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Problem description
This thesis is affiliated with the Norwegian Defence Research Establishment (FFI).

Synthetic Aperture Sonar (SAS) deep learning-based change detection aims to auto-
matically identify temporal changes over a seafloor region by comparing pre-change
and post-change SAS images. However, the detection performance is usually subject to
several restrictions, including the scarcity of labeled SAS images to train deep-learning
models. The precedent project thesis explored the use of transfer learning and data
augmentation to address the issue of limited SAS data. However, the results indicate that
the distribution discrepancy between the target SAS and source VHR domains cannot
be easily bridged, restricting the performance of transfer learning-based methods.

In this thesis, the student will develop and analyze a self-supervised pre-training
change detection method for SAS imagery in order to teach the model to recognize
relevant changes with a minimal amount of labeled data.

Specifically, the student will perform the following tasks:

1. Conduct a literature review on deep-learning methods for change detection with
a small, annotated dataset, focusing on self-supervised strategies.

2. Evaluate the suitability of the methods found in task 1 and implement one or
more of these methods.

3. Evaluate the results through testing on real SAS images.

If time permits, alternative methods within unsupervised learning, domain adaptation,
or multi-task learning will be investigated and considered implemented for performance
comparison.
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Abstract
Underwater mines pose a serious threat to marine vessels, serving as means to control
navigation or prevent passage through restricted waters. To address this, mine counter-
measures (MCM) focus on locating and disabling mines to ensure freedom of movement.
Autonomous underwater vehicles (AUVs) equipped with synthetic aperture sonar (SAS)
are increasingly used for mine searches, providing detailed acoustic imagery of the sea
floor. Since AUVs collect large amounts of SAS imagery, automated change detection
techniques (ACD) have proven valuable in discriminating potential mines from other
objects. While ACD of mines has been studied extensively, the outstanding performance
of deep convolutional neural networks (DCNNs) for image classification has created an
interest in how deep learning (DL) may be useful for change detection of SAS imagery.
Recent studies reveal that DCNNs offer superior performance in mine detection, with
a greater probability of detecting mine shapes and lower false alarm rates compared
to traditional target classifiers. However, developing deep learning-based applications
in a military context is challenging due to the lack of high-quality, sufficiently large
labeled datasets that can be used to learn from and gain insight to. This thesis explores
the potential of self-supervised learning (SSL) as a pre-training technique for DL-based
mine change detection of SAS imagery. SSL eliminates the need for labeled training
data and addresses the data scarcity problem encountered in supervised learning. The
pre-trained SSL weights are fine-tuned using a multi-task attention-based DCNN named
Siam R-CNN, which aims to simultaneously learn object-based bounding boxes and
pixel-based change maps of deployed mines. Experimental evaluation conducted on a
HISAS-1030 SAS dataset demonstrates the potential of Siam R-CNN for DL-based mine
change detection.
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Sammendrag
Undervannsminer utgjør en betydelig trussel mot marinefartøyer, og brukes til å styre
bevegelse eller hindre passasje gjennom minelagte farvann. Minemottiltak (MCM)
har som mål å lokalisere og uskadeliggjøre miner for å muliggjøre fri bevegelse. Au-
tonome undervannsfarkoster (AUVer) utstyrt med syntetisk apertur-sonar (SAS) brukes
i økende grad til å søke etter miner og gir et høyoppløselig og detaljert bilde av havbun-
nen. Det kan imidlertid være vanskelig å detektere miner i SAS-bilder på grunn av
redusert bildekvalitet og/eller komplekse sjøbunnsforhold. Derfor har automatiserte
endringsdeteksjonsteknikker (ACD) vist seg å være nyttig for minedeteksjon ved å
sammenlikne bilder tatt på to forskjellige tidspunkter. De siste årene har dype konvo-
lusjonelle nevrale nettverk (DCNN) revolusjonert feltet innen kunstig intelligens og
bildegjenkjenning på grunn av deres evne til å ekstrahere relevante endringer uten
behov for menneskelig domenekompetanse. Nylige studier har dessuten vist at dyp
læringsbasert (DL) minedeteksjon reduserer antall "falske alarmer" sammenliknet med
tradisjonelle deteksjonsmetoder. Imidlertid er utviklingen av DL-baserte applikasjoner
i militær sammenheng utfordrende på grunn av begrensede mengder med annotert
treningsdata. Denne masteroppgaven undersøker potensialet til self-supervised læring
(SSL) som et pretreningssteg for DL-basert endringsdeteksjon av sonarbilder. SSL takler
utfordringen med mangelen på tilstrekkelig med annotert data ved å bruke et umerket
datasett for å lære nyttige temporære egenskaper mellom SAS-bildene. Avhandlin-
gen presenterer også Siam R-CNN, en nettverksarkitektur som lærer objektbaserte
"bounding-boxes" og pikselbaserte endringskart for utplasserte miner. Den foreslåtte
metoden testes på HISAS-1030 SAS-bilder og viser lovende resultater for anvendelse og
utvikling av DL-baserte endringsdeteksjonsmetoder for sonarbilder.
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Chapter 1

Introduction

This chapter gives an introduction to the essential topics relevant to this work. It is
assumed that the intended audience of this thesis has knowledge of underlying machine
learning concepts. The literature review in Section 1.2 provides any supplementary
information required to comprehend the content of this thesis.

1.1 Motivation

High-quality, accurate maps of the seafloor are essential in a range of industries, in-
cluding offshore survey mapping and monitoring, search for objects, and military
applications such as naval mine countermeasures and intelligence, surveillance, and
seabed warfare (Hansen; 2022). Regarding seafloor mapping, two considerations are
important: the ability to discriminate fine features (spatial resolution) and the ability to
cover a wide area (Callow et al.; 2012). In recent years, synthetic aperture sonar (SAS) has
emerged as a state-of-the-art technology offering high resolution and larger coverage
rates. For autonomous underwater vehicles (AUVs), SAS technology has become the
leading approach for imaging and mapping the seabed (Hansen; 2022). As a result, SAS
has largely superseded the use of traditional side scan sonar (SSS) systems in marine
operations.

The Norwegian Defence Research Establishment (FFI) has a well-established collab-
oration with the Norwegian company Kongsberg Maritime in developing AUV and SAS

1



2 CHAPTER 1. INTRODUCTION

technology. Kongsberg Maritime offers multiple products within the HUGIN family
of AUVs and HISAS family of SAS systems, partly developed at FFI (Hansen; 2022).
HISAS-1030 is the third generation of interferometric SAS systems used on HUGIN vehi-
cles. Interferometric SAS technology combines interferometry with aperture synthesis,
significantly improving bathymetric mapping efficiency compared to conventional side
scan sonars (Callow et al.; 2012). In addition, HISAS-1030 provides a range-independent
resolution of approximately 3× 3 cm up to a distance of more than 200 meters from both
sides, allowing for detecting and correctly classifying mines and other small objects
(Kongsberg Maritime; 2010).

Automated target recognition (ATR) techniques have traditionally been used to
automatically detect and classify seafloor mines. However, most existing systems for
automated mine recognition struggle with an abundance of false alarms (detection of
non-mines), especially in complex seafloor areas with high clutter density or when
the characteristics of the mines are unknown (Warakagoda and Midtgaard; 2018). In
recent decades, FFI and other defense-related research establishments have worked
on developing automated change detection techniques (ACD) to identify changes on
the seafloor, such as recently deployed naval mines. ACD techniques are designed
to detect significant changes rather than specific targets and can help filter out non-
relevant variations that may trigger false alarms in ATR. During a reference survey,
SAS images of ports, inlets, or sea lines of communications are captured to serve as a
baseline, assuming the seafloor is free of mines. Then, during a repeat survey, the change
detection algorithm identifies relevant new objects exclusively present in the repeat pass
image. In the MANEX’14 sea trials in 2014, FFI performed naval mine hunting with their
HUGIN-HUS AUV equipped with a HISAS-1030 sonar. The change detection algorithm
successfully detected all eight deployed mine-sized objects during two repeat missions
(Midtgaard; 2018). However, several false alarm detections on individual survey lines
occurred due to target-like fish responses and specular reflections. To mitigate the false
alarms observed in the MANEX’14 trials, a matched filter sensitive to proud, mine-sized
objects and a multi-line fusion method were implemented to eliminate inconsistent
detections across survey lines. Designing features that can effectively discriminate
between mines and other irrelevant features remains a critical part of the change
detection algorithm and has traditionally been a time-consuming and labor-intensive
process.
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In recent years, artificial intelligence (AI) and machine learning have become popular
subjects both within and outside of the scientific community. Particularly, the emergence
of deep convolutional neural networks (DCNNs) has led to remarkable advancements
in remote sensing classification and change detection. DCNNs automatically identify
and extract relevant features from a given dataset. Thus, they eliminate the tedious
and manual feature design process that is distinctive for traditional classification algo-
rithms. Furthermore, deeper networks can extract intricate and non-linear patterns and
representations from the data, leading to improved performance.

While DCNNs can extract highly abstract feature representations from images,
their detection performance relies on having a substantial number of training samples.
However, collecting a large dataset of high-resolution images can be challenging, and
the issue of poor-quality training data remains a significant problem. As a result,
it is common to evaluate neural networks on publicly available benchmark datasets
specifically labeled for different tasks, such as object classification and change detection.
However, there currently exists an insufficient amount of large, labeled SAS datasets,
limiting the efficiency of deep learning-based networks when trained in an end-to-end
supervised manner. That being the case, the potential of applying a DCNN for change
detection of SAS imagery has not yet been studied in detail.

Researchers employ various strategies to ensure efficient learning when limited
training data are available. These strategies include transfer learning, data augmen-
tation, and unsupervised learning methods (Shafique et al.; 2022). The specialization
project (Nyegaarden; 2022) explored the use of transfer learning for detecting temporal
changes in SAS imagery where limited SAS training data were available. The results
indicated that pre-training the DCNNs on a larger amount of very high-resolution (VHR)
training data enhanced change detection performance for SAS imagery. However, the
best-performing model, Siamese U-Net++, still struggled to detect changes in complex
environments. This suggests that the distribution discrepancy might be substantial,
making a direct transfer of feature extractor capabilities challenging. To mitigate the
discrepancy between domains, the project report suggested using SAR data as the source
domain or implementing domain adaptation techniques to bridge the gap between the
VHR and SAS domains.

Recently, a new pre-training approach, self-supervised learning (SSL), has demon-
strated promising results in various applications. SSL does not require annotated labels.
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Instead, it is conducted on input data by solving auxiliary tasks defined on the input data
samples. By doing so, SSL overcomes the domain discrepancy issues often encountered
in transfer learning approaches. This thesis investigates the potential of self-supervised
pre-training methods for DCNNs to enhance change detection performance with a lim-
ited amount of labeled SAS data. Compared to the specialization project, a larger amount
of unlabeled SAS data is provided to facilitate the learning of the self-supervised auxil-
iary tasks. A multi-task DCNN architecture called Siam R-CNN will also be developed
to simultaneously learn object-based bounding box change detection and pixel-based
change map generation. The primary objective of employing a multi-task architecture is
to leverage shared knowledge between the tasks, thereby enhancing performance when
the amount of data is insufficient. Furthermore, combining bounding box regression
and change map prediction allows for comprehensive comparisons with a wider range
of traditional and deep learning-based methods. To further leverage the learned change
map, an internal attention mechanism will be implemented within the network.

Experiments will be conducted to justify the benefits of self-supervised learning
as a preliminary step to the change detection tasks. Additionally, these experiments
will study the effects of employing a multi-task framework for SAS change detection.
The results will be compared with the transfer learning approach employed in the
specialization project to evaluate the effectiveness of self-supervised pre-training for SAS
imagery. Moreover, a comparison with a well-established traditional change detection
method will be performed to evaluate the potential of deep learning-based SAS change
detection and identify possible future research directions.

1.2 Literature Review

1.2.1 SAS - Synthetic Aperture Sonar

The material in this section is primarily from the specialization project (Nyegaarden;
2022) and is included for the completeness of the thesis.

Sonar technology uses sound waves to detect and classify objects underwater. It
works by emitting sound pulses and measuring the time it takes for the echoes to return.
By analyzing the echoes, sonar systems can determine underwater objects’ range, speed,
and direction. This information can then be used to create a two-dimensional image



1.2. LITERATURE REVIEW 5

of the underwater environment. Synthetic aperture sonar (SAS) is a type of sonar
technology with a much higher along-track resolution than conventional sonars. This
is accomplished by effectively combining a number of successive pings from a moving
platform to synthesize a long sonar transducer, up to many tens of meters in length
(Callow et al.; 2012). As a result, synthetic aperture sonar has the potential to produce
images that can provide centimeter resolution over hundreds-of-meter ranges on the
seafloors. This makes SAS a suitable technique for imaging the seafloor for military
applications such as searches for naval mines. Figure 1.1 displays the imaging concept
of a SAS.

Figure 1.1: Synthetic Aperture Sonar Imaging Concept

Interferometry is a technique that leverages the interference of waves to extract
valuable information. More specifically, it exploits the phase of the reflected signal to
derive additional seafloor characteristics, such as elevation variations. Interferometric
SAS merges interferometry with synthetic aperture technology to enhance bathymetric
resolution by five to ten times compared to conventional side scan sonars (Callow
et al.; 2012). The HISAS-1030 is an interferometric SAS sonar developed by Kongsberg
Maritime in cooperation with the Norwegian Defence Research Establishment (FFI).
It can provide detailed images with a high, range-independent resolution of about 3
cm, both along-track and across. Furthermore, the length of the synthetic antenna, and
thus the number of integrated pings, increases with a range from the sonar to achieve a
constant along-track image resolution (Kongsberg Maritime; 2022).

Successful SAS image processing depends on overcoming several challenges related
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to the ocean environment and vehicle stability. One of the fundamental challenges in
SAS seafloor imaging is surveying shallow waters, where the sea surface can cause
multipath reflections that degrade the imaging quality. In order to overcome this
challenge, specialized algorithms and processing techniques are needed to mitigate the
effects of this interference. This can be particularly challenging for change detection-
related tasks, where differences in sea surface roughness between the reference and
repeat pass image can change the multipath contribution to the signal scattered back to
the SAS receiver. The coherence difference between the two images can be captured
by the aperture interferometer, where the sonar data processing has to be adjusted
accordingly to optimize the quality of the images (Hansen et al.; 2011).

SAS bears a solid resemblance to synthetic aperture radar (SAR) that produce high-
resolution images of the Earth’s surface. However, while SAS technology is rapidly
advancing, it is still relatively new and less developed compared to its counterpart in
radar (Hansen; 2011).

1.2.2 Change Detection

Change detection (CD) is formally defined as "the process of identifying differences in
the state of an object or phenomenon by observing it at different times" (Singh; 1989). It
essentially involves quantifying relevant temporal effects using multi-temporal datasets.
Change detection finds applications in various domains, including environmental moni-
toring, urban expansion, and disaster assessment (Singh; 1989).

In recent decades, various CD methods have been developed, including traditional
and deep learning-based approaches. These approaches can generally be categorized
into two groups based on how they represent changes: pixel-based CD (PBCD) and
object-based CD (OBCD) (Shafique et al.; 2022). PBCD methods extract features from
individual pixels and their surroundings and predict binary change masks that classify
each pixel as changed or unchanged. OBCD, however, takes objects instead of pixels as
the analysis unit. Most object-based methods rely on an object detection framework to
find changed objects by representing them with bounding boxes. Object detection is
one of the most fundamental problems in computer vision and has received significant
attention in recent years. Unlike change detection, which quantifies changes between
multiple images, object detection aims to detect all instances of an object within one
image. In the OBCD approach, the "changed area" is considered as a detected object,
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while the "unchanged area" is treated as the background (Jiang et al.; 2022).
Traditionally, the primary focus has been to perform binary change detection (BCD),

where regions are classified as either changed or unchanged. However, with the advance-
ments in earth observation satellite technology, remote sensing images now possess
higher spatial resolution, leading to a growing interest in multi-class change detection
(MCD) (Zhu et al.; 2022). However, MCD introduces additional complexity by con-
sidering multiple classes of changes, and most research continues to concentrate on
improving the performance of BCD methods (Zhu et al.; 2022).

1.2.3 Traditional Change Detection Methods for SAS Imagery

The material in this section is from the specialization project (Nyegaarden; 2022) and is
included for the completeness of the thesis.

Over the past decades, a large number of automatic change detection (ACD) meth-
ods have been developed that automatically detect changes in reference and repeat
pass images by using image processing filters and algorithms. ACD approaches can
be categorized based on the data level where the temporal matching occurs: decision
or image. Decision-level methods match the output labels from a classifier operating
independently on the reference and repeat pass image, where changes are detected as
class transitions between the two data sets. On the other hand, image-level methods
directly match new and old image data for regions or pixels (Midtgaard; 2013). Histori-
cally, ACD in searches for naval mine hunting has focused on decision-level methods
based on the geographical association of mine-like objects due to challenges imposed by
shortfalls of the traditional side-scan sonar (SSS) imagery. However, the emergence of
SAS technology and Aided Inertial Navigation Systems (AINS) mounted on the AUV has
facilitated a growing research activity on image-level SAS change detection methods
(Midtgaard; 2013).

G-Michael et al. (2016) propose a complete image-based ACD method for SAS im-
agery. This method employs the scale-invariant feature transform (SIFT) algorithm and
local phase-based co-registration as an image registration tool, followed by a canonical
correlation analysis (CCA)-based change detection method. The CCA algorithm is a
multivariate statistical method that determines the correlation between the reference
and repeat-pass SAS images and extracts a subset of the most coherent change features
from the two images (G-Michael et al.; 2016). The study demonstrates that coherent
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change detection can be applied in a sandy shallow-water environment over a range
of time scales from hours to several days, using co-registration tools and CCA that
consider both phase and amplitude levels of the backscattered signals. The coherence
maps indicated, however, that coherence between images co-registered with the SIFT
algorithm degraded rapidly over time resulting in poor change detection in the signal
phase. Midtgaard (2013) addresses the challenge of temporal decorrelation of coherent
change detection methods, proposing an incoherent ACD method that successfully
detects changes for time scales in the order of years. This complies with the operational
demands of most applications. Incoherent methods only consider changes in the magni-
tude of the reflected sonar signals and do not use phase information. These methods
are typically less sensitive to small changes in the scene but are more robust to errors in
the coregistration process. Midtgaard (2013) applies a SURF algorithm to extract and
describe the feature points in the images. The point pairs are then robustly matched and
used to estimate the parameters for the affine transformation of the reference image
onto the pixel coordinates of the repeat pass image. After that, pixel-wise subtraction
of magnitude values produces a difference image. In order to extract only relevant
changes, e.g., mine-like objects, from the decluttered difference image, the processing
needs to take the specific characteristics of the target into account. As previously stated,
Midtgaard (2018) suggests a matched filter combined with a multi-line fusion method to
successfully filter out target-like fish responses and other irrelevant temporal changes.

However, selecting a threshold and criteria to capture all change regions while
eliminating undesired ones remains challenging, especially if the signal-to-noise ratio
(SNR) is low. Moreover, incorporating domain-specific knowledge and constraints is a
tiresome and time-consuming procedure that does not produce high detection perfor-
mance for new datasets (Shafique et al.; 2022). In recent years, deep learning methods
for remote sensing images automatically derive and extract complicated non-linear
features, overcoming several limitations of the traditional change detection methods.
For SAS imagery, however, the traditional methods have demonstrated the best results
to date, as the potential of deep learning is highly reliant on the availability of a large
dataset.
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1.2.4 Deep Learning-Based Change Detection

Parts of thematerial in this section are from the specialization project (Nyegaarden; 2022),
specifically subsection 1.2.4.1, 1.2.4.3, and 1.2.4.4, and are included for the completeness
of the thesis.

Recently, remote sensing (RS) platforms have made significant technological ad-
vancements, becoming capable of collecting a broader range of high-quality RS data.
Different kinds of satellites have been launched into space, providing valuable data
describing land use and land cover and how they vary over time and space (Shafique
et al.; 2022). Due to the increased accessibility of satellite data, researchers have made
significant efforts to apply deep learning techniques for remote sensing images. How-
ever, the literature on deep learning change detection is scarce compared to semantic
segmentation and object detection tasks. Involving multiple images multiplies the prob-
lems and limitations (e.g., noise) associated with single-image information extraction.
Furthermore, change detection aims to extract the minority pixels that have experienced
changes, easily confusing the change information with noise. However, the number
of publications on DL-based change detection for remote sensing images is increasing
rapidly due to the urgent need for high-accuracy change detection applications (Bai et al.;
2022). The most popular deep learning neural networks used in these studies are Deep
Convolutional Neural Networks (DCNNs), Auto-Encoders (AEs), Deep Belief Networks
(DBNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks
(GANs) (Bai et al.; 2022). DCNNs have been extensively applied for change detection
due to their ability to effectively process and analyze high-dimensional information.
The remainder of this section will consider the DCNN architecture, as the structures of
the other abovementioned neural networks are beyond the scope of this thesis.

1.2.4.1 Deep Convolutional Neural Networks (DCNNs)

Figure 1.2 illustrates a general DCNN architecture. ADCNN typically consists of multiple
layers, each performing a different function in extracting features from the input data.
These layers can be broadly grouped into convolutional, pooling, and fully connected
(FC) layers. The convolutional layer is the core building block of the network. This
layer applies a convolutional operation to the input data, using a set of filters (kernels)
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to detect specific data features. The output of the convolutional layer is a feature map
representing the extracted features. The earlier layers perform simple operations such
as edge detection and color blurring; however, the following layers aggregate these
features as shapes or objects (Khelifi and Mignotte; 2020). The pooling layers are used to
down-sample and reduce the feature maps’ spatial dimensions, decreasing the network’s
parameter number. The most common type of pooling is max-pooling, in which the
maximum value in a small region of the feature map is taken and used as the output of
the pooling operation. The fully connected layers extract more high-level information
by reshaping the feature maps and combining them in a way that allows the DCNN to
predict the label of the input image. The network’s last layer, the classification layer,
outputs feature maps corresponding to the number of classes to be predicted (Khelifi
and Mignotte; 2020). These logits can be passed through a mapping such as the softmax
function to produce a probability distribution over the classes. Different successful
DCNN architectures have been suggested in the literature, such as AlexNet, VGGNet,
ResNet, DenseNet, and U-Net (Jiang et al.; 2022). These architectures explore new and
innovative methods for constructing the convolutional layers to achieve more efficient
learning and higher accuracies customized to the problem to be solved.
The overall performance of the change detection method primarily depends on the

Figure 1.2: General DCNN Architecture

feature extraction ability of the DCNN. The feature extraction strategy can be divided
into respectively single-branch and dual-branch structures. The single-branch structure
is an early fusion (EF) strategy that fuses the reference and repeat-pass images before
feeding them into the network to extract the features. For example, for RGB images
with three channels (red, green, blue), the input matrix would have the form 6𝑥𝑊𝑥𝐻 ,
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where𝑊 and𝐻 denote the width and height of the image, respectively. The dual-branch
structure is a late fusion strategy in which features are extracted from the fused results of
two independent branches. This approach is known as a Siamese neural network, where
the two branches extract features from both inputs separately with the same structure
and shared weights, being merged after the convolutional layers of the network are
completed (Jiang et al.; 2022). For RGB images with three channels, the DCNN is fed
with two input matrices of shape 3𝑥𝑊𝑥𝐻 .

1.2.4.2 Region-Based Convolutional Neural Networks (R-CNNs)

Proposal-based methods have attracted much interest in object detection research in
recent years. These methods usually exploit fast measurements to test whether a
sampled window is a potential object. They further pass these object proposals to
more sophisticated detectors to determine whether they are background or belong to
a specific class. Some of the most well-known object detectors that rely on proposals
are R-CNNs. R-CNN stands for region-based convolutional neural network, which
was initially introduced by Girshick et al. (2014). The concept behind R-CNN involves
generating a large number of region proposals, extracting features from each region
using a pre-trained CNN, and then classifying each proposed region into several object
categories using a linear support vector machine (SVM). The R-CNN improved the mAP
(mean average precision) score by more than 30% relative to the previous best result on
the benchmark PASCAL VOC dataset (Girshick et al.; 2014). Several advancements have
been developed to enhance two-stage R-CNNs, including Fast R-CNN (Girshick; 2015)
and Faster R-CNN (Ren et al.; 2016). These improvements address some of the limitations
of the original R-CNNwhile enhancing both speed and accuracy. Fast R-CNN introduces
a region of interest (ROI) pooling layer, enabling the network to efficiently compute
shared information across different region proposals. It generates a single feature map
for the entire image and utilizes the ROI pooling layer to extract a feature vector for each
proposed region (Girshick; 2015). Faster R-CNN introduces a region proposal network
(RPN) that shares convolutional features with the detection network and achieves further
speed-up. To date, Faster R-CNN is the most widely used version of the R-CNN family,
being the most efficient and accurate of the three. Figure 1.3 illustrates the general Faster
R-CNN architecture. Region-based convolutional neural networks have primarily been
evaluated in object detection and classification tasks, with little research investigating
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Figure 1.3: Faster R-CNN Architecture

the effectiveness of R-CNNs for change detection. However, Wang et al. (2018) applies
the Faster R-CNN algorithm to detect changes in high-resolution remote sensing images,
where the changed regions are considered the object to be detected. Their findings
demonstrate that their proposed method achieves competitive performance compared
to other deep learning-based change detection techniques. Moreover, the authors assess
the dual-branch structure, as described in Section 1.2.4.1, and demonstrate that it can
lead to better performance than the single-branch structure when used as input to the
Faster R-CNN algorithm.

1.2.4.3 Optimization Strategy

An important consideration when implementing a DL-based neural network is selecting
an appropriate loss function. The loss function calculates the error between the predicted
output from the network and the ground truth output. Binary cross-entropy loss is
a commonly used loss function for binary change detection tasks as it measures the
similarity between two probability distributions (Jiang et al.; 2022). However, class
imbalance is common when using DL-based change detection methods, where the ratio
of unchanged and changed pixels may be heavily skewed. Training with very few
changed pixels causes the network to predict the majority class of unchanged pixels
regardless of their ground truth label. Weighted cross-entropy, focal loss, and dice loss
are loss functions proposed to resolve the imbalance problem. The loss functions can
also be combined to take advantage of their complementary strengths (Jiang et al.; 2022).
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An appropriate optimizer is also essential when implementing a deep neural network.
The optimizer’s role is to update the weights and biases of the network in such a way
that it minimizes the loss function. Among various optimization algorithms available,
gradient descent is widely used and the most common method for optimizing neural
networks. Gradient descent, also known as steepest descent, minimizes an objective
function 𝐽 (\ ) by updating the parameters in the opposite direction of the gradient of the
objective function with respect to its parameters ∇\ 𝐽 (\ ). The learning rate 𝑛 determines
the size of the step size taken to approach a minimum (Murugan and Durairaj; 2017).
Different variants of gradient descent have been developed, including batch gradient
descent and stochastic gradient descent (SGD). In batch gradient descent, the parameters
\𝑖 are initialized and updated according to the following procedure:

\𝑖 = \𝑖 − 𝑛
𝜕

𝜕\𝑖
𝐿(\𝑖 : (𝑦𝑖 , 𝑦𝑖 )), (1.1)

where 𝑦𝑖 and 𝑦𝑖 are the predicted and actual values, respectively. Stochastic gradient
descent addresses the inefficiency of computing gradients for the entire training set
by updating the parameter \ sequentially with each iteration (Murugan and Durairaj;
2017). While gradient descent methods are widely used and effective for training neural
networks, they pose several challenges. Firstly, these methods can become trapped
in numerous suboptimal local minima since they uniformly scale the gradient in all
directions. Secondly, selecting an appropriate learning rate is crucial for convergence but
can be challenging to tune, especially in complex and large-scale neural networks (Ruder;
2016). To address these challenges, researchers have proposed adaptive methods that
adjust the gradients based on the function’s curvature estimates. One notable approach is
Adam (Adaptive Moment Estimation), which employs a set of learning rates, individually
assigned to each parameter, dynamically adapting them as the training advances (Kingma
and Ba; 2015). The Adam update equation can be expressed mathematically as:

\𝑖+1 = \𝑖 −
𝑛

√
𝑣𝑖 + 𝜖

�̂�𝑖 , (1.2)

where 𝑣𝑖 and �̂�𝑖 are bias-corrected first and second-moment estimates of the gradient
that are defined as:

�̂�𝑖 =
𝑚𝑡

1 − 𝛽𝑡1
(1.3)
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𝑣𝑖 =
𝑣𝑡

1 − 𝛽𝑡2
. (1.4)

Here,𝑚𝑡 and 𝑣𝑡 are estimated by the following formula:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝑣𝑡 = 𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔2
𝑡 , (1.5)

where 𝑔𝑡 is the gradient of the loss function with respect to parameter \ . The default
values suggested by the authors for Adam are 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8

(Kingma and Ba; 2015). Adam has been used in many applications due to its competitive
performance over other optimization strategies, faster training speed for larger datasets,
and ability to achieve good results with minimal tuning. However, recent research
indicates that Adam may result in poorer generalization performance than SGD when
training deep neural networks for image classification tasks (Keskar and Socher; 2017).
To address these concerns, AdamW has been introduced by Loshchilov and Hutter (2017)
as an extension of the Adam optimizer. AdamW incorporates weight decay directly into
the optimization algorithm, leading to improved generalization performance compared
to Adam. Weight decay refers to a regularization technique that reduces the magnitudes
of the model’s weights during training to prevent overfitting.

1.2.4.4 Learning Technique

Deep learning-based approaches are typically classified based on their learning tech-
nique and the availability of labeled or unlabeled training data (Khelifi and Mignotte;
2020). Supervised methods solve the problem by learning from a labeled dataset and can
be highly effective when trained on large amounts of labeled data. The use of supervised
learning methods in remote sensing change detection is rapidly increasing as remote
sensing data becomes more readily available. Supervised DCNNs have demonstrated
superior performance to other state-of-the-art change detection methods (Khelifi and
Mignotte; 2020). U-Net is considered one of the standard CNN architectures for super-
vised learning. The architecture of U-Net is symmetrical, consisting of an encoder that
extracts spatial features from an input image and a decoder that generates a segmenta-
tion map from the encoded features. Jaturapitpornchai et al. (2019) suggested in detail a
CD-based U-Net that detects building constructions using two SAR images captured at
different times. Subsequently, studies have modified the U-Net architecture in different
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ways to achieve better results and higher accuracy. Amongst these are U-Net++ (Peng
et al.; 2019) and Siamese-Nested U-Net (Li et al.; 2020) that will be reviewed in Section
2.2.3.

As previously stated, insufficient datasets for training change detection models often
make achieving valuable results with an end-to-end supervised deep learning method
difficult. Furthermore, creating ground truth maps that accurately reflect the changes in
ground objects can cost lots of time and effort (Khelifi and Mignotte; 2020). Therefore,
in many cases, it is more efficient to extract features from the images in an unsupervised
manner (Chen and Shi; 2020). Unsupervised deep learning is a technique where the
model is trained without using labeled data. In other words, the model must discover the
underlying structure of the data on its own without feeding the network with any labels
or ground truth images. In recent years, numerous unsupervised deep learning CD
approaches for SAR datasets have been proposed due to the limited amount of publicly
available labeled training data. Wang et al. (2020) propose an unsupervised SAR-image
change detection framework, using hypergraphs to capture local grouping information
and generate a difference image using a noise-insensitive partition technique.

In addition, it has become popular to conduct pre-training on established bench-
mark datasets before fine-tuning deeply learned models for downstream tasks that
lack sufficient labeled data. This practice is known as transfer learning. However, the
effectiveness of supervised pre-training heavily relies on the similarity between the
source and target data domains, where a good pre-trained model renders well on a
similar dataset but is not as useful on a different one.

1.2.5 Self-Supervised Learning

Recently, self-supervised learning (SSL) has raised considerable attention in the field
of computer vision (Wang et al.; 2022). Self-supervised learning is a technique that
exploits unlabeled data to acquire valuable information. Instead of relying on manual
annotation, it employs a self-produced objective, self-supervision, to train the model. By
exploiting a large amount of unlabeled data, the model can learn to capture high-level
representations of the input data. These learned representations can then be transferred
to downstream tasks for real-world applications. Figure 1.4 illustrates the general
pipeline of self-supervised learning. As opposed to supervised pre-training (transfer
learning), self-supervised pre-trained models can leverage more general representations
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and mitigate the shortcomings of supervised learning. Specifically, self-supervised
pre-training eliminates the need for human annotation, achieves good performance on
downstream tasks with only a small number of labels, and can reduce the domain gap
between the pre-training and downstream datasets by collecting unlabeled data from
the target application (Wang et al.; 2022). Self-supervised learning is often classified

UNLABELED DATA

LABELED DATA

Pre-training model

Target model

{x, y}

{x}

Downstream task

Self-supervision

CNN

CNN

Figure 1.4: Self-Supervised Learning Pipeline

into three categories: generative, contrastive, and predictive. The generative approach
involves learning to reconstruct or generate input data, while the predictive method
involves learning to predict self-generated labels. Finally, contrastive methods aim to
maximize the similarity between semantically identical inputs.

Generative Methods. Generative methods, such as autoencoders (AE) and genera-
tive adversarial networks (GAN), learn representations by reconstructing the input data.
An autoencoder is a feed-forward encoder-decoder network that encodes the input 𝑥
into a compressed representation 𝑧 = 𝐸 (𝑥) and then decodes it back to a reconstructed
input 𝑥 = 𝐷 (𝑧), aiming to match the original input. This model type is commonly
trained using patches as input and ground truth targets. Autoencoders have been widely
employed to learn representations from various remote sensing data. For example,
Peng et al. (2021) proposed a self-supervised autoencoder that generates patch-wise
change-maps for flood mapping using bi-temporal multispectral satellite imagery. Imple-
menting the self-supervised autoencoder demonstrated superior performance compared
to traditional change detection methods (Peng et al.; 2021).
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Generative adversarial networks consist of a generator and a discriminator. The
discriminator is trained to differentiate between real samples from the training dataset
and synthetic samples generated by the generator (Wang et al.; 2022). Currently, limited
research exists exploring the use of GAN-based methods for self-supervised pre-training.

Predictive Methods. A predictive method involves pre-training a model using
self-generated labels. This approach starts by designing a suitable pretext task for
the dataset, preparing self-generated labels, and then training the model to predict
these labels (Wang et al.; 2022). Pretext tasks allow the model to learn valuable feature
representations that can later be applied to downstream tasks. However, designing
an appropriate pretext task requires domain-specific knowledge, and even though it
enhances performance on a specific downstream task, it may not generalize well to
other task domains.

Leenstra et al. (2021) suggested a spatial and temporal pretext task for enhancing
change detection in Sentinel-2 imagery. They pre-trained a CNN on a binary classifi-
cation pretext task to discriminate between overlapping and non-overlapping patches.
The underlying hypothesis was that by doing so, the model would learn to disregard
irrelevant radiometric variations and instead focus on the relevant spatial differences
between the patches. The paper by Jian et al. (2022) addressed the challenge of detecting
small objects within the Faster R-CNN framework by introducing a self-supervised
pretext task called "CutPaste." The main idea behind this method was to generate nega-
tive samples by cutting out and enhancing certain regions from object-free images and
subsequently pasting these rectangles back onto the image. The auxiliary learning task
focused on detecting the number of cut-and-paste rectangles in the image. Experimental
results demonstrated that utilizing the CutPaste pretext task significantly improved
performance, with a 17.8% increase in mean Average Precision (mAP) and a 22.8%
improvement in detection accuracy.

Contrastive Methods. The performance of predictive self-supervised methods
relies on the design of a well-suited pretext task, which often poses significant chal-
lenges. To overcome this issue, contrastive methods adopt a training approach where
semantically identical inputs are contrasted and encouraged to be closely positioned in
the representation space (Wang et al.; 2022). However, this emphasis on similarity can
sometimes result in a trivial solution known as model collapse. In order to address this
problem, several solutions have been proposed in the literature, including techniques
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such as negative sampling, clustering, and redundancy reduction. These approaches
aim to alleviate the issue of model collapse and enhance the performance of contrastive
self-supervised learning methods.

Negative sampling involves including dissimilar samples to create positive and
negative input pairs. The idea behind this approach is for the model to learn valuable
representations by bringing augmented versions of the same sample closer while pushing
away embeddings from different samples. For example, Jean et al. (2018) employed
contrastive learning by training a CNN on a triplet of tiles. Each triplet consisted of an
anchor tile 𝑡𝑎 , a neighbor tile 𝑡𝑛 , and a distant tile 𝑡𝑑 . The training objective minimized a
triplet loss, which aimed to minimize the distance between the anchor and neighbor tiles
while maximizing the distance between the anchor and distant embeddings. Leenstra
et al. (2021) proposed a pretext task for Sentinel-2 change detection by embedding a
similar strategy, where each triplet consisted of two patches with spatial overlap and a
third patch without overlap.

Redundancy reduction is a technique inspired by neuroscientist H. Barlow’s redundancy-
reduction principle. Its primary aim is to preserve essential information by minimizing
redundancy. Zbontar et al. (2021) introduced Barlow Twins, which employs an objec-
tive function that measures the cross-correlation matrix between the outputs of two
identical networks fed with distorted versions of a sample. The objective is to make
the cross-correlation matrix as close to the identity matrix as possible. As a result, the
embedding vectors of the distorted sample versions become more similar, effectively
reducing redundancy among their components. The loss function for Barlow Twins can
be defined as follows:

L𝐵𝑇 =
∑︁
𝑖

(1 − C𝑖𝑖 )2

︸          ︷︷          ︸
Invariance term

+ _
∑︁
𝑖

∑︁
𝑗≠𝑖

C2
𝑖 𝑗︸         ︷︷         ︸

Redundancy reduction term

, (1.6)

where _ is a trade-off constant and C is the cross-correlation matrix computed between
the representations of the input image pairs along the batch dimension:

C𝑖 𝑗 =
∑

𝑏 𝑧𝑏,𝑖
𝐴𝑧𝐵

𝑏,𝑗√︃∑
𝑏 (𝑧𝐴𝑏,𝑖 )2

√︁∑
𝑏 (𝑧𝑏,𝑗 𝐵)2

. (1.7)
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Here, 𝑏 represents the batch sample, 𝐴 and 𝐵 denote two different views, while 𝑖 and 𝑗
index the vector dimensions of the network output. For scene change detection (SCD),
Ramkumar et al. (2021) propose a self-supervised pre-training method based on Barlow
Twins. The approach involves feeding a patch pair𝑇0 and𝑇1 representing a scene at two
different times into a Siamese encoder trained using the objective function in Equation
1.6. The invariance term makes the image pair invariant to noisy changes, such as
seasonal variations, while the redundancy reduction term aligns the representations
of the input pairs to be similar. Ramkumar et al. (2022) propose a differencing-based
Barlow Twins implementation that uses feature differencing to learn discriminatory rep-
resentations corresponding to the changed regions of the scene. Instead of maximizing
the cross-correlation of the transformed views of the same image to approximate the
identity matrix, this method maximizes the difference representations (𝑑1, 𝑑2) between
an image pair captured at different times in feature space. This approach enhances the
downstream change detection performance by 2% compared to standard Barlow Twins
pre-training.

1.2.6 Multi-Task Learning

Multi-task learning (MTL) is a learning paradigm in machine learning that aims to
jointly solve a set of prediction problems by sharing information across tasks. The basic
assumption of MTL is that all tasks are associated. Thus the knowledge contained in one
task can be leveraged by other tasks, leading to improved generalization performance
for all tasks. MTL is particularly useful in addressing the data scarcity problem, where
the number of labeled data for each task is insufficient to train an accurate learner
(Zhang and Yang; 2017). By aggregating labeled data across all tasks, MTL helps reuse
existing knowledge and reduces the cost of manually labeling the input. Additionally,
by sharing layers between tasks, MTL has the potential to substantially reduce memory
usage and increase inference speed. Most importantly, MTL can improve performance
if the associated tasks share complementary performance or act as a regularizer for one
another (Vandenhende et al.; 2020). By jointly optimizing the model parameters for
multiple tasks, the model aims to perform well across all tasks instead of overfitting to
individual tasks.

A general architecture for MTL is depicted in Figure 1.5. In soft parameter sharing,
each task is allocated its own set of parameters, while feature-sharing mechanisms
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facilitate communication between tasks. Hard parameter sharing involves dividing
the parameter set into shared and task-specific operations. A typical hard parameter
sharing design includes a shared encoder that branches out to task-specific decoder
heads (Vandenhende et al.; 2020).

INPUT
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TASK B

TASK C

Constrained layers
Task-specific

layers

(a) Soft Parameter Sharing

INPUT

TASK A

TASK B

TASK CShared layers

Task-specific
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(b) Hard Parameter Sharing

Figure 1.5: Multi-Task Learning Architecture

Deep multi-task networks have demonstrated their effectiveness in various task
combinations, such as detection and classification, detection and segmentation, and
segmentation and depth estimation (Vandenhende et al.; 2020). The Faster R-CNN
architecture detailed in Section 1.2.4.2 employs a hard parameter-sharing design to
jointly learn the tasks of object detection and classification for bounding box recognition.
Mask R-CNN is an extended version of Faster R-CNN, introduced by He et al. (2017).
It incorporates a segmentation branch for predicting an object mask in parallel with
the existing branch responsible for bounding box prediction. The results demonstrate
a significant improvement of 0.9 points box average precision (AP) compared to the
original Faster R-CNN, solely due to the benefits of multi-task training.

1.2.6.1 Multi-Task Optimization

Training multiple tasks while simultaneously learning a shared representation presents
several challenges compared to standard single-task learning. Firstly, the joint learning
of multiple tasks is prone to negative transfer if the task selection contains unrelated
tasks. Secondly, a significant challenge in MTL is the "task balancing" problem, which
involves balancing the joint learning of all tasks to prevent a scenario where one or
more of the tasks have a dominant influence on the network weights (Vandenhende
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et al.; 2020) The general optimization objective in an MTL problem can be formulated
as follows:

L𝑀𝑇𝐿 =
∑︁
𝑖

𝑤𝑖 · L𝑖 , (1.8)

where 𝑤𝑖 and L𝑖 correspond to the task-specific weights and loss functions. When
using the stochastic gradient descent to minimize the objective function, the shared
network weights𝑊𝑠ℎ are updated by the following formula:

𝑊𝑠ℎ = W𝑠ℎ − 𝛾
∑︁
𝑖

𝑤𝑖

𝜕L
𝜕𝑊𝑠ℎ

. (1.9)

Equation 1.9 indicates that the weight update may not be optimal when the task gradients
conflict or when one task dominates due to a significantly higher gradient magnitude
compared to the other tasks (Vandenhende et al.; 2020). In most of the existing literature
on multi-task learning, manually tuning the task-specific weights𝑤𝑖 in the loss function
has been the standard approach, requiring significant effort and time investment. How-
ever, recent advancements have introduced systematic methods to optimally balance
the task-specific weights, such as uncertainty weighting (Cipolla et al.; 2018), gradient
normalization (Chen et al.; 2018), and dynamic weight averaging (Liu et al.; 2019).

Uncertainty Weighting. The technique proposed by Cipolla et al. (2018) weights
multiple loss functions by considering the homoscedastic uncertainty associated with
each task. The homoscedastic uncertainty captures the relative confidence levels across
different tasks, considering the inherent uncertainty in both regression and classification
tasks. Specifically, themodel weightsW and standard deviations𝜎1 and𝜎2 are optimized
to minimize the following equation:

L(𝑊,𝜎1, 𝜎2) =
1

2𝜎2
1
L1 (𝑊 ) + 1

2𝜎2
2
L2 (𝑊 ) + log𝜎1𝜎2. (1.10)

Equation 1.10 reveals that the impact of a task on the network weight update is smaller
when the task’s homoscedastic uncertainty is high. This property is advantageous when
dealing with noisy annotations since the task-specific weights will automatically be
lowered for such tasks (Vandenhende et al.; 2020).

Gradient Normalization. Chen et al. (2018) addresses the task-balancing problem
by stimulating the task-specific gradients to be of similar magnitude. The Gradient
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Normalization method (GradNorm) aims to balance two properties during the training
of multi-task networks: the gradient magnitudes 𝐺𝑊

𝑖
and the learning pace 𝑟𝑖 (𝑡) for

different tasks. The gradient magnitude 𝐺𝑊
𝑖

represents the L2 norm of the gradient for
the weighted single-task loss 𝑤𝑖 · 𝐿𝑖 (𝑡) at step 𝑡 with respect to the weights𝑊 . 𝑟𝑖 (𝑡)
denotes the inverse training rate. GradNorm is implemented as an L1 loss function
L𝑔𝑟𝑎𝑑 between the actual and target gradient norms for each task at every timestep.
This loss is then summed over all tasks, resulting in the following equation:

L𝑔𝑟𝑎𝑑 (𝑡 ;𝑤𝑖 (𝑡)) =
∑︁
𝑖

|𝐺𝑊
𝑖 (𝑡) −𝐺𝑊 (𝑡) · [𝑟𝑖 (𝑡)]𝛼 |, (1.11)

where 𝐺𝑊 (𝑡) represent the mean task gradient with respect to weights𝑊 at step 𝑡 ,
and 𝛼 is an additional hyperparameter (Chen et al.; 2018). The parameter 𝛼 enables
adjustment of the training rate balance, with a higher value indicating that tasks have
very different learning dynamics. In practice, during training, the task-specific weights
𝑤𝑖 are updated using backpropagation in each iteration, which may introduce additional
computational time and architectural complexity to the network.

GradNorm demonstrates remarkable performance when evaluated on the NYUv2
dataset carrying depth, surface normals, and segmentation labels for diverse indoor
scenes (Chen et al.; 2018). Specifically, GradNorm reduces the depth error by ∼ 5%
compared to the approach that assigns equal weights. Additionally, the GradNorm
implementation surpasses the performance of uncertainty weighting on the NYUv2
dataset (Chen et al.; 2018).

Dynamic Weight Averaging. Similar to GradNorm, dynamic weight averaging
(DWA), proposed by Liu et al. (2019), aims to balance the learning pace of multiple tasks.
However, DWA takes a different approach by solely relying on task-specific loss values
and eliminates the need for separate backward passes to compute task-specific gradients
during training. In DWA, the task-specific weights𝑤𝑖 for task 𝑖 are defined as:

𝑤𝑖 (𝑡) =
𝑁 exp(𝑟𝑖 (𝑡 − 1)/𝑇 )∑
𝑛 exp(𝑟𝑛 (𝑡 − 1)/𝑇 ) , 𝑟𝑛 (𝑡 − 1) = L𝑛 (𝑡 − 1)

L𝑛 (𝑡 − 2) , (1.12)

where 𝑟𝑖 represents the relative descending rate and 𝑁 denotes the number of tasks.
The temperature 𝑇 controls the softness of the task weighting in the softmax operator.
When the loss of a particular task decreases slower than other tasks, the task-specific
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weighting is increased accordingly.
It is important to note that DWA requires balancing the overall loss magnitudes

beforehand to prevent specific tasks from dominating others during training. Grad-
Norm avoids this problem by simultaneously balancing the training rates and gradient
magnitudes through a single objective (Vandenhende et al.; 2020).

1.2.7 Attention Mechanisms

An attention mechanism enables a model to focus on specific parts of the input data,
drawing inspiration from the human cognitive process of selectively attending to rele-
vant information (Guo et al.; 2022). In computer vision tasks, an attention mechanism
can be considered a dynamic selection process that adaptively weights characteristics
based on their relevance to the input. Attention mechanisms have proved successful
in various visual tasks such as image classification, object detection, and semantic
segmentation. Existing attention methods can be categorized into four types: channel
attention (identifying what to pay attention to), spatial attention (determining where
to pay attention), temporal attention (deciding when to pay attention), and branch
attention (selecting which branch to pay attention to) (Guo et al.; 2022). The remainder
of this section will focus on spatial attention as the other categories lie beyond the scope
of this thesis.

Spatial attention can be seen as an adaptive mechanism that selectively attends to
specific spatial regions by assigning attention weights to different locations (Guo et al.;
2022). This allows the network to gather information from a broader context, indirectly
expanding the receptive field of the neural network. The Faster R-CNN architecture,
detailed in Section 1.2.4.2, employs the RPN module as an attention mechanism for
proposing relevant feature regions. In addition, the authors of SpotNet (Perreault et al.;
2020) take advantage of the multi-task architecture designed for object segmentation
and detection, incorporating an internal attention mechanism. They utilize the predicted
segmentation map as an attention map multiplied by the raw feature maps to enhance
bounding box regression and classification performance. Similarly, in the study by
Pang et al. (2019), a mask-guided attention network is proposed for occluded pedestrian
detection. They introduce a mask-guided attention module (MGA) that generates
modulated features by multiplying the extracted region of interest (ROI) features with a
spatial attention mask. This attention mask is constructed using visible body region
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information to improve pedestrian detection in challenging scenarios where occlusions
are present.

1.3 Contributions

The main contributions of the work presented in this thesis are as follows:

• A review of multi-task and self-supervised learning techniques that have demon-
strated superior performance in their respective computer vision domains.

• Development and implementation of Siam R-CNN, a novel multi-task attention-
based deep convolutional neural network specifically designed for change detec-
tion in SAS imagery.

• Implementation of self-supervised pre-training techniques to improve the down-
stream change detection performance of Siam R-CNN.

• Experimental testing and optimization of Siam R-CNN for detecting changes
in SAS imagery. In particular, the significance of applying the self-supervised
pre-training techniques is evaluated.

• An analysis of the experimental results, along with suggestions for future research
to further enhance the performance of the proposed approach.

1.4 Outline

The report is organized as follows. Chapter 2 describes the system used for change
detection, including an in-depth description of the pretext and change detection tasks,
as well as their corresponding architectural design. Chapter 3 presents the experiments
and their results for the self-supervised pretext task on an unlabeled dataset and the
change detection performance when applied to a smaller labeled SAS dataset. In Chapter
4, the report concludes by exploring potential avenues for future research and offering
final thoughts.



Chapter 2

Methodology

This chapter presents the system and methods used for performing change detection in
SAS images. First, it describes the change detection pipeline to provide a high-level view
of the proposed system. Following this, a detailed and well-justified presentation of the
chosen architecture design for both the change detection and pretext tasks is provided.

2.1 Change Detection Pipeline

A multi-task attention-based learning model is designed for change detection in this
thesis. To address the limited size of the SAS dataset, a self-supervised pre-training
method is employed to extract informative features that can be effectively applied to the
downstream change detection task. The overall pipeline comprises two stages. In the
first stage (Section 2.3), the feature extractor network is trained on a predefined pretext
task using an unlabeled SAS dataset. In the second stage (Section 2.2), the pre-trained
weights obtained from the first stage are used to fine-tune the change detection network
through supervised training. An overview of the methodology is visualized in Figure
2.1.

25
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Figure 2.1: Change Detection Pipeline
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2.2 Change Detection Task Architecture

2.2.1 Siam R-CNN

Figure 2.2: Siam R-CNN Architecture

Figure 2.2 displays the Siam R-CNN architecture, designed to train the network to
perform multiple tasks simultaneously. The network is specifically trained to predict
both bounding boxes corresponding to the changes and a pixel-level change map.
The primary objective of implementing a multi-task architecture is to leverage shared
knowledge across the tasks, effectively enhancing change detection performance with
limited labeled SAS data. Additionally, the combination of bounding box regression
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and change map prediction allows for comparison with a broader range of traditional
and deep learning-based change detection methods. Furthermore, an internal attention
mechanism is incorporated within the network to further leverage the learned change
map.

To ensure clarity, it is important to differentiate between the convolutional backbone
architecture used for feature extraction, FeatureNet, and the network heads responsible
for bounding box recognition and mask prediction, BoxHead and MaskHead. The
following paragraphs provide a detailed explanation of these three main modules, along
with the attention mechanism and loss functionality, as depicted in Figure 2.2.

2.2.2 FeatureNet

FeatureNet is the convolutional backbone network and feature extractor of the Siam
R-CNN architecture. Figure 2.3 illustrates the architecture of FeatureNet. The network
adopts a Siamese structure, where the encoding layers are divided into two parallel
streams with shared weights. The reference and repeat-pass images are inputted to the
two encoder streams and processed through convolutional units and down-sampling
modules to generate multi-scale feature maps. Finally, the encoder streams are merged
by concatenating the absolute value of the difference between the branches. Siamese
networks utilize shared weights to activate the same region in the feature maps of
the two images during feature extraction. This allows for a comparison of location
information, which is particularly relevant for change detection tasks. FeatureNet is
inspired by the encoder from the Siamese Nested U-Net (Li et al.; 2020), which combines
the strong feature extraction capabilities of U-Net++ with a Siamese branch to emphasize
the specificity of the change detection task. The results obtained from the specialization
project (Nyegaarden; 2022) demonstrate that incorporating a Siamese branch into the
U-Net++ architecture significantly improved the change detection F1-score from 0.217
to 0.332. This improvement justifies choosing FeatureNet as the backbone network for
the SAS change detection task.

The multi-scale feature extraction hierarchy enables the network to capture features
at multiple levels of abstraction. This architectural design, referred to as a "feature
pyramid network," is commonly employed in the context of object detection. The
primary benefit of extracting features from each level of an image pyramid is that it
generates a multi-scale feature representation wherein all levels possess robust semantic
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information, including the high-resolution levels (Lin et al.; 2017). Hence, it is reasonable
to assume that this will benefit the change detection task as well.

Figure 2.3: FeatureNet Architecture

The stack of feature maps, denoted as 𝑋𝑖 , can mathematically be expressed as:

𝑋𝑖 = | (𝑥𝑖𝐴 − 𝑥𝑖𝐵) |. (2.1)

Here, 𝑖 indexes the down-sampling layer, and 𝑥𝑖
𝐴
and 𝑥𝑖

𝐵
are defined as:

𝑥𝑖𝐴 = P(H (𝑥𝑖−1
𝐴 )), 𝑥𝑖𝐵 = P(H (𝑥𝑖−1

𝐵 )). (2.2)

The function H(·) denotes a 3 × 3 convolution operation, and P(·) denotes a 2 × 2
max pooling operation used for down-sampling. Equation 2.1 shows that the feature
maps receive inputs from the Siamese subtraction operation of the two convolution
units at the same level. The convolution units are implemented as residual blocks based
on the award-winning deep learning architecture ResNet (He et al.; 2016) to facilitate
better convergence abilities for the deep network. Figure 2.4 illustrates the ResNet block
in FeatureNet, which is identical to all other convolutional units in the Siam R-CNN
architecture. Figure 2.4 has been derived from the specialization project (Nyegaarden;
2022).
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Figure 2.4: ResNet Convolution Unit

2.2.3 MaskHead

The MaskHead serves as a decoder structure and is utilized to restore the spatial dimen-
sions of the input images to generate a predicted change map. The proposed MaskHead
architecture, as illustrated in Figure 2.5, takes feature maps from FeatureNet as input to
the decoder. When combined with FeatureNet, it forms a Siamese U-Net++ encoder-
decoder architecture, which was demonstrated to be effective for SAS change detection
in the specialization project (Nyegaarden; 2022). The U-Net++ architecture, first pro-
posed by Zhou et al. (2020), introduces re-designed skip pathways and deep supervision
to address some of the limitations of the original U-Net architecture. The decoder in
the U-Net++ architecture consists of multiple stages that perform up-sampling of the
feature maps from FeatureNet, thereby increasing their resolution. Additionally, the
decoder receives skip connections from the corresponding encoding stages, allowing for
the fusion of features at multiple scales. The decoder outputs two logits for each pixel:
one representing the probability that the pixel has changed and the other representing
the probability that the pixel has not been changed. The final change map is obtained
by applying a softmax function to the logits and selecting the class with the highest
probability for each pixel.
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Figure 2.5: MaskHead Architecture

The deep supervision strategy MSOF (multiple sides outputs fusion) proposed by
Peng et al. (2019) has been implemented in the presented MaskHead architecture, where
multi-level feature information from all side-output layers {𝑌 0,1, 𝑌 0,2, 𝑌 0,3, 𝑌 0,4} are
embedded in the final change map. These multiple outputs can prevent the network
from overfitting to the training data, improving the model’s overall accuracy.

The output 𝑌 of MaskHead can be formulated as follows:
𝑌 0, 𝑗 = ℎ(𝑥0, 𝑗 ), 𝑗 ∈ {1, 2, 3, 4}

𝑌 0,5 = ℎ( [𝑌 0,1, 𝑌 0,2, 𝑌 0,3, 𝑌 0,4]),
(2.3)

where ℎ(·) indicate a 1x1 convolution operation and 𝑌 0, 𝑗 denotes the output from the
𝑗-th level.
Let 𝑥𝑖, 𝑗 denote the output of node 𝑋 𝑖, 𝑗 , where 𝑖 indexes the down-sampling layer along
the encoder and 𝑗 indexes the convolution layer of the dense block along the skip



32 CHAPTER 2. METHODOLOGY

connection. Then 𝑥𝑖, 𝑗 is formulated as follows:

𝑥𝑖, 𝑗 =


P(H (𝑥𝑖−1, 𝑗 )), 𝑗 = 0

H([|(𝑥𝑖,0
𝐴

− 𝑥𝑖,0
𝐵
) |,U(𝑥𝑖+1, 𝑗−1)]), 𝑗 = 1

H([|(𝑥𝑖,0
𝐴

− 𝑥𝑖,0
𝐵
) |, [𝑥𝑖,𝑘 ] 𝑗−1

𝑘=1,U(𝑥𝑖+1, 𝑗−1)]), 𝑗 > 1

(2.4)

where U(·) denote an up-sampling layer. Equation 2.4 displays that for 𝑗 > 1, the
node receives inputs from the up-sampling layer, the skip connection from the Siamese
subtraction operation, and the skip pathways from the other convolution units at the
same level.

2.2.3.1 Loss Functionality

The following paragraph is primarily extracted from the methodology section of the
specialization project (Nyegaarden; 2022).

Due to the rarity of mines in the detection field of a sonar, the data collected from
the HISAS-1030 are heavily imbalanced. During deep neural network training, dealing
with imbalanced data is challenging as pixel-based change detection requires pixel-wise
labeling and small mines contribute less to the loss. To address the class imbalance
problem, Zhu et al. (2019) propose a hybrid loss function consisting of contributions
from both dice loss and focal loss to improve the classification accuracy of detecting the
minority class of changed pixels in the dataset. The hybrid loss function is defined as:

Lℎ𝑦𝑏𝑟𝑖𝑑 = L𝑓 𝑜𝑐𝑎𝑙 + _L𝑑𝑖𝑐𝑒 , (2.5)

where _ refers to the weight that balances the two losses. Peng et al. (2019) studied
the significance _ had for the final change detection results when using a hybrid loss
function consisting of weighted cross-entropy loss and dice loss. The evaluation metrics
achieved maximum values when _ was set to 0.5, meaning that the influence of the
binary cross-entropy loss and dice coefficient loss are well balanced. Consequently, _
has been set to 0.5 for training MaskHead.

The focal loss down-weights the loss for well-classified samples and focuses more
on the loss for hard-to-classify samples. This allows the model to pay more attention to
the rare classes and helps reduce the bias towards the more common class of unchanged
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pixels to improve performance. The focal loss can be formulated as follows:

L𝑓 𝑜𝑐𝑎𝑙 = −𝛼𝑡 (1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 ), (2.6)

where 𝑝𝑡 is the model’s predicted probability for the true class "change," 𝛼𝑡 is a weighting
factor to balance the contribution of each sample to the total loss, and 𝛾 is the focus
parameter that controls the weighting of easy and hard examples.

The dice loss can be expressed as:

L𝑑𝑖𝑐𝑒 = 1 −
2
∑𝑛

𝑖=1 𝑦𝑖𝑦𝑖∑𝑛
𝑖=1 𝑦𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 + 𝜖

, (2.7)

where 𝑦 and 𝑦 denote the predicted probabilities and the ground truth labels for the
change map, respectively. 𝜖 is a small constant added to the numerator and denominator
to prevent division by zero. Equation 2.7 calculates the ratio between the intersection
and union of predicted and ground truth pixels, with a value of 1 indicating perfect
overlap and 0 indicating no overlap. By minimizing the dice loss, the model can learn
to predict more accurate and detailed change maps, improving the performance of the
change detection task. Additionally, dice loss reduces the impact of the class imbalance
problem compared to conventional loss functions such as binary cross-entropy loss.

The loss can be calculated from the outputs of five semantic levels of the MaskHead
architecture that has integrated a deep supervision strategy. The overall loss function
for MaskHead can thus be defined as:

L𝑚𝑎𝑠𝑘 =

5∑︁
𝑗=1

𝑤 𝑗L 𝑗

ℎ𝑦𝑏𝑟𝑖𝑑
. (2.8)

Here,𝑤 𝑗 corresponds to the weights of the five semantic level outputs in the network,
and L 𝑗

ℎ𝑦𝑏𝑟𝑖𝑑
denotes the loss from the 𝑗-th side output. In the former use of the U-Net++

structure, the weight-vector𝑤 𝑗 has generally been set to 1.0. Li et al. (2020), however,
explored the importance level of output at different semantic levels and observed that
as outputs of the deeper semantic levels are removed, the influence on the final result
has an increasing tendency. In other words, deeper outputs were more important than
shallower ones. Therefore, to make the network pay more attention to features of
deeper levels, Li et al. (2020) adjusted the weights 𝑤 𝑗 to {0.5, 0.5, 0.75, 0.75, 1.0}. This
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adjustment improved the performance of the Siamese Nested U-Net, resulting in a 0.3%
increase in the F1-score compared to setting𝑤 𝑗 = 1 (Li et al.; 2020).

2.2.4 BoxHead

BoxHead architecture is based on the Faster R-CNN object detection network (Ren et al.;
2016). It inputs feature maps from FeatureNet and generates refined box locations and
classification outcomes using fully connected layers. Faster R-CNN addresses some of
the limitations of Fast R-CNN, mentioned in 1.2.4.2, by incorporating a Region Proposal
Network (RPN) that generates high-quality region proposals. The RPN and Fast R-CNN
detection components are merged into a single network, where the RPN module serves
as the "attention" mechanism guiding the network where to look for new objects. The
Faster R-CNN model has demonstrated state-of-the-art object detection performance
on popular datasets such as PASCAL VOC and Microsoft COCO datasets, making it one
of the most widely used object detection algorithms (Ren et al.; 2016). Although object
detection and change detection are different computer vision tasks, the hypothesis is
that utilizing the pixel-wise difference images (DI) produced by FeatureNet as input to
an object detection algorithm will yield satisfactory results for the change detection
task. Additionally, Faster R-CNN allows for the easy integration of various backbone
networks, facilitating the multi-task design of Siam R-CNN. Figure 2.6 illustrates the
general BoxHead architecture. For clarity, in the presented architecture, the Fast R-CNN
detection module described in the Faster R-CNN paper (Ren et al.; 2016) will be referred
to as BoxPredictor.

2.2.4.1 RPN

The RPN inputs the feature maps from FeatureNet and outputs a set of rectangular object
proposals, each with an objectness score. Figure 2.7 shows the detailed schematic of the
RPN. The RPN constitutes a neural network, the RPN head, and non-neural network
functionalities. The following paragraphs describe some of the main components
depicted in Figure 2.7.

RPNHead. The RPN head is the neural network of the RPN. The RPN head functions
by sliding a small network across the feature maps to generate proposals. Specifically,
the small network processes an 𝑛 × 𝑛 spatial window of the feature map, mapping each
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Figure 2.6: BoxHead Architecture
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Figure 2.7: RPN Architecture

window to a lower-dimensional feature. The generated feature is then fed into two fully
connected layers: the box regression layer (reg) and the box classification layer (cls).
The output feature maps are the following:

1. 𝑌𝑅𝑃𝑁 _𝑐𝑙𝑠 (𝐵, 𝑛𝑢𝑚_𝑎𝑛𝑐ℎ𝑜𝑟𝑠, 𝐻𝑖 ,𝑊𝑖 ): probability map of object existence in an an-
chor (objectness score).

2. 𝑌𝑅𝑃𝑁 _𝑟𝑒𝑔 (𝐵, 𝑛𝑢𝑚_𝑎𝑛𝑐ℎ𝑜𝑟𝑠 × 4, 𝐻𝑖 ,𝑊𝑖 ): relative box shape to anchors.

Here, 𝐵 stands for batch size, and 𝐻𝑖 and𝑊𝑖 correspond to the spatial dimensions of the
respective multi-scale feature maps. The output 𝑌 can be mathematically defined as:

𝑌𝑅𝑃𝑁 _𝑐𝑙𝑠 = ℎ𝑎 (H (𝑥 𝑗 )), 𝑗 ∈ {0, 1, 2, 3}

𝑌𝑅𝑃𝑁 _𝑟𝑒𝑔 = ℎ𝑎×4 (H (𝑥 𝑗 )), 𝑗 ∈ {0, 1, 2, 3}.
(2.9)

Here,H(·) denotes a 3× 3 convolution operation, and ℎ(·) indicates a 1× 1 convolution
operation that adjusts the number of channels in the output feature map to 𝑎 and 𝑎 × 4,
respectively. The variable 𝑎 represents the number of anchors at every pixel location,
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and 𝑎 × 4 represents the number of predicted anchor delta parameters for all anchors.

Anchors. The network predicts several region proposals at each sliding window
location that are parameterized with respect to predefined anchors. These anchors are
reference boxes centered at the sliding window and are associated with a scale and
aspect ratio (Ren et al.; 2016). Each anchor is represented by a set of four coordinates,
which specify its size relative to the spatial location of the network’s sliding window.

Ground Truth Boxes and Anchors. During training, the RPN is trained to adjust
the predicted anchor coordinates to better align with the ground truth bounding boxes
in the image. To train the RPN network, each anchor is assigned a binary class label,
indicating whether it corresponds to an object or not. The IoU overlap between the
anchors and the ground truth boxes is calculated to assign the labels, and a predefined
threshold is used to evaluate whether an anchor is positive or negative. For each anchor,
the network also predicts four regression parameters 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 , and 𝑡ℎ that describe
the location and size of the predicted bounding boxes relative to the anchor. These
regression parameters and a set of target parameters 𝑡∗𝑥 , 𝑡∗𝑦 , 𝑡∗𝑤 , and 𝑡∗ℎ , also referred to
as "deltas," are defined as:

𝑡𝑥 =
𝑥 − 𝑥𝑎
𝑤𝑎

, 𝑡𝑦 =
𝑦 − 𝑦𝑎
ℎ𝑎

𝑡𝑤 = 𝑙𝑜𝑔( 𝑤
𝑤𝑎

), 𝑡ℎ = 𝑙𝑜𝑔( ℎ
ℎ𝑎

) (2.10)

𝑡∗𝑥 =
𝑥∗ − 𝑥𝑎
𝑤𝑎

, 𝑡𝑦 =
𝑦∗ − 𝑦𝑎
ℎ𝑎

𝑡∗𝑤 = 𝑙𝑜𝑔(𝑤
∗

𝑤𝑎

), 𝑡ℎ = 𝑙𝑜𝑔(ℎ
∗

ℎ𝑎
).

Here, 𝑡𝑖 represents a vector representing the four anchor deltas of the predicted bounding
box, while 𝑡∗𝑖 corresponds to the anchor deltas of a ground truth box associated with
a positive anchor. The parameters 𝑥 , 𝑦, 𝑤 , and ℎ denote the box’s center coordinates,
width, and height. The predicted bounding box, anchor box, and ground truth box are
denoted by 𝑥 , 𝑥𝑎 , and 𝑥∗; the same applies for 𝑦,𝑤 , and ℎ. The process can be viewed as
a bounding box regression, whereby the predicted bounding box for the given anchor is
adjusted to better match the ground truth box associated with the concerned anchor.

Loss Calculation. The RPN is optimized by minimizing a multi-task loss function
𝐿𝑅𝑃𝑁 . Drawing inspiration from the Faster R-CNN implementation (Ren et al.; 2016),
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the loss function is defined as:

L𝑅𝑃𝑁 (𝑝, 𝑡) = 1
𝑁𝑐𝑙𝑠

∑︁
𝑖

L𝑐𝑙𝑠 (𝑝𝑖 , 𝑐∗𝑖 ) + _
1

𝑁𝑟𝑒𝑔

∑︁
𝑖

𝑐∗𝑖 L𝑟𝑒𝑔 (𝑡𝑖 , 𝑡∗𝑖 ), (2.11)

where 𝑖 represents the index of an anchor in themini-batch, 𝑝𝑖 is the predicted probability
that the anchor 𝑖 is an object, and 𝑐∗𝑖 is the corresponding ground truth label, i.e., 1 if
the anchor is positive, and 0 if the anchor is negative. Equation 2.11 is normalized by
𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 and weighted by the parameter _.

L𝑟𝑒𝑔 is the bounding box regression loss and is defined as a smooth localization loss
(L1) function adopted from Fast R-CNN (Girshick; 2015):

L𝑟𝑒𝑔 (𝑡𝑖 , 𝑡∗𝑖 ) = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 (𝑡𝑖 − 𝑡∗𝑖 ), (2.12)

in which

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 (𝑥) =


0.5𝑥2 𝑖 𝑓 |𝑥 | < 1

|𝑥 | − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(2.13)

L𝑐𝑙𝑠 refers to the logarithmic loss for classification between two classes, namely
"object" and "not an object." In the Faster R-CNN paper (Ren et al.; 2016), L𝑐𝑙𝑠 is specified
as the binary cross-entropy loss. The Faster R-CNN paper demonstrates remarkable
performance for datasets that feature a greater amount of larger objects, such as the
PASCAL VOC and MS COCO datasets. In contrast, the HISAS-1030 sonar dataset, as
discussed in Section 2.2.6, is significantly imbalanced. The ground truth bounding
boxes, on average, occupy only approximately 0.03% of the total image area, resulting in
most of the cropped SAS input pairs lacking relevant changes. To tackle the imbalance
problem in the Siam R-CNN architecture, the cross-entropy loss is substituted with
the focal loss function defined in Equation 2.6. The focal loss aims to mitigate the
bias introduced by the dominant "background" class and facilitate the convergence of
the RPN network. Note that the bounding box regression loss L𝑟𝑒𝑔 is only calculated
for foreground classes where the anchor corresponds to a ground truth object. This
approach ensures that the class imbalance present in the SAS dataset does not affect the
regression loss component.

Proposal Selection. Proposal selection involves reversing Equation 2.10 to obtain
bounding box proposals {𝑥,𝑦,𝑤,ℎ} from predicted anchor deltas {𝑡𝑥 , 𝑡𝑦, 𝑡𝑤, 𝑡ℎ}. These
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proposals are then ranked based on their predicted objectness score, with the 𝐾𝑅𝑃𝑁

highest-ranked proposals being selected and forwarded to the ROIPooler for further
processing. This approach is inspired by the Detectron2 implementation of Faster R-
CNN, where the proposals are treated as fixed during joint trainingwith the BoxPredictor
(Wu et al.; 2019). This strategy is known as "approximate joint training" in the Faster
R-CNN paper (Ren et al.; 2016), and it is simple to implement and integrate into the
Siam R-CNN architecture.

2.2.4.2 ROIPooler

Figure 2.8: ROIPooler Architecture

The ROIPooler module plays a crucial role in Siam R-CNN by cropping the regions
of interest (ROIs) from feature maps and feeding them to the bounding box predictor.
The functionality of the ROIPooler is depicted in Figure 2.8, and it is inspired by the
Detectron2 ROIPooler architecture (Wu et al.; 2019). The ROIPooler can be divided into
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three stages: proposal box sampling, level assignment, and ROIAlign.

1. Proposal Box Sampling. The first stage of the ROIPooler module involves
matching the proposal boxes from the RPNwith the ground truth boxes. Proposals
with a higher Intersection over Union (IoU) than a predefined threshold are
labeled positive, while others are labeled negative. During training, the predicted
proposals are augmented with the ground truth boxes to speed up the learning
process. Moreover, the boxes are balanced to maintain a predefined fraction of
positive samples.

2. Level Assignment. Following this stage, the proposal boxes are assigned to the
appropriate feature map, considering that the feature maps from FeatureNet are
of multiple scales. Lin et al. (2017) has proposed a level assignment equation for
feature pyramid networks (FPNs) which can be mathematically expressed as:

𝑘 = ⌊𝑘𝑜 + log2 (
√
𝑤 ∗ ℎ/𝐶)⌋, (2.14)

where 𝑤 and ℎ are the width and height of the bounding box in the original
difference image, 𝑘𝑜 is the feature map level index on which a canonically-sized
box should be placed, and 𝐶 is the canonical box size in pixels.

3. ROIAlign. ROI pooling is a technique used to extract a small feature map, such
as 7 × 7, from each region of interest. However, the ROIPool-operation presented
in Fast R-CNN (Girshick; 2015) has a misalignment problem between the input
feature map and the ROI. To solve this issue, the ROIAlign technique proposed by
Mask R-CNN (He et al.; 2017) uses bilinear interpolation to obtain exact pixel-level
feature maps for each region proposal. The ROIAlign operation is explained in
greater detail in the Mask R-CNN paper (He et al.; 2017). The ROIAlign layer
outputs cropped instance features, which include balanced positive and negative
regions of interest. The output has a size of [𝐵𝑅𝑂𝐼 ,𝐶, 𝐻𝑅𝑂𝐼 ,𝑊𝑅𝑂𝐼 ], where 𝐵𝑅𝑂𝐼

is the number of ROIs in the batch (batch size × predefined number of ROIs per
image), 𝐶 is the channel number, and 𝐻𝑅𝑂𝐼 and𝑊𝑅𝑂𝐼 represent the width and
height, respectively.



2.2. CHANGE DETECTION TASK ARCHITECTURE 41

Figure 2.9: BoxPredictor Architecture
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2.2.4.3 BoxPredictor

After ROI pooling, the cropped feature vectors are fed into the bounding box predictor
head of BoxPredictor. The BoxPredictor architecture is depicted in Figure 2.9. The feature
vectors are passed through a series of fully connected layers, which are subdivided into
two output layers. The first output layer computes the softmax probability estimate
over 𝑁 object classes, denoted as 𝑌𝑐𝑙𝑠 . The second output layer produces the refined
bounding box position for the 𝑁 object classes, represented as 𝑌𝑟𝑒𝑔 (Girshick; 2015). The
output tensors generated by the final layers can be expressed as:

𝑌𝑐𝑙𝑠 = L (1024,𝑁+1) (𝑦𝐹𝐶 ), shape: (𝐵𝑅𝑂𝐼 , 𝑁 + 1)

𝑌𝑟𝑒𝑔 = L (1024,𝑁×4) (𝑦𝐹𝐶 ), shape: (𝐵𝑅𝑂𝐼 , 𝑁 × 4),
(2.15)

where 𝑦𝐹𝐶 is mathematically defined as

𝑦𝐹𝐶 = L (𝐶×𝐻×𝑊,1024) (F (𝑌𝑅𝑂𝐼 )) . (2.16)

Here, L𝑥,𝑦 (·) refers to a fully connected layer that conducts a linear transformation,
modifying the dimensions of the tensor from 𝑥 to 𝑦. Additionally, F is a flattening layer
that reshapes the multidimensional input into a one-dimensional tensor. The symbol
𝑌𝑅𝑂𝐼 denotes the box features that are generated by the ROI pooling layer.

Loss Calculation. Two loss functions are applied to the final output tensors. The
total loss from the BoxPredictor output can be expressed as:

L𝑏𝑜𝑥 (p, c∗, t, t∗) =
1
𝑁𝑐𝑙𝑠

∑︁
𝑖=1

𝐿𝑐𝑙𝑠 (pi, 𝑐∗𝑖 ) + _
1

𝑁𝑟𝑒𝑔

∑︁
𝑖=1

𝐿𝑟𝑒𝑔 (ti, t∗i ), (2.17)

where 𝑖 represents the index of the mini-batch, pi represents the unnormalized logits for
each class and 𝑐∗𝑖 represents the ground truth class index. ti represents the foreground
bounding box delta predictions, while t∗i corresponds to the foreground ground truth
bounding box deltas associated with the proposals that match the features that were
used to compute predictions.

Here, L𝑟𝑒𝑔 denotes the bounding box regression loss and is defined as the smooth
localization loss (L1) function in Equation 2.13.

The loss function L𝑐𝑙𝑠 compares the prediction scores pi with the ground truth
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class index 𝑐∗𝑖 . In the Faster R-CNN paper (Ren et al.; 2016), L𝑐𝑙𝑠 is implemented using
a softmax cross-entropy loss function. However, as discussed in Section 2.2.4.1, the
SAS dataset introduces a significant imbalance between positive and negative classes,
requiring a loss function that accounts for the imbalanced classes. Therefore, similar to
the RPN loss functionality, 𝐿𝑐𝑙𝑠 is implemented as a focal loss function, as defined in
Equation 2.6. The term 𝐿𝑟𝑒𝑔 is only calculated for foreground proposals that are matched
to a ground truth bounding box, and there is no need to make additional adjustments to
account for class imbalance.

Inference. During the model evaluation phase, the final box coordinates are derived
from the prediction deltas 𝑌𝑟𝑒𝑔 to assess performance. The bounding box coordinates
undergo three stages of processing. Firstly, boxes with low detection scores are filtered
out. Secondly, non-maximum suppression (NMS) is applied to eliminate overlapping
boxes for each class. NMS is a post-processing technique that selects only the most
confident predictions while removing redundant bounding boxes that significantly
overlap with other boxes. Finally, if the number of remaining boxes exceeds a predefined
value 𝐾𝐵𝑂𝑋 , the top 𝐾𝐵𝑂𝑋 results are selected for performance evaluation.

2.2.5 Attention Mechanism

Figure 2.10: Attention Mechanism

In order to leverage the learned change map to its fullest potential, a straightforward
yet efficient attention mechanism is incorporated into the network. This attention
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mechanism is derived from SpotNet, a self-attention multi-task network introduced by
Perreault et al. (2020), which combines the object detection and segmentation task. After
obtaining the final change map output from MaskHead, down-sampling is performed
to match the spatial dimensions of the original feature maps. To reduce the impact of
regions that are unlikely to contain new objects, an adjustment is made to the feature
maps from FeatureNet before they are passed to BoxHead. Specifically, each channel of
the feature maps is multiplied by the change map. This multiplication helps minimize
false positives in irrelevant areas and diminishes the influence of non-relevant regions
on the BoxHead results. Figure 2.10 details the proposed attention mechanism within
the Siam R-CNN architecture (see Figure 2.2).

2.2.6 Loss Functionality

During training, Siam R-CNN computes a multi-task loss on each image pair. This loss
function, denoted as L incorporates three individual losses:

L = _𝑅𝑃𝑁L𝑅𝑃𝑁 + _𝑏𝑜𝑥L𝑏𝑜𝑥 + _𝑚𝑎𝑠𝑘L𝑚𝑎𝑠𝑘 . (2.18)

The loss formulations for L𝑚𝑎𝑠𝑘 , L𝑅𝑃𝑁 , and L𝑏𝑜𝑥 are defined in Equations 2.8, 2.11,
and 2.17, respectively. The total loss is obtained by adding up all the individual losses,
where the weights _𝑅𝑃𝑁 , _𝑏𝑜𝑥 , and _𝑚𝑎𝑠𝑘 are important hyperparameters for optimizing
the multi-task loss.

For most neural networks, training multiple tasks is difficult without finding the
correct balance between those tasks. Searching for optimal weighting is prohibitively
expensive and difficult to resolve with manual tuning. However, as detailed in Section
1.2.6, systematic methods have been introduced to address the issue of balancing task-
specific weights. To adjust the weights _𝑅𝑃𝑁 , _𝑚𝑎𝑠𝑘 , and _𝑏𝑜𝑥 , two approaches will
be implemented: gradient normalization (GradNorm) and dynamic weight averaging
(DWA). The task-specific weights for GradNorm and DWA are derived using equations
1.11 and 1.12, respectively. GradNorm adjusts the task-specific weights based on the
training rates and gradient magnitudes of the loss, providing a more robust option with
less manual tuning. On the other hand, DWA computes the weights solely based on the
loss gradients, eliminating the need for additional backward passes. Both approaches
will be evaluated and compared in terms of their effectiveness in optimizing the multi-
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task architecture of Siam R-CNN. The evaluation results will be presented in Chapter
3.

The uncertainty weighting scheme presented in Section 1.2.6 will not be evaluated
in this thesis due to compatibility challenges with Siam R-CNN.

2.3 Pretext Task Architecture

The following sections present the different pretext tasks used for pre-training Fea-
tureNet. The auxiliary tasks are designed such that it aims to help the model learn
features that are expected to be useful in the downstream change detection task. Fea-
tureNet will be pre-trained on a set of unlabeled image pairs to enable it to be fine-tuned
efficiently on a smaller labeled set of SAS image pairs.

2.3.1 Pretext Task 1

The first pretext task involves performing binary classification, where the network
predicts whether a pair of patches are overlapping or not. This task is inspired by
Leenstra et al. (2019), that exploited the temporal consistency of Sentinel-2 imagery
to obtain a self-supervised learning signal. The task enables the FeatureNet model to
ignore irrelevant variations, such as rocks and internal waves on the seafloor. Instead, it
should focus on relevant spatial dissimilarities between patches, ultimately reducing the
number of false alarm detections in the SAS difference image. Each training example
contains a patch pair {(𝑝𝐴, 𝑝𝐵), 𝑦}, where 𝑦 denotes the associated pseudo label. 𝑦 is 0
for spatially overlapping pairs and 1 for non-overlapping pairs. It is worth noting that
neither patch includes any newly employed objects or changes intended to facilitate
learning features in areas where no changes have occurred.

2.3.1.1 Network Architecture

For pretext task 1, the network architecture comprises FeatureNet as the feature extractor,
followed by a classifier that consists of three fully connected layers. The classifier’s
output is the raw logits, representing the probability that the patch pair is spatially
overlapping or non-overlapping. Figure 2.11 presents the network architecture for the
first pretext task.
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Figure 2.11: Pretext 1 Network Architecture

2.3.1.2 Loss Functionality

The optimization of the network parameters is achieved by minimizing the binary
cross-entropy loss, which is commonly preferred when dealing with well-balanced
datasets. This preference can be attributed to the smooth gradient it provides for the
backpropagation process and the straightforward interpretation of the model’s output,
as stated by Leenstra et al. (2021). The binary cross-entropy loss is defined by the
following equation:

L𝑏𝑐𝑒 =
1
𝑁

𝑁∑︁
𝑛=1

−(𝑦𝑛 log(𝑃 (𝑦𝑛)) + (1 − 𝑦𝑛) log(1 − 𝑃 (𝑦𝑛)), (2.19)

where 𝑦𝑛 and 𝑃 (𝑦𝑛) are the target values and input probabilities, respectively. 𝑁 is the
batch size.

2.3.2 Pretext Task 2

The second pretext task is a contrastive method, aiming to learn image representations
that place overlapping patches closer together in the high-dimensional feature space and
non-overlapping patches far apart. As for pretext task 1, this approach draws inspiration
from the self-supervised Sentinel-2 change detection paper by Leenstra et al. (2021).
Each training sample consists of a set of triplets (𝑝𝐴, 𝑝1

𝐵
, 𝑝2

𝐵
), where patches 𝑝𝐴 and 𝑝𝐵
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are spatially overlapping, while 𝑝𝐴 and 𝑝2
𝐵
are not. The objective of this pretext task

aligns with pretext task 1: to enable the change detection network to acquire features
that map unchanged pixel pairs into the same region of the feature space, thus making
unchanged areas more similar. The patch sampling strategy for both pretext tasks is
illustrated in Figure 2.12.

(a) Location of patches in the SAS image pair

(b) Pretext 1 Overlapping
Patch Pair

(c) Pretext 1 Non-
Overlapping Patch Pair

(d) Pretext 2 Patch Triplet

Figure 2.12: Pretext Patch Sampling Strategy

2.3.2.1 Network Architecture

Figure 2.13 presents the network architecture for the second pretext task. While bearing
a resemblance to FeatureNet, this architecture deviates by featuring three branches
instead of the original Siamese structure’s two branches. Additionally, unlike the
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concatenation approach in FeatureNet, the three feature branches in this architecture
remain separate. As a result, the network produces three down-sampled feature vectors,
which are subsequently optimized using the loss function described in the following
section.

Figure 2.13: Pretext 2 Network Architecture

2.3.2.2 Loss Functionality

To optimize the mapping of similar patches closer together and dissimilar patches far
apart in the feature space, a combination of triplet margin loss and L1 loss is employed.
The complete loss function can be defined as follows:

L𝑡𝑟𝑖𝑝𝑙𝑒𝑡_𝐿1 =𝑚𝑎𝑥 ( | |f1 − f2 | |2 − ||f1 − f3 | |2 + 𝛼, 0) + 𝛾 · |f1 − f2 |. (2.20)

Here, f i represents the feature vector for patch 𝑖 . The term 𝛼 denotes the margin between
positive and negative pairs, determining the desired separation distance. The parameter
𝛾 is a hyperparameter that balances the influence of the triplet loss and L1 loss. In the
article by Leenstra et al. (2021), the values of 𝛼 and 𝛾 were experimentally set to 1 for
optimal performance. Minimizing this loss function during training allows the network
to effectively differentiate between similar and dissimilar patches in the feature space.



Chapter 3

Experiments and Results

This chapter provides the details of the experiments conducted and their results. It
first gives a detailed description of the SAS dataset, covering how the training and
ground truth data are generated. It then proceeds to describe the implementation details
and justifies the selected parameters. Following that, an ablation study is presented,
discussing the effects of different components, including self-supervised pre-training,
multi-task learning, and attention integration. Finally, the experimental results are
compared to other change detection methods.

3.1 Dataset and Evaluation Criteria

3.1.1 Dataset

The SAS data used in this thesis was collected from various sites in Norwegian and
international coastal waters by deploying several HUGIN autonomous underwater
vehicles (AUVs) equipped with a HISAS-1030 sonar. The SAS dataset comprises 275
images that capture the seafloor with varying degrees of texture, stone, and bathymetry.
Some of the images have noticeable changes in the form of mine-sized objects that have
been placed between the two surveys. These images have a pixel size of approximately
4 × 4 cm and are converted to 3 · 8 bit PNG files. The color coding of the images is as
follows: the red channel represents the reference image mapped to the pixel coordinates

49
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of the repeat-pass image, the green channel represents the repeat-pass image, and
the blue channel represents the difference image. The different image results from
subtracting the transformed reference image from the repeat-pass image. Examples
from the HISAS-1030 SAS dataset are depicted in Figure 3.1. Each image in the figure is
accompanied by a caption that provides information about the seafloor location and
changes observed in the image.

(a) Larvik, Norway - 4 deployed targets. (b) Nordleksa, Norway - 2 deployed targets.

(c) Biodola, Italy - no deployed targets. (d) Bonassola, Italy - no deployed targets.

Figure 3.1: HISAS-1030 SAS Images

The images have undergone preprocessing steps, including a logarithmic transform
to emphasize sonar highlights and shadows more equally, followed by anisotropic
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diffusion filtering to reduce image speckle and improve data-driven co-registration.
The images are also resampled from slant-range to ground-range coordinates using
high-resolution bathymetry from interferometric sonar data processing (Midtgaard;
2018). These steps improve the quality and clarity of the images and facilitate further
analysis.

A large fraction of the SAS dataset does not contain deployed objects between the
reference and repeat-pass survey. To make use of these images, the pretext tasks are
specifically designed to learn features from the unchanged areas within the SAS images.
Therefore, the dataset is divided into two subsets: 225 images that do not contain known
changes and 50 images with known changes. The first dataset of 225 images is utilized
for training and evaluating the pretext weights, while the second dataset of 50 images is
employed to train and evaluate the downstream change detection task.

3.1.1.1 Ground Truth Preparation

The downstream change detection task adjusts its parameters and biases by minimizing
the error between the predicted and ground truth output. To facilitate this, ground truth
annotations were created for each learning task using a computer vision annotation tool,
CVAT (CVAT.ai Corporation; 2022). This involved drawing polygons and bounding box
rectangles around the regions of change in the SAS difference image. In sonar images,
a highlight region is often followed by a shadow region for most targets of interest.
Therefore, both the echo from the changed objects and the corresponding shadow were
marked as changed regions.

However, some of the HISAS-1030 difference images contained unwanted semicir-
cular and successive echoes from the center of the deployed target. Figure 3.2 displays a
cropped difference image from the HISAS-1030 Bonassola survey demonstrating the
effect. The semicircular echoes that extend from the target position are caused by
sidelobes. These sidelobes represent undesired energy that appears around the main
beam, resulting in echoes that deviate from the intended direction of the signal. The
successive echoes in the range direction are attributed to multipath reflections, which
occur when transmitted signals take multiple paths and experience different delays
before reaching the receiver due to reflections, scattering, or diffraction. Ideally, for
operational purposes, it is preferable to annotate only the actual objects as changes. This
is because SAS artifacts depend on the accuracy of the sonar and available survey tech-
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nology. However, due to a significant class imbalance in the SAS dataset, considering
these artifacts as changes could potentially enhance training performance. Therefore,
annotations with and without the sonar artifacts will be evaluated to compare their
performance.

Figure 3.2: HISAS-1030 Bonassola Difference Image with SAS Artifacts

The annotated polygons were further processed to generate a change map with black
and white pixels representing unchanged and changed areas. Bounding box coordinates
and object class assignments were converted into a JSON file in MS COCO annotation
format, compatible with the Detectron 2 Faster R-CNN framework.

A visual representation of a generated change map and ground truth bounding box
rectangles is shown in Figure 3.3. In Figure 3.3, four deployed objects can be observed
on the seafloor after the reference survey.

As mentioned in Section 1.2.5, a self-supervised predictive learning strategy aims to
alleviate the annotation bottleneck by using a programmatically derivable label when
training the network. Hence, for pretext task 1 presented in Section 2.3.1, the labels
are derived from the input images during run-time. The input pairs are randomly
selected from the pool of unlabeled image pairs and are equally divided into two classes:
overlapping (𝑦 = 0) and non-overlapping (𝑦 = 1). Pretext task 2 is a self-supervised
contrastive method that eliminates the need for ground truth labels.
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(a) Change map for MaskHead (b) Bounding boxes for BoxHead

Figure 3.3: SAS Ground Truth Generation Example

3.1.1.2 Training Data Preparation

The data preparation process described in this section applies to pretext and downstream
change detection tasks. The reference and repeat-pass image pairs and the corresponding
ground truth instances are divided into smaller patches to allow the network to focus
on local details within the image. The patches used for training are 256𝑥256 pixels,
which is a size that is suitable for detecting a deployed mine-sized object. To ensure
consistency, the input patches are normalized by subtracting the mean and dividing
by the standard deviation of the SAS dataset. Additionally, several data augmentation
techniques are applied randomly to the SAS images during training. More specifically,
each image has a 75% chance of being rotated by a multiple of 90 degrees and a 50%
chance to be flipped in horizontal and vertical directions. These augmentations increase
the diversity and effective size of the dataset, helping to prevent overfitting and improve
the model’s generalization ability.

The HISAS-1030 images used in this study were captured in various environments
with different degrees of complexity. Partitioning these images into training and testing
sets can significantly impact the evaluation of the model’s performance. To address
this challenge, the K-fold cross-validation technique is utilized. This technique involves
dividing a dataset into 𝑘 subsets, where (𝑘 − 1) subsets are used for training, and the
remaining fold is used for evaluation. This process is repeated for each fold, ensuring
that all folds are used once as the validation subset. Generally, a larger value of 𝑘 (e.g.,
5, 10, or 20) is preferred to utilize a larger number of patterns for training purposes
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(Anguita et al.; 2012). In this case, since the pretext and change detection datasets
consist of 225 and 50 image pairs, respectively, a 5-fold cross-validation technique
is employed. The model’s overall performance can be determined by calculating the
average validation results from the 5 validation subsets.

3.1.2 Evaluation Criteria

The evaluation of Siam R-CNN results involves both visual qualitative comparisons and
quantitative measures. The SAS dataset is heavily imbalanced and requires appropriate
evaluation metrics to obtain reliable interpretations of the change detection results.
Different metrics are employed to evaluate the predicted change map and bounding
boxes.

Change Map Evaluation Metrics. A set of five evaluation metrics is utilized to
evaluate the performance of the pixel-based change maps against the ground truth
change maps. These metrics include precision (P), recall (R), overall accuracy (OA), F1
score (F1), and Cohen’s Kappa score (Kap). The evaluation process involves analyzing
the logits score of each pixel with respect to the ground truth pixels, which allows us
to determine the number of true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) samples. Specifically, TP represents the number of changed
pixels correctly classified as changed, FP represents the number of unchanged pixels
incorrectly flagged as changed, TN represents the number of unchanged pixels correctly
detected as unchanged, and FN represents the number of changed pixels incorrectly
classified as unchanged. Based on these quantities, the five evaluation metrics are
defined as follows:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3.1)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.2)

𝐹1 =
2 × 𝑃 × 𝑅
𝑃 + 𝑅 , (3.3)

𝑂𝐴 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 , (3.4)

𝐾𝑎𝑝 =
𝑂𝐴 − 𝑃𝐸
1 − 𝑃𝐸 , (3.5)
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where
𝑃𝐸 =

(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁 )
(𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 )2 . (3.6)

A higher precision value implies fewer false alarms, while a higher recall value indicates
a lower rate of incorrect detection. The overall accuracy metric is the ratio of correctly
detected pixels to all pixels in the image. However, these three metrics can provide a
misleading overestimate of the result when the amount of changed pixels is a small
fraction of the image. The F1 score provides a comprehensive evaluation metric by
considering precision and recall simultaneously. In some cases, however, the F1 score
fails to provide a concise representation of the model’s performance. Recall, precision,
and the F1 score do not account for the number of true negative samples, leading to
problems when evaluating samples without any changes.

A more precise measure of the model’s performance can be obtained using Cohen’s
Kappa score (Cohen; 1960) as a complementary evaluation metric. The Kappa score
reflects the level of agreement between the predicted change map and the ground truth
map and considers the true negative samples when calculating the score. This makes
it a more accurate measure than simple percent accuracy for imbalanced datasets. By
incorporating the Kappa score into the evaluation process, it is possible to gain a more
well-rounded view of the model’s capabilities. Note that higher F1 and Kappa values
represent better overall performance.

Bounding Box Evaluation Metrics. Similar to the pixel-wise evaluation metrics,
the core components TP, FP, TN, and FN are combined to evaluate the model’s bounding
box detection performance. However, an auxiliary metric known as Intersection over
Union (IoU) is introduced for object-based detection algorithms to compute these quan-
tities. The IoU metric quantifies the degree of overlap between the predicted bounding
box and the ground truth bounding box. It is calculated as the area of their intersection
divided by the area of their union, as defined in Equation 3.7.

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝𝑟𝑒𝑑 ∩ 𝐵𝑔𝑡 )
𝑎𝑟𝑒𝑎(𝐵𝑝𝑟𝑒𝑑 ∪ 𝐵𝑔𝑡 )

. (3.7)

The IoU value is compared to a threshold parameter denoted by 𝑡 to determine if a
bounding box detection is correct or incorrect. Specifically, the detection is considered
correct if 𝐼𝑜𝑈 ≥ 𝑡 . Conversely, if the IoU value is less than the threshold value 𝑡 , 𝐼𝑜𝑈 < 𝑡 ,
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then the detection is regarded as incorrect.

The BoxHead output consists of a list of bounding boxes, confidence levels, and
corresponding classes. In order to evaluate the overall performance of the model’s
output, the Average Precision (AP) is computed. The AP metric is commonly used for
object detection evaluation and facilitates comparison with other deep learning-based
detectors. It is based on the precision-recall curve, constructed by varying the confidence
threshold for detection and computing precision and recall values at each threshold
(Everingham et al.; 2010). The AP score for a specific IoU threshold is obtained by
calculating the area under the precision-recall curve using interpolation. The overall
AP score for a class is computed by averaging the AP scores over a set of predetermined
IoU thresholds. Mathematically, the total AP score can be expressed as:

𝐴𝑃 =
1
𝐼𝑡𝑜𝑡

∑︁
𝑖⊆𝑖𝑜𝑢

𝐴𝑃𝑖 , (3.8)

where 𝑖𝑜𝑢 and 𝐼𝑡𝑜𝑡 represent the set and the total number of IoU thresholds, respectively.
𝐴𝑃𝑖 is defined as:

𝐴𝑃𝑖 =
1

𝐼𝑃𝑡𝑜𝑡

∑︁
𝑟⊆𝑖𝑝

𝑝𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟 ), (3.9)

where 𝑖𝑝 and 𝐼𝑃𝑡𝑜𝑡 denote the set and the total number of interpolation recall points.
𝑝𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟 ) denotes the interpolated precision at each recall level 𝑟 .

The AP metric is commonly used to rank submitted works in object detection
competitions. However, the selection of IoU thresholds and interpolation precision
may vary depending on the object detection challenge, which is often specific to a
dataset such as the PASCAL VOC (Everingham et al.; 2010) or Microsoft COCO dataset.
In the absence of a challenge or a specifically designed AP score for sonar datasets,
the PASCAL VOC design details are adopted primarily to facilitate the comparison of
internal results. The PASCAL VOC challenge uses an IoU threshold of 0.5, meaning
a predicted bounding box is considered correct if it has an IoU of 0.5 or higher with
the ground truth bounding box (R. Padilla et al.; 2020). Additionally, the PASCAL VOC
employs 11 recall thresholds for interpolating the precision-recall curve.

However, detecting small objects often results in lower IoU values due to the rela-
tively smaller intersection area compared to the union area. Moreover, variations in
sonar sensor angles relative to the deployed objects contribute to inconsistent inten-
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sity values, shapes, shadows, and sizes in the dataset. These factors pose challenges
for the neural network to accurately predict the correct boundaries of the bounding
boxes. Therefore, two AP scores are calculated to account for a higher partial overlap
between predicted and ground truth boxes in the SAS dataset: AP@0.25 and AP@0.5.
The AP@0.25 metric considers an IoU threshold of 0.25 in addition to the PASCAL VOC
IoU threshold of 0.5.

Statistical significance testing has not been conducted on the evaluation results
presented in this thesis due to time constraints. While this limits the ability to make
definitive conclusions about the observed findings, the study still provides valuable
insights into using deep learning for change detection in SAS imagery.

3.2 Implementation Details

The pretext and change detection task architecture described in Chapter 2 is implemented
using the PyTorch framework and a single NVIDIA A100-40GB GPU. AdamW is selected
as the optimizer for both the pretext and downstream tasks. As discussed in Section
1.2.4.3, AdamW offers explicit weight decay handling, which is beneficial in preventing
overfitting on the relatively small SAS dataset. Therefore, it is preferred over Adam and
SGD as an optimizer. The initial learning rate is set to 5𝑒 − 4, decaying by a factor of 0.5
every eight epochs.

3.2.1 Pretext Implementation

The Pretext 1 network takes two tensors as input, each with dimensions 𝐵×3×256×256,
where 𝐵 represents the batch size initially set to 4. Similarly, for the Pretext 2 network,
three input tensors (anchor, positive, and negative samples) are provided, following the
exact dimensions and batch size as Pretext 1. The values for the triplet loss margin 𝛼
and parameter 𝛾 in Equation 2.20 in the Pretext 2 network are determined empirically
and set to 1.

The pretext tasks training process is performed for 50 epochs to ensure thorough
data processing while maintaining reasonable training time.
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3.2.2 Siam R-CNN Implementation

The Siam R-CNN network takes two input tensors with dimensions 𝐵 × 3 × 256 × 256,
where 𝐵 denotes the batch size. Initially, 𝐵 is set to 4 to ensure the model encoun-
ters a wide range of SAS samples during training. MaskHead produces an output
tensor of size 𝐵 × 256 × 256 × 2, representing the logits indicating the probability of
unchanged or changed pixels. BoxHead has two output tensors: one with dimensions
𝑚𝑖𝑛(𝐾𝑏𝑜𝑥 , 𝐵𝑏𝑜𝑥 ) ×4 representing the predicted bounding boxes, and another with dimen-
sions𝑚𝑖𝑛(𝐾𝑏𝑜𝑥 , 𝐵𝑏𝑜𝑥 ), representing the predicted classes. If the number of predicted
bounding boxes 𝐵𝑏𝑜𝑥 exceeds a predefined value 𝐾𝑏𝑜𝑥 , the top 𝐾𝑏𝑜𝑥 boxes are selected
for evaluation. Initially, 𝐾𝑏𝑜𝑥 is set to 2 to ensure efficient performance. It is worth
noting that none of the patch pairs in the SAS dataset, each of size 256 × 256, contains
more than two deployed targets.

The initial values for the multi-task loss weights, _1, _2, and _3, are all set to 1.
These weights are automatically adjusted through the DWA or GradNorm weighting
scheme. In the DWA weighting scheme, 𝑇 in Equation 1.12 is set to 2 as suggested in
the DWA paper (Liu et al.; 2019). In the GradNorm weighting scheme, the initial value
of 𝛼 in Equation 1.11 is set to 1.5, which exceeds the recommended value proposed in
the GradNorm paper (Chen et al.; 2018). This adjustment is made empirically to account
for the distinct learning dynamics between the tasks.

The Siam R-CNN training is conducted for a total of 30 epochs. Due to the significant
number of parameters, approximately 29 million, in the Siam R-CNN architecture, ex-
tending the number of epochs becomes impracticable despite the potential for enhancing
model performance.

The software implementation of Siam R-CNN, including the network architecture,
loss function, and training and evaluation process, is included as an attachment to this
thesis. The implementation is inspired by the publicly available code of Siamese Nested
U-Net (Li et al.; 2020) and Detectron2 (Wu et al.; 2019) and is modified and adapted
specifically for this study.

3.2.2.1 FeatureNet Implementation Details

The FeatureNet parameters and biases are initialized with the final, best-performing
weights from the self-supervised pretext task. Referring to Figure 2.3, each convolutional
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layer down-sample features by a max pooling layer with a stride of 2. The number
of convolutional filters in the encoder is set to {32, 64, 128, 256}. In the specialization
project, the number of convolutional filters was set to {64, 128, 256, 512}, based on
the performance gain observed in the Siamese Nested U-Net model (Li et al.; 2020).
However, the Siam R-CNN architecture introduces additional parameters, leading to
longer training times and increased computational resource requirements. Therefore,
the number of convolutional filters in the encoder is reduced to address these challenges.

3.2.2.2 MaskHead Implementation Details

The MaskHead decoder of the Siam R-CNN network (see Figure 2.5) uses convolutional
filters of sizes {32, 64, 128, 256, 512} to restore the features extracted from FeatureNet.
The details of the loss function can be found in Section 2.2.3.1, where the weights
𝑤 𝑗 in Equation 2.8 are assigned values of {0.5, 0.5, 0.75, 0.75, 1.0} and _ is set to 0.5.
Considering the imbalanced nature of the SAS dataset, the focal loss parameters in
Equation 2.6 are initially set to 𝛼𝑡 = 0.01 and 𝛾 = 4.

3.2.2.3 BoxHead Implementation Details

RPN. The architecture of the RPN is shown in Figure 2.7. Initially, 15 anchors are
placed at every pixel location, generated based on sizes {32, 64, 128, 256, 512} and aspect
ratios {0.5, 1, 2}. The choice of anchor sizes is motivated by handling all variations of
object sizes in the SAS dataset. To classify anchors as foreground or background, the
minimum and maximum IoU thresholds are set to 0.3 and 0.7, respectively. Anchors
with overlaps falling between thresholds are ignored. The number of top-scoring RPN
proposals to keep after applying NMS, denoted as 𝐾𝑅𝑃𝑁 , is set to 1000, following the
default configuration in Detectron2 (Wu et al.; 2019). The loss function for the RPN
is defined by Equation 2.11, where the weights 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 are defined as 𝐵𝑅𝑃𝑁 × 𝐵,
representing the total number of samples used for computing the loss. The focal loss
parameters of 𝐿𝑐𝑙𝑠 in Equation 2.11 are initially set to 𝛼𝑡 = 0.01 and 𝛾 = 4. Additionally,
the parameter _ is set to 1.

ROIPooler. The ROIPooler module is illustrated in Figure 2.8. During the first stage
of proposal box sampling, the IoU threshold between positive and negative boxes is
set to 0.5. Moreover, the predefined positive sample fraction is set to 0.25 to ensure a
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balanced representation. The assignment of proposal boxes to the appropriate feature
map is determined by the level assignment equation, as defined in Equation 2.14. In this
equation, the values of 𝑘0 and 𝐶 are initially set to 4 and 224, respectively, following
the established canonical values used in the FPN architecture introduced by Lin et al.
(2017). For the ROIAlign operation, a pooler resolution of 7 is chosen, corresponding
to extracting a feature map of size 7 × 7 from each region of interest. This resolution
selection is based on the default configuration from Detectron2 (Wu et al.; 2019).

BoxPredictor. The BoxPredictor module, detailed in Section 2.2.4.3, plays a critical
role in the model evaluation phase by deriving the final box coordinates from the
prediction deltas 𝑌𝑟𝑒𝑔. The dimensions of the prediction deltas 𝑌𝑟𝑒𝑔 and classification
scores 𝑌𝑐𝑙𝑠 are 𝐵𝑅𝑂𝐼 × (𝑁 ×4) and 𝐵𝑅𝑂𝐼 × (𝑁 +1), respectively. Here, 𝐵𝑅𝑂𝐼 represents the
number of ROI instances sampled from each image in a mini-batch, and 𝑁 denotes the
number of object classes. In this thesis, the primary focus is on improving binary change
detection performance. Therefore, the number of classes 𝑁 is set to 1, referring to the
"changed object" class. Including multiple classes could result in poor performance
due to the limited data available for each class. Following the suggestion in the Faster
R-CNN paper (Ren et al.; 2016), the value of 𝐵𝑅𝑂𝐼 is set to 512. The BoxPredictor loss is
defined by Equation 2.17, where 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 are defined as 1 and 𝐵𝑅𝑂𝐼 ×𝐵, respectively,
where the latter refers to the total number of region samples used for loss computation.
The focal loss parameters of 𝐿𝑐𝑙𝑠 in Equation 2.17 are initially set to 𝛼𝑡 = 0.01 and 𝛾 = 4.

During inference, a class score threshold of 0.1 is empirically set to filter out low-
scoring bounding boxes predicted by the BoxPredictor. This threshold helps ensure the
quality of the predicted bounding boxes.

3.3 Experiment Pipeline

To evaluate the performance of Siam R-CNN, a series of experiments are conducted.
Initially, the two pretext tasks are trained to assess their performance and prepare the
pre-trained weights for the downstream change detection task. Subsequently, Siam
R-CNN is fine-tuned with the pre-trained weights obtained from the pretext experiments.
Following that, an ablation study is carried out, where specific influential components of
Siam R-CNN are removed during training to evaluate their impact on the overall system
performance. Finally, the performance of Siam R-CNN is further evaluated by fine-
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tuning it with the pre-trained transfer learning weights obtained from the specialization
project (Nyegaarden; 2022).

3.4 Results and Analysis

3.4.1 Efficiency of SAS Dataset Annotation

As discussed in the section on ground truth data preparation (Section 3.1.1.1), some
images contain additional SAS artifacts around the changed objects. The decision to
include or exclude these artifacts as changes can potentially affect the change detection
performance of the network. In these experiments, two annotated datasets, one with

Table 3.1: Effects of SAS dataset annotation on Siam R-CNN change detection perfor-
mance

Annotation set OA Precision Recall F1 Kappa AP@0.25 AP@0.5

With artifacts 99.808 0.579 0.554 0.503 0.549 0.417 0.202
Without artifacts 99.835 0.636 0.599 0.555 0.551 0.471 0.241

additional artifacts and one without, are used to train the Siam R-CNN architecture.
Siam R-CNN has been pre-trained using pretext task 1 for these experiments. Table
3.1 summarizes the change detection results using the two annotation sets. The results
suggest that using the set that only annotates the actual objects as changes yield better
overall change detection performance. The intention behind annotating the additional
artifacts was to address the class imbalance between changed and unchanged areas.
However, due to the limited occurrence of artifacts within the SAS dataset, effectively
learning the features associated with them becomes challenging. Consequently, the
decreased performance can be attributed to the network’s inability to accurately predict
the surrounding artifacts of the deployed target. Figure 3.4 presents a visual comparison
of the bounding box performance for a deployed cube from the Larvik A1 survey. The
visual comparisons of bounding box performance display the ground truth bounding
boxes in blue and the predicted bounding boxes in red. As observed in Figure 3.1b, Siam
R-CNN trained with annotated artifacts fails to predict the ground truth sidelobe echo,
thus supporting the findings from Table 3.1.
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Consequently, the annotation set without the SAS artifacts will be evaluated for the
remaining part of the ablation study.

Figure 3.4: Visual comparison of Siam R-CNN bounding box performance applying
different annotation sets. Ground truth boxes are shown in blue, and predicted bounding
boxes are in red.

3.4.2 Efficiency of Self-Supervised Pre-Training

Pretext Task Performance. Table 3.2 reports the validation results for the pretext
tasks. For pretext task 1, the average validation accuracy was consistently high: the
model could correctly predict whether the patches were overlapping in 96.051% of the
patch pairs. The average validation binary cross-entropy loss after 30 epochs was 0.107.
Regarding pretext task 2, the average validation accuracy was 90.951% and a triplet-L1
validation loss of 0.108. The validation accuracy for pretext task 2 was determined by
calculating the proportion of validation triplets where the feature distance between
the anchor and positive patch was smaller than the distance between the anchor and
negative patch, considering the additional margin 𝛾 .

These results suggest that the pretext tasks were relatively easy to solve. Further-
more, this indicates that the feature extractor effectively captures meaningful patterns



3.4. RESULTS AND ANALYSIS 63

and structures within the SAS patch pairs, potentially enhancing performance in down-
stream change detection tasks.

Table 3.2: Performance of pretext tasks expressed in validation accuracy (%).

Pretext task Validation loss Validation accuracy

1 0.107 96.051
2 0.108 90.951

Change Detection Task Performance. The main objective of this thesis is to
evaluate the effectiveness of self-supervised pre-training in improving SAS change
detection performance. To accomplish this, Siam R-CNN is pre-trained using pretext
task 1 and pretext task 2. Additionally, the change detection performance of the self-
supervised pre-trained models is compared with that of a model trained without pre-
trained weights.

Table 3.3: Effects of self-supervised pretext tasks on Siam R-CNN change detection
performance

Pretext task OA Precision Recall F1 Kappa AP@0.25 AP@0.5

No pretext task 99.634 0.582 0.597 0.514 0.507 0.401 0.167
1 99.835 0.636 0.599 0.555 0.551 0.471 0.241
2 99.817 0.618 0.632 0.554 0.596 0.458 0.226

The change detection results are presented in Table 3.3. Siam R-CNN performed best
when pre-trained with weights from pretext task 1, showing an increase of 8.0% in the
F1 score and 18% in AP@0.25 compared to not pre-training the network. Additionally,
pretext task 2 demonstrated superior performance compared to not pre-training the
network, improving F1 and AP values. These results indicate that Siam R-CNN benefits
from the knowledge acquired during the self-supervised pre-training.

Figure 3.5 and Figure 3.6 present a visual comparison of the predicted change map
and bounding boxes for two images from the SAS dataset. These images were carefully
chosen from the Larvik A1 survey as they represent different levels of complexity in the
seafloor environment. The first image presents a non-complex environment with easily
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(a) GROUND TRUTH (b) PRETEXT TASK 1 (c) PRETEXT TASK 2 (d) NO PRETEXT TASK

COMPLEX

NON-COMPLEX

Figure 3.5: Visual comparison of Siam R-CNN change map performance applying
different self-supervised pretext tasks

Figure 3.6: Visual comparison of Siam R-CNN bounding box performance applying
different self-supervised pretext tasks. Ground truth boxes are shown in blue, and
predicted bounding boxes are in red.



3.4. RESULTS AND ANALYSIS 65

detectable targets. In contrast, the second image introduces additional complexities,
including rocks and internal waves in the water column. Moreover, two of the targets in
this image are occluded by sidelobe and multi-path echoes. Finally, both images feature
a variety of deployed targets with different shapes and sizes, making them suitable for
evaluating overall change detection performance. Therefore, these images are used
throughout the thesis to visualize the results. Note that the images have been cropped
to focus on the differences between ground truth and predicted changes.

The visual comparison further supports the qualitative evaluation metrics, indi-
cating that pretext task 1 produces the most accurate change map and bounding box
predictions. In Figure 3.6, it can be observed that the predictions of Siam R-CNN from
all three experiments struggle to detect the light shadow following the deployed targets.
Specifically, Siam R-CNN without pre-trained weights (third column) fails to predict
the deployed glider on the right side of the first image and produces a false alarm in
the bottom right corner. Among all targets, the deployed glider exhibits the smallest
object-to-shadow ratio, making it particularly difficult for Siam R-CNN to detect without
pre-training. The false alarm in Figure 3.6 is presented as a number of falsely predicted
unchanged pixels (false negatives) in the resulting change map displayed in the third
column of Figure 3.5. This occurrence can be attributed to a white line present at
the bottom of the reference-pass image, introduced as an attempt to align it with the
repeat-pass image that covers a larger area. This white line represents an irrelevant
change that is falsely detected by the network lacking self-supervised pre-training.

Based on these findings, pre-trained weights from pretext 1 will be the focus of
further analysis in subsequent experiments.

3.4.3 Efficiency of Multi-Task Learning

In this set of experiments, the efficiency of the multi-task architecture is evaluated
and compared to the performance of the individual tasks performed independently.
First, Siam R-CNN is trained with a multi-task approach, incorporating MaskHead and
BoxHead for change map and bounding box predictions. Then, Siam R-CNN is trained
in a single-task manner, where MaskHead and BoxHead are trained separately without
shared feature representations.

It is expected that learning the change map task jointly with the bounding box
detection task can be mutually beneficial since both tasks have a large overlap in what



66 CHAPTER 3. EXPERIMENTS AND RESULTS

needs to be learned. Table 3.4 demonstrates that sharing representations between the
MaskHead and BoxHead improves performance in both tasks. The F1 and AP@0.25
scores increase by 8.4% and 170%, respectively, compared to the single-task framework.
The significant improvement in bounding box performance can be attributed to the
integrated attention mechanism. By leveraging the learned change maps, the model
is able to enhance its ability to generate more precise bounding box predictions. The
attention mechanism effects will be further evaluated in Section 3.4.6.

Table 3.4: Effects of multi-task learning on Siam R-CNN change detection performance

Tasks OA Precision Recall F1 Kappa AP@0.25 AP@0.5

Single-task 99.819 0.598 0.507 0.512 0.587 0.175 0.055
Multi-task 99.835 0.636 0.599 0.555 0.551 0.471 0.241

Figure 3.7 and Figure 3.8 provide a visual comparison of the change map and bound-
ing box performance. In Figure 3.8, it is evident that the single-task trained network
(second column) faces difficulties in detecting the deployed objects, in contrast to the
multi-task network. Specifically, the single-task network fails to detect the deployed
cube located in the upper left corner of the second image. Instead, it predicts a false
alarm of irrelevant seafloor changes. Moreover, when studying the first image in Figure
3.8, the single-task network only manages to detect the darkest areas of the deployed
targets, consistently failing to identify the brighter shadow. These observations support
the multi-task bounding box performance enhancement presented in Table 3.4.

Conversely, in Figure 3.7, there are no obvious differences in change map perfor-
mance between the multi-task and single-task networks. Both networks successfully
predict the deployed targets with little presence of falsely predicted pixels. This suggests
that the change map task is not as dependent on the shared multi-task framework
compared to the bounding box task. This is substantiated by the relatively smaller
increase in the multi-task change map evaluation metrics, as shown in Table 3.4.

3.4.4 Efficiency of Multi-Task Loss Weighting

Appropriate weighting of the multi-task loss components in Equation 2.18 plays an
important role in achieving accurate and reliable change detection results. This thesis
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(a) GROUND TRUTH (b) MULTI TASK (c) SINGLE TASK

Larvik A2

Larvik A2
NON-COMPLEX

COMPLEX

Figure 3.7: Visual comparison of single-task and multi-task change map performance

(a) MULTI TASK (b) SINGLE TASK

Larvik A2

Larvik A2

COMPLEX

NON-COMPLEX

Figure 3.8: Visual comparison of single-task and multi-task bounding box performance.
Ground truth boxes are shown in blue, and predicted bounding boxes are in red.
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explores two specific weighting schemes, GradNorm and Dynamic Weight Averaging
(DWA), explained in detail in Section 1.2.6. To evaluate the effectiveness of multi-task
loss weighting, Siam R-CNN is trained using three different methods: GradNorm, DWA,
and equally assigned weights.

Table 3.5 presents the experimental results for the Siam R-CNN architecture across
all loss function weighting schemes. The results presented in Table 3.5 emphasize
the importance of automatically adjusting the weights for multiple loss components.
Specifically, the best-performing weighting scheme, DWA, improves the F1 score and
AP@25 values by 6.7% and 5.8%, compared to the model trained with equally assigned
weights.

Table 3.5 demonstrates a slight performance gap between the DWA and GradNorm
weighting schemes. DWA dynamically adjusts the loss weights based on the relative
losses between tasks. By assigning higher weights to tasks with larger loss gradients,
DWA implicitly allows tasks to learn at different speeds. In contrast, GradNorm aims
to balance the gradients across tasks, ensuring that each task receives equal attention
during training. Considering the superior performance demonstrated by DWA, it
appears that the multi-task framework benefits from different learning rates between
tasks. This can be explained by a task imbalance between the change map and the
bounding box tasks, where the shallower BoxHead network might require more training
time and consequently lower learning rates than the MaskHead architecture.

Based on these findings, DWA is applied to adjust the multi-task loss components
in the rest of the ablation studies.

Table 3.5: Effects of multi-task weighting scheme on Siam R-CNN change detection
performance

Weighting scheme OA Precision Recall F1 Kappa AP@0.25 AP@0.5

Equal Weights 99.745 0.604 0.597 0.520 0.523 0.445 0.218
DWA (T = 2) 99.835 0.636 0.599 0.555 0.551 0.471 0.241

GradNorm (𝛼 = 1.5) 99.783 0.604 0.640 0.549 0.514 0.460 0.223
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3.4.5 Efficiency of Loss Functionality

This thesis proposes a focal loss function to address imbalanced classes and obtain
better classification results. The focal loss in Equation 2.6 is applied to optimize all three
classification tasks in L𝑅𝑃𝑁 , L𝑏𝑜𝑥 , and L𝑚𝑎𝑠𝑘 in Equation 2.18. To verify the efficiency
of using focal loss, the results are compared to optimizing Siam R-CNN with binary
cross-entropy loss. This is equivalent to changing the value of the focal loss parameter
𝛾 to 0. The results are summarized in Table 3.6. These results indicate that when
employing binary cross-entropy loss, Siam R-CNN consistently predicts the majority
class of "not changed" in nearly all scenarios. The higher values of overall accuracy (OA)
and Kappa score can be attributed to a substantial proportion of true negative predictions
in Equation 3.3 and 3.5, respectively. This emphasizes the significance of incorporating
additional evaluation metrics, such as the F1 score, to obtain an accurate measure of
the model’s performance. Additionally, the results demonstrate the significant impact
of class imbalance on change detection performance, emphasizing the necessity of
employing a weighted loss function, such as focal loss, to effectively address this issue.

Table 3.6: Effects of focal loss parameters on Siam R-CNN change detection performance

Loss Functionality OA Precision Recall F1 Kappa AP@0.25 AP@0.5

Binary cross-entropy loss 99.988 0.000 0.000 0.000 0.964 0.001 0.000
Focal loss 99.835 0.636 0.599 0.555 0.551 0.471 0.241

3.4.6 Efficiency of Attention Mechanism

Table 3.4 indicates that multi-task learning enhances the Siam R-CNN change detection
performance. However, a more significant improvement is observed when combining it
with the attention mechanism, as demonstrated in Table 3.7. The implemented attention
mechanism accelerates the multi-task learning process by leveraging the learned change
map to make more precise bounding box predictions. This substantially increases the
AP@0.25 and AP@0.5 metrics, with improvements of 68% and 80%, respectively. The
attention mechanism also has a positive impact on the change map performance. Specif-
ically, the F1 score increases by 8.8%. By enabling the attention mechanism, BoxHead
is able to generate more accurate bounding boxes, thereby reducing the bounding box
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loss. Consequently, the multi-task weighting scheme adjusts the weightings to prioritize
minimizing the change map prediction loss. This adjustment effectively enhances the
overall performance of the change map task.

Table 3.7: Effects of attention mechanism on Siam R-CNN change detection performance

Attention mechanism OA Precision Recall F1 Kappa AP@0.25 AP@0.5

With 99.835 0.636 0.599 0.555 0.551 0.471 0.241
Without 99.739 0.622 0.695 0.510 0.539 0.280 0.134

Figure 3.9 compares the Siam R-CNN bounding box performance with and without
the attention mechanism. The visual comparison in Figure 3.9 specifically focuses
on comparing the bounding box predictions with the corresponding ground truth,
considering that the attentionmechanism brings about themost significant improvement
in bounding box performance. Figure 3.9 verifies the performance gap of the two
networks in predicting the deployed targets. The network trained without the attention
mechanism (second column) fails to detect the cube in the upper left corner of the
second image. In contrast, the attention-trained network successfully predicts the
cube. Furthermore, studying the predictions made by the attention-free Siam R-CNN
reveals consistently less accurate bounding boxes that only encompass small areas of
the deployed targets. This is particularly noticeable in the predicted bounding boxes of
the bag and glider, positioned on the left and right sides of the first image in Figure 3.9.

3.4.7 Efficiency of Augmentation

Due to the large number of parameters in the network, it is essential to use data
augmentation techniques to prevent overfitting and enhance the system’s generalization
ability. In previous experiments, the images were augmented by randomly rotating
and flipping them in horizontal and vertical directions. Table 3.8 demonstrates the
effectiveness of augmenting the SAS dataset. These results emphasize the significance of
implementing data augmentation techniques to improve overall performance, revealing
an increase of 8.2% in the F1 score and 1.9% in AP@0.25.
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(a) WITH ATTENTION (b) WITHOUT ATTENTION

Larvik A2

Larvik A2

COMPLEX

NON-COMPLEX

Figure 3.9: Visual comparison of Siam R-CNN bounding box performance with and
without attention mechanism. Ground truth boxes are shown in blue, and predicted
bounding boxes are in red.

Table 3.8: Effects of augmentation on Siam R-CNN change detection performance

Augmentation OA Precision Recall F1 Kappa AP@0.25 AP@0.5

With 99.835 0.636 0.599 0.555 0.551 0.471 0.241
Without 99.938 0.631 0.545 0.513 0.703 0.462 0.239
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3.5 Comparison

The following sections will compare the Siam R-CNN architecture and self-supervised
pre-training technique to existing SAS change detection methods.

3.5.1 Comparison to Deep Learning-Based CD Methods

Currently, no publicly available deep learning-based change detection methods are
specifically designed for SAS imagery. One possible explanation is the absence of
publicly available benchmark datasets containing temporal SAS data. These datasets are
crucial for researchers to develop competitive network architectures and participate in
competitions and publications. Benchmark image datasets such as ImageNet, PASCAL
VOC, and COCO contribute to the frequent development of state-of-the-art object
detection models aiming to achieve superior performance. That being the case, it is
difficult to compare the Siam R-CNN architecture to other deep learning-based change
detection methods. However, one of the main objectives of this thesis is to serve as a
starting point for future comparisons and provide a framework for future research in
this area.

In the specialization project (Nyegaarden; 2022), a Siamese U-Net++ architecture was
pre-trained on a larger dataset of very high-resolution (VHR) training data. This transfer
learning approach improved change detection performance compared to training the
network with randomly initialized weights. To further evaluate the self-supervised
pre-training technique proposed in this thesis, the following experiments compare using
self-supervised pretext weights with transfer learned VHR weights for pre-training the
Siam R-CNN architecture. In the specialization project, the transfer learning approach
involved using a larger filter size of {64, 128, 256, 512} compared to the filter size of
{32, 64, 128, 256} in the Siam R-CNN architecture. To make use of the transfer learned
weights, the filter size of Siam R-CNN is adjusted accordingly. Table 3.9 presents a
qualitative comparison of the different pre-training methods, including pretext task
1, pretext task 2, and the transfer learning technique presented in the specialization
project.

The results in Table 3.9 demonstrate that pre-training the Siam R-CNN model with
self-supervised weights from pretext task 1 yield the highest overall performance com-
pared to the other two methods. Specifically, pre-training of pretext task 1 leads to an
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Table 3.9: Comparison of SAS change detection performance with different pre-training
techniques

Pre-training technique OA Precision Recall F1 Kappa AP@0.25 AP@0.5

Pretext task 1 99.835 0.636 0.599 0.555 0.551 0.471 0.241
Pretext task 2 99.817 0.618 0.632 0.554 0.596 0.458 0.226

Transfer learning 99.816 0.610 0.593 0.522 0.595 0.448 0.170

improvement of 6.3% and 5.1% in the F1 and AP@0.25 scores, respectively, compared to
the transfer learning technique. Additionally, pretext 2 demonstrated superior perfor-
mance compared to the transfer learning technique, improving F1 and AP values. These
results can be attributed to the substantial domain differences between the VHR and
SAS datasets encountered in the transfer learning approach. The self-supervised pretext
tasks effectively address these domain discrepancies by pre-training the model using an
unlabeled SAS dataset.

However, multiple factors suggest that the transfer learning technique has a more
favorable starting point for achieving better change detection performance than the
self-supervised methods. Firstly, in the transfer learning approach, both the encoder
(FeatureNet) and decoder (MaskHead) are pre-trained. The self-supervised pretext tasks,
however, are specifically designed for training only the encoder module of the network.
Therefore, a slight performance enhancement could be expected by the additional pre-
training of MaskHead. Secondly, the transfer learned Siam R-CNN uses a larger filter
size compared to the self-supervised pre-trained framework. This allows the network
to learn more complex and high-level features, leading to improved change detection
performance.

These considerations emphasize the remarkable performance superiority of the
pretext tasks, yielding promising results for developing self-supervised pre-training
techniques for SAS change detection.

Figure 3.10 and Figure 3.11 present a visual comparison confirming the qualitative
results. Specifically, Figure 3.11 demonstrates that the transfer learning technique fails
to detect the deployed glider situated in the bottom left corner of the second image,
whereas the self-supervised pre-trained networks accurately predict a small region of
the glider.
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(a) GROUND TRUTH (b) PRETEXT TASK 1 (c) PRETEXT TASK 2 (d) TRANSFER LEARNING

NON-COMPLEX

COMPLEX

Figure 3.10: Visual comparison of Siam R-CNN change map performance applying
different pre-training techniques

Figure 3.11: Visual comparison of Siam R-CNN bounding box performance applying
different pre-training techniques. Ground truth boxes are shown in blue, and predicted
bounding boxes are in red.
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3.5.2 Comparison to Traditional CD Methods

Section 1.2.3 outlines some of the most promising automatic change detection methods
(ACD) for SAS imagery. While several comparable ACD methods have been devel-
oped for mine-hunting, they use different SAS datasets that complicate a meaningful
comparative analysis. The main reason for this is the absence of benchmark datasets
that include temporal SAS data. Existing defense-related research papers use SAS data
with classified mine information, which cannot be shared for comparison purposes.
This creates difficulties in comparing Siam R-CNN with traditional change detection
methods.

However, as mentioned in Section 1.1, the research paper by Midtgaard (2018)
presents an ACD method for naval mine hunting. This method uses HISAS-1030 sonar
data collected during the MANEX’14 sea trials. Three survey images used to evaluate
the ACD method are also a part of the SAS dataset used to evaluate Siam R-CNN in
this thesis. These images originate from the survey area in Bonassola Bay, where each
reference pass image contains a deployed ballast.

The reported results in the research paper by Midtgaard (2018) represent a fusion
of results obtained from multiple passes of the same deployed target. This multi-view
fusion approach helps eliminate many false alarms observed in single-view surveys.
However, the SAS dataset used in this thesis only includes single-pass repeat and
reference surveys, making it unsuitable for direct comparison with the multi-view
ACD method. To address this limitation and enable comparison, single-pass results
have been obtained from the author of Midtgaard (2018). The single-pass results are
presented in Table 3.10. In this table, the reference and repeat-pass image pairs are
indexed numerically. The confidence value in the table represents a numerical measure
indicating the level of confidence associated with a specific detection. The findings in
Table 3.10 demonstrate that two out of three ballasts were successfully detected in the
single-pass survey.

To assess and compare the performance of the ACD technique with the Siam-RCNN
framework, Siam R-CNN is evaluated on the Bonassola Bay image pairs. Table 3.11
presents the numerical results obtained from Siam R-CNN, while Figure 3.12 visually
represents the bounding box predictions generated by Siam R-CNN for the three image
pairs.

The evaluation demonstrates that SiamR-CNN successfully detects all three deployed
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Table 3.10: ACD results from a single-pass survey in Bonassola Bay

SAS image pair Deployed target Confidence value Detection

1 Ballast 2 0.86 True
2 Ballast 2 N/A False
3 Ballast 1 0.46 True

objects without any false alarms. In contrast, the ACD technique fails to identify the
ballast present in the second image. These findings indicate that Siam R-CNN achieves
superior performance on the three Bonassola data samples. However, it is important
to note that these results alone do not provide a conclusive assessment of the overall
performance of the two techniques, given the extremely limited and homogeneous
nature of the data. Therefore, a comparison with a larger and more diverse SAS dataset
is necessary to comprehensively assess the performance. Nonetheless, these results
indicate that Siam R-CNN is a promising and competitive alternative to traditional
methods for change detection in SAS imagery.

Table 3.11: Siam R-CNN results from a single-pass survey in Bonassola Bay

SAS image pair Deployed target Confidence value Detection

1 Ballast 2 0.32 True
2 Ballast 2 0.22 True
3 Ballast 1 0.25 True
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1 2 3

Figure 3.12: Visual results of Siam R-CNN bounding box performance from a single-pass
survey in Bonassola Bay
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Chapter 4

Conclusions and Future Work

This master‘s thesis introduces a novel self-supervised learning framework called Siam
R-CNN for change detection of SAS imagery. Siam R-CNN is specifically designed to
overcome the challenges associated with a limited labeled SAS dataset. The framework
leverages unlabeled SAS data to pre-train the network using pretext tasks that exploit
the temporal consistency between images. Additionally, the framework incorporates a
multi-task attention-based design that simultaneously learns object-based bounding
box change detection and pixel-based change map generation.

The experimental results demonstrate a significant performance improvement when
pre-training the network using the pretext tasks proposed in this thesis. Moreover, the
self-supervised pre-training approach demonstrates superior performance compared to
the transfer learning technique introduced in the specialization project (Nyegaarden;
2022).

The multi-task framework benefits both change detection tasks, resulting in more
accurate predictions for change maps and bounding boxes. Notably, incorporating the
attention mechanism achieves the most substantial performance gains, resulting in a
remarkable increase of 68% and 80% in AP@0.25 and AP@0.5, respectively.

Finally, this thesis presents one of the first comparisons within the scientific com-
munity between a deep learning-based and traditional SAS change detection method.
The results suggest that Siam R-CNN offers a promising alternative to existing ACD
technology, reducing the reliance on human supervision and providing more accurate

79
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change predictions.

4.1 Future Work

In this master‘s thesis, two pretext tasks were designed to pre-train the Siam R-CNN
framework. These tasks aimed to learn feature representations that could benefit the
feature extractor in downstream change detection tasks. Although these pretext tasks
achieved satisfactory results, there are other promising pretext candidates (see Section
1.2.5) that have the potential to further enhance the change detection performance
of Siam R-CNN. For future work, it would be valuable to evaluate pretext tasks that
pre-train the entire network instead of just the feature extractor. For example, exploring
self-supervised generative autoencoders that pre-train both the encoder and decoder
components of the MaskHead framework could be worth investigating. This approach
would enable the network to learn more comprehensive representations and potentially
lead to improved change detection results.

One of the main challenges in SAS change detection is the lack of benchmark datasets
that can be used to compare the performance of different change detection methods.
This limitation makes it difficult to conduct a thorough comparison of the Siam R-CNN
framework against alternative methods. However, with the rapid advancements in
remote sensing technology, it is foreseeable that a benchmark SAS temporal dataset will
be established for research purposes. This development would provide an opportunity
for a more comprehensive evaluation of the Siam R-CNN framework. Additionally, the
availability of a benchmark SAS dataset would enable modifications and extensions to
the Siam R-CNN framework, facilitating the development of state-of-the-art change
detection architectures. This would contribute to further advancements in the SAS
change detection research.
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