
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Tommy André Opstad

FPGA Implementation of a Real-Time
Direction Finding System

Master’s thesis in Eletronic Systems Design
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Karl Emil Sandvik Bohne
June 2023

Tommy André Opstad

FPGA Implementation of a Real-Time
Direction Finding System

Master’s thesis in Eletronic Systems Design
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Karl Emil Sandvik Bohne
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Problem Description

Topic: Hardware Acceleration of a Real-Time Direction Finding System

The thesis deals with hardware acceleration of parts of Angle of Arrival (AoA) calcula-
tions (preferably the MUltiple SIgnal Classification (MUSIC) algorithm) using an Field
Programmable Gate Array (FPGA). This is done using an existing or new locator that
connects to an existing FPGA development board. The thesis also partly builds on work
performed during the student project where the "tag" and associated software were devel-
oped. The critical aspect will be comparing such an implementation against a conventional
software-based solution.

Assignment given: 16 January 2023
Supervisor: Per Gunnar Kjeldsberg, NTNU
Co-supervisor: Karl Emil Sandvik Bohne, EmLogic

iii

Abstract

Bluetooth Direction Finding (BDF) was introduced by the Bluetooth Special Interest Group
(SIG) with the Bluetooth 5.1 core specification. This new feature brings enhanced direction-
finding capabilities that allow smart devices to pinpoint physical locations down to centimeter
accuracy while maintaining the low cost and power requirements associated with such devices.
BDF has several advantages over traditional location tracking technologies such as Global
Navigation Satellite System (GNSS), Received Signal Strength Indication (RSSI), and Time
of Flight (ToF), which are only capable of estimating the proximity of other devices and
therefore unable to find the direction.

This thesis aims to develop and research the feasibility of using a Field Programmable Gate
Array (FPGA) to accelerate the calculations required to determine the Angle of Arrival (AoA)
of a Bluetooth tag and compare it to a traditional software implementation. A software
model of the system has been implemented in MATLAB and Python, while the hardware
design is written in VHDL. The design is synthesized and implemented on the Zynq Z2
FPGA using Vivavdo-2022.2. The main focus of the thesis is to implement the MUltiple
SIgnal Classification (MUSIC) algorithm in hardware. MUSIC is a type of super-resolution
direction-finding algorithm, and it consists of the following: perform Covariance Matrix
Calculation (CMC) on the incoming samples and then conduct Eigenvalue Decomposition
(EVD) to obtain the eigenvectors. The eigenvectors are, in turn, used to estimate the direction
of the incoming signal using Spectral Peak Search (SPS). A Real-valued Transformation
(RVT) method has been implemented to speed up and reduce the required hardware for
calculating the eigenvectors by transforming complex values into real values without reducing
accuracy. This method reduces the area and computational time by approximately 50%. The
eigenvectors are computed using a state-of-the-art parallel method for solving the eigenvalue
problem, which reduces the calculation time from 190 µs to 2.88 µs compared to the serial
method.

The hardware implementation of the MUSIC algorithm can compute the azimuth and eleva-
tion of an incoming Bluetooth package in 6 µs at a clock frequency of 100 MHz. An equivalent
Python and MATLAB program has an average run time of 112 ms and 22 ms, respectively.
The algorithm implemented in hardware is approximately four orders of magnitude faster, and
it can find the direction with an accuracy of 1◦ in two dimensions. The design utilizes 61%,
15%, 89%, 90%, and 1.35% of the available look-up tables, registers, Digital Signal Processing
(DSP) slices, block ram, and F7 multiplexers, respectively. The hardware implementation
draws 1.4 W of power compared to 60 W when running on a general-purpose computer.

v

Sammendrag

(Norwegian translation of the abstract)

Bluetooth Direction Finding (BDF) ble introdusert av Bluetooth Special Interest Group (SIG)
med Bluetooth 5.1-kjernespesifikasjonen. Den nye funksjonen gir forbedret retningssøk, noe
som gjør det mulig for smarte enheter å lokalisere fysiske steder ned til en nøyaktighet målt
i centimeter. Samtidig kan enhetene opprettholde prisnivået og strømkravet knyttet til slike
enheter. BDF har flere fordeler sammenlignet med tradisjonelle posisjonssporingsteknologier
som Global Navigation Satellite System (GNSS), Received Signal Strength Indication (RSSI)
og Time of Flight (ToF), som bare er i stand til å estimere nærheten til andre enheter og
derfor ikke finne retningen.

Denne avhandlingen tar sikte på å utvikle og undersøke muligheten for å bruke en Field
Programmable Gate Array (FPGA) for å øke hastigheten på beregningene som kreves
for å bestemme Angle of Arrival (AoA) til en Bluetooth-tag og sammenligne den med en
tradisjonell programvareimplementering. En programvaremodell av systemet er implementert
i MATLAB og Python, mens maskinvaredesignet er skrevet i VHDL. Designet er syntetisert
og implementert på en Zynq Z2 FPGA ved hjelp av Vivavdo-2022.2. Hovedfokus i oppgaven
er å implementere MUltiple SIgnal Classification (MUSIC) algoritmen i maskinvare. MUSIC
er en type retningssøkingsalgoritme med svært høy oppløsning, og den består av de følgende
delene: utfør Covariance Matrix Calculation (CMC) på de innkommende målingene og
deretter utføre Eigenvalue Decomposition (EVD) for å finne egenvektorene. Egenvektorene
brukes deretter til å estimere retningen til det innkommende signalet ved hjelp av Spectral
Peak Search (SPS). En Real-valued Transformation (RVT)-metode er implementert for å
øke hastigheten og redusere den nødvendige maskinvaren for beregning av egenvektorene ved
å transformere komplekse verdier til reelle verdier uten en reduksjon i nøyaktighet. Denne
metoden reduserer arealet og kjøretiden med omtrent 50%. Egenvektorene beregnes ved
hjelp av en state-of-the-art parallell metode for å løse egenverdiproblemet, noe som reduserer
beregningstiden fra 190 µs til 2.88 µs sammenlignet med en seriell metode.

Implementeringen av MUSIC algoritmen i maskinvare kan beregne asimut og høyde av
en innkomende Bluetooth pakke i løpet av 6 µs ved en klokkefrekvens på 100 MHz. Et
tilsvarende Python- og MATLAB-program har en gjennomsnittlig kjøretid på henholdsvis
112 ms og 22 ms. Algoritmen implementert i maskinvare er omtrent fire størrelsesordener
raskere, og den kan finne retningen med en nøyaktighet på 1◦ i to dimensjoner. Designet
benytter henholdsvis 61%, 15%, 89%, 90% og 1% av de tilgjengelige oppslagstabellene, reg-
istrene, Digital Signal Processing (DSP)-skiver, blokkminne og F7 multiplekserere. Maskin-
vare implementasjonen bruker totalt 1.4 W med strøm i motseting til en personlig datamaskin
som bruker 60 W.

vii

Preface

This thesis is the final requirement to be awarded a Master of Science (MSc) in Electronic
Systems Design at the Norwegian University of Science and Technology. The thesis continues
the specialization project carried out in the preceding semester. The research and work
in this thesis have been carried out on behalf of EmLogic and under the supervision of
Professor Per Gunnar Kjeldsberg at the Faculty of Information Technology and Electrical
Engineering. EmLogic is a consultancy and design house located in Asker and Trondheim, and
they specialize in embedded hardware and software design. In addition to my contributions,
there has also been another student, Jacob August Rangnes, that have also contributed to
the project’s success.

I want to thank my supervisor from NTNU for his guidance on academic writing and
methodology. In addition, I would like to thank the great people at EmLogic, especially
my external supervisor Karl Emil Sandvik Bohne, for his aid and technical expertise. I also
thank Espen Flo Eriksen for his theoretical and mathematical knowledge.

Tommy André Opstad, June 2023
Norwegian University of Science
and Technology

ix

Table of Contents

Problem Description iii

Abstract v

Sammendrag vii

Preface ix

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Main Objectives . 4
1.4 Project Scope and Limitations . 4
1.5 Methodology . 4
1.6 Thesis Outline . 5

2 Background Theory 7
2.1 Bluetooth Direction Finding . 7

2.1.1 Bluetooth Angle of Arrival Sampling 9
2.1.2 Calculating the Angle of Arrival Between Two Antennas 11

2.2 Introduction to Linear Algebra . 12
2.2.1 Matrix Multiplication . 12
2.2.2 Matrix Transpose . 12
2.2.3 Complex Conjugate . 12
2.2.4 Hermitian matrix . 13
2.2.5 Kronecker Product . 13
2.2.6 Identity and Exchange Matrix . 14
2.2.7 Persymmetric Matrix . 14
2.2.8 Unitary Matrix . 14
2.2.9 Eigenvectors and Eigenvalues . 15

2.3 The MUltiple SIgnal Classification Algorithm 16
2.4 The Real-Valued MUSIC Algorithm . 18
2.5 The COordinate Rotation DIgital Computer Algorithm 20
2.6 Eigenvalue Analysis for Real Matrices . 24

2.6.1 The Classical Jacobi Method . 24
2.6.2 The Cyclic Jacobi Method . 25
2.6.3 The Parallel Jacobi Method . 26

2.7 Vivado . 28

xi

xii TABLE OF CONTENTS

2.8 Zynq Z2 System on a Chip . 29
2.9 DSP48E1 DSP Slice . 30

3 Hardware Implementation of the MUSIC Algorithm 31
3.1 MUSIC Core . 32
3.2 Covariance Matrix Computation . 32

3.2.1 Complex Multiplication Module . 34
3.2.2 Complex Multiply and Accumulate Module 36
3.2.3 Conjugate Transpose Module . 37
3.2.4 Complex Shift Register Module . 38
3.2.5 Covariance Matrix Calculation Module 39
3.2.6 CMC Synthesis Report . 41

3.3 Real-Value Transformation . 42
3.3.1 Forward Backward Averaging . 43
3.3.2 Unitary Transform . 44
3.3.3 Real-value Transform Module . 45
3.3.4 Unitary Transform Datapath . 46
3.3.5 Unitary Multiplier module . 47
3.3.6 Unitary Transform Controller . 50
3.3.7 RVT Synthesis Report . 50

3.4 Eigenvalue Decomposition . 51
3.4.1 Eigenvalue Decomposition Module . 52
3.4.2 Diagonal Processing Element . 54
3.4.3 Off-diagonal Processing Element . 55
3.4.4 Vector Processing Element . 56
3.4.5 EVD synthesis report . 57

3.5 Spectral Peak Search . 58

4 Results 59
4.1 High Level Testing . 59
4.2 Utilization and Timing . 64
4.3 Software and Hardware comparison . 67
4.4 Eigenvalue Decomposition Accuracy . 69

5 Discussion 71
5.1 Accuracy . 71
5.2 Run time and Power Usage . 72
5.3 Eigenvalue decomposition . 72

6 Conclusion 73

Appendices

A AoA Signal Simulation 75

B Source Files 77

Bibliography 79

List of Tables

2.1 Arctangens lookup table . 21
2.2 CORDIC rotation mode . 22
2.3 CORDIC vectoring mode . 23
2.4 PL overview . 29

3.1 CMC comparison . 33
3.2 CMUL synthesis report . 36
3.3 CMAC synthesis report . 37
3.4 Conjugate transpose synthesis report . 38
3.5 CSREG synthesis report . 39
3.6 CMC synthesis report . 41
3.7 RVT comparison . 42
3.8 RVT synthesis report . 50
3.9 EVD comparison . 51
3.10 PE states . 53
3.11 DPE synthesis Report . 55
3.12 OPE synthesis Report . 56
3.13 VPE synthesis Report . 57
3.14 EVD synthesis report . 57
3.15 SPS synthesis report . 58

4.1 Timing report . 64
4.2 Utilization report . 65
4.3 Power report . 66
4.4 Software testing system . 67

xiii

List of Figures

1.1 AoA Application . 1
1.2 System architecture . 2
1.3 AoA hardware . 3
1.4 Research strategy . 5

2.1 Bluetooth Low Energy frequency spectrum 7
2.2 Bluetooth packet . 8
2.3 IQ sample . 9
2.4 CTE timing rules for AoA . 9
2.5 CTE sampling window . 10
2.6 Locator board sampling elements . 10
2.7 AoA 2D Example . 11
2.8 Array coordinate frame . 16
2.9 CORDIC micro-rotations . 20
2.10 Iterative CORDIC architecture . 24
2.11 Brent-Luk-EVD array . 26
2.12 DSP48E1 . 30

3.1 Hardware architecture . 31
3.2 MUSIC Core top-level entity . 32
3.3 CMUL entity . 35
3.4 CMUL architecture . 35
3.5 CMAC entity . 36
3.6 CMAC architecture . 37
3.7 Conjugate Transpose entity . 37
3.8 Complex Shift Register Entity . 38
3.9 CSREG architecture . 38
3.10 CMC entity . 39
3.11 CMC architecture . 40
3.12 CMU state machine . 40
3.13 CMU state machine . 41
3.14 RVT top-level entity . 45
3.15 RVT architecture . 46
3.16 RVT architecture . 47
3.17 UMUL architecture . 48
3.18 Unitary transform state diagram . 50
3.19 EVD architecture . 52
3.20 Systolic eigenvalue array . 52
3.21 Systolic eigenvector array . 53
3.22 Diagonal Processing Element (DPE) architecture 55
3.23 CORDIC Scale architecture . 55

xv

xvi LIST OF FIGURES

3.24 Off-Diagonal Processing Element (OPE) architecture 56
3.25 Vector Processing Element (VPE) architecture 57
3.26 SPS Core architecture . 58

4.1 Two-step 32-bit Complex-valued MUSIC algorithm 60
4.2 Two-step 32-bit Real-valued MUSIC algorithm 60
4.3 Two-step 16-bit Real-valued MUSIC algorithm 60
4.4 Two-step 18-bit Real-valued MUSIC algorithm 61
4.5 One-step 18-bit Real-valued MUSIC algorithm 61
4.6 Accuracy depending on the number of snapshots using WL = 32 62
4.7 Accuracy depending on the number of snapshots using WL = 16 62
4.8 Accuracy depending on the number of snapshots and bit-width 63
4.9 Run time depending on clock frequency . 64
4.10 Utilization depending on bit-width . 65
4.11 Power draw depending on clock frequency . 66
4.12 Time comparison between SW and HW . 67
4.13 Search time comparison . 68
4.14 Hardware Real-valued MUSIC algorithm with one search and WL = 18 68
4.15 Hardware Real-valued MUSIC algorithm with two searches and WL = 18 . . 69
4.16 Accuracy versus eigenvalue error . 70

List of Algorithms

1 Index Lookup algorithm . 48
2 Index Opcode algorithm . 49

xvii

List of Abbreviations

AoA Angle of Arrival

AoD Angle of Departure

BDF Bluetooth Direction Finding

CORDIC COordinate Rotation DIgital Computer

CTE Constant Tone Extension

CMC Covariance Matrix Calculation

DSP Digital Signal Processing

DPE Diagonal Processing Element

ESPRIT Estimation of Signal Parameters via Rotational Invariant Techniques

EVD Eigenvalue Decomposition

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

GS Gauss Siedel

GFSK Gaussian Frequency-Shifting Key

HDL Hardware Description Language

HLM High Level Model

ISM Industrial, Scientific, and Medical

IQ In-Phase and Quadrature

MUSIC MUltiple SIgnal Classification

OPE Off-diagonal Processing Element

PS Processing System

PL Programmable Logic

PLAN Positioning, Localization, and Navigation

PPA Performance, Power and Area

xix

xx CHAPTER 0. LIST OF ABBREVIATIONS

PE Processing Element

RVT Real-valued Transformation

RSSI Received Signal Strength Indication

SPS Spectral Peak Search

SIG Bluetooth Special Interest Group

SIG Bluetooth Special Interest Group

SOR Successive-over-Relaxation

ToF Time of Flight

VPE Vector Processing Element

Chapter 1
Introduction

1.1 Motivation

Positioning, Localization, and Navigation (PLAN) technology has been subject to heavy
research and investment since the rising popularity of positioning systems such as Global
Navigation Satellite System (GNSS) [1]. Today these technologies are found everywhere
in applications ranging from self-driving cars, naval and aerial navigation to mobile cell
phones. Traditional PLAN technology has focused on outdoor positioning, but recently
focus and attention has been shifted towards applying the technology to indoor applications
[2]. Accurate indoor tracking has extensive applications in factory warehouses, logistics
warehouses[3], indoor navigation at airports[4], hospitals, and other large facilities. Figure
1.1 [5] demonstrates how AoA can be applied to tracking assets in a warehouse. The indoor
PLAN market is estimated to reach $28.2 billion by 2024 at an annual growth rate of 38.2%
[6]. This, combined with the ever-growing amount of smart connected devices, has attracted
significant interest in academia and the industry.

Figure 1.1: AoA applied to warehouse asset tracking

1

2 CHAPTER 1. INTRODUCTION

GNSS is a typical example of a PLAN technology that is very mature and in heavy use.
Still, it has some significant drawbacks, such as the need for satellite reception and the lower
accuracy over smaller distances, such as inside buildings and other indoor structures. Other
methods for direction finding include Received Signal Strength Indication (RSSI) and Time
of Flight (ToF) methods, but these methods can only estimate the general proximity of a
device, and the accuracy is particularly poor indoors. Indoor positioning has proved difficult
to implement despite the active research and development of new technologies [7]. Bluetooth
Direction Finding (BDF) which was released in 2019 is an attempt from the Bluetooth Special
Interest Group (SIG) to address these issues [8]. Figure 1.2 shows a typical architecture
of an indoor Bluetooth Direction Finding system. The system consists of the following
parts: a BDF transmitter, locator board, positioning engine, and user application. The BDF
transmitter, which will be referred to as the tag from this point onward, transmits unique
BDF signals, measured by a locator board with multiple antennas and a Bluetooth receiver.
The receiver samples the antenna signals and sends the measurements to a positioning engine.
The engine translates the measurements into the actual direction of one or more tags. The
calculated direction can later be used inside a user application or stored in the cloud. This
thesis will focus on data processing occurring inside the positioning engine.

Figure 1.2: Typical architecture of a Bluetooth Direction Finding system

Real-time processing of a direction-finding system poses several challenges. These challenges
include a large amount of processing power and the low latency needed for real-time per-
formance. The large computational power required often prevents using microcontrollers,
while general-purpose computers use a significant amount of power combined with non-
deterministic execution behavior. A better solution could therefore be to employ dedicated
hardware optimized for the task. The hardware acceleration of direction-finding can achieve
faster and more predictable run-time than the other alternatives combined with low power
consumption. This thesis will therefore investigate the feasibility of offloading the heavy
calculation to an FPGA in order to achieve real-time performance.

1.2 Background

The Bluetooth Direction Finding technology is relatively new; hence, a limited amount of
hardware and software is available. The technology has shown interest among prominent
Bluetooth chip vendors like Nordic Semiconductor, Silicon Labs, and Texas Instruments.
Still, few actors have been able to deliver a proper working system yet. This thesis continues
the work completed during two specialization projects in the fall of 2022 [9, 10]. Both projects
aimed to create a system capable of showing this new technology’s possibilities.

1.2. BACKGROUND 3

During the preceding project thesis, a BDF tag was designed and tested with an existing
locator board, as shown in Figure 1.3 [9]. In addition, another student, Jacob August
Rangnes, worked on software development [10]. One project goal was to see if the move-
ment read from an accelerometer could improve accuracy by combining the data with BDF
technology. The data from the accelerometer was combined with an existing MUltiple SIgnal
Classification (MUSIC) algorithm implemented in Python. The MUSIC algorithm is one of
the more widely used algorithms in super-resolution direction finding, and it was introduced
by Ralph O. Schmidt in 1986 [11]. The algorithm performs much better than traditional
beam-forming algorithms when the incoming signals are not strongly correlated. Another
good but less used algorithm is Estimation of Signal Parameters via Rotational Invariant
Techniques (ESPRIT) [12], proposed initially as it is less compute-intensive than the MUSIC
algorithm and does not require any search, making it faster than MUSIC. Still, MUSIC is
more commonly used as it can achieve better accuracy, and it is more general considering the
geometry of the locator board compared to ESPRIT. The project concluded that only using
an accelerometer and the MUSIC algorithm gave little improvement due to the drift within
the accelerometer. However, the accelerometer resulted in more efficient power usage as the
system could stop transmitting data while staying still.

(a) ISP200802C Locator board [13] (b) Custom Bluetooth tag [9]

Figure 1.3: The locator board can be seen to the left, and the Bluetooth tag from the
specialization project is on the right (not to scale)

Starting from the two specification projects, this thesis will attempt to improve the positioning
engine by applying hardware acceleration. Hardware acceleration will allow the algorithm to
run significantly faster as it is very computationally intensive, even for modern computers.
The hardware acceleration of direction-finding algorithms is not new, and significant research
has been done in the area [14]. Still, most research has been applied to applications other
than BDF. Traditional applications of direction finding are sonar, astronomy, seismic event
prediction, wireless communication systems, and radar [15, 16], but the same technology can
be applied to BDF. In addition to faster computation time, utilizing hardware acceleration
will also enable the system to increase the accuracy by using larger BDF sample sets which
are essential for the system’s accuracy since sample size and precision are highly related.
This is especially true for indoor applications where signal reflections degrade performance
compared to outdoor ones.

Several improvements have been introduced since the original MUSIC algorithm, such as
Keh-Chirang Huarng and Chien-Chung Yeh [17], which in 1991 introduced a method for a
real-valued MUSIC algorithm for Uniform Linear Arrays (ULA). The real-valued MUSIC
algorithm transforms the complex samples into real-valued samples while still achieving

4 CHAPTER 1. INTRODUCTION

good accuracy [17]. The real-valued MUSIC algorithm has several benefits over the original
algorithm, such as reduced storage requirements, routing complexity, and improved speed.
A significant speedup can be gained in solving the eigenvalue problem using real matrices
compared to complex [18]. This relates to the difficulty of finding the eigenvalue and
eigenvector of complex matrices compared to real-valued matrices. Additional benefits are
also found in the peak search, which is applied after the eigenvalue problem to find the
desired direction. Wei Zhang et al. [19] introduced a method for real-valued transformation
using Uniform Rectangular Arrays (URA) in 2014. The benefit of the URA is that it is
a two-dimensional antenna array instead of the one-dimensional ULA, which enables the
possibility of finding the direction in two dimensions instead of one.

1.3 Main Objectives

The overall goal of this thesis can be summarized in the following objectives:

1 Investigate the feasibility of the MUSIC algorithm for AoA calculations with a focus
on accuracy, real-time performance, and power usage.

2 Implement selected parts of a suitable algorithm in a Hardware Description Language
(HDL) such as VHDL and optimize the design concerning Performance, Power and
Area (PPA).

3 Comparison between a hardware-accelerated and pure software implementation focusing
on speedup and accuracy.

1.4 Project Scope and Limitations

Time has been a constant limitation for the project since the MUSIC algorithm is not trivial to
implement in hardware. The project is divided among two students since the entire project’s
scope is relatively large. Due to the limited time, the data had to be modeled in software
instead of the real-world data generated by the locator board. This also means the time it
takes to move data to and from the FPGA was not considered. The selected FPGA also had
limited hardware for implementing a digital processing system, resulting in having to deal
with constant compromises between performance and feasibility.

1.5 Methodology

The research strategy is shown in Figure 1.4. The first step of the research is to complete a
literature search where similar work is investigated. This work includes investigating existing
algorithms, such as the MUSIC algorithm for AoA calculations. The architectural exploration
phase is an important step where different methods are studied and tested. This step also
involves searching for possible optimizations and exploitation. Architectural exploration can
typically be done by modeling the desired system in a high-level language such as MATLAB
or Python. These models are sometimes referred to as a High Level Model (HLM) as they
attempt to describe the design in an abstract language. In addition to finding possible

1.6. THESIS OUTLINE 5

Figure 1.4: Research strategy

optimization, the model can also be used to generate test and verification data to ensure the
correctness of the design. Microarchitectures can also be created during the architectural
exploration that maps the HLM to the hardware. After the microarchitecture, the design
can be implemented in hardware using HDL. The HDL can be simulated and synthesized
using software tools such as Modelsim and Vivado. Finally, the system can be integrated and
tested.

1.6 Thesis Outline

The thesis is laid out in the following chapters:

Chapter 2 - Background Theory presents some useful background theory.

Chapter 3 - Hardware Implementation of the MUSIC Algorithm presents the de-
sign and implementation of the MUSIC algorithm on hardware. Design choices and
their respective advantages and disadvantages are also discussed.

Chapter 4 - Results presents the resource usage and performance of the system.

Chapter 5 - Discussion presents a discussion on different trade-offs. The results in the
previous chapter are also discussed.

Chapter 6 - Conclusion summarizes key metrics and findings. Future work is also dis-
cussed.

Chapter 2
Background Theory

This chapter will present background theory that is helpful for later chapters. The chapter
introduces the theory behind BDF, a brief introduction to linear algebra, the CORDIC and
MUSIC algorithm, and finally some information about the FPGA used in this thesis.

2.1 Bluetooth Direction Finding

In 2019 the Bluetooth Special Interest Group (SIG) introduced the Bluetooth 5.1 specification
[8], which added support for direction finding using antenna arrays. The new feature can
provide highly accurate direction finding both indoors and outdoors. Bluetooth is a technical
standard for short-range communication, and it utilizes the 2.4 GHz Industrial, Scientific, and
Medical (ISM) frequency band [20]. The band operates over a frequency from 2400 to 2483.5
MHz. Figure 2.1 [9] shows how the frequency band is divided into 40 channels with a 2 MHz
spacing. The advertising channels are indicated in black and are used for advertising. The
advertising channels are only used for advertising, while the data channels can be used for
data transmission and advertising. The advertising channels are placed to avoid overlapping
with the WIFI channels 1, 6, and 11 of the IEEE 802.11 standard, indicated in a darker
shade of gray in the figure. Placing the advertising channels outside the WIFI channels helps
reduce congestion and ensure that advertisements succeed.

Figure 2.1: Bluetooth Low Energy frequency spectrum

7

8 CHAPTER 2. BACKGROUND THEORY

Bluetooth uses Gaussian Frequency-Shifting Key (GFSK) to modulate the signal, which
means that the frequency deviates with a positive offset for a binary 1 and a negative offset
for a binary 0. With Bluetooth operating at 1 Mb/s, the nominal deviation is 250 KHz, and
the average deviation should be between 225 KHz and 275 KHz.

The Bluetooth 5.1 core specification introduced direction-finding capabilities by appending a
Constant Tone Extension (CTE) at the end of a traditional Bluetooth packet transmission,
as shown in Figure 2.2 [8]. The CTE is a stream of binary ones that results in a sine wave at
a fixed frequency. The antenna array and receivers can measure the phase of the incoming
sine wave and later calculate the phase difference. The Bluetooth protocol usually employs a
whitening technique to avoid constant binary ones being sent by replacing them with zeroes
and encoding the data. However, this is naturally not applied to the CTE extension.

Figure 2.2: Bluetooth packet with CTE append at the end

There exist two types of Bluetooth Direction Finding. The first mode is called Angle of
Arrival (AoA) and the second one Angle of Departure (AoD). In AoA, the moving tag that is
tracked transmits the CTE signals while another device calculates the direction of the received
signal using an antenna array. In AoD, the CTE is transmitted by the antenna array, while
the moving tag measures the phase difference and calculates the direction. Each type has
its respective advantages and drawbacks. In AoD, the transmitted CTE is switched between
antenna elements which can draw significant power compared to AoA. The disadvantage of
AoA is that multiple tags are to be located, requiring all tracked devices to transmit data to
the receiving array. This might cause issues if multiple tags are transmitted simultaneously.
The effect of this can be reduced by randomizing the time when each tag transmits, but
the problem will still grow as the number of tags increases. On the other hand, AoD only
requires that the array transmit and all devices receive, allowing an unlimited number of
devices to estimate their direction from the array. However, if multiple arrays are to be used
to track a single moving tag, AoA only requires the tag to transmit while all arrays sample
simultaneously. For AoD, each antenna array would have to transmit separately instead
of simultaneously. This would mean the direction estimates would be calculated with data
separated in time.

2.1. Bluetooth Direction Finding 9

2.1.1 Bluetooth Angle of Arrival Sampling

In BDF, the receiver takes several phase and amplitude measurements of the incoming sine
wave at precise intervals in a process known as In-Phase and Quadrature (IQ) sampling. The
phase and amplitude of the IQ sample are a set of Cartesian coordinates. When the receiver
performs the IQ sampling, each sample has to be attributed to a specific antenna in the array.
Figure 2.3 visually represents an IQ sample and its corresponding angle φ.

Figure 2.3: IQ sample in Cartesian coordinates

Figure 2.4 [8] shows an overview of the CTE field for the transmitter and receiver in AoA.
The transmitter transmits a constant sine wave while the receiver sample the signal on the
different antenna elements. The first 4 µs is designed to ensure that there is a gap between
adjacent transmissions so that they do not overlap with each other. Eight IQ samples are
taken from the first antenna at 1 µs intervals during the reference period. The receiver might
use these samples to estimate the signal frequency and, in turn, calculate the wavelength.
The sample and switch slots can be configured from 12 to 160 µs [8]. The duration of the
CTE will, together with the sampling configuration, determine how many samples can be
achieved during each transmission.

Figure 2.4: CTE timing rules for AoA [8]

Both the number of sampling slots and sampling duration can be configured. The sampling
time for each antenna can be either 1 or 2 µs. Using 1 µs time slots would yield double the
number of samples compared to using 2 µs for the same CTE length. However, using a 2 µs
sampling slot does not increase the sampling window, as shown in Figure 2.5 [8]. The extra
time in the sampling slot can be used to allow the signal to stabilize before sampling.

10 CHAPTER 2. BACKGROUND THEORY

Figure 2.5: CTE sampling window

In an ideal world, every antenna would be sampled simultaneously, requiring multiple proces-
sors to read the samples. Most applications, therefore, allow for reduced accuracy to reduce
system cost [21, 22]. A typical method for reading multiple antennas using one receiver is
to utilize an RF switch that can switch between different antenna elements. One drawback
of using an RF switch is that it takes time for the RF signal to become stable. Consider
the array with elements numbered as shown in Figure 2.6. If we would sample each antenna
element in a top-to-bottom order, Equation 2.1 shows that it would take 48 µs to sample
each element once with a sampling period of 2 µs since each sampling slot requires a 2 µs
switching slot.

Figure 2.6: Locator board sampling slots with 12 antenna elements

tsampling = (2 µs+ 2 µs)× 12 = 48 µs (2.1)

Figure 2.4 shows that the total CTE time is 160 µs where 12 µs is used for the 4 µs guard and
8 µs reference sampling periods. This leaves a 148 µs sample and switch period that can be
freely used for sampling antenna elements, allowing each element to be sampled three times
as shown in Equation 2.2. There are two possible orders to sample the antenna elements, and
the first is to loop through each antenna element and then repeat the cycle. The advantage of
this method is that each sample of different antenna elements will be measured closer together
in time but at the cost of increased switching. The second method involves sampling each
element multiple times, eliminating switching between antenna elements between samples of
the same element. Suppose we sample the same element once in each sample slot and use two

2.1. Bluetooth Direction Finding 11

successive sampling slots for the same element. In that case, we gain an additional measure-
ment from the switching slot in-between, thus increasing the total number of measurements.
The second method also has increased accuracy since less switching is required and therefore
a more stable RF signal.

N = 160 µs− 12 µs

(2 µs+ 2 µs)× 12 = 3.08 (2.2)

2.1.2 Calculating the Angle of Arrival Between Two Antennas

Figures 2.7(a) and 2.7(b) [8] show an example of AoA and AoD, respectively. In the AoA
example, one radio signal will hit two receiving antennas. The radio signal will propagate
toward the antennas, but the wave will hit each element with a different phase. IQ sampling
on each antenna allows us to calculate the phase difference Ψ easily. Since the distance, d,
is known, we can calculate the signal’s angle θ using a trigonometric identity as shown in
Equation 2.3 [8].

θ = arctan(Ψλ
2πd) (2.3)

λ is the wavelength of the received signal where λ = c
fc

and c is the speed of the light and
fc is the center frequency of the signal. Ψ is the phase difference between the two antennas,
and the distance d is chosen to be relatively close to λ. A typical value of d is λ/2.

(a) Angle of Arrival (b) Angle of Departure

Figure 2.7: 2D example of using phase difference to derive angle of arrival

Using a one-dimensional antenna array such as the one in Figure 2.7(a) allows us to calculate
the angle in one dimension, resulting in us being able to determine the direction in two
dimensions. Expanding the antenna array to two dimensions allows us to calculate the angle
in two dimensions. We refer to these angles as azimuth and elevation.

12 CHAPTER 2. BACKGROUND THEORY

2.2 Introduction to Linear Algebra

This section introduces some basic matrix operations and notations that will be used later
in the thesis. The majority of the theory in this chapter is from Linear Algebra and its
Applications by David Lay et al. [23] and Notes on Kronecker Products by Louis Whitcomb
[24] unless otherwise stated.

2.2.1 Matrix Multiplication

If A is an m×n matrix, and if B is an n× p matrix with columns b1, ..., bp, then the product
AB is the m×p matrix whose columns are Ab1, ..., Abp as defined in [23, p. 113]. The formula
for matrix multiplication is shown in Equation 2.4

AB = A[b1b2 · · · bp] = [Ab1Ab2 · · ·Abp] (2.4)

A simple example is shown in Equation 2.5.

[
2 3
2 −5

]
×

[
4 3 7
1 −2 3

]
=

[
11 0 23
3 16 −1

]
(2.5)

Note that the number of columns in A must match the number of rows in B in order to
multiply the two matrices [23, p. 113].

2.2.2 Matrix Transpose

The matrix transpose of a matrix A is defined by [23, p. 117] as AT where rows are exchanged
for columns, and vice versa. This operation is shown with an example in Equation 2.6.

[
1 2
3 4

]T

=
[
1 3
2 4

]
(2.6)

2.2.3 Complex Conjugate

The complex conjugate of a complex number is formed by changing the sign of the imaginary
component [23, A3]. Given a complex number of the form:

z = a+ bi (2.7)

where a is the real component and b is the imaginary component, the complex conjugate z̄
is:

z̄ = a− bi (2.8)

2.2. INTRODUCTION TO LINEAR ALGEBRA 13

2.2.4 Hermitian matrix

A hermitian matrix is a complex square matrix that combines both operations from Equation
2.6 and 2.8; that is, the hermitian matrix is the conjugate transpose of the original matrix
[24]. Equation 2.9 shows the general characteristics of a hermitian matrix.

 1 4 + 1i 5− 2i
4− 1i 2 6 + 3i
5 + 2i 6− 3i 3

 (2.9)

A hermitian matrix has some special characteristics, such as the diagonal, which always
contains only real values, and the complex element located in the i-th row and the j-th
column must be the complex conjugate of the element that is in the j-th row and i-th column
[24]. Another characteristic is that the eigenvalues of a Hermitian matrix are always real [24].

2.2.5 Kronecker Product

The Kronecker product is a binary matrix operator that maps two arbitrarily dimensional
matrices into a larger matrix with a special block structure [24]. Given the n × m matrix
An×m and the p× q matrix Bp×q:

A =

a1,1 · · · a1,m
...

an,1 · · · an,m

 , B =

b1,1 · · · b1,q
...
bp,1 · · · bp,q

 (2.10)

The Kronecker product, denoted A⊗B is the np×mq matrix with the block structure:

A⊗B

a1,1B · · · a1,mB
...

an,1B · · · an,mB

 (2.11)

For example, given:

A =
[
1 2
3 4

]
, B =

[
0 5
6 7

]
(2.12)

the Kronecker product A⊗B is:

A⊗B =

1

[
0 5
6 7

]
2

[
0 5
6 7

]

3
[
0 5
6 7

]
4

[
0 5
6 7

]
 =

0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28

 (2.13)

14 CHAPTER 2. BACKGROUND THEORY

2.2.6 Identity and Exchange Matrix

The identity I matrix is a square matrix of size n × n with ones on the main diagonal and
zeroes everywhere [23, p. 55]. Equation 2.14 shows an identity matrix I with n = 3.

I =

1 0 0
0 1 0
0 0 1

 (2.14)

We also have the exchange matrix J , which is similar to the identity matrix but has the ones
on the anti-diagonal instead of the diagonal [23, p. 55], as shown in Equation 2.15

J =

0 0 1
0 1 0
1 0 0

 (2.15)

2.2.7 Persymmetric Matrix

A persymmetric matrix refers to a square matrix that is symmetric with respect to the
northeast-to-southwest diagonal. Let A = aij be an n × n matrix. A persymmetric matrix
has the following requirement:

aij = an−j+1,n−i+1 for all i, j (2.16)

An example of a persymmetric matrix:

8 9 10 4
6 7 3 10
5 2 7 9
1 5 6 8

 (2.17)

2.2.8 Unitary Matrix

A unitary matrix is a square matrix of complex numbers whose inverse is equal to its conjugate
transpose [25]. In other words, the product of the unitary matrix and the conjugate transpose
of a unitary matrix is equal to the identity matrix [25]. A matrix is said to be unitary if the
following condition is true:

UUH = I (2.18)

An example of a unitary matrix:

U = 1
2

[
1 + i 1− i
1− i 1 + i

]
, UH = 1

2

[
1− i 1 + i
1 + i 1− i

]
(2.19)

2.2. INTRODUCTION TO LINEAR ALGEBRA 15

UUH = 1
2

[
1 + i 1− i
1− i 1 + i

]
1
2

[
1− i 1 + i
1 + i 1− i

]
= 1

4

[
4 0
0 4

]
= I (2.20)

2.2.9 Eigenvectors and Eigenvalues

An eigenvector of an n×n matrix A is a nonzero vector x such that Ax = λx for some scalar
λ [23, p. 285]. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of
Ax = λx; such an x is called an eigenvector corresponding to λ [23, p. 285]. Assume that we
have a matrix A defined as:

A =
[
1 6
5 2

]
(2.21)

The eigenvalues of A can be calculated as shown in Equation 2.22.

det(λI −A) =
[
1− λ 6

5 2− λ

]
= λ2 − 3λ− 28 = (λ− 7)(λ+ 4) (2.22)

λ1 = 7, λ2 = −4 (2.23)

The eigenvalues of A are 7 and -4, as shown in Equation 2.23. The eigenvectors can now be
calculated for each eigenvalue by solving the following equation:

(A− λI)v = 0 (2.24)

The eigenvector corresponding to the eigenvalue λ = 7 is:

[
1− λ 6

5 2− λ

] [
v1
v2

]
=

[
−6v1 + 6v2
5v1 − 5v2

]
=

[
0
0

]
⇒

[
v1
v2

]
=

[
1
1

]
(2.25)

The eigenvector corresponding to the eigenvalue λ = −4 is:

[
1− λ 6

5 2− λ

] [
v1
v2

]
=

[
5v1 + 6v2
5v1 + 6v2

]
=

[
0
0

]
⇒

[
v1
v2

]
=

[
−6
5

]
(2.26)

It is also possible to check if the eigenvectors are correct. Let us define u and v as the
following:

u =
[

6
−5

]
, v =

[
3
−2

]
(2.27)

We can check if u and v are eigenvectors of A:

16 CHAPTER 2. BACKGROUND THEORY

Au =
[
1 6
5 2

] [
6
−5

]
=

[
−24
20

]
= −4

[
6
−5

]
= −4u (2.28)

Av =
[
1 6
5 2

] [
3
−2

]
=

[
−9
11

]
̸= λ

[
3
−2

]
(2.29)

We can see from Equation 2.28 and 2.29 that u is an eigenvector corresponding to an
eigenvalue −4, but that v is not an eigenvector of A because Av is not a multiple of v.

2.3 The MUltiple SIgnal Classification Algorithm

The MUltiple SIgnal Classification (MUSIC) algorithm is a type of super-resolution subspace
method. Subspace methods are based on the spectral decomposition of the covariance matrix
of the received IQ samples [26]. Using an eigenvalue decomposition method, they separate
the covariance matrix into signal and noise subspaces [26]. The MUSIC algorithm was first
proposed by Schmidt R.O in 1986 [11] to estimate the direction of arrival of signals. The
method can detect multiple incoming sources and performs better than the conventional
beam-forming methods providing that these sources are uncorrelated or weakly correlated
[26]. The MUSIC algorithm can estimate sources in both one- and two-dimensional space.
The algorithm’s capabilities depend on the antenna array’s physical layout, which measures
incoming signals. Two commonly used antenna array structures are Uniform Linear Array
(ULA) which has a one-dimensional structure, and Uniform Rectangular Array (URA), which
has a two-dimensional structure. The former can determine the direction in one dimension,
while the latter is capable of two-dimensional direction finding. This thesis will use the latter,
which can simultaneously accurately predict the azimuth (φ) angles and the elevation (θ) of
multiple signals. The antenna array structure with an M number of antenna elements is
shown in Figure 2.8. The MUSIC algorithm can estimate D(0 < D < M) independent signal
sources. The Angle of Arrival of each signal source is represented as (θk, φk), k = 1, 2, ..., D,
where θk(0 < θ < π/2) and φk(0 < φ < 2π).

Figure 2.8: Antenna array coordinate frame where Mx and My are the x-coordinate and
y-coordinate of each array element M, respectively.

2.3. THE MUltiple SIgnal Classification ALGORITHM 17

Equation 2.30 shows a typical measurement model for estimating the direction based on phase
measurements for a signal downconverted to baseband before sampling [14]:

x(t) = A(θ, φ)s(t) + n(t) (2.30)

where A(θ, φ) = [a(θ1, φ1), a(θ2, φ2), ..., a(θD, φD)] is the matrix of steering vectors for each
signal, s(t) is the signal vector and n(t) is the white Gaussian noise vector. For 2D-direction
finding, the steering vector a(θ, φ) is defined in Equation 2.31 where λ is the wavelength of
the signals.

a(θk, φk) = exp
(2πj
λ
xnsin(θk)cos(φk) + ynsin(θ)sin(φ)

)
(2.31)

The covariance matrix of the received signals is computed as shown in Equation 2.32:

RXX = E[X(t)XH(t)] = ARSA
H + σ2I (2.32)

where (·)H = Hermitian, E(·) = Expected value in the statistical average, RS is the
signal covariance matrix and σ2 is the noise variance. In practice, we can estimate the
covariance matrix from a finite number of temporal samples in the form shown in Equation
2.33. N refers to the number of snapshots taken, each containing a number of samples equal
to the number of antenna elements.

RXX = 1
N

N∑
t=1

X(t)X(t)H (2.33)

Equation 2.34 shows an example of how the sample matrix X might look. In this example,
there are four antenna elements and three snapshots taken.

X =

snapshot 1︷ ︸︸ ︷
sample 1

snapshot 2︷ ︸︸ ︷
sample 1

snapshot 3︷ ︸︸ ︷
sample 1

sample 2 sample 2 sample 2
sample 3 sample 3 sample 3
sample 4 sample 4 sample 4

ANT1
ANT2
ANT3
ANT4

(2.34)

The covariance matrix will have M number of eigenvalues (λ1, λ2, ..., λM) and their corre-
sponding eigenvectors are E = e1, e2, ..., eM . If the eigenvalues are sorted from largest to
smallest, we can divide the matrix E into two sub-spaces [ENES]. The noise subspace EN

comprises M − D eigenvectors associated with the noise. The signal subspace ES contains
D eigenvectors associated with the arriving signals. The noise subspace eigenvectors are
orthogonal to the array steering vectors at the angles of arrival. The MUSIC algorithm work
by searching for all arrival vectors that are orthogonal to the noise subspace. To search,
MUSIC constructs the following pseudo-spectrum function:

P (θ, φ) = 1
AH(θ, φ)ENEH

N a(θ, φ)
(2.35)

18 CHAPTER 2. BACKGROUND THEORY

where a(θ, φ) is the steering vector. To find the AoA, evaluate P (θ, φ) for desired values of
θk(0 < θ < π/2) and φk(0 < φ < 2π). This is done by substituting θ1, ..., θm and φ1, ..., φm in
P (θ, φ). The resolution of the AoA estimation will directly depend on the number of angles
for which P (θ, φ) will be evaluated. Find N largest peaks in (θk, φk), k = 1, 2, ..., D,. The
associated peaks will be the estimated AoA.

2.4 The Real-Valued MUSIC Algorithm

The covariance matrix is generated as shown in Equation 2.36. The covariance matrix
naturally contains complex values since the IQ samples are a set of Cartesian coordinates.
Complex values are not ideal for a hardware implementation as they complicate the calcula-
tion of eigenvalues, eigenvectors, and the peak search [17]. This will result in a larger area,
routing usage, and increased complexity [17]. Keh-Chirang Huarng and Chien-Chung Yeh
[17] have presented a method for transforming a complex covariance matrix into a real-valued
matrix using a real-valued transformation.

RXX = 1
N

N∑
t=1

X(t)X(t)H (2.36)

A prerequisite for the real-value transformation is that the covariance matrix must be both
hermitian and persymmetric. The matrix in Equation 2.36 is hermitian, but not persym-
metric. The matrix can be converted into a hermitian and persymmetric matrix using
forward-backward averaging as shown in Equation 2.37 [17]:

RF B = 1
2(R+ JRTJ) (2.37)

where R is the covariance matrix RXX , RT is transposed of R, and J is the exchange
matrix with all unities on the secondary diagonal positions and zeroes elsewhere. If we
apply Equation 2.37, it is possible to reduce the complex matrix into a real matrix. The
method utilizes the fact that RF B is both hermitian and persymmetric, in the way shown in
Equation 2.38 where R̄ is the conjugate of R and J is an exchange matrix.

JR̄J = R (2.38)

If we assume that M is even, we can let U be defined as an M ×M matrix as:

U = 1√
2

[
I J
iJ −iI

]
(2.39)

where I is the identity matrix and J is the exchange matrix respectively. It can be proved
that for any M×M hermitian persymmetric matrix R, URUH is real and symmetric since R
is also Hermitian and symmetric [17]. Using this fact, we can create a symmetric real-valued
covariance matrix R̂. Since the covariance matrix is real and symmetric, it is a known fact
that the eigenvalues and eigenvectors of the covariance matrix will also be real [17]. Equation
2.40 shows the premultiplication and postmultiplication of R by U and UH . The real-valued

2.4. THE REAL-VALUED MUSIC ALGORITHM 19

correlation matrix R̂ can be obtained using Equation 2.40 where the imaginative component
has been removed, and all the information is stored in the real component.

R̂ = Re
{
URUH

}
(2.40)

The steering vector used in the original MUSIC algorithm is no longer valid since the
covariance matrix has been transformed into a real-valued matrix. Keh-Chirang Huarng
and Chien-Chung Yeh [17] have shown that for ULA, the new steering vector becomes:

ãx(ω) = Uxe
−j(Mx−1)α/2ax(ω) (2.41)

ãy(ψ) = Uye
−j(My−1)β/2ay(ψ) (2.42)

for the steering vector in the x-direction and y-direction, respectively. We can define ω =
sin(θ)cos(φ), ψ = sin(θ)cos(φ), α = exp(j 2πdx

λ ω), and β = exp(j 2πdy

λ ψ). Wei Zhang et al.
[19] have shown that we can obtain the real-valued steering vector for a URA-type antenna
array by calculating the Kronecker product of ãx(ω) and ãy(ψ):

ã(θ, φ) = ãx(ω)⊗ ãy(ψ) (2.43)

A new real-valued search function can be found by applying the new steering vector into the
original MUSIC [11] search function by Schmidt [19]:

P (θ, φ) = 1
[ãx(ω)⊗ ãx(ψ)]ENEH

N [ãy(ω)⊗ ãy(ψ)]
(2.44)

20 CHAPTER 2. BACKGROUND THEORY

2.5 The COordinate Rotation DIgital Computer Algorithm

This section presents the COordinate Rotation DIgital Computer (CORDIC) algorithm that
can be used to calculate several trigonometric functions. The algorithm was first presented
in an article by J.E. Volder in 1959 [27], and it was later improved upon by adding support
for hyperbolic calculations in 1971 [28], and then the generalized hyperbolic CORDIC was
introduced in 2019 [29]. CORDIC is suitable for hardware because it can be implemented
using only a combination of additions, subtractions, shifting, and multiplication. CORDIC
can perform a vector rotation by using a sequence of iterative micro-rotations of an elementary
angle where the original rotation angle θ can be expressed by the sum of all elementary angles
ϕ as shown in Equation 2.45 and Figure 2.9.

θ =
∞∑

i=0
ϕ (2.45)

Figure 2.9: A vector [x0, y0] rotated to [x, y] using micro-rotations [30].

The following section is based on the survey by Andraka from 1998 [31]. The objective of
the section is to explain how the CORDIC calculates trigonometric functions using simple
arithmetics in an iterative process. Figure 2.9 presents two vectors of the same magnitude.
The second vector is obtained by rotating the first vector by an angle θ. The new coordinates
are computed using the formula shown in Equation 2.46.

x = x0cos(θ)− y0sin(θ)
y = y0cos(θ) + x0sin(θ) (2.46)

Equation 2.46 can be rearranged into the following [31]:

2.5. THE COordinate Rotation DIgital Computer ALGORITHM 21

x = cos(θ)[x0 − y0tan(θ)]
y = cos(θ)[y0 + x0tan(θ)] (2.47)

We can simplify the equation above if the rotation angles are restricted so that tan(θ) = ±2−i

and thus, the multiplication has been reduced to a simple shift operation[31]. Any rotation
angle can be obtained by performing a series of successively smaller elementary rotations.
We can also simplify the cos term by deciding which direction to rotate rather than whether
or not to rotate and therefore make the cos(θ) term a constant since cos(θ) = cos(−θ) [31].
The iterative rotation can now be expressed as:

xn = Ki[x0 − y0di2−i]
yn = Ki[y0 + x0di2−i] (2.48)

where:

ki = cos(tan−12−1) = 1√
1 + 2−2i

(2.49)

di = ±1 (2.50)

Removing the scale constant from the iterative equations yields an algorithm consisting
of only shift and add operations. The product of Ki can be applied at the end instead.
Ki reaches 0.6073 as the number of iterations reaches infinity, and the rotation algorithm,
therefore, has a gain, An, of approximately 1.647 [31]. The exact number is dependent on
the number of iterations as shown in Equation 2.51:

An =
n−1∏
i=0

√
1 + 2−2i (2.51)

For some calculations, the CORDIC algorithm also uses a third term which keeps track of
the progress done by the CORDIC [31]. An angle accumulator tracks the progress:

Zi+1 = [Zi − ditan
−1(2−i)] (2.52)

The tan−1(2−i) term can be implemented in hardware by storing a finite number of entries
in a ROM. Table 2.1 shows the 10 first values of tan−1(2−i).

Table 2.1: 10 first values of tan−1(2−i)

i 0 1 2 3 4 5 6 7 8 9
2−i 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

tan−1(2−i) 45 26.6 14.0 7.1 3.6 1.8 0.9 0.4 0.2 0.1

22 CHAPTER 2. BACKGROUND THEORY

The CORDIC algorithm is normally operating in one of two modes. The first mode is called
rotation mode, and it rotates an input vector by a specific angle. When operating in rotation
mode, the angle accumulator is initialized with the desired rotation angle. For rotation mode
the CORDIC equations are:

xi+1 = [xi − yidi2−i]
yi+1 = [yi + xidi2−i] (2.53)
zi+1 = [zi − ditan

−1(2−i)]

where

di =
{
−1 if zi < 0.
+1 otherwise.

(2.54)

After a finite number of iterations, the final result will be:

xn = An[x0cos(z0)− y0sin(z0)]
xn = An[y0sin(z0) + x0cos(z0)] (2.55)
zn = 0

Table 2.2 shows an example of the CORDIC algorithm working in rotation mode.

Table 2.2: CORDIC rotating (xin, yin) by 90 deg using 10 micro-rotations. Initial values are
xin = 1 and yin = 0. The (x, y) values shown in the table are always scaled by multiplying
with k = 0.6072.

i z(i) d x(i) y(i)
0 0.47694 1 0.60725 0.60725
1 0.19538 1 0.30363 0.91088
2 0.04662 1 0.075907 0.98679
3 -0.028895 1 -0.047442 0.99627
4 0.009009 -1 0.014826 0.99924
5 -0.0099615 1 -0.016401 0.9997
6 -0.0004739 -1 -0.00078037 0.99996
7 0.0042702 -1 0.0070318 0.99997
8 0.0018981 1 0.0031257 0.99999
9 0.00071206 1 0.0011726 1

The other mode is the vectoring mode, which rotates the input vector to the x-axis while
recording the angle required to rotate. In this mode, the CORDIC equations are:

xi+1 = [xi − yidi2−i]
yi+1 = [yi + xidi2−i] (2.56)
zi+1 = [zi − diarctan(2−i)]

2.5. THE COordinate Rotation DIgital Computer ALGORITHM 23

where

di =
{
−1 if yi < 0.
+1 otherwise.

(2.57)

After a finite number of iterations, the final result will be:

xn = An ×
√
x2

0 + y2
0

yn = 0 (2.58)

zn = z0 + tan−1
(
y0
x0

)

If we initialize the input z0 to zero then zn = tan−1(Y0
X0

). This means that we can use the
vector mode in order to calculate the inverse tangent function. Table 2.3 shows an example
of the CORDIC algorithm in vectoring mode.

Table 2.3: CORDIC vectoring mode with xin = 0.7071, yin = 0.7071 and zin = 0. After a 10
micro-rotations the result of atan2(x, y) can be seen in the z output

i z(i) d x(i) y(i)
0 0.7854 -1 1.4142 0
1 1.249 -1 1.4142 -0.70711
2 1.0041 1 1.591 -0.35355
3 0.87971 1 1.6352 -0.15468
4 0.81729 1 1.6449 -0.052481
5 0.78605 1 1.6465 -0.001079
6 0.77043 1 1.6465 0.024647
7 0.77824 -1 1.6467 0.011784
8 0.78215 -1 1.6467 0.0053517
9 0.7841 -1 1.6468 0.0021354

The current equation for the atan function is limited to
(
−π

2 ,
π
2

)
. During the Eigenvalue

Decomposition (EVD), it might be necessary to calculate values outside this range, and the
algorithm must be extended to support these cases. For the algorithm to support all angles,
the input values must be conditioned with the following:

x, y, z =
{
−x,−y, z + π if x < 0.
x, y, z otherwise.

(2.59)

Figure 2.10 shows the hardware architecture for a bit-parallel iterative CORDIC. The module
contains three bit-parallel registers to hold the current values of x, y, and z. In each iteration,
the x and y values add or subtracted with the previous value shifted several times equal to
the current iteration depending on the current sign. The z value is either subtracted or
added with the current atan value corresponding to the current iteration. The atan values
are typically stored in a ROM.

24 CHAPTER 2. BACKGROUND THEORY

Figure 2.10: Iterative CORDIC architecture

2.6 Eigenvalue Analysis for Real Matrices

This section will introduce some current methods for solving the eigenvalue problem. The
computation of eigenvalues for symmetric matrices is essential for many direction-finding
techniques [14]. The number of antenna elements in a direction finding is highly related to
the accuracy and the ability to track multiple concurrent signal sources [11], but when the
number of elements increases, so does the size of the covariance matrix, and the computational
power needed to calculate the eigenvalues and vectors increases drastically [32]. Some current
methods for solving the eigenvalue problem are Gauss Siedel (GS) [33, p. 305], Successive-
over-Relaxation (SOR) [34, p. 866], QR-decomposition [35, p. 98], and Jacobi methods [35,
p. 463]. The Jacobi method is more favored for hardware acceleration even though it is
significantly slower than the QR method [35, p. 463]. This is due to the fact that the Jacobi
method is numerically stable for all real symmetrical matrices in addition to being simpler
to implement [35, p. 463]. The Jacobi method can also avoid expensive operations such as
square roots and divisions while delivering superior accuracy under certain conditions. The
classical Jacobi method will be presented in Section 2.6.1, then the Cyclic Jacobi method is
introduced 2.6.2, which is more suitable for computer systems. Finally, the parallel Jacobi
method is presented in Section 2.6.3, which is currently one of the fastest methods for solving
the eigenvalue problem [32].

2.6.1 The Classical Jacobi Method

Singular Value Decomposition (SVD) is an important method for factorizing a matrix in
linear algebra [36]. The SVD of the original matrix A ∈ Rm×n is:

SVD: A = UDV T (2.60)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and D ∈ Rm×n is diagonal. In
SVD, the elements of D are the singular values of A, the columns of U = u1, ..., um are the
left singular vectors of A, and the columns of V = v1, ..., vm are the right singular vectors

2.6. EIGENVALUE ANALYSIS FOR REAL MATRICES 25

of A [36]. The classic Jacobi method proposed by Carl G. J. Jacobi in 1846 approximates
the Eigenvalue Decomposition utilizing a sequence of rotations or iterations for obtaining the
diagonal D of an original matrix A ∈ Rm×n:

Ak+1 = JT
pqA

kJpq, k = 0,1,2, .. (2.61)

where Ak=0 is the original matrix and Jpq is the transformation matrix governing the Ja-
cobi rotation as shown in Equation 2.62. It is defined by the parameters c, s,−s, c in the
pp, pq, qp, qq entries of an n× n identity matrix, where p < q, c = cos(θ), s = sin(θ), and θ is
the rotation angle.

J(p, q, θ) =

1 · · · 0 · · · 0 · · · 0
...

...
...

0 · · · c · · · s · · · 0
...

...
...

0 · · · −s · · · c · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1

(2.62)

Equation 2.63 shows how the optimal rotation angle can be calculated.

θ = 1
2arctan2

[
2ak

pq

ak
qq − ak

pp

]
(2.63)

Equation 2.64 shows how the optimal angle θ and the rotation matrix can be used to annihilate
two entries of a 2× 2 matrix.

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]T [
Ak

pp Ak
pq

Ak
qp Ak

qq

] [
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
=

[
Ak+1

pp 0
0 Ak+1

qq

]
(2.64)

The matrix values outside the diagonal are diminished through a series of iterations. It would
take an infinite number of iterations to null the outer values completely, and it is therefore
required to set a threshold value where the matrix is considered diagonalized. When an
approximation is sufficient, it can be shown that the D is approximately diagonal after
O(Nlog(N)) iterations [36].

2.6.2 The Cyclic Jacobi Method

The classic Jacobi method searches the upper triangle in each iteration and sets the largest
off-diagonal element to zero. The search takes significant time and should be avoided if
possible. The cyclic Jacobi method is a faster method that is more suitable for hardware
implementation. The cyclic method traverses the upper triangle in a fixed order. For a 4× 4
matrix, this would look like this:

26 CHAPTER 2. BACKGROUND THEORY

(p, q) = (1,2)→ (1,3)→ (1,4)→ (2,3)→ (2,4)→ (3,4) (2.65)

Each set shown in Equation 2.65 is referred to as a sweep, which takes N(N − 1)/2 Jacobi
rotations for each sweep. The diagonalization of the matrix will be finished after a few sweeps.
Typically, three to six sweeps are enough.

2.6.3 The Parallel Jacobi Method

Additional improvements are possible by exploiting the fact that when performing Jacobi
rotations around (p,q), only rows and columns p and q are altered. Instead of performing each
rotation in a one-by-one cyclic order, they can be separated into multiple sub-problems and
executed in parallel using a multiprocessor architecture. Ahmedsaid et al. [36] first presented
a parallel array based on the Jacobi method. It involves dividing the original matrix into
2× 2 sub-blocks. Each sub-block is calculated by a separate Processing Element (PE).

Figure 2.11: A 4× 4 Brent-Luk-EVD array, where n = 8 for an 8× 8 symmetric matrix

Figure 2.11 shows an example of 4×4 Brent-Luk-EVD array for an 8×8 symmetrical matrix. It
is enough to calculate only the upper triangle of the matrix if the matrix is symmetrical along
the diagonal. Exploiting this symmetry reduces the number of PEs from N×N to N(N−1)/2
resulting in approximately 50% reduction in area. The processing elements consist of two
types, Diagonal Processing Element (DPE) and Off-diagonal Processing Element (OPE). At
the start of the parallel Jacobi method, each sub-matrix is loaded into the corresponding PE.
Then the diagonal PEs must compute the optimal rotation angle θ while the off-diagonal
PEs wait. After the DPEs are finished, the angles are broadcast to the PE on the same row
and column as indicated by the striped arrows. When every PE has received the optimal
angle, each PE computes the left-hand side rotation followed by a right-hand rotation. After
completing both rotations, the values are exchanged between adjacent processing elements,
as the solid arrows indicate. After the exchange, the cycle is repeated several times before
the matrix is fully diagonalized.

2.6. EIGENVALUE ANALYSIS FOR REAL MATRICES 27

The following shows an example of finding the eigenvalue of a matrix using the parallel Jacobi
method. The matrix in the example is 4× 4 for simplicity, but the method can be extended
to any size as long as the matrix is symmetrical and even-numbered in size. We define a
symmetrical matrix along the diagonal because then it is enough only to solve the upper
triangle, and we can ignore the lower triangle.

Ak=0 =

4 4 2 2
4 4 2 2
2 2 1 1
2 2 1 1

→

4 4 2 2
4 4 2 2

1 1
1 1

 (2.66)

We divide Ak=0 into 2 × 2 sub-matrices and define them as DPE11, OPE12 and DPE22
respectively as shown in Equation 2.67

DPEk=0
11 =

[
4 4
4 4

]
, OPEk=0

12 =
[
2 2
2 2

]
, DPEk=0

22 =
[
1 1
1 1

]
(2.67)

The optimal angle for each PE is found using Equation 2.63:

θ11 = 1
2arctan2 (2× 4,4− 4) = 1

2arctan2 (8,0) = 0.7854 (2.68)

θ22 = 1
2arctan2 (2× 1,1− 1) = 1

2arctan2 (2,0) = 0.7854 (2.69)

Substitute the angles θ11, θ22 into the rotation matrices. Diagonal PEs use their own angle,
while the off-diagonal PE rotates using the angle on the same row and column for the left-hand
and right-hand side, respectively.

DPEk=1
11 =

[
cos(θ11) sin(θ11)
−sin(θ11) cos(θ11)

]T [
4 4
4 4

] [
cos(θ11) sin(θ11)
−sin(θ11) cos(θ11)

]
=

[
0 0
0 8

]
(2.70)

OPEk=1
12 =

[
cos(θ11) sin(θ11)
−sin(θ11) cos(θ11)

]T [
2 2
2 2

] [
cos(θ22) sin(θ22)
−sin(θ22) cos(θ22)

]
=

[
0 0
0 4

]
(2.71)

DPEk=1
22 =

[
cos(θ22) sin(θ22)
−sin(θ22) cos(θ22)

]T [
1 1
1 1

] [
cos(θ22) sin(θ22)
−sin(θ22) cos(θ22)

]
=

[
0 0
0 2

]
(2.72)

After rotating the matrix, each edge value is exchanged to an adjacent sub-matrix, as shown in
Figure 2.11. After one iteration of the algorithm, the resulting matrix is shown in Equation
2.73. The new matrix has collected all the values in the lower triangle, but it is still not
diagonal.

Ak=1 =

0 0 0 0
0 0 0 0

8 4
4 2

 (2.73)

28 CHAPTER 2. BACKGROUND THEORY

Calculate the new rotation angles:

θ11 = 1
2arctan2 (2× 0,0− 0) = 1

2arctan2 (0,0) = 0 (2.74)

θ22 = 1
2arctan2 (2× 4,8− 2) = 1

2arctan2 (8,6) = 1.1071 (2.75)

Substitute the angle into the rotation matrix a second time:

DPEk=2
11 =

[
cos(θ11) sin(θ11)
−sin(θ11) cos(θ11)

]T [
0 0
0 0

] [
cos(θ11) sin(θ11)
−sin(θ11) cos(θ11)

]
=

[
0 0
0 0

]
(2.76)

OPEk=2
12 =

[
cos(θ11) sin(θ11)
−sin(θ11) cos(θ11)

]T [
0 0
0 0

] [
cos(θ22) sin(θ22)
−sin(θ22) cos(θ22)

]
=

[
0 0
0 0

]
(2.77)

DPEk=2
22 =

[
cos(θ22) sin(θ22)
−sin(θ22) cos(θ22)

]T [
8 4
4 2

] [
cos(θ22) sin(θ22)
−sin(θ22) cos(θ22)

]
=

[
0 0
0 10

]
(2.78)

Exchange the edge values a second time and recreate the original matrix:

Ak=2 =

0 0 0 0

0 0 0
0 0

10

 (2.79)

Equation 2.79 shows the resulting matrix after two iterations. The eigenvalues of A can be
found along the diagonal in ascending order towards the lower right corner. In our simple
example, A only contains one non-zero eigenvalue, but the method can find M−1 eigenvalues
where M is the number of rows or columns in a symmetrical matrix. The eigenvectors can
also be easily found using the same method but with slight modifications.

2.7 Vivado

Vivado is a tool developed by Xilinx [37], and it is used to synthesize and implement HDL on
an FPGA. Synthesis involves transforming the HDL written in either VHDL or Verilog into
a gate-level representation, while implementation involves placement, routing, and bitstream
generation. After synthesis and implementation, the design has been transformed into a
bitstream that can be loaded on the target FPGA.

Vivado also has tools for generating detailed reports about resource usage, timing, and power
information. A utilization report gives insight into the number of look-up tables, registers,
block ram, and digital signal processing DSP blocks utilized by the design. The timing
report provides the designer with information about setup and hold violations, slack values,
and critical paths in the design. Finally, Vivado can estimate the power usage of the design
and report the static and dynamic power. The power usage is estimated using constraints
such as the clock frequency provided by the designer.

2.8. ZYNQ Z2 SYSTEM ON A CHIP 29

2.8 Zynq Z2 System on a Chip

The Zynq Z2 is a part of the Zynq 7000 System on a Chip (SoC) family from Xilinx [38].
The Zynq contains the XC7Z020 SoC, which combines a dual-core ARM Cortex A9 processor
with FPGA fabric on the same chip. The system is designed to provide high performance,
low power consumption, and a large degree of flexibility for a wide range of applications.
The Zynq has two main components: the Processing System (PS) and the Programmable
Logic (PL).

The PS includes a hard Arm processor and various peripherals such as UART, USB, Ethernet,
SPI, and other standard interfaces. It is designed to handle high-level software tasks such as
running an operating system, communicating with external devices, and running application
software. The PL includes programmable logic that can be configured to implement custom
hardware functions. The PL has programmable logic such as look-up tables (LUT), flip-
flops, block ram (BRAM), and digital signal processing (DSP) blocks. The PS and PL can
communicate with each other using the AXI interface. The AXI bus can deliver high-speed
and efficient data transfers between the two components. Table 2.4 shows an overview of the
hardware resources available on the FPGA fabric.

Table 2.4: XC7Z020 Programmable Logic overview

Resource Amount
Logic cells 85 000

Look-Up Tables 53 200
Flip-Flops 106 400

Block ram (number of 36 Kb Blocks) 4.9 Mb (140)
DSP slices (18x25 MACCs) 220

30 CHAPTER 2. BACKGROUND THEORY

2.9 DSP48E1 DSP Slice

The Zynq Z2 FPGA from Xilinx [39] utilized in this thesis contains several dedicated Digital
Signal Processing (DSP) slices throughout the chip. The DSP slice is optimized for performing
high-speed and low-latency arithmetic operations. The DSP48E1 slice consists of dedicated
arithmetic circuits that perform multiplication, addition, subtraction, and accumulation
operations. Figure 2.12 shows how the DSP48E1 is structured. The inputs A and B are
fed into a multiplier circuit that performs a 25x18 multiplication operation. Note that an
optional pre-adder can add or subtract A and D before the multiplication. The multiplication
results are fed into an adder circuit that can perform 48-bit addition or subtraction operations.
The output of the adder is fed into the accumulator, which can perform 48-bit accumulation
operations. Each of these operations can be completed in a single clock cycle.

Figure 2.12: Basic Xilinx DSP48E1 Slice Functionality

The DSP48E1 slice also includes other features such as pipelining, saturation logic, rounding
logic, and input/output registers. The pipeline registers allow the circuit to run at a very
high clock frequency by breaking down arithmetic operations such as multiplication and
addition into multiple stages. The traditional approach for implementing DSP algorithms
involves using look-up tables (LUTs) to perform arithmetic operations. While LUT-based
approaches are flexible and can be used for a wide range of DSP algorithms, they suffer from
certain limitations regarding speed, area, and power consumption [39]. The DSP slice offers
significant performance improvements over LUT-based designs. It uses less hardware and
power and is often preferred over LUT-based designs, provided they are available [39].

Chapter 3
Hardware Implementation of the MUSIC
Algorithm

Figure 3.1 illustrates the proposed hardware architecture. Recall from Section 2.4 that
the real-valued MUSIC algorithm consists of the four following steps: Covariance Matrix
Calculation (CMC), Real-valued Transformation (RVT), Eigenvalue Decomposition (EVD)
and Spectral Peak Search (SPS). These steps correspond to the four components in Figure
3.1. The first component calculates the complex covariance matrix of the input samples.
The second component performs a real-valued transformation of the complex covariance
matrix into a real-valued covariance matrix. This method was chosen to save significant
hardware resources and time during the Eigenvalue Decomposition (EVD) and the Spectral
Peak Search (SPS). Working with real numbers results in approximately a 50% reduction in
the amount of routing and resources such as look-up tables, registers, and block ram. This is
due to the real values only containing the real component as opposed to the complex numbers,
which also have a complex component. Significant time savings are also achieved since each
iteration in the Jacobi method only requires two rotations when working with real matrices
instead of four rotations when working with complex matrices [18]. After the matrix has
been transformed, the eigenvalues and corresponding eigenvectors can be calculated, which
are used in the spectral peak search to find the azimuth and elevation. This thesis will
implement components one, two, and three, while another student will implement the final
component [5].

Figure 3.1: Proposed hardware architecture

The input IQ samples measured on the locator board or generated in software are represented
as decimal values ranging from 1 to −1 since they are always placed within the unit circle.
Instead of using decimal values, they can be represented by integers, ignoring the decimal
point. This simplifies the hardware design, as all the logic can be implemented using a signed

31

32 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

value. This can either be done prior to transferring the data to the FPGA or by simply
treating the data as integers and then truncating some of the digits to avoid overflow.

3.1 MUSIC Core

The MUSIC core contains the four components shown in Figure 3.1. The top-level entity
is shown in Figure 3.2. The module has several parameters highlighted in green that can
configure the operation of the core. The advantage of these parameters is that they allow
flexibility to modify parts of the design by changing a few parameters instead of changing
the design itself.

One example is the width parameter that decides how many bits the signed values within
the core should use. This parameter can be easily changed to find the best trade-off between
Performance, Power and Area (PPA). Typical bit width is between 16 to 20 bits depending
on the desired accuracy and area requirements. Recall from Section 2.3 that the matrix size
depends on the number of antenna elements and that the number of snapshots corresponds to
how many times each antenna has been sampled. The array_size and num_of_snapshots
select the number of samples and snapshots, respectively. The iterations parameter controls
the number of iterations used by the CORDIC modules, and the sweeps parameter the
number of Jacobi sweeps. The final parameter num_vecmul configures the number of
parallel multipliers in the SPS module. The MUSIC core is initiated by setting the enable
signal high for at least one clock cycle, and the fetch signal will be set high by the core each
time a new snapshot is required. The samples are sent to the core as complex values. The
dout_valid signal is set high when the final azimuth and elevation angle are ready at the
output.

Figure 3.2: MUSIC Core top-level entity

3.2 Covariance Matrix Computation

The first step of the MUSIC algorithm is to calculate the covariance matrix as shown in
Equation 3.1. The covariance matrix is a symmetrical matrix where each row and column
has the same size as the number of samples in each snapshot. The formula can be simplified
by removing the division as shown in Equation 3.1, which is desirable as division is time-
consuming and takes considerable hardware resources. This simplification is possible since
the averaging operation has no effect on subsequent calculation [40], and it is valid as long
as we can ensure that no overflow is possible. If overflow is an issue, a hardware-efficient
solution is to scale the numbers by a factor that is a power of two, as such an operation can
be implemented using a shift operation.

3.2. COVARIANCE MATRIX COMPUTATION 33

RXX = 1
T

∑
XXH ⇒

∑
XXH (3.1)

Equation 3.2 shows how the covariance matrix is calculated. Each entry in the covariance
matrix is calculated by one multiplication, and these multiplications together calculate X ×
XH . The summation ∑ is calculated by accumulating each entry in the covariance matrix
between each snapshot. Combining these two operations will give the same result as Equation
3.1. The covariance matrix can be realized in hardware using a number of Complex Number
Multiply and Accumulate (CMAC) units.

XXH =

x1
x2
...

xn ·

 ·
[
x1 x2 · · · xn

]
=

x2

1 x1x2 · · · x1xn

x1x2 x2
2 · · · x2xn

...
...

xnx1 xnx2 · · · x2
n

 (3.2)

An important design choice for the CMC is how parallel the design should be. Table 3.1 shows
three different possible implementations. The table considers two key metrics for choosing
the optimal solution, time complexity and hardware usage.

Table 3.1: Time and resource comparison between two CMC implementations

Fully parallel (A) Partially Parallel (B) Iterative (C)
Time complexity O(M) O(M ×N) O(M ×N2)

CMAC usage N ×N N 1
Note: N ×N : matrix size, and M : number of snapshots

Implementation (A) is the fastest method because it multiplies and accumulates each element
in the covariance matrix every cycle, and it is, therefore, O(M), but this also requires one
CMAC for each element resulting in N × N CMAC units. The iterative implementation
multiplies and accumulate one entry each cycle, and it is, therefore, O(M ×N2), but it only
requires CMAC. Implementation B is a compromise between A and B, and it operates by
calculating one row each cycle resulting in a time complexity of O(M × N), and it uses N
CMAC units. The following shows the estimated clock cycles required assuming that N = 12
and M = 4:

Delay(A) : 4 (3.3)
Delay(B) : 4× 12 = 48 (3.4)
Delay(C) : 4× 122 = 576 (3.5)

If we assume that the design can operate at 100 MHz, then the calculation time would be:

Time(A) = 4× 0.01µs = 0.04µs (3.6)
Time(B) = 48× 0.01µs = 0.48µs (3.7)
Time(C) = 576× 0.01µs = 5.76µs (3.8)

34 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

From Equation 3.6, we can see that implementation A is one order of magnitude faster than
B and two orders of magnitude faster than C. The serial implementation is typically used in
software and is not very suited for a hardware solution because of the high time complexity.
The fully parallel implementation can achieve maximum speed and performance, but the
drawback is that it is expensive and has a high data throughput. The high data throughput
might result in a bottleneck in the system, and speed gains using this implementation might
not be fully realized. One bottleneck is retrieving the input samples from the block ram, which
can only read one value simultaneously for single-port and two for dual-port. The design
would therefore require at least N block ram to fully utilize the parallel implementation since
it has to retrieve one vector of size N each clock cycle. Assuming that the parallel version is
configured with N = 12, the number of required DSP slices is:

Area(A) = 12× 12× 4 = 576 (3.9)
Area(B) = 12× 4 = 48 (3.10)
Area(C) = 1× 4 = 4 (3.11)

Implementation (A) uses 576 DSP slices which is a relatively high number, and it would
most likely require a high-end FPGA. This makes fully parallel implementation undesirable
as the FPGA must either be large and therefore costly, or some of the CMAC units must be
implemented using LUTs and registers, decreasing the system’s performance and increasing
power consumption. The partially parallel design is a compromise between the two others,
and it trades some speed for vastly lower hardware usage. The partially parallel design
calculates the covariance matrix by multiplying XH with each element in X in a row-by-row
order. This method significantly reduces the amount of data and calculations required because
it does not need to multiply and accumulate every entry in the matrix each clock cycle.
Another benefit of the partially parallel design is that it takes 12 clock cycles to multiply
one matrix, making it possible to read one complex sample from a dual-port block ram each
cycle or two single-port block ram.

The following sections will detail the design of the partially parallel CMC module. It will
follow a bottom-up approach where each building block will be explained before being glued
together in the finished module. First, the Complex Multiplier (CMUL) is introduced as a
building block in the Complex Multiply and Accumulate module (CMAC). Next, the buffer
and the conjugate transpose modules are detailed. Finally, the blocks are put together to
form the CMC module.

3.2.1 Complex Multiplication Module

A series of complex multiplications are necessary to compute the covariance matrix since
each sample contains complex values. Complex numbers present an issue since they typically
require four multiplications for each complex multiplication, which will result in high usage of
DSP slices inside the FPGA. Equation 3.12 shows that one complex multiplication requires
four normal multiplications and three adder operations.

(A+Bi)(C +Di) = (AC −BD) + (AD +BC)i (3.12)

3.2. COVARIANCE MATRIX COMPUTATION 35

Equation 3.16 shows an optimized method using the Karatsuba algorithm [41]. The optimized
method only requires three normal multiplications and five adder operations. If we use our
example of N = 12 this would decrease the number of required DSP slices from 48 down to
36, which is a 33% improvement.

K1 = C(A+B) (3.13)
K2 = A(D − C) (3.14)
K3 = B(C +D) (3.15)

(A+Bi)(C +Di) = (K1−K3) + (K1 +K2)i (3.16)

We can conclude that the Karatsuba algorithm is better suited for hardware implementa-
tions assuming that multiplications are more expensive than additions or subtractions. The
DSP48E1 slice also contains adders in the front and the back of the multiplier, which can
be used to implement the additions and subtractions needed for the Karatsuba algorithm.
Figure 3.3 shows the top-level entity of the Complex Multiplication (CMUL) module. The
module accepts new data when din_valid is held high, and the dout_valid signal indicates
when the data at the output is valid.

Figure 3.3: CMUL entity

Figure 3.4 shows the micro-architecture for the CMUL module. The design is fully pipelined
to achieve high throughput and to decrease the critical path through the multiplier. The
unit is designed to fully utilize the pre- and post-adders and the built-in register in the DSP
slice and therefore optimize the hardware usage. The dout_valid signal is delayed by four
registers to be synchronous with the data.

Figure 3.4: Architecture of the CMUL module

36 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

Table 3.2 shows the synthesis report generated by Vivavdo. We can see that the design can
fully utilize the three DSP slices required without using any LUTs or registers outside the
four connections between the din_valid signal and dout_valid signal. The multiplier is
able to meet timing constraints with a frequency of up to 285 MHz.

Table 3.2: Synthesis report for the CMUL module

Parameter Value Utilization (%)
Look-up tables 0 0

Registers 4 ≤ 1
DSP slices 3 1.36

Max clock frequency [MHz] 285
Note: WL = 16

3.2.2 Complex Multiply and Accumulate Module

The covariance matrix calculation can be divided into many parallel multiply and accumulate
operations, and it is, therefore, necessary to design a unit capable of doing complex multiply
and accumulate operations. A single operation is shown in Equation 3.17. The accumulation
operation can be implemented by adding the previous value to the new value. Complex
addition is done by adding the real and complex components of each number separately, as
shown in Equation 3.18.

C = (A×B) + C (3.17)

(A+Bi) + (C +Di) = (A+ C) + (B +D)i (3.18)

Figure 3.5 shows the top-level entity of the CMAC module. The din_valid and dout_valid
signals are used to accept new data and to indicate that the output data is valid. The output
data and feedback data C are double the width of A and B to account for the growth of bits
due to the multiplication operation.

Figure 3.5: CMAC entity

Figure 3.6 shows the architecture of the CMAC. It utilizes the CMUL unit designed in Section
3.2.1. Four bit-parallel registers are inserted in series to synchronize the data between the
three data inputs to the CMAC since the CMUL has four pipeline stages. The data from
the CMUL unit and the pipelined data from C are fed into an adder and a register that

3.2. COVARIANCE MATRIX COMPUTATION 37

accumulates the data. A dout_valid signal from the CMUL unit is delayed by one cycle
using a register to indicate when the data is ready on the output.

Figure 3.6: Architecture for the Complex Multiply and Accumulate Unit (CMAC).

Table 3.3 shows the synthesis report of the CMAC module. The add operation is implemented
using LUTs, resulting in the unit using no additional DSP slices. Note that the maximum
clock frequency has been reduced to 250 MHz. This is most likely because the addition is
implemented using LUTs instead of DSP slices.

Table 3.3: Synthesis report for the CMAC module

Parameter Value Utilization (%)
Look-up tables 104 ≤ 1

Registers 142 ≤ 1
DSP slices 3 1.36

Max clock frequency [MHz] 250
Note: WL = 16

3.2.3 Conjugate Transpose Module

The conjugate transpose module takes one array of signed values at a time and negates the
value of the complex component of each value. The complex conjugate transpose operation
can be realized by implementing the operations shown in Equation 3.19 for each value in the
array.

A+Bi = A−Bi (3.19)

The top-level entity is shown in Figure 3.7, and the number of rows or columns can be
configured by setting the ARRAY_SIZE parameter.

Figure 3.7: Conjugate Transpose entity

38 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

Table 3.4 shows the synthesis report of the conjugate transpose module. The module uses
132 look-up tables and can meet timing constraints of up to 300 MHz.

Table 3.4: Synthesis report for the conjugate transpose
module

Parameter Value Utilization (%)
Look-up tables 132 ≤ 1

Registers 0 0
DSP slices 0 0

Max clock frequency [MHz] 300
Note: WL = 16 and N = 12

3.2.4 Complex Shift Register Module

The Complex Shift Register (CSREG) stores intermediate results between each snapshot.
Each CMAC is connected to its own CSREG and must be able to store N − 5 values since
the remaining values are stored inside the pipeline of the CMAC and the accumulator. The
CSREG might be realized in hardware as a bit-parallel shift register or block ram. The latter
would be the most suitable when N gets very large as the number of registers needed for the
shift register would grow. For small sizes of N , the controller controlling the block ram would
most likely make the design more complex and take more space. Therefore, the bit-parallel
shift register is chosen as it is simple to implement and control. Figure 3.8 shows the top-level
entity of the complex shift register (CSREG). The shift_en is used to send din from one
register to the next, while clear can be used to reset the values in all registers.

Figure 3.8: Complex Shift Register entity

Figure 3.9 shows how the CSREG might be implemented in hardware.

Figure 3.9: Architecture of the Complex Shift-Register (CSREG)

3.2. COVARIANCE MATRIX COMPUTATION 39

Table 3.5 shows the synthesis report of the conjugate transpose module. The module uses
224 registers and can meet timing constraints of up to 300 MHz.

Table 3.5: Synthesis report for the CSREG module

Parameter Usage Utilization (%)
Look-up tables 0 0

Registers 224 ≤ 1
DSP slices 0 0

Max clock frequency [MHz] 300
Note: WL = 16 and N = 12

3.2.5 Covariance Matrix Calculation Module

Figure 3.10 shows the top-level entity of the CMC module. The width field configures the
number of bits used to represent each integer value while array_size and num_of_snapshots
configure the size of the input vector and the number of snapshots, respectively. The module
is initiated by setting the enable signal high for one clock cycle, and the result is valid when
dout_valid is held high. The fetch signal indicates when the module is ready to accept a
new snapshot at the input.

Figure 3.10: CMC entity

Figure 3.11 shows the architecture of the CMC module and how the module is partitioned.
The CMC module is divided into a data path and a controller partition. The data path
handles the data moving through the component using combinational logic and registers,
while the controller includes a finite state machine (FSM) used to control the data flow in the
data path and external control signals. The controller and datapath are connected together
will control signals as shown in Figure 3.11. The data path consists of four components. The
conjugate transpose computes (·)H while the row multiplexer selects one value from the
input data depending on the row_sel signal from the CMC controller. In each clock cycle
of the same snapshot, every value from the conjugate transpose module is fed into its own
CMAC together with the current value from row Mux. The results of the CMAC modules
are fed into the CSREG, which stores intermediate values used in the next snapshot.

Figure 3.12 shows a simplified state machine diagram. The diagram shows how transitions
between states are controlled. After a reset, the state machine will be in the st_idle state.
In this state, the CMAC will be disabled while waiting for the enable signal to be asserted.
When enable is set high, the state machine will transition to the st_fill_pipe state, which
accounts for the delay while waiting for the pipeline to fill up. The cmac_valid signal is
set high in this state to enable the CMAC unit and the row counter to start counting. When

40 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

Figure 3.11: Architecture for the CMC module

the pipeline is filled, the machine will reach its final state, where it will stay as long as the
snapshot counter and row counter are lower than the preset values before the machine goes
back to idle. The row counter will count up to the value of ARRAY_SIZE before it returns
to zero and starts counting again. This cycle will continue if the snapshot count is lower than
NUM_SNAPSHOTS.

Figure 3.12: State machine of CMC controller

A separate state machine shown in Figure 3.13 keeps track of when the output data is valid.
The state machine waits for the snapshot counter to reach the maximum value, and then it
will transition to the st_wait state to account for the pipeline delay. After four clock cycles,
the machine transitions to the st_ready state, and the cmc_valid and dout_valid signal
is set high to indicate that the output is valid.

3.2. COVARIANCE MATRIX COMPUTATION 41

Figure 3.13: State machine of CMC ready controller

3.2.6 CMC Synthesis Report

Figure 3.6 shows the synthesis report of the CMC module. The module uses 6.4 % of the
available look-up tables, 2.7 % of the registers, 16.4 % of the DSP slices, and no block ram.
The module can meet all timing constraints up to 160 MHz.

Table 3.6: Synthesis report for the CMC module

Parameter Usage Utilization (%)
Look-up tables 3424 6.44

Registers 2816 2.65
Block ram 0 0
DSP slices 36 16.36

Max clock frequency [MHz] 160
Note: WL = 16, N = 12 and M = 4

42 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

3.3 Real-Value Transformation

A real-value transformation technique has been utilized to reduce the complexity and decrease
the computational time of solving the eigenvalue problem and the Spectral Peak Search (SPS).
As mentioned in the introduction to Chapter 3, solving the eigenvalue problem for complex
matrices requires four rotations instead of two rotations for real matrices [18]. Table 3.7
shows a computational time and resource usage comparison for the Eigenvalue Decomposition
(EVD) between using a real-value transformation and complex values [18]. The computation
time depends on the number of rotations, CORDIC iterations, and Jacobi sweeps. The
hardware usage is estimated based on the number of required CORDIC cores since the EVD
module consists primarily of said cores. The estimated cores for the complex implementation
are found in [18].

Table 3.7: Time and resource comparison

Real-value Transformation (A) Complex value (B)
Time complexity 3CI × JS 5CI × JS

Hardware usage 2CU ×N + 2CU × M
(M−1) 3CU ×N + 4CU × M

(M−1)

Note: CI : CORDIC iterations, JS : Jacobi sweeps, CU : CORDIC units and M = N
2 ,

N ×N : matrix size

The number of required clock cycles for solving the eigenvalue problem using the parallel
Jacobi method for both real and complex matrices assuming CI = 16 and JS = 6 are:

Delay(A) : 3× 16× 6 = 288 (3.20)
Delay(B) : 5× 16× 6 = 480 (3.21)

Assuming a clock frequency of 100 MHz this would result in the following computational
time:

Time(A) = 288× 0.01µs = 2.8µs (3.22)
Time(B) = 480× 0.01µs = 4.8µs (3.23)

The hardware used by the parallel Jacobi method of the real- and complex-valued EVD would
be:

Area(A) = 2× 12 + 2× 6(6− 1) = 84CU (3.24)
Area(B) = 3× 12 + 4× 6(6− 1) = 156CU (3.25)

The RVT method reduces the resources used by the EVD by 46% and the computational
time by 48%. The RVT method reduces the required routing and storage since the values
only contain a real component. The calculations above are only an estimate, and they do
not take the overhead added by the real-value transformation into account, but the required
calculations should still have significant improvements over the original method using complex
values.

3.3. REAL-VALUE TRANSFORMATION 43

3.3.1 Forward Backward Averaging

Recall from Section 2.4 that a prerequisite for the unitary transformation is that the covari-
ance matrix is both hermitian and persymmetric. The matrix generated by the Covariance
Matrix Calculation (CMC) module is only hermitian, and it is therefore required to apply
forward-backward averaging for the matrix to become persymmetric. This can be done by
applying Equation 3.26 as mentioned in Section 2.4.

RF B = 0.5(R+ JRTJ) (3.26)

A potential issue with Equation 3.26 is related to when the data from the R matrix is available
to the module. The data coming from the previous CMC module is sent row-by-row, which
results in a problem when adding R and RT since the transposed cannot be calculated without
having access to the entire matrix. To resolve this data availability issue two methods were
investigated. The first method involves calculating JRTJ and storing it in a buffer. The
buffer’s content can then be transposed and added to R, yielding RF B, but this would require
additional hardware resources. The second method involves simplifying Equation 3.26 into
3.27.

RF B = JRTJ (3.27)

This simplification is possible because the covariance matrix R is Hermitian and therefore,
the transpose of R is equal to the complex conjugate R̄. Using these identities, we can outline
the following:

RF B = 0.5(R+ JRTJ)
= 0.5(R+ JR̄J)
= 0.5R+ 0.5JR̄J)

= 0.5R+ JR̄J

2 (3.28)

Now, we know that JR̄J is equal to its conjugate transpose since it involves only matrices
and their complex conjugates. We can rewrite the equation above into:

RF B = 0.5R+ 0.5(JRTJ)

= 0.5R+ JRTJ

2 (3.29)

From Equation 3.29, we can see that the expression is equal to JRTJ/2 + 0.5R, which is the
same as JRTJ since 0.5R is a Hermitian matrix and thus commutes with JRTJ . From this,
we can conclude that Equation 3.26 is equal to 3.27 as long as R is hermitian.

44 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

3.3.2 Unitary Transform

The unitary transform is the second step of the real-valued transformation. The unitary
transform is calculated using Equation 3.30 from Section 2.4.

R = URUH (3.30)

Note that U is highly dependent on the physical layout of the locator board. The general
form shown in Section 2.4 will not directly work on the specific antenna structure in this
thesis, and it, therefore, must be modified. The general formula given by Wei Zhang et al.
[19] assumes that the physical locator board has a 4 × 4 antenna structure which results in
16 total antenna elements, but the antenna in this thesis is missing the four antennas in the
middle. Recall that the Unitary Transform requires two Kronecker products. For M = 4, we
have the following:

Tx = Ty = 1√
2

1 0 0 1
0 1 1 0
0 i −i 0
i 1 1 −i

 (3.31)

If we take Tx ⊗ Ty we get:

U = 1√
2

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 j −i 0 0 0 0 0 0 0 0 0 0 j −i 0
j 0 0 −i 0 0 0 0 0 0 0 0 j 0 0 −i
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 j −i 0 0 j −i 0 0 0 0 0
0 0 0 0 j 0 0 −i j 0 0 −i 0 0 0 0
0 0 0 0 j 0 0 j −i 0 0 −i 0 0 0 0
0 0 0 0 0 j j 0 0 −i −i 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 1 1 0 0 −1 0 0 0 0
j 0 0 j 0 0 0 0 0 0 0 0 −i 0 0 −i
0 j j 0 0 0 0 0 0 0 0 0 0 −i −i 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 1 −1 0
−1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 −1

(3.32)

Note that Equation 3.32 is only valid when the matrix is 16× 16, but the matrix used in this
thesis is only 12×12. We, therefore, need to modify the matrix by removing the missing rows
and columns. In our case, we must remove rows and columns 6,7,10, and 11. This would
result in the following matrix:

3.3. REAL-VALUE TRANSFORMATION 45

U = 1√
2

1 0 0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 1 1 0
0 j −i 0 0 0 0 0 0 j −i 0
j 0 0 −i 0 0 0 0 j 0 0 −i
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 j −i j −i 0 0 0 0
0 0 0 0 j j −i −i 0 0 0 0
0 0 0 0 −1 1 1 −1 0 0 0 0
j 0 0 j 0 0 0 0 −i 0 0 −i
0 j j 0 0 0 0 0 0 −i −i 0
0 −1 1 0 0 0 0 0 0 1 −1 0
−1 0 0 1 0 0 0 0 1 0 0 −i

(3.33)

The matrix in Equation 3.33 will allow us to convert our covariance matrix into a real-valued
matrix without losing the information stored in the complex values.

If we look at Equation 3.33 there are some obvious optimizations to be made. The first
observation is that many of the entries are zero, meaning we can ignore these values when
pre- and post-multiplying R with U and UH . The second observation is that all the non-zero
entries are unity which implies that there is no need to multiply our matrix with the covariance
matrix since these operations can be implemented using addition. The final observation is
that the values in Equation 3.33 are constant, which can be exploited when designing the
hardware. The design for this module could be designed by implementing a hardware module
for matrix multiplications, but with the observations above, this would most likely waste
resources and time.

3.3.3 Real-value Transform Module

Figure 3.14 shows the top-level entity for the Real-Valued Transformation (RVT) module.
The module will read one row of complex values each clock cycle that din_valid is held
high. This synergizes with the previous CMC module since it outputs one row at a time. At
the output, one column only containing real values is sent out when dout_valid is high.

Figure 3.14: RVT top-level entity

Figure 3.15 shows how the RVT module is structured. The forward-backward averaging
operation can be implemented in hardware by calculating the conjugate transpose using the
same module used in the CMC, which will compute RT . Note that it is unnecessary to
pre- and post-multiply by the exchange matrix J since J has the same dimension as RT

and therefore has no effect on the result. After the conjugate transpose operation, the RT

transforms from row-by-row to column-by-column ordering. The conjugate transposed data
is then moved into the unitary transformation (UT) module, which has been partitioned into
a controller and datapath module. The controller contains a state machine that controls the

46 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

control signals connected to the datapath while the datapath handles the flow and operation
of the data itself.

Figure 3.15: RVT architecture

3.3.4 Unitary Transform Datapath

The Unitary Transform (UT) datapath is responsible for calculating the following equation:

R̂ = 1
4URU

H (3.34)

where R is the complex matrix, U is the unitary matrix and R̂ is the real-valued matrix.
Equation 3.34 can be split into two separate equations for the left- and right-hand side
multiplication:

R̃ = 1
2UR (3.35)

R̂ = 1
2R̃U

H (3.36)

The left-hand side multiplication can be implemented by multiplying each row of U with
each column of R while the right-hand multiplication is calculated by multiplying each row
of R̃ from the left-hand with each column of UH . It is worth noting that the left-hand side
operation will output one column at a time while the right-hand side requires one row at a
time which makes it impossible to directly calculate the second operation without storing the
intermediate results. Calculating the unitary transform using the original equation would
also result in a different architecture for the left and right side multiplication since U ̸= UH .
An alternative method can be used by rewriting 3.34 into Equation 3.37:

3.3. REAL-VALUE TRANSFORMATION 47

R̃ = 1
2UR (3.37)

R̂ = 1
2UR̃

H (3.38)

Equation 3.37 still requires that the intermediate result is stored, but it greatly simplifies
the design since the same operation of multiplying U with an arbitrary matrix R with the
same shape. The only difference is that in the second multiplication, R has been transposed.
Figure 3.16 shows the datapath inside the Unitary Transformation module. The module is
designed to work around the Unitary Multiplication (UMUL) module, which is the module
that calculates the multiplication operation shown in Equation 3.37

Figure 3.16: Unitary Transform architecture

The module is centered around the UMUL module, which calculates the multiplication of
the unitary transform with either R or RT . A multiplexer controls which data is sent to
the UMUL module. During the first multiplication, the multiplexer selects din while sel is
held low. The output of the UMUL is shifted into N number of serial-in-parallel-out shift
registers. The entire matrix U × R is stored inside the shift registers. When all values are
written, the output multiplexer reads out every value of one shift register at a time. The
state machine controls the multiplexer. The value selected by the multiplexer is then sent
back to the input multiplexer by holding sel high and into the UMUL module a second time.
The shift registers will transpose the result of the first and multiply it a second time, and the
design can utilize the UMUL for both operations. The output value is sent out one column
at a time when dout_valid is held high.

3.3.5 Unitary Multiplier module

Unitary Multiplier (UMUL) module calculates U ×A where A is an arbitrary 12×12 matrix.
The module accepts one column at a time from the matrix A each cycle, and it will multiply

48 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

each column with every row of U . The module outputs one column every cycle. Figure 3.17
shows the microarchitecture of the UMUL module. It has the following sub-modules: the
index lookup, which is used to control the multiplexer that select the correct value from the
input column, and the index opcode, which controls the correct operation for the signset
module. The signset module changes the sign according to the entries in the U matrix. The
values modified by the signset module are then moved into the vec_add module, which adds
the four values together and divides them by two using right shift by one. Figure 3.17 only
show one instance of the logic inside the UMUL module, but the real design has N copies.

Figure 3.17: UMUL architecture

Index Lookup Module

The index lookup module indicates which values of the U matrix contain non-zero values.
The zero values are ignored as multiplication by zero yields zero. The index lookup table is
shown in Algorithm 1. If we take row 0 as an example, the U matrix has non-zero entries
in positions 0, 3, 8, and 11, which means that the value for (0,0) in the resulting matrix is
found by adding the (0,0) + (3,0) + (8,0), (11,0) entries in the R matrix. Entry (1,0) and so
forth can be found in a similar way by looking up the correct row index.

Algorithm 1 Index Lookup algorithm
if row = 0 or row = 3 or row = 8 or row = 11 then

IA ← 0, IB ← 3, IC ← 8, ID ← 11
else if row > 3 and row < 8 then

IA ← 4, IB ← 5, IC ← 6, ID ← 7
else

IA ← 1, IB ← 2, IC ← 9, ID ← 10
end if

3.3. REAL-VALUE TRANSFORMATION 49

Index Opcode Module

The index opcode module is used to retrieve the correct opcode, which is used by the signset
module to generate the correct operation. The index opcode module can be controlled by
setting the appropriate row, and the module will output the corresponding opcode. For
example, row = 0 has real ones in positions 0, 3, 8, and 11, and the remaining, together with
the complex values, are set to zero. The module will therefore set the opcodes for the four
real values to positive and the others to null. The same method is used for all the other rows.

Algorithm 2 Index Opcode algorithm
if row = 2 or row = 3 or row = 5 then

OPA(Re)← NULL, OPA(Im)← POS
OPB(Re)← NULL, OPB(Im)← NEG
OPC(Re)← NULL, OPC(Im)← POS
OPD(Re)← NULL, OPD(Im)← NEG

else if row = 6 or row = 8 or row = 9 then
OPA(Re)← NULL, OPA(Im)← POS
OPB(Re)← NULL, OPB(Im)← POS
OPC(Re)← NULL, OPC(Im)← NEG
OPD(Re)← NULL, OPD(Im)← NEG

else if row = 7 or row = 10 or row = 11 then
OPA(Re)← NEG, OPA(Im)← NULL
OPB(Re)← POS, OPB(Im)← NULL
OPC(Re)← POS, OPC(Im)← NULL
OPD(Re)← NEG, OPD(Im)← NULL

else
OPA(Re)← POS, OPA(Im)← NULL
OPB(Re)← POS, OPB(Im)← NULL
OPC(Re)← POS, OPC(Im)← NULL
OPD(Re)← POS, OPD(Im)← NULL

end if

Signset Module

The signet module modifies the sign when adding two complex values, as shown in Equation
3.39. The correct opcode is fetched from the index opcode module. According to Algorithm
2, if either the real or complex opcode is not NULL, the other one will be NULL and the
signet, therefore, only has to look at if either the real or complex value has an opcode that
is non-zero.

Out(Re), Out(Im)

+Re,+Im if OP(Re) = pos
−Re,−Im if OP(Re) = neg
−Im,+Re if OP(Im) = pos
+Im,+Re otherwise.

(3.39)

50 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

3.3.6 Unitary Transform Controller

Figure 3.18 shows the state diagram of the UT controller that controls the UT datapath.
The UT module is enabled by setting din_valid high for one or more clock cycles. Af-
ter din_valid is high the module will stay in the st_fill state where it will hold the
shift_enable signal high for N clock cycles. After N clock cycles the controller changes to
the st_output state where it will set shift_enable low for N number of clock cycles before
changing back to st_idle. The shift register will be cleared whenever the controller stays in
the st_idle state.

Figure 3.18: Unitary transform state diagram

3.3.7 RVT Synthesis Report

Figure 3.8 shows the synthesis report for the RVT module. The design uses 7% of the available
LUTs, 1% of the registers, and 1% of the F7 multiplexers. The module can meet all timing
constraints up to 100 MHz.

Table 3.8: Synthesis report for the RVT module

Parameter Usage Utilization (%)
Look-up tables 3780 7.10

Registers 967 0.91
Block ram 0 0
DSP slices 0 0
F7 Mux 336 1.26

Max clock frequency [MHz] 100
Note: WL = 16 and N = 12

3.4. EIGENVALUE DECOMPOSITION 51

3.4 Eigenvalue Decomposition

This section details the design of the Eigenvalue Decomposition (EVD) module. The EVD
calculates the eigenvalue and eigenvector of a real symmetrical matrix. Two potential archi-
tectures were considered for solving the eigenvalue problem: Cyclic-by-row- and the parallel-
Jacobi method. Computational time and hardware usage are important metrics for selecting
a suitable design. Table 3.9 compares the two potential solutions.

Table 3.9: Time complexity and resource comparison between two
EVD implementations

Cyclic Jacobi (A) Parallel Jacobi (B)

Time complexity O
(

N(N−1)
2 × 3WL × JS

)
O (3WL × JS)

Resource usage N N(N−1)
2

Note: N ×N : matrix size, WL: word length, and JS : number of Jacobi
sweeps

Table 3.9 indicates that the computational time for the Cyclic-by-row method can be approx-
imated to the square of the matrix size, while the parallel solution only depends on the word
length and the number of sweeps. If we assume that N = 12, WL = 16 and JS = 6 then the
delay for each method are the following:

Delay(A) : 12(12− 1)
2 × 3× 16× 6 = 19008 (3.40)

Delay(B) : 3× 16× 3 = 288 (3.41)

If we assume that the design can operate at 100 MHz, then the calculation time for the
eigenvalue decomposition would be:

Time(A) = 19008× 0.01µs = 190.08µs (3.42)
Time(B) = 144× 0.01µs = 2.88µs (3.43)

Recall from 2.1 that each CTE has a maximum length of 160 µs which implies we ideally
want to be able to calculate a new direction every 160 µs. The cyclic Jacobi uses 30 µs
longer than the CTE window which means that it is impossible to fully utilize each CTE
window. It is obvious that parallel implementation is much faster, even with a fairly small
matrix, but this comes at the cost of increased hardware usage. From Table 3.9, we can see
that the hardware is approximately constant for the Cyclic implementation, but the square
of the matrix size for the parallel. This implies the designer must select a trade-off between
computational time and area. For implementation on an FPGA and the desire for real-time
performance, the parallel method would be the ideal choice assuming that there are enough
resources and that the matrix size is rather small. For this thesis, the matrix size is fixed to
12× 12, which is considered small enough for the parallel implementation to be feasible [36].

52 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

3.4.1 Eigenvalue Decomposition Module

Figure 3.19 shows the architecture of the EVD module. The din_valid and dout_valid
signals indicate when the input and output data are valid. The data from the real-valued
covariance matrix from the previous module is fed into the eigenvalue module. The eigenvec-
tor module does not need to be fed any data, but instead, it is initialized with an identity
matrix. The eigenvector module is fed the rotation parameters one sign at a time by the
eigenvalue module. The eigenvalue and eigenvector modules are controlled by a finite state
machine inside the evd_cntrl module.

Figure 3.19: EVD architecture

Figure 3.20 shows an overview of the systolic array used to calculate the eigenvalue. The
design in the figure shows how it would look for a 6 × 6 matrix where each PE contains
a 2 × 2 sub-matrix, but the design can be extended for any size as long as the matrix is
symmetrical and even-numbered. The design works similarly to the one detailed in 2.6.3
but with some added optimizations. Instead of broadcasting the angle between PEs, it is
possible to broadcast the rotation sign used by the CORDIC modules directly. This method
removes 15 of 16 bits if 16-bit values are used. The sign is also directly connected to every
PE on the same row and column, which allows every PE to work on the same clock cycle
and therefore simplifies the control logic. By directly broadcasting the sign, the off-diagonal
units can work in an on-the-fly mode where the diagonal units control the sign controlling
the rotation direction. The CORDIC modules inside the off-diagonal PEs do not need an
angle accumulator since the sign is sent from the diagonal PEs resulting in reduced size.

Figure 3.20: An upper triangle 3×3 Brent-Luk-EVD array, where n = 6 for an 6×6 symmetric
matrix. Used for solving the eigenvalue problem.

3.4. EIGENVALUE DECOMPOSITION 53

The eigenvectors can also be found using a similar structure, except it needs to be a full 6×6
matrix. The eigenvector array does not need to calculate the optimal angle θ. Instead, it
uses the angle calculated in the eigenvalue array. The angle is broadcast one sign at a time in
the same way as the eigenvalue array, therefore, simplifying the routing. Each column in the
eigenvector array uses the same angle as the one in the same column in the eigenvalue array,
as shown in Figure 3.21. Since the PEs in the eigenvector array do not have to calculate
the angle themself, they can also utilize a simplified CORDIC without an angle accumulator.
The values inside the eigenvector array are initialized with an identity matrix with ones along
the diagonal and zeroes elsewhere. The eigenvectors can be found along each column in the
array after sufficient Jacobi sweeps have been completed. The eigenvalues will already be
sorted in ascending order along the diagonal towards the lower corner. The corresponding
eigenvector will also follow this order so the that the eigenvector corresponding to the largest
eigenvalue is found at the rightmost column. This column is then sent to the spectral peak
search module.

Figure 3.21: A 3× 3 Brent-Luk-EVD array, where n = 6 for an 6× 6 symmetric matrix.

Both the eigenvalue and eigenvector modules are controlled by the evd_cntrl module. The
controller is responsible for selecting the correct mode of each processing element and for
exchanging data at the correct time. Table 3.10 shows the different modes in one sweep
of the parallel Jacobi method. For multiple sweeps, the controller will loop through these
states multiple times. In the first state, only the diagonal PEs are active calculating the
optimal rotation angle and all other PEs will be idle. In the second state, the diagonal and
off-diagonal PEs will calculate the left-hand side rotation while vector PEs are idle. In the
third state, all the PEs will calculate the right-hand side rotation. In the last state, all PEs
will exchange their values with adjacent PEs.

Table 3.10: EVD module states where WL is equal to the word length

State Time DPE OPE VPE
Calculate optimal angle WL Vectoring Idle Idle

LHS rotation WL Rotation Rotation Idle
RHS rotation WL Rotation Rotation Rotation

Exchange 1 Exchange Exchange Exchange

54 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

3.4.2 Diagonal Processing Element

The Diagonal Processing Element (DPE) calculates the optimal angle θ and the double-sided
rotation. The optimal angle is calculated using Equation 3.44.

θ = 1
2arctan2

[2× b
a− d

]
(3.44)

where a, b, c, d are the entries of a two-by-two matrix. The left-hand rotation is calculated as
follows:

a1, c1 = rotate(a0, c0, θ) (3.45)
b1, d1 = rotate(b0, d0, θ) (3.46)

where θ is the optimal angle calculated in Equation 3.44. The corresponding right-hand side
rotation is calculated by:

a2, b2 = rotate(a1, b1, θ) (3.47)
c2, d2 = rotate(c1, d1, θ) (3.48)

Figure 3.22 shows the architecture of the DPE module. The module has four data inputs
corresponding to the four values in a 2 × 2 matrix and the same number of outputs. The
DPE uses two types of CORDIC modules called CORDICA and CORDICB. The CORDICA
includes a full CORDIC module that works in vectoring and rotation modes. The CORDICA
module is used for both finding the optimal rotation angle and rotating a vector according to
the rotation angle. The sign is sent sign-by-sign to the CORDICB while working in rotation
mode. Both CORDIC modules include scaling at the output of the X and Y registers to
correct the output error created by using CORDIC. The angle correction module guarantees
that the input values when working in vectoring mode are within the right-hand side of the
unit circle. The input to the Z register is set to zero when the CORDICA module is enabled
while in vectoring mode and the output is kept inside an angle storage register. The angle
storage retrieves the optimal angle while in rotating mode, as the values stored in the internal
Z register are overwritten.

The output from the CORDIC modules needs to be scaled by a factor of 1/K to account for
the error generated when working in rotation mode. The scaling factor can be implemented
in hardware using a combination of shift, addition, and subtracts, as shown in Equation 3.49
and Figure 3.23.

1
K

= 0.6073 ≈ 2−1 + 2−3 − 2−6 − 2−9 − 2−13 (3.49)

Figure 3.11 shows the synthesis report for the OPE. Each OPE uses 491 look-up tables and
106 registers and can meet all timing constraints at a clock frequency of up to 150 MHz.

3.4. EIGENVALUE DECOMPOSITION 55

Figure 3.22: Diagonal Processing Element (DPE) architecture

Figure 3.23: CORDIC Scale architecture

Table 3.11: Synthesis report for the DPE

Parameter Value
Look-up tables 491

Registers 106
Maximum clock frequency [MHz] 150

3.4.3 Off-diagonal Processing Element

The Off-diagonal Processing Element (OPE) is a part of the eigenvalue module. It is stripped-
down version of the DPE. It is used to calculate a two-sided rotation of a 2× 2 sub-matrix.
The left-hand side rotation is calculated as the following:

a1, c1 = rotate(a0, c0, θrow) (3.50)
b1, d1 = rotate(b0, d0, θrow) (3.51)

56 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

and the corresponding right-hand side rotation:

a2, b2 = rotate(a1, b1, θcol) (3.52)
c2, d2 = rotate(c1, d1, θcol) (3.53)

where a, b, c, d are the entries of a 2 × 2 sub-matrix. This calculation can be implemented
in hardware using two CORDIC rotational mode modules as shown in Figure 3.24. The
ope_mode signal is used to control the input data MUX. The MUX control whenever the
CORDIC modules will calculate a left- or right-hand side rotation. The ope_mode signal
also control the sign MUX which will either pick the sign from the DPE on the same row or
column. Both the X and Y output values are corrected at the end to account for the error
caused by CORDIC.

Figure 3.24: Off-Diagonal Processing Element (OPE) architecture

Figure 3.12 shows the synthesis report for the OPE. Each OPE uses 360 look-up tables and
74 registers and is able to meet all timing constraints at a clock frequency up to 150 MHz.

Table 3.12: Synthesis report for the OPE generated using Vivado 2022.2

Parameter Value
Look-up tables 360

Registers 74
Maximum clock frequency [MHz] 150

3.4.4 Vector Processing Element

The Vector Processing Element (VPE) is part of the eigenvector module. The VPE only
needs to calculate a single rotation of a 2× 2 sub-matrix. It consists of two CORDICB and
associated CORDIC scaling modules. It calculates the following:

a1, b1 = rotate(a0, b0, θcol) (3.54)
c1, d1 = rotate(c0, d0, θcol) (3.55)

3.4. EIGENVALUE DECOMPOSITION 57

where θ is the optimal angle sent sign-by-sign from the DPE on the same column, the
din_valid signal is held high for one clock cycle in order to exchange values with adjacent
VPE modules.

Figure 3.25: Vector Processing Element (VPE) architecture

Table 3.13 shows the synthesis report generated by Vivavdo. Each VPE module uses 302
LUTs and 74 registers while meeting timing requirements up to 200 MHz.

Table 3.13: Synthesis report for the VPE generated using Vivado 2022.2

Parameter Value
Look-up tables 302

Registers 74
Maximum clock frequency [MHz] 150

3.4.5 EVD synthesis report

Figure 3.14 shows the synthesis report for the EVD module. The module uses 36% and 4%
of the available look-up tables and registers receptively. No DSP slices or block ram is used.
The module can meet timing constraints of up to 100 MHz.

Table 3.14: Synthesis report for the EVD module

Parameter Usage Utilization (%)
Look-up tables 19 382 36.43

Registers 4 306 4.05
Block ram 0 0
DSP slices 0 0

Max clock frequency [MHz] 100
Note: CI = WL = 16, N = 12, and JS = 6

58 CHAPTER 3. HARDWARE IMPLEMENTATION OF THE MUSIC ALGORITHM

3.5 Spectral Peak Search

This section will outline and briefly explain the Spectral Peak Search (SPS) module designed
by Jacob August Rangnes [5]. The spectral peak search involves finding the largest peak
using a 2D search. The goal of the search is to find the combination of θ and φ, which yields
the highest value of ||aH(θ, φ)ES ||.

A common trade-off in such a search function is choosing the best step size. The step size is
directly related to the resolution of the final result, but reducing the step size significantly
increases search time. Jacob opted to use a two-step search method to reduce the number of
searches while still having good resolution [5]. The design involves utilizing a course and fine
search where the course search has a high step size to narrow down the search area before
the fine search begins.

Figure 3.26 shows the hardware for the SPS core. The dataIn_valid signal indicates that
the EVD module is finished and that the eigenvector ES is available at the input. The search
core can start when the dataIn_valid is set high. Both a(θ, φ) and ES are of size (1,12)
and (12,1), respectively, and they are passed into the search core, where they are multiplied
and compared to previously multiplied combinations. The final direction can be found at the
output when dataOut_valid is set high.

Figure 3.26: SPS Core architecture [5]

Table 3.15 shows the synthesis report for the SPS module designed by Jacob. The module
uses 11%, 6%, 86%, and 73% of the available look-up tables, registers, block ram, and DSP
slices, respectively.

Table 3.15: Synthesis report for the SPS module

Parameter Usage Utilization (%)
Look-up tables 6 076 11.42

Registers 6 364 5.98
Block ram 120 85.71
DSP slices 161 73.18

Max clock frequency [MHz] 143
Note: WL = 16, N = 12, VM = 10: number of parallel
multiplicators

Chapter 4
Results

This chapter will present the results obtained while testing the software and hardware.
The chapter starts by demonstrating how the various parameters of the MUSIC algorithm
will impact performance using a High Level Model (HLM). Then the key metrics from
the synthesis and implementation reports from Vivado are highlighted. The synthesis and
implementation reports will show how the parameters, such as clock frequency and bit-width,
affect Performance, Power and Area (PPA). The chapter will also compare the accuracy and
run time between the hardware and software. Finally, the effect of the error generated by
the EVD module is demonstrated. The stimuli data for both the HLM and the hardware is
generated as shown in Appendix A. The results are discussed in Chapter 5.

4.1 High Level Testing

High-level testing is done to verify that the algorithm can achieve the desired accuracy or,
alternatively, how large the deviation is. The high-level testing will investigate the effects of
the real-valued transformation and how robust the algorithm is against noise, round-of errors,
and the number precision used. The testing will also see if there is any loss of accuracy by
using a two-step search instead of one. The high-level testing is accomplished by using a model
written in MATLAB and Python. The Covariance Matrix Calculation (CMC), Real-valued
Transformation (RVT), and Eigenvalue Decomposition (EVD) is implemented in MATLAB,
while the final Spectral Peak Search (SPS) is implemented in Python. For the following plots,
the algorithm’s error is for simplicity given in absolute error. The absolute error gives us the
error of both the azimuth and elevation as shown in Equation 4.1.

Abserr =
√
az2

err + el2err (4.1)

Figure 4.1 shows the accuracy of the original MUSIC algorithm written in Python without
using a real-valued transformation. The plot uses a heat map to indicate where the largest
errors are found. The scale on the right of the plot indicates which color corresponds to
the highest error. The following tests will calculate the absolute error where the elevation
is limited to θk(0 < θ < π/2) and azimuth is between φk(0 < φ < 2π) with a step size of
1◦. The following tests use 32-bit and without any noise added. The complex-valued MUSIC
algorithm has 1◦ error around φ = 180 and zero elsewhere.

59

60 CHAPTER 4. RESULTS

Figure 4.1: Complex-valued MUSIC algorithm with all possible angles without noise

Note: Complex-valued, two-step search, WL = 32

Figure 4.2 shows the accuracy of the real-valued MUSIC algorithm with the same setup as in
Figure 4.1, but with a real-valued transformation added. The real-valued MUSIC algorithm
has 1◦ of error at φ = 0 and zero elsewhere. This indicates that the real-value transformation
has little impact on the actual accuracy.

Figure 4.2: Real-valued MUSIC algorithm with all possible angles without noise

Note: Real-valued, two-step search, WL = 32

Figure 4.3 has the same setup as Figure 4.2 but with 16-bit precision instead of 32. We
can see that the reduction in precision greatly affects the accuracy of the calculated AoA.
The 16-bit version has a maximum error of 4◦ of error along θ = 0 and θ = 90. The 16-bit
implementation also has a more evenly distributed error along high and low elevations.

Figure 4.3: Real-valued MUSIC algorithm with all possible angles without noise

Note: Real-valued, two-step search, WL = 16

4.1. HIGH LEVEL TESTING 61

Figure 4.4 shows that the error in the AoA is significantly reduced when using 18-bit accuracy
compared to 16. The maximum error is reduced from 4◦ to 2◦, and less error overall.

Figure 4.4: Real-valued MUSIC algorithm with all possible angles without noise

Note: Real-valued, two-step search, WL = 18

Figure 4.5 shows that there is no visible difference in accuracy between one and two searches.

Figure 4.5: Real-valued MUSIC algorithm with all possible angles without noise

Note: Real-valued, one step search, WL = 18

Figure 4.6 shows the absolute error of the predicted AoA using different numbers of snapshots
and signal-to-noise ratios (SNR). All measurements use 32-bit precision. Figure 4.6 shows
the error is largely dependent on both the noise floor and the number of snapshots taken.
The largest difference in accuracy is found when the number of snapshots is between one to
eight. In order to achieve the desired accuracy of one degree, the algorithm needs to use
between eight to sixteen snapshots

62 CHAPTER 4. RESULTS

Figure 4.6: Accuracy depending on the number of snapshots using WL = 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320

1

2

3

4

5

6

Number of snapshots

A
bs

ol
ut

e
Er

ro
r

[d
eg

]

SNR = 20
SNR = 25
SNR = 30
SNR = 40

Note: n = 10, ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 0.1, CI = WL = 32 and JS = 6.

Figure 4.7 shows the effect the number of snapshots has on the accuracy of the MUSIC
algorithm with different signal-to-noise ratio levels. Figure 4.7 uses a bit-width of 16, and we
can see that the error is higher compared to the full 32-bit.

Figure 4.7: Accuracy depending on the number of snapshots using WL = 16

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320

2

4

6

8

10

Number of snapshots

A
bs

ol
ut

e
Er

ro
r

[d
eg

]

SNR = 20
SNR = 25
SNR = 30
SNR = 40

Note: n = 10, ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 0.1, CI = WL = 16 and JS = 6.

4.1. HIGH LEVEL TESTING 63

Figure 4.8 shows the effect the number of bits used in the MUSIC algorithm has on the
accuracy of the AoA. All calculations have a signal-to-noise ratio of 25. From the figure, we
can see that the error is large when the number of snapshots is less than four but that all
bit widths are trending downward with sufficient snapshots. With four snapshots taken, the
16-bit algorithm has an error of around four, while the others have an error close to two. At
eight snapshots, the full precision version is able to achieve an error of almost one, while the
others still have a high degree of error. At 16 snapshots, the 18-bit and 32-bit versions can
achieve an error of less than one degree, while the 16-bit is around two degrees.

Figure 4.8: Accuracy depending on the number of snapshots and bit-width

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320

2

4

6

8

Number of snapshots

A
bs

ol
ut

e
Er

ro
r

[d
eg

]

WL = 32
WL = 16
WL = 18

Note: n = 10, ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 0.1, CI = 16, JS = 6 and SNR = 25

64 CHAPTER 4. RESULTS

4.2 Utilization and Timing

This section will highlight key results from the synthesis and the implementation of each
module and the MUSIC core. The synthesis and implementation reports include resource
usage, timing information, and power draw. The results are generated by synthesizing the
design using Vivavdo version 2022.2. Table 4.1 shows an overview of the maximum clock
frequencies of all four components of the MUSIC algorithm and the MUSIC core. The
MUSIC core can meet timing constraints at a clock frequency of 100 MHZ. The core uses
622 clock cycles and a calculation time of 6.22 µs for each AoA calculation at a frequency of
100 MHz.

Table 4.1: Timing report

fmax Clock cycles Time used [µs]
Correlation Matrix 160 54 0.54

Real-value Transformation 100 24 0.24
Eigenvalue Decomposition 100 288 2.88

Spectral Peak Search 140 242-247 2.40 - 2.47
MUSIC core 100 622 6.22

Note: CI = WL = 16, N = 12, M = 4, JS = 6 ∆θc = ∆φc = 4,
∆θf = ∆φf = 1 and fclk = 100 MHz

Figure 4.9 shows the run time of the MUSIC core at different clock frequencies. The largest
speedup is found between 10 to 50 MHz. Reducing the clock frequency after 50 MHz has a
limited reduction in run time.

Figure 4.9: Run time of the MUSIC core depending on clock frequency

10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

Clock Frequency

Ru
n

tim
e

[µ
s]

Note: CI = WL = 16, N = 12, M = 4, JS = 6 ∆θc = ∆φc = 4, and ∆θf = ∆φf = 1

4.2. UTILIZATION AND TIMING 65

Table 4.2 shows an overview of the total resource usage of the MUSIC core and each module
on the Zynq Z2 FPGA. The design uses 59%, 20%, 89%, 85%, and 3% of the available look-up
tables, registers, DSP slices, block ram, and F7 multiplexers, respectively.

Table 4.2: Utilization report

LUTs Registers DSP slices Block ram F7 Muxes
Correlation Matrix 3 424 2 816 36 0 0

Real-value Transformation 3 780 967 0 6 360
Eigenvalue Decomposition 19 218 5 964 0 0 0

Spectral Peak Search 6 076 6 364 161 120 495
MUSIC Core 31 711 21 425 197 120 855

Device utilization (%) 59.60 20.14 89.55 85.71 3.21
Note: CI = WL = 16, N = 12, M = 4, JS = 6 ∆θc = ∆φc = 4, and ∆θf = ∆φf = 1

Figure 4.10 shows the LUT and register usage depending on the number of bits used in the
MUSIC core. The number of DSP slices, block ram, and multiplexers are not dependent on
the number of bits and, therefore, not added to the comparison. The 16-bit implementation
uses 59.6% and 20.14% of the available look-up tables and registers, respectively. The 18-bit
implementation has about 2% more look-up tables and 1.5% registers compared to the 16-bit.

Figure 4.10: LUT and register utilization depending on bit-width

16-bit 18-bit
50

52

54

56

58

60

LU
T

U
til

iz
at

io
n

[%
]

16-bit 18-bit
15

16

17

18

19

20

21

22

R
eg

ist
er

U
til

iz
at

io
n

[%
]

Note: ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 1, CI = 16 and JS = 6.

66 CHAPTER 4. RESULTS

Table 4.3 shows the power report for each module and the total power usage for the MUSIC
core. The design uses 0.14 W of static power and 1.3 W of dynamic power at an ambient
temperature of 25 ◦C. This results in a total power draw of 1.4 W at 100 MHz.

Table 4.3: Power report at ambient temperature

Static power [mW] Dynamic power [mW]
Correlation Matrix 110 225

Real-value Transformation 106 78
Eigenvalue Decomposition 119 836

Spectral Peak Search 122 598
MUSIC Core 138 1319

Note: CI = WL = 16, N = 12, M = 4, JS = 6 ∆θc = ∆φc = 4, ∆θf = ∆φf =
1, fclk = 100 MHz, and TA = 25◦C

Figure 4.11 shows the static and dynamic power of the MUSIC core at different clock
frequencies. The static power indicated in blue is almost independent of the clock frequency,
with a minimal difference between 10 and 100 MHz. The core draws 111 mW of static power
at 10 MHz and 138 mW at 100 MHz. The dynamic power highly depends on the frequency,
as shown in cyan. The dynamic power is almost linearly dependent on the clock frequency,
as shown by the dotted red line. At 100 MHz, the core uses 1319 mW of dynamic power
compared to 577 mW at 50 MHz, which is close to half the power. At 10 MHz, the core only
uses 114 mW of dynamic power.

Figure 4.11: Power draw depending on clock frequency

10 20 30 40 50 60 70 80 90 1000

200

400

600

800

1,000

1,200

1,400

Clock Frequency

Po
we

r
[m

W
]

Static
Dynamic
Linear

Note: CI = WL = 16, N = 12, M = 4, JS = 6 ∆θc = ∆φc = 4, ∆θf = ∆φf = 1, and
TA = 25◦C

4.3. SOFTWARE AND HARDWARE COMPARISON 67

4.3 Software and Hardware comparison

This section will compare the run time and accuracy of the hardware and software imple-
mentation of the MUSIC algorithm. Table 4.4 shows the system used for testing the software
implementation. The computer system used for comparison draws roughly 60 W during the
execution of the MUSIC algorithm.

Table 4.4: Software testing system

Component name
CPU Intel Core i7-12700K 5.0GHz
RAM Kingston FURY Beast DDR5 5600MHz 16GB

Storage Samsung 970 EVO Plus M.2 NVMe SSD 1TB

The run time comparison between hardware and software implementation considers two
different implementations of the MUSIC algorithm in software. The first implementation uses
the built-in MUSIC algorithm function in MATLAB, while the second uses the High Level
Model written in Python. The run time of the MUSIC core is taken from the simulation of
the design. Figure 4.12 compares the different implementations. The run time of the software
implementations is run multiple times, and the average is taken to account for background
tasks in the operating system. The MATLAB function can compute the AoA in 22 ms, while
the Python function uses 114 ms. Compared to the software, the hardware uses 6.22 µs to
compute the AoA, which is four orders of magnitude faster than the HLM in Python.

Figure 4.12: Time comparison between software and hardware

Python MATLAB Hardware

101

102

103

104

105

Ru
nt

im
e

[µ
s]

Note: ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 1, CI = WL = 16 and JS = 6.

Figure 4.13 shows the time it takes for the search function to find the AoA with one and two
searches for both software and hardware. In software, the two search method reduces the
search time from 800 ms to 200 ms. In hardware, the search time is reduced from 12 µs to 2
µs.

68 CHAPTER 4. RESULTS

Figure 4.13: Search time comparison

One search (SW) Two searches (SW) One search (HW) Two searches (HW)
100

101

102

103

104

105

106

Ru
nt

im
e

[µ
s]

Note: ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 1, CI = WL = 16 and JS = 6.

Figure 4.14 shows the accuracy of the MUSIC algorithm simulated in hardware with one
search and 18-bit precision. The following test is without any noise added. The one-search
implementation has a maximum error of 2◦ along extreme elevation angles. The one-search
implementation also has 1◦ of error at φ = 180.

Figure 4.14: Hardware Real-valued MUSIC algorithm with one search and WL = 18

Note: Real-valued, one step search, WL = 18

Figure 4.15 shows the hardware simulation using two searches. The two search implementa-
tion has 2◦ of error at θ = 0 and θ = 90, similar to Figure 4.14. The two-step implementation
also has additional errors at φ = 0.

4.4. EIGENVALUE DECOMPOSITION ACCURACY 69

Figure 4.15: Hardware Real-valued MUSIC algorithm with two searches and WL = 18

Note: Real-valued, Two-step search, WL = 18

4.4 Eigenvalue Decomposition Accuracy

This section will compare the accuracy between the High-Level Model (HLM) and the EVD
hardware module and compare these values against the built-in function in MATLAB. Matrix
A in Equation 4.2 is used for the comparison. The EVD module and HLM are configured
with CI = WL = 16, JS = 4, and N = 4.

A =

1000 2000 1000 1000
2000 4000 2000 2000
1000 2000 1000 1000
1000 2000 1000 1000

 (4.2)

The non-zero eigenvalue of A:

λMATLAB = 7000, λHLM = 7000, λEVD = 7020 (4.3)

and its respective eigenvector:

vMATLAB =

24782
49565
24782
24782

 , vHLM =

24782
49565
24782
24782

 , vEVD =

24768
49563
24782
24787

 (4.4)

The eigenvalues and eigenvectors generated by MATLAB have been converted to an integer
for easier comparison. The error caused by the hardware module is calculated by taking the
average of the percentage difference using Equation 4.5.

Error = 1
n

∑ |a− b|
1
2(a+ b)

∗ 100% (4.5)

Equation 4.6 shows the average error generated by the EVD hardware module is 0.285% for
the eigenvalue and 0.569% for the eigenvector.

70 CHAPTER 4. RESULTS

λError = 0.285%, vError = 0.569% (4.6)

Figure 4.16 shows how the error in finding the eigenvalue affects the rest of the algorithm.
At an error of 1% or less, the AoA has an error of less than 1%. The AoA can achieve an
accuracy of 2 degrees until the error is larger than 8%. The figure suggests that the algorithm
is robust against error as long as the error in the EVD is not too great.

Figure 4.16: Eigenvalue calculation error effect on the accuracy

0 2 4 6 8 10 12 140

1

2

3

4

5

Percentage Error [%]

A
bs

ol
ut

e
Er

ro
r

[d
eg

]

Note: n = 10, ∆θc = 3, ∆φc = 1, ∆θf = ∆φf = 0.1, CI = WL = 16 and JS = 6.

Chapter 5
Discussion

5.1 Accuracy

The testing has demonstrated that the MUSIC algorithm can calculate the correct Angle
of Arrival with an accuracy of 1◦ under certain conditions. Some factors that make the
algorithm deviate from the desired accuracy are extreme angles, low signal-to-noise ratio, and
the number precision utilized. The software implementation of the original complex-valued
MUSIC algorithm struggled when the azimuth angle was around 180◦, while the real-valued
algorithm had issues at an azimuth of 0◦. The hardware implementation had two degrees of
error at an azimuth of 180◦ and when the elevation was close to 0◦ or 90◦. The hardware
implementation also had other minor errors scattered around extreme elevation angles. Due
to time constraints, the Spectral Peak Search (SPS) module designed by Jacob Ranges
could not support a search step size smaller than 1 degree. This resulted in the hardware
being susceptible to noise and round-off errors. This, in turn, means that the hardware
implementation quickly had at least one degree of error as soon as non-ideal conditions were
introduced.

Noise and the number of snapshots also had a significant impact on the accuracy of the
algorithm. This is as expected since the noise in the samples is amplified by calculating the
covariance matrix. The effect of noise can be drastically reduced by increasing the number of
snapshots. The best results were found when the number of snapshots where around eight to
sixteen. Recall from Section 2.1 that the maximum number of snapshots in one CTE window
is three to four, depending on the sampling order used. This is lower than the ideal number of
snapshots, meaning the sampling method must be modified to achieve the desired accuracy.
One potential solution is to apply a sliding window method that utilizes samples from two
separate CTE windows.

The number of bits used in the algorithm had diminishing returns after 18 bits, indicating
that this is a good compromise between performance and area. The 16-bit implementation
might have a use case if the FPGA is small, but the performance is significantly reduced. In
addition, increasing the bit to 18 only increased the utilization by a couple of percentages.
The 32-bit implementation had the best performance, but the area requirement would most
likely not be worth the increase in area usage.

71

72 CHAPTER 5. DISCUSSION

5.2 Run time and Power Usage

The hardware implementation of the MUSIC algorithm can achieve a significant speedup
compared to running on a personal computer. The two-step search method had a limited
impact on the calculation time when running in software, but it gave a five times improvement
for the hardware. This speedup would, however, significantly increase if the search core had
a smaller step size, such as 0.5◦ or 0.1◦. Due to time constraints, the design could not be
connected to the software running on the processing system on the Zynq Z2 FPGA. This
means that the true run time of the MUSIC algorithm would be higher in the real world.
There is, however, a reason to believe that the overhead would be limited as the amount of
data transfers is relatively low.

The design can be configured to fit a desired power and speed profile depending on the specific
needs of an application. In chapter 4, we saw that a significant amount of dynamic power
can be saved by lowering the clock frequency while still meeting the run time deadline of
160 µs. The best trade-off between speedup and power usage seems to be between 25 to 75
MHz. Lowering the clock further significantly impacts the calculation time. Increasing the
clock frequency also had a limited impact on the run time. At 50 MHz, the MUSIC core used
about 0.6 W compared to 1.3 W at 100 MHz. The personal computer used an average of 60
W of power in comparison.

5.3 Eigenvalue decomposition

The Eigenvalue Decomposition could not be finished within writing the thesis due to the high
complexity of the design. Currently, the EVD module can calculate the correct eigenvalue
and eigenvectors for 4 × 4 and 6 × 6 matrices but not for larger matrices. According to
the high-level module, the design should also work for any even symmetrical matrix. There
is, therefore, a reason to assume that there is no theoretical reason for the design to be
unable to handle larger matrices but rather an issue with the current implementation. The
current hypothesis is that there is an issue with the interconnect between PEs. The module
can calculate the eigenvector with an average error of 0.5%. This error can be reduced by
increasing the number of bits or increasing the number of CORDIC iterations.

From Chapter 4, we saw that a small degree of error in the EVD had little to no effect on the
calculated AoA. The signal-to-noise ratio had a much more significant impact on the accuracy
than the EVD accuracy. In the architectural exploration phase, the goal was originally to
implement a spectral search module with 0.1− 0.5◦, but this had to be removed due to time
constraints. Since the intended step size is much smaller than the step size used in the actual
step size, the assumption was that the search would use most of the available calculation
time. This is why the parallel Jacobi method was selected, but in retrospect, the serial
method would likely achieve the desired performance. The serial method also uses much less
area than the parallel implementation, which might benefit some applications.

Chapter 6
Conclusion

This thesis has researched the feasibility of achieving real-time processing of the MUSIC
algorithm by accelerating it on an FPGA. The results have demonstrated that the MUSIC
core can calculate the AoA in approximately 6 µs at 100 MHz, which is four orders of
magnitude faster than the software implementation. The equivalent Python and MATLAB
programs had an average run time of 112 ms and 22 ms, respectively. Creating an external
interface connecting the core to the locator board would be ideal in the future. This would
determine the time it takes from sampling the data to the calculated AoA. Combining the
core with the locator board would answer the question of how much overhead is needed for
data transfer and how close the design is to reaching real-time performance.

The MUSIC core can achieve an accuracy of 1 ◦ under certain conditions, which is not as
accurate as the software implementation, which estimated the correct AoA down to an error
of 0.1 ◦ without noise. One reason for the lower accuracy in the hardware implementation is
that the search core was not designed to handle search steps lower than 1 ◦. The accuracy
difference between the two implementations did decrease as more noise was added, but still
limited to 1 ◦due to the SPS module. This suggests that the difference is insignificant in the
real world, where there will always be noise in data sampling. Both implementations were
tested with simulated data and not the samples generated from the locator board, but in the
future, it would be desirable to test them both with real-world data.

The EVD module could not be finished due to lack of time. The EVD module could, therefore,
not calculate the correct eigenvectors for matrices larger than 6× 6, which again meant that
the SPS could not calculate the correct AoA. Consequently, this introduces some potential
causes of uncertainty regarding the algorithm’s accuracy as the SPS module used eigenvectors
generated with the High-level model. Still, we can conclude that there is reason to believe that
the issue with the EVD module is a fault with the implementation rather than a theoretical
limitation. Therefore, future work would include modifying the EVD module to support
larger matrices. There is, however, a reason to believe that the synthesis data should be
relatively accurate. The design utilizes 61%, 15%, 89%, 90%, and 1.35% of the available
look-up tables, registers, DSP slices, block ram, and F7 Muxes on the Zynq Z2, respectively.
The total power draw of the hardware design is 1.4 W at 100 MHz and 0.6 W at 50 MHz.
This is significantly less than a general-purpose computer that drew roughly 60 W.

73

Appendix A
AoA Signal Simulation

The Angle of Arrival is given by the elevation θ and azimuth φ of the incoming signal. The
spherical coordinates in radians are transformed to Cartesian coordinates using Equation
A.1.

[
x
y

]
=

[
sin(θ)cos(φ)
sin(θ)sin(φ)

]
(A.1)

The simulated phase signal is then calculated using the following:

Ψ = π

[
x
y

]
(A.2)

The antenna geometry ρ is the relative location between each antenna element given in [x, y]
coordinates. Equation A.3 convert the coordinates into the physical positions η on the real
locator board:

η = ρ
d

λ/2 (A.3)

where d is the physical distance between antenna elements and λ is the wavelength of the
incoming signal. The samples are then calculated using the following:

S = exp(jΨη) (A.4)

S is the simulated signal given in matrix form. For 12 antenna elements and 1 snapshot S
has the size (12,1).

75

Appendix B
Source Files

The source files related to the thesis can be found on GitHub or in the zip file submitted
alongside the thesis. Note that the GitHub repository will be made private three months
after the submission. The authors’ names can be found at the top of each file. The project
is structured as the following:

EmLogic-Students
High-Level Model

Matlab
Python

HDL
Constraints
Sources

COMMON
CMC
RVT
EVD

CORDIC
SPS

Testbenches

77

https://github.com/orgs/EmLogic-Students/repositories

Bibliography

[1] N. Shiode, C. Li, M. Batty, P. Longley, and D. Maguire, “The Impact and Penetration
of Location-Based Services.” University College London, May 2002.

[2] N. El-Sheimy and Y. Li, “Indoor navigation: state of the art and future trends,” Satellite
Navigation, vol. 2, no. 1, p. 7, May 2021.

[3] J. Urena, “Reduction of Ultrasonic Indoor Localization Infrastructure based on the use
of Graph Information.” IEEE, Aug. 2016, publication Title: International Conference
on Indoor Positioning and Indoor Navigation, IPIN 2016, Alcala de Henares, Spain,
October 4-7, 2016.

[4] B. Molina, E. Olivares, C. E. Palau, and M. Esteve, “A Multimodal Fingerprint-Based
Indoor Positioning System for Airports,” IEEE Access, vol. 6, pp. 10 092–10 106, 2018.

[5] J. A. Rangnes, “Hardware Acceleration for Real-Time Angle of Arrival Positioning,”
NTNU, Trondheim, Master thesis, Jun. 2023.

[6] “Indoor Location/ Positioning Market Report- Industry Insights 2024.” [Online].
Available: https://www.goldsteinresearch.com/report/global-indoor-positioning-and-
indoor-navigation-ipin-market-outlook-2024-global-opportunity-and-demand-analysis-
market-forecast-2016-2024

[7] H. Li, H. Lu, L. Shou, G. Chen, and K. Chen, “In Search of Indoor Dense Regions:
An Approach Using Indoor Positioning Data,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 8, pp. 1481–1495, Aug. 2018, conference Name: IEEE
Transactions on Knowledge and Data Engineering.

[8] “Bluetooth Direction Finding: A Technical Overview,” Mar. 2019. [Online]. Available:
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/

[9] T. A. Opstad, “Development of a Indoor Bluetooth Tracking Tag,” Project Thesis,
NTNU, Trondheim, Dec. 2022.

[10] J. A. Rangnes, “Implementation of a real time location system using Bluetooth Low
Energy,” Project Thesis, NTNU, Trondheim, Dec. 2022.

[11] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE
Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, Mar. 1986,
conference Name: IEEE Transactions on Antennas and Propagation.

79

https://www.goldsteinresearch.com/report/global-indoor-positioning-and-indoor-navigation-ipin-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024
https://www.goldsteinresearch.com/report/global-indoor-positioning-and-indoor-navigation-ipin-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024
https://www.goldsteinresearch.com/report/global-indoor-positioning-and-indoor-navigation-ipin-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/

[12] A. Paulraj, R. Roy, and T. Kailath, “Estimation Of Signal Parameters Via Rotational
Invariance Techniques- Esprit,” in Nineteeth Asilomar Conference on Circuits, Systems
and Computers, 1985., Nov. 1985, pp. 83–89, iSSN: 1058-6393.

[13] “ISP1907-AOA-DK.” [Online]. Available: https://www.insightsip.com/
fichiers_insightsip/pdf/ble/ISP1907/isp_aoa_AN210401.pdf

[14] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric
approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, Jul. 1996,
conference Name: IEEE Signal Processing Magazine.

[15] G. C. Bagley, “Introduction to Adaptive Arrays. R. A. Monzingo and T. W. Miller.
John Wiley, Chichester. 1980. 541 pp. Illustrated. Â£19.15.” The Aeronautical Journal,
vol. 85, no. 847, pp. 349–349, Sep. 1981, publisher: Cambridge University Press.

[16] M. Kim, K. Ichige, and H. Arai, “Implementation of FPGA based fast DOA
estimator using unitary MUSIC algorithm [cellular wireless base station applications],”
in 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat.
No.03CH37484), vol. 1, Oct. 2003, pp. 213–217 Vol.1, iSSN: 1090-3038.

[17] K.-C. Huarng and C.-C. Yeh, “A unitary transformation method for angle-of-arrival
estimation,” IEEE Transactions on Signal Processing, vol. 39, no. 4, pp. 975–977, Apr.
1991, conference Name: IEEE Transactions on Signal Processing.

[18] A. Lopez-Parrado and J. Velasco-Medina, “Efficient systolic architecture for Hermitian
eigenvalue problem,” in 2012 IEEE 4th Colombian Workshop on Circuits and Systems
(CWCAS), Nov. 2012, pp. 1–6.

[19] W. Zhang, W. Liu, J. Wang, and S. Wu, “Computationally efficient 2-D DOA estimation
for uniform rectangular arrays,” Multidimensional Systems and Signal Processing,
vol. 25, no. 4, pp. 847–857, Oct. 2014.

[20] “Understanding Bluetooth Range.” [Online]. Available: https://www.bluetooth.com/
learn-about-bluetooth/key-attributes/range/

[21] “ANT-B10 antenna board,” Mar. 2022. [Online]. Available: https://www.u-blox.com/
en/product/ant-b10-antenna-board

[22] “BG22 Bluetooth Dual Polarized Antenna Array Radio Board - Silicon Labs.”
[Online]. Available: https://www.silabs.com/development-tools/wireless/bluetooth/
bg22-rb4191a-bg22-bluetooth-dual-polarized-antenna-array-radio-board

[23] D. Lay, S. Lay, and J. McDonald, Linear Algebra and Its
Applications, Global Edition, 5th ed. Pearson, 2016. [Online].
Available: https://www.pearson.com/en-gb/subject-catalog/p/linear-algebra-and-its-
applications-global-edition/P200000004712/9781292419046

[24] L. L. Whitcomb, “Notes on Kronecker Products,” Johns Hopkins University,
Mar. 2020. [Online]. Available: https://dscl.lcsr.jhu.edu/wp-content/uploads/2020/03/
Notes_on_Kronecker_Products.pdf

[25] “Unitary Matrix - Definition, Formula, Properties, Examples.” [Online]. Available:
https://www.cuemath.com/algebra/unitary-matrix/

80

https://www.insightsip.com/fichiers_insightsip/pdf/ble/ISP1907/isp_aoa_AN210401.pdf
https://www.insightsip.com/fichiers_insightsip/pdf/ble/ISP1907/isp_aoa_AN210401.pdf
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/
https://www.u-blox.com/en/product/ant-b10-antenna-board
https://www.u-blox.com/en/product/ant-b10-antenna-board
https://www.silabs.com/development-tools/wireless/bluetooth/bg22-rb4191a-bg22-bluetooth-dual-polarized-antenna-array-radio-board
https://www.silabs.com/development-tools/wireless/bluetooth/bg22-rb4191a-bg22-bluetooth-dual-polarized-antenna-array-radio-board
https://www.pearson.com/en-gb/subject-catalog/p/linear-algebra-and-its-applications-global-edition/P200000004712/9781292419046
https://www.pearson.com/en-gb/subject-catalog/p/linear-algebra-and-its-applications-global-edition/P200000004712/9781292419046
https://dscl.lcsr.jhu.edu/wp-content/uploads/2020/03/Notes_on_Kronecker_Products.pdf
https://dscl.lcsr.jhu.edu/wp-content/uploads/2020/03/Notes_on_Kronecker_Products.pdf
https://www.cuemath.com/algebra/unitary-matrix/

[26] J. G. Proakis and D. K. Manolakis, Digital Signal Processing (4th Edition). USA:
Prentice-Hall, Inc., Feb. 2006.

[27] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Transactions
on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, Sep. 1959, conference Name:
IRE Transactions on Electronic Computers.

[28] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of the May
18-20, 1971, spring joint computer conference, ser. AFIPS ’71 (Spring). New York, NY,
USA: Association for Computing Machinery, 1971, pp. 379–385.

[29] Y. Luo, Y. Wang, Y. Ha, Z. Wang, S. Chen, and H. Pan, “Generalized Hyperbolic
CORDIC and Its Logarithmic and Exponential Computation With Arbitrary Fixed
Base,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. PP,
pp. 1–14, Jun. 2019.

[30] J. Valls, M. Kuhlmann, and K. K. Parhi, “Evaluation of CORDIC Algorithms for FPGA
Design.”

[31] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,”
in Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays - FPGA ’98. Monterey, California, United States: ACM
Press, 1998, pp. 191–200.

[32] C.-C. Sun, J. Gotze, and G. Jan, “Parallel Jacobi EVD Methods on Integrated Circuits,”
VLSI Design, vol. 2014, Jul. 2014.

[33] H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics, 3rd ed. Cambridge
Mathematical Library, Jan. 2000.

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing. USA: Cambridge University Press, 1992.

[35] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes
in Fortran 77: The Art of Scientific Computing, 2nd ed. Cambridge England ; New
York: Cambridge University Press, Sep. 1992.

[36] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic array and
implementation on FPGA,” in Proceedings. 2003 IEEE International Conference on
Field-Programmable Technology (FPT) (IEEE Cat. No.03EX798), Dec. 2003, pp. 35–42.

[37] “Vivado ML Overview.” [Online]. Available: https://www.xilinx.com/products/design-
tools/vivado.html

[38] “XUP PYNQ-Z2.” [Online]. Available: https://www.xilinx.com/support/university/
xup-boards/XUPPYNQ-Z2.html

[39] “7 Series DSP48E1 Slice,” Xilinx, Feb. 2018. [Online]. Available: https://
docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

[40] L. Liu, Y. Cao, and M. Guo, “FPGA Implementation of DOA Estimation Method Based
on Polarization Sensitive Array,” In Review, preprint, Jun. 2022.

81

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html
https://www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

[41] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers
on Automata,” Soviet physics. Doklady, 1963. [Online]. Avail-
able: https://www.semanticscholar.org/paper/Multiplication-of-Multidigit-Numbers-
on-Automata-Karatsuba-Ofman/bd6bd9ad3c6887bb7da4d11aa49222fc179a8231

82

https://www.semanticscholar.org/paper/Multiplication-of-Multidigit-Numbers-on-Automata-Karatsuba-Ofman/bd6bd9ad3c6887bb7da4d11aa49222fc179a8231
https://www.semanticscholar.org/paper/Multiplication-of-Multidigit-Numbers-on-Automata-Karatsuba-Ofman/bd6bd9ad3c6887bb7da4d11aa49222fc179a8231

	Problem Description
	Abstract
	Sammendrag
	Preface
	List of Abbreviations
	Introduction
	Motivation
	Background
	Main Objectives
	Project Scope and Limitations
	Methodology
	Thesis Outline

	Background Theory
	Bluetooth Direction Finding
	Bluetooth Angle of Arrival Sampling
	Calculating the Angle of Arrival Between Two Antennas

	Introduction to Linear Algebra
	Matrix Multiplication
	Matrix Transpose
	Complex Conjugate
	Hermitian matrix
	Kronecker Product
	Identity and Exchange Matrix
	Persymmetric Matrix
	Unitary Matrix
	Eigenvectors and Eigenvalues

	The MUltiple SIgnal Classification Algorithm
	The Real-Valued MUSIC Algorithm
	The COordinate Rotation DIgital Computer Algorithm
	Eigenvalue Analysis for Real Matrices
	The Classical Jacobi Method
	The Cyclic Jacobi Method
	The Parallel Jacobi Method

	Vivado
	Zynq Z2 System on a Chip
	DSP48E1 DSP Slice

	Hardware Implementation of the MUSIC Algorithm
	MUSIC Core
	Covariance Matrix Computation
	Complex Multiplication Module
	Complex Multiply and Accumulate Module
	Conjugate Transpose Module
	Complex Shift Register Module
	Covariance Matrix Calculation Module
	CMC Synthesis Report

	Real-Value Transformation
	Forward Backward Averaging
	Unitary Transform
	Real-value Transform Module
	Unitary Transform Datapath
	Unitary Multiplier module
	Unitary Transform Controller
	RVT Synthesis Report

	Eigenvalue Decomposition
	Eigenvalue Decomposition Module
	Diagonal Processing Element
	Off-diagonal Processing Element
	Vector Processing Element
	EVD synthesis report

	Spectral Peak Search

	Results
	High Level Testing
	Utilization and Timing
	Software and Hardware comparison
	Eigenvalue Decomposition Accuracy

	Discussion
	Accuracy
	Run time and Power Usage
	Eigenvalue decomposition

	Conclusion
	AoA Signal Simulation
	Source Files
	Bibliography

