
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Jacob August Rangnes

Hardware Acceleration of Real-Time
Angle of Arrival Positioning

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Karl Emil Sandvik Bohne
June 2023

Jacob August Rangnes

Hardware Acceleration of Real-Time
Angle of Arrival Positioning

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Karl Emil Sandvik Bohne
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Project Description

The thesis deals with hardware acceleration of parts of Angle of Arrival calculations, prefer-
ably using the Multiple Signal Classification (MUSIC) algorithm and Field Programmable
Gate Array (FPGA). The hardware accelerator shall be designed for use in an already
existing system, where a battery driven “tag” communicates wirelessly with a “locator”
using Bluetooth Low Energy. The hardware accelerator can be designed specifically for
this system, and optimizations of the MUSIC algorithm can be explored. The accelerator
shall be evaluated in terms of speed of operation, precision, and power consumption by being
compared to a pure software-based implementation.

v

Abstract

Real-Time Locating Systems (RTLS) have become vital across industries as they allow for
effective resource management and optimized logistics. In 2019, Bluetooth enhanced the
Bluetooth Low Energy (BLE) technology, allowing for centimeter-level precision for Indoor
Positioning Systems (IPS), a subset of RTLS. Allowing for Angle of Arrival (AoA) and
Angle of Departure technology (AoD), BLE offers high precision with low complexity and
power usage. In this context, a system was developed as a part of TFE4580 - Specialization
Project to demonstrate the improvements. This thesis aims to further improve this system
by implementing a hardware accelerator for the AoA computations.

The Multiple Signal Classification (MUSIC) algorithm is a popular algorithm, and it is widely
used for estimating the AoA in RTLS. In this thesis, the work from multiple versions of the
MUSIC algorithm is combined, and further optimized for a specific antenna structure and for
use in BLE applications. During the optimizations, new methods for deriving a real-valued
MUSIC algorithm is explored for non-uniform antenna arrays.

A real-valued transformation of the MUSIC algorithm is explored, allowing the implemented
hardware accelerator to achieve greater level of parallelism. The implementation of the
algorithm is divided into the work of two theses, where this thesis mainly focuses on the final
step of the MUSIC algorithm, where a search is performed, and the goal is to find the AoA.
For the search, two options are implemented and compared to each other, and to a series of
high-level models, written in Python and C. A multiple-search approach is derived, reducing
the complexity for the search, without reducing the search precision significantly.

The power- and time consumption is measured for all implemented versions, allowing us to
compare the hardware accelerated search to the high-level models. Compared to Python,
which is the language used for implementing the MUSIC algorithm in the previously imple-
mented system, significantly time reduction is observed, reducing the execution time from
154 ms to 5.34 µs. The hardware accelerated search is also significantly more energy efficient
when compared to the high-level models. Energy efficiency is essential when implementing
low-power systems, and with the obtained results, the hardware accelerated search would
further improve the already existing system in terms of speed and energy efficiency while
maintaining approximately the same level of precision. Some errors are introduced when
specific AoAs are present, and the reason for this is due to the values used in the search being
limited in terms of decimal precision.

The implemented search is a part of a larger design, where all steps of the MUSIC algorithm
are implemented on an FPGA. The implementation of the remaining parts of the algorithm
can be found in the thesis written by Tommy A. Opstad [1]. The two designs are merged
together to confirm that the two designs are compliant with each other, and an estimation
of the total performance is given.

vii

Sammendrag

Sanntids-lokasjonssystemer har blitt viktig i en rekke bransjer da de muliggjør for effektiv
utstyrskontroll og optimalisert logistikk. I 2019 forbedret Bluetooth sin BLE teknologi, slik
at det ble mulig med presisjon på centimeternivå for innendørs posisjoneringssystemer (IPS),
en undergruppe av RTLS. Ved å støtte AoA og AoD teknologi tilbyr BLE høy presisjon med
lav kompleksitet og strømforbruk. I denne sammenhengen ble et system utviklet som en del
av TFE4580 - Fordypningsprosjekt for å demonstrere den nye teknologien. Denne oppgaven
har som mål å videre forbedre dette systemet ved å akselerere AoA-beregninger.

MUSIC algoritmen er en populær algoritme og brukes ofte for å estimere AoA i RTLS.
I denne oppgaven blir arbeidet fra flere versjoner av MUSIC-algoritmen kombinert og yt-
terligere optimalisert for en spesifikk antennekonfigurasjon og for bruk i BLE-applikasjoner.
Under optimaliseringen utforskes nye metoder for å utlede en reell-MUSIC algoritme for
ikke-uniforme antennestrukturer.

En transformasjon av MUSIC-algoritmen, hvor målet er å gjøre alle verdier reelle, blir
utforsket, slik at den implementerte akseleratoren kan oppnå høyere grad av parallellitet.
Implementeringen av algoritmen er delt inn i to masteroppgaver, der denne oppgaven hoved-
sakelig setter søkelys på det siste trinnet i MUSIC-algoritmen, der et søk utføres for å finne
AoA. For søket er to alternativer implementert og sammenlignet med hverandre og med en
serie av høy-nivå modeller, skrevet i Python og C. En flersøk-tilnærming er utviklet, som
reduserer kompleksiteten for søkningen uten å redusere presisjonen vesentlig.

Effekt- og tidsforbruket er målt for alle implementerte versjoner, noe som gjør det mulig
å sammenligne den akselererte algoritmen med høy-nivå modellene. Sammenlignet med
Python, som er språket som ble brukt til å implementere MUSIC-algoritmen i det tidligere
implementerte systemet, ble det observert betydelig tidsreduksjon, med en kjøretid som ble
redusert fra 154 ms til 5,34 µs. Det akselererte søket er også betydelig mer energieffek-
tivt sammenlignet med høy-nivå modellene. Energieffektivitet er viktig ved implementering
av lavenergisystemer, og med de oppnådde resultatene vil det akselererte søket ytterligere
forbedre det allerede eksisterende systemet når det gjelder hastighet og energieffektivitet,
samtidig som omtrentlig samme presisjon blir opprettholdt.

Søket som er implementert er en del av et større design, hvor alle stegene i MUSIC algoritmen
er implementert på en FPGA. De gjenværende stegene av algoritmen er implementert av
Tommy A. Opstad, og mer informasjon om de stegene kan bli funnet i hans masteroppgave
[1]. Resultatene fra de to oppgavene er satt sammen for å sørge for at designene er kompatible
med hverandre, og et estimat på den totale ytelsen av den totale akselerasjonen er gitt.

ix

Preface

This thesis is the final requirement to be awarded the title Master of Science in Electronic
Systems Design and Innovation from the Norwegian University of Science and Technology.
It is a continuation of the project thesis carried out in the preceding semester. Both projects
have been performed on behalf of EmLogic, a rapidly growing design center for embedded
systems. It has been a great pleasure to work with you! A special thanks to my supervisor,
Karl Emil Sandvik Bohne for your continuous support throughout this semester. I would
also like to thank Espen Flo Eriksen for helping me understand some of the challenging
mathematical problems I have encountered while working with this thesis. Both projects have
also been carried out under superb academic supervision from Prof. Per Gunnar Kjeldsberg
at the Norwegian University of Science and Technology. I am grateful for your feedback and
for the ideas of topics to discuss given through reviews and meetings.

During both projects, I have worked closely with another student, Tommy A. Opstad. His
hard work and dedication has played an important role in both projects’ success. It is clear
that you enjoy working with digital- and embedded systems, and I wish you all the best in
the future.

Lastly, I would also like to use the opportunity to thank my girlfriend, Nora, for your
continuous support and encouragement throughout these five years. These five years in
Trondheim went by really fast, and we have made memories that will last forever. I am
forever grateful for all the reports you have helped me proofread and the exams you have
helped me prepare for. I acknowledge that understanding the things I am working with can
be challenging, but don’t worry; we have plenty of time for that.

Jacob A. Rangnes
Trondheim, June 2023

xi

Contents

Project Description v

Abstract vii

Sammendrag ix

Preface xi

List of abbreviations xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Main Objectives . 2
1.3 Methodology . 2
1.4 Main contributions . 3
1.5 Report Outline . 3

2 Background 5
2.1 System overview . 5
2.2 Bluetooth Low Energy . 6

2.2.1 Physical Layer . 7
2.2.2 Link Layer . 8

2.3 Results From the Project Thesis . 11
2.4 PYNQ Z1 Board . 12

2.4.1 RAM36E1 . 12
2.4.2 DSP48E1 . 12

2.5 Previous Work . 12

3 Theory 15
3.1 Complex Number Arithmetic . 15
3.2 Representation of Real-Valued Numbers . 15

3.2.1 Floating Point Numbers . 15
3.2.2 Fixed Point Numbers . 16

3.3 Matrix Operation and Theory . 17
3.3.1 Matrix Transpose . 17
3.3.2 Conjugate operator . 17
3.3.3 Hermitian Adjoint . 18

3.3.3.1 Relevant Properties . 18
3.3.4 Kronecker product . 18
3.3.5 Identity and Exchange Matrix . 19
3.3.6 Hermitian Matrix . 20

xii

CONTENTS xiii

3.3.7 Persymmetric Matrix . 20
3.3.8 Unitary Matrix . 21
3.3.9 Matrix Multiplication . 21
3.3.10 Euclidean Norm . 21

3.4 In-Phase and Quadrature signals . 22
3.5 Azimuth and Elevation . 22
3.6 The Multiple Signal Classification Algorithm 23

3.6.1 Data model . 23
3.6.2 Covariance matrix . 26
3.6.3 Search Function . 27

3.7 A Real-Valued MUSIC Algorithm . 27

4 Derivation of application-specific MUSIC algorithm 31
4.1 Antenna Layout . 31
4.2 Discussion of CV and RV MUSIC Algorithm 32
4.3 Derivation . 34

4.3.1 Modifying the Kronecker Product . 35
4.3.2 RV Steering vector . 38
4.3.3 A Note on the scaling factors . 41

5 Implementation 43
5.1 Task Description . 43
5.2 Spectral Peak Search Algorithm . 44
5.3 Hardware Implementation of Spectral Peak Search 49

5.3.1 Hardware Resources . 49
5.3.2 Search Core . 49
5.3.3 Vector Multiplication Unit . 52
5.3.4 Comparison Unit . 54
5.3.5 Obtaining the Steering Vectors . 55
5.3.6 Spectral Peak Search Core . 65

5.4 MUSIC Core . 76

6 Test and Results 79
6.1 Evaluation of the High-Level Models . 79

6.1.1 Precision . 79
6.2 Test and Verification of SPS Core . 85
6.3 MUSIC Core . 92

7 Discussion 95
7.1 Precision . 95
7.2 Time and Power Consumption . 98
7.3 Comparison of Real-Valued and Complex-Valued implementation of SPS Core 100
7.4 Achieving Greater Theoretical Precision . 100
7.5 Observations on Non-Constant Wavelengths 101
7.6 Recommendations for Future Work . 102

8 Conclusion 105

Bibliography 107

xiv CONTENTS

Appendices

A Vivado Power Report Default Parameters 111

List of Tables

2.1 BLE Link Layer states. 8
2.2 RAMB36E1 layout options [17]. Ki = 1024 values. 12

3.1 Descriptions of the letters used to symbolize different quantities. 23
3.2 MUSIC matrix dimensions. 26

4.1 Application specific values for the MUSIC algorithm. 33
4.2 Operations required for RV-MUSIC transformation. The calculated values in

this table are found from the dimensions of the matrices included in Equation
(3.34) and Equation (3.35). 33

4.3 RV-MUSIC search function matrix dimensions. 34

5.1 High-level simulations of multiple search iterations. 48
5.2 Architecture communication symbols. 49
5.3 Overview of available resources for SPS. The total available amount is found

from [16], and the resources used for CMC, RVT, and EVD is found from [1]. 49
5.4 Truth table for the COMP2 entity. 55
5.5 Number of bits needed per value for different precision. 59
5.6 An extract of the final BRAM structure for the Spectral Peak Search. 63
5.7 Number of clock cycles per state for the one-search SPS core. 68
5.8 BRAM structure indexing for search with step sizes ∆θ = ∆φ = 4◦. 68
5.9 BRAM structure indexing colors per elevation angle. 69
5.10 Number of clock cycles per state for the two-search SPS core. 76

6.1 High-level model metrics for the performed tests. CV: complex-valued, RV:
real-valued. 81

6.2 Timing statistics for the high-level models. 84
6.3 Power usage on a computer running the implemented high-level models. All

measurements are performed using Open Hardware Monitor [38]. 85
6.4 Synthesis report in terms of resource usage for the VECMUL unit. 86
6.5 Synthesis report in terms of power usage for the VECMUL unit. All power reports

are generated with the default parameters for Vivado, presented in Table A.1. 86
6.6 Synthesis report in terms of resource usage for the COMP unit. 88
6.7 Synthesis report in terms of power usage for the VECMUL unit. All power reports

are generated with the default parameters for Vivado, presented in Table A.1. 88
6.8 Synthesis report in terms of resource usage for the search core unit. 89
6.9 Synthesis report in terms of power usage for the search core. All power reports

are generated with the default parameters for Vivado, presented in Table A.1. 89
6.10 Precision metrics for the RTL implementation of the SPS core. 91
6.11 Timing statistics for the two versions of the SPS CORE. 92

xv

xvi LIST OF TABLES

6.12 Summary of timing and power usage for each of the implemented modules. All
power reports are generated with the default parameters for Vivado, presented
in Table A.1. 92

6.13 MUSIC core device utilization report for ZYNQ XC7Z020. Parts of these
results are retrieved from [1]. 93

6.14 MUSIC core timing report for ZYNQ XC7Z020. Parts of these results are
retrieved from [1]. 93

6.15 MUSIC core power report for ZYNQ XC7Z020. All power reports are gener-
ated with the default parameters for Vivado, presented in Table A.1. Parts of
these results are retrieved from [1]. 93

7.1 Precision metrics for the RTL implementation of the SPS core. 97
7.2 Energy consumption based on the timing and power analysis. The reported

energy consumption is estimated for one full search. 99

A.1 Vivado default power report parameters. 111

List of Figures

1.1 Example of IPS used in a warehouse. 1
1.2 Methodology for the thesis. 2

2.1 An illustration of the previously implemented system. 5
2.2 A photograph of the assembled system. 6
2.3 The BLE stack. 7
2.4 Visual representation of the 40 BLE channels. 7
2.5 BLE Link Layer packet format. The black curves indicate that the transmitted

data is modulated using GFSK, while the blue curves are used for indicating
a series of modulated binary ones. 8

2.6 Angle of Arrival between two antenna elements. 9
2.7 Illustration of CTE sampling setup. 10
2.8 Timing diagram for CTE transmission and sampling. 10
2.9 Comparison of the sampling window for the two available time slots. 11

3.1 IEEE 754 standard for floating point number representation. 16
3.2 Fixed point number representation. 16
3.3 Visual representation of a persymmetric matrix. Equal colors indicate equal

values. The gray cells indicate the southwest-to-northeast diagonal. The values
along this diagonal are not relevant for the Persymmetric property, and they
are not required to be equal to each other. 20

3.4 IQ value in the complex plane. 22
3.5 Layout of an Mx ×My Uniform Rectangular Array (URA). 23
3.6 Visual representation of how the Kronecker product can be used for obtaining

the steering vector for a URA. 25

4.1 Layout of the antenna elements. Each yellow element indicates one antenna
element, while the gray elements indicate the non-existing elements. These
elements are used for deriving the final solution of the RV-MUSIC algorithm. 32

4.2 Visualization of the Kronecker product. 36

5.1 Block diagram of hardware implementation of the MUSIC algorithm. 44
5.2 Updated system architecture. 44
5.3 Complexity vs. step sizes for the 2D MUSIC search algorithm. 45
5.4 Visualization of the theoretical idea with performing multiple search iterations,

narrowing the search regions down to find the AoA. 46
5.5 RV-MUSIC spectrum for a search region θ ∈ [0◦, 90◦] and φ ∈ [0◦, 360◦] with

SNR=40 dB. 47

xvii

xviii LIST OF FIGURES

5.6 A visualization of a simulation in the high level model performed with 3
searches. Each black dot indicates one computation of the search function,
PMU, presented in Equation (3.44). The light red square indicates the second
search area, while the dark-red square indicates the third search area. 48

5.7 A basic architecture for the search to be performed. 50
5.8 Microarchitecture for the Search Core. 50
5.9 Example timing diagram for the search core. 52
5.10 MAC architecture for the VECMUL unit. 52
5.11 Microarchitecture of the VECMUL module. 53
5.12 Microarchitecture for the COMP unit with M = 10. 54
5.13 Architecture for the COMP2 unit. 55
5.14 Structure of one BRAM group. ãm(θ, φ) indicates that this is the mth BRAM

group where m ∈ [1,M]. 57
5.15 A plot visualizing how the number of bits used per steering vector value

influences the needed BRAMs if they are stored with 1◦ step size. 58
5.16 High-level model simulation for different number of decimals used. A series of

50 simulations with random AoA is performed per number of decimal test. . . 59
5.17 A plot visualizing how the number of bits used per steering vector value

influences the needed BRAMs if they are stored with 1◦ step size, using the
symmetrical property of the steering vector. 62

5.18 The proposed BRAM structure. 63
5.19 Architecture for the one-search SPS core. 66
5.20 Timing diagram of the one-search SPS Core. 67
5.21 State machine of the one-search SPS Core. 67
5.22 2D visualization of how the chosen step sizes can miss the main peak. 70
5.23 Architecture for the two-search SPS core. 70
5.24 FSM for two-search SPS Core. 71
5.25 BRAM structure indexing for the second search. The blue cell is used for

indicating (θp,1 = 68◦, φp,1 = 256◦) for one scenario, while the green cell is
used for indicating (θp,1 = 68◦, φp,1 = 110◦) for another scenario, where the
indexing would be more complicated. The red/orange cells, located around
the peak cells indicates which data we need to read. 73

5.26 Updated BRAM structure indexing visualization. The blue cell indicates the
data for the peak found in the first search iteration, while the red cells indicate
all cells read for the second search. The data for the blue cell are also included
for this search. 74

5.27 Example timing diagram when the state is FEED 2 UNDER 180 or FEED 2 OVER
180. 75

5.28 Example timing diagram when the state is FEED CLOSE TO 180. 76
5.29 Architecture of the MUSIC core, combining the results of the work done by

Tommy A. Opstad and the work presented in this thesis. 77

6.1 CV, full precision one-search high-level model absolute error plot. 81
6.2 CV, full precision two-search high-level model absolute error plot. This plot

indicates that there are no errors. 81
6.3 RV, full precision one-search high-level model absolute error plot. 82
6.4 RV, full precision two-search high-level model absolute error plot. 82

LIST OF FIGURES xix

6.5 RV, constrained precision one-search high-level model absolute error plot. The
precision used for this test is 5 decimal places, i.e., the same as the implemented
hardware accelerator. 82

6.6 RV, constrained precision two-search high-level model absolute error plot. The
precision used for this test is 4 decimal places. 83

6.7 RV, constrained precision two-search high-level model absolute error plot. The
precision used for this test is 5 decimal places, i.e., the same as the implemented
hardware accelerator. 83

6.8 Results from observing the reported CPU power while continuously running
the high-level models on a laptop. The data is obtained by using Open
Hardware Monitor [38]. 84

6.9 Block diagram of the TB used for verification of VECMUL. 85
6.10 Block diagram of the TB used for verification of the COMP entity. 87
6.11 Block diagram of the TB used for verification of the search core. 88
6.12 Block diagram of the TB used for both implemented versions of the SPS core. 90
6.13 Precision plot for the one-search SPS core. 91
6.14 Precision plot for the two-search SPS core. 91

7.1 Visualization of how ±1◦ error influence the conversion to a position in 2D.
Note that the calculations assume that the height in z-direction is 130 cm
between the tag and the locator. 96

7.2 One-search SPS core simulation results for SNR=30dB. Waiting for results . 97
7.3 Two-search SPS core simulation results for SNR=30dB. 97
7.4 Comparison of timing statistics for the performed tests. Not that the y-axis is

logarithmic scaled. 98
7.5 Approximate architecture required for computing steering vector values. . . . 101
7.6 Absolute average error for the tests performed with varying λ. Note that

k ∈ [0, 39] describes the tested BLE channel. 102

List of abbreviations

AWGN Additive White Gaussian Noise
AoA Angle of Arrival
AXI Advanced eXtensible Interface
BLE Bluetooth Low Energy
BRAM Block RAM
BG BRAM Group
CMC Covariance Matrix Calculation
CTE Constant Tone Extension
DDR3 Double Data Rate 3
DSP Digital Signal Processing
DUT Device Under Test
EVD Eigenvalue Decomposition
FPGA Field Programmable Gate Array
FB Forward/Backward
GFSK Gaussian Frequency Shift Keying
GPS Global Positioning Systems
FSK Frequency Shift Keying
ISM Industrial, Scientific and Medical
IQ In-Phase and Quadrature
IPS Indoor Positioning Systems
LL Link Layer
MUSIC Multiple Signal Classification
MAC Multiply-Accumulate
PDU Protocol Data Unit
PS Processing System
RAM Random Access Memory
RF Radio Frequency
RV Real-Valued
RVT Real-Valued Transformation
RTLS Real-Time Locating Systems
SoC System on Chip
SPS Spectral Peak Search
TB Testbench
ULA Uniform Linear Array
URA Uniform Rectangular Array
VECMUL Vector Multiplication

xxi

Chapter 1
Introduction

1.1 Motivation
The demand for Real-Time Locating Systems (RTLS) has grown significantly in recent years
due to their potential in enhancing security and improving operational efficiency. RTLS are
defined by the ISO/IEC 24730-1:2014 standard [2], and are included in the 9th sustainability
goal, Build resilient infrastructure, promote inclusive and sustainable industrialization and
foster innovation [2, 3]. The technology is intended for tracking and monitoring of assets,
people, and vehicles in real-time, providing essential information for critical decision-making
processes. As an example, using RTLS in emergency response allow the operators to locate
the nearest personnel and equipment, reducing the response time for critical situations.

Indoor Positioning Systems (IPS) are a subset of RTLS, and are used for locating objects
in closed structures where other RTLS technologies, such as Global Positioning Systems
(GPS), generally have poor performance [4]. Figure 1.1 illustrates how an IPS are typically
implemented for tracking assets in warehouses. By using wireless technology, we can place
transmitters on the assets to be tracked, communicating with receivers placed at strategic
locations within the closed structure.

Figure 1.1: Example of IPS used in a warehouse.

1

2 CHAPTER 1. INTRODUCTION

In 2019, improvements were introduced for the Bluetooth technology to enhance the perfor-
mance of IPS using the Bluetooth Low Energy (BLE) technology, reportedly allowing for
centimeter-level precision [5]. Bluetooth is a widely adopted technology with approximately
400 million devices shipped yearly to be used in RTLS [5].

However, the implementation of RTLS poses several challenges, including the need for high
computational power and low latency. These challenges can be addressed by using hardware
accelerators, which can speed up the processing time of RTLS algorithms and reduce power
consumption compared to pure software-based solutions. In this context, this thesis proposes
the implementation of a hardware accelerator for the Multiple Signal Classification (MUSIC)
algorithm, a widely used algorithm in RTLS.

1.2 Main Objectives
The main objectives for the thesis are summarized in the list below.

1. What optimizations of the MUSIC algorithm can be done for use in BLE applications
and specific antenna structures?

2. How does the optimized MUSIC algorithm perform when running on an FPGA com-
pared to a pure software-based implementation in terms of speed, precision and power
usage?

1.3 Methodology
The strategy for this thesis is summarized in Figure 1.2.

Figure 1.2: Methodology for the thesis.

1.4. MAIN CONTRIBUTIONS 3

The initial phase of the thesis was dedicated to literature study with a goal of understanding
and experimenting with the MUSIC algorithm. Python [6] is used for making high-level
models and has allowed for rapid prototyping and verification of ideas. The implementation
of the hardware accelerator is written in VHDL. Simulations, synthesis and implementation
are performed using the Xilinx Vivado tool. For verification of the implemented hardware
accelerator, Python is used for generating stimuli and expected results. Assertions are written
to ensure that the correct behavior is achieved for all test cases.

1.4 Main contributions
• Modification of the real-valued MUSIC algorithm, provided in [7], to fit non-Uniform

Rectangular Array (URA)- or Uniform Linear Array (ULA) antenna structures.

• Observed symmetrical properties of the real-valued steering vectors, reducing the needed
memory size by 50%.

• Proposed multiple hardware architectures for the real-valued MUSIC search function.

• Implemented two solutions for the real-valued MUSIC search function, both offering
significant speedup compared to a software-based implementation.

• Observed and discussed how the quantization of numbers influence the precision of the
hardware accelerated MUSIC search.

• Cooperated with Tommy A. Opstad to implement a complete real-valued MUSIC
algorithm on the Xilinx Z-7020 System on Chip.

• Presented theoretical improvements for speedup and energy consumption, and intro-
duced a discussion on how the operating frequency can be adjusted to fit the desired
usage for the hardware accelerator.

• Implemented parts of the MUSIC algorithm in Python, C and VHDL in order to
compare the performance of the hardware accelerator.

1.5 Report Outline
Chapter 2 Background contains a more detailed description of the system where the
hardware accelerator is to be implemented. To understand how this system works, an
introduction to Bluetooth Low Energy (BLE) and the technology allowing for BLE to be
used in IPS is also provided here.

Chapter 3 Theory provides all relevant theory for the implementation of the hardware
accelerator. The main focus for this chapter is to present the MUSIC algorithm. To fully
understand the algorithm, relevant matrix theory is also provided, as the algorithm introduces
various matrix operations. This chapter first presents the original, complex-valued, MUSIC
algorithm before presenting a real-valued approach of the same algorithm.

Chapter 4 Derivation of application-specific MUSIC algorithm presents the deriva-
tion of the application-specific vectors and matrices. This chapter contains further modifica-
tions of the results of the theory presented in Chapter 3.

4 CHAPTER 1. INTRODUCTION

Chapter 5 Implementation first presents the structure of the hardware accelerator to be
designed. The methods used for solving the given tasks are discussed before multiple possible
architectures are presented and discussed.

Chapter 6 Test and Results describes how the implemented accelerator is tested and
verified. To evaluate and discuss the performance of the accelerator, the same tests are also
performed on a high-level model. These results are also presented in this chapter.

Chapter 7 Discussion provides a discussion of the obtained results. The discussion is
focused around the objectives presented in Section 1.2. A recommendation for future im-
provements are also given in this chapter.

In Chapter 8 Conclusion concludes the work done in this thesis.

Chapter 2
Background

This thesis is a continuation of the project carried out in the preceding semester as a part
of TFE4580 - Specialization Project, where a system was made to demonstrate the
improvements of the BLE technology included with the Bluetooth Core Specification v5.1
[5]. The system was implemented by the author of this thesis [8] and Tommy A. Opstad [9].
The following section will briefly present the BLE technology and discuss the relevant parts
of the implemented system and the obtained results.

2.1 System overview
The previously implemented system consists of three main components; a tag, a locator,
and a computer estimating- and visualizing the location of the tag. An overview of how the
components communicates is shown in Figure 2.1.

Figure 2.1: An illustration of the previously implemented system.

As indicated in the figure, a tag communicates wirelessly with a locator by using BLE. The
locator receives the signal on multiple antennas and further communicates the received values
to a computer that is running a Python program for estimating and visualizing the position of
the tag [8, 9]. The system allows multiple tags to communicate with one locator board. The

5

6 CHAPTER 2. BACKGROUND

individual tags are assigned an ID, and they are using an accelerometer to detect movement.
The detected movement is used as a trigger to rapidly transmit multiple BLE packets for a
short period of time before returning to sleep [8]. This version of the system is using the
MUSIC algorithm for estimating the position. Further details on this algorithm are presented
in Section 3.6. Both the tag and locator use the nRF52833 SoC as the chosen processor.

A photograph of the assembled system is presented in Figure 2.2. The height difference
between the tag and the locator is known and constant, h = 130 cm [8]. This height can be,
together with the estimated direction for the received signal, used for calculating the position
of the tag in the two-dimensional plane. For this system, the movement of the tag is limited
to only move in two dimensions.

Figure 2.2: A photograph of the assembled system.

2.2 Bluetooth Low Energy
As indicated in Section 2.1, the tag communicates with the locator by using BLE. This section
presents the fundamentals of the BLE technology and how it can be used in direction finding
applications.

With the Bluetooth Core Specification version 5.1 [10], new features were introduced to the

2.2. BLUETOOTH LOW ENERGY 7

BLE controller shown in Figure 2.3. The relevant changes were done in the Link Layer,
reportedly allowing for centimeter-level precision estimations of the direction of a received-
or transmitted signal [5]. The remaining of this section will describe the relevant parts
of the BLE stack and explain how they allow for BLE to be used in direction finding
applications.

Figure 2.3: The BLE stack.

2.2.1 Physical Layer
The physical layer is the lowest layer in the BLE stack, and is the layer where the connection
and communication between devices are made. BLE is located in the 2.4GHz Industrial,
Scientific and Medical (ISM) band, divided into 40 1MHz-channels as shown in Figure 2.4
[10, p. 2660]. There are two types of channels, advertising- and data channels. The former
is used only for broadcasting data, while the latter can be used for the same operations or
communicating with specific devices [10, p. 2690].

Figure 2.4: Visual representation of the 40 BLE channels.

From Figure 2.4, it can be seen that the frequency for each band is different, resulting in a
difference in the wavelength for each of the channels. The relation between the frequency, f ,
velocity, v, and wavelength, λ, is given by [11, p. 341]

λ = v

f
. (2.1)

8 CHAPTER 2. BACKGROUND

This means that for the implemented system presented in Section 2.1, we can expect to receive
data on all the available channels, resulting in a non-constant wavelength for the received
BLE packets. This will later be important for the MUSIC algorithm presented in Section 3.6,
and a discussion of the effects is presented in Section 7.5.

For modulation of the data, BLE mainly uses Gaussian Frequency Shift Keying (GFSK) [10,
p. 2662]. GFSK is a technique used for modulating wireless data, and it is based on the
Frequency Shift Keying (FSK) modulation scheme, where the frequency is shifted [12] to
represent binary data. A binary one is represented by a positive frequency deviation, while
a binary zero is represented by a negative frequency deviation from the center frequency of
the chosen channel, presented in Figure 2.4 [10, p. 2662].

2.2.2 Link Layer
The Link Layer (LL) is the second-lowest layer in the BLE stack presented in Figure 2.3, and
it controls the behavior of the BLE controller The LL can be described as a state machine
with the available states that are presented in Table 2.1 [10, p. 2682].

Table 2.1: BLE Link Layer states.

Number State name
1 Standby
2 Advertising
3 Scanning
4 Initiating
5 Connection
6 Synchronization

In state 2, 5, and 6, the controller can transmit packets. The general structure of a BLE
packet is presented in Figure 2.5. Depending on the given state for the BLE controller, the
transmitted Protocol Data Unit (PDU) is modified and transmitted on either advertising- or
data channels [10].

Figure 2.5: BLE Link Layer packet format. The black curves indicate that the transmitted
data is modulated using GFSK, while the blue curves are used for indicating a series of
modulated binary ones.

The details of the first four sections of the packet, marked with gray, are not presented as
they are not relevant for this thesis. However, the Constant Tone Extension (CTE) is highly
relevant and will further be presented.

2.2. BLUETOOTH LOW ENERGY 9

Angle Of Arrival
Before the CTE in the BLE packet is presented, an introduction to the term Angle of Arrival
(AoA) is given in the following section. AoA is a term used for a popular technique used
in Radio Frequency (RF) systems, allowing us to obtain the direction of the received signal.
Multiple properties of the signal can be used for obtaining the AoA, such as time- and phase
difference [13]. For BLE, the latter property is used [10, p. 2733]. The fundamental scenario
of an incident wave arriving at two antennas spaced with a distance d apart is shown in
Figure 2.6(a), and a visualization of how the signal is observed on the two antennas in time
domain is shown in Figure 2.6(b).

(a) Incident wave received on two antennas. (b) Observed signal values for the two antennas.

Figure 2.6: Angle of Arrival between two antenna elements.

From Figure 2.6(a), we observe that a right triangle is formed, and by using trigonometry,
we can obtain the AoA [10, p. 282]

θ = arccos
(
ϕλ

2πd

)
, (2.2)

where ϕ is the phase difference between the two observed phase values.

As indicated by this scenario, using two antennas allow us to obtain one angle, resulting
in a direction in two dimensions. To obtain a direction in three dimensions (3D), a third
element can be added perpendicular to the array in Figure 2.6(a), adding a new AoA in
the perpendicular plane to θ in Equation (2.2). By combining these angles, we obtain the
3D AoA. This implies that we only need three antennas for obtaining the AoA in three
dimensions. In these cases, the mathematics for estimating the AoA become fairly simple.
However, increasing the number of antennas in the array make the estimations of AoA less
prone to errors due to noise, as it allows us to observe the AoA between multiple antenna
pairs, as in Figure 2.6(a). In the case where a 2D antenna array, containing multiple elements,
is used, Equation (2.2) becomes inefficient and inaccurate. Specific algorithms, such as the
MUSIC algorithm, are generally more precise in such scenarios. The theory for the MUSIC
algorithm is presented in Section 3.6.

CTE
The CTE was added to the BLE packet, presented in Figure 2.5, with Bluetooth Core
Specification v.5.1 [10].

The CTE is, as the name indicates, a constant tone which is configurable in length from
16-160 µs. While the data in a BLE packet are modulated using GFSK, the CTE is a series

10 CHAPTER 2. BACKGROUND

of modulated binary ones [10, p. 2693]. This is illustrated in Figure 2.5. As presented in the
above section, this constant tone can be used for obtaining the AoA of the signal, as it allows
us to observe the phase difference between antenna elements.

BLE is often used in low-power systems where the cost and power usage should be kept as
low as possible. Ideally, the signal values of each antenna in the receiving array should be
sampled simultaneously. This is due to that if the antenna signals are sampled sequentially, a
time difference will influence the observed phase difference between the two measurements of
the antennas. When working with large antenna structures, adding support for fully parallel
sampling of the antennas is not feasible. To address this issue, Bluetooth Special Interest
Group has proposed a specific sampling routine [10, p. 2733], presented in Figure 2.8, using
RF switches as indicated in Figure 2.7.

Figure 2.7: Illustration of CTE sampling setup.

The receiving processor switches between the elements in the array with time slots of either 1
µs or 2 µs. The total number of samples per antenna depends on the length of the transmitted
CTE and the duration of the time slots for sampling. An overview of how the CTE is
transmitted and sampled is shown in Figure 2.8 [10, p. 2733].

Figure 2.8: Timing diagram for CTE transmission and sampling.

During the Guard Period, no sampling of antenna signals is performed, but during the
Reference Period, one sample is taken every microsecond without switching between the
antennas in the array. Eight samples are therefore taken during the reference period for
both of the available time slot configurations. The samples taken in the reference period
can be used for adjusting the rest of the sampled values. As discussed above, sampling
the antenna-elements sequentially introduces a phase difference due to the time difference

2.3. RESULTS FROM THE PROJECT THESIS 11

between the samples. This phase difference is found in the reference period and can be taken
into account in the rest of the samples. Figure 2.8 indicates that 1 µs time slots allow for more
samples to be taken. However, this often requires better hardware in terms of acquisition
time. It is critical that the antenna signal is stable before a sample is taken. Figure 2.9
indicates that the Sampling Window of the sampling slots is constant and equal to 0.75 µs
for both 1- and 2 µs time slots. An additional microsecond is present to the 2µs sampling
slot, allowing the signal to stabilize further before the sampling window is entered.

Figure 2.9: Comparison of the sampling window for the two available time slots.

From the above information, a formula for calculating the number of snapshots per antenna,
N , can be derived. If D denotes the number of antennas in the array, then

N = floor
(CTE length − 12µs

(Switch slot + Sampling slot) ·D

)
. (2.3)

2.3 Results From the Project Thesis
This section is used to present the results from the implementation of the above described
system. During the project, different configurations of the BLE controller were discussed and
tested [8], while this section will only present the final implementation of the system.

From a series of tests with different variations of CTE transmission time and sampling
time slots, the accuracy was tested. The most accurate configuration was found for CTE
length of 160 µs and sampling time slots of 2 µs. The tests indicated that the system
became more unstable when time slots of 1 µs were used. No major difference in the current
consumption of the transmitting component was measured for different CTE lengths. Using
the former configuration, centimeter-level precision for the estimated coordinates of the tag
was achieved [8], as claimed by Bluetooth SIG [5]. By using Equation (2.3) and the chosen
system configurations for the CTE transmission and receiving, we can calculate the expected
value of the number of snapshots per antenna, N . The antenna array used for this system
has D = 12 elements, and is further presented in Chapter 4.

N = floor
(160 µs − 12µs

(2µs + 2µs) · 12

)
= floor

(152
48

)
= 3 (2.4)

12 CHAPTER 2. BACKGROUND

This means that we are able to sample each antenna three times per received CTE.

2.4 PYNQ Z1 Board
The implementation presented in Chapter 5 is designed for the PYNQ Z1 board from Digilent
[14]. The board is designed to be used with PYNQ [15], an open-source framework that allows
developers to exploit the capabilities of the Xilinx Zynq System on Chip (SoC) [14]. The
PYNQ Z1 board offers multiple features, where the main component is the FPGA, ZYNQ
XC7Z020 SoC [16]. This section is used for introducing the relevant resources for the SoC
used in the implementation in Chapter 5.

2.4.1 RAM36E1
The PYNQ Z1 board offers two main types of memory, Double Data Rate 3 (DDR3) and
Block RAM (BRAM). The available BRAM is located within the SoC, and it allows for
easy interfacing with custom designs. This section is used for presenting the fundamental
properties for the available BRAM resource, RAMB36E1.

The ZYNQ XC7Z020 contains 140 BRAM of size 36 Kb [16], providing great flexibility for the
designer to structure the memory in many configurations. The blocks support both dual- and
single port operations [17], meaning that one can read from- or write to two addresses within
the same BRAM at the same clock cycle, but the BRAMs can also be configured to have only
one port for read- and write operations. The width of the data is also configurable, allowing
up to 72 bits to be read- or written each clock cycle [16, 17]. The possible configurations are
shown in Table 2.2.

Table 2.2: RAMB36E1 layout options [17]. Ki = 1024 values.

Number of values Data width
32 Ki 1
16 Ki 2
8 Ki 4
4 Ki 9
2 Ki 18
1 Ki 36

2.4.2 DSP48E1
The Digital Signal Processing (DSP) slices available on the ZYNQ XC7Z020 allow us to
perform low-power DSP operations, such as multiplication, with high speed and efficiency
[18]. The available DSP slices also include other operands, but only the multiplier is used
for the design presented in Chapter 5. The ZYNQ XC7Z020 SoC contains 220 DSP slices
[16].

2.5 Previous Work
The MUSIC algorithm has, since it was proposed by Schmidt in 1986 [19], been implemented
for a variety of applications, providing different methods and optimizations [20, 21, 22, 23].

2.5. PREVIOUS WORK 13

This thesis reuses, combines, and further optimizes the MUSIC algorithm provided by Keh-
Chiarng Huarng and Chien-Chung Yeh in [24], Zhang et al. in [7], Si et al. in [25], and Huang
et al. in [26].

Chapter 3
Theory

This chapter presents relevant theory for the implementation presented in Chapter 5.

3.1 Complex Number Arithmetic
Assume that we have two complex numbers, Z1 = a+ jb and Z2 = c+ jd, with a, b, c, d ∈ R.
Then [27]

Addition: Z3 = Z1 + Z2 = (a+ jb) + (c+ jd) = (a+ c) + j(b+ d) (3.1a)
Subtraction: Z4 = Z1 − Z2 = (a+ jb) − (c+ jd) = (a− c) + j(b− d) (3.1b)

Multiplication: Z5 = A·B = (a+ jb)(c+ jd) = (ac− db) + j(ad+ cd) (3.1c)
Conjugate: Z1 = a+ jb = a− jb . (3.1d)

3.2 Representation of Real-Valued Numbers
Representation of real-valued numbers become an important factor when discussing the
implementation in Chapter 5, and the supporting theory this discussion is presented in
the below subsections. There are two well known methods for representing real-valued
numbers, floating- and fixed point numbers. They are both based on the well known binary
representation of a real-valued number Equation (3.2).

... 32 16 8 4 2 1 . 1
2

1
4

1
8

1
16

1
32 ...

... 25 24 23 22 21 20 . 2−1 2−2 2−3 2−4 2−5 ...
(3.2)

3.2.1 Floating Point Numbers
There are multiple definitions of floating point numbers. While the idea behind the different
definitions is very similar, different naming conventions are often used. This thesis will present
and use the IEEE 754 standard [28] as the definition. A visualization of how binary data is
divided into sign, biased exponent, and trailing significand bits is shown in Figure 3.1.

15

16 CHAPTER 3. THEORY

Figure 3.1: IEEE 754 standard for floating point number representation.

Floating point numbers follows the same idea as for scientific notation in base 10. For the
well known number

(2.99 · 108)10,

we define 8 as the exponent and 2.99 as the significand. Floating point follows the same
notation, only in base 2, i.e., binary numbers. The number of bits assigned to the significand
determines the precision of the real number, while the exponent determines the range of the
number.

Example of IEEE 754 Floating Point Number
For the given bits

0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 ,

we observe that the sign bit is set to 0, indicating that the value is positive.

The exponent is
100110112 = 15510,

and subtracting the bias of 127 [28, p. 23], we find the final exponent of 155−127 = 28.

The value is therefore found by moving the floating point 28 times to the right, resulting in
the final value

(+1.00011101001001100000110)2 · 228 = (10001110100100110000011000000.00)2 = (2.99 · 108)10

3.2.2 Fixed Point Numbers
Another common way to represent real-valued numbers is with fixed point numbers. The
structure of a fixed point value is shown in Figure 3.2.

Figure 3.2: Fixed point number representation.

The binary representation follows the standard definition in Equation (3.2).

3.3. MATRIX OPERATION AND THEORY 17

Example of Fixed Point Number
The 16-bit value

0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 ,

has the sign bit set to 0, while the integer part is

(1111011)2 = 12310,

and the fractional part is

(0.10010001)2 = 1
2 + 1

16 + 1
256 ≈ 0.56710.

This results in the final value being ≈ 123.567.

3.3 Matrix Operation and Theory
In Section 3.6 and Section 3.7, the MUSIC algorithm is presented, introducing various matrix
operations. The following subsections present the theory for the introduced operations,
together with relevant properties and examples.

3.3.1 Matrix Transpose
The transpose operator is denoted with (·)T , and the transpose of the matrix A = aij is
defined as

AT = aji, (3.3)

meaning that the rows are exchanged for columns and vice versa [29, p. 6].

Equation (3.4) includes an example of matrix transpose of the matrix A.

AT =

a11 a21
a12 a22
a13 a23

T

=
[
a11 a12 a13
a21 a22 a23

]
(3.4)

3.3.2 Conjugate operator
The element-wise conjugate operator, denoted with (·)∗, transforms each element to its
complex conjugate. That is, if we define A = aij , then

A∗ = aij , (3.5)

where aij is the conjugate operation presented in Equation (3.1d).

18 CHAPTER 3. THEORY

3.3.3 Hermitian Adjoint
The Hermitian adjoint, denoted with (·)H , combines the conjugate operator in Equation
(3.5) and the transpose rule presented in Equation (3.3). In addition to exchanging columns
for rows and vice versa, element-wise conjugate is also applied [29, p. 6]. This means, if all
elements in the matrix are real, then the Hermitian adjoint is the same as the transpose. Let
A = aij . Then

AH = (aij)H = (A∗)T =
(
AT

)∗
= aji. (3.6)

Equation (3.7) includes an example of the Hermitian adjoint of a complex valued ma-
trix.

1 + j2 2 + j3
3 + j4 4 + j5
5 − j6 6 − j7

H

=
[
1 − j2 3 − j4 5 + j6
2 − j3 4 − j5 6 + j6

]
(3.7)

3.3.3.1 Relevant Properties
• Reverse-order law [29, p. 6]:

(AB)H = BHAH . (3.8)

• The double Hermitian adjoint of the matrix A is equal to the original matrix [29, p. 6]:

(AH)H = A. (3.9)

3.3.4 Kronecker product
The Kronecker product between two matrices, A and B, is denoted with A ⊗ B. If A is an
m×n matrix and B is a p×q matrix, then A⊗B is the mp×nq block matrix [29, pp. 474-475].
Each element aij is multiplied with the matrix B. Consider the two matrices

A =
[
a11 a12 a13
a21 a22 a23

]
,B =

b11 b12
b21 b22
b31 b32

 , (3.10)

then the Kronecker product is

3.3. MATRIX OPERATION AND THEORY 19

A ⊗ B =
[
a11B a12B a13B
a21B a22B a23B

]
=

a11

b11 b12
b21 b22
b31 b32

 a12

b11 b12
b21 b22
b31 b32

 a13

b11 b12
b21 b22
b31 b32

a21

b11 b12
b21 b22
b31 b32

 a22

b11 b12
b21 b22
b31 b32

 a23

b11 b12
b21 b22
b31 b32

=

a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a11b21 a11b22 a12b21 a12b22 a13b21 a13b22
a11b31 a11b32 a12b31 a12b32 a13b31 a13b32
a21b11 a21b12 a22b11 a22b12 a33b11 a33b12
a21b21 a21b22 a22b21 a22b22 a33b21 a33b22
a21b31 a21b32 a22b31 a22b32 a33b31 a33b32

.

(3.11)

Relevant properties of the Kronecker Product
1. The mixed-product property: If matrices A,B,C and D are matrices with dimen-

sions such that the matrix-products AC and BD can be formed, then AC ⊗ BD =
(A ⊗ B)(C ⊗ D)

3.3.5 Identity and Exchange Matrix
This subsection defines two well known matrices. The first is the identity matrix, which has
all ones along its northwest-to-southeast diagonal and all zeroes elsewhere [30, p. 50], that
is

In =

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 . (3.12)

The second matrix is the exchange matrix, and it has all ones on the opposite diagonal when
compared to I [30, p. 193], and can also be referred to as a reversal matrix or backwards
identity matrix. The matrix is defined in Equation (3.13).

Jn =

0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
... . .

. ...
...

...
1 . . . 0 0 0

 (3.13)

The subscript n in both Equation (3.12) and Equation (3.13) denotes the number of rows
and columns of the matrix, i.e., they are both n× n square matrices.

20 CHAPTER 3. THEORY

3.3.6 Hermitian Matrix
A Hermitian matrix is a matrix which by definition is equal to its Hermitian adjoint [29,
p.169], which is covered in Section 3.3.3. If we define A = aij as an m×m matrix, then we
know that a Hermitian matrix must fulfill

A = AH . (3.14)

A general Hermitian matrix can be written as

r1 c1 c2 . . . cm

c1 r2 cm+1 . . .
...

c2 cm+1 r2
...

...
...

...
. . .

...
cm rm

, (3.15)

where rn denotes a real-valued number, cn denotes a complex-valued number, and cn denotes
its complex conjugate. From Equation (3.15), we observe that a Hermitian matrix must have
a real-valued diagonal, and that all other values can be complex with its complex conjugate
mirrored on the diagonal.

3.3.7 Persymmetric Matrix
A persymmetric matrix is a square matrix that is symmetric to its southwest-to-northeast
diagonal. If we define A = aij as an m × m matrix, then a persymmetric matrix must
fulfill

aij = am−j+1,m−i+1, (3.16)

which is the equivalent to requiring A = JATJ [30, p. 193].

A visual representation of a 4×4 persymmetric matrix is shown in Figure 3.3, and an example
of a persymmetric matrix is shown in Equation (3.17).

Figure 3.3: Visual representation of a persymmetric matrix. Equal colors indicate equal
values. The gray cells indicate the southwest-to-northeast diagonal. The values along this
diagonal are not relevant for the Persymmetric property, and they are not required to be
equal to each other.

3.3. MATRIX OPERATION AND THEORY 21

1 2 3 4
5 4 3 3
6 2 4 2
1 6 5 1

 (3.17)

3.3.8 Unitary Matrix
A unitary matrix, U, is a matrix that fulfills the property presented in Equation (3.18) [29,
p. 67].

UHU = I (3.18)

Equation (3.18) implies that U is a square matrix.

3.3.9 Matrix Multiplication
If A is an n×m matrix and B is an m× p matrix, then the matrix multiplication, C = AB
is the n× p matrix where [29, p. 7]

cij =
m∑
k=1

aikbkj . (3.19)

From Equation (3.19), we observe that the number of columns in A must be equal to the
number of rows in B.

3.3.10 Euclidean Norm
The Euclidean norm, denoted with the || · ||2-operator, is defined as

||A||2 =

√√√√ n∑
i=1

|ai|2, (3.20)

where A = ai is the n-dimensional vector [29, p. 291].

Example of Euclidean Norm
Let A = [1, 3, 5, 7, 9]. Then

||A||2 =
√

12 + 32 + 52 + 72 + 92 = 12.85.

22 CHAPTER 3. THEORY

3.4 In-Phase and Quadrature signals
Received RF signals are commonly represented as a complex numbers referred to as In-Phase
and Quadrature (IQ) signals [31]. The In-phase component is represented as a real-valued
number while the quadrature component is imaginary-valued. This means that each IQ
value can be represented as a complex value. A representation of an IQ value is shown in
Figure 3.4.

Figure 3.4: IQ value in the complex plane.

An IQ value contains information of both the signal amplitude, A, and the phase, ϑ. The
two values can be calculated as shown in Equation (3.21a) and Equation (3.21b), respec-
tively.

A =
√
I2 +Q2 (3.21a)

ϑ = arctan
(
Q

I

)
(3.21b)

From Equation (2.2), we remember that the AoA can be estimated between two antennas by
using the phase difference, ϕ, between the sampled values. If Equation (3.21b) is used for
obtaining the two phases, ϑ1 and ϑ2, then ϕ = ϑ2 − ϑ1.

3.5 Azimuth and Elevation
In 3D, the AoA is often described using the two angles, elevation (θ) and azimuth (φ). The
two angles are visualized in Figure 3.5. From this figure, we observe that elevation describes
the direction in z-space. Usually, when working with AoA, the valid range for θ is [0◦, 90◦].
θ = 0 indicates that the AoA is located somewhere along the z-axis and x = y = 0. θ = 90◦
indicates that the AoA is located in the x, y-plane only and in the same height as the receiving
array. The valid range for azimuth is usually [0◦,360◦], and this angle describes the rotation
in the x, y-plane. From these definitions, we observe that we cannot achieve a scenario where
θ = 0◦ and φ ̸= 0◦.

3.6. THE MULTIPLE SIGNAL CLASSIFICATION ALGORITHM 23

Figure 3.5: Layout of an Mx ×My Uniform Rectangular Array (URA).

3.6 The Multiple Signal Classification Algorithm
The MUSIC algorithm was presented by Schmidt in 1985 [19], and is to this day a popular
algorithm, known for its great performance. The algorithm has multiple use cases, where
estimation of AoA is one of them [19]. The MUSIC algorithm is based on extracting the
signal data from the estimated eigenvectors of the received signal, and to perform a search
within a specific region for possible AoAs. This region is often limited to the values for
θ and φ as described in Section 3.5. The MUSIC search function is based on detecting
the K sets of AoA, i.e., (θ, φ) ≜ [(θ1, φ1), (θ2, φ2), ..., (θK , φK)], which yields the K-highest
correlations between the received signal information and the receiving antenna array. This
section first presents the data model for the algorithm before presenting a real-valued (RV)
MUSIC approach for the algorithm. In order to understand how the RV-MUSIC algorithm
works for a Uniform Rectangular Array (URA), an introduction to the RV-MUSIC algorithm
for a Uniform Linear Array (ULA), presented in [24], is given.

The following section uses letters to symbolize different quantities used in the MUSIC algo-
rithm. Table 3.1 holds all quantities with a description.

Table 3.1: Descriptions of the letters used to symbolize different quantities.

Letter Description
K Number of incoming sources
D Total number of elements in the antenna array
Mx,My Number of antenna elements in x and y direction, respectively
N Number of snapshots
dx, dy distance between antenna-elements in x or y direction, respectively

3.6.1 Data model
Consider a scenario similar to the one in Figure 3.5. Let K denote the number of incoming
signals with unknown AoA, and let D = Mx ·My be the total number of elements in the
antenna array. The elements are spaced with a distance dx in the x-direction and dy in the

24 CHAPTER 3. THEORY

y-direction as shown in Figure 3.5. This structure indicates that it is a URA. If N snapshots
are received on each element as presented in Equation (2.3), then the generic data model for
the received signal values at a single snapshot t, X(t), forms the D × 1 matrix presented in
Equation (3.22).

X(t) = As(t) + n(t) , t = 1, 2, ..., N (3.22)

The matrix A at snapshot t is a D ×K matrix of signal direction vectors. This matrix can
be represented as

A = [a(θ1, φ1),a(θ2, φ2), ...,a(θK , φK)], (3.23)

where a(θk, φk) is the D × 1 steering vector. The k-subscript denotes one specific AoA out
of the K present AoAs, i.e., 1 ≤ k ≤ K. Before defining the steering vector for a URA, we
observe the steering vectors in x- and y-directions separately [7]:

ax(θk, φk) = ax(ω) =

exp

(
j 2πdx · 0

λ ω
)

exp
(
j 2πdx · 1

λ ω
)

...

exp
(
j 2πdx · (Mx−1)

λ ω
)

= [α0, α1, ..., αMx−1]T

(3.24)

ay(θk, φk) = ay(ψ) =

exp

(
j

2πdy · 0
λ ψ

)
exp

(
j

2πdy · 1
λ ψ

)
...

exp
(
j

2πdy · (My−1)
λ ψ

)

= [β0, β1, ..., βMy−1]T .

(3.25)

From Equation (3.24) and Equation (3.25), we can observe two properties. The first being
that dx · (Mx − 1) describes the location of the M th

x antenna element in the x-direction.
This also applies for the steering vector in the y-direction. For ULA and URA, the antenna
elements in x- and y-direction are spaced with distances of dx and dy, respectively. However,
this also means that for non-uniform arrays, the product (dx ·m), where (0 ≤ m ≤ Mx − 1)
can be replaced with the exact location for the selected antenna element in the x-direction.
The same goes for the antenna elements in the y−direction. The second observation is
that α = exp

(
j 2πdx

λ ω
)

and β = exp
(
j

2πdy

λ ψ
)
, where we define the two signal components

ω(θ, φ) = sin(θ) cos(φ) and ψ(θ, φ) = sin(θ) sin(φ). The steering vector for a URA can then
be obtained by using the Kronecker product, defined in Section 3.3.4, between the steering
vectors in x- and y-direction:

3.6. THE MULTIPLE SIGNAL CLASSIFICATION ALGORITHM 25

a(θk, φk) =ax(ω) ⊗ ay(ψ)
=[α0β0, α0β1, ..., α0βMy−1,

α1β0, α1β1, ..., α1βMy−1,

...

αMx−1β0, αMx−1β1, ..., αMx−1βMy−1]T .

(3.26)

a(θ, φ) is therefore the MxMy × 1 steering vector. By performing the Kronecker product
between the steering vector in x- and y-direction, we get a resulting steering vector where
all combinations x- and y- coordinates are included. A visual representation of this is shown
in Figure 3.6, where Mx = My = 4. Remember that the resulting vector is one-dimensional,
while it keeps information on the antenna structure in two dimensions.

Figure 3.6: Visual representation of how the Kronecker product can be used for obtaining
the steering vector for a URA.

s(t) in Equation (3.22) is the K × 1 source waveforms vector, while n(t) is the D × 1 vector
of white noise [19, 32].

Including all snapshots, we have the following equation and matrices with the dimensions
presented in Table 3.2 for the MUSIC algorithm data model.

X = AS + N (3.27)

26 CHAPTER 3. THEORY

Table 3.2: MUSIC matrix dimensions.

Matrix Description
X D ×N
A D ×K
S K ×N
N D ×N

3.6.2 Covariance matrix
The covariance matrix of the received signals can be expressed as

Rxx = E
[
X(t)XH(t)

]
= ARSAH + σ2

NI, (3.28)

where RS is the signal covariance, σ2
N is the noise variance, and I is the identity matrix [19,

eq. 2]. Rxx has D eigenvalues λ1 ≥ λ2... ≥ λK ≥ λK+1... ≥ λD = σ2 and corresponding
eigenvectors [19]. The eigenvectors, E shown in Equation (3.29), can be divided into signal
subspace, ES = {e1, e2, .., eK}, and noise subspace, EN = {eK+1, eK+2, .., eD}.

E =

1 2 ... K K+1 K+2 ... D

e(1,1) e(1,2) . . . e(1,K) e(1,K+1) e(1,K+2) . . . e(1,D) 1
e(2,1) e(2,2) . . . e(2,K) e(2,K+1) e(2,K+2) . . . e(2,D) 2
e(3,1) e(3,2) . . . e(3,K) e(3,K+1) e(3,K+2) . . . e(3,D) 3
...

...
. . .

...
...

...
. . .

...
...

e(D,1) e(D,2) . . . e(D,K) e(D,K+1) e(D,K+2) . . . e(D,D) D

︸ ︷︷ ︸

ES

︸ ︷︷ ︸
EN

(3.29)

In practical applications, the maximum likelihood estimator of Rxx, R̂xx can be expressed
as [33]

R̂xx = 1
N

N∑
t=1

x(t)xH(t). (3.30)

R̂xx will always be a Hermitian matrix. Proof:

(AAH)H = (AH)HAH = AAH (3.31)

The first equality follows from the reverse-order law presented in Equation (3.8), while the
last equality is due to the property that is presented in Equation (3.9). Equation (3.31) proofs
that the resulting matrix has the property presented in Equation (3.14), hence the matrix is
Hermitian.

3.7. A REAL-VALUED MUSIC ALGORITHM 27

3.6.3 Search Function
The MUSIC algorithm supports two search functions, depending on which subspace, EN/ES ,
is being used [19]. The goal is to find the K peaks of PMU in Equation (3.32).

Signal subspace: PMU(θ, φ) = aH(θ, φ)ESES
Ha(θ, φ) (3.32a)

Noise subspace: PMU(θ, φ) = 1
aH(θ, φ)ENEN

Ha(θ, φ)
. (3.32b)

Equation (3.32) can be further simplified to

Signal subspace: max
θ,φ

PMU(θ, φ) = aH(θ, φ)ESES
Ha(θ, φ) (3.33a)

Noise subspace: min
θ,φ

PMU(θ, φ) = aH(θ, φ)ENEN
Ha(θ, φ) (3.33b)

Equation (3.33) states that the goal is to find theK sets of (θ, φ) ≜ [(θ1, φ1), (θ2, φ2), ..., (θK , φK)],
which gives the maximum or minimum values for PMU, depending on the selected subspace.
The search function can be described in simple terms. We know that the steering vector
ã(θ, φ) holds information on the receiving antenna structure, ES holds information on the
received signal, while EN holds information on the received noise. We can choose if we want
to find the AoA by observing where the correlation between the receiving antenna strucutre
and the signal information is the highest, or where the antenna structure correlates the least
with the noise information.

3.7 A Real-Valued MUSIC Algorithm
X, in Equation (3.27), is a complex matrix with a complex-valued covariance matrix, which
yields complex-valued eigenvectors. From Equation (3.29), it follows that both ES and EN

will be complex-valued. The steering vector a(φ, θ) in Equation (3.26) is also complex-
valued, which then means that Equation (3.33) includes complex-valued arithmetic. From
Equation (3.1), we observe that complex-valued arithmetic has a higher complexity compared
to real-valued arithmetic. Multiple available papers, such as [7, 24, 25], discuss this problem
and provide a possible solution by transforming the complex-valued matrices to real-valued
matrices using unitary transformation. The following section is used to present the theory
for this approach.

Keh-Chiarng Huarng and Chien-Chung Yeh propose to utilize a unitary transformation
method to convert the complex matrices, R̂xx and a(θ, φ), to real-valued matrices [24].
This results in real-valued eigenvectors which results in the PMU only containing real-valued
arithmetic, hence lowering the computation complexity. The unitary transformation requires
the matrices to be transformed to have Hermitian and Persymmetric properties. From
Equation (3.31), we know that R̂xx is Hermitian but not necessarily Persymmetric. The
persymmetric property can be obtained by forward/backward (FB) averaging R̂xx, as done
in [22] and [34]:

R̂FB = 1
2 (R + JR∗J) . (3.34)

28 CHAPTER 3. THEORY

R̂FB is now transformed to have both Persymmetric and Hermitian properties [34]. The
unitary transformation method,

Rxx = UR̂FBUH , (3.35)

where U is a unitary matrix, can then be applied to obtain the real-valued covariance matrix,
Rxx.

From [24], the unitary matrix is provided for a Uniform Linear Array (ULA). If D denotes
the number of elements in the linear array, then

U = 1√
2

[
ID/2 JD/2
jJD/2 −jID/2

]
= 1√

2

1 2 D

1 0 0 1 1
0 1 1 0 2

0 j −j 0
j 0 0 −j D

.

(3.36)

Real-valued eigenvalues and eigenvectors can then be found from Rxx, and the real-valued
signal- and noise- subspace, denoted with ES and EN , respectively, can then be formed
similarly as presented in Equation (3.29). In order to find the corresponding unitary matrix
for a URA, the Kronecker product is once more used. We define

Ux = 1√
2

[
IMx/2 JMx/2
jJMx/2 −jIMx/2

]
, (3.37)

and

Uy = 1√
2

[
IMy/2 JMy/2
jJMy/2 −jIMy/2

]
. (3.38)

The unitary matrix for a URA, T, is then the (MxMy ×MxMy) matrix defined by [7]

T = Ux ⊗ Uy. (3.39)

The real-valued covariance matrix is then found from

Rxx,URA = 1
2(TR̂FBTH). (3.40)

The complex-valued steering vector must also be transformed to a real-valued steering vector,
ã. From [24], we observe the transformation for a ULA steering vector to be defined as

3.7. A REAL-VALUED MUSIC ALGORITHM 29

ãx(ω) = Uxe
−j(Mx−1)α/2ax(ω), (3.41)

for the steering vector in the x-direction, and

ãy(ψ) = Uye
−j(My−1)β/2ay(ψ) (3.42)

for the y-direction.

The complete real-valued steering vector for a URA can then be obtained by

ã(θ, φ) = ãx(ω) ⊗ ãy(ψ). (3.43)

We can now replace the complex-valued matrices and vectors in Equation (3.33) with the
obtained real-valued matrices and vectors. The real-valued MUSIC search function then
becomes

Signal subspace: max
θ,φ

PMU(θ, φ) = [ãx(ω) ⊗ ãy(ψ)]HESEHS [ãx(ω) ⊗ ãy(ψ)] (3.44a)

Noise subspace: min
φ,ψ

PMU(φ,ψ) = [ãx(ω) ⊗ ãy(ψ)]HESEHS [ãx(ω) ⊗ ãy(ψ)]. (3.44b)

Chapter 4
Derivation of application-specific MUSIC
algorithm

In Chapter 3, two versions of the search function for the MUSIC algorithm are presented:
one complex-valued (CV) and one real-valued (RV). The following chapter discusses the
advantages and disadvantages of the two versions before providing a possible modification
to the results from [24] and [7] for optimizing the MUSIC algorithm for the specific system
presented in Section 2.1.

4.1 Antenna Layout
The layout of the antenna structure is essential for further explanation of the matrices and
design choices presented in this chapter. For receiving and sampling the incoming CTE from
the transmitting tag, the ISP1807-AoA-DK [35] locator PCB is used. It has a square layout
with D = 12 antenna elements. The layout of the array is shown in Figure 4.1. The figure
indicates that the used antenna array is not a standard URA or ULA structure, meaning
that the equations presented in Section 3.6 must therefore be modified to fit the presented
layout.

31

32 CHAPTER 4. DERIVATION OF APPLICATION-SPECIFIC MUSIC ALGORITHM

Figure 4.1: Layout of the antenna elements. Each yellow element indicates one antenna
element, while the gray elements indicate the non-existing elements. These elements are used
for deriving the final solution of the RV-MUSIC algorithm.

4.2 Discussion of CV and RV MUSIC Algorithm
From the presentation of BLE and how it can be used in direction finding applications,
presented in Section 2.2, we know that there should be only one source for the sampled CTE,
hence K = 1. In Section 2.1, it is described how the CTE is received together with the
corresponding ID of the transmitting tag, and the results from the AoA estimations is to be
visualized for the correct tag ID. A scenario where two transmitters transmits the CTE at the
same time can occur, and in those cases, the sampled signal will contain combined information
from the two sources. In such scenarios, using K = 1 can result in a wrongly estimated AoA,
as the search function can find greater correlation for the wrong signal. However, the system
is not able to detect multiple tags from one CTE sample, as it is unable to assign the other,
unknown IDs.

Multipath propagation [36] is also a well-known source of error, where the transmitted signal
typically bounces on the walls, floors and ceilings of the closed structure. In these cases,
it is hard to catch such errors when only searching for one peak. However, searching for
multiple peaks when only one transmitter is present or no multipath propagation is present
can also introduce errors from the estimations or at least more uncertainty. A decision of only
searching for one peak is therefore taken, as this also significantly reduces the complexity of

4.2. DISCUSSION OF CV AND RV MUSIC ALGORITHM 33

the search function presented in Equation (3.33). To reduce the possible errors from multiple
CTE sources or multipath propagation, one can apply post filtering of the AoA found by
the algorithm. Filtering is not included in the objectives for this thesis, and will not be
discussed.

From the above discussion and decision of searching for only one peak, we can now quantize
the values presented in Table 3.1. From Section 2.3, the number of snapshots, N , is calculated
to 3, given the CTE configurations presented in Section 2.1. The quantized values are
further used in deriving the application-specific MUSIC algorithm, allowing the hardware
implementation, presented in Chapter 5, to be optimized for the specific use case. The
quantized values are presented in Table 4.1.

Table 4.1: Application specific values for the MUSIC algorithm.

Quantity Value
K 1
D 12
Mx,My 4
N 3
d = dx = dy 50 mm

The additional operations required for the RV-MUSIC algorithm are FB-averaging and
unitary transformation, both presented in Section 3.7. From the values in Table 4.1, we
know that X is a 12 × 3 (D ×N) matrix, and R̂xx in Equation (3.30) is therefore a 12 × 12
complex-valued matrix. This also means that J is the 12 × 12 exchange matrix.

FB averaging requires two matrix multiplication- operands and one matrix addition while the
unitary transformation requires two matrix multiplications. From Equation (3.19), we can
observe that a matrix multiplication of two m × m matrices requires m3 multiplications of
the elements. All matrices for both of the required operations are complex-valued and have
dimensions 12×12. From Equation (3.1), we know that a complex multiplication requires four
real-valued multiplications. An estimation of the total number of real-valued multiplications
for the transformation operations is provided in Table 4.2.

Table 4.2: Operations required for RV-MUSIC transformation. The calculated values in this
table are found from the dimensions of the matrices included in Equation (3.34) and Equation
(3.35).

Operation Number of real-valued multiplications
FB averaging (123 · 2) · 4 = 13824
Unitary transformation (123 · 2) · 4 = 13824
Total 13824 + 13824 = 27648

The benefit of performing the unitary transformation and obtaining the real-valued eigenvec-
tors and steering vector must also be discussed. From Section 3.6, we know that the goal is to
search through PMU in Equation (3.33) or PMU in Equation (3.44). With K = 1, the relevant
vectors will have the dimensions presented in Table 4.3. From these dimensions, it is easily
observable from Equation (3.32) that searching through the signal subspace will significantly
reduce the number of operations required.

34 CHAPTER 4. DERIVATION OF APPLICATION-SPECIFIC MUSIC ALGORITHM

Table 4.3: RV-MUSIC search function matrix dimensions.

Matrix Dimensions
aH(θ, φ) 1 × 12
ES 12 × 1
EN 12 × 11

Using the definition of matrix multiplication in Equation (3.19), we observe that the mul-
tiplication of aH(θ, φ)ES requires 48 multiplications if the vectors are complex-valued, and
12 multiplications if the vectors are real-valued. The difference is therefore 48 − 12 = 36
more multiplications for each iteration of the search. From Table 4.2, we remember that
the required number of multiplications for the real-valued transformation is 27 648. This
means that 27648/36 = 768 complex-valued vector multiplication requires the same amount
of multiplications as the transformation operations. The number of iterations needed for
the search function is further discussed in Chapter 5, and is originally far greater than 768.
Using complex-valued vectors also limit the level of parallelism of the implementation. For
every complex-valued vector multiplication, one could perform 4 parallel real-valued vector
multiplications. A more detailed comparison of possible architectures for the two versions of
the MUSIC algorithm is given in Section 7.3.

Another important factor to discuss when comparing the real-valued vs. complex-valued
approach is how this decision influences the results of the implemented design by Tommy A.
Opstad [1]. From his thesis, we also observe that the real-valued approach is beneficial, as it
allows for a greater level of parallelism [1].

To summarize, implementing a real-valued MUSIC algorithm requires an extra step compared
to the complex-valued version, resulting in an additional step to the algorithm. However,
implementing a real-valued version will most likely be beneficial as it entails a simpler hard-
ware architecture that allows for greater level of parallelism and flexibility. The real-valued
approach is therefore chosen as the preferred method of implementation.

4.3 Derivation
For deriving the specific RV MUSIC algorithm for the presented antenna structure in Fig-
ure 4.1, the strategy is to first use the proposed approach for a standard URA structure,
presented in Section 3.7, before making further modifications. These modifications are
presented in the following section.

From Figure 2.8, we observe that we expect 37 samples when using 2 µs sample- and switch
slots and a CTE length of 160µs. The received I/Q samples are aligned to a 12 × 3 matrix
in the following form

4.3. DERIVATION 35

X =

Sample 1 Sample 13 Sample 25 ANT_11
Sample 2 Sample 14 Sample 26 ANT_12
Sample 3 Sample 15 Sample 27 ANT_1
Sample 4 Sample 16 Sample 28 ANT_2
Sample 5 Sample 17 Sample 29 ANT_10
Sample 6 Sample 18 Sample 30 ANT_3
Sample 7 Sample 19 Sample 31 ANT_9
Sample 8 Sample 20 Sample 32 ANT_4
Sample 9 Sample 21 Sample 33 ANT_8
Sample 10 Sample 22 Sample 34 ANT_7
Sample 11 Sample 23 Sample 35 ANT_6
Sample 12 Sample 24 Sample 36 ANT_5

︸ ︷︷ ︸
Snapshot 1

︸ ︷︷ ︸
Snapshot 2

︸ ︷︷ ︸
Snapshot 3

.
(4.1)

The pattern for sampling the values was decided in the project thesis [8]. In this project, it
was decided to sample each row from left to right starting in the top left corner. The order
for the samples will not influence the performance of the algorithm.

The covariance matrix is then found using Equation (3.30), and from Section 3.6.2 we
remember that R̂xx is a Hermitian matrix. This matrix needs to be transformed to a
Hermitian, Persymmetric matrix by FB averaging as presented in Equation (3.34). The
resulting matrix, R̂FB, is a Hermitian, Persymmetric matrix that can be transformed to
a real-valued matrix using unitary transformation. The unitary matrix, U, is found by
modifying the unitary matrix T = Ux ⊗ Uy. The reason for the need of a modification is
that this matrix is defined for a URA while the actual layout, presented in Figure 4.1, has a
non-URA layout.

4.3.1 Modifying the Kronecker Product
An illustration of how the Kronecker product can be used for obtaining information of a
URA steering vector is presented in Figure 3.6. Remembering that the chosen antenna
layout in Figure 4.1 can be seen as a URA structure without the four middle components, an
approach of removing the non-existing elements from the Kronecker product can be done for
obtaining the correct values. The illustration in Figure 3.6 is further modified to highlight
the non-existing elements. The updated illustration is presented in Figure 4.2.

36 CHAPTER 4. DERIVATION OF APPLICATION-SPECIFIC MUSIC ALGORITHM

Figure 4.2: Visualization of the Kronecker product.

We observe that the 2D layout of the Kronecker product in Figure 4.2 is very similar to the
antenna layout shown in Figure 4.1. By removing the four elements in the middle (marked
with red) from the resulting vector, we obtain the correct vector for our antenna layout. If we
map the 2D layout to a 1D layout, we observe that the elements with index 6,7,10 and 11 are
non-existing elements in our array. They should therefore be excluded from the Kronecker
products obtained in the real-valued transformation presented in Section 3.7.

From Section 3.7, we remember that the unitary transformation requires two Kronecker
products. The first one is for obtaining the unitary matrix, T = Ux ⊗ Uy. Using Equation
(3.36) and Mx = My = 4 yields

Ux = Uy = 1√
2

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 . (4.2)

The corresponding unitary matrix for a URA is therefore

4.3. DERIVATION 37

T = Ux ⊗ Uy = 1
2

1

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 1

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 1

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 1

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 j

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 −j

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

j

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 0

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

 −j

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

= 1
2

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 j −j 0 0 0 0 0 0 0 0 0 0 j −j 0
j 0 0 −j 0 0 0 0 0 0 0 0 j 0 0 −j
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 j −j 0 0 j −j 0 0 0 0 0
0 0 0 0 j 0 0 −j j 0 0 −j 0 0 0 0
0 0 0 0 j 0 0 j −j 0 0 −j 0 0 0 0
0 0 0 0 0 j j 0 0 −j −j 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 1 1 0 0 −1 0 0 0 0
j 0 0 j 0 0 0 0 0 0 0 0 −j 0 0 −j
0 j j 0 0 0 0 0 0 0 0 0 0 −j −j 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 1 −1 0

−1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 −1

.

(4.3)

Remember that this matrix is a 16×16 (MxMy×MxMy) matrix, and it needs to be modified
to fit the layout in Figure 4.1. By removing columns and rows with index 6,7,10, and 11, we
obtain the matrix given in Equation (4.4).

38 CHAPTER 4. DERIVATION OF APPLICATION-SPECIFIC MUSIC ALGORITHM

T12 = 1
2

←
re

m
ov

e

←
re

m
ov

e

←
re

m
ov

e

←
re

m
ov

e

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 j −j 0 0 0 0 0 0 0 0 0 0 j −j 0
j 0 0 −j 0 0 0 0 0 0 0 0 j 0 0 −j
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 ←remove
0 0 0 0 0 j −j 0 0 j −j 0 0 0 0 0 ←remove
0 0 0 0 j 0 0 −j j 0 0 −j 0 0 0 0
0 0 0 0 j 0 0 j −j 0 0 −j 0 0 0 0
0 0 0 0 0 j j 0 0 −j −j 0 0 0 0 0 ←remove
0 0 0 0 0 −1 1 0 0 1 −1 0 0 0 0 0 ←remove
0 0 0 0 −1 0 0 1 1 0 0 −1 0 0 0 0
j 0 0 j 0 0 0 0 0 0 0 0 −j 0 0 −j
0 j j 0 0 0 0 0 0 0 0 0 0 −j −j 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 1 −1 0

−1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 −1

= 1
2

1 0 0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 1 1 0
0 j −j 0 0 0 0 0 0 j −j 0
j 0 0 −j 0 0 0 0 j 0 0 −j
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 j −j j −j 0 0 0 0
0 0 0 0 j j −j −j 0 0 0 0
0 0 0 0 −1 1 1 −1 0 0 0 0
j 0 0 j 0 0 0 0 −j 0 0 −j
0 j j 0 0 0 0 0 0 −j −j 0
0 −1 1 0 0 0 0 0 0 1 −1 0

−1 0 0 1 0 0 0 0 1 0 0 −1

(4.4)

The resulting matrix, T12, still fulfills TTH = THT = I, hence the matrix is unitary, and we
can therefore use this matrix to convert R̂FB to the real-valued matrix, Rxx. This method
works for the given antenna layout due to the fact that the non-existing elements in the
antenna array are symmetric around the center of the array. Removing symmetric columns
and rows from an already symmetric matrix yields a new, symmetric matrix. This is observed
in Equation (4.4).

4.3.2 RV Steering vector
From the quantized values in Table 4.1, we can define

4.3. DERIVATION 39

ax(θ, φ) = ax(ω) = [1, α, α2α3]T

=
[
1, exp

(
j

2πd
λ
ω

)
, exp

(
j2 · 2πd

λ
ω

)
, exp

(
j3 · 2πd

λ
ω

)]T
(4.5a)

ay(θ, φ) = ay(ψ) = [1, β, β2β3]T

=
[
1, exp

(
j
πd

λ
ω

)
, exp

(
j2 · πd

λ
ω

)
, exp

(
j3 · πd

λ
ω

)]T
. (4.5b)

Using Equation (3.41), we can then obtain the real-valued steering vectors in the x-direction:

ãx(ω) = α−
3
2 Uxax

= exp
(

−j 3
2 · πd

λ
ω

) 1√
2

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

1
exp

(
j1 · 2πd

λ ω
)

exp
(
j2 · 2πd

λ ω
)

exp
(
j3 · 2πd

λ ω
)

= 1√
2

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

exp
(
−j 3

2 · πd
λ ω

)
exp

(
−j 3

2 · πd
λ ω

)
exp

(
j1 · 2πd

λ ω
)

exp
(
−j 3

2 · πd
λ ω

)
exp

(
j2 · 2πd

λ ω
)

exp
(
−j 3

2 · πd
λ ω

)
exp

(
j3 · 2πd

λ ω
)

= 1√
2

1 0 0 1
0 1 1 0
0 j −j 0
j 0 0 −j

exp
(
−j 3

2 · 2πd
λ ω

)
exp

(
−j 1

2 · 2πd
λ ω

)
exp

(
j 1

2 · 2πd
λ ω

)
exp

(
j 3

2 · 2πd
λ ω

)

= 1√
2

exp

(
−j 3

2 · 2πd
λ ω

)
+ exp

(
j 3

2 · 2πd
λ ω

)
exp

(
−j 1

2 · 2πd
λ ω

)
+ exp

(
j 1

2 · 2πd
λ ω

)
j

(
exp

(
−j 1

2 · 2πd
λ ω

)
− exp

(
j 1

2 · 2πd
λ ω

))
j

(
exp

(
−j 3

2 · 2πd
λ ω

)
− exp

(
j 3

2 · 2πd
λ ω

))

= 1√
2

2 cos

(
3
2 · 2πd

λ ω
)

2 cos
(

1
2 · 2πd

λ ω
)

2 sin
(

1
2 · 2πd

λ ω
)

2 sin
(

3
2 · 2πd

λ ω
)

 =
√

2

cos

(
3πd
λ ω

)
cos

(
πd
λ ω

)
sin

(
πd
λ ω

)
sin

(
3πd
λ ω

)

 .

(4.6)

The results are obtained by using Eulers Formula, exp(jφ) = cos(φ) + j sin(φ), and the
trigonometric relations, cos(−φ) = cos(φ) and sin(−φ) = sin(φ). Using the exact same
approach for the ULA steering vector in y-direction yields

40 CHAPTER 4. DERIVATION OF APPLICATION-SPECIFIC MUSIC ALGORITHM

ãy(ψ) =
√

2

cos

(
3πd
λ ψ

)
cos

(
πd
λ ψ

)
sin

(
πd
λ ψ

)
sin

(
3πd
λ ψ

)

 . (4.7)

The RV steering vector for a 4 × 4 URA can then be found from ã(θ, φ) = ãx(ω) ⊗ ãy(ψ).
Again, the Kronecker product must be modified to fit the application specific antenna lay-
out:

ã(θ, φ) = 2

cos
(

3πd
λ ω

)
cos

(
3πd
λ ψ

)
cos

(
3πd
λ ω

)
cos

(
πd
λ ψ

)
cos

(
3πd
λ ω

)
sin

(
πd
λ ψ

)
cos

(
3πd
λ ω

)
sin

(
3πd
λ ψ

)
cos

(
πd
λ ω

)
cos

(
3πd
λ ψ

)
cos

(
πd
λ ω

)
cos

(
πd
λ ψ

)
←remove

cos
(
πd
λ ω

)
sin

(
πd
λ ψ

)
←remove

cos
(
πd
λ ω

)
sin

(
3πd
λ ψ

)
sin

(
πd
λ ω

)
cos

(
3πd
λ ψ

)
sin

(
πd
λ ω

)
cos

(
πd
λ ψ

)
←remove

sin
(
πd
λ ω

)
sin

(
πd
λ ψ

)
←remove

sin
(
πd
λ ω

)
sin

(
3πd
λ ψ

)
sin

(
3πd
λ ω

)
cos

(
3πd
λ ψ

)
sin

(
3πd
λ ω

)
cos

(
πd
λ ψ

)
sin

(
3πd
λ ω

)
sin

(
πd
λ ψ

)
sin

(
3πd
λ ω

)
sin

(
3πd
λ ψ

)

, (4.8)

which yields

4.3. DERIVATION 41

ã(θ, φ) = 2

cos
(

3πd
λ ω

)
cos

(
3πd
λ ψ

)
cos

(
3πd
λ ω

)
cos

(
πd
λ ψ

)
cos

(
3πd
λ ω

)
sin

(
πd
λ ψ

)
cos

(
3πd
λ ω

)
sin

(
3πd
λ ψ

)
cos

(
πd
λ ω

)
cos

(
3πd
λ ψ

)
cos

(
πd
λ ω

)
sin

(
3πd
λ ψ

)
sin

(
πd
λ ω

)
cos

(
3πd
λ ψ

)
sin

(
πd
λ ω

)
sin

(
3πd
λ ψ

)
sin

(
3πd
λ ω

)
cos

(
3πd
λ ψ

)
sin

(
3πd
λ ω

)
cos

(
πd
λ ψ

)
sin

(
3πd
λ ω

)
sin

(
πd
λ ψ

)
sin

(
3πd
λ ω

)
sin

(
3πd
λ ψ

)

. (4.9)

4.3.3 A Note on the scaling factors
From Equation (4.4) and Equation (4.9), we observe that both T and ã(θ, φ) have a scaling
factor of 1/2 and 2, respectively. The reason for this is due to that the unitary matrix, T12
must fulfill TTH = I. From the definition of U in Equation (3.36) and T in Equation (4.4),
it can be observed that this would not be fulfilled without the scaling factors. However,
observing the search function PMU presented in Equation (3.44), we observe that each vector
multiplication will be scaled with the same scaling factors. This means that the search
function not will be influenced by removing the scaling factors, and this simplification can
therefore safely be done.

Chapter 5
Implementation

This chapter is used to describe the implemented design in this thesis. The chapter first
defines the goals for the implementation, followed by methods for solving the necessary tasks,
and a description of how it is done.

5.1 Task Description
From the presented theory in Section 3.6 and Section 3.7, the algorithm can be divided into
five main steps:

1. Sample IQ values using the BLE sampling standard and form the sample-matrix, X.

2. Find the covariance matrix, R̂xx using the maximum likelihood estimator.

3. Perform the unitary transformation, including FB averaging to obtain the real-valued
covariance matrix, Rxx.

4. Perform eigenvalue-decomposition (EVD) to obtain the eigenvalues and find signal
subspace eigenvector, Es.

5. Perform the search using PMU to find AoA.

From the given steps, we observe that steps 2 to 5 can be beneficial to implement in hard-
ware, as they introduce a lot of repetitive matrix operations. In general, matrix operations
are usually parallelizable to some extent, meaning that specialized hardware architectures
can be designed to perform better in terms of speed of operation compared to general
processing units, where the operations are performed sequentially. We can also observe
that the real-valued approach is decided from the arguments given in Section 4.2. The goal
is therefore to implement a real-valued MUSIC algorithm on a Field Programmable Gate
Array (FPGA). A visualization of how the tasks are divided is shown in Figure 5.1. The
system sketch in Figure 2.1 is also updated to the new system architecture, and is it presented
in Figure 5.2

43

44 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Block diagram of hardware implementation of the MUSIC algorithm.

Figure 5.2: Updated system architecture.

This thesis will only focus on the implementation of Spectral Peak Search (SPS), highlighted
with orange color in Figure 5.1. Tommy A. Opstad, a fellow student, is implementing the
hardware for steps 2 to 4, that is the Covariance Matrix Calculation (CMC), Real-Valued
Transformation (RVT), and Eigenvalue Decomposition (EVD) modules presented in Fig-
ure 5.1. As the steps 2 to 5 depends on the results from the previous step, we are not able to
perform the selected steps in parallel. A summary of his design can be found in Section 5.4 in
addition to in his thesis [1]. The desired theoretical maximum error of the MUSIC algorithm
is 0.5◦.

5.2 Spectral Peak Search Algorithm
As stated in Section 3.6.3, the goal for the MUSIC algorithm is to find the K = 1 peaks
from the search function in Equation (3.44). It is beneficial to search for the peak using
signal subspace, as it requires significantly fewer computations when compared to using noise
subspace. Listing 5.1 indicates how a 2D search can be performed in order to achieve this
goal.

5.2. SPECTRAL PEAK SEARCH ALGORITHM 45

Algorithm 5.1: Real-valued AoA search loop.
1 input : s ta r t_e l , stop_el , start_az , stop_az , step_el , step_az , Es

2 output : peak_el , peak_az
3 θ = s t a r t _ e l ;
4 φ = start_az
5 peak_val , peak_el , peak_az = 0 ,0 ,0
6 while θ < stop_el :
7 φ ← start_az
8 while φ < stop_az :
9 curr_val ← ||ãH(θ, φ)ES ||2

10 i f curr_val > peak_val :
11 peak_val ← curr_val
12 peak_el ← θ
13 peak_az ← φ
14 φ ← φ + step_az
15 θ ← + = θ +step_el
16 end

The goal of the algorithm is to find the combination of θ and φ that yields the highest value of
||ãH(θ, φ)ES ||2. This is a result of deciding to search through the signal subspace, as discussed
in Chapter 4. By searching in the signal subspace, we only need to work with vectors, and we
observe, from Equation (3.19), that the result from this vector multiplication is a 1×1 value.
From the definition of Euclidean norm in Equation (3.20), we observe that the Euclidean
norm can be found from the absolute value of the vector multiplication ãH(θ, φ)ES .

From Listing 5.1 we observe that the number of iterations and the resolution of the search
depend significantly on the step sizes, step_el and step_az, of the two loops. Lower step
sizes yield greater resolution but an increase in number of iterations, and vice versa. Figure 5.3
presents the complexity of the algorithm presented in Listing 5.1, with respect to the step
sizes. With complexity, we mean number of loop iterations.

Figure 5.3: Complexity vs. step sizes for the 2D MUSIC search algorithm.

The complexity presented assumes that the search region is θ ∈ [0◦, 90◦] and φ ∈ [0◦, 360◦].
In general, the complexity of Listing 5.1 can be calculated using Equation (5.1).

46 CHAPTER 5. IMPLEMENTATION

Complexity = stop_el − start_el
step_el

· stop_az − start_az
step_az

(5.1)

As indicated by Figure 5.3, the search complexity increases exponentially with decreasing step
sizes. One way to reduce this trade-off and achieve an acceptable resolution, while keeping
the number of iterations relatively low, is by performing multiple searches. The idea with
performing multiple searches is that the first search is performed within the complete search
region, i.e., θ ∈ [0◦, 90◦] and φ ∈ [0◦, 360◦]. From the first search, we can reduce the region of
the next search around the found peak. As the search region is decreased, we can also reduce
the step sizes without introducing numerous iterations. This can be repeated until having
obtained a search with step sizes resulting in a desired resolution is performed. Figure 5.4
illustrates this idea.

Figure 5.4: Visualization of the theoretical idea with performing multiple search iterations,
narrowing the search regions down to find the AoA.

To understand why this can work, the typical spectrum, shown in Figure 5.5, is further used
for explaining the method.

5.2. SPECTRAL PEAK SEARCH ALGORITHM 47

Figure 5.5: RV-MUSIC spectrum for a search region θ ∈ [0◦, 90◦] and φ ∈ [0◦, 360◦] with
SNR=40 dB.

The visualization in Figure 5.5 indicates that there is no abrupt changes in the spectrum,
meaning that if appropriate step sizes are chosen, we will be able to localize the approximate
peak in the first search iterations. Of course, if the step sizes are too large, it is easy to
miss the approximate peak region, and one must be careful when deciding the step sizes. A
general equation is formed for calculating the number of iterations needed. Let N denote the
number of searches to be performed, and corresponding step sizes, ∆θ = {∆θ1,∆θ2, ...,∆θN}
and ∆φ = {∆φ1,∆φ2, ...,∆φN}.

Number of iterations = 360 − 0
∆φ1

· 90 − 0
∆θ1

+
N∑
i=2

∆φi−1
∆φi

· ∆θi−1
∆θi

(5.2)

The idea behind this equation is that the ith-search is limited around the previous found
peak, pi−1 = (φp,i−1, φp,i−1) by [θp,i−1 − ∆θi−1

2 , θp,i−1 + ∆θi−1
2] in the elevation region and

[φp,i−1 − ∆φi−1
2 , φp,i−1 + ∆φi−1

2] in the azimuth region.

The number of iterations for the ith search can therefore be calculated as

Elevation region:

(
θp,i−1 + ∆θi−1

2

)
−

(
θp,i−1 − ∆θi−1

2

)
∆θi

= ∆θi−1
∆θi

Azimuth region:

(
φp,i−1 + ∆φi−1

2

)
−

(
φp,i−1 − ∆φi−1

2

)
∆φi

= ∆φi−1
∆φi

.

(5.3)

48 CHAPTER 5. IMPLEMENTATION

A high-level model is implemented to tests this idea, and a visualization of how the search
narrows down to find the simulated AoA is shown in Figure 5.6.

Figure 5.6: A visualization of a simulation in the high level model performed with 3 searches.
Each black dot indicates one computation of the search function, PMU, presented in Equation
(3.44). The light red square indicates the second search area, while the dark-red square
indicates the third search area.

Some initial tests are performed using the high-level model to indicate the reduction in
number of values to compute and compare, observing the time used and the average absolute
error for the tests. For each test, a set of 50 simulations is performed with a new, random
AoA within the legal region. The number of search iterations is tested from one to six, and
the results are presented in Table 5.1.

Table 5.1: High-level simulations of multiple search iterations.

Number of search iterations Time used [ms] Loop iterations/complexity Average absolute error [◦]
1 2140 32670 0.08
2 679 8074 0.02
3 298 2109 0.04
4 83 596 0.25
5 31 239 0.58
6 22 143 1.16

The obtained results indicate that using a multiple-search approach can reduce the complexity
significantly, but if the initial step sizes are too large, we can experience an increase in the
average absolute error.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 49

5.3 Hardware Implementation of Spectral Peak Search
The main benefit of a hardware accelerator is the possibility of parallelism of independent
tasks. This section discusses possible solutions for the SPS hardware architecture. In general,
the goal is to minimize the time spent on calculating the AoA.

In the following section, multiple figures are used for visualizing theoretical and implemented
architectures for the hardware accelerator. For these figures, three symbols are used for
describing different dimensions of connected signals between the modules and resources.
Table 5.2 presents these symbols with a description and the expected dimensions.

Table 5.2: Architecture communication symbols.

Symbol Description Dimensions

Single bit 1

Vector 2

Multiple vectors > 2

5.3.1 Hardware Resources
For this project, the Zynq-7020 System on Chip (SoC) from Xilinx [16], located on the PYNQ-
Z1 development kit, is used as hardware. The implementation of CMC, RVT, and EVD also
requires some resources, and an overview of the available resources for the implementation
of SPS is presented in Table 5.3.

Table 5.3: Overview of available resources for SPS. The total available amount is found from
[16], and the resources used for CMC, RVT, and EVD is found from [1].

Look-up tables BRAM DDR3 DSP slices
Total available 53 200 140 512 MB 220
Used by CMC 3 424 0 0 36
Used by RVT 3 780 6 0 0
Used by EVD 19 218 0 0 0
Free to use for SPS 26 778 134 512 MB 184

5.3.2 Search Core
To perform the search discussed above, certain components are required. Three central
functionalities for the search are to be able to multiply the two vectors, Es and ã(θ, φ), being
able to store the current peak-angle values, and have support for comparing the highest vector
multiplication product with the newest vector multiplication. A minimalistic architecture is
presented in Figure 5.7.

50 CHAPTER 5. IMPLEMENTATION

Figure 5.7: A basic architecture for the search to be performed.

The registers holding the peak values are enabled only if the newest vector multiplication
results in a higher value than the current peak value. The minimalistic architecture in
Figure 5.7 will do the required task. However, this architecture will probably not outperform
a software-based approach in terms of speed, as all the search iterations must be performed
sequentially. Observing the search loop in Listing 5.1, we notice that all vector multiplications
can be done simultaneously, but that we cannot output the actual AoA before all vector
multiplications are performed, and the values are compared. Using the architecture in
Figure 5.7 will not utilize one of the key elements in a hardware accelerator: parallelism.
The architecture presented in Figure 5.7 is therefore modified to support a greater level of
parallelism, forming the component named search core, with its architecture presented in
Figure 5.8.

Figure 5.8: Microarchitecture for the Search Core.

The architecture is based on M parallel vector multiplications (VECMULs), with its architecture
presented in Section 5.3.3, that feeds the output into a component which compares the M

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 51

values and outputs the highest value with corresponding values. The architecture of this
component is named COMP, and it is further presented in Section 5.3.4. As indicated by
Figure 5.8, the angle combinations are fed into the search core together with the corresponding
steering vector, and they will follow the calculated values throughout the circuit. Another
approach could be to assign an ID for each steering-vector value, and then add logic for
reverse-calculating the correct angle combinations when the search is complete. The chosen
approach will likely require more registers for storing the angle combinations throughout
the circuit compared to the other presented approach, as it requires two values to be stored
compared to one throughout the circuit. However, it will not require more logic and resources
for calculating the angle combinations after the search has been completed. This will also
yield an immediate AoA-result when the peak values are found without adding extra clock
cycles to the search.

Ideally, one would want M to represent the maximum possible combinations of θ and φ, such
that all values of PMU in Equation (3.44) could be computed in parallel. However, this is not
achievable with the available hardware resources presented in Table 5.3. This means that
the search core must be able to receive the steering vectors and corresponding angles over
multiple clock cycles. This implies that the output of COMP will only be the highest VECMUL
result with corresponding angles out of the M values that are fed into the search core. To
find the global maximum, one would need to store the global peak value, and compare this
to the output of COMP. The result of this comparison enables the peak registers shown in
Figure 5.8.

To maximize throughput, we want the components of the search core to support pipelining
such that we can feed M steering vectors each clock cycle. This is achieved by adding
pipelining registers inside both VECMUL and COMP.

Behavior of the Search Core
As presented in the above section, the search core must be able to receive the steering vector
values over multiple clock cycles as we are unable to achieve an architecture that supports
fully parallel computations. The total number of values to input could be a fixed number,
allowing a counter to indicate when to end the search. However, as we would like to reuse
the search core for multiple search iterations, as presented in Section 5.2, this method is not
preferred. Two control signals are therefore added as inputs. dataIn_valid indicates that
the input is valid, and when this is set high, the search is to be performed. To indicate that
the inputs no longer will be valid, and that the search is to be completed, dataIn_last is
set high for one clock cycle together with the M last steering vector values. This allows us
to feed the input data for as long as one would like, resulting in a highly flexible behavior.
This behavior is presented in the timing diagram in Figure 5.9, and it means that when the
final output of COMP is compared to the global peak value, dataOut_valid can be set high,
indicating that the output is valid.

52 CHAPTER 5. IMPLEMENTATION

Figure 5.9: Example timing diagram for the search core.

As indicated by Figure 5.9, there are four inputs to the search core that contains data, E, a,
el_vec, and az_vec. The input E consists of D = 12 signed values with N bits per value.
Input a consists of M steering vector values, all consisting of D = 12 signed values of N bits,
while el_vec and az_vec consists of M unsigned values of 12 bits. The latter two inputs can
both be unsigned as they only need to hold positive values due to that the search regions are
θ ∈ [0◦, 90◦] and φ ∈ [0◦, 360◦]. The mth (1 ≤ m ≤ M) steering vector and angle values are
mapped directly to the mth instantiation of the VECMUL module in the search core. This can
also be observed in Figure 5.8.

5.3.3 Vector Multiplication Unit
As mentioned in the previous section, one central functionality for the search is to perform
the vector multiplication between the steering vector and signal subspace eigenvector. The
following section is used to present the architecture for the vector multiplication unit.

From Equation (3.19), we observe that each of the values ei and ai can be multiplied in parallel
before the sum of the parallel multiplication must be found. Of course, the multiplication
can also be done sequentially, with a Multiply-Accumulate (MAC) architecture as shown in
Figure 5.10.

Figure 5.10: MAC architecture for the VECMUL unit.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 53

The MAC architecture for one VECMUL unit will in theory only require one DSP slice to perform
the multiplication. The architecture is based on shift registers for storing- and outputting
the correct values for ã(θ, φ) and Es to the multiplier, as indicated in Figure 5.10. When
shift is set high, the values in the vectors are shifted once to the left, and new values will
be available at the output. This approach will not be able to receive new steering vector
values each clock cycle, as it will require D = 12 clock cycles to shift all vector values into
the multiplier. A ready signal must therefore be added to ensure that the vectors are not
overwritten while the operation is ongoing. The ready signal is set high to indicate that
it is ready for new values simultaneously as dataOut_valid is set high, indicating that the
multiplication is complete and that dataOut is valid. The total number of cycles needed to
perform the vector multiplication with this architecture is at least 12

Another architecture is also made for supporting the idea of being able to input one new
steering vector value each clock cycle. The architecture presented in Figure 5.11 performs the
D = 12 multiplications in parallel, before a parallel approach for the addition is performed.
Pipelining registers are added to support the idea of inputting new values each clock cycle.
By shifting the angle values throughout the VECMUL unit as indicated in Figure 5.11, no extra
control logic is needed to ensure that the correct angle values are available at the output with
corresponding dataOut.

Figure 5.11: Microarchitecture of the VECMUL module.

Compared to the architecture in Figure 5.10, the parallel architecture will require more
DSP slices, which reduces the maximum value of M . The main limiting resource for this
architecture is the DSP slices. From Table 6.4, we observe that each VECMUL unit is assigned
16 DSP slices per instantiation during synthesis. From Table 5.3, we know that we have 184
DSP slices available for the SPS, limiting Mmax = 184/16 = 11 parallel VECMUL units.

The latter architecture is chosen for this accelerator, as it allows us to fully pipeline the
values into the search core. Another factor for the decision is presented in Section 5.3.5, and

54 CHAPTER 5. IMPLEMENTATION

to summarize, the way the steering vector values is fed into the search core will also limit
Mmax = 11. It would therefore not be beneficial to use the MAC architecture for the VECMUL
unit, as we would be unable to feed enough steering vector values to the search core.

5.3.4 Comparison Unit
From Figure 5.8, we observe that the M VECMUL-outputs and corresponding angles are fed
into the comparison unit (COMP). The goal for this unit is to output the highest value and
the corresponding angles. This can effectively be achieved with the parallel comparison tree
architecture presented in Figure 5.12. The figure holds the architecture for M = 10, and the
architecture changes with M .

Figure 5.12: Microarchitecture for the COMP unit with M = 10.

The architecture supports pipelining, which means that new values can be loaded into COMP
each clock cycle. The COMP unit is build by using COMP2 units. The architecture for the
COMP2 unit is presented in Figure 5.13, and it takes two values with corresponding angles
and outputs the largest value with corresponding angles. By comparing the COMP2 outputs
as shown in Figure 5.12, we can find the maximum value and corresponding values after 5
clock cycles.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 55

Figure 5.13: Architecture for the COMP2 unit.

The output of the COMP2 entity is controlled by the result from VAL1 > VAL2. The truth table
for COMP2 is shown in Table 5.4. The truth table also indicates that in the event of VAL1 and
VAL2 being equal, VAL2 and the corresponding angles are outputted. This is ok, due to that
without any knowledge of the expected output, we cannot decide if either of the inputs is more
correct in any other way than evaluating the search function. If the vector multiplication of
two different steering vectors yields the same value, then they are both equally correct. From
the discussion of how the steering vectors are fed into the search core, which is presented in
Section 5.3.5, we know that the steering vector values fed into the search core will be very
similar, and in some cases equal due to the values being quantized. Equal steering vectors
will yield equal values to be compared, and one must be aware of this situation.

Table 5.4: Truth table for the COMP2 entity.

VAL1 > VAL2 VAL_OUT θout φout
True VAL1 θ1 φ1
False VAL2 θ2 φ2

From the synthesis reports of VECMUL and COMP, Section 6.2, we observe that COMP outperforms
the VECMUL unit in terms of maximum frequency. The COMP unit consists of simple arithmetic
operations, and the VECMUL unit includes multiplication. The architecture for COMP in Fig-
ure 5.12 could therefore be modified to perform larger comparisons per clock cycle, which
again would form a longer critical path, hence lowering the maximum frequency. This could
be beneficial, as it would require fewer clock cycles for one full cycle of the comparison to
complete. However, since the architecture will be fully pipelined, this modification would
not influence the total number of clock cycles significantly. Using the presented architecture
for COMP ensures that this part of the design will not be the bottleneck of the total design,
presented in Section 5.4.

5.3.5 Obtaining the Steering Vectors
Another key factor for minimizing the time spent for the SPS is to have an efficient way of
obtaining the needed steering vectors, ã(θ, φ). One way of achieving this could be done by

56 CHAPTER 5. IMPLEMENTATION

implementing hardware support for trigonometric operations such as sine and cosine compu-
tations, as well as multiplication for the trigonometric arguments shown in Equation (4.9).
This approach would work, but it would require DSP slices and additional hardware resources,
most likely limiting the level of parallelism for the search core presented in Section 5.3.2.

Another way of obtaining the steering vector values could be from memory. From Equation
(4.9), we observe that all values of ã(θ, φ) can be precomputed and stored in memory. This is
because the steering vector only contains information on the antenna array for given variations
of θ and φ, and that the array used in this project is known and will not change during run
time. The antenna structure is presented in Figure 4.1.

From [14], we observe that there are two types of memory available on the PYNQ Z1 board,
DDR3 and BRAM. The DDR3 memory is not integrated on the FPGA and requires external
interfacing, such as Advanced eXtensible Interface (AXI), for communication [14]. However,
the DDR3 memory offers more available memory compared to the BRAM which is integrated
in the FPGA. It is therefore a trade-off between required memory and system complexity.
With agreement from EmLogic, it was decided to aim for using the available BRAM, as this
would result in a more flexible system, not requiring other resources than the FPGA itself.
The following subsection will therefore only discuss how the BRAM is used for storing- and
reading the steering vector values.

BRAM structure
From Table 5.3, we observe that we have 134 BRAMs of 36 Kb available for the SPS. From
Section 2.4.1, we remember that there is a limited number of possible configurations for the
BRAM. Reading one value from a single BRAM takes one clock cycle [17, p. 17], meaning
that D = 12 BRAMs could be structured in parallel, holding one element each for a given
ã(θ, φ), such that one full steering vector could be read every clock cycle. These 12 parallel
BRAMs are grouped together, forming a BRAM Group (BG). The structure for a BG is
shown in Figure 5.14.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 57

Figure 5.14: Structure of one BRAM group. ãm(θ, φ) indicates that this is the mth BRAM
group where m ∈ [1,M].

This is more efficient in terms of speed compared to storing all 12 values for the same steering
vector in the same BRAM, as this solution would require 12 clock cycles to read the same
data. However, the proposed BRAM structure will potentially use more BRAM unless we
are able to use the whole depth of each BRAM, i.e., 36 Kb.

The number of steering vector values each BRAM can hold, B, depends on the numbers of
bits used per value. A complete overview of the available BRAM configurations is presented
in Table 2.2. The more bits used per value, the fewer values can be stored in a single BRAM
of 36 Kb. The number of bits used per value also influences the precision of each value
in terms of decimal precision, which again can influence the precision of the search. With
the design goal of a maximum theoretical error for the search set at 0.5◦, we know that we
must be able to store all values with 1◦ step size, i.e., ã(θ, φ) for θ ∈ [0◦, 1◦, ..., 89◦, 90◦] and
φ ∈ [0◦, 1◦, ..., 359◦, 360◦]. This is a total of 91 · 361 = 32851 steering vectors. Figure 5.15
visualizes how the number of bits per steering vector value influences the number of full
BRAMs required. This result is obtained using the possible configurations in Table 2.2 and
assuming that all BRAMs are fully utilized.

58 CHAPTER 5. IMPLEMENTATION

Figure 5.15: A plot visualizing how the number of bits used per steering vector value influences
the needed BRAMs if they are stored with 1◦ step size.

Figure 5.15 indicates that we are not able to store the desired steering vector values with more
than 8 bits per value with the available BRAM. Another important factor to be considered
is how each value should be stored in the BRAM. We know that the values of the steering
vector will be in the range [−1, 1], as they all are products of sine and cosine values. There
are three well known solutions for storing real numbers in hardware. The first two are
fixed- and floating point numbers. The theory for such value representation are explained in
Section 3.2.2 and Section 3.2.1.

While both fixed- and floating point representation of numbers are two well known, and
adapted methods, they still often introduce some rounding error. This is often due to a
limiting number of bits available. Initial tests are therefore performed on the high level
model to observe how the number of decimal places influences the precision of the search.
The high-level model of the search, implemented in Python, is modified to round of all steering
vector values and signal subspace values using the built-in function round(a, n) [37], where
the value a is rounded to n-digits precision. The results are presented in Figure 5.16.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 59

Figure 5.16: High-level model simulation for different number of decimals used. A series of
50 simulations with random AoA is performed per number of decimal test.

From the performed tests, we observe that we do not really need high precision in terms of
decimals to obtain the desired precision for the search. From these results, another solution
for storing the values in BRAM became feasible. Due to the relatively low required precision
needed, it will be possible to scale all steering vector values with a value 10n, where n ≥ 1
is the required number of decimals, and round the number to a signed integer value. We
observe that by scaling the steering vector values with the value 10n will result in a possible
range of [−10n, 10n], which is the same as n digits precision. This method of implementation
is preferred, as it allows the architecture to use only signed numbers, which is easier to
work with compared to fixed- and floating point numbers. This method is therefore chosen.
Table 5.5 holds the number of bits required for representing the scaled values of n-decimal
precision together with the integer range.

Table 5.5: Number of bits needed per value for different precision.

n Integer Range Number of Bits Needed
1 [-10, 10] 5
2 [-100, 100] 8
3 [-1000, 1000] 10
4 [-10000, 10000] 14
5 [-100000, 100000] 17

From Figure 5.16, we observe that we should have n ≥ 3 as our required decimal precision.
Observing Table 5.5 and Figure 5.15, we see that with the available BRAM, this is not feasible
as it would require 10 bits per value, and Figure 5.15 indicates that 8 bits are the maximum
values of bits possible. A closer evaluation of the steering vector is therefore performed,
where the goal is to observe if we can exploit some symmetrical properties of the steering
vector. With the knowledge of the steering vector containing trigonometric values only from
Equation (4.9), the possibility of symmetric properties could potentially allow us to reuse the

60 CHAPTER 5. IMPLEMENTATION

same steering vector values for symmetrical angle values. For the given search region, only the
legal values for φ contain symmetric angles. Instead of defining the region for φ ∈ [0◦, 360◦],
we divide it into two regions, φn ∈ [−180◦, 0◦) and φp ∈ [0◦, 180◦). Observing the unit circle,
we know that the two definitions, [φ] and [φn, φp], describe the same regions. We also know
that a value from the region φh ∈ [180◦, 360◦] can be defined using a value from φn, with the
relation

φh = 360◦ + φn. (5.4)

E.g., we know that the angle φ = −90◦ is the same as

φh = 360◦ + (−90◦) = 270◦.

The useful observation is done while comparing the steering vector values in the two regions,
i.e observing ã(θ,−φ) and ã(θ, φ). To fully understand the observation, one must remember
the trigonometric properties

cos(−x) = cos(x)
sin(−x) = − sin(x),

(5.5)

which again yield

ω(θ,−φ) = sin(θ) cos(−φ) = sin(θ) cos(φ) = ω(θ, φ)
ψ(θ,−φ) = sin(θ) sin(−φ) = − sin(θ) sin(φ) = −ψ(θ, φ).

(5.6)

By inserting these observations into Equation (4.9), we observe some useful properties. They
are presented in Equation (5.7).

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 61

ã(θ,−φ) =

cos
(

3πd
λ ω

)
cos

(
3πd
λ − ψ

)
cos

(
3πd
λ ω

)
cos

(
πd
λ − ψ

)
cos

(
3πd
λ ω

)
sin

(
πd
λ − ψ

)
cos

(
3πd
λ ω

)
sin

(
3πd
λ − ψ

)
cos

(
πd
λ ω

)
cos

(
3πd
λ − ψ

)
cos

(
πd
λ ω

)
sin

(
3πd
λ − ψ

)
sin

(
πd
λ ω

)
cos

(
3πd
λ − ψ

)
sin

(
πd
λ ω

)
sin

(
3πd
λ − ψ

)
sin

(
3πd
λ ω

)
cos

(
3πd
λ − ψ

)
sin

(
3πd
λ ω

)
cos

(
πd
λ − ψ

)
sin

(
3πd
λ ω

)
sin

(
πd
λ − ψ

)
sin

(
3πd
λ ω

)
sin

(
3πd
λ − ψ

)

=

cos
(

3πd
λ ω

)
cos

(
3πd
λ ψ

)
0

cos
(

3πd
λ ω

)
cos

(
πd
λ ψ

)
1

− cos
(

3πd
λ ω

)
sin

(
πd
λ ψ

)
2

− cos
(

3πd
λ ω

)
sin

(
3πd
λ ψ

)
3

cos
(
πd
λ ω

)
cos

(
3πd
λ ψ

)
4

− cos
(
πd
λ ω

)
sin

(
3πd
λ ψ

)
5

sin
(
πd
λ ω

)
cos

(
3πd
λ ψ

)
6

− sin
(
πd
λ ω

)
sin

(
3πd
λ ψ

)
7

sin
(

3πd
λ ω

)
cos

(
3πd
λ ψ

)
8

sin
(

3πd
λ ω

)
cos

(
πd
λ ψ

)
9

− sin
(

3πd
λ ω

)
sin

(
πd
λ ψ

)
10

− sin
(

3πd
λ ω

)
sin

(
3πd
λ ψ

)
11

(5.7)

From Equation (5.7), we observe that ã(θ, φ) = ã(θ,−φ) when taking the negative values of
the steering vector values with index 2, 3, 5, 7, 10, and 11 in ã(θ,−φ). This means that we
only need to store the half of the originally estimated steering vector values, as we can use
the angle combinations θ ∈ [0◦, 90◦] and φ ∈ [0◦, 180◦] to genreate steering vector values for
the whole region. This is achieved by taking the two’s complement of the values with index
2, 3, 5, 7, 10, and 11 in every steering vector for φ ∈ φh. A VHDL function is created to do
this task, and is presented in Listing 5.2.

62 CHAPTER 5. IMPLEMENTATION

Listing 5.2: VHDL function for modifying the steering vector values for 180 < φ ≤ 360.
1 function modify_steering (sVec : steering_vector) return steering_vector is
2 variable retVec : steering_vector ;
3 begin
4 for i in 0 to VECTOR_DIM - 1 loop
5 if (i = 2 or i = 3 or i = 5 or i = 7 or i = 10 or i = 11) then
6 retVec (i) := - sVec(i);
7 else
8 retVec (i) := sVec(i);
9 end if;

10 end loop;
11 return retVec ;
12 end function ; -- modify_steering

With this discovery, we observe from Figure 5.17 that we now can use the 2Ki×18 bit
configuration of each BRAM, which is presented in Table 2.2. From Table 5.5 and Figure 5.16,
we observe that using 18 bits per value yields n = 5 decimal precision, and from the initial
high level simulations, presented in Figure 5.16, this seems to be sufficient for achieving the
desired maximum error of 0.5◦.

Figure 5.17: A plot visualizing how the number of bits used per steering vector value influences
the needed BRAMs if they are stored with 1◦ step size, using the symmetrical property of
the steering vector.

To support the parallel architecture in Figure 5.8, M BGs should be structured in parallel,
allowing us to read M full steering vectors each clock cycle [17]. From Table 5.3, it can be
observed that we can fit a maximum of Mmax = floor(134/12) = 11 BGs in parallel. The
final BRAM structure is presented in Figure 5.18, and Table 5.6 presents an extract of how
the data is stored. A complete table with the complete BRAM structure can be found in the
git repository 1.

1https://github.com/EmLogic-Students/HDL/tree/main/sources/SPS/scripts/BRAM

https://github.com/EmLogic-Students/HDL/tree/main/sources/SPS/scripts/BRAM

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 63

Figure 5.18: The proposed BRAM structure.

Table 5.6: An extract of the final BRAM structure for the Spectral Peak Search.
Common
Elevation

BG 1
Azimuth

BG 2
Azimuth

BG 3
Azimuth

BG 4
Azimuth

BG 5
Azimuth

BG 6
Azimuth

BG 7
Azimuth

BG 8
Azimuth

BG 9
Azimuth

BG 10
Azimuth BRAM index Abbreviations

0

0 / 360 1 / 359 2 / 358 3 / 357 4 / 356 5 / 355 6 / 354 7 / 353 8 / 352 9 / 351 0 O0/U0
10 / 350 11 / 349 12 / 348 13 / 347 14 / 346 15 / 345 16 / 344 17 / 343 18 / 342 19 / 341 1 O1/U1
20 / 340 21 / 339 22 / 338 23 / 337 24 / 336 25 / 335 26 / 334 27 / 333 28 / 332 29 / 331 2 O2/U2
30 / 330 31 / 329 32 / 328 33 / 327 34 / 326 35 / 325 36 / 324 37 / 323 38 / 322 39 / 321 3 O3/U3
40 / 320 41 / 319 42 / 318 43 / 317 44 / 316 45 / 315 46 / 314 47 / 313 48 / 312 49 / 311 4 O4/U4
50 / 310 51 / 309 52 / 308 53 / 307 54 / 306 55 / 305 56 / 304 57 / 303 58 / 302 59 / 301 5 O5/U5
60 / 300 61 / 299 62 / 298 63 / 297 64 / 296 65 / 295 66 / 294 67 / 293 68 / 292 69 / 291 6 O6/U6
70 / 290 71 / 289 72 / 288 73 / 287 74 / 286 75 / 285 76 / 284 77 / 283 78 / 282 79 / 281 7 O7/U7
80 / 280 81 / 279 82 / 278 83 / 277 84 / 276 85 / 275 86 / 274 87 / 273 88 / 272 89 / 271 8 O8/U8
90 / 270 91 / 269 92 / 268 93 / 267 94 / 266 95 / 265 96 / 264 97 / 263 98 / 262 99 / 261 9 O9/U9
100 / 260 101 / 259 102 / 258 103 / 257 104 / 256 105 / 255 106 / 254 107 / 253 108 / 252 109 / 251 10 O10/U10
110 / 250 111 / 249 112 / 248 113 / 247 114 / 246 115 / 245 116 / 244 117 / 243 118 / 242 119 / 241 11 O11/U11
120 / 240 121 / 239 122 / 238 123 / 237 124 / 236 125 / 235 126 / 234 127 / 233 128 / 232 129 / 231 12 O12/U12
130 / 230 131 / 229 132 / 228 133 / 227 134 / 226 135 / 225 136 / 224 137 / 223 138 / 222 139 / 221 13 O13/U13
140 / 220 141 / 219 142 / 218 143 / 217 144 / 216 145 / 215 146 / 214 147 / 213 148 / 212 149 / 211 14 O14/U14
150 / 210 151 / 209 152 / 208 153 / 207 154 / 206 155 / 205 156 / 204 157 / 203 158 / 202 159 / 201 15 O15/U15
160 / 200 161 / 199 162 / 198 163 / 197 164 / 196 165 / 195 166 / 194 167 / 193 168 / 192 169 / 191 16 O16/U16
170 / 190 171 / 189 172 / 188 173 / 187 174 / 186 175 / 185 176 / 184 177 / 183 178 / 182 179 / 181 17 O17/U17

1 0 / 360 1 / 359 2 / 358 3 / 357 4 / 356 5 / 355 6 / 354 7 / 353 8 / 352 9 / 351 18 O0/U0

31 90 / 270 91 / 269 92 / 268 93 / 267 94 / 266 95 / 265 96 / 264 97 / 263 98/ 262 99 / 261 567 O9/U9
100 / 260 101 / 259 102 / 258 103 / 257 104 / 256 105 / 255 106 / 254 107 / 253 108 / 252 109 / 251 568 O10/U10

90 160 / 200 161 / 199 162 / 198 163 / 197 164 / 196 165 / 195 166 / 194 167 / 193 168 / 192 169 / 191 1636 O16/U16
170 / 190 171 / 189 172 / 188 173 / 187 174 / 186 175 / 185 176 / 184 177 / 183 178 / 182 179 / 181 1637 O17/U17

From Table 5.6, we observe that M = 10 is chosen. This decision comes from the fact that
the BRAM structure gets an alignment that it is easy to read data from. All the logic for
indexing the BRAM structure must be designed, and by choosing M = 10, this task will
be relatively easy with the trade-off of reduced parallelism in the search core. There is no
benefit in having M = 11 parallel VECMULs if we cannot read 11 steering vector each clock
cycle. From Table 5.6, we can also observe that for each θ, the steering vector for φ = 180◦ is
not available. This is another trade-off with choosing a well-aligned BRAM structure. This
implies that if the actual AoA has φ = 180◦, we will, at best, achieve a minimum error of 1◦,
hence not achieve the desired maxim error. One last remark is that φ = 0◦ and φ = 360◦
actually is the same angle. φ = 360◦ is one full rotation on the unit circle. It is well known
that

64 CHAPTER 5. IMPLEMENTATION

cos(0◦) = cos(360◦) = 1
sin(0◦) = sin(360◦) = 0,

which again yield

ω(θ, 0◦) = sin(θ) cos(0◦) = sin(θ)
ψ(θ, 0◦) = sin(θ) sin(0◦) = 0.

The resulting steering vector will therefore be

ã(θ, φ = 0◦) =

cos
(

3πd
λ sin(θ)

)
cos

(
3πd
λ sin(θ)

)
0
0

cos
(
πd
λ sin(θ)

)
0

sin
(
πd
λ sin(θ)

)
0

sin
(

3πd
λ sin(θ)

)
sin

(
3πd
λ sin(θ)

)
0
0

.

This means that it is unnecessary to evaluate both φ = 0◦ and φ = 360◦. However, it also
indicates that the modified values from the function in Listing 5.2, are always 0, which means
that using the same approach for these angles as for all others will therefore not yield any
error. The selected approach is further explained in Section 5.3.6.

From Table 5.6, we observe that each index in each BG holds the values that can be used
for two steering vectors. They both share the same value for θ, which can be found in the
corresponding leftmost column. The two values for φ can be located in the same row as the
index and in the same column as the desired BG. The values for φ are presented as φ1/φ2
where φ1 < 180◦ and φ2 > 180◦. The abbreviations O0/U0, O1/U1, ..., O17/U17 in Table 5.6
are later used for describing which angle combinations we are feeding into the search core.
“O”/“U” is used for azimuth over- and under 180◦, respectively. The following number, which
is a number between 0 and 17, is used for describing which row for the current elevation angle
to read from. As an example, “O14” is used for describing the azimuth angles

φ = [220◦, 219◦, 218◦, 217◦, 216◦, 215◦, 214◦, 213◦, 212◦, 211◦].

From Figure 5.18, we observe that each of the available BGs can be accessed individually,
allowing for only a subset of the available BGs to output data, and that individual addresses
for each BG can be accessed. The use case for this will be presented in Table 5.3.6.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 65

One drawback of the above presented method for obtaining the steering vector values is
that we are not able to obtain the steering vector values for the different BLE channels.
In Section 2.2, the 40 BLE channels are presented, describing how each channel has its
own frequency, resulting in different wavelengths for every channel. To minimize deviation
from the stored wavelength to the wavelength of the received CTE, the wavelength for the
middle channel, channel 17, is used for generating the steering vector values. Due to the
non-sequential order of the channels, presented in Figure 2.4, channel 17 is the middle channel
with center frequency fch17 = 2.44 GHz. A discussion of the effects of wavelength deviation
in the steering vectors to the received signal is presented in Section 7.5.

The data for the BRAM are generated using Python, and are stored in a .data-file. The
Python script creates the scaled steering vector values with a scaling factor of 105 and assigns
an ID consisting of 8 bits to all the values. The first 4 bits indicate the BRAM ID within
the BG, while the last four bits indicate the BG ID within the BRAM structure. A specific
VHDL function is then written for reading the data, and generates the BRAM structure as
indicated by the .data-file generated. All of these files can be found in git repository2.

5.3.6 Spectral Peak Search Core
The SPS core is the top level module for this design, combining the previously described units
in Section 5.3.3, Section 5.3.4 and Section 5.3.5 in order to perform the search presented in
Section 5.2. This section presents the implementation of two versions for the SPS core,
and they are later used to observe if it is possible to achieve the same level of accuracy
by dividing the search into multiple searches compared to only one search, as presented in
Section 5.2. The first version is implemented to perform only one search, and is referred to
as the one-search SPS core. The second version is implemented to perform two searches, and
it is referred to as the two-search SPS core. The reason for not implementing more than
two searches will be discussed in the below sections. The following subsections are used to
describe the architecture and the behavior of the two implemented versions.

One-Search SPS Core
The one-search SPS core performs only one search. To achieve the desired maximum the-
oretical error of 0.5◦, the step sizes must be ∆θ1 = ∆φ1 = 1◦. With the BRAM structure
presented in Section 5.3.5, these are also the lowest possible step sizes. The architecture for
the one-search SPS core is presented in Figure 5.19.

2https://github.com/EmLogic-Students/HDL/tree/main/sources/SPS/scripts/BRAM

https://github.com/EmLogic-Students/HDL/tree/main/sources/SPS/scripts/BRAM

66 CHAPTER 5. IMPLEMENTATION

Figure 5.19: Architecture for the one-search SPS core.

The architecture is based on reading the values for ã(θ, φ) from the BRAM structure, and to
feed them into the search core together with the correct angles. As presented in Section 5.3.2,
the angle combinations for a given steering vector follow the computed value throughout the
circuit to keep track of them through the pipelined architecture. This also makes it possible
to feed ã(θ, φ) in any order, as long as the correct angles are also fed into the search core.
This allows us use the special structure of the BRAM to reduce the switching activity.

In Listing 5.1, the search is performed by iterating through all values of φ incrementally
before θ is incremented, and the same loop is performed again. This could be achieved for
the one-search SPS core. However, by observing the BRAM structure in Table 5.6, we know
that it is possible to retrieve the steering vector for two different angle combinations per
index. To follow the standard iterative loop presented in Listing 5.1, the index could be
incremented every clock cycle until we are at row “U17” for any given θ, before decrementing
the index until “O0” is fed to the search core. This approach includes switching of addresses
every clock cycle, resulting in most of the BRAM data switching too. Another alternative
is to only increment the BRAM index every other clock cycle. By doing so, the first clock
cycle can be used for feeding the raw data from BRAM into the search core together with
the correct angle combinations (φ < 180◦). For the second clock cycle, we use the function
in Listing 5.2 to edit the BRAM data and feeding the results into the search core with the
correct angle combinations (φ > 180◦).

A typical timing diagram for the one-search SPS core is presented in Figure 5.20.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 67

Figure 5.20: Timing diagram of the one-search SPS Core.

From Figure 5.20, it can be observed how the BRAM address is equal for all the BGs, and
that it is incremented every other clock cycle. It can also be observed that the azimuth angles
are updated every clock cycle. By doing so, the one-search core needs 36 clock cycles per
value of θ, resulting in 91 · 36 = 3276 clock cyles to feed all BRAM data. The one-search SPS
Core can be described using the state diagram in Figure 5.21. When dataIn_valid is set
high, the FEED BRAM DATA state is entered, enabling the BRAM and the search core. In this
state, the goal is to increment the BRAM address every other clock cycle as described above,
while feeding the correct combinations of angles and BRAM data to the search core.

Figure 5.21: State machine of the one-search SPS Core.

While the one-search SPS core is in the FEED BRAM DATA state, an internal counter is en-
abled for keeping track of the angles to output. This counter is used for incrementing and
decrementing the angles correctly. When all data are read from the BRAM structure, we
need to wait for the final sets of data to be computed and evaluated inside the search core
before outputting the search result. The WAIT-state is therefore needed, and it is entered
when all data are fed to the search core. The number of clock cycles needed for allowing the
search to complete after the last data is fed into search core is 14. The transition from WAIT
to OUTPUT is triggered by dataOut_valid=’1’ from the search core. In the OUTPUT state,
dataOut_valid in Figure 5.20 is set high, allowing the data to successfully be communicated
outside of the SPS core.

68 CHAPTER 5. IMPLEMENTATION

An estimation of the number of clock cycles that is needed to perform a search using the
one-search SPS core is presented in Table 5.7.

Table 5.7: Number of clock cycles per state for the one-search SPS core.

State Clock cycles
FEED BRAM 91 · 360/10 = 3276

WAIT 14
OUTPUT 0
Total 3290

Two-Search Core
The two-search SPS Core is implemented as an attempt to significantly reduce the number of
steering vector values from the BRAM structure and computations that are needed, without
reducing the precision of the search. The results in Table 5.1 indicate that performing two
searches significantly reduces the number of iterations for the search without reducing the
precision. Even though more search-iterations could be implemented, two search iterations are
chosen as this approach most likely will perform well enough in terms of speed, and it should
be able to maintain a high accuracy. The two-search SPS core is therefore designed to perform
two searches with step sizes: ∆θ = {∆θ1 = 4◦,∆θ2 = 1◦} and ∆φ = {∆φ1 = 4◦,∆φ2 = 1◦}.
The reason for choosing ∆θ1 = ∆φ1 = 4◦ is due to the layout of the BRAM structure. As
presented above, M is set to be 10, and in order to maximize the throughput, we want to
feed 10 new steering vectors and corresponding angles every clock cycle. This can be a bit
challenging, as certain step sizes would require us to read multiple steering vector values from
the same BG. As an example, if ∆φ = 10◦, one would always be required to read all steering
vector values from the same BG. Using ∆φ = 10◦ would therefore make it impossible to read
out the data efficiently.

Table 5.8 indicates how the BRAM structure effectively can be accessed for obtaining M = 10
steering vectors each clock cycle. The presented table indicates that we will need to change
the BRAM addresses nine times per elevation angle. Table 5.9 is used for describing the
meaning of the blue shaded cells.

Table 5.8: BRAM structure indexing for search with step sizes ∆θ = ∆φ = 4◦.

Common
Elevation

BG 1
Azimuth

BG 2
Azimuth

BG 3
Azimuth

BG 4
Azimuth

BG 5
Azimuth

BG 6
Azimuth

BG 7
Azimuth

BG 8
Azimuth

BG 9
Azimuth

BG 10
Azimuth

Common
BRAM index

2

0 / 360 1 / 359 2 / 358 3 / 357 4 / 356 5 / 355 6 / 354 7 / 353 8 / 352 9 / 351 0
10 / 350 11 / 349 12 / 348 13 / 347 14 / 346 15 / 345 16 / 344 17 / 343 18 / 342 19 / 341 1
20 / 340 21 / 339 22 / 338 23 / 337 24 / 336 25 / 335 26 / 334 27 / 333 28 / 332 29 / 331 2
30 / 330 31 / 329 32 / 328 33 / 327 34 / 326 35 / 325 36 / 324 37 / 323 38 / 322 39 / 321 3
40 / 320 41 / 319 42 / 318 43 / 317 44 / 316 45 / 315 46 / 314 47 / 313 48 / 312 49 / 311 4
50 / 310 51 / 309 52 / 308 53 / 307 54 / 306 55 / 305 56 / 304 57 / 303 58 / 302 59 / 301 5
60 / 300 61 / 299 62 / 298 63 / 297 64 / 296 65 / 295 66 / 294 67 / 293 68 / 292 69 / 291 6
70 / 290 71 / 289 72 / 288 73 / 287 74 / 286 75 / 285 76 / 284 77 / 283 78 / 282 79 / 281 7
80 / 280 81 / 279 82 / 278 83 / 277 84 / 276 85 / 275 86 / 274 87 / 273 88 / 272 89 / 271 8
90 / 270 91 / 269 92 / 268 93 / 267 94 / 266 95 / 265 96 / 264 97 / 263 98 / 262 99 / 261 9
100 / 260 101 / 259 102 / 258 103 / 257 104 / 256 105 / 255 106 / 254 107 / 253 108 / 252 109 / 251 10
110 / 250 111 / 249 112 / 248 113 / 247 114 / 246 115 / 245 116 / 244 117 / 243 118 / 242 119 / 241 11
120 / 240 121 / 239 122 / 238 123 / 237 124 / 236 125 / 235 126 / 234 127 / 233 128 / 232 129 / 231 12
130 / 230 131 / 229 132 / 228 133 / 227 134 / 226 135 / 225 136 / 224 137 / 223 138 / 222 139 / 221 13
140 / 220 141 / 219 142 / 218 143 / 217 144 / 216 145 / 215 146 / 214 147 / 213 148 / 212 149 / 211 14
150 / 210 151 / 209 152 / 208 153 / 207 154 / 206 155 / 205 156 / 204 157 / 203 158 / 202 159 / 201 15
160 / 200 161 / 199 162 / 198 163 / 197 164 / 196 165 / 195 166 / 194 167 / 193 168 / 192 169 / 191 16
170 / 190 171 / 189 172 / 188 173 / 187 174 / 186 175 / 185 176 / 184 177 / 183 178 / 182 179 / 181 17

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 69

Table 5.9: BRAM structure indexing colors per elevation angle.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

We observe that by using ∆θ1 = ∆φ1 = 4◦, the indexing is non-overlapping. Also, it can
be observed that only 5 BGs are used for this search. In order to retrieve M = 10 values
from the five highlighted BGs, the symmetric property for the steering vector, presented in
Section 5.3.5, is once again used. The raw BRAM data values, with the correct φ < 180◦, is
passed into the search core with the positions 1 to 5, while positions 6 to 10 receive modified
steering vector values, using the function presented in Listing 5.2 with φ > 180◦. From
Table 5.8, it can be observed that the value of θ will be the same for the data being fed to
the search core per clock cycle. In order for the BRAM structure to support this type of
indexing, each BG is assigned its own address input, as presented in Figure 5.18, such that
the indexing in Table 5.8 can be achieved. As an example, the first BRAM data fed into the
search core is retrieved from BG 1, BG 3, BG 5, BG 7, and BG 9, and the steering vectors
are

ã :[ã(2◦, 0◦), ã(2◦, 12◦), ã(2◦, 4◦), ã(2◦, 16◦), ã(2◦, 8◦),
ã(2◦, 360◦), ã(2◦, 348◦), ã(2◦, 356◦), ã(2◦, 344◦), ã(2◦, 352◦)]

φ :[0◦, 12◦, 4◦, 16◦, 8◦, 360◦, 348◦, 356◦, 344◦, 352◦]
BRAM ADDR :[36, 0, 37, 0, 36, 0, 37, 0, 36, 0].

(5.8)

The reason why the first value for θ is set to 2◦ was observed when testing the high-level model.
When the expected elevation angle, θE , was close to 0◦, significant errors were observed if the
start value for θ was set to 0◦. From Section 3.5, we remember that it is not possible to have
θ = 0◦ and φ ̸= 0◦, and errors were observed when a multi-search approach was performed
using θ = 0◦ as start value for elevation.

Another important reason for selecting the chosen step sizes is that we reduce the risk of
missing the main peak that we are searching for in the first search iteration. From Figure 5.5,
we observe that the main peak is much wider than the selected step sizes. However, if large
step sizes were to be used, we observe that the main peak could be missed. To illustrate
this, two 2D layouts of the spectrum plot in Figure 5.5 are presented in Figure 5.22. In
Figure 5.22(a), the chosen step sizes for the first search are visualized using red dots. From
this figure, we can observe that the search function is evaluated multiple times within the
main peak, highlighted in yellow. Figure 5.22(b) is used for visualizing how selecting too
large step sizes can result in missing the main peak.

70 CHAPTER 5. IMPLEMENTATION

(a) 2D spectral peak search with step sizes ∆θ1 = 4◦ and ∆φ1 = 4◦. One red dot indicates one evaluation of
PMU.

(b) 2D spectral peak search with step sizes ∆θ1 = 15◦ and ∆φ1 = 40◦. One red dot indicates one evaluation
of PMU.

Figure 5.22: 2D visualization of how the chosen step sizes can miss the main peak.

As the core functionality for the two-search SPS core is very similar to the one-search SPS
core, the two-seach SPS core can reuse most of the architecture presented in Figure 5.19.
However, the two-search SPS core requires some extra logic and functionality. One of the
major differences between the two versions is that the first output of the search core must be
used for calculating the region for the second search, as discussed in Section 5.2. Feedback
from the search core into the CTRL block can therefore be observed in Figure 5.23, which is
the architecture for the two-search SPS core.

Figure 5.23: Architecture for the two-search SPS core.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 71

This architecture is in theory very general, and could be used for performing other com-
binations of the search-iterations. However, most of the design within the CTRL block is
highly specialized for reading the BRAM structure as presented in Table 5.8, and performing
other combinations of the search-iterations would require this section of the architecture to
be updated. The state machine for the two-search SPS core is more complex compared to
state machine for the one-search SPS core presented in Figure 5.21. This is due to the need
for processing the output from search core, and deciding where to perform the second search.
The updated state diagram is presented in Figure 5.24.

Figure 5.24: FSM for two-search SPS Core.

From the state diagram, we recognize some of the same behavior as described in Section 5.3.6.
The search is initiated by a high value on dataIn_valid, changing the state from IDLE to
FEED 1, which is the search with ∆θ1 = ∆φ1 = 4◦. When the desired values from the BRAM
structure is read, the WAIT state is entered, waiting for the dataOut_valid output from the
search core to be set high. Further transition from the WAIT state is conditional of the signal
first_search, which is used to keep track of the search iteration. If first_search is high,
which it is for the first iteration, the state transitions from WAIT to PROCESS RESULT. In this
state, the output from the search core is used for obtaining the BRAM indexes to read from
during the second search. How this is done is described in the following paragraphs. The
signal first_search is set low when the transition from WAIT to PROCESS RESULT is done,
such that the next time we are in the WAIT state, the transition will go to the OUTPUT state.
This indicates that the search is done.

Processing the output of the search core after the first search is completed is a necessary step
for obtaining the first index for the next search. From Section 5.2, we remember that the
search region for the next search is centered around the peak, (θp,1, φp,1), found in the first
search. From Figure 5.24, we observe that three different transitions can be done from the
PROCESS RESULT state: FEED 2 UNDER 180, FEED 2 CLOSE TO 180, or FEED 2 OVER 180.
The transition is conditional of the peak azimuth, φp, found in the first search. The reason for
the different states can be better understood by observing the BRAM structure in Table 5.6.
The main reason is due to how the BRAM structure needs to be indexed for the following

72 CHAPTER 5. IMPLEMENTATION

search.

From Section 5.2, we remember that the second search will be limited around the peak with
±∆θ1/2 in the elevation region, and ±∆φ1/2 in the azimuth region. Even though this is
the minimum area that is needed to search through to ensure that all possible AoAs can
be found, it could also be beneficial to extend this region. Of course, searching through
additional angles will increase the total search time. However, compared to the first search,
the number of additional clock cycles will be very low.

Theoretically, we would only need to feed a total of 5 · 5 = 25 steering vector values into the
search core for the second search. For every θ ∈ [θp,1 − 2◦, θp,1 − 1◦, θp,1, θp,1 + 1◦, θp,1 + 2◦] we
would need to feed steering vector values for φ ∈ [φp,1 −2◦, φp,1 −1◦, φp,1, φp,1 +1◦, φp,1 +2◦].
With M = 10, one would need minimum three clock cycles to feed these values (10 + 10 + 5).
However, with the BRAM structure presented in Section 5.3.5, this would not be feasible, as
it would require us to read multiple values from the same BG simultaneously. This could be
achieved by using the dual-port feature of the RAMB36E1 blocks available on the SoC as
presented in Section 2.4.1. However, this is not possible as the implemented BRAM structure
does not support this with the current design.

With the current layout of the BRAM structure and the search core, M = 10 values from
the BRAM structure should be fed every clock cycle. Feeding less values will not yield faster
computations. Also, when processing the output and deciding which BRAM values to read
for the next search, many special cases can be encountered. Figure 5.25 is used for visualizing
how the BRAM indexes for the second search could be decided for two different scenarios. In
the first scenario, the peak from the first search is found for the blue cell, and the red cells
must be evaluated for the second search. In the second scenario, the peak is found for the
green cell, and the cells highlighted in orange must be evaluated for the second search.

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 73

Figure 5.25: BRAM structure indexing for the second search. The blue cell is used for
indicating (θp,1 = 68◦, φp,1 = 256◦) for one scenario, while the green cell is used for indicating
(θp,1 = 68◦, φp,1 = 110◦) for another scenario, where the indexing would be more complicated.
The red/orange cells, located around the peak cells indicates which data we need to read.

The first scenario in Figure 5.25, with red and blue colors, will be straight forward to perform
correctly and to feed efficiently into the search core. In this case, all the needed data for the
second search are well aligned on the same index for all 5 BGs. However, in the scenario with
green and orange colors, we observe that different BRAM indexes must be used, and that it
will be harder to keep track of which angle combinations belongs to what data.

To avoid many edge cases and to simplify the logic for the second search, a simpler approach
is taken. To reduce the number of edge cases, we want to feed whole rows from the BRAM
structure into the search core. If the peak is found for the blue colored cell in Figure 5.26,
feeding the whole row instead of only the red-colored cell in Figure 5.25 would not increase

74 CHAPTER 5. IMPLEMENTATION

the time for the second search, as the search core can perform M = 10 parallel vector
multiplications. As we do not care about which BG in the BRAM structure the peak is
found from, we must feed the data from the two nearby indexes, marked with read. This
approach results in needing to feed three rows per value for θ, resulting in a maximum of 15
clock cycles for the second search. This is, compared to the first search, still relatively small,
making the second search efficient.

Figure 5.26: Updated BRAM structure indexing visualization. The blue cell indicates the
data for the peak found in the first search iteration, while the red cells indicate all cells read
for the second search. The data for the blue cell are also included for this search.

The first step of PROCESS RESULT is to find the row for the p1 = (θp,1, φp,1) in the BRAM
structure. By using one DSP slice, the base row index ("O0/U0") for θp,1, can be found
from

5.3. HARDWARE IMPLEMENTATION OF SPECTRAL PEAK SEARCH 75

Base row index = 18 · θp,1. (5.9)

This comes from the fact that there are 18 rows per elevation angle stored in each BG. From
φp,1, we can further obtain the exact index. To find this, the offset in Equation (5.10) can
be used.

Offset index =

φp,1
10 , if φp,1 < 180

360◦ − φp,1
10 , if φp,1 > 180

(5.10)

To avoid division, which is very expensive to perform in hardware, a LUT is implemented
with the same functionality as Equation (5.10). The correct index can therefore be found
from the sum of Equation (5.9) and Equation (5.10). From the example in Figure 5.26, we
can find the peak index for the blue cell by using Equation (5.9) and Equation (5.10) to find
the base row index of 18 · 68 = 1224 and offset index of 100/10 = 10, respectively. The
correct index is therefore 1224 + 10 = 1234. From this index, we can further adjust the index
to read out the highlighted rows in Figure 5.26.

As presented, some measures are taken in order to simplify the logic for the second search.
However, some special cases may still occur. These special cases have resulted in three
different states for the second search, as presented in Figure 5.24. If φp,1 < 170◦, we can
safely perform the search for azimuth angles only under 180◦. An example timing diagram
of how the search is performed is shown in Figure 5.27.

Figure 5.27: Example timing diagram when the state is FEED 2 UNDER 180 or FEED 2 OVER
180.

Note that in this state, we have a corner case when 0◦ ≤ φp,1 < 10◦, as reading the data
from the row before the peak index row would result in reading steering vector values for the
incorrect θ- value. In this case, we only read U0 and U1 per θ, and we will only need 10 clock
cycles to read all the data.

A similar search is performed if φp,1 > 190◦. The main difference from the state where
φp,1 < 170◦ is that the BRAM data fed into the search core must be modified using the
function presented in Listing 5.2. There are also some differences in how the azimuth angles
are updated. However, the timing diagram is very similar for the FEED 2 UNDER 180 state,

76 CHAPTER 5. IMPLEMENTATION

and the example timing diagram in Figure 5.27 is used to describe the behavior of these
states.

In the event of 170◦ ≤ φp,1 ≤ 190◦, we would need to perform the second search including
azimuth angles both over and under 180◦. The technique used for reading out the BRAM
data in the one-search SPS core is reused for this search. To simplify the search and avoid
corner cases, all azimuth values for U16/O16 and U17/O17, and the five values of theta is
fed into the search core with the corresponding data. An example timing diagram for this
state is presented in Figure 5.28.

Figure 5.28: Example timing diagram when the state is FEED CLOSE TO 180.

The calculations performed in PROCESS RESULT are split over multiple clock cycles. This is
done to reduce the critical path, hence increasing the maximum frequency, fmax. When the
processing of the result is complete, the two-search SPS core transitions to either of the tree
available states, presented in Figure 5.24. Table 5.10 presents the estimated number of clock
cycles for the available states.

Table 5.10: Number of clock cycles per state for the two-search SPS core.

State name Number of clock cycles
FEED 1 ((90 − 2)/4 · 360/4)/10 = 198
FEED OVER 180 10-15
FEED UNDER 180 10-15
FEED CLOSE TO 180 20
PROCESS RESULT 3
WAIT 14

5.4 MUSIC Core
This section is used to describe the implemented design from Tommy A. Opstad and how
the complete design, presented in Figure 5.1, is connected, forming the MUSIC Core. The
MUSIC core is build on the design presented in this thesis and on the work presented in
the thesis written by Opstad. The overall architecture for the MUSIC core is shown in
Figure 5.29.

5.4. MUSIC CORE 77

Figure 5.29: Architecture of the MUSIC core, combining the results of the work done by
Tommy A. Opstad and the work presented in this thesis.

The design by Tommy A. Opstad is split into three modules. The following sections summa-
rize his results [1].

Covariance Matrix Calculation
The CMC module is designed to perform the computations needed to obtain R̂xx from
Equation (3.30). This module takes in D = 12 complex-valued IQ values each clock cycle,
meaning that it can receive one snapshot per clock cycle. Using Gauss’ method for complex
multiplication, Opstad’s implementation only needs three multipliers per complex multipli-
cation, hence 3 · 12 = 36 DSP slices to perform the required covariance calculations. Using
a MAC architecture, Opstad achieves the same functionality as required by Equation (3.30),
and this allows us to receive N snapshots sequentially. However, as discussed in Section 4.3.3,
there is no need for a scaling factor, and the division in Equation (3.30) is therefore excluded
from the computations. The data-inputs of this module are also the input of the MUSIC
core, and they expect signed integer values. This means that this entity, similarly as the SPS
core, expects the inputs to be scaled with a number 10n. When using a MAC architecture
with signed integers, the possibility for overflow is present. To address this, Opstad added a
scaling factor to the accumulated values using right shift.

Real-Valued Transformation
The RVT module combines Equation (3.34) and Equation (3.35) to transform the output
of CMC, R̂xx, to the real-valued covariance matrix Rxx. Through a careful analysis of
the transformation steps, Opstad observed one important simplification to Equation (3.34),
shown in Equation (5.11).

RFB = 1
2 (R + JR∗J) ≈ JRTJ (5.11)

This simplification yields two positive outcomes. The first one is that less resources are
needed, as the matrix addition is not required. The second is that only one row needs to be
received each clock cycle. The reason for feeding the rows of R̂xx is due to the transpose
operator, where the rows will be converted to columns. From Equation (3.19), we remember
that the rows of the leftmost matrix is multiplied with the columns of the rightmost matrix,

78 CHAPTER 5. IMPLEMENTATION

and the functionality is therefore correct. Remembering that the matrices J and T, which
are needed for the transformations, only contains specific values (0, 1,±j), Opstad achieved
implementation of the transformation without using any DSP slices. This allowed increased
parallelization of the SPS core.

Eigenvalue Decomposition
The final module implemented by Opstad is the EVD module, where the goal is to find
the eigenvalues and eigenvectors. This is a highly complex module, and his thesis presents
the supporting theory. Through his thesis, he discusses different variations of the Jacobi
method, where he addresses the trade-off between resource usage and time consumption.
The EVD module is implemented using the parallel Jacobi method, allowing for significantly
faster computation of the eigenvectors. Through this method, the eigenvector, where the
corresponding eigenvalue has the largest value, is located in the last column of the resulting
matrix holding the eigenvectors. This eigenvector corresponds to Es, and it is further
communicated with the SPS core.

Chapter 6
Test and Results

6.1 Evaluation of the High-Level Models
The high-level models used for experimenting with the algorithm during the implementation
phase are also used as a reference for evaluating the performance of the hardware implemen-
tation of the SPS core. There are three main iterations of the high-level models. They are
all available in the git repository that is used during this project1. The first iteration of the
high-level model is implemented using complex-values throughout the complete algorithm.
The second iteration is implemented as a real-valued, full precision algorithm, not using
the scaling and limitation of precision for the steering vector, as presented in Section 5.3.5.
The third and final version is the model most similar to the implemented SPS core, using
a real-valued approach and reading data from precomputed memory locations. The reason
for evaluating the first two versions of the high-level model is to observe if the precision is
decreased for the chosen implementation, meaning that we want to observe if the precision of
the search is decreased when using the real-valued approach or a quantification of the steering
vector values. The last version of the high-level model is tested to observe if the hardware
implementation behaves correctly. The tests are performed to evaluate three key metrics;
precision, execution time and power usage. How the tests are performed, and the obtained
results, are presented in the below sections.

6.1.1 Precision
For each iteration of the high-level model, two tests are performed to observe the accuracy
of the high-level models. The first test is performed using only one search, while the second
test uses two searches with the same step sizes as the SPS core. All tests evaluate the models
for all possible angle combinations, θ ∈ [1◦, 90◦] and φ ∈ [0◦, 359◦]. The reason for excluding
the tests with θ = 0◦ is due to the fact that the signal must have φ = 0◦ in these cases, as
presented in Section 3.5. All other values for this case are not possible. Tests with φ = 360◦
are also excluded as this is the same as φ = 0◦.

For the performed tests, two key metrics are measured. The first metric is the total number
of errors. This metric is defined mathematically as

1https://github.com/EmLogic-Students/High-Level-Model/tree/main/SPS

79

https://github.com/EmLogic-Students/High-Level-Model/tree/main/SPS

80 CHAPTER 6. TEST AND RESULTS

Number of errors =
T∑
i=1

Ei, (6.1)

where

Ei =
{

1, if θE,i ̸= θp,i or φE,i ̸= φp,i

0, else
. (6.2)

The subscripts, (E, i) and (p, i), describe the expected output and the found peak for the ith
test, respectively. This metric can help us indicate if the different versions of the algorithms
are likely to have many errors, or if it rarely occurs. The second metric measured is the
average absolute error, finding the average absolute error using

Average absolute error = 1
T

T∑
i=1

√
(θE,i − θp,i)2 + (φE,i − φp,i)2, (6.3)

where T symbolizes the total number of values to find the average of. This metric indicates
the confidence level of the search. By combining the two metrics, one could also get an
indication on the magnitudes of the errors, e.g., if “Number of errors” are relatively low while
“Average absolute error” is relatively high, it can indicate that the few errors present has a
high magnitude.

The remaining figures in this section present the plots from the tests, while Table 6.1 presents
the key metrics obtained from the tests. Note that all tests are performed without additional
noise added to the generated signals. A discussion on how noise influence the search is
presented in Section 7.1. Testing without noise is done due to two reasons. The first being that
excluding random noise from the different tests ensures us that no randomness influence the
obtained results. The errors due to randomness could be minimized by performing multiple
tests per simulated AoA. However, this would be very time-consuming, and it was therefore
not performed for the following tests. For each of the tests presented below, 90 · 360 = 32400
simulations are performed, taking up to 24 hours per test. The second reason for testing
without additional noise is to observe how well the implemented algorithm can perform
under ideal conditions.

For the presented plots, the x-axis is the simulated azimuth angle, while along the y-axis,
we have the simulated elevation angle. The colors indicate the absolute error, calculated
by

Absolute error =
√

|θE − θp|2 + |φE − φp|2, (6.4)

where (θE , φE) and (θp, φp) are the expected and found peak, respectively. For the plots with
error present, the deep purple color indicates 0◦ absolute error. For Figure 6.1, Figure 6.2,
and Figure 6.3, there are no errors present, and the color scheme is different. However, we
must be aware of that only integer values for the AoA are tested, and as the minimum step
size for the search is 1◦ for both azimuth and elevation due to limited memory, we will observe
a maximum of 0.5◦ absolute error if the AoA contains real numbers.

6.1. EVALUATION OF THE HIGH-LEVEL MODELS 81

Table 6.1: High-level model metrics for the performed tests. CV: complex-valued, RV: real-
valued.

Test description Number of errors Average error [◦]
CV Full precision one-search 0 0
CV Full precision two-search 0 0
RV Full precision one-search 0 0
RV Full precision two-search 16 0.0005
RV Constrained precision one-search (5 decimals) 748 0.02
RV Constrained precision two-search (4 decimals) 2609 0.09
RV Constrained precision two-search (5 decimals) 748 0.02

Complex-Valued High-Level Model

Figure 6.1: CV, full precision one-search high-level model absolute error plot.

Figure 6.2: CV, full precision two-search high-level model absolute error plot. This plot
indicates that there are no errors.

82 CHAPTER 6. TEST AND RESULTS

Full precision, Real-Valued High-Level Model

Figure 6.3: RV, full precision one-search high-level model absolute error plot.

Figure 6.4: RV, full precision two-search high-level model absolute error plot.

Contained Precision, Real-Valued High-Level Model

Figure 6.5: RV, constrained precision one-search high-level model absolute error plot. The
precision used for this test is 5 decimal places, i.e., the same as the implemented hardware
accelerator.

6.1. EVALUATION OF THE HIGH-LEVEL MODELS 83

Figure 6.6: RV, constrained precision two-search high-level model absolute error plot. The
precision used for this test is 4 decimal places.

Figure 6.7: RV, constrained precision two-search high-level model absolute error plot. The
precision used for this test is 5 decimal places, i.e., the same as the implemented hardware
accelerator.

Time- and Power Statistics of High-Level Model
As presented in Section 1.2, one of the main objectives for this thesis is to compare a software-
based implementation of the MUSIC algorithm to the hardware accelerated MUSIC algorithm
in terms of time- and power consumption. To allow for this discussion, timing- and power
analysis is performed on the implemented high-level models. The high-level models used
for the precision plots in Section 6.1.1 are implemented in a very ineffective way, making
them unusable for comparing time- and power. These models are implemented with much
flexibility, adding support for testing- and experimenting with multiple searches and different
step sizes. In this context, new and simplified high-level models were developed, implementing
only the necessary functionality for performing the SPS. In addition to creating minimalistic
Python versions of SPS, one version is also written in C. C is known for its fast execution
time, and a model is implemented how fast a software-based algorithm can be executed. All
of these versions are verified for a limited number of AoAs to ensure that the correct behavior
is present. All the minimalistic high-level models are available in the git repository2. For
the simplified high-level models, the SPS is performed 1000 times, and the reported timing
result is found from the average of these tests. The obtained timing results are presented in
and Table 6.2.

2https://github.com/EmLogic-Students/High-Level-Model/tree/main/SPS

https://github.com/EmLogic-Students/High-Level-Model/tree/main/SPS

84 CHAPTER 6. TEST AND RESULTS

Table 6.2: Timing statistics for the high-level models.

High-Level Model Measured time [µs]
Python complex-valued one-search 154 272.85
Python complex-valued two-search 10 531.02
Python real-valued one-search 57 369.15
Python real-valued two-search 4 023.52
C real-valued one-search 181.4
C real-valued two-search 17.4

To measure the power for each of the performed tests, the best solution was to use Open
Hardware Monitor [38], an open-source application that reports, amongst other things, the
CPU power on the computer. To reduce other tasks interfering with the tests, the computer
used for performing these tests was set to airplane mode, disabling as many tasks as possible.
The charger of the computer was unplugged, and no external peripherals are connected. The
measurements presented in Figure 6.8 is obtained by running the SPS one-search version
repeatedly for some time, allowing the CPU power to stabilize. Approximate average power
consumption is read from the CPU power chart in Open Hardware Monitor, and it is presented
in Table 6.3. For further discussion of these results, the reference power, marked with the
red line in Figure 6.8, is subtracted from the measurements of each of the performed power
tests.

Figure 6.8: Results from observing the reported CPU power while continuously running the
high-level models on a laptop. The data is obtained by using Open Hardware Monitor [38].

6.2. TEST AND VERIFICATION OF SPS CORE 85

Table 6.3: Power usage on a computer running the implemented high-level models. All
measurements are performed using Open Hardware Monitor [38].

High-Level Model Approximate Average Power [W]
Reference 8
C Real-Valued 26
Python Real-Valued 13
Python Complex-Valued 15

6.2 Test and Verification of SPS Core
The implemented design presented in Chapter 5 is verified through multiple steps. All
modules inside the SPS CORE are verified and synthesized individually before both versions
of the SPS core, presented in Section 5.3.6, are tested. The following subsections present the
methods used for testing the design and the obtained results. All files that are generated
and written for testing and verifying the implemented design can be found in the HDL git
repository3.

Verification of Vector Multiplication Unit
The VECMUL unit provides a central functionality for the SPS core, and verifying correct
behavior is therefore essential. This is the goal for the testbench (TB), presented in Fig-
ure 6.9.

Figure 6.9: Block diagram of the TB used for verification of VECMUL.

The TB is based on reading a text file containing stimuli and expected results, named
vecmul_stimuli.txt. The text file is generated using a Python script. Using NumPy [39],
two random vectors with D = 12 elements are generated. Each generated value is limited
within [−217, 217 − 1], which is the achievable range when using 18 bits per value. The two

3https://github.com/EmLogic-Students/HDL

https://github.com/EmLogic-Students/HDL

86 CHAPTER 6. TEST AND RESULTS

vectors are multiplied, and the absolute value is taken of the result. This value will be used
by the TB to verify that VECMUL gives the exact same output. To verify that VECMUL is able
to shift the input angles throughout the pipelined architecture, as presented in Figure 5.11,
a total of 91 · 361 = 32 851 random vector multiplications are generated and stored together
with the individual angle-pairs to input to the SPS core. The expected result is also stored
in this file. This structure of the generated data is documented in vecmul_stimuli_gen.py,
and can be located in the git repository.

When dataOut_valid from the DUT is set high, the TB checks if the dataOut and the
outputted angles are equal to the expected outputs. The TB keeps track of the number of
outputted values, which is used for reading the correct data from the stimuli file. The TB
feeds one new test into the Device Under Test (DUT) each clock cycle. This is done to verify
that the pipelining architecture works as intended.

When running the TB, none of the assertions are triggered for the 32 851 random tests,
indicating that the module is implemented as intended.

Synthesis Reports of Vector Multiplication Unit
The VECMUL module is synthesized using Vivado. The reported maximum frequency is fmax =
184MHz.

Table 6.4: Synthesis report in terms of resource usage for the VECMUL unit.

Resource Number of resources used
DSPE48E1 16

LUT 97
RAMB36E1 0

Registers 246

Table 6.5: Synthesis report in terms of power usage for the VECMUL unit. All power reports
are generated with the default parameters for Vivado, presented in Table A.1.

Power Type Value [mW]
Static power 103
Dynamic power 98
Total power 201

Verification of COMP and COMP2
Comparing the outputs from the M = 10 VECMUL entities is the second key functionality for
both versions of the SPS core. The TB made to verify both COMP and COMP2 is developed
using the same approach as for VECMUL, and the block diagram for the TB is presented in
Figure 6.10.

6.2. TEST AND VERIFICATION OF SPS CORE 87

Figure 6.10: Block diagram of the TB used for verification of the COMP entity.

The goal for the TB is to ensure that the intended behavior is implemented. For verifying
this, the strategy is to generate stimuli using the python script comp_stimuli_gen.py and
storing the generated data in a text file named comp_stimuli.txt. Using NumPy, M = 10
random integer values, together with random angle values combinations (θ, φ), are generated
per test. From the bit width of 18 for the steering vector values, we know that the expected
bit width of the values fed to COMP is 2 · 18 = 36, and that they will be unsigned. The
expected value is also found when generating the data, and it is stored together with the
stimuli, allowing the TB to read both the stimuli and the expected result. The TB feeds
new stimuli each clock cycle and asserts the output with the expected data for every clock
cycle dataOut_valid is set high. This strategy also allows us to verify that the pipelining
architecture works as intended.

The implemented TB runs 500 tests without any errors, indicating that the DUT works as
intended. It is sufficient to verify the COMP entity, as a verified behavior of this entity implies
correct behavior of the COMP2 units inside. Table 6.6 holds the synthesis results for the COMP
entity in terms of resources, while Table 6.7 presents the power report for the unit. It is
verified that one full round of comparison and output takes five clock cycles and that the
pipelining works as intended.

Synthesis Reports for Comparison Unit
The COMP module is synthesized using Vivado. The reported maximum frequency, fmax =
276MHz.

88 CHAPTER 6. TEST AND RESULTS

Table 6.6: Synthesis report in terms of resource usage for the COMP unit.

Resource Number of resources used
DSPE48E1 0

LUT 367
RAMB36E1 0

Registers 701

Table 6.7: Synthesis report in terms of power usage for the VECMUL unit. All power reports
are generated with the default parameters for Vivado, presented in Table A.1.

Power Type Value [mW]
Static power 106
Dynamic power 102
Total power 208

Verification of Search Core
The search core is mainly build using M = 10 VECMUL entities and one COMP entity. With
these already verified, we know that the core functionality works. However, the search core
introduces some new logic, as well as a specific input combination of dataIn_valid and
dataIn_last, for indicating that the search should be completed. Also, the connections of
the instantiated VECMUL entities to the COMP entity must be verified. A new TB is therefore
implemented, where the goal is to verify that the search core behaves as expected. The block
diagram for this TB is presented in Figure 6.11.

Figure 6.11: Block diagram of the TB used for verification of the search core.

Compared to the TB for VECMUL and COMP, this TB does not feed new stimuli each clock
cycle. From Section 5.3.2, we remember that the search core must be able to receive a random
number of inputs, and that dataIn_valid and dataIn_last are used communicating that

6.2. TEST AND VERIFICATION OF SPS CORE 89

there are no more inputs to feed, and that the peak angles can be made available when the
search is complete. For each test, one random vector of integer values is generated, simulating
Es. To simulate reading data from the BRAM, random steering vector and corresponding
random angles are also generated. A Python script is written to generate this data, as well as
precomputing the expected values for the search. All the random generated steering vectors
are multiplied with Es, and the corresponding angle combinations of the highest product are
saved to the stimuli file, search_stimuli.txt.

A total of 150 tests, all including 150 steering vectors, are fed into the DUT. This means
that the TB feeds the steering vectors over 15 clock cycles per test. When running the TB,
no assertions are triggered, indicating that the correct output is received, and that the DUT
works as intended.

Synthesis Reports for Search Core
The search core is synthesized using Vivado. The reported maximum frequency, fmax =
184MHz.

Table 6.8: Synthesis report in terms of resource usage for the search core unit.

Resource Number of resources used
DSPE48E1 160

LUT 1547
RAMB36E1 0

Registers 3508

Table 6.9: Synthesis report in terms of power usage for the search core. All power reports
are generated with the default parameters for Vivado, presented in Table A.1.

Power Type Value [mW]
Static power 111
Dynamic power 424
Total power 535

Test of SPS Core
The SPS core is the top level of the design presented in this thesis, combining the previously
verified entities and the BRAM structure. As presented in Section 5.3.6, two versions of the
SPS core are implemented, both with the same expected behavior. It is therefore sufficient
with one TB for testing both of the implementations. The block diagram for the TB is
presented in

90 CHAPTER 6. TEST AND RESULTS

Figure 6.12: Block diagram of the TB used for both implemented versions of the SPS core.

The tests for the SPS core are generated with a similar strategy as for the other TBs. A
Python script is written to generate stimuli. For each test, two random integer values,
simulating θ and φ are generated. The high-level model, used for experimenting and verifying
the algorithm, is firstly used for finding Es, using the NumPy library [39]. In theory, this
should be sufficient, as we only need to feed Es to the SPS core. However, to ensure that the
stimuli is correctly generated, the search is also performed using the high-level model when
generating stimuli, letting the developer know if there are any possible issues with the stimuli
generation.

The assertions written for this TB do not require the output to be exactly equal to the
expected results. From the high-level tests with constrained precision, presented in Table 6.1,
we observe that we must expect some errors. Especially for θ > 80◦, the high-level model
introduces more errors, and the assertions are adjusted to be less strict for these values.

The TB for the SPS core has three tasks. These are to apply stimuli when the SPS core
is ready, assert the output with the expected values generated by the Python script, and
write the results to a log-file. The latter task is added, as it makes it easy to visualize the
performance in terms of precision for the SPS core.

The one-search SPS core is tested using one test type only. Stimuli are generated for
90 · 360 = 32400 tests, where each test has a unique combination of expected AoA. This is
identical to the one done for the high-level model, presented in Section 6.1, and the obtained
results will be used for discussing the performance in Chapter 7. The obtained results from
the tests are read from the log-file, and the results are visualized in Figure 6.13.

6.2. TEST AND VERIFICATION OF SPS CORE 91

Figure 6.13: Precision plot for the one-search SPS core.

The two-search SPS core is tested in multiple steps. To ensure that the logic for the different
states, FEED 2 UNDER 180, FEED 2 OVER 180 and FEED 2 CLOSE TO 180, is correct, three
stimuli sets are generated, constraining the randomness of the AoA to be within the different
regions. The TB is adjusted to read one of the available stimuli files per run, and the
correct behavior for all cases is observed. This made it easier to verify that the two-search
SPS core works as intended, and it implies that the full tests should be able to give a correct
representation of how well the algorithm can perform. The final step for testing the two-search
SPS core is the same test as used on the high-level model and the one-search SPS core. The
obtained results from this test are presented in Figure 6.14.

Figure 6.14: Precision plot for the two-search SPS core.

The key metrics for precision of the two implemented versions are presented in Table 6.10.

Table 6.10: Precision metrics for the RTL implementation of the SPS core.

Test description Number of errors Average error [◦]
One-search SPS core 756 0.02
Two-search SPS core 894 0.03

The timing statistics for the two versions of the SPS core are also observed, and are presented
in Table 6.11.

92 CHAPTER 6. TEST AND RESULTS

Table 6.11: Timing statistics for the two versions of the SPS CORE.

State Two-Search SPS Core One-Search SPS Core
Clock cycles Time used [µs] # Clock cycles Time used [µs]

Feed 1 209 1.47 3184 20.41
Wait 14 0.099 14 0.09

Process result 4 0.028 - -
Feed 2 15-20 0.11-0.14 - -
Total 256-261 1.8-1.83 3198 20.5

A more complete power report, summarizing the SPS core, is presented in Table 6.12.

Table 6.12: Summary of timing and power usage for each of the implemented modules. All
power reports are generated with the default parameters for Vivado, presented in Table A.1.

Module fmax Static power [mW] Dynamic power [mW]
VECMUL 184.5 106 98
COMP2 N/A 105 38
COMP 276.3 106 102

Search core 184.5 111 424
One-search SPS core 156 118 482
Two-search SPS core 142 122 598

6.3 MUSIC Core
The complete MUSIC core is not fully tested. The high complexity module implemented by
Opstad, EVD, does not function properly, resulting in incorrect eigenvectors. As presented
in Section 3.6.3 and Section 5.3.6, the SPS core needs the signal subspace eigenvector. When
incorrect eigenvectors are received, we will not be able to perform a successful search. A
simple TB is created by Opstad, and can be found in the git repository. However, as we
expect incorrect behavior, no thorough tests are performed. Opstad has proved that the
chosen method of implementation works by using a high-level model [1], indicating that it
should work. He has also successfully implemented the module for smaller array sizes. If this
module is implemented correctly, the complete MUSIC core could be verified and tested with
a similar approach as the above describe tests.

Implementation Reports for MUSIC Core
For the synthesis and implementation of the top level MUSIC core, Vivado is used. No
errors are reported while running implementation, indicating that the design presented in
this report and the design by Tommy A. Opstad are compliant with each other. Reports
from the successful implementation are presented in the below tables. Table 6.13 presents the
individual module device utilization and the total utilization of the MUSIC core, Table 6.14
presents the maximum frequency and timing statistics for the design, while Table 6.15 presents
the power reports obtained for the design. The power reports are first generated running
synthesis for each of the submodules in the MUSIC core, where all modules are running at
its maximum operating frequency. The MUSIC core data represents the final power report,
running at 100 MHz.

6.3. MUSIC CORE 93

Table 6.13: MUSIC core device utilization report for ZYNQ XC7Z020. Parts of these results
are retrieved from [1].

Module Look-Up Tables Registers DSP Slices BRAM Tile F7 Mux
CMC 3 978 4761 36 0 0
RVT 2 511 4 935 0 6 360
EVD 17 190 5 181 0 0 0

One-search SPS core 3 588 5 114 160 120 0
Two-search SPS core 6 482 6 042 161 120 640

Total (Using two-search SPS core) 30 161 20 829 197 120 1000
Device utilization (Using two-search SPS core) [%] 56.7 19.6 89.6 85.7 3.8

Table 6.14: MUSIC core timing report for ZYNQ XC7Z020. Parts of these results are
retrieved from [1].

Module Max clock frequency [MHz] Number of clock cycles Execution time [µs]
CMC 160 48 0.3
RVT 100 168 1.68
EVD 100 153 1.53

One-search SPS 156 3198 20.5
Two-search SPS 142 261 1.83

Total (two-search/one-search) - 630/3567 5.34/24.01

Table 6.15: MUSIC core power report for ZYNQ XC7Z020. All power reports are generated
with the default parameters for Vivado, presented in Table A.1. Parts of these results are
retrieved from [1].

Module Static power [mW] Dynamic power [mW]
CMC 110 335
RVT 106 78
EVD 119 836

One-search SPS 118 482
Two-search SPS 122 598

MUSIC core (Using two-search SPS core) 138 1319

Chapter 7
Discussion

This chapter aims to discuss the obtained results presented in Chapter 6, with respect to
the objectives presented in Section 1.2. A discussion of how a potential complex-valued
architecture would influence the obtained results is given. Finally, a recommendation of
further improvements and future work is given.

7.1 Precision
When comparing the precision plots for the two versions of the hardware implementation for
the SPS core, presented in Figure 6.13 and Figure 6.14, to the results from the high-level
model in Section 6.1, we observe similarities, indicating that the hardware implementations
follow the desired behavior. We firstly observe, from Table 6.1 and Table 6.10, that the
one-search SPS core only introduces 8 more total errors than the corresponding high-level
model. As the error for φ = 180◦ is always 1◦, this is somewhat surprising, as we should
expect around 90 more total errors, where one additional error should be observed for each
θE . To remove this constant error, the steering vector values could be stored in the BRAM
structure. From Figure 5.15, we observe that the BRAM structure does not fill all individual
BRAMs fully, leaving room to store the steering vectors for θ ∈ [0◦, 90◦] and φ = 180◦. Doing
so would however increase the required time for the search, as there is no easy way to add
this vector into the current vectors that are being passed into the search core.

Both the high-level simulations and the implemented hardware versions indicate that the
search becomes more unstable for θE ≤ 4◦ and θE ≥ 87◦ when using constrained precision.
These errors are not present in the full precision high-level simulations, presented in Fig-
ure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4. This indicates that the quantization of the
steering vector- and eigenvector values yields an increase in error. The problem occurs in the
given regions, and the reason can be observed from the arguments in the steering vector as
θ approaches the limits. As presented in Section 5.3.5, 5 decimal precision is the maximum
level of precision achievable with the decision of scaling all values with 105 and storing them
as a signed integer. Using an FPGA with more available BRAM could therefore reduce the
observer errors. If 32 bits were used for each value, we could obtain a precision of 9 decimals,
that are significantly more than the implemented precision of 5 digits. However, this would
require 90 · 360 · 12 · 32 b ≈ 1.5MB of memory, which would be expensive. It would also
yield more complex floorplanning, most likely resulting in a lower operating frequency.

95

96 CHAPTER 7. DISCUSSION

For both versions of the SPS core, a maximum absolute error of 2◦ is obtained. It can be
somewhat difficult to understand the significance of this error. To better understand, the
visualization in Figure 7.1 is created, and it is used for visualizing how one degree difference
for azimuth is mapped in the two-dimensional plane. This figure visualizes three paths. The
reference path is for φ = 180◦, and is marked with a gray, stapled line. The two other paths
marks how ±1◦ error would result in an increasing error for increasing θ.

Figure 7.1: Visualization of how ±1◦ error influence the conversion to a position in 2D. Note
that the calculations assume that the height in z-direction is 130 cm between the tag and the
locator.

From Figure 7.1, we observe that as θ → 90◦, the error increases. However, by comparing
the absolute error to the moved distance, we observe that the error always has a constant
ratio compared to the distance from the starting point. It is also observable that the error in
y-direction is relatively small, while the error in the x-direction is larger, but still small when
comparing the distances in the x-direction to the distances in y-direction. When θ = 89◦, we
observe that the distance in the y-direction is over 70 meters, and the error in the x-direction
is approximately 1.5 meters. With the given system in Section 2.1, this indicates that we will
be able to achieve centimeter-level precision, as long as the tag is not moved too far away
from the locator in the y-direction.

From Figure 6.14, we observe some errors for φE close to 0◦ for the two-search SPS core.
When observing the outputs from these tests, it can be observed that the first search finds
φp,1 ∈ [351◦, 360◦]. Remembering the behavior of the two-search SPS core functionality
presented in Section 5.3.6, the second search will only be performed on the azimuth values
341◦ ≥ φ ≥ 360◦, hence missing the actual φE . A possible solution for addressing these errors
could be to include the azimuth angles φ ∈ [0◦, 9◦] in the second search for these specific cases.
This would yield an additional clock cycle to the two-search SPS core per value of elevation
angle. This incorrect behavior is not corrected due to limited time. From Table 6.10, we can
observe that the average error is not increased significantly compared to the one-search SPS
core, from this incorrect behavior, meaning that it is not critical.

All precision results presented in Section 6.1.1 and Table 6.2 are obtained without any noise.

7.1. PRECISION 97

When working with radio signals, noise is unavoidable, and a discussion of how noise influence
the precision of the search should be done. The hardware accelerated SPS is once more tested,
this time adding Additive White Gaussian Noise (AWGN) with SNR=30dB to the generated
stimuli. The precision plots are shown in Figure 7.2 and Figure 7.3, while a summary of the
measured metrics is presented in Table 7.1.

Figure 7.2: One-search SPS core simulation results for SNR=30dB. Waiting for results

Figure 7.3: Two-search SPS core simulation results for SNR=30dB.

Table 7.1: Precision metrics for the RTL implementation of the SPS core.

Test description Number of errors Average absolute error [◦]
One-search SPS core 9817 0.38
Two-search SPS core 9912 0.39

From the performed tests, we observe that the number of errors for the two versions is
approximately the same, also when noise is present. The difference in number of errors can
also be observed in Table 6.10, and it is most likely due to the incorrect behavior of the
two-search SPS core for φE ≈ 0◦.

The added noise clearly increases the number of errors measured for the two versions.
However, the magnitude of the majority of the observed errors, particularly for θ < 80◦,
has an error of 1◦. With this in mind, most of these errors could be further reduced or
removed with the use of filtering. The performed tests in Figure 7.2 and Figure 7.3 only test
every angle combination once, and this is not really comparable to the implemented system.
As described in Section 2.1, the tag transmits multiple packets when movement is detected,
meaning that if AWGN is present, one would typically get estimates of the AoA centered

98 CHAPTER 7. DISCUSSION

around the actual AoA with magnitude of the absolute error observed in Figure 7.2 and
Figure 7.3. This would imply that the average estimation when receiving multiple packets
could be fairly accurate.

7.2 Time and Power Consumption
The timing results obtained for this thesis mainly focus on the implementation of SPS.
Although the SPS core is a part of the MUSIC core, accurate timing results are not obtained
for the high-level models for the complete algorithm. Opstad developed most of his high-level
models in Matlab, making it hard to integrate the implemented SPS high-level models, written
in Python.

The obtained timing results for the SPS, both from the high-level model and the implemented
hardware versions, are visually presented in Figure 7.4.

Figure 7.4: Comparison of timing statistics for the performed tests. Not that the y-axis is
logarithmic scaled.

From the timing results presented in Figure 7.4, it can easily be observed that the two-search
method is generally faster when compared to the one-search method for all versions of SPS.
We can also observe that the implemented SPS core achieves the lowest times out of the
four versions. However, the C implementation of the SPS scores close to the implemented
hardware accelerator. The obtained timing results from the SPS implemented in C can be
further explained by observing Figure 6.8. The power increases up to approximately 26W
while running the C version of the SPS. The operating frequency of the CPU is significantly
higher, allowing more operations to be performed per time unit compared to the hardware
accelerated SPS. However, this uses significantly higher power consumption.

With statistics on both required time and power consumption, we can also compare the
energy consumption for the high-level models and the implemented design. We know that
energy is measured in Joule [J], and it is equal to power [W] · time [s]. For the high-level
versions, the difference between the reference power and working power in Figure 6.8 is used

7.2. TIME AND POWER CONSUMPTION 99

for estimating the energy in Table 7.2.

Table 7.2: Energy consumption based on the timing and power analysis. The reported energy
consumption is estimated for one full search.

Version Energy [mJ]
Python CV one-search 2468.3656
Python CV two-search 168.4963
Python RV one-search 917.9064
Python RV two-search 64.3763
C RV one-search 2.9024
C RV two-search 0.2784
HW RV one-search 0.0121
HW RV two-search 0.0013

The analysis of energy consumption indicates that the implemented hardware accelerator out-
performs all the other implemented versions. Of course, the power- and energy consumption
for the high-level models is rough estimates, as the accuracy of the Open Hardware Monitor
application is uncertain. However, the obtained results can be used for indicating that the
hardware accelerator is the most energy efficient out of the tested versions.

While discussing the above obtained results, it should also be mentioned that the operating
frequency of the hardware accelerator could be adjusted to fit the goals for the system. The
above presented results assume that the two versions of the SPS core run at its maximum
operating frequency. From the formula for the dynamic power, Pd, presented in Equation
(7.1), we observe that it highly depends on the frequency, fclk.

Pd = αfclkCLV
2
DD (7.1)

Further analysis of how the hardware accelerator should be used could therefore be performed
to find an optimal operating frequency. From the timing results presented in Table 6.14, we
observe that the complete MUSIC algorithm takes either 5.34 µs or 24.01 µs, depending on
which SPS core version is being used. From Section 2.1, we remember that reading one CTE
takes 160 µs, and if the only goal is to complete the algorithm before we can read a new
CTE, we could lower the operating frequency significantly, hence reducing Pd. However, if
one hardware accelerator is to be used for processing the CTE received on multiple locators,
the algorithm should be performed with the maximum possible frequency. Further definitions
for the use-case of the accelerator must therefore be defined before selecting an appropriate
frequency.

An attempt in implementing a minimalistic version of the SPS on the nRF52833 was done to
observe the time- and power usage for this SoC. As mentioned in Section 2.1, the nRF52833
is used for sampling the antenna array, and it is located on the selected locator board. If
the MUSIC algorithm was to be implemented on this SoC, one would save significant time
in transferring the data in- and out of the board. However, when trying to store the steering
vector values using 16-bit signed integers on this SoC, overflow occurred in both flash and
RAM. This means that the approach of precomputing the steering vector is unachievable, and
the values must be computed during run time. A one-search version was implemented, and
the execution time for this algorithm was 30 seconds. This indicates that this approach is not

100 CHAPTER 7. DISCUSSION

preferred, and further attempts in implementing SPS on the nRF52833 are not performed,
as we already have compared the hardware accelerated SPS to other versions.

From all the obtained results, it can be observed that the two-search SPS core successfully
has reduced the execution time of the search significantly, while maintaining approximately
the same level of precision. The previously implemented system, presented in Section 2.1,
used a complex-valued MUSIC algorithm. From the obtained timing results, we can observe
that the two-search SPS core reduces the search time from 154 ms to 5.34 µs when running at
maximum frequency. Some incorrect behavior can be observed in Figure 7.3 and Figure 6.14.
However, as discussed above, this is most likely a behavioral error, meaning that it can be
solved by adding support for the specific described cases. The two-search SPS core also
offers a lower energy consumption per search, resulting in it being the best for the hardware
implementation.

7.3 Comparison of Real-Valued and Complex-Valued imple-
mentation of SPS Core

When presenting the architecture in the above sections, the focus has been on maximizing the
level of parallelism without exceeding the available amount of resources. From Table 6.13,
we observe that the presented architecture aims to use approximately 90% of the available
DSP slices and 86% of the available BRAM. The architecture for a complex-valued MUSIC
algorithm would require a higher utilization percentage if the level of parallelism and bit
widths are to be used for storing the steering vectors.

Knowing that a complex-valued number is represented by two real-valued numbers, it can
be concluded that using the same number of bits for storing the steering vector values would
not be feasible with the chosen SoC and bit-width. When using 18 bits per steering vector
value with the chosen BRAM structure in Section 5.3.5, the double amount of BRAM would
be required for a complex-values architecture, exceeding the available amount. From the
high-level simulations, we have observed that reducing the decimal precision, i.e., reducing the
number of bits per value significantly reduced the precision of the implemented search. This
indicates that implementing a complex-valued architecture would either be more expensive
in terms of memory, or yield a reduction in the precision of the implemented search.

For the DSP slices, we can observe that the implemented VECMUL unit would be significantly
influenced by a complex-valued architecture. From Equation (3.1), we observe that a complex-
valued multiplication requires four real-valued multiplications, which is four times as many
as the implemented real-valued architecture. When the real-valued architecture uses 89% of
the available DSP slices, it is obvious that it is not feasible to achieve either the same level
of parallelism or throughput with complex values. In either case, modifying the architecture
to fit complex-valued arithmetic would yield a reduction of performance in terms of speed.
Also, increasing the number of resources for supporting the same level of parallelism or using
longer time for the search both result in a higher energy consumption, making the difference
to the high-level models less.

7.4 Achieving Greater Theoretical Precision
The theoretical minimum error for the implemented design is 0.5◦, and it is limited from the
decision of using precomputed values for the steering vector. Due to limited available memory,

7.5. OBSERVATIONS ON NON-CONSTANT WAVELENGTHS 101

the steering vector is stored with 1◦ step sizes. However, other FPGA implementations of the
MUSIC algorithm, such as [26], achieves a resolution of 0.1◦. If the steering vectors were to
be stored for this resolution, we would need at least 90/0.1 · 360/0.1 · 12 · 18b ≈ 87.5MB,
which is significant, and in most designs not feasible as it increases the system cost.

Another way of obtaining higher precision steering vector values is by computing them
during run time. This solution is quite computationally heavy, as it would require support
for all possible combinations of the trigonometric multiplications, as presented in Equation
(4.9). An approximate architecture for computing one steering vector value is presented in
Figure 7.5.

Figure 7.5: Approximate architecture required for computing steering vector values.

LUTs can be used for storing cos(x) and sin(x) values with 0.1◦ steps. Additional multipliers
are needed for computing the trigonometric arguments in Equation (4.9) and the multipli-
cations of the cosine and sine expressions. The proposed architecture in Figure 7.5 only
computes one steering vector value, and we know that D = 12 steering vector values are
present for each ã(θ, φ). Adding support for greater precision for the search will therefore
require more resources or yield slower execution times for SPS, as we cannot achieve the same
level of parallelism when adding support for calculating steering vector values.

7.5 Observations on Non-Constant Wavelengths
As presented in Section 2.2, the transmission of BLE packets can be performed in all the 40
available BLE channels, resulting in the wavelength changing. As seen in Equation (4.9), the
wavelength, λ, is used in the steering vector, and it will influence the steering vector values
if changed. From Section 5.3.5, the strategy of precalculating all steering vector values and
storing them in the available BRAM is presented. This strategy has one drawback, as we are
unable to compensate for the changing wavelength when the CTE is received on the different
channels.

All performed tests in Chapter 6 have used stimuli that are generated using a constant value
for the wavelength. To observe how varying wavelengths influence the precision, a set of
simulations is performed using the high-level model. For each of the 40 channels, 20 tests
are generated with random AoA using the correct wavelength for the channel. The MUSIC
algorithm is performed using the same wavelength for all tests. This is the wavelength
used when generating the BRAM data, and it corresponds to channel 17 in Figure 2.4.

102 CHAPTER 7. DISCUSSION

The obtained results are presented in Figure 7.6. The performed tests include noise with
SNR=30dB and AoA combinations with real-valued numbers, i.e., we must expect errors up
to 0.5◦, due to the minimal step sizes of 1◦.

Figure 7.6: Absolute average error for the tests performed with varying λ. Note that k ∈
[0, 39] describes the tested BLE channel.

The tests clearly indicate that the lowest absolute error is achieved when k is close to 19,
which is the middle channel. For the tests with channels close to the edges, we observe a
higher absolute average error, meaning that when the CTE is received on these channels, we
must expect the AoA estimations to be less precise. However, it is also worth noting that
the MUSIC version, developed by EmLogic, in the system discussed in Section 2.1 did not
consider the wavelength while executing the algorithm either. This means that it will still be
possible to achieve centimeter-level precision with the implemented version of the hardware
accelerator. However, for higher level of precision, this should be taken into account. Using
the architecture in Figure 7.5 would make it easy to change the wavelength for the different
computations.

7.6 Recommendations for Future Work
The below list summarizes the recommendations for future work.

• Test the SPS core with data sampled using the locator board to ensure that the
implemented algorithm works in practical applications.

• Integrate the hardware accelerator into existing system. To achieve this, adding support
for transferring data in- and out of the FPGA is needed. The MUSIC core can be
connected to the Processing System (PS) using Advanced eXtensible Interface (AXI)
interface. Moving data from the nRF52833 on the locator board to the PYNQ Z1 board
must also be handled.

• Research effective filtering methods for obtaining a more stable behavior for noisy
environments.

7.6. RECOMMENDATIONS FOR FUTURE WORK 103

• Perform more tests with different step size combinations. It is most likely possible to
achieve the same level of precision with slightly larger step sizes, reducing the number
of iterations further. Observe how large the step sizes can be in noisy environments
before the approach becomes unstable.

• Investigate methods for considering the different wavelengths for the available BLE
channels.

Chapter 8
Conclusion

As a part of United Nations sustainability goal number 9, RTLS plays a vital role in the
industry, allowing for optimized resource management and more effective logistics operations.
In 2019, the Bluetooth technology was further improved, allowing the technology to be
used in indoor positioning systems with centimeter-level precision. By using Bluetooth Low
Energy, a system was implemented to demonstrate the enhancements and capabilities of the
technology as a part of the project thesis in the preceding semester. The system consists
of a tag that is transmitting Bluetooth Low Energy packets to a receiving antenna array.
In the previously implemented system, the received packets are further communicated to a
computer, estimating- and visualizing the AoA of the signal. During this project, it was
observed that centimeter level precision was achievable, but that the computations on the
computer caused significant delay to the system.

In this context, a proposed hardware accelerator is designed for the computations needed to
obtain the AoA. The MUSIC algorithm is a popular algorithm for this use case. In this thesis,
an application-specific MUSIC algorithm is derived, making optimizations for the ISP1907-
AOA-DK antenna layout and for use in Bluetooth Low Energy applications. For reducing the
complexity, an additional step of transforming the complex-valued matrices in the MUSIC
algorithm to real-valued is performed by using FB averaging and unitary transformation.
This transformation allowed for a greater level of parallelism of the implemented hardware
accelerator, resulting in faster computation time.

The hardware accelerated algorithm is divided into four steps, and it is implemented by
the author of this thesis and Tommy A. Opstad. For the implementation of the hardware
accelerator, this thesis has mainly focused on the search needed to estimate the AoA using
MUSIC, named the spectral peak search. For this search, multiple architectures and ap-
proaches has been presented and discussed. Two versions of the search were implemented: a
standard two-dimensional search, named one-search, and a two-search approach. The latter
version of the search significantly reduced the iterations of the search, resulting in faster
speed of operation while maintaining the same precision as the one-search method. From
an analysis of the power and energy consumption, it was observed that the total energy
consumption for the two-search version is lower than the standard, one-search version. As
the two-search version is almost as precise as the one-search version and more effective, this
version is chosen as the preferred method of performing the search in the MUSIC algorithm.

105

106 CHAPTER 8. CONCLUSION

From the complex-valued Python implementation, we observed reduction in time from 154 ms
to 5.34 µs, when using the two-search SPS core. When comparing the hardware accelerated
search with the high-level models, it is clear that we have been able to reproduce the same
behavior, while significantly reducing the power- and time consumption.

The obtained results in this thesis indicate that the implemented hardware accelerator fulfills
the goals and objectives presented in the task description and in Section 1.2. The application-
specific MUSIC algorithm implemented for the Xilinx XC7Z020 SoC performs better in terms
of execution time and energy efficiency while maintaining the same level of precision when
compared to software-based, higher levels of implementations.

Bibliography

[1] T. A. Opstad. “FPGA Implementation of a Real-Time Direction Finding System”.
Trondheim: NTNU, June 2023.

[2] International Organization for Standardization. ISO/IEC 24730-1:2014. ISO. url: https:
//www.iso.org/standard/59801.html (visited on 05/29/2023).

[3] United Nations. Goal 9 | Department of Economic and Social Affairs. url: https:
//sdgs.un.org/goals/goal9 (visited on 05/29/2023).

[4] S. S. Saab and Z. S. Nakad. “A Standalone RFID Indoor Positioning System Us-
ing Passive Tags”. In: IEEE Transactions on Industrial Electronics 58.5 (May 2011),
pp. 1961–1970. issn: 1557-9948. doi: 10.1109/TIE.2010.2055774.

[5] Bluetooth SIG. Enhancing Bluetooth Location Services with Direction Finding. Jan. 25,
2019.

[6] Python Software Foundation. Welcome to Python.Org. Python.org. May 29, 2023. url:
https://www.python.org/ (visited on 05/29/2023).

[7] W. Zhang et al. “Computationally Efficient 2-D DOA Estimation for Uniform Rectan-
gular Arrays”. In: Multidimensional Systems and Signal Processing 25.4 (Oct. 2014),
pp. 847–857. issn: 0923-6082, 1573-0824. doi: 10.1007/s11045-013-0267-y.

[8] J. A. Rangnes. “Implementation of a Real Time Locating System Using Bluetooth Low
Energy”. Trondheim: NTNU, Dec. 2022.

[9] T. A. Opstad. “Development of Indoor Bluetooth Tracking Tag”. Trondheim: NTNU,
Dec. 2022.

[10] Bluetooth SIG. Bluetooth Core Specification Version 5.1. Jan. 21, 2019.
[11] D. C. Cassidy, G. Holton, and F. J. Rutherford. Understanding Physics. Springer

Science & Business Media, Sept. 10, 2002. 857 pp. isbn: 978-0-387-98756-9.
[12] B. Watson. FSK: Signals and Demodulation. Jan. 5, 2001.
[13] Y. Zhao et al. “How to Select the Best Sensors for TDOA and TDOA/AOA Localiza-

tion?” In: China Communications 16.2 (Feb. 2019), pp. 134–145. issn: 1673-5447. doi:
10.12676/j.cc.2019.02.009.

[14] Digilent. PYNQ-Z1 Reference Manual - Digilent Reference. url: https://digilent.
com/reference/programmable- logic/pynq- z1/reference- manual?redirect=1
(visited on 05/22/2023).

[15] Advanced Micro Devices. PYNQ - Python Productivity for Zynq. PYNQ - Python
productivity for Zynq. url: http://www.pynq.io/ (visited on 06/04/2023).

[16] Xilinx. Zynq-7000 SoC Data Sheet: Overview V1.11.1. Feb. 7, 2018.
[17] Xilinx. 7 Series FPGAs Memory Resources User Guide (UG473). Mar. 7, 2019.
[18] Xilinx. 7 Series DSP48E1 Slice User Guide (UG479). Mar. 27, 2018.

107

https://www.iso.org/standard/59801.html
https://www.iso.org/standard/59801.html
https://sdgs.un.org/goals/goal9
https://sdgs.un.org/goals/goal9
https://doi.org/10.1109/TIE.2010.2055774
https://www.python.org/
https://doi.org/10.1007/s11045-013-0267-y
https://doi.org/10.12676/j.cc.2019.02.009
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual?redirect=1
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual?redirect=1
http://www.pynq.io/

108 BIBLIOGRAPHY

[19] R. O. Schmidt. “Multiple Emitter Location and Signal Parameter Estimation”. In:
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. 3rd ser. AP-34
(Mar. 1986), pp. 276–280.

[20] Z. Zou, W. Hongyuan, and Y. Guowen. “An Improved MUSIC Algorithm Implemented
with High-speed Parallel Optimization for FPGA”. In: 2006 7th International Sympo-
sium on Antennas, Propagation & EM Theory. 2006 7th International Symposium on
Antennas, Propagation & EM Theory. Oct. 2006, pp. 1–4. doi: 10.1109/ISAPE.2006.
353475.

[21] P. Gupta and S. Kar. “MUSIC and Improved MUSIC Algorithm to Estimate Direction
of Arrival”. In: 2015 International Conference on Communications and Signal Process-
ing (ICCSP). 2015 International Conference on Communications and Signal Processing
(ICCSP). Apr. 2015, pp. 0757–0761. doi: 10.1109/ICCSP.2015.7322593.

[22] X.-T. Meng et al. “Real-Valued MUSIC for Efficient Direction of Arrival Estima-
tion With Arbitrary Arrays: Mirror Suppression and Resolution Improvement”. In:
Signal Processing 202 (Jan. 2023), p. 108766. issn: 01651684. doi: 10 . 1016 / j .
sigpro.2022.108766. url: https://linkinghub.elsevier.com/retrieve/pii/
S016516842200305X (visited on 03/08/2023).

[23] J. Cai et al. “A Derivative-Based MUSIC Algorithm for Two-Dimensional Angle Estima-
tion Employing an L-Shaped Array”. In: 2020 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT). 2020 IEEE International Symposium
on Signal Processing and Information Technology (ISSPIT). Dec. 2020, pp. 1–5. doi:
10.1109/ISSPIT51521.2020.9408790.

[24] Keh-Chiarng Huarng and Chien-Chung Yeh. “A Unitary Transformation Method for
Angle-of-Arrival Estimation”. In: IEEE Transactions on Signal Processing 39.4 (Apr.
1991), pp. 975–977. issn: 1053587X. doi: 10.1109/78.80927.

[25] W. Si et al. “Real-Valued 2D MUSIC Algorithm Based on Modified Forward/Back-
ward Averaging Using an Arbitrary Centrosymmetric Polarization Sensitive Array”.
In: Sensors 17.10 (Sept. 29, 2017), p. 2241. issn: 1424-8220. doi: 10.3390/s17102241.

[26] K. Huang et al. “An Efficient FPGA Implementation for 2-D MUSIC Algorithm”.
In: Circuits, Systems, and Signal Processing 35.5 (May 2016), pp. 1795–1805. issn:
0278-081X, 1531-5878. doi: 10 . 1007 / s00034 - 015 - 0144 - z. url: http : / / link .
springer.com/10.1007/s00034-015-0144-z (visited on 01/19/2023).

[27] A. Nicolaides. Pure Mathematics: Complex Numbers. Pass Publications, 2007. 97 pp.
isbn: 978-1-872684-92-5. Google Books: jysDhWH4CKEC.

[28] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Revision of
IEEE 754-2008) (July 2019), pp. 1–84. doi: 10.1109/IEEESTD.2019.8766229.

[29] R. A. Horn and C. A. Johnson. Matrix Analysis. Cambridge: Cambridge University
Press, 1985. isbn: 0-521-30586-1.

[30] G. H. Golub and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, Maryland:
The Johns Hopkins University Press, 1996. isbn: 0-8018-5413-X.

[31] International Telecommunication Union. Data Format Definition for Exchanging Stored
I/Q Data for the Purpose of Spectrum Monitoring. Sept. 2018.

[32] F.-G. Yan et al. “Two-Dimensional Direction-of-Arrivals Estimation Based on One-
Dimensional Search Using Rank Deficiency Principle”. In: International Journal of
Antennas and Propagation 2015 (2015), pp. 1–8. issn: 1687-5869, 1687-5877. doi: 10.
1155/2015/127621.

[33] Estimation of Covariance Matrices. In: Wikipedia. Jan. 11, 2023. url: https://en.
wikipedia . org / w / index . php ? title = Estimation _ of _ covariance _ matrices &
oldid=1132954415#Intrinsic_covariance_matrix_estimation (visited on 03/13/2023).

https://doi.org/10.1109/ISAPE.2006.353475
https://doi.org/10.1109/ISAPE.2006.353475
https://doi.org/10.1109/ICCSP.2015.7322593
https://doi.org/10.1016/j.sigpro.2022.108766
https://doi.org/10.1016/j.sigpro.2022.108766
https://linkinghub.elsevier.com/retrieve/pii/S016516842200305X
https://linkinghub.elsevier.com/retrieve/pii/S016516842200305X
https://doi.org/10.1109/ISSPIT51521.2020.9408790
https://doi.org/10.1109/78.80927
https://doi.org/10.3390/s17102241
https://doi.org/10.1007/s00034-015-0144-z
http://link.springer.com/10.1007/s00034-015-0144-z
http://link.springer.com/10.1007/s00034-015-0144-z
http://books.google.com/books?id=jysDhWH4CKEC
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1155/2015/127621
https://doi.org/10.1155/2015/127621
https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices&oldid=1132954415#Intrinsic_covariance_matrix_estimation
https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices&oldid=1132954415#Intrinsic_covariance_matrix_estimation
https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices&oldid=1132954415#Intrinsic_covariance_matrix_estimation

BIBLIOGRAPHY 109

[34] D. Linebarger, R. DeGroat, and E. Dowling. “Efficient Direction-Finding Methods
Employing Forward/Backward Averaging”. In: IEEE Transactions on Signal Processing
42.8 (Aug. 1994), pp. 2136–2145. issn: 1941-0476. doi: 10.1109/78.301848.

[35] Insight SIP. Application Note AN210401. 2021.
[36] Q. Spencer et al. “Indoor Wideband Time/Angle of Arrival Multipath Propagation

Results”. In: 1997 IEEE 47th Vehicular Technology Conference. Technology in Mo-
tion. 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion. Vol. 3.
Phoenix, AZ, USA: IEEE, 1997, pp. 1410–1414. isbn: 978-0-7803-3659-9. doi: 10 .
1109/VETEC.1997.605455. url: http://ieeexplore.ieee.org/document/605455/
(visited on 06/06/2023).

[37] Built-in Functions — Python 3.10.11 Documentation. url: https://docs.python.
org/3.10/library/functions.html#round (visited on 05/23/2023).

[38] M. Moller. Open Hardware Monitor. Version 0.9.6. Dec. 27, 2020. url: https : / /
openhardwaremonitor.org/.

[39] NumPy community. NumPy User Guide. June 22, 2022. url: https://numpy.org/
doc/1.23/numpy-user.pdf.

https://doi.org/10.1109/78.301848
https://doi.org/10.1109/VETEC.1997.605455
https://doi.org/10.1109/VETEC.1997.605455
http://ieeexplore.ieee.org/document/605455/
https://docs.python.org/3.10/library/functions.html#round
https://docs.python.org/3.10/library/functions.html#round
https://openhardwaremonitor.org/
https://openhardwaremonitor.org/
https://numpy.org/doc/1.23/numpy-user.pdf
https://numpy.org/doc/1.23/numpy-user.pdf

Appendix A
Vivado Power Report Default
Parameters

Table A.1: Vivado default power report parameters.

Parameter Default Value
Ambient Temperature 25◦C
Board Temperature 25◦C
Airflow 250 LFM
Heat Sink None
Output Load 0 pF

111

	Project Description
	Abstract
	Sammendrag
	Preface
	List of abbreviations
	Introduction
	Motivation
	Main Objectives
	Methodology
	Main contributions
	Report Outline

	Background
	System overview
	Bluetooth Low Energy
	Physical Layer
	Link Layer

	Results From the Project Thesis
	PYNQ Z1 Board
	RAM36E1
	DSP48E1

	Previous Work

	Theory
	Complex Number Arithmetic
	Representation of Real-Valued Numbers
	Floating Point Numbers
	Fixed Point Numbers

	Matrix Operation and Theory
	Matrix Transpose
	Conjugate operator
	Hermitian Adjoint
	Relevant Properties

	Kronecker product
	Identity and Exchange Matrix
	Hermitian Matrix
	Persymmetric Matrix
	Unitary Matrix
	Matrix Multiplication
	Euclidean Norm

	In-Phase and Quadrature signals
	Azimuth and Elevation
	The Multiple Signal Classification Algorithm
	Data model
	Covariance matrix
	Search Function

	A Real-Valued MUSIC Algorithm

	Derivation of application-specific MUSIC algorithm
	Antenna Layout
	Discussion of CV and RV MUSIC Algorithm
	Derivation
	Modifying the Kronecker Product
	RV Steering vector
	A Note on the scaling factors

	Implementation
	Task Description
	Spectral Peak Search Algorithm
	Hardware Implementation of Spectral Peak Search
	Hardware Resources
	Search Core
	Vector Multiplication Unit
	Comparison Unit
	Obtaining the Steering Vectors
	Spectral Peak Search Core

	MUSIC Core

	Test and Results
	Evaluation of the High-Level Models
	Precision

	Test and Verification of SPS Core
	MUSIC Core

	Discussion
	Precision
	Time and Power Consumption
	Comparison of Real-Valued and Complex-Valued implementation of SPS Core
	Achieving Greater Theoretical Precision
	Observations on Non-Constant Wavelengths
	Recommendations for Future Work

	Conclusion
	Bibliography
	Vivado Power Report Default Parameters

