Jonas Fillan

Autonomous inspection and
maintenance missions with Al
planning and the ROSPlan
framework

Master’s thesis in Cybernetics and Robotics

Supervisor: Aksel A. Transeth (SINTEF), Anastasios Lekkas (NTNU)
Co-supervisor: Synne Fossgy (SINTEF), Maria-Efstathia Tsiourva
(SINTEF)

May 2023

2
2
=
2

o
o
cC

c
o

~

el
cC
©
]
[}
C
2L
(%4

%]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

—
g2
ws_
=]
[Tite]
c >
w O
— b0
T
53
9 c
W ‘5p
c
° 4
—
TG
8 2
Rl
e e
c
c
28
= o
c O
°
S
g8}
IS
—_
L
=
Y—
o
=
)
©
[N

@ NTNU

Norwegian University of
Science and Technology

Jonas Fillan

Autonomous inspection and
maintenance missions with Al
planning and the ROSPlan framework

Master’s thesis in Cybernetics and Robotics

Supervisor: Aksel A. Transeth (SINTEF), Anastasios Lekkas (NTNU)
Co-supervisor: Synne Foss@y (SINTEF), Maria-Efstathia Tsiourva
(SINTEF)

May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@ NTNU

Norwegian University of
Science and Technology

Abstract

The demand for automated solutions is ever-growing in almost all aspects of the modern world.
The industrial sector has always been at the forefront of automation and in the days of advanced
computation and Artificial Intelligence (Al), it is pushing to automate even more tasks that have
traditionally been handled by humans. Advancements in Guidance, Navigation, and Control
(GNCO), perception, and sensor fusion has made autonomous robotics a feasible reality for au-
tomating industrial tasks. However, important capabilities of higher level planning and reasoning
are fields of study that has not received enough attention in order to be deployable on a larger
scale.

Automated planning and acting (Al planning) represents a methodology within the field of Al
that enables higher level mission planning. Al-planning has been a field of study for decades, but
due to constraints with regard to robotic capabilities, computational power, situational awareness,
and robustness, it has to a large degree been of academic interest and for very special use-cases.
Through the research project ROBPLAN, that this thesis is a part of, SINTEF aims to develop
methods for Al planning, using mobile manipulators and unmanned aerial vehicles (UAVs) for
Inspection and Maintenance (I&M) missions. The aim of this thesis is to contribute to the ROB-
PLAN project by answering the research question: “How can Al Planning aid in autonomous
robotic inspection and maintenance missions in industrial environments?”

Using the ROSPlan framework, and extending its functionality with additional supporting fea-
tures, this thesis has implemented and tested a robotic system that is capable of performing I&M
missions in an industrial environment. The thesis has proposed solutions for common problems
related to the dispatch of plans generated using Al planning, such as handling unplanned events
due to a dynamic environment, re-planning capabilities, and operator-in-the-loop systems. A Plan-
ning Domain Definition Language (PDDL) domain and problem design for solving autonomous
robotic I&M missions was also proposed.

All systems and designs proposed in this thesis has been implemented and tested, both in simula-
tion and small scale lab experiments. The results of the test showed that the systems implemented
helped increase the robustness of an Al planning assisted robotic mission by making it able to
handle unplanned events in a dynamic mission environment better than without such systems.
However, for the system to be deployable in on a larger scale, further development is needed to
ensure robustness and safety. The results of this thesis show that Al planning can indeed aid au-
tonomous robotic inspection and maintenance missions by adding high level planning capabilities
to the system. However, the Al planner in itself is not enough to solve this task, and extensive
supporting infrastructure, like the proposed solutions in this thesis, is needed in order to contribute
to robustness during mission dispatch.

Preface

This thesis is the final delivery of the subject TTK4900 - Engineering Cybernetics, Master’s Thesis,
and marks the end of two years of studies at the master’s degree program for Cybernetics and
Robotics at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway.
The thesis is a continuation of the pre-project from fall 2022, “PDDL plan validation system
using ROSPlan and a TurtleBot3 simulator”, and was written for SINTEF Digital, Department of
Mathematics and Cybernetics.

I would like to thank SINTEF Digital for facilitating this project, with a special thanks to my
supervisor Aksel Andreas Transeth for all the help and support throughout the project. A big
thanks go out to my co-supervisors Synne Fossgy and Maria-Efstathia Tsiourva at SINTEF for
support throughout the master’s project and pre-project respectively. I also owe thanks to my
NTNU supervisor Anastasios Lekkas for lending equipment for the lab testing, and to Stefano
Brevik Bertelli for providing test locations at very short notice.

This project has been long and demanding, and without the help and moral support from my group
of friends at the office, the semester would not have been the same. Thank you for all the coffee
breaks, waffle Fridays, technical talks, and procrastination opportunities.

Last, but definitely not least, I would like to thank my girlfriend, Ia, for all the moral support to
help me through this project.

joﬂ&j ,7///5\./\ 01.06.23

Jonas Fillan Date

il

Jonas Fillan
01.06.23

Table of Contents

Abstract
Preface

1 Introduction

I.1 Motivation o o .o e e e e e e e
1.2 Problem description and contribution
1.3 Scope and Delimitations
1.4 Structure e

2 Background

2.1 Automated Planning and Acting (Al Planning)
2.2 Planning Domain Definition Language (PDDL)
22.1 PDDLdomain
222 PDDLProblem
2.3 AlPlanners
2.3.1 Partial Order Planning Forwards (POPF)
2.3.2 Local search for Planning Graphs (LPG)
2.4 Robot Operating System (ROS) L L.
24.1 GazeboSimulator.
2.5 Alplanning withROSPlan
2.5.1 ROSPlan planning system
2.6 Relevant literature overviewo o

3 PDDL domain description and problem instance design

3.1 Domaindescription e e e
3.1.1 Types, predicates, and functions
3,12 Actions e
3.2 ProbleminsStance e e e e e e e

4 ROSPIlan feature extension and simulator setup

4.1 ROSPlan Knowledge Base, .
4.2 Planner implementationo
43 ActionsInterface

iii

[, T SO S Y

— O O 3 3

13
13
14
15
16
17
18

21
21
22
23
25

29
29
30
31

44 Planningnode L L e e e e

4.4.1 Unknownrobotposition
4.4.2 Planning and re-planning
443 Goalremoval L
4.5 Operatorinteraction oL
4.6 Simulator environmento e
4.6.1 TurtleBot3
4.6.2 Gazebosimulator
4.63 Worldmodel
477 Labexperimentaltestsetup
5 Results and discussion
5.1 Domain and problemdesign
5.1.1 PDDL designevaluation
5.1.2 PDDLdesignresults,
5.2 ROSPlan functionality extension,
5.2.1 Operator interaction and re-planning
522 Goalremoval L
5.2.3 Blocked path and unknown position recovery
5.3 Labexperimental testresults
53.1 Setup . ..o
5.3.2 Experimentalresults
6 Conclusions and further work
6.1 Conclusions L
6.2 Furtherwork
Bibliography
A PDDL domain
B PDDL problem

41
41
41
42
45
46
49
50
53
53
54

57
57
59

61

65

69

vi

Acronyms

Al Artificial Intelligence.

Al planning Automated planning and acting.

GNC Guidance, Navigation, and Control.

GUI Graphical User Interface.

I&M Inspection and Maintenance.

IDL Interface Definition Language.
IMU Inertial Measurement Unit.

IPC International Planning Competition.

IR Infrared.

KCL King’s College London.

LPG Local search for Planning Graphs.
MCU Microcontroller Unit.

PDDL Planning Domain Definition Language.

POPF Partial Order Planning Forwards.
ROS Robot Operating System.

SBC Single Board Computer.
SDK Software Development Kit.
SLAM Simultaneous Localization And Mapping.

STRIPS STanford Research Institute Problem Solver.

vii

Introduction

1.1 Motivation

The continued growth in demand for automated and
autonomous robotic solutions within the industrial
sector has resulted in a demand for enhanced mis-
sion planning capabilities for autonomous robots
[1]. Automating tasks that traditionally have been
handled by humans can be an effective measure in
cutting cost, increasing productivity, and reducing
health and safety risks. An example of tasks that are
subject to automation using autonomous robots is
Inspection and Maintenance (I&M) missions. I&M
missions can include tasks like photographing ar-
eas of interest, monitoring specific areas, mapping
areas using sensors, and manipulating object in the
environment using robotic manipulators. Industrial
environments are often very complex and operat-
ing robotic platforms in these environments is of-
ten challenging and unpredictable, necessitating the
need for adaptive mission planning to enable robust
and predictable execution of autonomous missions.

Figure 1.1: Illustration of an example for a
robotic inspection mission. This illustration
shows the inspection of 5 car seals, as well as
the robot taking battery conditions into account.
The illustration is reused, with permission from
SINTEF, from internal documents of the SIN-
TEF ROBPLAN project [1]

This may involve consideration of unexpected obstacles, changes in the environment, emergency

situations, or human interaction.

Automated planning and acting (Al planning) represents a methodology for mission planning

that enables an agent to plan a mission based on the abilities and constraints of the agent and

the environment it operates in. Al-planning has been a field of study for decades, starting with
the STanford Research Institute Problem Solver (STRIPS) in the 1970s [2], and has been cov-
ered extensively. However, due to constraints with regard to robotic capabilities, computational

1 Introduction 1.1 Motivation

power, situational awareness, and robustness, it has to a large degree been of academic interest
and for very special use cases, like NASA’s Mars Exploration Rovers [3]. This is slowly changing
as technologies within these fields are advancing, and interest for Al-planning is now spreading
within commercial industries. Through the ROBPLAN research project, SINTEF is focusing on
the development of Al planning techniques and demonstrating their applications in the context of
inspection and maintenance missions, using mobile manipulators and unmanned aerial vehicles
(UAVs) as case studies [1]. These missions include tasks like inspection of pipelines, monitoring
gauges and indicators, reporting irregularities, and verifying the presence of markers and valve car
seals, markers used to verify that a valve has not been operated unauthorized. Figure 1.1 demon-
strates an example of an envisioned robotic inspection mission at an industrial production facility.
In this scenario, the robot must plan and execute an inspection mission involving 5 valve car seals.
The system is capable of inspecting objects using both a normal and Infrared (IR) camera, as well
as taking into account factors such as battery level and potential disruptions to its path.

This project aims to contribute to the ROBPLAN research project by investigating how Al plan-
ning can contribute to autonomous Inspection and Maintenance (I&M) missions, like the one
described above, and what supporting systems are needed around the Al planner in order to enable
robust mission dispatch. The project will utilize the Robot Operating System (ROS) and ROSPlan
Al planning framework, and the functionalities of the ROSPlan framework will be expanded with
features that are needed in order to perform reliable robotic missions. To test the performance
of the functionalities developed in this thesis, the ROS simulation tool developed in the prepara-
tion project for this thesis [4] will be utilized, as well as a physical implementation on a robotic
platform.

1 Introduction 1.2 Problem description and contribution

1.2 Problem description and contribution

The overall goal of this thesis is to extend the knowledge within the field of Al planning in robotics.
The thesis aims to investigate how Al planning can be used together with an Inspection and Main-
tenance (I&M) robot in order to automate tasks that traditionally have been handled by humans.
This includes how to set up the Al planning system, as well as supporting infrastructure around
the Al planner to enable the generated plan to be performed.

The main research question for the project is:

“How can Al Planning aid in autonomous robotic inspection and maintenance missions in indus-
trial environments?”

With this research question in mind, the project is broken down to three key tasks:

* Develop a Planning Domain Definition Language (PDDL) domain description that defines
the capabilities of an inspection robot, and a problem instance that describes an I&M mission
like the one in sectionl.1.

* Implement an Al planning system with ROSPlan to extend its functionality for I&M mis-
sions in industrial environments.

 Test and evaluate the extended functionality of the ROSPlan Al planning system through
simulation and lab tests, focusing in particular on how the overall system can handle changes
and unexpected situations that occur during a mission.

By developing a PDDL domain description and problem instance for I&M missions, the thesis
contributes a suggestion of how the PDDL design can be made versatile, allowing different robots
with different capabilities to be used, including important aspects like robot battery restrictions
into the planning problem. Investigating, and implementing, tools and techniques for performing
autonomous robotic 1&M missions using Al planning, the thesis presents a system that is not
only capable of planning missions, but also able to dispatch the plan, handling unplanned events
and disturbances during dispatch. This is functionality that is important when implementing Al
planning solutions on a robotic system to be able to carry out the generated plan. Testing and
evaluating the features developed in this project is done in order to validate the functionality of the
system, including its ability to be adapted from a simulated environment to a physical robot.

1 Introduction 1.3 Scope and Delimitations

1.3 Scope and Delimitations

This project is the final delivery of the subject TTK4900 - Master’s Thesis. This is a standalone
project, but closely tied to the Specialization Project report (TTK4551) that served as a preliminary
project for this thesis. TTK4900 is a 30 SP subject, and corresponds to approximately 40 hours of
work per week. The project was started 10th of January 2023, with a submission date of 6th of
June 2023. The scope of the project will be outlined, but not necessarily limited by the curriculum
of the candidate’s field of study, as well as relevant theory from previous studies.

This thesis is part of the SINTEF ROBPLAN project [1] and the scope and delimitations of the
thesis is guided by the project assignment given by SINTEF. The focus of this thesis is mainly on
the supporting systems around the Al planner that allows the planner to operate and the generated
plans to be performed by the robot. As the amount of research on planning algorithms and Al
planners is massive and well established, the inner workings of Al planners is not a focus of this
thesis and is only described where context is needed. As Al planning involves high level planning,
lower level control like Guidance, Navigation, and Control (GNC) is outside the scope of this
thesis, and will also only be mentioned when context is needed.

The systems developed in this project have been tested, both through simulation and lab experi-
ments, with a small-scale robotic platform. However, due to time constraint, real world tests with
a full scale I&M robot were not feasible.

Unless otherwise specified in the figure captions, all illustrations and diagrams used in this thesis
were created by the author.

1 Introduction 1.4 Structure

1.4 Structure

In chapter 2, relevant background information that is important for the thesis is presented. A pre-
sentation of the background and theory of Al planning is provided, as well as the background and
details of the Planning Domain Definition Language (PDDL). A brief description of Al planners
is provided, and details about the specific Al planners used in this project is also explained. To
provide some context for the experiments and development work done in this project, the ROS-
Plan framework and its planning system is outlined. Section 2.6 provides a description of relevant
literature within the field of Al planning that may be relevant for this thesis. Some parts of the
background chapter are directly taken from the specialization project report [4] that served as a
preparatory project for this thesis. For the parts that this applies to, it will be clearly stated at the
start of the section.

Chapter 3 presents the PDDL domain description and problem instance that was designed for this
project is an effort to answer the research questions. Chapter 4 gives insight into the work that
has been put into setting up and extending the functionality of the ROSPlan framework. Also this
chapter contains some material from the specialization project.

Chapter 5 describes the obtained results of the project. It also includes a discussion of the results,
putting them into context in an effort to answer the research questions.

Finally, chapter 6 summarizes the results and discussion to form a conclusion. This chapter also
describes suggestions for further work.

Background

In this chapter, background information that is important for the rest of this thesis is presented. A
brief introduction to Al planning, PDDL and Al planners is provided, as well as some insight into
the tools used for the project. The chapter is caped off with an overview of literature and works
that are relevant for the work presented in this thesis.

Due to this project reusing parts of the systems developed in the pre-project for this thesis, parts
of this chapter are reused from the project report [4]. This applies specifically to sections 2.4 and
2.5 in their entirety, as well as the initial parts of section 2.2

2.1 Automated Planning and Acting (AI Planning)

The ability to perform tasks and missions independently in a dynamic environment, without re-
lying heavily on human interaction, necessitates the use of deliberative acting. According to
Ghallab, Nau, and Traverso [5], a deliberative acting agent is “motivated by some intended ob-
jective” and employs logical reasoning to rationalize executing particular actions. Russell and
Norvig [6] uses the term knowledge-based agents and describes them as an agent using “a process
of reasoning over an internal representation of knowledge”. Although autonomous systems can
perform tasks without deliberative acting, it is crucial when faced with changes and disruptions in
a constantly changing environment.

Al planning is an Al approach that is grounded in the classical planning theory. Russell and Norvig
[6] defines classical planning as the task of finding an actions sequence that can achieve a specific
goal in a discrete, deterministic, static and fully observable domain. Classical planning has been
a topic of continued study for decades, starting all the way back in the 1970s with the STanford
Research Institute Problem Solver (STRIPS) [2]. Although research on planning algorithms con-
tinued throughout the 70s and 80s, the focus was mostly on simple puzzle problems like Blocks
World and the Tower of Hanoi, and the lack of progress towards practical applications led to doubt
of its utility within the A/ community [7]. This started changing during the 90s, along with the
development of problem-specific planners, making the solvable problems more realistic and ap-

7

2 Background 2.1 Automated Planning and Acting (Al Planning)

plicable to real-life scenarios. This helped push classical planning research towards solving more
realistic problems, leading planners capable of producing large scale plans with short processing
times [7].

Around the turn of the century, a large driving force within the planning research field was created
in the form of the International Planning Competition. To facilitate this competition, a standard-
ized language called Planning Domain Definition Language (PDDL) [8] was developed. This
modeling language made it possible to define large planning problems using a general domain
description and a specific problem instance, and PDDL has later become the de facto standard
description language for planning problems. A more detailed description of PDDL is provided in
section 2.2.

In the literature on classical planning and Al planning, many use cases within different fields
have been proposed. Examples of such use cases include logistics and supply chain management,
production planning, space exploration, underwater robotics, and agriculture [3], [9], [10].

Al planning represents high-level control in a system. In regard to robotics, this means that when
dividing the robotic control system into control levels based on the level of abstraction away
from hardware, Al planning represents the highest and most abstract level, farthest away from
the robotic hardware. Figure 2.1 illustrates an example of how a robotic system can be divided
into levels. In this thesis, only the top level of the figure is part of the scope.

am D ~N ~N)
ngh level ; Operator- Decision
Al planning : .
in-the-loop making
& 4 y 4 e
VT B
Middle level 3 5 i
Navigation Perception Guidance
_ v J V.)
A
Low level Hardware Conteol
Interfacing

Figure 2.1: Illustration of how a robotic system can be divided, based on control levels. In this thesis, the
focus is on the top level. Note that a system can be divided in different ways and will vary based on the
specific system architecture.

2 Background 2.2 Planning Domain Definition Language (PDDL)

2.2 Planning Domain Definition Language (PDDL)

The Planning Domain Definition Language (PDDL) [8] is a modeling language used to define the
capabilities and constraints of a system, often called the domain. It is typically used in conjunction
with a planning engine, which uses the information defined in the domain to automatically generate
a plan of action to reach a pre-defined goal.

PDDL is the standard language for defining planning domains in the annual International Plan-
ning Competition (IPC) and was first introduced by Drew McDermott, et al. [8], for the 1998
AIPS Planning Competition. The language allows a planning problem to be defined as a domain
description with predicates, numeric functions, and actions [8]. Since its introduction, PDDL has
developed into several new evolutions, introducing more features and making the language more
versatile and powerful. The newest version of PDDL that is used in the IPC is PDDL 3.1, which
has been used since 2011. There are also other variants or extensions of PDDL, like PDDL+ [11],
that is not used in IPC.

When using PDDL with a planner, two files are used. The domain description file defines all the
universal and constant aspects of a planning problem and does not change as time progress. The
other part of the PDDL planner input is the problem definition. This file describes the problem
instance that the planner is solving and includes objects related to the problem, initial conditions
and the goals that are to be reach through the plan [8]. The domain description can be said to be
a general description of a planning domain, while the problem instance is the specific problem or
missionthe planner is to solve. Many different problem instances can be run on the same domain.

2.2.1 PDDL domain

As mentioned above, the PDDL domain is a general representation of the planning domain. This
generalization is achieved by using variables to define objects, predicates, and actions. Variables
represent changeable entities, enabling actions to be applied to a diverse set of objects within the
problem space. This broadens the action’s applicability, thereby offering a scalable solution for
large problems. Variables also create flexibility and abstraction by avoiding the need to specify
every possible instance of an action or a state. By employing variables in this manner, PDDL
domain definitions not only achieve a high level of reusability across different problems within the
same domain, but also significantly enhance the flexibility of the planning system.

The domain description needs to follow a specific format in order for a PDDL compatible Al
planner to be able to use it. This format is specified in the research paper for the introduction of
the specific PDDL version. In this thesis, PDDL 2.1 is used [12] for all PDDL designs. A PDDL
2.1 domain description contains the following parts, and will be further explained below:

Define (domain name), defining the name of the specific domain.

Requirements, define what functionality requirements the PDDL planner must be able to handle.
Types, used to declare the types of objects that will be used in the domain.

Predicates, logical arguments that apply to specific types in the domain.

Functions, defines numeric quantities, like time or cost of an action.

2 Background 2.2.1 PDDL domain

Actions, Actions that can be performed by the system in order to move from one state to another.
Needs a name, parameters, preconditions, and effects.
Durative Actions, similar to actions, but includes duration of action. Makes it possible to create

temporal plans.

Code 2.1 illustrates an example of a PDDL domain for moving a robot between waypoints. From
the first and second line, the file can be seen defined as a domain with the domain name robot. The
third line consists of the requirements for the domain. In this domain, only typing and durative

actions are included.

The next arguments in the domain file are types and predicates. In this example, waypoint and
robot are the only entities that are used. Two predicates are defined for the domain. The robot_at
predicate for a robot v is used to describe the location of the robot and will be true when it is
located at a waypoint wp. Visited describes when the robot has been on a specific waypoint, and
will be used to define mission goals in the problem instance. Functions defines numeric quantities
and was implemented in PDDL version 2.1 [12]. In this example, a function is defined as the
distance between two waypoints and will later be used to define the duration of a durative action

(define
(domain robot)
(:requirements :typing :durative-actions)
(:types
waypoint
robot
)
(:predicates
(robot_at ?v - robot ?wp - waypoint)
(visited ?wp - waypoint)

)

(: functions
(distance ?wpl ?wp2 - waypoint)
)

;7 Move to any waypoint, avoiding terrain

(:durative—action goto_waypoint
:parameters (?v - robot ?from ?to - waypoint)
:duration (= ?duration distance ?wpl ?wp2)
:condition (and

(at start (robot_at ?v ?from))
:effect (and

(at end (visited ?to))

(at end (robot_at ?v ?to))

(at start (not (robot_at ?v ?from))))

Code 2.1: PDDL domain for moving a robot between waypoints

The last part of this example domain is the action. Several actions can be declared in a domain
file. However, for this domain, there is only one action to reduce complexity. Here, the action in
question is a durative action called goto_waypoint and is meant to command the robot to move to
a specified waypoint. The parameters for the action are declared as a robot v and two waypoints,

10

2 Background 2.2.2 PDDL Problem

from and to, that the robot is meant to move between. Duration is, as mentioned earlier, defined as
the distance between the two waypoints. As numeric functions do not have a specific unit, duration
does not have to be related to time. Condition and effect declare what the status before and after
the action should be. The arguments are declared with a prefix that describes at what point in the
action sequence the predicate should change. In this example, the robot_at predicate for the first
waypoint will be removed at the start of the action, while the robot_at and visited predicate for the
second waypoint will be set at the end of the action sequence. [12]

It is important to note that there are more arguments available for a PDDL domain than what is
used in this simple domain example. A more comprehensive description of PDDL domains can
be found in the PDDL design papers [8], [11], [12].

2.2.2 PDDL Problem

Just as the PDDL domain represents the general rules and dynamics of a planning environment, a
PDDL problem instance provides a concrete scenario within that domain. It does so by specifying
particular objects, their initial states, and the desired goal state. The problem instance enables
the PDDL compatible Al planner to generate plans based on individual circumstances, while the
domain provides the general rules applicable to all instances.

The problem instance leverages the abstraction in the domain by substituting the variables with
specific objects or values, thereby giving a specific scenario to which the general actions, predi-
cates, and requirements can be applied. This allows Al planners to generate concrete, actionable
plans. The PDDL problem instance follows a well-defined structure, which, in the context of
PDDL 2.1, includes the following parts:

Define (problem name), which defines the name of the specific problem instance.

Domain, specifies the domain within which the problem exists.

Objects, these are the specific entities that exist in this problem instance. They are instances of
the types defined in the domain.

Init, defines the initial state of the problem, specifying the truth values of predicates involving the
objects.

Goal, specifies the desired state or condition that a successful plan should achieve.

Metric (optional), used to define the optimization criterion for the plan, such as minimizing time
or cost.

Code 2.2 is a short and simple example of a problem instance related to the domain in Code 2.1. In
this example, four objects are defined, using the same types that were defined in the domain. Four
initial conditions are declared in the problem, the first declaring the initial position of the robot and
the next three defining the distance between different waypoints. Note that not all combinations
of waypoints are declared in this example. PDDL operates under a closed-world assumption.
L.e., any predicates that are not declared as true in the initial condition, will be assumed to be
false. This should therefor mean that undeclared distances should not be included in the planning
problem. However, some planners handle undeclared function values differently, and declaring all

11

2 Background 2.3 Al Planners

values can be a good measure to avoid undesired effects in the plan. It is worth mentioned that the
closed-world assumption can be omitted by declaring an open-world requirement in the domain
[8], planner support for this is limited, however.

The last part of the problem file in code 2.2 is the goal description. A valid plan is a plan that is
able to bring the system to a state where all goals are achieved without violating any constraints
[8]. If the goals are not achievable from the initial conditions, the planner will fail to produce a
valid plan. Lastly, in this example, a metric is not included to reduce complexity. Not defining a
metric will make the planner find a plan without optimizing for any specific cost, just find a valid
plan. In this example, a natural metric could be minimizing time or distance traveled by the robot.

(define
(problem task)
(:domain robot)

(:objects
wp0 wpl wp2 - waypoint
robot - robot
)
:init

robot_at robot wp0)

= (distance wpO wpl) 3)

= (distance wpO wp2) 6)

= (distance wpl wpO) 3.5)

(:goal (and
(visited wpl)
(visited wp2)

))

Code 2.2: PDDL problem for the robot

2.3 Al Planners

Al planners are the tools used for solving planning problems, generating a sequence of actions (a
plan) to transition from an initial state to a goal state based on a defined model of the world. When
fed with a domain description and problem instance, the planner will try to solve the problem
and, if possible, output a list of actions that can be executed by an agent. How the planner solves
the problem varies from planner to planner, and different planners will be efficient for different
problems, depending on the method that the planner is based on.

As the field of planning and the Planning Domain Definition Language (PDDL) has evolved, so
have Al planners. This means that different planners support different versions of PDDL, and not
all features of a given PDDL version will necessarily be supported. This detail is important when
choosing a planner, and using a planner that is able to handle all the needed PDDL features is
therefore key when designing an Al planning system.

As described in section 1.3, planning algorithms and the inner workings of Al planners is not
a part of the scope of this thesis. However, in order to provide some background for decisions
discussed later in this thesis, some details of two different Al planners will be provided in this

12

2 Background 2.3.1 Partial Order Planning Forwards (POPF)

section. These planners are the Partial Order Planning Forwards (POPF) [13] and Local search for
Planning Graphs (LPG) [14] planners, and will be used to solve planning problems in this project.

2.3.1 Partial Order Planning Forwards (POPF)

The Partial Order Planning Forwards (POPF) planner is, as the name suggests, a planner based
on a partial-order planning approach. With this approach, the planner uses the principle of least
commitment and will therefor only commit to an ordering of actions when strictly necessary [15].
This approach is in contrast to total-order planning, where the order of all actions are determined
and fixed. One of the advantages of partial-order planners is its ability to produce plans that are
easily understandable by humans. This is an important feature for use cases where an operator is
validating the plan before dispatch, such as in space exploration [6]. Achieving an optimal partial-
order is a NP-hard problem [16] and the POPF planner does therefore not guarantee optimality,
but is rather a planner that is usually able to find valid plans efficiently [13].

POPF planner was introduced by Coles, Coles, Fox, ef al. [13] for the 2010 International Confer-
ence on Automated Planning and Scheduling (ICAPS 2010). Partial-order planning was a popular
planning approach in the 1980s and 1990s and implemented in many popular planners of the time,
such as UCPOP [17]. However, the development of other planning approaches in the early 2000s,
like forward-search planners, outperformed partial-order planners significantly on fully automated
classical planning problems [6]. Exploring the use of partial-order planning in a forward search
framework, POPF showed significant improvements compared to normal partial-order planners
[13]. POPF was created to support PDDL 2.1 and therefor handles the two new key features in
PDDL 2.1: durative actions and numeric fluents. It does however not support features such as
negative and disjunctive preconditions, and conditional effects.

2.3.2 Local search for Planning Graphs (LPG)

Local search for Planning Graphs (LPG) [18] in a PDDL2.1 planner that was introduced in 2002
and took part in the third International Planning Competition (IPC-3). LPG uses a local search,
graph-based approach to solve both temporal and numeric planning problems, and is able to handle
both plan generation and plan adaptation problems. The planner uses an anytime algorithm that
iteratively generates progressively higher quality plans as it runs, making the planner able to return
a valid plan at any given time during execution. LPG uses a compact representation of the planning
graph and an evaluation function that estimates the search cost and execution cost of actions in the
plan [18]. As the plan increases in quality, the complexity increases and the planner will spend
more time on each iteration to find a higher quality plan. When a certain time limit is reach,
the planner will terminate and the last created plan is output. The anytime planning approach
provides a trade-off between plan quality and use of computational resources. LPG, like POPE, is
a suboptimal planner that, when it exists, will provide a plan that is sound but not guaranteed to
be optimal.

In 2004, LPG-td [14] was introduced as an extension and improvement to the original LPG plan-
ner, adding PDDL2.2 capabilities. The planner participated in the fourth International Planning

13

2 Background 2.4 Robot Operating System (ROS)

Competition (IPC-4).
The LPG-td planner can be run with different arguments, giving different behavior:

* -speed: Outputs the first plan that the planner finds.

* -quality: Finds a solution and iterates to find better solutions. CPU-time spent on improving
the solution is automatically chosen.

* -n <max number of desired solutions>: Finds a solution and iterates to find better solutions.
The number of desired solutions is an upper bound and might not be reached if maximum
CPU-time is exceeded. (LPG-td only)

Both LPG and LPG-td has been influential in the planning community, and are well-known and
widely used temporal planners. During IPC-3, LPG proved to be a highly diverse and powerful
planner, solving 372 out of 428 (87%) attempted problems [19]. Later unofficial tests gave even
better results, with 468 out of 508 (92%) problems solved [20]. The influence of LPG has also
been shown by the ICAPS 2019 Influential Paper Award being awarded to the paper that introduced
LPG in 2002[21]. In IPC-4, the LPG-td planner also performed well, being awarded second place
in the suboptimal planner category [22].

2.4 Robot Operating System (ROS)

Contrary to its name, Robot Operating System (ROS) is not an actual operating system, but rather
a free, open-source robotics Software Development Kit (SDK), used to build and develop robotics
platforms [23]. ROS has become the de facto standard for robotics software in academia and many
industries, resulting in a large community with free-to-use resources and libraries.

The fundamental concept of ROS is to be modular, and its architecture revolves around the use of
nodes, topics, messages, and services. A language-neutral Interface Definition Language (IDL)
describe the messages sent between modules and this allows ROS to be a multilingual platform
with several supported programming languages, Python and C++ being the most commonly used
[24]. This multilingual property gives the developer flexibility when writing code, in that they can
choose the language that is best suited for the specific node in regard to efficiency, programming
time and ease of debugging [23].

With a set of standard message classes, it is easy to implement new modules to the system, with
standard message classes describing everything from single integers to the entire pose and attitude
of an Inertial Measurement Unit (IMU). It is also possible to create custom messages when the
standard messages do not provide the needed functionality.

There are two major versions of the Robot Operating System, ROS 1 and ROS 2. ROS 1 [23]
was released in 2007 and is the original version of ROS. ROS 2 [25] was released in 2017 and is
the newest version. Overall, ROS 2 is a more modern and advanced version of the Robot Oper-
ating System, and is designed with the focus on making ROS a viable platform for commercial
applications. Security, real-time systems and multi-platform support are key aspects where ROS
2 outperforms ROS 1 [25]. However, ROS 1 is still widely used and supported, and many ex-

14

2 Background 2.4.1 Gazebo Simulator

isting ROS 1 applications can also be migrated to ROS 2 if needed. As ROSPIlan and the other
systems used in this project only supports ROS 1, the focus of in this thesis will only be on ROS 1
functionality.

ROS handles complex systems by decentralizing processes through the use of nodes. Nodes are
coded programs that have specific responsibilities and perform its tasks without being aware of
other nodes in the system. As mentioned earlier, these nodes can be written in different program-
ming languages. For the different nodes to be able to communicate with each other, ROS uses a
publish-subscribe model, in which nodes publish messages to topics and other nodes can subscribe
to those topics to receive the messages. The messages can consist of various data types, such as
integers, boolean values, and arrays. Nodes can both publish and subscribe to multiple topics.

In some cases, it may not be necessary to broadcast all values at all times. In these situations, ROS
also offers a request-reply interaction called a service, in which a client node sends a request to a
service node and waits for a reply. This can be useful for processes that only need to be performed
occasionally, such as fetching parameters from a server.

Visualization of a ROS system is often done with a block diagram, where nodes are represented
as boxes and topics and services are visualized by arrows between the nodes. It can also be
represented as a graph, where nodes are represented as circles and topics are represented as boxes.
Figure 2.2 shows a visualization of the publisher-subscriber and service-client concepts.

ROS Node ROS Node

Publisher

ROS Node

Server

Request

ROS Node

ROS Node

ROS Node

(a) Publisher-Subscriber (b) Service-Client

Figure 2.2: Visualization of ROS nodes, topics, and services.

2.4.1 Gazebo Simulator

Gazebo [26] is a simulation environment that is often used in conjunction with ROS. It is a well
established tool and provides large amounts of features and libraries that allow users to simulate
a virtual environment. For robotics, it allows the user to test a robotic system’s behavior before
deploying it in the real world. Gazebo provides a range of features that make it well-suited for
robotics simulations. It has support for a wide variety of robots, sensors, and objects, and allows
users to create and customize their own robots and environments. The gazebo_ros_pkgs package
provides support for ROS, allowing users to easily integrate simulations with other ROS tools and
libraries. [27]

Gazebo can be used in a variety of applications, including the development and testing of robotic

15

2 Background 2.5 Al planning with ROSPlan

algorithms, the design and evaluation of robot behaviors, and the validation of robot designs.
It provides a powerful tool for building and evaluating robot systems in a safe and controlled
environment [27].

File Edit Camera View Window Hi

world | Insert | Layers

»

¥ drc_practice_angled_barrier_135
» Construction Cone

¥ Construction Cone_0

» Construction Cone_1

» Construction Cone_2
» Construction Barrel
b drc_practice_angled_barrier_135_0
» drc_practice_angled_barrier_135_0_clone
» drc_practice_organge_jersey_barrier
» drc_practice_white jersey_barrier
» Construction Barrel_clone
» Construction Barrel_clone_clone
» unit_box_clone
» drc_practice_white_jersey_barrier_clone
» drc_practice_organge_jersey_barrier_clone
» cinder_block
b cinder black 2
Property Value
ground_plane

Real Time Factor: Sim Time: Real Time: Iterations:

Figure 2.3: Screenshot of the Gazebo simulator, with a robot in a 3D modeled environment

2.5 Al planning with ROSPlan

ROSPIlan [28] is a framework for building and deploying decision-making systems for robots. It
provides a framework that integrates a ROS system with a task planner interface to create auto-
matically generated plans of action for a robotic system. One of the key features of ROSPIlan is its
ability to dynamically store and update the state of the robot and environment as new information
becomes available. This makes it particularly useful in uncertain or dynamic environments, where
the robot needs to adapt to changing conditions [29]. ROSPIlan uses an offline planning approach,
meaning that the system computes an entire plan before executing it step by step. This is in con-
trast to an online planning approach, where the planning system is creating and executing plans
concurrently, making decisions based on the current situation during dispatch.

The ROSPlan framework provides several tools and interfaces that when put together are able to
generate and execute plans. This, as well as the nature of ROS, makes the framework highly mod-
ular and makes the user able to choose what parts of the system to include, depending on their
needs. The architecture of ROSPlan can roughly be divided into two main pieces: the Knowl-
edge Base and the planning system. The Knowledge Base is a key component of the ROSPlan
framework and is responsible for storing information about the robot’s states and environment, as
well as the PDDL domain provided by the user. The planning system consists of several interfaces
that process the data stored in the Knowledge Base [29]. Figure 2.4 illustrates the structure of the
Knowledge Base and planning system of ROSPlan

16

2 Background 2.5.1 ROSPlan planning system

2.5.1 ROSPIlan planning system

The problem interface is the first interface in the ROSPlan planning system. When this interface
is called through a ROS service, the interface queries the current state and PDDL domain in the
Knowledge Base to generate a new PDDL problem instance. This problem instance is needed to
let the planner know the current state of the system and to format the information into a PDDL
format that the planner can understand. [28]

The planner interface is the ROS-
Plan interface that allows the system

. Problem Interf:
to use different external Al planners roviem inferiace
to solve the problem. The input of e |

Domain

the planner interface is the problem sthe grobict Inctarkce
instance created by the problem in-
terface and the domain that is stored Knowledge Base Plan Interface
in the Knowledge Base. The inter- _

. . Domain |
face is called by a service that re-

. State Planner output

turns true if planner was successful |
. . Query_state
in generating a plan. The output of
the interface is a sequence of actions ¥ Famsingloiortace
that make up the plan, published as a ‘
string topic and saved to a file [28]. Quierystate Pljn
The ROSPlan framework does not

. . > Plan Dispatch
provide its own Al planner. In- R

stead, the planner interface feeds l
the needed information to external Kotk
ction interfaces

planners that is developed separately

from the ROSPlan project. In theory, Figure 2.4: Chart illustrating the ROSPlan framework structure.
any PDDL planner should work with Boxes representing ROS nodes and lines representing topics.

ROSPlan, as long as it is able to han- Ilustration based on figures from the ROSPlan documentation

dle the requirements of the domain. (28].

According to the ROSPlan website [28] the planner interface has been implemented with several
planners, providing different capabilities and limitations in regard to supported PDDL versions
and computation capabilities.

To make the generated PDDL plans executable by a robotic system, the parsing interface is pro-
vided as part of the planning system. This interface is able to represent the planner output with
different structures, depending on what type of execution that is wanted. The simple plan struc-
ture is sufficient for sequential dispatch or temporal plans, where the actions are executed when
the previous action is completed, while the esterel plan is recommended for plans with concurrent
execution [28].

The last part of the planning system is the plan dispatch. This interface is tasked with taking care of
the execution of the plan by connecting the high-level control of ROSPlan to the low-level control
of the robotic platform. The actions to be executed will be published to an action_dispatch topic.

17

2 Background 2.6 Relevant literature overview

The process of reacting to these dispatch messages is then taken care of by an action interface that
has to be customized to the specific robotic system [29].

When an executed action fails, an update to the Knowledge Base invalidates the plan, or the
currently executed action has passed a timeout threshold, the plan dispatch interface will stop the
execution of the plan. ROSPIan will then require a re-planning by reformulating the problem based
on the new information [29]. Re-planning functionality does not come pre-made in ROSPlan and
will have to be implemented by the user.

2.6 Relevant literature overview

This section aims to highlight a selection of research papers covering similar topics and projects
to what is covered in this thesis. This should provide a better understanding of the contribution of
this thesis, as well as provide some insight into the scope and subjects touched upon in the project.

As mentioned in section 2.1, planning has been a field of research since the 1970s, starting with
the STRIPS project, and research on classical planning problems continued through the 80s and
90s [7]. However, it is only more recently that Al planning has become a more relevant approach
for use in real-life autonomous robotic mission. As the field of research has matured, many use
cases for Al planning have been proposed, for example underwater robotics [30]-[33], space ex-
ploration and satellite applications [34]-[37], and robot-human interaction [38]-[40]. Although
many use cases are being proposed in the literature, it is challenging to find concrete examples of
implementations that are more than that of theoretical or experimental nature. One of the areas
where the use cases of Al planning and scheduling have received most attention is the space in-
dustry, most notably for the use of Al planning in the Mars Exploration Rover project [3], [35].
In this project, Al planning was used to enable planning and scheduling of daily activity plans for
the rover, and is one of the most exciting examples of uses of planning in robotics.

The focus of this thesis is on Al planning using the Robot Operating System (ROS) and the
ROSPIlan framework, and several examples can be found of ROSPlan being used for autonomous
robotics with Al planning. Xue and Lekkas [32] presents a comparison of two different Al plan-
ning frameworks for underwater intervention drones, ROSPIlan [29] and T-REX [41]. They found
that the non-ROS-based T-REX framework generally worked better than ROSPlan in dynamic
environments, mainly due to ROSPIlan doing offline planning and T-REX doing online planning.

The work of Hoteit, Abdallah, Faour, et al. [39] demonstrates the application of ROSPlan for
autonomous operations of a social assistive robot. It details the use of ROSPlan in the creation and
execution of plans and provides an overview of how these plans are emulated through a TurtleBot3
robot simulation in Gazebo. The Partial Order Planning Forwards (POPF) planner [13] is used to
solve the planning problem and two algorithms are proposed to enable re-planning in the event of a
plan failure, one of the algorithms being incorporated into the simulation. Additionally, the paper
touches on some of ROSPIlan’s limitations, specifically for only supporting temporal planning,
while probabilistic or conditional planning remains unsupported. The paper describes a system
that is in many ways similar to the system used in this thesis. Both the described use of ROSPlan
and robot simulator in Gazebo is similar to many of the methods used in this project and highlights

18

2 Background 2.6 Relevant literature overview

how the modular design of ROS and the ROSPlan framework allows a general solution to be used
for a diverse set of use cases.

Sanelli, Cashmore, Magazzeni, et al. [38] is another example of human-robot interaction robots
that utilize ROSPlan. The authors propose a method and present a fully implemented robotic
system that utilizes conditional planning, using ROSPlan and the Petri Net Plans execution frame-
work, to generate and execute short-term human-robot interactions. The implementation was suc-
cessfully tested in different scenarios where the robot interacted with untrained users.

Overall, the literature on Al planning is extensive, and many use cases has been proposed. How-
ever, finding examples of implementation of Al planning in real-world applications has proved
difficult, and from the few cases found in this literature search, most were used for very special
cases, like space related use cases, where constraints and limitations are very different from the
once present in this project. It seems from this apparent that the field of Al planning has not
reached its potential for autonomous robotics, and that work still remains in order for autonomous
Al planning systems to be deployed in real-world applications.

19

20

PDDL domain description and problem
instance design

This chapter describes how the domain description and problem instance was designed in an effort
to answer the research questions in section 1.2. The domain description should be a general
representation of the environment and actions available, enabling it to be scalable and used for
different missions and robots. The problem instance is the representation of a specific mission,
and the problem presented in this chapter is therefore an example of how the problem can be
defined to perform an mission like described in section 1.1, with objects of interest that are to be
inspected and a robot with limited battery capacity.

The ROSPIlan framework supports PDDL 2.1 [12] and this, with its features and constraints, forms
the basis for the PDDL design for this project. In the following sections, each part of the PDDL do-
main and problem design is explained. Together with the explanation, code snippets are provided
to show how the code is formatted. More details about the Planning Domain Definition Language
(PDDL) has been described in section 2.2. The full PDDL code described in this chapter is found
in appendix A and B.

3.1 Domain description

The PDDL domain describes in this case a robotic system, designed for Inspection and Main-
tenance (I&M) missions. The capabilities needed from the domain in order to plan the mission
described in section 1.1 are:

* A robot moving to specified waypoints.

* Robot taking a photo at waypoints specified as objects of interest.

¢ Include battery into the planning problem, making it able to account for battery usage.
* Directing the robot to a charger when battery is low.

* The robot docking to the charging station.

21

3 PDDL domain description and problem instance design 3.1.1 Types, predicates, and functions

As Al planning only handles the high level control of the robotic system, it is important to empha-
size that there is a difference between the actions in the domain and the capabilities needed by the
robot to perform this task. For the list above, a robot would typically need:

* Hardware and software to move around the environment autonomously.
* A camera capable to take inspection photos.
* Charging station and capability to dock to it.

3.1.1 Types, predicates, and functions

The domain for this project defines two objects using the typing requirement. These objects are

* waypoint, locations on the map that are used when navigating
* robot, making it possible to plan with different, or several, robots in the same domain.

(:types
waypoint
robot

Five predicates are used to describe the state of the system:

* robot_at describes where the robot is in the environment at any given time

* docked and undocked, used in connection with the robot charging, describing whether the
robot is docked or undocked to a charger

* charge _at, describing the location of charging stations

* photographed, describe what objects of interest have been photographed

(:predicates
(robot_at ?v - robot ?wp - waypoint)
(undocked ?v - robot)
(docked ?v - robot)
(charge_at ?wp - waypoint)
(photographed ?wp - waypoint)

One of the advantages with the way a PDDL planning problem is designed is that the domain
description can be designed very generalized, making it possible to apply it on various problems
of different scales and complexity. In the domain design described here, an effort to generalize as
much as possible was made. This was done because a specific robot or operating environment was
not defined in the mission. To achieve this generalization, extensive use of the numeric functions
feature in PDDL2.1 was used. This made it possible to change parameters of the robots in the
problem instance used for the specific mission. Eight functions are used to describe the system:

* distance, describes the distance between two waypoints

* speed, describes the movement speed of the robot, allowing different robots with different
speeds to be defined in the same domain

* min_charge, describe the minimum battery charge allowed at any point

22

1

3 PDDL domain description and problem instance design 3.1.2 Actions

* state_of charge, current battery charge of the robot

* charging rate and discharge rate, makes it possible to define different battery charge and
discharge rates for different robots

* docking duration, defines the duration a robot uses to dock to a charger

* traveled, describes the distance a specific robot has moved. This function can be used as a
metric in the problem instance to allow the planner to minimize distance in its plan.

(:functions
(distance ?wpl ?wp2 - waypoint)
(speed ?v - robot)
(min_charge ?v - robot)
(state_of_charge ?v - robot)
(charging_rate ?v - robot)
(discharge_rate ?v - robot)
(docking_duration ?v - robot)
(traveled ?v —-robot)

3.1.2 Actions

For the inspection robot to be able to perform its missions, the most important action needed is
to move around in its environment. In this domain, the gofo_waypoint action is designed as a

temporal action with a start and end waypoint. The duration of the action is defined as : duration

distance
speed *

This ensures that the duration of the action can be adapted to the specific robot used for the mission

(= ?duration (/ (distance ?from ?to) (speed ?v))),Uandaﬁngtochnwwion::

by defining different speeds for different robots in the problem instance.

For the action to be applicable, three conditions are defined. As it is a durative action, the prefix
of the condition determines at what point in the action they should be fulfilled. The conditions for
the goto_waypoint action are: (1) The robot must be at the starting waypoint, (2) the robot must be
undocked for the whole duration, and (3) state_of_charge must never go below min_charge. The
function in condition (3) can be translated to

state_of _charge — distance x discharge_rate > min_charge

at the start of the action, ensuring that the battery charge will be above min_charge when reaching
the end waypoint. These three conditions ensures that the robot is in a state where it is able to
move as desired, and that the battery is never discharged below the minimum level specified in the
problem instance.

Four effects are defined for this action. (1) At the start of the action, the robot is no longer at the
starting waypoint, (2) at the end of the action, the robot is at the end waypoint, (3) state_of_charge
is decreased according to the distance it has traveled, and (4) traveled function is increased by
the distance the robot has traveled. From the perspective of the Knowledge Base, the robot now
has been moved from starting waypoint to end waypoint, battery level has decreased, and the total
distance traveled has increased.

23

3 PDDL domain description and problem instance design 3.1.2 Actions

I ; Move robot between waypoints
2 (:durative-action goto_waypoint

3 :parameters (?v — robot ?from ?to - waypoint)
4 :duration (= ?duration (/ (distance ?from ?to)
5 (speed ?v)))

6 :condition (and
7 (at start (robot_at ?v ?from))

8 (over all (undocked ?v))
9 (at start (>= (- (state_of_charge ?v) (x (discharge_rate ?v) (distance ?from
to))) (min_charge ?v)))

10)
11 ceffect (and
12 (at start (not (robot_at ?v ?from)))

13 (at end (decrease (state_of_charge ?v) (% (discharge_rate ?v) (distance ?
from ?to))))

14 (at end (robot_at ?v ?to))

15 (at end (increase (traveled ?v) (distance ?from ?to)))

16)

The dock and undock actions are related to, as the name suggests, the robot docking to a charging
station. These durative actions are oppositions of each other and therefore very similar in design.
The duration of the actions is defined by the docking_duration function that allows for defining
different docking durations for different robots. Three conditions are defined for the actions: (1)
the robot should always be on the defined waypoint, (2) the robot should be on a charger, defined
by the charge_at predicate, and (3) the robot should be undocked for the dock action or docked for
the undock action. The effects of the actions adds or removes the docked and undocked predicate.

1 ; Docking to charger
2 (:durative—-action dock

3 :parameters (?v - robot ?wp - waypoint)

4 :duration (= ?duration (docking_duration ?v))
5 :condition (and

6 (at start (charge_at ?wp))

7 (over all (robot_at ?v 2wp))

8 (at start (undocked ?v))

9)

10 ceffect (and

11 (at end (docked ?v))

12 (at start (not (undocked ?v))))

The charging action is defined to enable the battery simulation and is the only way state_of_charge
can increase. As with the other actions, the charge action is defined as a durative action. The
duration of the action is determined by the state of charge, simulating how the charging duration
of a real battery varies depending on the initial battery level. Similar to the discharge rate in the
goto_waypoint action, the duration of this action is defined with a charging_rate function that can
be tuned to the specific robot. Identically to the undock action, the conditions of the charge action
demand that the robot is (2) located and (3) docked at a waypoint that it is (1) defined as a charger.
The effect of the charging action is that the state of charge is assigned a value of 100%.

24

1

5

~

3 PDDL domain description and problem instance design 3.2 Problem instance

; Charging battery
(:durative—action charge

:parameters (?v - robot ?wp - waypoint)
:duration (= ?duration (% (charging_rate ?v - robot) (- 100 (state_of_charge
?2v))))

:condition (and
(at start (charge_at ?wp))
(at start (robot_at ?v ?wp))
(over all (docked ?v)))
ceffect (and
(at end (assign (state_of_charge ?v) 100))
)

Lastly, the inspect action simulates the robot inspecting an object of interest. The duration of the
action is arbitrarily set to 10 seconds, but this could be changed depending on what an inspection
mission involves for the specific robot. This could also be defined using a numeric function, like
has been done in the other actions, this is however not done here for simplicity. The conditions for
the actions are: (1) the robot has to be at the defined waypoint and (2) the state of charge should
be higher than min_charge when the action is performed. The effect of the action is that (1) the
defined waypoint is inspected, in this case by the photographed predicate, and a decrease of the
state of charge. The reason for this action decreasing the state of charge is that one could imagine
that the act of inspecting an object would discharge the battery slightly. The magnitude of this
discharge should be tuned depending on the inspection task, and could therefore also be defined

as a numeric function.

; Photographing an object of interest
(:durative—action inspect
:parameters (?v - robot ?wp - waypoint)
:duration (= ?duration 10)
:condition (and
(over all (robot_at ?v ?wp))
(at start (>= (- (state_of_charge ?v) 3) (min_charge ?v))))
ceffect (and
(at end (photographed ?wp))
(at end (decrease (state_of_charge ?v) 3))

)

3.2 Problem instance

The problem instance is a representation of a specific problem or mission. This means specifying
objects, initial conditions and goals, as opposed to the domain description where the system is
described with general variables. As the problem instance is defined for specific missions, the
instance described here is an example of how a problem can be defined for the domain presented
above, based on the mission described in section 1.1.

The mission is defined to contain eight waypoints and one robot, however as described earlier in
this chapter the domain is designed to make it possible to define several robots if desired.

25

1

3 PDDL domain description and problem instance design 3.2 Problem instance

(:objects
wp0 wpl wp2 wp3 wp4 wpd wpb6 wp7 - waypoint
turtlebot - robot

The initial conditions for the mission describe everything that is true at the start of the mission.
As mentioned in chapter 2, PDDL is based on a closed-world assumption by default. This means
that negative predicates do not have to be defined in the initial conditions, as undefined predicates
are assumed to be false. In the example below, the robot is initialized at waypoint 0. It is also
undocked. The charge_at predicate that describes what waypoints the chargers are located at are
set to waypoints 0 and 1.

As the domain uses distance between waypoints in several actions, all distances have to be defined
in the problem description. In the example below, only a few of the distances are included in
order to save space in the report. Note that the distances has to be defined twice (e.g., wpl -
wp0 and wp0 - wpl) to make it possible to go both ways between the waypoints. Due to the
closed-world assumption, distances that are not declared should ideally not be considered by the
planner. However, different planners handles numeric functions differently, and some planners
will therefore handle undefined function values as equal to zero, necessitating all distances to be
declared.

(:init
(robot_at turtlebot wpO)
(undocked turtlebot)
(charge_at wpO)
(charge_at wpl)

(= (distance wpl wpO) 5.59464)
(= (distance wpO wpl) 5.59464)
(= (distance wp2 wpO) 2.94109)
(= (distance wpO wp2) 2.94109)
(= (distance wp2 wpl) 5.80086)

; The rest of the distances omitted to save space

(speed turtlebot) 0.1)
(min_charge turtlebot) 15)
(charging_rate turtlebot) 0.5)
(discharge_rate turtlebot) 3)
(
(
(

docking duration turtlebot) 1)
traveled turtlebot) 0)
state_of_charge turtlebot) 100)

(
(
(
(
(
(
(

)

The last part of the initial conditions define the different numeric functions used in the domain, all
parameters related to the robot used in the mission. In this example, values have been chosen to
give the desired behavior for simulated missions described later in the thesis. These would need
to be tuned when implemented on a specific robot.

The goals in this example are chosen to represent a mission where all six objects of interest (all
waypoints that are not defined as chargers) should be photographed. Lastly, the traveled function
is defined as a minimization metric. This ensures that the planner tries to find the shortest path to

26

1

3 PDDL domain description and problem instance design 3.2 Problem instance

the goal. Other metrics could also be chosen, for example, total mission time.

(:goal (and
(photographed wp2
(photographed wp3
(photographed wp4
(photographed wpb5
(photographed wp6
(photographed wp7

))

(:metric minimize (traveled))

)

Summarizing this example problem instance, we have an environment with eight waypoints and
one robot. The robot is to photograph six objects, traveling the shortest distance possible. Due to
the min_charge predicate, the battery level of the robot should never go below 15%. If needed, the
robot can charge its batteries at either waypoint O or 1. As stated earlier, the problem description
presented above is only an example of how it could be designed. In practice, different problems
could be defined in many different ways with the same domain description, showing one of the
strengths of the Planning Domain Definition Language (PDDL).

27

28

ROSPIlan feature extension and simulator
setup

This chapter describes how the ROSPIlan framework was set up to fit the purpose of this project.
The chapter describes both the setup process and design decisions made, as well as changes and
extension made to the stock configuration of the framework. The chapter also describes the simu-
lator setup for the project and is, in large part, taken from the report of the specialization project
[4] of fall 2022. Lastly, the setup of the lab experimental tests are described.

The ROSPlan framework is provided through a repository on the official King’s College London
(KCL) Planning GitHub [42]. The repository contains code for the ROSPlan Knowledge Base and
all the interfaces needed for planning and execution of plans. These interfaces are described in
more detail i Section 2.5. The GitHub repository, as well as the ROSPlan website [28], provides
in-depth documentation and tutorials that are useful when setting up and running ROSPlan for the
first time.

In addition to the ROSPlan package, KCL-Planning also provides a demo repository [43] for ROS-
Plan. This repository contains several demos with example code for running ROSPlan. Notably,
this repository includes a TurtleBot3 exploration mission demo, wherein the robot is tasked with
traversing various waypoints within a simulated Gazebo environment. Despite its simplicity and
limited functionality, this demo serves as an initial integration between ROSPlan and TurtleBot3,
incorporating simulation in Gazebo.

4.1 ROSPlan Knowledge Base

The ROSPlan Knowledge Base is the node that stores all information about the system. This
information can then be used to create a PDDL planning problem that is sent to the Al planner.
When the system is launched, the Knowledge Base is fed PDDL domain and problem files. The
domain describes the environment of the system, and the problem describes the specific mission.
These files are provided to the Knowledge Base as .pddl files of the structure described in chapter

29

4 ROSPIlan feature extension and simulator setup 4.2 Planner implementation

3. With this information, and other information that is fed to the Knowledge Base through ROS
services, a new PDDL problem instance can be created by the Problem Interface. This problem
instance can then be fed to the Al planner through the Planning Interface.

As the Knowledge Base can be updated through ROS services, it can always be kept up to date,
and a new problem instance can be crated at any point during the mission. This makes it possible
to re-plan a mission with updated information when needed.

4.2 Planner implementation

As part of the ROSPlan package, the Planner Interface is provided. ROSPlan does not provide
Al planning capabilities itself, instead the Planner Interface is a wrapper that allows for the use
of different Al Planners that are fit for the specific problem. As the input and output format
of different Al Planners differ, each planner needs a custom interface to be able to handle the
parsing of information. ROSPlan comes with several pre-installed planner interfaces for different
Al planners. This forms the basis for the choice of planners for this project, as it reduces the work
needed to implement the planners. The ROSPlan website [28] lists implemented planner interfaces
for these planners:

* POPF

e OPTIC

* Fast Forward (FF), Metric FF, Contingent-FF
* LPG

e« TFD

SMTPlan

In addition to the planners listed on the website, more planner interfaces are provided in the ROS-
Plan source code. Examples of these are Fast Downward (FD), PANDA, CHIMP, RDDLSim, and
UPMurphi.

As the focus of this project is not specifically targeted towards planning and Al planners itself, but
rather the tools and methods needed around the planner, the only requirements for the choice of
Al planners are that they are easy to implement, able to handle all needed PDDL requirements,
quick, and accurate.

The POPF planner executable comes pre-installed as the default planner in ROSPlan, and includ-
ing it as one of the planners used in the project was therefore natural. The Fast Forward (FF)
planner is a well-known family of planners, however the original FF planner does not support
temporal or numeric problems. Metric FF extends FF to support numerics, but still does not sup-
port temporal planning that is needed for this project. Neither does Contingent-FF. In addition
to POPF, the LPG planner was also chosen to be used for the project. As described in section
2.3, LPG is a popular and well-known temporal planner, able to handle all necessary PDDL2.1
requirements. For this project, the newest version of the LPG planner is used, LPG-td [14].

Finding, downloading, and compiling Al planners generally proved to be difficult. Many of the

30

4 ROSPIlan feature extension and simulator setup 4.3 Actions Interface

planners listed above are old planners from the early 2000s, leading to many of the planners, or
dependencies, being deprecated and causing issues when compiled. OPTIC, SMTPlan, and TFD
are examples where this was a problem. The problem of obtaining and setting up Al planners is
a known problem in the Al planning community. The Planutils project [44] from 2022 aims to
resolve this problem by providing a tool for developing, running, and evaluating planners. The
Planutils tool was not tested for this project, but implementing it into the ROSPlan framework
could be a potential for further work, in order to enable easy access to more Al planners.

4.3 Actions Interface

As ROSPlan only handles high level control, the system needs a way to connect to the lower level
control of the robot in order to perform the generated plan. ROSPIlan handles this is with the help
of the Action Interface. The action interface subscribes to the action dispatch topic, published
by the Plan Dispatch node, and sends commands to the lower level control. As this involves
communicating with systems outside the ROSPlan framework, the action interface will need to
be adapted to the specific robot in question. The ROSPlan tutorial [28] suggests two different
possible approaches for solving this: Either extend and adapt the action interface that comes pre-
made with ROSPlan, or implement an interface from scratch. A custom-made action interface is
suited for systems where there is needed more control over when and how the Knowledge Base
is updated, for example if the position of the robot is updated by sensors instead of add and del
effects in the domain. For the purpose of this project, the pre-made action interface satisfied the
needs with minimal changes. The only change made to the interface was adding PDDL functions
increase and decrease, which was not originally implemented.

In addition to subscribing to dispatch messages and sending commands to the robot, the action
interface also receives feedback from the robot in order to report action status back to the system.
This information should be provided from the robot in the form of a success/failed action feedback
message. For the system presented in this project, this is done by the robot for the gofo_waypoint
action. However, as the rest of the actions are not actually implemented on the robot, these actions
have to be simulated. This can be done using the Simulated Action Interface that comes with
the ROSPlan framework. This interface facilitates the simulation of action success or failure by
communicating with the Action Interface, which in turn updates states in the Knowledge Base.

Upon launching a Simulated Action node, the node is configured with a corresponding action
from the PDDL domain. The node then listens for an action dispatch call for this specific action,
published by the Plan Dispatch interface. When the dispatch call is published, the Simulated
Action node communicates the action’s success or failure, based on its predefined settings. A key
advantage of the Simulated Actions node is the ability to customize action duration and success
probability, enabling the simulation of temporal actions and actions with uncertain outcomes.

It is crucial to emphasize that the Simulated Action node does not execute any actions, it merely
simulates the success or failure of an action and reports this information to the Knowledge Base.
Consequently, an alternative solution must be devised when transitioning the system to a real-
world context.

31

4 ROSPIlan feature extension and simulator setup 4.4 Planning node

4.4 Planning node

The next two sections describe features developed for this project in order to extend the function-
ality of the ROSPlan framework. The features were developed and implemented into the ROSPlan

code, forked to the author’s GitHub repository [45]
planning node

Add waypoints
from YAML file

Originally, the ROSPlan framework does
not come with functionality that allows
the user to run the different interfaces

in the planning sequence automatically. O

This functionality is not only needed —— H Aummmw
when initiating a mission, but also when erface B
re-planning a mission is required. Be- J
cause of this, a planning node was de- =

sign to take care of all functionality re- g

lated to planning and re-planning. In the ves

ROSPlan TurtleBot3 demo, the planning
interface
interfaces are run in succession by run-

ning an included bash script. This bash
script formed the basis for the planning —No

node Python script. A flow chart of the

T
Yes

interface
On initialization, the node will first add all

waypoints, as well as initial states related
to the waypoints, to the ROS parame-

ter server and ROSPlan Knowledge Base.

The Roadmap Server, included with the ED'Spjmh .
No — "
ROSPIlan demos package, takes care of Esee o
both adding the waypoints to the parame- ves
finished

Figure 4.1: Flow chart illustrating the planning node with

.. the planning loop created to allow for re-planning missions.
the problem description when the Prob-

planning node can be seen in Figure 4.1.

ter server and Knowledge Base, as well as

connectivity between the waypoints. The
result is that the waypoints and distances
between them is automatically added to

lem Interface is called. When the waypoints have been added, the node enters the planning loop.
This loop runs all the ROSPlan interfaces mentioned in Section 2.5.

4.4.1 Unknown robot position

The first step in the loop is the Problem Interface that automatically generates a PDDL problem
description from the information that is stored in the Knowledge Base. The next step in the plan-
ning sequence is now for an Al planner to generate a plan with the Planner Interface. However,
as the planner needs to know the initial position of the robot in order to generate a valid plan, a

32

4 ROSPIlan feature extension and simulator setup 4.4.2 Planning and re-planning

problem will occur if the robot has an unknown position. This issue is an inherent result of how a
goto_waypoint action is designed, relying on both start and end position of the robot. The issue of
the robot not knowing where it is usually occurs when a plan dispatch is canceled while the robot
is between two waypoints, as the position of the robot is only updated in the Knowledge Base at
the start and end of the action

To solve this problem, the node checks the generated problem description file for a robot_at pred-
icate in the initial state. If no such predicate is found, some action is needed before running the
Planner Interface. Several solutions for this problem were considered when designing the node.
One solution was to redirect the robot to a predefined waypoint before running the planner. This
waypoint could for example be a charger or docking station. It was a simple but less than ideal
solution to the problem, as this would add significant time and distance to the mission, especially
in a large environment. Several predefined waypoints could be added to the domain to reduce the
distances between them, but this solution would require additional logic to decide what waypoint
to choose, as well as adding more computational complexity by increasing the planning problem
size. A similar solution considered was to redirect the robot to its last waypoint, with some of the
same drawbacks of added distance and time to the mission.

The solution implemented in the planning node was instead to create a new waypoint at the coor-
dinates of the robot. This solution was implemented through the ROSPlan roadmap server, which
provides a ROS service that can add new waypoints at any time. This solution eliminates the need
for the robot to spend extra time and energy to go to a known waypoint. One drawback of the
solution is the added complexity of the planning problem when adding new waypoints, especially
in the case of several instances of new waypoints being added. This problem could potentially be
solved by removing the waypoint from the Knowledge Base after the re-planning, making sure
that this waypoint is not included in the next re-planning.

4.4.2 Planning and re-planning

When the position predicate in the problem description is known, the planning loop can continue
to the Planning Interface. This interface passes the PDDL domain and problem description to the
chosen Al planner and outputs a plan. If the planner is not able to create a valid plan, the loop
is stopped for the operator to solve the issue. Some examples of reasons a planner may fail are
syntax errors in the domain or problem, a valid plan does not exist for the specific problem, or the
planner not being designated enough CPU-time. These issues are difficult to resolve automatically,
therefore needing an operator to resolve the issue. If the plan is valid, the sequence continues on
to the Parsing Interface and Plan Dispatch.

During plan dispatch, the mission might fail for different reasons, like failure to reach a target due
to a blocked path, or simulated failure of inspection. When an action fails, re-planning will be
necessary. In this case, the planning node will automatically detect the failed action and cancel
the dispatch. When the dispatch is canceled, the end of the planning loop is reached and as the
plan did not succeed, the loop will start from the top as illustrated in Figure 4.1. This solution is
simple, yet elegant, as it also handles manual dispatch cancellations through the cancel_dispatch
service.

33

4 ROSPIlan feature extension and simulator setup 4.4.3 Goal removal

4.4.3 Goal removal

With the system described above, the re-planning sequence will always include the goal that failed.
This might be desirable as the reason for the failed action could be due to factors that could be
resolved with a new try, however if the problem persists, the system would get stuck in a loop
of unsuccessfully trying to achieve the goal. The plan would always try to reach the goal, even
though it is impossible to reach, causing a new re-planning every time. To prevent this, a system
was developed to allow the planning node to remove goals that have failed several times. This
feature works by registering and storing the number of times an action has failed. If the action
failure count reaches a threshold set by the operator, the goal corresponding with this action is
removed from the Knowledge Base before the re-planning sequence is run.

4.5 Operator interaction

: . Robot i t
One of the goals of the system described is to i

object

reduce the need for human interaction with the

robot. However, some form of human super-
vision and control is usually always needed to

Prompt operator

ensure efficient and safe operation of a robotic
mission. In this project, a simple system for
operator interaction is proposed to enable val-

idation of the inspection data. This feature
Continue

dispatch

Wait for move
action to complete

Photograph

approved? SIS

is not meant to be a complete operator con-
trol system, but rather an example of a part of
an operator-in-the-loop system, integrated into No
the autonomous mission.) 4

Robot moving
between
waypoints?

The main tasks of the Inspection and Mainte-

nance (I&M) missions in this project is to in-

spect objects of interest by photography. The Ko
resulting photos need to be evaluated in or- S
der to decide if further actions are needed. Cancel dispatch
The operator node created for this project en- .
ables the operator to do this without directly
interrupting the mission dispatch. Every time

K . . Add goal back
the robot inspects an object, the operator is to problem

prompted in the terminal window. This prompt

allows the operator to either reject the pho-
tograph by pressing ENTER, or approve the

Trigger

photo by not taking any action. While the replanning

operator is prompted, the robot continues its
mission, keeping the flow by preventing long

pauses for the operator to inspect the photo- Figure 4.2: Flow chart illustrating the operator inter-
graph. action node.

34

4 ROSPIlan feature extension and simulator setup 4.6 Simulator environment

If the operator decides that the photograph is approved, the mission continues without interruption.
However, if the operator decides that the photograph is not approved, for example because the
photo is of too low quality, a dispatch cancellation is issued. If this cancellation is issued while
the robot is moving between waypoints, the node waits until the action is completed and the robot
is at the new waypoint, the dispatch is then canceled and the inspection goal is added back into
the problem instance. A new iteration of the planning node can now be triggered to perform a
re-planning. The reason for avoiding dispatch cancellation during a move action is to keep the
flow of the mission and giving a more predictable behavior for people interacting with the robot.

It is important to note that in this project, the focus has been on human operator interaction. How-
ever, in an effort of increasing the autonomy of the robot further, the task of validating photographs
could be performed by image processing and artificial intelligence. The operator interaction fea-
ture could also be increased with functionality like adding and removing goals, as well as handling
dispatch errors like blocked paths.

4.6 Simulator environment

The simulator setup in this project is based on the work done in the preparatory specialization
project [4] in fall 2022. The contents of this section are therefore reused from the project thesis,
with some small modifications to section 4.6.3 due to changes done to the world model to fit the
purpose of this project.

4.6.1 TurtleBot3

For teaching, demonstration and development purposes, the TurtleBot3 is developed and sold
in a partnership between Open Robotics and ROBOTIS INC. [46]. The TurtleBot3 is the third
generation of the small, low-cost ROS-based robotics platform. It is customizable to accommodate
the needs of the developer, and a Gazebo simulator environment makes it possible to simulate the
TurtleBot3 without the hardware. For this project, a TurtleBot3 simulator was set up to facilitate
testing and validation of mission plans and systems.

The TurtleBot3 series consists of three different
robots, the Turtlebot3 Burger, TurtleBot3 Waffie,
and TurtleBot3 Waffle Pi. This project will focus
on the TurtleBot3 Waffle Pi, the most advanced of
the three. The Waffle Pi is powered by a Raspberry
Pi as its Single Board Computer (SBC) and a 32-bit
ARM Cortex®-M7 Microcontroller Unit (MCU).
The TurtleBot3’s main capabilities are within Si-

multaneous Localization And Mapping (SLAM), Figure 4.3: The TurtleBot3 Waffle Pi robotic
platform [46].

navigation and manipulation. For sensing and sit-
uational awareness, the Waffle Pi is equipped with a 360 LIDAR, a forward facing camera, and an
Inertial Measurement Unit (IMU).

35

4 ROSPIlan feature extension and simulator setup 4.6.2 Gazebo simulator

Together with the robotics platform, an expansive open-source ROS package is provided for
the TurtleBot3. This package comes with ready-made SLAM and navigation functionalities. A
Gazebo simulation package is also provided for the TurtleBot3, making it easy to set up and run
simulations of the robot. These functionalities will be used throughout this project when testing
PDDL plans and system functionality.

4.6.2 Gazebo simulator

Setting up a TurtleBot3 simulation in Gazebo is fairly straight forward. Using the TurtleBot3
Simulations package [47], a TurtleBot3 3d model and the needed code is provided to facilitate
simulation of a TurtleBot3 in Gazebo. As Gazebo is able to simulate sensor data like LIDAR,
camera, and IMU, it is able to provide highly realistic simulated behavior with much of the same
code that is run on a physical TurtleBot3. This means that there in theory should not be necessary
to do large changes to the code when moving from the simulated environment to a physical system.

4.6.3 World model

When running the TurtleBot3 simulator, the 3d model of the robot is spawned into a simulated
3d world. The TurtleBot3 Gazebo package comes with several pre-made 3d world models. These
are worlds with different objects that the robot can interact with and showcases the abilities of the
TurtleBot3 robotic platform. However, none of these pre-installed worlds fitted the purpose of this
project, and a new 3d world model was therefore created. The world model was created using the
Gazebo Graphical User Interface (GUI) and pre-made 3d object models. The design of the world
was chosen to be easily changed, to add functionality, and to increase or decrease difficulty for the
robot simulation when needed.

As seen from Figure 4.4a, the custom designed world consists of several obstacles and features
that the robot can interact with. In this version of the model, there are six large orange cones
that simulate objects of interest. These cones are meant to be investigated/photographed by the
robot and could in a real world scenario represent pipes, gauges, or valves that operators need
inspected. In addition to the objects of interest, two green zones are placed in the world. These
zones represent charging stations for the robot. This is a simplified representation of a charger,
and the robot simply has to be inside the zone for the battery to charge. For a real world scenario,
one can imagine several chargers that are located around the work area. The reason for having
more than one charger in this simulation is to be able to simulate the ability to navigating the robot
to the closest charger when needed. Chargers can easily be added or taken away as needed for the
simulation. The rest of the objects in the world represent different obstacles that the robots must
navigate around.

As this project focuses on high level planning, the simplifications in this world representation is
sufficient for the tests conducted in this thesis. These tests make the assumption that actions like
inspecting, docking/undocking and charging are handled by the robot’s lower level control, hence
making it sufficient to simulate the success or failure of the action.

36

4 ROSPIlan feature extension and simulator setup 4.7 Lab experimental test setup

(a) The world map created in Gazebo. The green squares repre- (b) The occupancy grid map created in the Turtle-

sent charging stations, the large orange cones represent objects of Bot3 simulator by the built-in SLAM functionality.

interest. The rest of the objects are obstacles that the robot must The white area represent collision free areas, black

navigate around. represent occupied and inaccessible areas, and gray
represent unknown areas where the LIDAR was not
able to reach.

Figure 4.4: 3D world map in gazebo and 2D occupancy grid map for the simulated environment used for
simulation testing.

The navigation package that comes with the TurtleBot3 needs a 2d occupancy grid map of the
environment it is working in. This map is created using the built-in SLAM feature. When running
the SLAM functionality, the robot is able to move around in the world while constructing a map
of the surroundings using its LIDAR and the robot’s pose. The constructed world map can then
be stored as a pgm and yaml file to be used by the navigation stack. The resulting occupancy grid
map of the world in Figure 4.4a can be seen in Figure 4.4b. Here, the white area represent known,
collision free areas, black represent occupied and inaccessible areas, and gray represent unknown
areas where the LIDAR was not able to reach.

4.7 Lab experimental test setup

Both in the specialization project [4] and this thesis, it has been stated that one of the advantages
with the design of the system presented is that it is easy to integrate into a physical robotic platform
due to the use of ROS. In order to evaluate this claim, and to test the robustness of the system
when adding physical disturbances, the system was implemented and tested using a TurtleBot3
and a simplified environment setup.

The TurtleBot3 comes as a building kit where all parts of the robot, both hardware and software,
has to be set up. The building instructions for assembling the robot were very straight forward,
as was the software setup, involving installation of a custom Ubuntu image to the Raspberry Pi
Single Board Computer (SBC). As the ROSPIlan framework officially supports ROS Melodic, the
Raspberry Pi was also set up using the ROS Melodic image provided by Robotis, the producers
of the TurtleBot3. However, due to problems with USB peripherals and network setup on the
Raspberry Pi, the ROS Noetic image was tested instead, solving the problems. Running Noetic

37

4 ROSPIlan feature extension and simulator setup 4.7 Lab experimental test setup

on the TurtleBot3 while the remote computer with the ROSPlan system is running Melodic is not
ideal, as it could cause problems in the communication between the computers due to discrepancies
between the versions. As most of the computation is taking place on the remote computer, with the
communication between computers consisting of sensor data and velocity commands, this should
however not be a big problem due to the ROS messages used being standard messages that are
unchanged between the versions.

Figure 4.5: Overhead view of the robot test area with the TurtleBot3 robotic platform. Walls and boxes are
treated as obstacles, while orange markers on the floor illustrates waypoint locations. Charging areas are
illustrated as orange squares on the floor and can be spotted in the bottom left and top right corners.

To perform test missions, a simple environ-
ment was set up using walls and boxes as ob-
stacles. Waypoints and charging areas were
marked using orange tape on the floor. As the
TurtleBot3 does not come with a charging sta-
tion, this was only simulated with a square on
the floor. The test area was designed with pas-
sages of varying width in order to make nav-
igation between waypoints more challenging.
The total area of the enclosure was signifi-
cantly smaller than the simulated environment
described in section 4.6.3, mainly due to con-
straints in the room used for the experiments.
Figure 4.5 shows an overview of the test area
described.

The ROS navigation stack needed an occu-
pancy grid map of the test area in order for the

path planning algorithm to work. This was cre- Figure 4.6: Screenshot from Rviz showing the oc-

] - o cupancy grid map for the test area with the global
ated using the Simultaneous Localization And ¢osmap (colored overlay) and waypoints (white

Mapping (SLAM) feature described in section squares).

38

4 ROSPIlan feature extension and simulator setup 4.7 Lab experimental test setup

4.6.3. The resulting occupancy grid map can be seen in Figure 4.6. In order to make the robot
behave in a desired manner when moving in the environment, the ROS navigation stack that is
used by the TurtleBot3 had to be tuned. This involved tuning parameters of both the global and lo-
cal path planners to ensure smooth paths between waypoints, without the robot going too close to
obstacles. Tuning the ROS navigation stack is covered thoroughly by Zheng [48], however as this
involves lower level planning that is generally outside the scope of this project, it is not described
further here.

39

40

Results and discussion

In this chapter, results of the work described earlier in this thesis are presented. The results are
discussed in an effort to answer the research questions for this thesis. The first part of this chapter
presents results and discussion of the PDDL design described in chapter 3. This part will be
followed by the results and discussion of the ROSPlan functionality extension described in chapter
4. Lastly, the results of the lab tests described in section 4.7 are presented and discussed.

5.1 Domain and problem design

This section presents an evaluation and discussion of the PDDL design described in chapter 3. The
domain’s performance on an Inspection and Maintenance (I&M) mission is tested, and the pros
and cons of the PDDL design is discussed.

5.1.1 PDDL design evaluation

The purpose of the PDDL design test was to evaluate how the PDDL domain and problem design
performed for an industrial I&M mission. In order to ensure that the design worked with different
planners, using different planning approaches, and to decide which of the planners to use for the
rest of the evaluation tests in this project, the test was performed running both the POPF and
LPG-td planner with the same domain and problem file.

The test was conducted by providing the Al planner with the PDDL domain and problem described
in chapter 3. As the LPG-td planner is a stochastic anytime planner that does not produce the same
plan every time it is run on the same problem, the planner was run three times and all three plans
presented below. The POPF planner is a deterministic planner, meaning that the planner will
output the same plan every time, when run on the same planning problem. This meant that the
POPF only had to be run a single time for this test.

The POPF planner is simple to run and only requires three arguments:

41

5 Results and discussion 5.1.2 PDDL design results

$./popf domain.pddl problem.pddl solutionfilename

The plan is then output in the solution file. The LPG-td planner is a bit more complicated to run
as the number of iterations and maximum CPU-time needs to be tuned in order to get the best plan
possible. For this test the planner was run with the command

S ./lpg-td -o domain.pddl -f problem.pddl -n 20 -cputime 60 -out
solutionfilename

Where the arguments are:

¢ -0: domain file name

» -f: problem file name

¢ -n: max number of solution iterations

* —cputime: maximum CPU-time (in seconds)
e -out: solution file name

As the problem size of this mission was relatively small, large deviations in the results of the
planners were not expected. The focus of this test was mainly to evaluate the performance of the
domain and problem design using planners with different planning algorithms, as well as testing
speed, ease of use and accuracy of the planners to decide what planner to use for the rest of the
tests in this project.

5.1.2 PDDL design results

Running both Al planners, four plans were obtained. One from the POPF planner and three
different plans from LPG-td. Table 5.1 shows a comparison of different metrics between the
four plans. All plans contained the same number of actions, but ordered in four different way,
giving different resulting performance. The results clearly shows that the POPF planner produced
a significantly less efficient plan than any of the LPG-td plans, with a plan run time of over 100
seconds more than the best plan. This is likely due to LPG-td being a stochastic planner, designed
to explore the solution space more broadly. POPF, on the other hand, being a deterministic planner,
can often find a satisfactory solution more quickly, though often with lower quality. This was very
apparent when running the two planners, and can be seen in the last row of table 5.1. While
POPF gave its result in just 20 milliseconds, LPG-td spent between 3 and 7 seconds on improving
its initial plans and finding the best plan possible. Though 7 seconds is not a very long time
compared to the over 350 seconds of the plan run time, it is a significant time spent on solving a
very small planning problem.

42

5 Results and discussion 5.1.2 PDDL design results

POPF | LPG-td 1 | LPG-td 2 | LPG-td 3
Number of actions 16 16 16 16
Plan run time [s] 463 368 355 370
Distance traveled [m] | 35.7 26.3 26.9 27.5
Total battery used [%] | 152 115 117 119
CPU-time [s] 0.02 3.74 6.85 7.37

Table 5.1: Metrics for the plans produced by POPF and LPG-td. The first four rows contain metrics from
the plan. The last row, CPU-time, describe the time spent by the planner to produce the plan.

Figure 5.1 shows a comparison between the Gantt charts of the POPF plan and the LPG-td plan 2,
the best out of the three plans produced by LPG-td. Here it can be seen that the choice of going
from waypoint 4 to waypoint 0 and back to waypoint 5 in order to charge the batteries adds a lot of
time to the POPF plan. This transit time is lower in the LPG-td plan 2, due to the distance between
waypoint 7 and the charging station at waypoint 0 being closer. This also affects the time spent at

the charging station, as charging time is determined by the battery charge level at the start of the
action.

B coto_waypoint turtlebot wp0 wp2 [l goto_waypoint turtiebot wp0 wp2
inspect turtlebot wp2 inspect turtlebot wp2
Il goto_waypoint turtlebot wp2 wp3 Il goto_waypoint turtiebot wp2 wp7
inspect turtlebot wp3 inspect turtlebot wp7
[l goto_waypoint turtlebot wp3 wp4 [l goto_waypoint turtiebot wp7 wp0
inspect turtlebot wp4 | dock turtlebot wp0
I coto_waypoint turtiebot wpd wp0 charge turtlebot wp0
| dock turtlebot wp0 | undock turtlebot wp0
charge turtlebot wp0 [l goto_waypoint turtlebot wp0 wp6
| undock turtlebot wp0 inspect turtlebot wp6
B oo waypoint turtlebot wp0 wp5 I goto_waypoint turtlebot wp6 wp5
inspect turtlebot wp5 inspect turtlebot wp5
- goto_waypoint turtlebot wp5 wp6é Bl coto_waypoint turtiebot wp5 wp4
inspect turtlebot wpé inspect turtlebot wp4
Il goto_waypoint turtlebot wp6 wp7 B goto_waypoint turtiebot wp4 wp3
inspect turtlebot wp7 inspect turtlebot wp3
(a) POPF plan (b) LPG-td plan 2

Figure 5.1: Comparison of the Gantt charts of the POPF plan and the best out of the three plans produced
by LPG-td

Figures 5.2 and 5.3 shows how battery level and distance traveled changes over time for the four
different plans. These plots give the same impression as table 5.1 of LPG-td producing signif-
icantly higher quality plans than POPF, with the POPF plan traveling significantly longer and
spending more battery than the three other plans.

43

5 Results and discussion 5.1.2 PDDL design results

Battery level

100 A «\ \ —=— POPF
LPG1
—&o—- LPG2
- \ / \ - e
80 \ /\ Min battery
@
N.§N

Battery level [%]

20

0 100 200 300 400
Duration [s]

Figure 5.2: Battery level of the robot related to time. Notice the linear characteristics of the discharge rate,
due to the simplified battery model in the PDDL domain. This is not an accurate representation of a battery
system.

Distance traveled

35 | —=— POPF n—n
LPG1 /
—-e—- LPG2 —
301 —— LPG3 /
ey
25 /
42
204 %
m

/ >

1 /
P~

104 /é«/

0'7‘
54
-

/‘

04 v

Distance [m]

0 100 200 300 400
Duration [s]

Figure 5.3: Distance traveled by the robot related to time.

The PDDL design test shows that the domain and problem design presented in this project is
able to produce a functional planning problem that is able to produce a sequence of actions for
an I&M mission. The test shows that at least two different planners, with different planning
approaches, are able to use the domain and problem to produce plans. The domain allows battery
to be simulated in the planning problem and direct the robot to a planner when needed, in order
to not deplete the battery below the minimum charge specified. The design allows the planner to
use the total traveling distance as a minimization variable to produce the best plan possible. Due
to the generalized nature of the domain description, different missions can be defined in different
environments, with varying amounts of waypoints and several robots. This makes the design
scalable and adaptable.

One inherent problem with the domain design is very obvious when looking at Figure 5.2, and
is the unrealistic nature of the robot battery simulation. As the battery is simply simulated as
decreasing or increasing by a linear value when moving or charging, the model does not take
into account the nonlinear nature of a battery and discharge rate. Not only is a battery nonlinear,
but the discharge rate will also change based on the environment the robot is moving in, such
as inclination, terrain, and variations in acceleration and speed. Energy is also spent on other

44

5 Results and discussion 5.2 ROSPIlan functionality extension

processes and components on the robot, causing the battery level to decrease even when the robot
is not moving. in this project, this simplified modelling of battery depletion was chosen to reduce
complexity. However, it is obvious that this model quickly will fall apart when deployed on a real
robot, and a different way of modelling the battery will be needed.

One solution to the battery modeling problem is to use a custom interface that reports the real
battery value to the Knowledge Base. With this feature, the battery model in the PDDL domain
does not have to be completely accurate. It would simply serve as an initial guess for when the
battery would need to be charged. The plan could then occasionally be re-evaluated with the
updated battery level. This would also allow the system to react to unexpected events related to
battery level, such as unexpected high battery depletion caused by a faulty battery cell.

The results of the comparison between planners showed a significant difference between the two
planners, even for such a small planning problem. The LPG-td planner produced significantly
higher quality plans than POPF, however this was at the cost of processing time. The POPF
planner produced valid plans of lower quality than LPG-td, but at a fraction of the processing
time. Another benefit of the POPF planner in regard to this project is the ability to produce the
same plan for the same planning problem every time. This is a big advantage when running
performance tests on the ROSPlan system in order to ensure reproducibility of the tests. These
factors formed the basis for the decision of using the POPF planner for the rest of the tests in this
thesis.

5.2 ROSPIlan functionality extension

In this section, the results of the functionality extensions are presented and discussed. A discussion
of the system as a whole is provided at the end of the section.

The ROSPIlan feature extensions de-
signed in this project were tested
in an effort to evaluate and verify
its functionality in a simulated mis-
sion environment. All tests were .
run in the Gazebo simulator pre- . =
sented in section 4.6 and using the
PDDL domain description and prob-
lem instance presented in chapter 3.

The mission consisted of eight way-

n
points, with there being six objects u e

WP4 (Charger)

of interest and two battery charging
stations. Figure 5.4 shows a 2D map
of the Gazebo world model used for

the simulated missions. In this fig-
ure, the locations of the waypoints
corresponding to the mission way-
points are illustrated with white squares and the waypoint number. Waypoint O and 1 (wp0 and

Figure 5.4: 2D representation of the test environment with way-
point placement visualized in white.

45

5 Results and discussion 5.2.1 Operator interaction and re-planning

wpl) represent the location of charging stations, while the rest of the waypoints represent the
location from where the robot should inspect objects of interest.

Three different tests were run in order to test all functionality extensions implemented in this
project. Section 5.2.1 describes testing and evaluating the operator interaction functionality, as
well as the re-planning feature. Section 5.2.2 describes the testing and evaluation of the goal
removal functionality for situations where a goal was not obtainable, even when attempted several
times, while section 5.2.3 describes the results of the feature for handling blocked paths and the
robot recovering from loosing its known position in the ROSPlan Knowledge Base.

5.2.1 Operator interaction and re-planning

The operator interaction and re-planning test was conducted in order to evaluate the functionality
described in sections 4.4 and 4.5. The purpose of the re-planning feature is to detect when an
action has failed and the robot needs to run a new planning sequence. The action failing could be
caused by problems in the environment, due to a blocked path, or an operator triggered event, like
an inspection photo being rejected. This feature is a vital part of a robotic Al planning system, as
it allows the system to handle unforeseen obstacles during plan dispatch and adapt to the situation
as it occurs.

For this test, all action failures were simulated through the operator interaction feature. This
ensured reproducibility as it provided control over which actions failed, and at what time. It also
made it possible to test the functionality of the operator interaction feature. The re-planning feature
was tested by triggering an inspection action failure at waypoint 3 and 6, necessitating re-planning
in order to add the failed goals back into the mission plan. The test was run on the same mission
as the PDDL design evaluation tests, with 6 objects to be inspected, two chargers and a minimum
battery requirement of 15% capacity. The POPF planner was used for the mission, mainly do to
the low CPU-time compared to LPG-td, reducing the mission execution time, and its ability to
reproduce the same plan every time, making it possible to run the test several times. Running
the mission as described, an initial plan was generated and dispatched. This plan can be seen in
Code 5.1 and is a complete plan for the I&M mission. The plan included inspection of all objects
of interest, as well as charging at the waypoint 0 charger.

46

5 Results and discussion 5.2.1 Operator interaction and re-planning

0.000: (goto_waypoint turtlebot wp0 wp2) [29.411]
29.412: (inspect turtlebot wp2) [10.000]
39.413: (goto_waypoint turtlebot wp2 wp3) [51.740]
91.154: (inspect turtlebot wp3) [10.000]

101.155: (goto_waypoint turtlebot wp3 wp4) [34.986]
136.141: (inspect turtlebot wp4) [10.000]

146.142: (goto_waypoint turtlebot wp4 wpb) [56.045]
202.188: (inspect turtlebot wpb5) [10.000]

212.189: (goto_waypoint turtlebot wp5 wp0) [70.178]
282.367: (dock turtlebot wp0) [1.000]

283.367: (charge turtlebot wp0) [42.354]

325.721: (undock turtlebot wpO0) [1.000]

326.721: (goto_waypoint turtlebot wpO wpb6) [32.558]
359.280: (inspect turtlebot wpb6) [10.000]

369.281: (goto_waypoint turtlebot wp6 wp7) [48.270]
417.552: (inspect turtlebot wp7) [10.000]

Code 5.1: Initial plan for operator interaction and re-planning test.

After the inspection action at waypoint 3 was
performed (line 4 in Code 5.1), the operator i

rejected the photograph while the next action _
Continue

dispatch

Wait for move
action to complete

Photograph
approved?

(goto_waypoint turtlebot wp3 wp4) was dis- ~Yes

patched. This meant that the robot was located
between waypoints 3 and 4 at the moment that No
the photograph was rejected. In order to keep
the flow of the mission and not causing the
robot to stop abruptly between waypoints, the
dispatch was then continued until the robot

Robot moving
between
waypoints?

-Yes

No

Cancel dispatch

reached waypoint 4 before being canceled. As
described in chapter 4, the system then reset
the photographed wp3 proposition to false and
re-added it as a goal in the problem instance

before reinitiating the planning sequence. The
Figure 5.5: Closeup of operator interaction node flow

terminal output from the operator interaction . . . S
P P chart, illustrating how it handles a photo rejection.

node can be seen in Code 5.2.

Photo taken of wp3. Press ENTER to reject or wait to approve photo.
Photo rejected. Re—-adding wp3 as goal and replanning.

3 Dispatch canceled. Replanning.

Code 5.2: Output from the operator interaction node after the first three inspection actions.

When the dispatch is canceled and the re-planning is initialized, the planning loop described in
Section 4.4 starts a new iteration. This means the problem interface creating a new problem
desecration based on the information in the Knowledge Base. As the failed action is added back
as a goal when the inspection photo is rejected, the goal will also be part of the next plan. This
can be seen in Figure 5.6b. The loop continues by running the planner interface, parsing interface
and plan dispatch, making the robot continue the mission from where it left off.

47

5 Results and discussion 5.2.1 Operator interaction and re-planning

[l goto_waypoint turtlebot wp0 wp2
nspect turtlebot wp2
Il goto_waypoint turtiebot wp2 wp3

inspect turtiebot wp3 Image rejected inspect turtlebot wp4
[l goto_waypoint turtlebot wp3 wp4 Dispatch canceled Il goto_waypoint turtiebot wp4 wp3
inspect turtlebot wp4 inspect turtiebot wp3
Il goto_waypoint turtlebot wp4 wp5 I ooto waypoint turtlebot wp3 wps
inspect turtlebot wp5 inspect turtlebot wp5
I coto waypoint turtiebot wp5 wp0 I goto waypoint turtiebot wpS wp0
| dock turtlebot wp0 | dock turtlebot wp0
M charge turtiebot wp0 [charge turtlebot wp0
undock turtlebot wp0 undock turtiebot wp0
W goto_waypoint turtiebot wp0 wp6 M goto_waypoint turtlebot wp0 wp6
inspect turtlebot wp6 Image rejected inspect turtlebot wp6
Il goto_waypoint turtiebot wpé wp7 Dispatch canceled _[Jlllgoto_waypoint turtiebot wp6é wp7
inspect turtiebot wp7 nspect turtiebot wp7
(a) Initial plan. (b) Second plan.

Figure 5.6: Planner output showing the initial and second plan of the operator interaction and re-planning
test, including image rejection and dispatch cancelation. Note that the inspect turtlebot wp3 goal has been
re-added to the Knowledge Base after photo rejection and is also part of the second plan.

Continuing the mission, the robot inspect turtliebot wp7

followed the plan in Figure 5.6b. Il goto_waypoint turtiebot wp7 wpé
. . inspect turtiebot wp6

When reaching waypoint 6 and B

inspecting the object of interest, Figure 5.7: Third and final plan for the operator intervention and
re-planning evaluation mission, generated after the inspection of

the operator once again rejects the .)
waypoint 6 was rejected by the operator.

photo. This causes the same reaction
as described above, adding the goal back into the Knowledge Base and canceling the dispatch
when having reached waypoint 7. The planning loop was run a third iteration, generating the
plan in figure 5.7. At this point, the mission goals were (photographed wp6 and photographed
wp7). The rest of the dispatch mission was then run without failures, successfully completing the
dispatch after inspecting waypoint 6 for a second time.

The results of this evaluation test illustrate the functionality of the planning/re-planning loop cre-
ated for this project. Through the planning node, the system is able to launch the planning se-
quence that plans and dispatch the mission, as well as handle failed actions and redo the planning
sequence when necessary. This functionality that is crucial for an autonomous robotic system us-
ing Al planning, as it allows the system to handle a dynamic environment where unplanned events
may occur, and as this functionality is not part of ROSPlan by default, it is an important addition
to the framework. It is worth noting that this feature is needed mostly because of the ROSPlan
framework using an offline planning approach, and that a system with an online planning approach
would not necessarily be in need of such a feature, due to the nature of the online approach being
able to adapt to changes in the environment by itself.

The test also proves the functionality of the operator interaction feature, adding an operator-in-
the-loop feature to the planning system. One can imagine that this feature could be expanded to
involve more actions and ways of taking control of the robot, like manually adding and removing
goals, or manually overriding the dispatch for operational or safety reasons. For this project, the
feature is implemented as a ROS node that is controlled and outputs to a terminal window, but this
could easily be integrated into some form of Graphical User Interface (GUI). As one of the goals

48

5 Results and discussion 5.2.2 Goal removal

of automating robotic missions is to reduce the need for human interaction during the mission, one
can also imagine a system where the verification of the inspection photos are done by a non-human
operator, using image processing to approve and reject the photos. This would eliminate the need
for an operator verifying the photos in real-time while the robot is dispatched.

As described earlier, the plan dispatch will continue if the photo is rejected during a movement
between waypoints, and will only be canceled once the robot has reached the end waypoint. This
is a design decision that was taken to keep the flow of the mission and giving a more predictable
behavior for people interacting with the robot. It was also done to avoid the problem of an un-
known robot position due to the movement action being canceled, as described in section 4.4.1.
However, this functionality could be changed if desired, for example making the robot go straight
back to the previous waypoint or stop for re-planning immediately. What behavior is best for the
robot and mission environment it is operating in will often vary and would need to be adapted to
the specific circumstances of the mission.

5.2.2 Goal removal

The goal removal feature was tested in an effort to evaluate the functionality described in section
4.4.3, removing goals when the same action has failed repeatedly. This feature is important as
it allows a mission to continue even though one of the goals are not achievable, increasing the
robustness of the autonomous I&M mission. To test this feature, the same mission described
earlier was conducted using the operator interaction feature to simulate failed actions.

During the mission, the operator decides to reject the photograph at waypoint 3. In a real world
mission, this rejection could for example be due to a photo where the object of interest is out of
focus or not visible. This should cause a dispatch cancellation and re-planning, with the pho-
tographed wp3 proposition added back as a goal. When the robot returns to waypoint 3, a new
photo is taken and once again rejected by the operator. When the action has failed 3 times, a
number that can be changed as desired, the photograph wp3 goal should be removed to allow the
mission to continue without interruption.

Running the mission problem instance as described, the same initial plan, Code 5.1, as in the
operator interaction and re-planning test was obtained. The plan was dispatched, and the robot
started the inspection mission. After having tried and failed three times to inspect waypoint 3,
the goal removal functionality was activated. Code 5.3 shows the terminal output of the operator
interaction node after inspection of waypoint 3 has failed for the third time. This output shows
that the goal was removed after the third failure and replanning initiated without (photographed
wp3) as a goal.

Table 5.2 shows the sequence of actions for the goal removal mission, with the gofo_waypoint
actions excluded for clarity. Here it can be seen that the robot returns to waypoint 3 after failure in
order to re-attempt inspection. After the third failed attempt, the goal is removed, and the mission
continues without re-attempting to inspect waypoint 3. Note also that the waypoint at which the
charging action is performed has been changed from the original plan, as this reduced the distance
traveled after re-planning.

49

5 Results and discussion 5.2.3 Blocked path and unknown position recovery

Photo taken of wp3. Press ENTER to reject or wait to approve photo.

Photo rejected. Re-adding wp3 as goal and replanning.

[WARN] Goal (’'photographed’, ’'wp3’) has failed 3 times. Removing goal from the
Knowledge Base.

Dispatch canceled. Replanning.

Photo taken of wp6. Press ENTER to reject or wait to approve photo.
Photo approved, continuing mission.

Code 5.3: Terminal output from the operator interaction node showing goal removal after 3 failed attempts

Action Comment

Inspect wp2 | Success

Inspect wp3 | Failed 1st

Inspect wp4 | Success

Inspect wp3 | Failed 2nd

Inspect wp5 | Success

Charge wpl | Success

Inspect wp3 | Failed 3rd. Goal removed
Inspect wpb | Success

Inspect wp7 | Dispatch successfully finished

O| 0|\ N W —

Table 5.2: Goal removal test mission, excluding goto_waypoint actions for clarity.

The results of this test show the goal removal feature working as desired, removing repeatedly
failing goals from the Knowledge Base. This feature builds on the re-planning functionality to
form the basis of an autonomous robotic system that is able to handle changes to the initial plan
and adapt to a dynamic environment. In this evaluation test, the failure threshold was set to three
failures before goal removal. This seems to be a reasonable number to ensure that the goal really
is unachievable, while not spending unnecessary time on going back to the waypoint. However, as
mentioned earlier, this threshold can be changed as desired.

5.2.3 Blocked path and unknown position recovery

To ensure that the system is able to handle events where the path to a waypoint is blocked, a test
was set up using the Gazebo simulator and the same mission described earlier. During simulation
in Gazebo, it is possible to move and add objects, making it possible to change the environment
the robot is operating in. This is similar to how an environment can change in the real world, and
handling these changes is an important aspect of autonomous robot operations in such environ-
ments.

During the mission simulation, a new object is placed on the map, blocking waypoint 5. This
makes the robot unable to reach the waypoint. The expected result of this test was for the
goto_waypoint wp5 action to fail due to the navigation feature of the TurtleBot3 not being able
to find a valid path. This would then trigger a re-planning by the re-planning feature described
earlier. As the action fails between two waypoints, the position of the robot is now unknown in the
Knowledge Base. This problem is described in section 4.4.1 and is caused by the fact that when

50

5 Results and discussion

5.2.3 Blocked path and unknown position recovery

an action fails, the end effect of the action is not applied. To solve this problem, a new waypoint

should be added at the position of the robot. A re-planning should then be initialized.

To ensure the robustness of the feature, two
different scenarios were tested. For the first
scenario, the obstruction was removed after a
second action failure, and the robot was there-
fore expected to finish the mission dispatch
successfully, including a successful inspection
of waypoint 5. In a real world environment,
this scenario could represent a blocked path
due to a moving object or person being in the
way of the robot for some time before mov-
ing away from the path. The second scenario
involved the object not being removed, hence
necessitating the goal to be removed with the

Figure 5.8: Figure showing waypoint 5 (lower right
corner) being blocked and unreachable by the Turtle-
Bot3.

goal removal feature. This scenario simulated a path being permanently blocked, for example due

to a closed door or an object laying across the robot’s path.

Running the same mission as the other evaluation tests, the robot was dispatched and performed
all tasks until reaching waypoint 5. Upon approaching waypoint 5, the onboard LIDAR on the
robot detected the wall placed in front of the waypoint. This can be seen in Figure 5.9. As this
wall was not part of the occupancy grid map that the TurtleBot uses for navigation, it was not
considered before it was detected by the LIDAR. The TurtleBot3 navigation stack is able to do
obstacle avoidance and path re-planning, and the robot therefore then tried to find a new route to

the waypoint. As there was no alternative route, the TurtleBot eventually gave up and returned

feedback to the action interface, causing a failed action. Code 5.4 shows the terminal output of the

planning node after the action have failed.

(a) Before reaching the wall in front of wp5

(b) After attempting to reach wp5

Figure 5.9: 2D map showing before and after the robot has attempted to reach waypoint 5. Note the wall
detected by the robot’s LIDAR and the new waypoints (white squares) generated in order to recover from

the unknown position state

51

~

w

5 Results and discussion 5.2.3 Blocked path and unknown position recovery

As the action failed after leaving the previous Planning Loop
waypoint, but before reaching waypoint 5, the

.. . Problem Add waypoint at
position of the robot in the Knowledge Base N nerface [* robotcoordinates]

(proposition (robot_at)) was now unknown.

Because of this, the planning node entered a

Robot knows
where it is?

special case, as seen from Figure 5.10. In this No

special case, the node adds a new waypoint ,
Yes

at the location of the robot in order for the
Knowledge Base to regain the knowledge of Planner

interface

where the robot is and for the Problem Inter-

face to create a valid planning problem.
Figure 5.10: Closeup of the planning node flow chart,

showing how the node handles an unknown robot po-

Both the first and second test showed good re- >
sition.

sults and were able to re-plan the mission with-

out the planner failing, proving that the method of adding waypoints worked. The first test illus-
trated that the system was able to handle a temporarily blocked path and recover from an unknown
position when the gofo_waypoint action failed. It also showed that the robot was able to recover
and continue the mission when the wall was removed, making the waypoint reachable again. The
second test illustrated that the robot was able to recover, even though the wall was not removed, us-
ing the goal removal feature that was tested earlier. This shows that the blocked path and unknown
position recovery feature increases the robustness of the system by making it able to handle un-
foreseen changes to the environment the robot is operating in, a crucial aspect of a robotic mission
in dynamic environments.

[ERROR] : Action failed, canceling dispatch

[INFO]: Goal has failed 2 times

[ERROR] : Dispatch was canceled without all goals being achived. Replanning

[INFO]: Calling problem generator.

[INFO] : Robot does not know where it is! Adding a new waypoint at its current
position.

[INFO]: Calling problem generator.

Code 5.4: Terminal output from the planning node showing the robot recovering from an unknown position
state.

One drawback of the functionality of the blocked path feature that was not seen by the simulation
test, but that could pose a problem for a larger I&M mission, is the way the system handles
removing a goal after failing to reach a waypoint. As the system only removes the goal from
the Knowledge Base, not the waypoint itself, the unreachable waypoint is still included in the
planning problem. In theory, this means that the waypoint could still be part of the new plan
as an intermediate point between two other waypoints, even though it is still unreachable. For
the domain used in this project, this is not a problem as intermediate waypoints are not needed.
However, for other domains where intermediate waypoints are needed, for example a robot where
the path planner has limited range, this could pose a problem. A reasonable solution for this issue
could be to also remove the waypoint from the planning problem, making the planner unaware of
the existence of this waypoint and not including it in its plans. It could also be possible to remove
the links between the blocked waypoint and all other waypoint in the planning problem. This
would have a similar effect to the other solution, making the planner unable to include an action

52

5 Results and discussion 5.3 Lab experimental test results

for the robot to go to the blocked waypoint. These approaches were not pursued in this project,
mainly due to time constraints and the fact that the issue did not occur in testing.

Another issue that was not experienced during testing, but could cause issues with a larger planning
problem is the introduction of new waypoints. For every waypoint that is added, the planning
problem will grow, increasing the computational complexity. As the planning problem in this
project is small and the Al planner used is efficient, this did not prove a problem in the testing
described. However, one could imagine a large planning problem with many waypoints and goals,
and where several waypoints prove to be blocked. This would add more complexity to an already
large planning problem, eventually making the planning process slow and inefficient. One solution
to this problem could be to remove the newly added waypoint after replanning. This would help
keep the planning problem as small as possible, reducing the computational complexity.

The unknown position recovery feature designed for this project is a feature created to handle an
inherent issue with the way PDDL is designed. As the effects of an action can only be applied
at start and at end, problems will occur when an action is canceled before completion, as at end
effects will not be applied. This is not only a problem for the position of the robot that is handled
through the feature describe above, but also other effects, for example battery changes. During the
simulation tests, this problem became apparent as the battery charge level would not be reduced
when a move action failed, regardless of the distance the robot had covered. Thus, the unknown
position recovery only solves one of the problems caused by the end effects of an action not being
applied, and more systems would need to be developed to handle the other effects.

5.3 Lab experimental test results

In order to test how the physical system performed compared to the simulations, the same tests
as described above were run on the lab test setup. In addition to these tests, a full mission was
performed with all features created for this project. This was done in order to evaluate how the
system responded when several events were triggered in the same run. The final test run was
performed with the following events:

* Inspection of waypoint 2 fails on first try
* Waypoint 3 is permanently blocked
* Waypoint 5 is temporarily blocked, but then cleared

5.3.1 Setup

Setting up the test environment was straight forward and only involved placing objects and ob-
structions that the robot could interact with. Building and setting up the TurtleBot3 was also fairly
easy, with everything needed for the process being provided in the setup tutorial. The test environ-
ment was mapped using the SLAM functionality that is included with the TurtleBot3 in order to
create an occupancy grid map. This map is used by the navigation stack in order to provide path
planning capabilities.

53

5 Results and discussion

5.3.2 Experimental results

Setting up and tuning the navigation stack was
the first task that provided some challenges.
The simulated TurtleBot3 used in this project
had a well tuned navigation stack that did
not need any tuning out of the box. These
tuning parameters were, however, not suited
for the physical test environment. This was
most likely due to the map being significantly
smaller than the simulated environment, de-
manding tighter turns and closer approaches
to the walls and objects. As the navigation
stack is out of the scope of this project, it was
only tuned to a sufficient degree to where the
robot was able to traverse the area without ma-
jor problems.

As the area was smaller than the simulated en-
vironment, the number of waypoints placed in
the area was reduced from 8 to 7. Two chargers
were placed on opposite sides and 5 inspection
waypoints were dispersed throughout the area.

Figure 5.11: Occupancy grid map with waypoints il-
lustrated as white squares. Upper left and lower right
waypoints are chargers, with the rest being objects of
interest

The waypoints can be seen as white squares in Figure 5.11.

5.3.2 [Experimental results

Both the individual functionality tests, identi-
cal to the previously described tests, and the
full mission test went to plan without major
issues or deviations from the simulated tests.
This result was as expected due to the Gazebo
simulator creating a very accurate simulation
environment and ROSPlan being a modular
and easily integrable framework, due to the
use of ROS. The biggest problems experienced
during the tests however were caused by the
TurtleBot3 navigation stack. As not a lot of
time was spent on fine-tuning the global and
local planner to the test environment, some is-
sues were experienced due to narrow spaces
and waypoints close to the wall. These prob-
lems manifested themselves as the robot not
being able to do sharp turns around obstacles
and sometimes getting stuck in corners or close
to the walls. This could eventually cause the
navigation to fail, triggering an action failure

Figure 5.12: Test area with waypoint 3 and 5 blocked
by wooden board. The narrow passage between the
board and the cardboard box made path planning extra
challenging.

54

5 Results and discussion 5.3.2 Experimental results

in ROSPlan. As these problems only occurred occasionally, this was not seen as a problem for the
results of the tests, rather showing the strengths of the system as it was able to recover, using the
lost position recovery feature developed for this project.

The final, full mission run evaluation test was performed in order to test all functionality of the
extended ROSPIlan framework. As described in section 4.7, the test was set up with several events
to test the different features of the system. For this test, the goal was to verify that all the features
worked together and did not interfere with each other. Using a wooden board as an obstruction
in front of waypoints 3 and 5, as seen from Figure 5.12, the test was initiated from the charging
area at waypoint 0. The system preformed mostly as expected, only struggling with navigating
between a few waypoints in narrow spaces. As the wooden board used as an obstruction created
a very narrow corridor around waypoint 3, this created an extra challenge for the navigation stack
trying to find a path to the blocked waypoint. Disregarding one failed action due to the poorly
tuned navigation stack, the system was able to perform the mission as expected, handling all
events occurring during dispatch. Table 5.3 shows the resulting sequence of actions, excluding
goto_waypoint actions, for the full mission run.

The robot integration evaluation test proved that the claims of the ROSPlan framework being easily
implemented on a physical system to be true. With about a day’s work, the physical system was set
up and integrated with the ROSPIlan. No adaption to the code was needed in order for the system to
function, only the parameters in the problem instance had to be change in order to tune the domain
to the smaller test area. It is worth noting that this test was a best case situation in a controlled
environment and with a robot that is tailor-made for use with a ROS system. A different robot
could prove to be more difficult to integrate into the system, and testing this would be a natural
next step in this project, if time allowed it.

Action Comment

Inspect wp2 | Failed photograph

Inspect wp3 | Blocked x3. Goal removed

Inspect wp2 | Success (2nd attempt)

Inspect wp6 | Success

Charge wpl | Success

Inspect wpS | Blocked x1. Obstruction removed and success
Inspect wp4 | Success. Dispatch successfully finished

R0 AW~

Table 5.3: Resulting action sequence of the full mission run during the robot integration test, excluding
goto_waypoint actions for clarity.

55

56

Conclusions and further work

In this chapter, the work presented in this thesis is summarized and concluded, based on the results
and discussions presented in chapter 5. Suggestions for further work are also presented in this
chapter.

6.1 Conclusions

The goal of this project has been to investigate systems and techniques in order to answer the
research question: “How can Al Planning aid in autonomous robotic inspection and maintenance
missions in industrial environments?”.

To answer this question, the project was broken down into three subtasks. The first subtask in-
volved designing a PDDL domain description and problem instance that could describe a robotic
I&M mission. The focus of the design was on making the domain adaptable to different robots,
making as many parameters definable in the problem instance. The domain was also designed with
battery simulation to allow the plans to include automatically directing the robot to the charger
when needed. The PDDL design was tested on two different Al planners, based on different plan-
ning algorithms, to ensure that the design was robust and suited for different planners. Through
the testing, the domain and problem proved to satisfy the design requirements, producing valid
plans that could be dispatched to a robot. The design is scalable and allows for defining missions
with different amounts of waypoints, charging stations and robots, using the same domain.

The second subtask involved implementing an Al planning system using ROSPlan and extending
its functionality with features needed for an autonomous robotic system to performe Inspection
and Maintenance (I&M) missions. The first and most important feature needed was functionality
that allowed the system to re-plan the mission when needed in order to include new and updated in-
formation. This feature is crucial for the system to be able to handle unplanned events and operate
in a dynamic environment. The feature was developed to run the planning sequence automatically
when dispatch was canceled, avoiding the need for an operator to activate it. Through simulation
and real-world testing, the feature was confirmed to work as intended and provided the basis for

57

6 Conclusions and further work 6.1 Conclusions

the other feature extensions.

To enable operator-in-the-loop functionality in the system, a feature was developed to allow an
operator to review the inspection photos taken by the robot and accept or reject the photo. This
feature is a suggested first step in making an operator control system and more features, like
adding/removing goal and dispatch override functionality, were suggested but not implemented.
The possibility for automating the photo review using image processing was also discussed. Lastly,
the image review feature was also used in order to test the re-planning and goal removal function-
ality.

In order to contribute to robustness of the system and allow dispatch to continue even with distur-
bances in the environment, the goal removal feature was proposed. The feature works by keeping
track of failed actions and removing goals from the planning problem when an action has failed
repeatedly. This ensures that the re-planning loop does not create a constant loop of trying to
achieve an unobtainable goal. The feature was proved efficient through testing in simulator and
lab testing, adding another layer of robustness to the system.

The last feature proposed in this thesis was developed to solve an inherent problem with how the
PDDL domain handles movement. As an action needs to succeed in order for the at end effects to
apply, the known position of the robot would be lost if a movement action failed for any reason.
The lost position recovery feature enabled the system to regain knowledge of the robot position,
enabling re-planning. This feature was also evaluated and proved through testing.

The third subtask involved testing and evaluating the systems developed in this project. All fea-
tures of the system were tested and confirmed working through both simulation and real-world
testing, focusing on how they were able to handle disturbances and unplanned events. The com-
plete system was tested as a whole in a full mission run on a physical TurtleBot3, proving both
the functionality of the system, and the ease of transferring the system from the simulator to a real
robot.

In conclusion, we have found that the results in this thesis point toward an answer to the research
question: Al planning can indeed aid autonomous robotic Inspection and Maintenance (I&M)
mission by providing a tool for creating plans of action, as well as react to changes and unexpected
events during plan dispatch. This helps to increase the autonomy of such missions by reducing the
dependency on human operators. However, the planning problem of a robotic mission is only a
small piece of the overall system, and Al planning in itself is no use without extensive supporting
infrastructure around it. As the output of an Al planner in practice only consists of a sequence
of action commands, the systems are needed, not only to carry out said commands, but also to
handle unplanned events, update the planning problem, include an operator-in-the-loop, etc. The
ROSPlan framework provides a starting point for such a system, providing tools for creating,
and updating planning problems, creating plans with third-party Al planners, and dispatching the
plans to an external system. In this thesis, new features has been added to this framework in order
to provide the supporting infrastructure mentioned, extending its functionality and increasing its
usability for autonomous robotic I&M missions.

58

6 Conclusions and further work 6.2 Further work

6.2 Further work

The systems presented in this thesis were developed and tested on a TurtleBot3 robotic platform.
This robot is a good prototyping and testing tool, but a natural next step for this project would be
to test the systems described on a real I&M robot. This would involve creating interfacing systems
that enable communication between the system and the robot. It would also include adapting the
problem instance to a different robot.

For an autonomous robot to operate in an industrial environment, possibly including human inter-
action, safety and robustness is paramount. Developing safety systems and testing the framework
in different environment and situations are therefor crucial before autonomous missions, like the
ones described in this thesis, are deployed.

One feature that could increase both safety, robustness, and efficiency of the system is a better
developed operator-in-the-loop system. With functionality that includes manual goal addition and
removal, dispatch control, and safety override systems, the tool would allow an operator to take
control of the mission dispatch when needed. The inspection photo feature could also be developed
further and converted to a system controlled by Al and image processing.

Another feature that needs work in order for the system to be deployable on a real I&M robot is the
battery modelling in the PDDL domain, as mentioned in section 5.1. Implementing functionality
for feeding real battery information to the ROSPlan Knowledge Base, and using this information
in the planning problem would create a more accurate representation of the battery, increasing the
accuracy of the resulting plan.

59

60

Bibliography

(1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

SINTEF. “Autonomous robot missions with ai-based planning and acting (robplan).” (Oct.
2021), [Online]. Available: https://www.sintef.no/en/projects/2021/robplan/ (visited on
09/19/2022).

R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of theorem proving
to problem solving,” Artificial Intelligence, vol. 2, no. 3, pp. 189-208, 1971.

T. Estlin, D. Gaines, C. Chouinard, et al., “Increased mars rover autonomy using ai plan-
ning, scheduling and execution,” presented at the IEEE International Conference on Robotics
and Automation, Rome, Italy, May 2007, pp. 4911-4918.

J. Fillan, “Pddl plan validation system using rosplan and a turtlebot3 simulator,” M.S. thesis,
Department of Engineering Cybernetics, NTNU, Dec. 19, 2022.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting. Cambridge, UK:
Cambridge University Press, 2016.

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th. Harlow, Eng-
land: Pearson Education, Limited, 2021.

D. Long and M. Fox, “Progress in ai planning research and applications,” The European
Journal for the Informatics Professional, vol. 3, no. 5, pp. 10-25, 2002.

M. Ghallab, A. Howe, C. Knoblock, et al., Pddl - the planning domain definition language,
version 1.2, Oct. 1998.

AIPLAN4EU Consortium. “Aiplandeu.” (2021), [Online]. Available: https://www.aiplandeu-
project.eu (visited on 05/23/2023).

A. A. Transeth, I. Schjglberg, A. M. Lekkas, et al., “Autonomous subsea intervention (seav-
ention),” IFAC-PapersOnLine, vol. 55, no. 31, pp. 387-394, 2022.

M. Fox and D. Long, “Pddl+ : Modelling continuous time-dependent effects,” Apr. 2003.

M. Fox and D. Long, “PddI2.1: An extension to pddl for expressing temporal planning
domains,” Journal of Artificial Intelligence Research, vol. 20, pp. 61-124, 2003.

A. Coles, A. Coles, M. Fox, and D. Long, “Forward-chaining partial-order planning,” pre-
sented at the ICAPS 2010 - Proceedings of the 20th International Conference on Automated
Planning and Scheduling, Toronto, Canada, 2010.

61

https://www.sintef.no/en/projects/2021/robplan/
https://www.aiplan4eu-project.eu
https://www.aiplan4eu-project.eu

BIBLIOGRAPHY Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

A. Gerevini, A. Saetti, P. Toninelli, and 1. Serina, “Lpg-td: A fully automated planner
for pddl2.2 domains,” presented at the 14th Int. Conference on Automated Planning and
Scheduling, British Columbia, Canada, 2004.

D. L. Poole and A. K. Mackworth, Artificial Intelligence Foundations of Computational
Agents, Foundations of Computational Agents. Cambridge, UK: Cambridge University Press,
2017, p. 820.

M. M. Veloso, A. Pérez, and J. G. Carbonell, “Nonlinear planning with parallel resource al-
location,” in Proceedings of the Workshop on Innovative Approaches to Planning, Schedul-
ing and Control, 1990.

J. S. Penberthy and D. S. Weld, “UCPOP: A sound, complete, partial order planner for adl,”
presented at the International Conference on Principles of Knowledge Representation and
Reasoning, 1992.

A. Gerevini and I. Serina, “Lpg: A planner based on local search for planning graphs with
action costs,” presented at the Proceedings of the Sixth International Conference on Artifi-
cial Intelligence Planning Systems, ser. AIPS’02, Toulouse, France: AAAI Press, 2002.

M. Fox and D. Long, “The 3rd international planning competition: Results and analysis,” J.
Artif. Intell. Res., vol. 20, pp. 1-59, 2003.

A. Gerevini. “Experimental results for the test problems of the 3rd ipc.” (Nov. 18, 2002),
[Online]. Available: https://lpg.unibs.it/lpg/test-results/index.html (visited on 03/07/2023).

ICAPS. “Icaps 2019 conference awards.” (2019), [Online]. Available: https://icaps19.icaps-
conference.org/awards.html (visited on 03/02/2023).

ICAPS. “Ipc-04 results evaluation, and awards.” (2004), [Online]. Available: https://ipc04.
icaps-conference.org/deterministic/results.html (visited on 03/08/2023).

M. Quigley, K. Conley, B. Gerkey, et al., “Ros: An open-source robot operating system,”
presented at the ICRA Workshop on Open Source Software, vol. 3, Kobe, Japan, Jan. 2009.

A. Ademovic. “An introduction to robot operating system: The ultimate robot application
framework.” (2022), [Online]. Available: https://www.toptal.com/robotics/introduction-to-
robot-operating-system (visited on 10/03/2022).

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system
2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, May 2022.

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” presented at the International Conference on Intelligent Robots and Sys-
tems, Sendai, Japan, 2004.

Open Source Robotics Foundation. “Gazebo, Robot simulation made easy.” (2022), [On-
line]. Available: https://classic.gazebosim.org/ (visited on 12/14/2022).

Planning at King’s College London. “ROSPlan.” (2022), [Online]. Available: https://kcl-
planning.github.io/ROSPlan/ (visited on 11/10/2022).

M. Cashmore, M. Fox, D. Long, et al., “Rosplan: Planning in the robot operating system,”
presented at the Proceedings of the International Conference on Automated Planning and
Scheduling, Jerusalem, Israel, Apr. 2015.

62

https://lpg.unibs.it/lpg/test-results/index.html
https://icaps19.icaps-conference.org/awards.html
https://icaps19.icaps-conference.org/awards.html
https://ipc04.icaps-conference.org/deterministic/results.html
https://ipc04.icaps-conference.org/deterministic/results.html
https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://classic.gazebosim.org/
https://kcl-planning.github.io/ROSPlan/
https://kcl-planning.github.io/ROSPlan/

BIBLIOGRAPHY Bibliography

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Cashmore, M. Fox, D. Long, D. Magazzeni, and B. Ridder, “Opportunistic planning in
autonomous underwater missions,” IEEE Transactions on Automation Science and Engi-
neering, vol. 15, no. 2, pp. 519-530, Jan. 2017.

M. Cashmore, M. Fox, T. Larkworthy, D. Long, and D. Magazzeni, “Auv mission control
via temporal planning,” presented at the 2014 IEEE International Conference on Robotics
and Automation, Hong Kong, China, 2014.

L. Xue and A. M. Lekkas, “Comparison of ai planning frameworks for underwater inter-
vention drones,” presented at the Global Oceans 2020: Singapore — U.S. Gulf Coast, 2020.

K. Rajan, F. Py, and J. Berreiro, “Towards deliberative control in marine robotics,” in M. L.
Seto, Ed. New York, NY: Springer New York, Dec. 2012, pp. 91-175.

A. Popov, “Mission planning on the international space station program. concepts and
systems,” presented at the 2003 IEEE Aerospace Conference Proceedings, vol. 7, 2003,
pp. 3427-3434.

J. L. Bresina, A. K. Jénsson, P. H. Motris, and K. Rajan, “Activity planning for the mars ex-
ploration rovers,” in Proceedings of the Fifteenth International Conference on International
Conference on Automated Planning and Scheduling, ser. ICAPS’05, Monterey, California,
USA: AAAI Press, 2005, pp. 40-49.

S. Chien, R. Doyle, A. Davies, A. Jonsson, and R. Lorenz, “The Future of Al in Space,”
IEEE Intelligent Systems, vol. 21, no. 4, pp. 64-69, 2006.

R. Steel, M. Niézette, A. Cesta, et al., “Advanced planning and scheduling initiative Mr-
SPOCK AIMS for XMAS,” Proceedings of the Twenty-First International Joint Conference
on Artificial Intelligence (IJCAI-09), vol. 1050, no. 3, 2009.

V. Sanelli, M. Cashmore, D. Magazzeni, and L. locchi, “Short-term human-robot inter-
action through conditional planning and execution,” presented at the Proceedings of the
International Conference on Automated Planning and Scheduling, Pittsburgh, USA, Jun.
2017.

B. Hoteit, A. Abdallah, A. Faour, I. A. Awada, A. Sorici, and A. M. Florea, “Ai planning
and reasoning for a social assistive robot,” presented at the 17th International Conference
on Cognition and Exploratory Learning in Digital Age, Lisbon, Portugal, 2020.

E. Karpas, S. Levine, P. Yu, and B. Williams, “Robust execution of plans for human-robot
teams,” presented at the Proceedings of the International Conference on Automated Plan-
ning and Scheduling, Jerusalem, Israel, Apr. 2015.

K. Rajan and F. Py, “T-rex: Partitioned inference for auv mission control,” Further advances
in unmanned marine vehicles, pp. 171-199, 2012.

Planning at King’s College London. “ROSPlan.” (2022), [Online]. Available: https://github.
com/KCL-Planning/ROSPlan (visited on 11/07/2022).

Planning at King’s College London. “ROSPlan demos.” (2022), [Online]. Available: https:
//github.com/KCL-Planning/rosplan_demos (visited on 11/10/2022).

C. Muise, F. Pommerening, J. Seipp, and M. Katz, “Planutils: Bringing planning to the
masses,” in 32nd International Conference on Automated Planning and Scheduling, System
Demonstrations and Exhibits, 2022.

63

https://github.com/KCL-Planning/ROSPlan
https://github.com/KCL-Planning/ROSPlan
https://github.com/KCL-Planning/rosplan_demos
https://github.com/KCL-Planning/rosplan_demos

BIBLIOGRAPHY Bibliography

[45] J.Fillan. “Rosplan-inspection.” (), [Online]. Available: https://github.com/JFillan/ROSPlan-
Inspection (visited on 10/12/2022).

[46] Open Source Robotics Foundation Inc. “What is a turtlebot?”” (2022), [Online]. Available:
https://www.turtlebot.com/ (visited on 10/03/2022).

[47] ROBOTIS. “Turtlebot3 simulations.” (2022), [Online]. Available: https://github.com/
ROBOTIS-GIT/turtlebot3_simulations (visited on 11/07/2022).

[48] K. Zheng, “Ros navigation tuning guide,” in Robot Operating System (ROS): The Com-
plete Reference (Volume 6), A. Koubaa, Ed. Cham: Springer International Publishing, 2016,
pp- 197-226.

64

https://github.com/JFillan/ROSPlan-Inspection
https://github.com/JFillan/ROSPlan-Inspection
https://www.turtlebot.com/
https://github.com/ROBOTIS-GIT/turtlebot3_simulations
https://github.com/ROBOTIS-GIT/turtlebot3_simulations

s

Appendix

PDDL domain

(define (domain turtlebot3)

(:requirements :strips :typing :fluents :durative-actions)

(:types
waypoint
robot

(:predicates
(robot_at ?v - robot ?wp - waypoint)
(undocked ?v - robot)
(docked ?v - robot)
(charge_at ?wp - waypoint)
(photographed ?wp - waypoint)

(:functions
distance ?wpl ?wp2 - waypoint)
speed ?v — robot)
min_charge ?v - robot)

(
(
(
(state_of_charge ?v - robot)
(charging_rate ?v - robot)
(discharge_rate ?v - robot)
(docking_duration ?v - robot)
(traveled ?v —-robot)

; Move to any waypoint, avoiding terrain
(:durative—action goto_waypoint
:parameters (?v - robot ?from ?to - waypoint)
:duration (= ?duration (/ (distance ?from ?to)
(speed ?v)))
:condition (and
(at start (robot_at ?v ?from))

(at start (>= (- (state_of_charge ?v) (x (discharge_rate ?v)

?to))) (min_charge ?v)))

(distance ?from

65

39

40

78
79

80

84
85

86

88
89
90
91

92

A PDDL domain

’

(over all

)

(undocked ?v))

:effect (and
(at start

(at end

(decrease

(

not (robot_at ?v ?from)))

from ?to))))
(robot_at ?v ?to))

(at end
(at end
)

(increase

Docking to charger

(:durative—action dock

’

:parameters

:duration

:condition

(

(at start
(over all
(at start

)

(traveled ?v)

(?v — robot ?wp - waypoint)

(a
(
(
(

ceffect (and
(docked ?v))

(at end

(at start

(

?duration
nd

(state_of_charge ?v) (%

(discharge_rate ?v) (distance *?

(docking_duration ?v))

charge_at ?wp))

robot_at ?v ?wp))
undocked ?v))

not (undocked ?v))))

Unocking from charger

(:durative—action undock

’

:parameters

:duration
:condition

(

(at start
(over all
(at start
:effect (and
(at start

(at end

(?v — robot ?wp - waypoint)
?duration (docking_duration ?v))
nd

(a
(
(
(

(

charge_at ?wp))

robot_at ?v ?wp))

docked ?v))

)

not (docked ?v)))
(undocked ?v)))

Charging battery

(:durative—action charge

’

:parameters

:duration
:condition

(

(at start
(at start
(over all
(at start
reffect (and

(at end
)

(assign

(?v — robot ?wp - waypoint)
?duration (x (charging_rate ?v) (-
nd

(a

(charge_at ?wp))

(
(
(

robot_at ?v ?wp))

docked ?v))

<= (state_of_charge ?v)

Photographing an object

(:durative—action inspect

:parameters

:duration

(

(

?v — robot
?duration

(state_of_charge ?v)

of interest

?wp — waypoint)
10)

100)))

100))

100

(distance ?from ?to)))

(state_of_charge ?v))))

66

A PDDL domain

:condition

(over all

(and

(at start (>= (-
reffect (and

(at end
(at end
)

(robot_at ?v ?wp))

(state_of_charge ?v)

(photographed ?wp))

(decrease

(state_of_charge ?v)

3) (min_charge ?v))))

3))

67

68

Appendix

PDDL problem

I (define (problem task)
> (:domain turtlebot3)

3 (:objects

4 wp0 wpl wp2 wp3 wp4 wpd wp6 wp7 — waypoint
5 turtlebot - robot

6)

7 (:init

8 (robot_at turtlebot wpO0)

9 (undocked turtlebot)

11 (charge_at wpO0)

12 (charge_at wpl)

13

14 (= (distance wpl wpO) 5.59464)
15 (= (distance wpO wpl) 5.59464)
16 (= (distance wp2 wpO) 2.94109)
17 (= (distance wpO wp2) 2.94109)
18 (= (distance wp2 wpl) 5.80086)
19 (= (distance wpl wp2) 5.80086)
20 (= (distance wp3 wpO) 7.15122)
21 (= (distance wpO wp3) 7.15122)
22 (= (distance wp3 wpl) 4.66476)
23 (= (distance wpl wp3) 4.66476)
24 [. ; other distances removed to reduce length

speed turtlebot) 0.1)

(
(min_charge turtlebot) 15)

(state_of_charge turtlebot) 100)
(charging_rate turtlebot) 0.5)
(
(
(

discharge_rate turtlebot) 3)

docking_duration turtlebot) 1)
traveled turtlebot) 0)

)
I

34)

35 (:goal (and

36 (photographed wp2)
37 (photographed wp3)

B PDDL problem

)

)

(photographed
(photographed
(photographed
(photographed

(:metric minimize

)

wp4)
wp5)
wpo)
wp7)

(traveled turtlebot))

70

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Preface
	Introduction
	Motivation
	Problem description and contribution
	Scope and Delimitations
	Structure

	Background
	Automated Planning and Acting (AI Planning)
	Planning Domain Definition Language (PDDL)
	PDDL domain
	PDDL Problem

	AI Planners
	Partial Order Planning Forwards (POPF)
	Local search for Planning Graphs (LPG)

	Robot Operating System (ROS)
	Gazebo Simulator

	AI planning with ROSPlan
	ROSPlan planning system

	Relevant literature overview

	PDDL domain description and problem instance design
	Domain description
	Types, predicates, and functions
	Actions

	Problem instance

	ROSPlan feature extension and simulator setup
	ROSPlan Knowledge Base
	Planner implementation
	Actions Interface
	Planning node
	Unknown robot position
	Planning and re-planning
	Goal removal

	Operator interaction
	Simulator environment
	TurtleBot3
	Gazebo simulator
	World model

	Lab experimental test setup

	Results and discussion
	Domain and problem design
	PDDL design evaluation
	PDDL design results

	ROSPlan functionality extension
	Operator interaction and re-planning
	Goal removal
	Blocked path and unknown position recovery

	Lab experimental test results
	Setup
	Experimental results

	Conclusions and further work
	Conclusions
	Further work

	Bibliography
	PDDL domain
	PDDL problem

