are defined as

di = sign(M̂i) ·
√

−2(M̂i + δi log(δi − M̂i))

for the Cox models, where

sign(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(3.26)

Score Residuals

The third important residual is the score residual. This is used to assess each data point’s impact
on the fit of the model (Therneau and Grambsch 2000, Ch. 7). The most straightforward way of
measuring this impact is the jackknife value

Ji = β̂ − β̂(i),

where β̂(i) is the result from a fitted model where observation i is left out. This way of assessing the
impact is not effective as it requires a high amount of computation, and hence other methods are
used to find an approximate of this value. For a Cox model one uses the score residuals to assess
influence. The score process for the i-th individual is defined by

Ui(β, t) =

∫ t

0

[xi(s)− x̄(β, s)]dMi(s),
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with x̄(β, s) given by Eq.(3.17). The score process is a p× 1 vector with the components Uij(β, t),
j = 1, .., p and is written as Ui(β, t) = (Ui1(β, t), ..., Uip(β, t))

T .

In addition to the individuals and the features, the set of score processes is also related to time.
When looking at the time points which include one or more events, the time becomes discrete and
denoting the kth event time tk we get the components

Uijk(β) =

∫ tk

tk

[xij(s)− x̄j(β, s)]dMi(s). (3.27)

We define the score residual as

Uij = Uij(β,∞),

which in total forms a n× p matrix.

A way of estimating the jackknife value for a Cox model is to use the Newton-Raphson iteration.
Eq. (3.20) can be rewritten as

β̂(n+1) − β̂(n) = ∆β = 1TUI−1 ≡ 1TD, (3.28)

where U is the n×p matrix composed of the score residuals given above. The matrix D is called the
matrix of dfbeta residuals, and the calculations necessary for this matrix are the same calculations
used to fit the model hence this approach does not require any additional computations.

In addition to assessing influential observations, the jackknife can be used to compute a robust
estimate of the variance for a Cox model. Let J be a n × p matrix, with the i-th row being the
jackknife value Ji. Then the jackknife estimate of the variance can be written as

VJ =
n− 1

n
(J − J̄)T (J − J̄),

with J̄ being a matrix with the column means of J . This matrix can be approximated with
DTD = I−1UTUI−1, which is a sandwich type of estimator ABA where A is the ordinary variance
and B is the correction term.

In an ordinary Cox model, one assumes that all observations are independent when estimating the
variance for β̂ (Therneau and Grambsch 2000, Ch. 8). When a model has multiple observations per
individual, the jackknife value must be calculated differently. In such a model the choice is a grouped
jackknife estimate, which leaves out one individual at a time instead of one single observation.

Schoenfeld Residuals

One of the most important aspects with the Cox model is the assumption of proportional hazard
curves (Therneau and Grambsch 2000, Ch. 6). If the number of strata is small, this can be assessed
with plots of the survival curves. When the hazard curves are proportional, the log of the survival
curves will have the same shape and decay with the same rate. However, if the levels in the strata
are many or one has continuous features, plotting the survival curves will not be as interpretable.
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For such problems, the Schoenfeld residuals will be a better choice. At the kth event time, this
residual is defined as

sk =

∫ tk

tk−1

n∑
i=1

[xi(s)− x̄(β̂, s)]dNi(s), (3.29)

where x̄(β̂, s) is given by Eq. (3.17). The Schoenfeld residuals is a sum over the score process
array, which gives a process that varies over time. In total they form a k × p matrix with one row
per event time. It is possible to plot the event time against these residuals for each feature in the
model, where a LOESS curve fitted to the data should be a straight curve with mean and gradient
zero. This is an indication that the feature satisfies the proportional hazards assumption and is
independent of time.

It is also possible to check the proportionality assumption with a hypothesis test using the chi-
square distribution. This can either be done for each feature or for all at once with either 1 or p
degrees of freedom, respectively. Nonetheless, the hypothesis test can be significant and indicate
non-proportionality even though the LOESS curve shows small variation of β̂(t) vs. β̂, where β̂(t)

is the estimated effect of the feature at time t while β̂ is the best ”overall” effect.

3.3.3 Tied event times

In most of the material presented, there is an assumption that each event time corresponds to only
one event. This is not always the case, patients can die after the same number of days included
in the study, and the deaths are independent of each other. For the Cox model there are three
ways of dealing with such problems, the Breslow approximation, the Efron approximation and the
exact partial likelihood (Therneau and Grambsch 2000). The Breslow approximation is the easiest
to compute, but the Efron approximation is more accurate. The exact partial likelihood involves
heavy computation if there are many events at the same event time. Let ri(ti) be the risk score of
individual i at time ti, and assume k out of n individuals die at the same time. Then the Breslow
approximation of the k first terms of the likelihood would be(

r1
r1 + r2 + ...+ rm

)(
r2

r1 + r2 + ...+ rm

)
...

(
rk

r1 + r2 + ...+ rm

)
. (3.30)

With this approach individuals which died would be counted multiple times, producing bias in
addition to a less accurate approximation. The Efron approximation on the other hand, weights
the deaths in the denominator resulting in the terms(

r1
r1 + r2 + ...+ rm

)(
r2

k−1
k

∑k
i=1 ri +

∑m
i=k+1 ri

)
...

(
rk

1
k

∑k
i=1 ri +

∑m
i=k+1 ri

)
. (3.31)
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3.4 The Poisson Model

When the outcome of interest is to count the number of times an event happens in a time-specific
interval, the Poisson regression model is the most widely used model (Fahrmeir et al. 2022, Ch.
5). Poisson distributed variables are discrete, counting variables where the possible outcomes are
{0, 1, 2, ...}. The probability density function of a Poisson distributed variable gives the probability
of a specific number of events happening in a fixed time interval, with a constant rate λ, and is
given by

f(y|λ) = λy

y!
exp(−λ), λ > 0, y = 0, 1, 2, ... (3.32)

The Poisson model has the property E(Y ) = Var(Y ) = λ.

3.4.1 Poisson Regression Model

In most situations one considers regression models where the response variable is assumed to follow
a Poisson distribution, instead of focusing on a single variable. Let Y1, Y2, ..., Yn be random variables
and assume that the observed values y1, ..., yn are Poisson distributed with rate λi and that they
are conditionally independent. Let xi = (1, xi1, ..., xip)

T denote the feature vector for observation
i, and assume that the unknown coefficient vector is denoted by β = (β0, β1, ..., βp)

T . The observed
values of the features can be collected in the n× (p+ 1) matrix called the design matrix X,

X =


1 x11 . . . x1p

...
...

...

1 xn1 . . . xnp

 =


x1

...

xn

 . (3.33)

The observations are no longer assumed to be identically distributed, hence the rate λi is given by

λi = E(yi|xi) = exp(xT
i β) = exp(ηi),

with the linear predictor ηi = β0 + β1xi1 + ... + β1xip. As for the Cox regression, and regression

models in general, the optimal values for β, denoted β̂, can be calculated by solving the equation

U(β̂) = 0,

where U is the score function given by differentiating the log-likelihood function. The likelihood
for Poisson distributed data is given by

L(β) =

n∏
i=1

f(yi|β) =
n∏

i=1

λyi

i

yi!
exp(−λi), (3.34)

which gives the log-likelihood

l(β) =

n∑
i=1

[yi log(λi)− λi − log(yi!)] =

n∑
i=1

[yix
T
i β − exp(xT

i β)− log(yi!)]. (3.35)
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Differentiating this equation with respect to β gives the score vector

U(β) =
∂l

∂β
(β) =

n∑
i=1

[yix
T
i − xT

i exp(xT
i β)] =

n∑
i=1

xi
T [yi − λi]. (3.36)

Solving this equation for β̂ gives a nonlinear system of equation, which can be solved numerically
using the Fisher scoring algorithm (Fahrmeir et al. 2022). The algorithm performs the computations

β̂(t+1) = β̂(t) + F−1(β̂(t))U(β̂(t)), t = 0, 1, 2, ..., (3.37)

where the starting value β̂(0) is known. The matrix F is the expected Fisher information matrix,
F (β̂) = E(I(β̂)) which normally is easier to compute than the observed information matrix. The
n× n observed information matrix I, is given by

I(β) = − ∂2

∂β∂βT
l(β) =

n∑
i=1

xix
T
i λi (3.38)

for the Poisson distribution. In this case, the two matrices are identical, and the algorithm is
identical to the Newton-Raphson algorithm given in Eq. (3.20).

The convergence criterion for both algorithms have several different options, with one of them being

∥β̂(t+1) − β̂(t)∥/∥β̂(t)∥ ≤ ϵ

where ϵ is some small number. When the criterion is met the estimate for β̂ is set to β̂(t). To be
able to converge to a solution, the algorithm needs an information matrix that is invertible for all
β. This is the case when the design matrix X, has full rank p + 1. When n → ∞, the estimated
coefficient vector has the distribution

β̂
a∼ N(β, F−1(β̂)).

3.4.2 Offset term

For rate data which is a count of events divided on some measure of the unit’s exposure, Poisson
regression is also useful. This exposure is handled with an offset term, where log(exposure) is the
offset. The Poisson rate is then given by

λi =
E(yi|xi)

exposurei
= exp(xT

ijβ) or log(λi) = xT
i β + log(exposurei). (3.39)

3.4.3 Mixed Poisson Models

For data which are believed to be clustered, either if there are repeated observations per individual
or per cluster, random effects are introduced to handle differences between clusters (Fahrmeir et al.
2022, Ch. 7). For data sets consisting of ni repeated observations (yi1, ..., yini ,xi1, ...xini) where
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i = 1, ...,m denotes the cluster and j = 1, ..., ni denotes observation j in cluster i, the rate for the
Poisson model becomes

λij = exp(xT
ijβ + γ0i), (3.40)

where γ0i ∼ N(0, τ20 ) is a random deviate from the fixed intercept β0 and called the random, or
cluster-specific, intercept.

3.4.4 Deviance residuals

For a Poisson model, deviance is used to assess the goodness-of-fit of the model (Roback and Legler
2021, Ch. 4). The deviance measures how much the predictions deviates from the observed data,
so the deviance residual is defined as

di = sign(yi − λ̂i) ·

√
2

[
yi log

(
yi

λ̂i

)
− (yi − λ̂i)

]
, (3.41)

with λ̂i = exp(xT
i β̂) and sign(yi − λ̂i) is as defined in Eq. (3.26).

The deviance will be small for observations that are well fitted by the model, and larger for obser-
vations were the model struggles with the fit. When the model fit is perfect, we have yi = λ̂i, and
di = 0. Hence, observations that fits perfectly will not contribute to the sum of squared deviance’s,
which is called the residual deviance of the model.

3.5 Hypothesis testing

3.5.1 The significance of the coefficient vector

In addition to finding the optimal values for the β vector, one aims to find out if these coefficients
are significant or not. If they are significant, this means that the feature is significant for the
outcome of interest and has an influence on it. To test the significance of a single coefficient βj , we
test the hypothesis

H0 : βj = 0 vs. H1 : βj ̸= 0,

with the test statistic

tj =
β̂j

se(β̂j)
, (3.42)

where se(β̂j) = V̂ar(β̂j)
1/2

denotes the estimated standard deviance or standard error of the coef-
ficient. The test statistic is t-distributed with n− p degrees of freedom, and the null hypothesis is
rejected if

|tj | > t1−α/2(n− p),
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with α being the significance level. If one wishes to test several coefficients simultaneously, the
hypothesis test will be for the subvector β1 = (β1, ..., βr)

T , with

H0 : β1 = 0 vs. H1 : β1 ̸= 0.

The test statistic in this case is

F =
1

r
β̂1

T ̂Cov(β̂1)
−1

β̂1 ∼ Fr,n−p. (3.43)

The null hypothesis is then rejected if F > Fr,n−p.

These are both special cases of tests for general linear hypotheses (Fahrmeir et al. 2022, Ch. 3),
denoted

H0 : Cβ = d vs. H1 : Cβ ̸= d.

The matrix C is a r × p matrix with rank(C) = r ≤ p, the vector β is the usual coefficient vector
and d is a r × 1 vector. The hypothesis test tests r linearly independent conditions at once, with
the test statistic

F =
1

r
(Cβ̂ − d)T (σ̂2C(XTX)−1CT )−1(Cβ̂ − d) ∼ Fr,n−p, (3.44)

which is rejected if it is larger than Fr,n−p(1− α).

3.5.2 Likelihood-based testing

For the hypothesis test H0 : β = β0, where β0 is a known initial value, the most common test
statistics are the likelihood ratio test statistic, the Wald statistic and the score statistic (Fahrmeir
et al. 2022). The likelihood ratio test statistic is defined as

χ2
LR = 2{l(β̂)− l(β0)}. (3.45)

If the estimate l(β̂) is much larger than l(β0) resulting in a large value for χ2
LR, the null hypothesis

is rejected in favor of the alternative hypothesis H1 : β ̸= β0 (Fahrmeir et al. 2022, Appendix B).
The second test statistic possible to use is the Wald test statistic,

χ2
W = (β̂ − β0)

T Î(β̂ − β0), (3.46)

with the observed information matrix Î = I(β̂) given by Eq. (3.18). If the model only includes
one feature, this statistic reduces test statistic given in Eq. (3.42). The Wald statistic is easier to
compute compared to the likelihood statistic, however it is considered the least reliable statistic.

In addition to finding the estimates for β, the score vector can be used to assess the significance of
the estimates. The third test statistic is the score test statistic. It is given by

χ2
SC = U(β0)

TI(β0)
−1U(β0), (3.47)

and can be computed with the first iteration of the Newton-Rapshon algorithm where

I(β0)
−1U(β0) = β(1) − β0
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and β(1) is the first iteration of Eq.(3.20).

All three test statistics are asymptotically equivalent and asymptotically χ2-distributed with p
degrees of freedom under H0. They are rejected if the estimated values of the test statistics are
larger than χ2

p(1−α). For the Cox models, these test statistics are used to test if the final estimate
for the coefficients differs from the initial values.

The p-values are calculated using the χ2
p distribution, where

p = P (X2
p ≥ χ2|H0 is true) = 1− Fχ2

p
(χ2)

and Fχ2
p
(χ2) can be found in tables. If the p-value is less than some significance level α, usually

0.01, 0.05 or 0.1, then the test is significant, and the null hypothesis is rejected.

3.6 AIC

To compare statistical models with various levels of strata or random intercept, or distinctive
features in general the Akaike’s information criterion (AIC) is a much-used evaluation method. It
is defined as

AIC = −2l(β̂) + 2p, (3.48)

using the log-likelihood of the estimated values of the coefficient vector from the model, and where
the last term penalizes complex models. In general, a lower value corresponds to a better fit of
a model. The AIC is a compromise between a good fit to the data and model complexity, as too
many features often result in overfitting.
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Chapter 4

Methods

In this Chapter we will first present how the simulation study was done. Further, the different
Cox models for mortality with different levels of strata are presented. Lastly the Poisson models
for visits to the GP are presented. The results from these approaches are presented in the next
chapter.

4.1 Simulation study

Based on the survival rate from the data set shown in Figure 2.1, we wanted to simulate data with
similar shape with the purpose of analysing the association between mortality and LOS and to see
how immortal time bias could be a factor in such a problem. The simulation consisted of a fixed
probability of being discharged each day given by

pout = 0.5 · ds
14

, (4.1)

where ds = 1, ..., 13 was the number of days in the stay. The maximum number of days a patient
could be hospitalized, was set to 14 and hence for ds = 14 this probability was set to 1. The patients
were followed for 60 days after admission, and several scenarios for the risk of dying, pdead, were
tested. The scenarios are given by:

High acute risk rapid decrease = 0.03 + 0.01 · exp (−5 · df
60

)

High risk in hospital phase =
1

(10 + exp((df/14)2 + 1))
+ 0.02

Constant rate = 0.05

Increasing risk in hospital phase =
df

15 · exp(−df/15)

7.5
+ df · 0.0004
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Where df = 1, ..., 60 is the day of follow-up after admission.

Figure 4.1: The figure shows the risk of dying in the 60 days after admission, for the various
scenarios.

Figure 4.1, shows that the scenarios had different shapes and starting point, however they all
flattened out after some time. Two of the scenarios had a high initial risk, which decreased fast for
the first one, while the other one was at a higher value in the hospital phase before it decreased
rapidly. The third scenario was a constant value for each day after admission, while the fourth
scenario had an increasing risk in the hospital phase with a peak around 17 days after admission,
before it decreased and flattened out.

The simulation was done with 5000 iterations per scenario to make the results more robust. For
each iteration and scenario, LOS and day of death was simulated for 10, 000 patients. The LOS
was chosen to be the first day where the probability of being discharged, pout, was larger than
a randomly generated number p, between 0 and 1 following the standard uniform distribution
(Wikipedia 2023), given by

p(x) =

{
1

b−a for x ∈ [a, b]

0 otherwise.
(4.2)
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The day of death for each patient was set to be the first day pdead was larger than a randomly gen-
erated number which followed the exponential distribution with rate λ = 0.07, with the probability
density function

p(x) = λe−λx, x ≥ 0. (4.3)

Patients that survived to day 60 and further, had the day of death set to Inf as it became unknown.
A Cox model was estimated in each iteration and each scenario, with the 60 day survival as outcome.

4.2 Cox Regression on mortality

To study the survival time for patients admitted with heart failure Cox Models where used. For
patients with multiple admissions, the study time was defined from the first admission date and
until they died or the censor date December 31st 2021. Patients with a single admission were
followed from admission date and until death or the censor date. The primary goal was to see if
LOS had an influence on the 60 day mortality, and hence the outcome of interest was if they died
within 60 days or not. This time interval was chosen to capture a period when HF was the most
likely cause of death. For all of the Cox Regression models fitted in this thesis we used the coxph
function from the package survival (Therneau and Grambsch 2000) in the statistical software R (R
Core Team 2023). In the data set there were multiple admissions per patients which were clustered
together using the cluster function from same package.

Models with LOS as the only feature

Similar to the simulation, we started with regression models with LOS as the only feature in the
model. This was done to see the direct influence of LOS on the 60-day mortality, without any
adjustments from other features. The hazard rate for admission i could then be written as

αi(t|xi) = α0(t) exp(x
T
i β), (4.4)

where the relative risk was given by

exp(xT
i β) = exp(β1 · LOSi). (4.5)

Models with multiple features

Further, we computed models including several features. The data included features such as age,
sex, and others, which were registered before the LOS of an admission was set and hence not a
consequence of it. These features could be included to remove differences between patients in order
to get the patients to be as comparable as possible, such that the focus could be on the differences
in the LOS. It was unlikely that these features could introduce bias or error, as long as they were
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registered correctly. Including the relevant features, the relative risk of Eq. (4.4) was now given by

exp(xT
i β) = exp(β1 · LOSi + β2 · agei + β3 · womani + β4 · holidayi + β5 ·GP pre60i

+ β6 ·OOH pre60i + β7 · acute pre60i + β8 · education1i + β9 · education2i
+ β10 · education3i + β11 · education4i + β12 · education5i + β13 · education6i
+ β14 · education7i + β15 · education8i + β16 · education9i + β17 · LOS pre60i

+ β18 · shiftEveningi + β19 · shiftNighti).

(4.6)

The features woman and holiday were binary, where the reference categories were man and normal
day respectively. For the categorical feature education, level 0, representing no education, was
set as the reference category. Thus, the estimated values for the other levels represented the
relative difference between no education and the various levels of education. Instead of including
all admission hours, these were split into three shifts with Day being the reference category for the
admission hours from 8 − 15, while Evening included the hours from 16 − 23 and Night between
00− 07. As a sensitivity analysis, models with age as a categorical feature were also computed.

Stratification

For both of the models described models without any strata were computed. This was to see
the overall effect of the LOS on the mortality. Further we included strata to further adjust for
differences between patients.

Due to systematic differences between hospitals we included strata on HT. Hospitals have in general
different ways of solving issues, and also different capacities and number of admissions with acute
heart failure. The use of strata could remove bias and noise arising from these differences. As seen
in Section 2.2.4, there was 26 different hospital trust resulting in a model with 26 strata.

The implementation of the Coordination Reform gave reason to believe that there could be sys-
tematic differences between the years as well as the HT. In addition, improvement in treatment
time could contribute to make admissions non-comparable across the years. There could also be
the case that a hospital implemented a new system which could change the trends in the data set.
Hence adding strata on both HT and year was reasonable to include in a model. This resulted in
280 different strata, as some health trusts did not have admissions from all of the years.

The choice of strata can be many, and the day of the week was also a possible candidate. The
routines for the hospitals on a weekday could be different from the routines in the weekend, and
also the amount of admissions. As we could see in Figure 2.8a, with the distribution of admissions
across the days, there was a peak of admissions on Mondays and compared to the other days. The
possibility of systematic differences between admissions for the different days was there, and hence
it could be reasonable to add day of the week to the strata. Stratifying on HT, year and day of the
week resulted in 1927 comparable groups of admissions.

There was also a possibility to add month to the stratification. Routines may shift across the
months as the weather changes. However, introducing too many strata may give too many groups
with few comparable admissions. Stratifying with month as well as the other ones gave 20283 levels,
which on average was only 4 comparable admissions per strata.
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The hazard rate for a model with strata is given by

αis(t|xi) = α0s(t) exp(x
T
i β), s = 1, ..., k, (4.7)

with the same relative risk as in the previous models, given by Eq. (4.5) and (4.6). The number
k represents the number of strata, which were 26, 280, 1927 and 20283 for the different models
respectively.

4.3 Poisson Regression for visits to the General Practitioner

In addition to study the 60-day mortality, it was interesting to look at visits to the GP in the 60
days after an admission. For this, Poisson regression was used. Patients are not able to visit the
GP if they are still in the hospital, or if they die, hence an offset term of the exposure to the GP
was added to the models. This was given as

exposure =

{
60− LOS, if the patient survived the 60 days,

days until death− LOS, if the patient died within 60 days of admission.
(4.8)

Model with LOS as the only feature

To look at the direct association between LOS and visit to the GP a simple Poisson model with
only LOS as the feature was computed. The rate for such a model was given by

λi = exp(β0 + β1LOSi + log(exposurei)), (4.9)

for admission i and with the offset term for exposure time.

Model with multiple features

Further, multiple features were added in order to adjust for differences between patients in order
to get their admissions to be more comparable. Then, the rate became

λi = exp(β0 + xT
i β + log(exposurei)), (4.10)

where

xT
i β = β1 · LOSi + β2 · agei + β3 · womani + β4 · holidayi + β5 ·GP pre60i

+ β6 ·OOH pre60i + β7 · acute pre60i + β8 · education1i + β9 · education2i
+ β10 · education3i + β11 · education4i + β12 · education5i + β13 · education6i
+ β14 · education7i + β15 · education8i + β16 · education9i + β17 · LOS pre60i

+ β18 · shiftEveningi + β19 · shiftNighti.

(4.11)
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Random effects

As for the Cox regression, the data could be grouped by HT, year, day and month to get more com-
parable admissions. For this, we added random effects which estimated cluster-specific intercepts
using the package fixest in R (Bergé 2018). Random intercepts where added to both a model with
LOS as the only feature, and a model with multiple features.

The approach taken with the Cox models was also used for these models, with the data first grouped
by HT, then HT per year, further HT per year and per day of the week, and lastly HT per year,
day and month.

For models with several features, the rate was given by

λij = exp(β0 + xT
ijβ + log(exposure)j + γ0i) i = 1, ...,m. (4.12)

with m = 26, 280, 1925, 19893 respectively and γ0i the cluster-specific intercept for cluster i. For
these models, the linear predictor ηij = xT

ijβ was given by

xT
ijβ = β1 · LOSj + β2 · agej + β3 · womanj + β4 · holidayj + β5 ·GP pre60j

+ β6 ·OOH pre60j + β7 · acute pre60j + β8 · education1j + β9 · education2j
+ β10 · education3j + β11 · education4j + β12 · education5j + β13 · education6j
+ β14 · education7j + β15 · education8j + β16 · education9j + β17 · LOS pre60j

+ β18 · shiftEveningj + β19 · shiftNightj ,

(4.13)

for the j-th admission in cluster i.
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Results

5.1 Simulation study

The different scenarios presented in Section 4.1 was used to generate data that was used to fit Cox
proportional hazards models, where the patients were exposed to a length of stay in the hospital
and then studied for 60 days after admission. The resulting survival curves are plotted in Figure
5.1.

Table 5.1: The resulting mean length of stay and hazard ratio for each scenario. Both values are
the mean of the iterations.

Scenario LOS HR

High acute risk rapid decrease 6.243 0.960

High risk in hospital phase 6.240 0.950

Constant rate 6.268 0.979

Increasing risk in hospital phase 6.273 0.981

The curves show that on day 60 after admission, the survival rate was approximately 83% across
the different scenarios, which is similar to the data set. The scenarios resulted in individual mean
LOS as well, and these can be found in Table 5.1. The mean LOS was lowest for the scenario with
a high risk in the hospital phase, and highest for the scenario with an increasing risk in the hospital
phase. However, the differences are minimal. The table also includes the mean hazard ratio for
LOS, with all of them being under 1, and a difference of 3% between the highest and the lowest
value. Having said that, it is worth looking at the distribution of the HR over the iterations. Figure
5.2 shows the density of the HR for LOS, for each scenario, where it is clear that the constant rate
and the increasing risk in hospital phase had a distribution closer to 1 with some iterations where
the HR was estimated to be higher than 1.
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Figure 5.1: Figure showing the estimated survival rates from the simulation study, for each scenario.
The mean survival rate after 60 days was 83%.

The assessment of the functional form between the outcome and LOS is done by checking the
martingale residuals, found in Figure A.1a in Appendix A.1. The constant line in zero indicates a
linear relationship, as wanted. The Schoenfeld residuals in Figure A.1b show a line constant over
time, indicating that the proportional hazards assumption was met. As for the deviance residuals,
shown in Figure A.2a, there is a cluster of observations below zero, which indicates individuals that
”lived too long”, and a larger cloud of observations between 1 and 4 representing patients that ”died
to soon”. The smoothed line is below zero, which indicate that patients in general lived longer than
expected. The last important residual is the score residual, shown in Figure A.2b. The overall line
is a constant line in zero, indicating that none of the observations influenced the coefficient estimate
for LOS.
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Figure 5.2: Figure showing the density of the hazard ratio for each scenario. The dashed line
represents a HR of 1, which means no association between the HR for LOS and the outcome. Two
of the scenarios estimated an HR higher than 1 in some iterations.

5.2 Cox Models on mortality

The main results from the models described in Section 4.2 are shown in Table 5.2. Firstly, the
estimates for models with LOS as the only feature are presented, and further the estimates for
models with multiple features. From the table we can see that all of the Cox models estimated the
LOS feature to be highly significant for the outcome of 60 days mortality. In all of the different
combination of strata, the estimated hazard ratio was 1.050 for models with multiple features and
approximately 1.048 for models with LOS as the only feature. The models without any stratification
had an estimated hazard ratio which was lower in comparison, with an increased risk of 4.1% per
day longer stay. A sensitivity analysis was also done, where the estimated HR for LOS was 1.042
and 1.051 for a model without any stratification and a model with stratification on HT, year and day
respectively. In these models, age was implemented as a categorical feature instead of a numerical
feature.

Table A.2 in Appendix A.2, shows the estimated coefficients of the other features included in the
models with multiple features. LOS, age, woman, OOH pre60, acute pre60, LOS pre60 were highly
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Table 5.2: Table displaying the estimated hazard ratio, 95% CI for the HR and the p-value for the
LOS per day, for the Cox models described in Section 4.2.

Without other features

Method HR (95% CI) for HR p-value

LOS
Without strata 1.041 (1.035-1.047) <2e-16

Strata on HT 1.047 (1.041-1.053) <2e-16

Strata on HT, year 1.048 (1.042-1.054) <2e-16

Strata on HT, year, day 1.048 (1.042-1.054) <2e-16

Strata on HT, year, day, month 1.047 (1.04+-1.053) <2e-16

With additional features

LOS
Without strata 1.041 (1.035-1.047) <2e-16

Strata on HT 1.049 (1.043-1.056) <2e-16

Strata on HT, year 1.050 (1.044-1.056) <2e-16

Strata on HT, year, day 1.051 (1.045-1.057) <2e-16

Strata on HT, year, day, month 1.050 (1.043-1.057) <2e-16

significant in all choices of strata. All of them, except woman, had a hazard ratio higher than 1,
indicating that higher values were associated with a higher risk of dying. GP pre60 became less
significant as the data was more stratified, but the hazard ratio was higher than 1 in all cases. For
education, none of the levels had an impact on the outcome of 60 day mortality, education level
6 had the lowest p-value across the models, but it was only significant on a 0.1 significance level.
Which shift the admission fell on was highly significant when stratas were added to the models, and
the night shift was not significant when the model did not include strata. Looking at the hazard
ratio of these factor levels, they are higher than 1 indicating that admission on evening or night
was associated with a higher risk of dying within 60 days compared to being admitted during the
day.

Further, in Table A.2, the estimated χ2 statistics for the hypothesis testing of proportional hazards
are shown with corresponding p-value. The LOS became more proportional as several stratas were
added, even though the p-value was significant in all cases. In addition, Figure and A.3b and A.4b
show that the estimated coefficient for LOS had a slight increase as a function of time, however this
increase was small. The Cox model assumes further that the relationship between the log of the
hazard and the continuous features are linear. The straight lines in zero for the martingale residuals
shown in Figure A.3a and A.4a indicate that this assumption was met for both the model with no
stratification, and for the model with stratification on health trust. These plots are not included
for further stratification as the line was constant in zero in all cases. Additionally the deviance
residuals are shown in Figure A.3c and A.4c. The plots shows that there were some outliers with
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a high absolute value, indicating that the model struggled with the prediction for these. However
most admissions had a small absolute value of the deviance. To assess the influence of the individual
admissions we looked at the scaled score residuals, called dfbeta residuals. These can be found in
Figure A.3d and A.4d. For the LOS feature, there were some outliers which produced change in
the estimated coefficients when they were left out, even though the change was small in value. In
total, these admissions did not influence the estimate as the fitted line is a constant line in zero.

Table 5.3: The table displays the estimated AIC values for the Cox models described in Section
4.2. The column in the middle shows the estimates when LOS is the only feature in the models,
and the column to the right present the values when the models include multiple features.

AIC values

Without other features With multiple features

Without strata 227129 222664

Strata on HT 166321 161798

Strata on HT, year 115069 111120

Strata on HT, year, day 75665 71873

Strata on HT, year, day, month 29458 26714

From the Cox models, the AIC values could be calculated and these are found in Table 5.3. It is
clear that stratifiying the models, reduced the log-likelihood and hence the AIC. The AIC was also
lower for the models with multiple features, compared to the models with LOS as the only feature.
Figure 5.3 shows the estimated survival curve for the Cox model without stratification, and with
multiple features. After 60 days, the estimated survival rate was approximately 93%.
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Figure 5.3: Figure displaying the survival curve for the Cox model without any stratification, and
with multiple features. The plot also includes the confidence interval for the point estimates of the
curve.

5.3 Poisson regression for visits to the General Practitioner

The last model of interest was the Poisson regression on number of visits to the GP in the 60 days
after an admission. The results from the models described in Section 4.3 are shown in full detail
in Appendix A.3 and the main results are presented in Table 5.4 and 5.5. The incidence rate ratio
(IRR) for LOS, when this was the only feature in the models, was estimated to 1.020. When the
admissions were adjusted for differences in hospital trusts, years and so forth, the IRR of LOS on
the number of visits to the GP increased with approximately 0.1%. However, the estimate did not
change as the number of random intercept effects were increased.

Furthermore, adding multiple features to the models decreased the IRR for all models. For the
model without any random intercept effects, the expected number of visits to the GP increased
with 1.7% per day longer stay, while for models with random intercepts the increase was 1.9%.

Table A.3 in Appendix A.3, shows the estimated IRR for all features used in the models, the 95% for
the IRR and the p-value of the estimate. The visits to the GP in the 60 days before the admission,
was highly significant for the number of visits after the admission with an IRR higher than 1.
Increasing the number of visits before admission with one, gave an increased expected number of
visits after the admission of 7.3%.

The other features were of less significance, and in general with a IRR lower than one. Being a
woman, reduced the expected number of visits with approximately 3%. This was also the case if
an admission happened on a holiday. However, the CI is wide for this feature, ranging from 7%
to 0.06% in reduction. For education, the reference category was set to level 0, representing no
education. The other categories had an IR below 1 indicating that having an education in general
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Table 5.4: The estimated incidence rate ratio (IRR), 95% CI for the IRR and the p-value for LOS
per day, for the Poisson models described in Section 4.3.

Without other features

Method IRR 95% for IRR p-value

LOS
Without strata 1.020 (1.018-1.021) <2e-16

Random intercepts for HT 1.021 (1.019-1.022) <2e-16

Random intercepts for HT, year 1.021 (1.020-1.023) <2e-16

Random intercepts for HT, year, day 1.021 (1.019-1.023) <2e-16

Random intercepts for HT, year, day, month 1.021 (1.019-1.023) <2e-16

With multiple features

LOS
Without fixed effects 1.017 (1.016-1.019) <2e-16

Random intercepts for HT 1.018 (1.017-1.020) <2e-16

Random intercepts for HT, year 1.019 (1.017-1.020) <2e-16

Random intercepts for HT, year, day 1.019 (1.017-1.020) <2e-16

Random intercepts for HT, year, day, month 1.019 (1.017-1.020) <2e-16

decreased the mean number of visits to the GP after an admission. This was also the case for
admissions where the education was unknown. Being admitted in the evening or night was highly
significant, with a decrease of 4% and 9% respectively compared to being admitted during the day.

Further, the addition of random intercepts gave only small changes in the IRR for LOS, for both
models. For the models with random effects, the mean of the estimated random intercept effects
are shown in Table 5.5. The table also shows the mean IRR for each of the models, where the
simple models with only LOS as a feature, had a higher value in general compared to the models
with multiple features. In addition, the mean values decreased as the data was grouped further
with additional random intercepts.

In the model without any random effects, there is an intercept term β0 representing the expected
number of visits if all features are zero. For models with random effects, this term is included
in the random intercept effect estimates when using the function fepois from the fixest package
(Bergé 2018). The values for β0 were −2.409 and −2.508, which gave an IRR of 0.09 and 0.081, for
the model with a singular feature and the model with multiple features, respectively. Comparing
these with the mean value of the random effects, we see that adding random effects decreased this
value. However, the range of the estimated value across the effects increased as we added extra
effects. When the admissions were clustered on health trusts, the difference between the highest
and the lowest value for expected number of visits giving that all features were equal to 0, was
0.041. Adding year, day and month to the random effects gave a difference of 1.955.
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Table 5.6 shows that the AIC value was higher for the models with a singular feature, and that
increasing the number of random effects decreased the value. However, it did not decrease as much
as for the Cox models when stratas were included. To assess the model fit, we also looked at the
deviance residuals of the models. In Figure A.5a and A.5b, this is shown for the models without any
random intercept effects. For the model with LOS as the only feature, the relationship between the
log of the rate and LOS was linear as the fitted line is a constant zero line. However, the model did
not fit any values to be over 6 visits in the 60 days after admission. The model with multiple features
managed this, but the fitted line deviates from zero for higher values of the outcome indicating a
less linear relationship.

Table 5.5: Table presenting the resulting number of fixed effects, the estimated mean value of the
fixed effects, log of the mean and the range of these estimates.

Without other features

Method m E( γ0i) log(E(γ0i)) [Min,Max]

Random intercepts for HT 26 -2.42 0.089 [0.063, 0.104]

Random intercepts for HT, year 280 -2.43 0.088 [0.046, 0.172]

Random intercepts for HT, year, day 1925 -2.45 0.086 [0.017, 0.216]

Random intercepts for HT, year, day, month 19893 -2.51 0.081 [0.004, 1.959]

With multiple features

Method m E( γ0i) log(E(γ0i)) [Min, Max]

Random intercepts for HT 26 -2.54 0.079 [0.060, 0.088]

Random intercepts for HT, year 280 -2.55 0.078 [0.047, 0.170]

Random intercepts for HT, year, day 1925 -2.58 0.076 [0.018, 0.230]

Random intercepts for HT, year, day, month 19893 -2.62 0.073 [0.003, 2.526]
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Table 5.6: The table presents the estimated AIC values for the Poisson models described in Section
4.3. The middle column shows the estimates when the models only include LOS as a feature, while
the column to the right shows the values when the models include several features.

AIC values

Without other features With multiple features

Without random intercepts 485964 452311

Random intercepts for HT 481805 450405

Random intercepts for HT, year 480249 449596

Random intercepts for HT, year, day 478552 448587

Random intercepts for HT, year, day, month 464260 441382
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Chapter 6

Discussion and conclusion

In this thesis we have analysed the relationship between hospital length of stay and mortality, and
visits to the general practitioner. The association between LOS and the two outcomes were studied
in a 60-day time window after discharge, to capture a period where mortality was likely to be related
to the hospital visit. Data from the Norwegian Patient Registry and the Norwegian Cause of Death
Registry was used, where the focus was on acute admissions of heart failure. The analysis was split
into three parts; one simulation study examining the association between LOS and mortality, one
approach where this association was examined for heart failure patients and lastly an examination
of the visits to the General Practitioner for these patients.

From the simulation study, the mean hazard ratio was estimated to 0.97, which showed that immor-
tal time bias was a factor in the analysis. The LOS and the death were generated independently of
each other for each patient, such that the overall HR should have been 1. Multiple mortality curves
were tested to see how it affected the outcome, but there was minimal difference between them.

To analyse the 60-day survival after a hospital admission due to heart failure, Cox Regression was
used where models with and without strata were estimated. Initially, models with LOS as the
only feature were computed to assess the hazard ratio without adjustment from other features.
The hazard ratio for a model without any strata was estimated to be 1.041, meaning that for one
day increase in LOS, the risk of dying increased with 4.1%. Moreover, when strata were added
to adjust for systematic differences in health trust, year, day and month, the increasing risk of
dying was estimated to be 4.8%. Furthermore, other features were added to the models to adjust
for differences between short and long LOS to obtain a causal estimate if possible. These features
were measured before admission, and hence did not introduce any error to the models. The other
features increased the risk with 0.2% for the models with strata to 5.0% but did not change the
estimate for the models without any strata.

The final part looked at the association between LOS and number of visits to the general practitioner
in the 60 days after admission. Initially, a simple Poisson model with LOS as the single feature was
computed to assess the IRR, where one day increase in LOS was expected to increase the expected
number of visits to the GP by 2.0%. Random intercept effects were added to group admissions by
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health trust, year, day and month. However, this did not affect the estimated IRR for the length of
stay significantly. Adding multiple features decreased the IRR by 0.2%, indicating that there are
factors that had an impact on the LOS and further the outcome. Similar to the association between
LOS and mortality, the sickness of the patients could give a confounding bias where it looks like
a longer hospital stay is associated with more visits to the GP, when it may be that patients that
have more visits are sicker and in need of more help or treatment.

The simulation study showed that immortal time bias takes part in an analysis like this, due to the
conditioning on survival through the stay to be a part of the analysis. In the two scenarios with
a high risk in the hospital phase, the mean hazard ratio was approximately 2.6% lower compared
to the other two scenarios. This made sense as with these approaches, patients were more likely
to die earlier in the time window and possibly in the hospital resulting in a higher immortal time
bias. For the scenario with an increasing risk in the hospital phase and peak risk after discharge,
patients were less likely to die in the hospital and hence less patients were removed due to this.
The effect of the immortal time bias was overall 3%, and further we expected this to be a part of
the analysis of the heart failure admissions. However, in these models there were also other factors
influencing the estimates as the effect of one day longer LOS was estimated to be 4− 5%.

The factor that is believed to be the most important for the assessment of LOS is the severity of the
patients when they are admitted. Two patients could have identical values for all features, but one
of them could still be sicker than the other and hence be at higher risk of dying and most likely get
a longer LOS. However, this is hard to measure, and it introduces the possibility of confounding as
the severity of the patients affects both the LOS and the risk of dying. In the data set, there was
only information about the length of stay for each admission. This is chosen by several factors, and
we had no information about why the patients got the exact length of stay or if the severity of the
patients affected this length. There could also be the case that a patient got a longer LOS due to
high pressure on the hospital and died shortly after discharge even though the admission was not
severe.

Age was thought to be an indicator for the severity, however, in the sensitivity analysis where we
implemented age as a categorical feature in two models, the estimated HR for LOS did not change
in either. As Figure 2.18 showed, there was no difference in average LOS for patients between
60− 90 years, thus it is reasonable that the estimate kept constant.

Adjustment for health trust year and day was necessary to remove potential systematic differences.
A disadvantage of using strata is that it was not possible to estimate the importance of each stratum
and assess if there were significant differences between them. The statistical power of the model
could also be reduced as the admissions were not well-balanced across the health thrusts as seen in
Figure 2.5a. Adding several strata reduced the number of admissions in each group even further,
with some of them having admissions where everyone survived. However, the use of strata reduced
the possibility of noise in the models and as stated, the HR for LOS increased as the data became
more stratified. This may be because when the data is stratified into groups, it can be easier to
discover associations within each group that affect the overall outcome. Organizational factors can
also be confounding, as the severity can affect which hospital the patient is sent to, and further the
LOS. The capacity of the hospitals may also affect where the patient is being admitted, and as the
boxplots in Figure 2.19 showed, there were clear differences in average LOS between them.
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If we were interested in the effect of each health trust or year or the combination of these two on
the LOS and the risk of dying, they could have been added to the models as categorical features
instead. The clear disadvantage with this is the number of levels that this would result in when
adding combinations of these features.

In the Poisson models, this was possible with random intercept effects. Each random intercept
had an estimated value in each model, and hence it was possible to assess if there were significant
differences between them. For some clusters, the estimates were significantly higher than others
resulting in a higher expected number of visits for those clusters. Further, the measurement error
became large when we introduced many levels of the fixed effects. For a cluster with only a few
admissions, each admission could have a significant impact on the estimated value compared to a
cluster with many admissions.

The use of strata on health trusts, to have more comparable patients, was expected to give a higher
effect on the LOS for mortality than for visits to the general practitioner. The reason for this is
that the GP works independently of the hospitals, thus it was not expected to differ across the
health trusts. The same could be said for years, as there was no reason to believe that the use of
GP had changed over the years.

For both the Cox and the Poisson models, time of admission was a significant feature for the
outcome. In the Cox models, admissions in the evening compared to the day had an increased risk
of death of 10% per day longer stay, while for the Poisson the expected number of visits to the GP
decreased with 9.6% per day longer stay. Being admitted during the night was only significant for
the Poisson models. Time of admission could also say something about the severity of the patient
being admitted, as admission outside normal working hours are in general of severely sick patients
in acute need of help.

6.1 Concluding remarks

The main issue in this analysis was the severity of the patients. Our findings revealed an association
between hospital length of stay and both mortality and visits to the general practitioner. However,
it is important to note that the the severity of the disease potentially acted as a confounding
factor, influencing both LOS and outcomes. Although we lacked specific information regarding
these relationships, there was no indication to suggest an increased risk of mortality associated
with an extended hospital stay, contrary to the results. Additionally, the analysis shed light on how
the issue of immortal time bias affected the estimation of hazard ratios when considering hospital
length of stay as a numerical feature.
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6.2 Future work

There are several alternative approaches for this type of analysis done on observational data. One
of the issues in this thesis was the influence of immortal time bias on the estimation of the hazard
ratios. A potential way of solving this issue is to reformulate the analysis to a target trial (Hernán
et al. 2022). In this type of approach, the analysis would be on the outcome for patients that were
discharged on a given day compared to the outcome for the patients that had a longer stay, for each
possible length of stay in the hospital. Survival through the stay would still be a necessity to be a
part of the analysis, but the immortal time bias could potentially be avoided when the analysis is
done on each day in the hospital instead of the length of stay.

The other issue was the existence of confounding by indication in the analysis, as the severity
of the patients was not measured. Quasi experimental methods such as instrumental variable
analysis, could potentially solve this issue given certain conditions. In addition, it could assess if
organizational factors affect the outcome of interest. For patients that are ready for or close to
discharge, the decision could be affected by pressure in the clinical department. This could be if
there is a need for more beds in the hospital, or if it is a Friday where the discharge tendency will
be higher compared to the other days of the week.

Both approaches have been tested in a study which were done on patients admitted with hip fracture
(Nilsen et al. 2020). In this study, they analysed the effect of organizational pressure to discharge
on 60 day mortality. The results showed that organizational factors affecting the discharge could
increase the risk of death. However, there is some potential for improvement for these types of
analyses in general.
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Appendix A

Additional figures and tables

The appendix includes residuals plots from some of the models that were estimated, the estimated
hazard ratio/incidence rate ratio for the additional features used in the models, 95% confidence
interval for these estimates and the corresponding p-value.

A.1 Simulation

The various residuals for the Cox models are shown in Figure A.1 and A.2. The martingale,
Schoenfeld and dfbeta residuals are plotted for the LOS feature in the model, while the deviance
residual plot is estimated from the model it self.

(a) (b)

Figure A.1: The plots show the Martingale residual for LOS to the left, and the Schoenfeld residuals
for LOS to the right for the scenario with an increasing risk in the hospital phase.
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(a) (b)

Figure A.2: The figure shows the deviance residuals in the left plot, and the scaled score residuals,
to the right.

A.2 Cox Regression

The estimated hazard ratios (HR) for all features included in the models with different levels
of strata are shown in Table A.1. The table also includes the 95% confidence interval for these
estimates, and the corresponding p-value. Table A.2 shows the estimated χ2 statistics for the
proportional hazards assumption with corresponding p-value.

Table A.1: The table displays the estimated hazard ratio, 95% CI for the HR and the p-value per
day, for the estimated values from the Cox regression models.

Method HR 95 % CI for HR p-value

LOS Without strata 1.042 (1.036-1.049) <2e-16

Strata HT 1.050 (1.044-1.056) <2e-16

Strata HT, year 1.051 (1.045-1.057) <2e-16

Strata HT, year, day 1.052 (1.045-1.058) <2e-16

Strata HT, year, day, month 1.051 (1.044-1.058) <2e-16

Age Without strata 1.073 (1.070-1.077) <2e-16

Strata HT 1.074 (1.071-1.078) <2e-16

Strata HT, year 1.070 (1.067-1.074) <2e-16

Strata HT, year, day 1.070 (1.067-1.074) <2e-16

Continued on next page

60



A.2. COX REGRESSION

Table A.1 – continued from previous page

Method HR 95 % CI for HR p-value

Strata HT, year, day, month 1.072 (1.068-1.058) <2e-16

Woman Without strata 0.868 (0.828-0.911) 4.7e-09

Strata HT 0.871 (0.830-0.914) 1.6e-08

Strata HT, year 0.896 (0.854-0.941) 1.1e-05

Strata HT, year, day 0.903 (0.860-0.947) 3.2e-05

Strata HT, year, day, month 0.902 (0.857-0.949) 7.1e-05

Holiday Without strata 0.920 (0.819-1.034) 0.155

Strata HT 0.912 (0.812-1.024) 0.119

Strata HT, year 0.921 (0.820-1.034) 0.164

Strata HT, year, day 0.900 (0.799-1.013) 0.081

Strata HT, year, day, month 0.926 (0.804-1.066) 0.282

GP pre60 Without strata 1.019 (1.013-1.026) 4.4e-09

Strata HT 1.017 (1.010-1.023) 4.4e-07

Strata HT, year 1.012 (1.005-1.019) 3.7e-04

Strata HT, year, day 1.011 (1.005-1.018) 9.4e-04

Strata HT, year, day, month 1.007 (1.000-1.014) 0.048

OOH pre60 Without strata 1.076 (1.061-1.092) <2e-16

Strata HT 1.080 (1.066-1.095) <2e-16

Strata HT, year 1.076 (1.062-1.091) <2e-16

Strata HT, year, day 1.079 (1.064-1.094) <2e-16

Strata HT, year, day, month 1.091 (1.073-1.109) <2e-16

acute pre60 Without strata 1.044 (1.023-1.065) 6.7e-05

Strata HT 1.041 (1.020-1.062) 1.1e-04

Strata HT, year 1.035 (1.013-1.058) 1.5e-03

Strata HT, year, day 1.032 (1.009-1.055) 5.9e-03

Strata HT, year, day, month 1.041 (1.015-1.068) 2.1e-03

LOS pre60 Without strata 1.040 (1.036-1.043) <2e-16

Strata HT 1.041 (1.037-1.044) <2e-16

Continued on next page
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Table A.1 – continued from previous page

Method HR 95 % CI for HR p-value

Strata HT, year 1.040 (1.036-1.044) <2e-16

Strata HT, year, day 1.041 (1.037-1.045) <2e-16

Strata HT, year, day, month 1.043 (1.039-1.048) <2e-16

education1 Without strata 0.876 (0.454-1.691) 0.693

Strata HT 0.854 (0.444-1.643) 0.637

Strata HT, year 0.852 (0.436-1.664) 0.639

Strata HT, year, day 0.883 (0.452-1.728) 0.717

Strata HT, year, day, month 1.001 (0.512-1.958) 0.997

education2 Without strata 0.879 (0.641-1.206) 0.425

Strata HT 0.846 (0.614-1.164) 0.304

Strata HT, year 0.880 (0.631-1.226) 0.449

Strata HT, year, day 0.863 (0.624-1.192) 0.370

Strata HT, year, day, month 0.828 (0.571-1.201) 0.320

education3 Without strata 0.861 (0.628-1.183) 0.356

Strata HT 0.834 (0.606-1.149) 0.268

Strata HT, year 0.869 (0.623-1.212) 0.409

Strata HT, year, day 0.849 (0.614-1.175) 0.324

Strata HT, year, day, month 0.843 (0.581-1.225) 0.371

education4 Without strata 0.810 (0.587-1.119) 0.202

Strata HT 0.803 (0.580-1.113) 0.188

Strata HT, year 0.832 (0.594-1.167) 0.288

Strata HT, year, day 0.821 (0.599-1.142) 0.242

Strata HT, year, day, month 0.786 (0.538-1.148) 0.213

education5 Without strata 0.885 (0.617-1.270) 0.507

Strata HT 0.880 (0.611-1.266) 0.490

Strata HT, year 0.905 (0.622-1.318) 0.604

Strata HT, year, day 0.882 (0.610-1.275) 0.503

Strata HT, year, day, month 0.875 (0.578-1.326) 0.530

Continued on next page
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Table A.1 – continued from previous page

Method HR 95 % CI for HR p-value

education6 Without strata 0.738 (0.534-1.021) 0.066

Strata HT 0.724 (0.522-1.005) 0.054

Strata HT, year 0.755 (0.537-1.061) 0.105

Strata HT, year, day 0.747 (0.536-1.041) 0.085

Strata HT, year, day, month 0.702 (0.481-1.026) 0.067

education7 Without strata 0.908 (0.647-1.277) 0.580

Strata HT 0.903 (0.640-1.273) 0.558

Strata HT, year 0.941 (0.660-1.343) 0.738

Strata HT, year, day 0.925 (0.654-1.308) 0.658

Strata HT, year, day, month 0.883 (0.595-1.310) 0.537

education8 Without strata 0.732 (0.391-1.370) 0.329

Strata HT 0.768 (0.410-1.440) 0.411

Strata HT, year 0.796 (0.425-1.490) 0.475

Strata HT, year, day 0.790 (0.438-1.427) 0.435

Strata HT, year, day, month 0.544 (0.291-1.019) 0.057

education9 Without strata 0.809 (0.541-1.212) 0.305

Strata HT 0.775 (0.516-1.164) 0.218

Strata HT, year 0.797 (0.525-1.210) 0.287

Strata HT, year, day 0.783 (0.518-1.182) 0.244

Strata HT, year, day, month 0.755 (0.477-1.195) 0.231

shiftEvening Without strata 1.102 (1.056-1.149) 7.1e-06

Strata HT 1.107 (1.061-1.155) 2.5e-06

Strata HT, year 1.103 (1.058-1.151) 5.4e-06

Strata HT, year, day 1.106 (1.060-1.154) 3.7e-06

Strata HT, year, day, month 1.121 (1.069-1.176) 2.9e-06

shiftNight Without strata 0.949 (0.886-1.017) 0.139

Strata HT 0.959 (0.896-1.028) 0.239

Strata HT, year 0.960 (0.896-1.029) 0.253

Continued on next page
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Table A.1 – continued from previous page

Method HR 95 % CI for HR p-value

Strata HT, year, day 0.956 (0.892-1.154) 0.211

Strata HT, year, day, month 0.944 (0.874-1.019) 0.140

Table A.2: The table includes the estimated χ2 statistic and the corresponding p-value used for the
proportional hazards tests.

Model chisq p-value

LOS Without strata 25 5.8e-07

Strata HT 16 5.3e-05

Strata HT, year 22 2.6e-06

Strata HT, year, day 19 1.1e-05

Strata HT, year, day, month 5 0.025

age Without strata 0 0.69

Strata HT 0 0.92

Strata HT, year 32 1.3e-08

Strata HT, year, day 30 4.8e-08

Strata HT, year, day, month 26 3.4e-07

woman Without strata 125 <2e-16

Strata HT 127 <2e-16

Strata HT, year 91 <2e-16

Strata HT, year, day 87 <2e-16

Strata HT, year, day, month 68 <2e-16

holiday Without strata 2 0.12

Strata HT 2 0.15

Strata HT, year 1 0.22

Strata HT, year, day 1 0.22

Continued on next page
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Table A.2 – continued from previous page

Model chisq p-value

Strata HT, year, day, month 0 0.96

GP pre60 Without strata 309 <2e-16

Strata HT 315 <2e-16

Strata HT, year 166 <2e-16

Strata HT, year, day 158 <2e-16

Strata HT, year, day, month 112 <2e-16

OOH pre60 Without strata 66 <2e-16

Strata HT 83 <2e-16

Strata HT, year 36 1.9e-09

Strata HT, year, day 31 3.3e-08

Strata HT, year, day, month 32 1.3e-08

acute pre60 Without strata 199 <2e-16

Strata HT 188 <2e-16

Strata HT, year 134 <2e-16

Strata HT, year, day 137 <2e-16

Strata HT, year, day, month 121 <2e-16

education Without strata 10 0.34

Strata HT 11 0.26

Strata HT, year 10 0.37

Strata HT, year, day 10 0.39

Strata HT, year, day, month 12 0.19

LOS pre60 Without strata 175 <2e-16

Strata HT 153 <2e-16

Strata HT, year 111 <2e-16

Strata HT, year, day 135 <2e-16

Strata HT, year, day, month 130 <2e-16

shift Without strata 2 0.34

Strata HT 2 0.34

Continued on next page
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Table A.2 – continued from previous page

Model chisq p-value

Strata HT, year 3 0.21

Strata HT, year, day 3 0.18

Strata HT, year, day, month 2 0.48

Global Without strata 610 <2e-16

Strata HT 591 <2e-16

Strata HT, year 369 <2e-16

Strata HT, year, day 368 <2e-16

Strata HT, year, day, month 292 <2e-16

Figure A.3 shows the residuals plot for the Cox model without stratification. Subfigure A.3a, A.3b
and A.3d are plotted for the feature LOS, while the deviance residual in Figure A.3c is estimated
from the Cox model. Figure A.4 shows the same plots, but for the model with stratification on
health trust.
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(a) (b)

(c) (d)

Figure A.3: The figure shows the Martingale residuals in the top left plot, the Schoenfeld residuals
in the top right plot, the deviance residuals in the bottom left plot and the scaled score residuals
in the bottom right plot. They are all results from the Cox model without any stratification, for
the model with multiple features.

67



APPENDIX A. ADDITIONAL FIGURES AND TABLES

(a) (b)

(c) (d)

Figure A.4: The figure shows the Martingale residuals in the top left plot, the Schoenfeld residuals
in the top right plot, the deviance residuals in the bottom left plot and the scaled score residuals in
the bottom right plot. They are all results from the Cox model with stratification on health trust,
for the model with multiple features.
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A.3 Poisson Model

The estimated incidence rate ratios (IRR) for all features included in the Poisson models with
different number of fixed effects are shown in Table A.3. The table also includes the 95% confidence
interval for this estimate, and the p-value of the estimated value.

Table A.3: The estimated incidence rate ratio (IRR), 95% CI for the IRR and the p-value per day,
for the estimated values from the Poisson regression models.

Method IRR 95 % CI for IRR p-value

LOS Without Fixed effects 1.017 (1.016-1.019) <2e-16

Fixed effects on HT 1.018 (1.016-1.019) <2e-16

Fixed effects on HT, year 1.018 (1.017-1.020) <2e-16

Fixed effects on HT, year, day 1.019 (1.017-1.020) <2e-16

Fixed effects on HT, year, day, month 1.019 (1.017-1.020) <2e-16

Age Without Fixed effects 0.998 (0.997-0.999) 1.5e-08

Fixed effects on HT 0.999 (0.998-0.999) 5.3e-06

Fixed effects on HT, year 0.999 (0.998-0.999) 1.1e-05

Fixed effects on HT, year, day 0.999 (0.998-0.999) 9.4e-05

Fixed effects on HT, year, day, month 0.999 (0.998-0.999) 5.0e-05

Woman Without Fixed effects 0.969 (0.958-0.979) 1.3e-08

Fixed effects on HT 0.974 (0.962-0.983) 2.7e-07

Fixed effects on HT, year 0.973 (0.961-0.981) 4.8e-08

Fixed effects on HT, year, day 0.975 (0.962-0.983) 2.9e-07

Fixed effects on HT, year, day, month 0.976 (0.964-0.988) 7.2e-05

Holiday Without Fixed effects 0.968 (0.941-0.994) 1.8e-02

Fixed effects on HT 0.967 (0.942-0.994) 1.6e-02

Fixed effects on HT, year 0.967 (0.932-0.984) 1.8e-03

Fixed effects on HT, year, day 0.971 (0.938-0.991) 9.4e-03

Fixed effects on HT, year, day, month 0.992 (0.959-1.027) 6.5e-01

GP pre60 Without Fixed effects 1.074 (1.073-1.076) <2e-16

Fixed effects on HT 1.072 (1.071-1.073) <2e-16

Continued on next page
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Table A.3 – continued from previous page

Method IRR 95 % CI for IRR p-value

Fixed effects on HT, year 1.072 (1.070-1.073) <2e-16

Fixed effects on HT, year, day 1.072 (1.070-1.073) <2e-16

Fixed effects on HT, year, day, month 1.074 (1.072-1.076) <2e-16

OOH pre60 Without Fixed effects 1.001 (0.997-1.004) 9.1e-01

Fixed effects on HT 1.001 (0.997-1.005) 7.4e-01

Fixed effects on HT, year 1.001 (0.996-1.003) 8.7e-01

Fixed effects on HT, year, day 1.002 (0.997-1.004) 7.2e-01

Fixed effects on HT, year, day, month 1.002 (0.997-1.006) 4.5e-01

acute pre60 Without Fixed effects 0.978 (0.971-0.985) 8.0e-10

Fixed effects on HT 0.983 (0.978-0.991) 1.1e-05

Fixed effects on HT, year 0.984 (0.977-0.991) 5.8e-06

Fixed effects on HT, year, day 0.985 (0.979-0.992) 3.5e-05

Fixed effects on HT, year, day, month 0.988 (0.981-0.996) 2.4e-03

LOS pre60 Without Fixed effects 0.999 (0.998-1.001) 4.3e-01

Fixed effects on HT 0.999 (0.998-1.001) 5.0e-01

Fixed effects on HT, year 0.999 (0.998-1.001) 3.9e-01

Fixed effects on HT, year, day 1.000 (0.998-1.001) 5.6e-01

Fixed effects on HT, year, day, month 0.999 (0.998-1.000) 1.4e-01

education1 Without Fixed effects 0.835 (0.740-0.941) 3.3e-03

Fixed effects on HT 0.861 (0.765-0.967) 1.2e-02

Fixed effects on HT, year 0.862 (0.768-0.965) 1.0e-02

Fixed effects on HT, year, day 0.869 (0.772-0.975) 1.7e-02

Fixed effects on HT, year, day, month 0.846 (0.735-0.973) 1.9e-02

education2 Without Fixed effects 0.972 (0.915-1.035) 3.9e-01

Fixed effects on HT 0.934 (0.880-0.996) 3.7e-02

Fixed effects on HT, year 0.938 (0.883-1.000) 5.3e-02

Fixed effects on HT, year, day 0.940 (0.884-1.003) 6.3e-02

Fixed effects on HT, year, day, month 0.927 (0.857-1.002) 5.7e-02

Continued on next page
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Table A.3 – continued from previous page

Method IRR 95 % CI for IRR p-value

education3 Without Fixed effects 0.950 (0.894-1.119) 1.1e-01

Fixed effects on HT 0.919 (0.864-0.979) 8.6e-03

Fixed effects on HT, year 0.923 (0.868-0.984) 1.3e-02

Fixed effects on HT, year, day 0.925 (0.870-0.987) 1.78e-02

Fixed effects on HT, year, day, month 0.914 (0.845-0.988) 2.3e-02

education4 Without Fixed effects 0.919 (0.864-0.981) 1.1e-02

Fixed effects on HT 0.898 (0.845-0.959) 1.2e-03

Fixed effects on HT, year 0.903 (0.849-0.965) 2.6e-03

Fixed effects on HT, year, day 0.905 (0.851-0.968) 3.1e-03

Fixed effects on HT, year, day, month 0.893 (0.825-0.967) 5.1e-03

education5 Without Fixed effects 0.950 (0.884-1.020) 1.6e-01

Fixed effects on HT 0.924 (0.859-0.993) 3.1e-02

Fixed effects on HT, year 0.928 (0.863-0.998) 4.3e-02

Fixed effects on HT, year, day 0.925 (0.860-0.996) 3.8e-02

Fixed effects on HT, year, day, month 0.902 (0.826-0.986) 2.2e-02

education6 Without Fixed effects 0.921 (0.864-0.981) 1.0e-02

Fixed effects on HT 0.903 (0.847-0.962) 1.6e-03

Fixed effects on HT, year 0.908 (0.851-0.967) 2.8e-03

Fixed effects on HT, year, day 0.910 (0.852-0.970) 3.9e-03

Fixed effects on HT, year, day, month 0.896 (0.828-0.970) 5.9e-03

education7 Without Fixed effects 0.894 (0.834-0.958) 1.5e-03

Fixed effects on HT 0.886 (0.826-0.950) 6.4e-04

Fixed effects on HT, year 0.889 (0.830-0.954) 1.0e-03

Fixed effects on HT, year, day 0.891 (0.830-0.956) 1.4e-03

Fixed effects on HT, year, day, month 0.889 (0.816-0.968) 6.4e-03

education8 Without Fixed effects 0.885 (0.775-1.008) 6.6e-02

Fixed effects on HT 0.902 (0.788-1.033) 1.4e-01

Fixed effects on HT, year 0.899 (0.786-1.029) 1.2e-01

Continued on next page

71



APPENDIX A. ADDITIONAL FIGURES AND TABLES

Table A.3 – continued from previous page

Method IRR 95 % CI for IRR p-value

Fixed effects on HT, year, day 0.887 (0.774-1.016) 8.4e-02

Fixed effects on HT, year, day, month 0.869 (0.745-1.012) 6.9e-02

education9 Without Fixed effects 0.942 (0.862-1.028) 1.8e-01

Fixed effects on HT 0.941 (0.862-1.027) 1.7e-01

Fixed effects on HT, year 0.949 (0.869-1.037) 4.4e-01

Fixed effects on HT, year, day 0.957 (0.876-1.045) 3.2e-01

Fixed effects on HT, year, day, month 0.916 (0.827-1.015) 9.3e-02

shiftEvening Without Fixed effects 0.958 (0.948-0.968) <2e-16

Fixed effects on HT 0.955 (0.945-0.965) <2e-16

Fixed effects on HT, year 0.955 (0.945-0.964) <2e-16

Fixed effects on HT, year, day 0.963 (0.953-0.972) 1.4e-13

Fixed effects on HT, year, day, month 0.966 (0.955-0.977) 8.9e-09

shiftNight Without Fixed effects 0.910 (0.896-0.925) <2e-16

Fixed effects on HT 0.909 (0.895-0.924) <2e-16

Fixed effects on HT, year 0.910 (0.896-0.925) <2e-16

Fixed effects on HT, year, day 0.922 (0.907-0.937) <2e-16

Fixed effects on HT, year, day, month 0.914 (0.898-0.931) <2e-16
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(a) (b)

Figure A.5: The figure shows the deviance residuals for the Poisson model with a singular feature to
the left, and with multiple features to the right. Both of them are results from the models without
any fixed effects.
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