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Abstract

Programming the robotic welding of complex parts through a robot controller poses notable chal-

lenges. Incorporating the robot into ROS2 streamlines the programming process, making the

simulation and planning of welding paths more straightforward. This advancement demands not

only the control over the robot but also of the welding apparatus. A system to manage the weld-

ing apparatuses used for robotic welding at NTNU’s laboratory has been developed to cater to

this requirement. The approach entails connecting the welding apparatus to a PLC through the

DeviceNet protocol, which emulates the role of the robot controller, while a computer controls the

PLC via the OPC UA protocol over an Ethernet connection.

Furthermore, a comprehensive, step-by-step guide for configuring and programming the solution

has been provided. This guide is intended to aid in deploying the solution across multiple robotic

cells within the laboratory. A set of tests has been carried out to assess the functionality of the

developed solution. The results of these tests indicate that the solution is capable of effectively

controlling various control variables and that this is achieved in a timely manner for the most part.

ii



Sammendrag

Å programmere robotisert sveising av komplekse deler gjennom en robotkontroller byr p̊a betydelige

utfordringer. Integreringen av roboten i ROS2 forenkler programmeringsprosessen, noe som gjør

simulering og planlegging av sveisebaner mer rett frem. Denne forbedringen krever ikke bare kon-

troll over roboten, men ogs̊a over sveiseapparatet. For å imøtekomme dette kravet, er det utviklet

et system for å h̊andtere sveiseapparatene som brukes til robotisert sveising ved NTNUs labor-

atorium. Tilnærmingen innebærer å koble sveiseapparatet til en PLS via DeviceNet-protokollen,

som etterligner rollen til robotkontrolleren, mens PLS-en styres av en datamaskin via OPC UA-

protokollen over en Ethernet-forbindelse.

Videre er det gitt en omfattende, trinnvis veiledning for konfigurering og programmering av

løsningen. Denne veiledningen er ment å bidra til implementeringen av løsningen i flere robot-

celler innenfor laboratoriet. For å vurdere funksjonaliteten til den utviklede løsningen, er det

utført en serie tester. Resultatene fra disse testene indikerer at løsningen er i stand til å kontrollere

forskjellige styringsvariabler effektivt, og dette blir for det meste oppn̊add p̊a en tidsriktig m̊ate.
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1 Introduction

1.1 Motivation

The motivation for this master thesis project is to address the challenge of welding complex parts

using a robot controller. While programming the robot to perform simple welding tasks is easy,

more complex parts require a more advanced solution. This is where ROS2 comes in. The problem

is controlling the welding equipment through the robot controller, which is complicated and difficult

to do using a Yaskawa robot controller with a PC.

This project will concentrate on the welding apparatus and its communication. It is set up in the

robot cells at the Robot Laboratory of the Department of Mechanical and Industrial Engineering

at the Norwegian University of Science and Technology (NTNU), where the welding apparatus is

connected to a Yaskawa robot controller using the DeviceNet protocol. With this configuration,

monitoring and controlling the welding parameters continuously during operation is challenging,

especially from a remote location such as a PC or elsewhere.

1.2 Project Description

This project entails establishing a connection between a computer and the Fronius welding machine,

which is integrated with the Yaskawa Robot controller. Further, it involves developing a system to

control the welding apparatus via the computer. Figure 1 provides a visualization of the connection

that requires development, accompanied by an explanatory arrow to the right, outlining potential

strategies for addressing this challenge.

Figure 1: Concept figure for the task to be solved in this project.

Several requirements have been stipulated by the project advisor regarding potential actions and

choices to be made. This is due to the fact that this project is developing a solution for the

robot cells already established in the laboratory. To preserve the existing functionality, the current

equipment cannot be altered, although it can be disconnected, provided it can be easily reconnected.

Given that there are multiple robot cells with the same welding apparatus and robot arm, part
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of the project also involves creating a guide on how the system is set up and how it can be

programmed.

Several types of welding apparatus are housed within the robotic cells. However, the focus of this

research has been the Fronius TPS400i. In this master thesis, a specific solution for this system

has been developed due to the predominance of this particular model in the robotic cells.

1.3 Previous Work

The author of this master thesis, in their project thesis, has previously worked with Program-

mable Logic Controllers (PLCs). In collaboration with the co-author of that project thesis, they

developed a Raspberry Pi-based PLC for educational use. Through this process and robotics

courses undertaken during their studies, the author has acquired knowledge and skills relevant to

this project.

1.4 Objective

To achieve a solution for the task outlined in the project description, two main objectives and goals

were established:

• Establish communication between the welding apparatus and a computer.

• To control the welding machine via a computer, facilitating actions such as starting, stopping,

and modifying the welding parameters in some capacity.

In order to attain the best possible solution to the problem outlined in the project description and

to explore other potential opportunities, several secondary objectives were set:

• To do it with an Ethernet connection

• Research other solutions

• Test some other solutions researched

• Develop a step-by-step guide for the implementation of the solution

• Plug-and-play functionality

• Complete control over the welding parameters

1.5 Structure of Thesis

Section 2 introduces the theory and key technologies used in this thesis. It begins with presenting

what a Programmable Logic Controller is and continues with how it works.

Section 3 presents the developed solution to the task presented in the Project Description.

Section 4 details a guide on how to set up the developed system.
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Section 5 goes through how to program the PLC used for the solution and goes through and

describes the developed code for the PLC and the test clients.

Section 6 contains the results of the tests done with the Developed solution.

Section 7 discusses the technology choices, overall results, difficulties, and errors.

Section 8 contains the conclusion and further works of the master thesis.

Appendix A a figure showing a more advanced architecture representation of a PLC from the

PLC standard IEC 61131-2.

Appendix B contains the complete I/O mapping for the Fronius welding apparatus found in the

Yaskawa robot controller.

Appendix C contains all the PLC code developed for the solution.

Appendix D contains all the important completed Python test clients and the credentials text

file used by them.

Appendix E contain a listing of the attached files, including the risk assessment and the author’s

project thesis, to which the author of this master thesis contributed as a co-author.

This master thesis contains some content that has been reused or based on the project thesis,

particularly in the background theory section on PLC. Since most of the project thesis is devoted

to PLC, gathering information and describing it has already been done.
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2 Background Theory

This chapter provides the foundational theoretical framework required for understanding the sub-

sequent investigations and discussions within this master thesis. The knowledge presented herein

serves as a primer to facilitate understanding of the technologies utilized and discussed in the

subsequent sections of this Master thesis.

2.1 Programmable Logic Controller (PLC)

“A Programmable Logic Controller (PLC) is a type of device extensively used for different auto-

mation applications within industrial processes and manufacturing” [1]. As its name implies, it is a

form of controller. This section will give an overview of controllers in general, as well as presenting

the function, hardware, and architecture of PLCs.

2.1.1 Control Systems and Controllers

Controllers or control systems may be needed to manage sequences of events, maintain constants,

or follow prescribed changes [1]. Automation streamlines tasks previously done manually, reducing

costs and increasing safety in the workplace.

Figure 2: Example of a relay control system in the Number Five Crossbar Switching System,
exhibited at the Museum of Communication in Seattle [2].

Relay systems, popular before PLCs, automated tasks requiring precision and tight time con-

straints. However, they struggle with complex tasks, and modifications are difficult, and they are

space-consuming. An example of a relay system is shown in Figure 2 [1], [3], [4].

Microprocessor control systems offer a flexible, cost-effective, and space-efficient alternative. Pro-

grammable Logic Controllers (PLCs) standardize microcontroller systems for industrial use with

robust programming languages. Ladder Diagram, a PLC language, was designed to make the

transition easier for those familiar with relay systems.

Since the first PLC’s development in 1969, they have evolved into modular units, allowing I/O

expansion and analog I/O usage. PLC-specific programming languages necessitated international

standardization, resulting in standards such as IEC 1131 and IEC 61499. Later the IEC 1131 was
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renamed to IEC 61131 with extensions. The IEC 61131 standard now has ten parts, with the latest

released in 2019 [1], [3], [5]–[8].

2.1.2 The Functions of PLCs

A PLC is a complete system with a microprocessor and I/O designed for industrial use, using

simple languages for easy programming. Figure 3 illustrates a PLC’s function: receiving sensor

inputs, interpreting them, and sending output signals to control devices such as motors.

Figure 3: Simple illustration of a PLC

PLCs are designed for industrial tasks such as manufacturing, industrial processes, and automated

assembly, where uninterrupted operation is crucial. Their robustness ensures minimal failure, even

in harsh environments.

Some applications don’t require PLC robustness, e.g., home washing machines, which can use

simpler microprocessor controllers. Autopilots for airplanes require more computational power

than PLCs offer, making regular computers more suitable. The next subsection will explore PLC

hardware and architecture [1], [4], [7].

2.1.3 The Hardware and Architecture of PLCs

A typical PLC’s functional parts are shown in Figure 4. They include the processor, program and

data memory, communications interface, power supply, and input/output (I/O) interfaces. The

I/O interfaces will be further presented.

Figure 5 displays the architecture diagrams from IEC 61131-1 and IEC 61131-2 standards. For

in-depth specifications of PLC hardware and architecture functional requirements, refer to Chapter

6 in the IEC 61131-2 standard [1], [3], [4], [7], [9].
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Figure 4: PLC general architecture, [1]

(a) (b)

Figure 5: PLC architecture from IEC 61131: (a) simple version from IEC 61131-1 [7], and (b)
extended version from IEC 61131-2 [9]. A larger version can be found in Appendix A.

2.1.4 PLC Inputs and Outputs

The input and output (I/O) interfaces in a PLC serve as the critical communication bridge between

the PLC and external devices. These interfaces are responsible for transmitting output signals from

the PLC to controlled devices and receiving input signals from control devices. Depending on the

specific application, PLCs can have a combination of discrete/digital I/O and analog I/O, each

catering to different types of input and output devices.
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For instance, discrete inputs can be provided by push buttons or phototransistors, while analog

inputs may come from temperature sensors or other variable-signal devices. In terms of outputs,

discrete outputs might involve LEDs or single-speed motors, while analog outputs could control

variable-speed motors, such as those used in CNC machines.

The PLC processor typically operates at low voltages, ranging from 3.3V to 5V, whereas the I/O

module commonly uses 24V for discrete signals. Since the processor is not designed to directly

handle these higher voltages, optoisolators are utilized for input signals to prevent damage. For

output signals, the PLC employs relays, transistors, or triacs to convert the low-voltage signals

from the processor to the appropriate output voltage. Relays and transistors function as switches

for the correct electrical signal, while triacs are specifically designed for AC current.

To ensure PLCs function reliably and safely, the IEC 61131-2 Chapter 6 standard specifies re-

quirements for I/O interfaces and other functions. For example, a specific output type must not

have more than a certain amount of leaking current in its off state. These requirements are cru-

cial for PLCs to provide predictable behaviour, safety, robustness, and longevity in the various

environments they are used in [1], [4].

Modern PLCs have evolved to offer greater modularity and flexibility, enabling users to customize

their systems by adding modules that support various communication protocols for I/O operations,

or more modules with simple I/O. These communication protocols, such as Modbus, ModbusTCP,

DeviceNet, and EtherCAT, allow for seamless integration and interoperability between different

devices and systems in industrial automation. By utilizing these communication protocols, PLCs

can efficiently exchange data with other controllers, sensors, and actuators, thereby enhancing the

overall performance and capabilities of the control system. This modular approach also allows

for easier system expansion and adaptation, catering to the ever-changing needs of industrial

automation processes [4], [10], [11].

2.1.5 PLC Manufacturers and Models

There are numerous PLC manufacturers to choose from when considering a control system. Each

manufacturer has its pros and cons and typically requires proprietary environments for coding,

uploading code, and facilitating communication between units. However, open standards for com-

munication exist in mixed environments when necessary. Modicon was the first PLC manufacturer,

but Siemens is now one of the most popular PLC manufacturers. Beckhoff is another well-known

manufacturer, offering a wide range of PLC products and solutions. Figure 6 shows an example of

a PLC from Siemens [1], [3], [4].

(a) (b) (c)

Figure 6: Three pictures the author took of a Siemens Simatic S7-1500 PLC.
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2.2 ROS2

2.2.1 Introduction to ROS2

ROS2 (Robot Operating System 2) is a middleware platform designed to facilitate the development

of robot software. ROS2 is a continuation of the original ROS system, with the goal of improving

its performance, scalability, and reliability. It is built on top of a communication layer called Data

Distribution Service (DDS) [12], which is a widely used standard for distributed systems. DDS

provides a middleware layer for communication between nodes, allowing for efficient and reliable

data exchange across a network [13], [14].

2.2.2 Key Features of ROS2

ROS2 introduces several innovative features in comparison to the original ROS system. A primary

feature is the support for real-time systems, expanding the range of robotics applications in which

ROS2 can be employed. Furthermore, ROS2 presents a more modular architecture, facilitating

superior code reuse and providing increased flexibility in the development of intricate robotics sys-

tems. This modular approach also offers a broader selection of options for different implementation

aspects, such as the middleware, to cater to specific needs [14]–[16].

2.2.3 Standard Packages and Tools in ROS2

ROS2 comes with a multitude of standard packages that offer basic functionality for robotics

development, encompassing control, perception, and navigation. These packages can be tailored

or expanded to satisfy any application’s specific requirements. In addition to these standard

packages, ROS2 includes a comprehensive set of tools for debugging, testing, and visualization of

robot software [17], [18].

2.2.4 ROS2 Architecture

ROS2 employs a distributed architecture with a layered structure, as illustrated in Figure 7. Within

this system, nodes representing specific functionalities communicate via a messaging system. Cent-

ral to this communication is the Publish-Subscribe (pub-sub) pattern, where nodes can publish

to or subscribe to topics, facilitating decoupled interaction between system components. This

pub-sub pattern is further exemplified in Figure 8 [14], [15].

These nodes interface with a middleware layer, responsible for data exchange and supporting

diverse transport protocols, thus enabling communication over various networks, such as Ethernet

or Wi-Fi [14], [15].

2.2.5 Community Support

One of the main benefits of ROS2 is its strong community support, which provides access to a

large number of packages, tutorials, and documentation. The community also provides ongoing
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Figure 7: The layered structure of ROS2 based on figure from [15].

Thermometer

Node

Temperature

Topic

Heater

Node

publishes subscribed by

Figure 8: ROS 2 node and topic pattern illustrating a thermometer publishing to a temperature
topic, which is subscribed to by a heater. The heater can be designed to activate when the
temperature falls below a certain threshold and deactivates when the temperature rises above a
specified limit.

development and support for the platform, which ensures that ROS2 remains a relevant and useful

tool for robotics development [13].

Overall, ROS2 is a powerful and flexible platform for developing robot software. Its support for

real-time systems, modularity, and community support make it a valuable tool for a wide range of

robotics applications [14], [15], [19]

2.3 DeviceNet

2.3.1 Introduction and Overview

Figure 9: The DeviceNet logo from ODVA’s website [20]

DeviceNet is a network protocol designed for industrial automation and control systems [21]. It

is based on the Controller Area Network (CAN) protocol and was developed by Allen-Bradley,
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a Rockwell Automation company[22]. It is now managed by ODVA (Open DeviceNet Vendors

Association), an independent organization that has taken over the responsibility of the protocol,

and their logo can be seen in Figure 9 [20]. DeviceNet provides a standardized communication

interface for industrial devices, such as sensors, actuators, and other automation equipment, to

communicate with a PLC or other supervisory devices.

2.3.2 Architecture

DeviceNet employs a server/client architecture, previously often referred to as a master/slave

architecture. In this setup, the devices may function as servers, clients, or both. Servers are

typically responsible for processing requests and producing responses, while the role of the clients

is usually the converse - they generate requests and consume responses. Despite this standard

model, the specifications of DeviceNet permit variations[23].

In the traditional model, the roles of the client devices align with the earlier conceptualization of the

“master” role, while server devices correspond to the “slave” role. The client device, commonly a

Programmable Logic Controller (PLC) or a Personal Computer (PC), oversees the communication

and configuration of the network. Conversely, server devices represent the industrial equipment

interconnected within the network. Each server device is assigned a unique identifier, utilized for

addressing it within the network[20], [21], [23].

2.3.3 Communication and Network Features

DeviceNet supports a variety of communication speeds ranging from 125 kbps to 500 kbps, facilitat-

ing fast and reliable data exchange between devices [21]. It also supports multiple communication

modes, including peer-to-peer, explicit messaging, and implicit messaging [23]. Peer-to-peer com-

munication allows two devices to communicate directly with each other, while explicit messaging

enables a client device to send specific commands to a server device. Implicit messaging permits

devices to exchange data without explicit instruction, which proves useful for real-time control

applications.

Moreover, DeviceNet accommodates several cable options that can be used either as a trunkline

or dropline. However, the end-to-end network length can vary depending on the selected cable

type and the data rate used, which can be seen in Table 1 [23]. These options offer flexibility

and adaptability, allowing the network to be tailored to specific user requirements and operational

conditions.

Table 1: DeviceNet Cable Lengths at Different Data Rates[23]

Cable Type 125 kbps 250 kbps 500 kbps

Thick Round Cable 500 m 250 m 100 m

Thin Round Cable 100 m 100 m 100 m

Flat Cable 420 m 200 m 75 m

Maximum Drop Length 6 m 6 m 6 m

Cumulative Drop Length 156 m 78 m 39 m
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2.3.4 Reliability and Fault Tolerance Features

DeviceNet incorporates features to enhance reliable communication and ensure fault tolerance.

Notably, it includes error detection mechanisms and provides facilities for resetting a communica-

tion relationship if/when errors are encountered [21]. The Controller Area Network (CAN) Data

Frame, an integral part of the DeviceNet protocol, is followed by a Cyclic Redundancy Check

(CRC) field designed to detect frame errors and is complemented by several frame formatting

delimiters. This structure, combined with several types of error detection and fault confinement

methods, such as CRC and automatic retries, contributes to the protocol’s robustness. These

methods are mainly transparent to the network, thereby preventing a faulty node from disrupting

the network’s operation [23].

Overall, DeviceNet is a reliable and widely used network protocol in industrial automation and

control systems. Its features and capabilities make it suitable for a wide range of industrial ap-

plications, from simple monitoring and control tasks to complex automation systems [20]–[22],

[24].

2.4 Beckhoff Automation and its Technologies

2.4.1 Beckhoff Automation

Beckhoff Automation is a German company that specializes in providing innovative automation

solutions for industrial and manufacturing applications. Known for high-performance PC-based

control systems, the company serves a wide range of industries, including automotive, food and

beverage, pharmaceuticals, and more [25].

Innovative Products: Beckhoff’s commitment to developing state-of-the-art automation solu-

tions has resulted in a diverse range of products, from software platforms like TwinCAT to in-

dustrial Ethernet protocols like EtherCAT. Their solutions have significantly impacted numerous

sectors due to their flexibility, scalability, and performance [26], [27].

Customer Focus: With a strong focus on customer satisfaction, Beckhoff Automation continu-

ously evolves its product offerings to meet industry-specific requirements and changing market

demands, reinforcing its reputation as a leading figure in the automation industry [26].

2.4.2 TwinCAT

TwinCAT, an essential product developed by Beckhoff, is a software platform that combines the

functionality of a real-time operating system (RTOS) with the capabilities of a PLC [28], [29].

Versatile Platform: TwinCAT provides a wide range of features and tools for developing, con-

figuring, and testing automation solutions. Its modular architecture and support for various pro-

gramming languages make it adaptable to different types of applications and systems [30].

Integrated Development Environment: The Integrated Development Environment (IDE) of

TwinCAT incorporates a visual programming interface, a debugging tool, and a simulation tool.

This suite of tools enables developers to thoroughly test their solutions prior to deployment, thereby

mitigating potential risks and bolstering the overall reliability of the system. Crucially, the PLC
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language IDEs utilized conform to the IEC 61131-3 standard, underscoring their robustness and

interoperability [28], [30].

Real-Time Control: TwinCAT’s support for real-time control enables it to handle time-critical

tasks with high precision and accuracy, making it an ideal solution for applications such as motion

control, robotics, and process automation [31].

To visually understand the architecture of TwinCAT and its integration of key features, one can

refer to Figure 10. This figure provides a representation of the structural framework of TwinCAT.

Figure 10: The TwinCAT Architecture/Features from [30]

2.4.3 EtherCAT

EtherCAT, a high-speed industrial Ethernet protocol, was developed by Beckhoff and is now man-

aged by The EtherCAT Technology Group to ensure its openness to all potential users. Known

for its exceptional performance, flexibility, and robustness, EtherCAT is designed for real-time

communication between devices [32], [33].

Master-Slave Architecture: EtherCAT employs a master-slave architecture, allowing for effi-

cient communication and distributed processing. The master and slave can potentially be imple-

mented using standard network interfaces, which aids in reducing the load on the master device [32].

This design is also responsible for the impressive speed and synchronization accuracy of EtherCAT,

making it one of the fastest Industrial Ethernet technologies [34].

Flexible Topologies and Efficient Communication: EtherCAT supports a wide range of

network topologies, including line, tree, star, and various combinations thereof [32], [34]. Its

unique communication system allows all nodes in an EtherCAT network to read data from and

write data to the EtherCAT telegram as it passes by, with only a short constant delay in each slave

device, independent of the packet’s size. This efficient use of bandwidth optimizes performance

and decreases interrupt rates. Thanks to automatic link detection, nodes and network segments

can be disconnected and reconnected during operation, providing great flexibility and adaptability

to various system configurations [32], [34], [35].

Robust and Simple: EtherCAT simplifies system configuration, diagnostics, and maintenance

tasks. Its robustness is evident in its excellent electromagnetic noise immunity and capability to

automatically detect and locate disturbances, significantly reducing troubleshooting time [32], [34].
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Integrated Safety: EtherCAT incorporates Functional Safety over EtherCAT (FSoE), which

meets the requirements for SIL 3 systems [34]. This safety protocol can be used in both centralized

and decentralized control systems, providing an integrated approach to safety without comprom-

ising performance or cost-efficiency [34], [36].

Affordability: Despite offering the advanced features of Industrial Ethernet, EtherCAT does so

at a price point similar to, or even lower than, traditional fieldbus systems. The hardware required

for the master device is a standard Ethernet port, and the EtherCAT slave devices, available from

various manufacturers, handle all time-critical tasks, further reducing overall system costs [34],

[36].

2.4.4 Industrial and Embedded PC PLCs

Beckhoff Automation provides a range of both industrial and embedded PC PLCs, each with its

own advantages and intended uses [25].

Industrial PCs: Beckhoff’s industrial PCs are high-performance computing solutions designed

for robust and powerful control tasks. These systems, while exceptionally capable, require the

addition of EtherCAT terminal couplers in order to incorporate IO into the system. This is due

to the architecture of the industrial PCs, which are not inherently designed to add terminals

directly [25], [37].

Embedded PC PLCs: In contrast to the industrial PCs, Beckhoff’s embedded PC PLCs are

compact, DIN rail-mountable controllers that can have IO terminals added directly to them. These

embedded systems, such as the CX7000 and CX8100 series, provide a compact and cost-effective

solution for small to complex automation tasks, with the added convenience of direct terminal

integration [25], [38].

Figure 11 displays two examples of Beckhoff’s PC PLCs. The C6930 is representative of their

industrial PCs, known for robust control tasks. The compact CX8190, from the CX8100 series,

epitomizes the company’s embedded PCs. Each model highlights the diverse automation solutions

offered by Beckhoff.

(a) (b)

Figure 11: Examples of PLCs / PCs from Beckhoff. Figure 11a is the C6930, an Industrial Cabinet
PC [39]. Figure 11b shows the CX8190, an Embedded PC PLC from the CX8100 series from [40].
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CX7000: The CX7000 is a compact embedded PC that offers PLC and motion control function-

alities. In addition to its processing capabilities, it also has built-in digital IO. This makes it a

flexible and cost-effective solution for small and medium-sized control tasks, reducing the need for

additional components [38], [41].

CX8100: The CX8100 series offers higher performance and expanded interface options while

maintaining a compact form factor. It is designed to meet the demanding requirements of complex

automation tasks [38], [42].

When IO terminals, specifically the E-series terminals, are added to these embedded systems,

the communication between the PLC and the terminal is facilitated over EtherCAT. This offers

high-speed, efficient data exchange, contributing to the overall performance and versatility of the

system [35].

Overall, Beckhoff Automation is a leading provider of innovative automation solutions for industrial

and manufacturing applications. Its advanced products, such as the TwinCAT software platform

and EtherCAT protocol, together with the range of compact and powerful embedded PC PLCs

like the CX7000 and CX8100 series, contribute significantly to the industry’s advancement.

2.5 Introduction to OPC Unified Architecture (OPC UA)

2.5.1 Overview of OPC UA

Figure 12: OPC Foundation logo. [43]

OPC Unified Architecture (OPC UA) is a platform-independent, service-oriented architecture

(SOA) developed by the OPC Foundation [44], Figure 12. It is designed to provide seamless com-

munication, integration, and interoperability between industrial devices, systems, and applications.

OPC UA offers a standardized and reliable way to exchange data, alarms, events, and historical

information in various industrial domains, including manufacturing, energy, transportation, and

building automation [44], [45].

2.5.2 Key Features of OPC UA

Platform Independence

OPC UA is noted for its exceptional platform independence, supporting various hardware plat-

forms, operating systems, and programming languages. This includes regular computer hardware

(PCs), PLCs, micro-controllers, cloud-based servers, and operating systems from Microsoft Win-

dows to Linux distributions. Its cross-platform communication capability ensures interoperability

across an enterprise, encompassing machine-to-machine (m2m) and machine-to-enterprise interac-

tions, enabling a comprehensive automation environment [44].
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Information Modeling

OPC UA incorporates a robust framework for information modelling that allows users and com-

panies to create custom data models to represent real-world entities, systems, and processes. This

feature enables the integration and semantic understanding of information across different devices,

systems, and industries [44], [46].

Scalability

OPC UA’s high scalability caters to a wide range of systems, from small-scale setups with limited

resources to large-scale ecosystems with thousands of devices. The versatility of the OPC UA

specification even allows for its integration down to the level of single field devices, demonstrating

its adaptability and comprehensive approach to system integration [45].

Security

OPC UA prioritizes robust security, ensuring data integrity, confidentiality, and authenticity. By

employing multiple protocols, session encryption, and user authentication through X509 certific-

ates, it protects communication channels effectively [44]. Also, OPC UA offers built-in services

such as Alarms and Conditions, Historizing, Server Aggregation, and Discovery, enhancing its

overall functionality. These security measures make OPC UA a highly secure yet firewall-friendly

solution for technology implementation [44], [46], [47].

2.5.3 OPC UA Architecture

Figure 13: OPC UA architecture from the OPC foundations website [44].

The OPC UA architecture consists of two primary components: OPC UA servers and OPC UA

clients. Servers provide access to data, alarms, events, and historical information, while clients

consume this information to perform various tasks, such as monitoring, analysis, and control [44],

[46]. Figure 13 shows the multilayered architecture of OPC UA that was just presented and the

features described in the previous parts.

Address Space
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The address space is a fundamental concept in OPC UA, organizing and representing the server’s

data and metadata as a collection of interconnected nodes. The employed information model defines

the nature of these interconnections. These nodes can represent objects, variables, methods, or

other types that define the system’s structure and behavior [44], [45].

Services

OPC UA servers offer various services that clients can use to interact with the address space.

Services from these sets include operations like reading, writing, browsing, method calling, and

subscription-based services for managing data, alarms, and events [44], [46].

2.5.4 OPC UA in Industrial Applications

Figure 14: There are numerous variations of the automation pyramid. The following is an example
taken from [48].

OPC UA, known for its ubiquity and versatility, has gained immense popularity across industrial

applications, notably within the higher layers of the industrial automation pyramid, as depicted

in Figure 14. It is particularly becoming prevalent in [47], [49]:

1. Supervisory Control and Data Acquisition (SCADA) systems: By leveraging its real-time

capabilities and scalability, OPC UA is becoming an integral component of SCADA systems.

2. Manufacturing Execution Systems (MES): Owing to its platform independence and seamless

interoperability, OPC UA enhances data exchange in MES.

3. Industrial Internet of Things (IIoT) applications: OPC UA’s robust security features make

it an apt choice for IIoT applications.

4. Data Integration in heterogeneous systems: Due to its extensive hardware and operating

system support, OPC UA is increasingly used for data integration across diverse systems.

The adoption of OPC UA across these layers demonstrates its vast potential, hinting at its prom-

ising role even within the lower tiers of the pyramid [47], [49].
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2.5.5 UaExpert - OPC UA Client

UaExpert, developed by Unified Automation, is a comprehensive OPC UA client designed as a

general-purpose test client for OPC UA servers [50]. It is a critical tool in assessing various

functionalities and performance, including data access, server address space browsing, historical

access, alarms and conditions management, and method calls [50].

The graphical user interface (GUI) of UaExpert is both sophisticated and user-friendly, designed

to facilitate efficient and effective testing processes. Written in C++, the software exhibits cross-

platform compatibility, making it an adaptable choice for diverse systems [50].

Central to UaExpert’s design is a core framework that plugins can further enhance. This extensible

architecture allows for customized functionality tailored to specific testing requirements, further

establishing UaExpert as a versatile tool in OPC UA server development and testing [50].

2.5.6 Free OPC-UA Library

The Free OPC-UA Library is an open-source initiative that provides the necessary resources for

developing servers and clients within the OPC UA framework. This project includes libraries for

both Python and C++, along with GUI clients and models [51]. The python-opcua library was

initially developed for Python clients in pure code form. However, the recommendation for Python

versions 3.7 and beyond is to utilize the opcua-asyncio library [52]. This library is an asyncio-based

asynchronous OPC UA server and client that builds upon the python-opcua library. One downside

is the loss of support for earlier Python versions.

The primary advantage of asynchronous programming is the simplification of code due to less

need for locks, along with potential performance enhancements. However, for cases requiring

synchronous code, the library provides a synchronous wrapper over the asynchronous API, allowing

the opcua-asyncio library to be used instead of python-opcua. Thus, if a recent version of Python

is in use, there is no reason to prefer python-opcua over opcua-asyncio [51], [52].

In summary, OPC UA plays a vital role in industry digitization by providing a standardized, se-

cure, and efficient method for data exchange and integration. Its platform independence, powerful

information modelling, high scalability, and robust security mechanisms combined with an architec-

ture designed for seamless communication and interoperability make it a go-to solution for various

industrial applications. Furthermore, OPC UA’s adoption across different layers of the indus-

trial automation pyramid underscores its versatility in addressing complex industrial challenges,

solidifying its role as a cornerstone of Industry 4.0.

2.6 MQTT

Figure 15: MQTT logo. [53]
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2.6.1 Introduction and History

MQTT (Message Queuing Telemetry Transport) is an efficient and lightweight messaging protocol

designed for machine-to-machine (M2M) and Internet of Things (IoT) communication, with the

logo shown in Figure 15. It was invented by Dr Andy Stanford-Clark from IBM and Arlen Nipper

from Arcom (now Eurotech) in 1999 [54], and has since become one of the most popular protocols

for IoT communication [55], [56].

2.6.2 Architecture

MQTT is based on the publish-subscribe pattern, which allows multiple clients to exchange data

through a central broker. In MQTT, a client can publish messages to a broker on a specific topic,

and any client that has subscribed to that topic will receive the message. This allows for highly

efficient and scalable communication between devices, as clients only need to subscribe to the topics

they are interested in. A simple example can be seen in Figure 16 [55]–[57].

Figure 16: An simple example of the MQTT publish-subscribe Architecture, based on the figure
from [55].

2.6.3 Key Features and Efficiency

One of the key features of MQTT is its lightweight nature. The protocol is designed to be highly

efficient, using minimal bandwidth and requiring low processing power. This makes it ideal for

use in low-power and low-bandwidth devices such as sensors and other IoT devices. Mosquitto

is a popular open-source broker that implements MQTT and can run on a variety of platforms,

including embedded systems and microcontrollers. With its focus on efficiency and scalability,

Mosquitto is a great choice for IoT applications that require low latency and high throughput [55],

[57], [58].

2.6.4 Quality of Service (QoS) Levels

MQTT also supports Quality of Service (QoS) levels, which define the level of guarantee for message

delivery. There are three QoS levels in MQTT [56]:

• QoS 0: At most once delivery. Messages are delivered once or not at all, without any

acknowledgement from the receiver.
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• QoS 1: At least once delivery. Messages are guaranteed to be delivered at least once, but

may be delivered multiple times.

• QoS 2: Exactly once delivery. Messages are guaranteed to be delivered exactly once, ensuring

that there are no duplicate messages.

The choice of QoS level depends on the specific use case and the importance of message delivery.

For example, a sensor reading may be published with QoS 0, as it can be non-critical to receive

every reading. On the other hand, a command to actuate a device may be published with QoS 2,

because it can be critical that the command is executed exactly once [55], [56].

Overall, MQTT is a highly efficient and scalable protocol that is well-suited for IoT and M2M

communication. Its lightweight nature and support for QoS levels make it a popular choice for a

wide range of IoT applications, from home automation to industrial monitoring and control.

2.7 Fronius TPS/i Welding Machine

The Fronius TPS/i is an innovative welding system designed to meet the demands of modern

industrial applications. It is a modular, intelligent welding system that offers a high level of

flexibility, precision, and efficiency. In addition to its manual welding capabilities, the TPS/i can

be integrated with robotic arms, which are often employed in automated welding processes. With

the help of a robot interface, the TPS/i welding system can be easily adapted for different types

of robotic arms and communication protocols, such as DeviceNet [59], [60].

2.7.1 System Architecture

The Fronius TPS/i welding system consists of several components, including a power source, a

wire feeder, a welding torch, a user interface, and an optional robot interface. The modular design

enables users to configure the system according to their specific requirements, and easily upgrade

or expand the system as needed. The design can be seen in Figure 17. Some of the important

components [59], [61], [62]:

Power Source: The power source is the heart of the TPS/i welding system, responsible for

generating the required welding current and voltage. It employs advanced inverter technology to

ensure a stable and precise welding process and high energy efficiency.

Wire Feeder: The wire feeder supplies the welding wire to the welding torch at a controlled

speed, ensuring a consistent and accurate welding process. It is designed to handle various wire

diameters and types, offering a high level of versatility.

Welding Torch: The welding torch is the primary interface between the operator and the work-

piece. It delivers the welding current and shielding gas to the welding area and supports various

welding processes, such as MIG/MAG, TIG, and Stick welding.

User Interface: The user interface provides an intuitive means for the operator to interact with

the TPS/i welding system. It offers a touchscreen display, allowing users to easily set up and

control the welding process, access system diagnostics, and perform software updates.

Robot Interface: The robot interface, Figure 18, enables seamless integration between the TPS/i
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Figure 17: The modular design of Fronius TPS/i welding machine. Based on figures from [62].

welding system and various types of robotic arms. This component allows the welding system to

communicate with the robot controller using different communication protocols, such as DeviceNet,

facilitating synchronized operation in automated welding processes [60].

Figure 18: The robot interface. Based on a figure from [60].

2.7.2 Working Principles

The Fronius TPS/i welding machine operates on the principle of electric arc welding, using a

consumable electrode (welding wire) to create a weld pool and join the workpieces. The welding

process can be categorized into the following steps:

1. The operator initiates the welding process by pulling the trigger on the welding torch, or the

robotic arm initiates the process automatically in an automated welding setup.

2. The power source generates the required welding current and voltage, initiating the electric

arc between the welding wire and the workpiece.
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3. The wire feeder supplies the welding wire to the welding torch at a controlled speed, ensuring

a consistent and accurate welding process.

4. The electric arc generates heat, melting the welding wire and the workpieces’ edges, creating

a weld pool.

5. Shielding gas is supplied to the welding area to protect the molten metal from atmospheric

contamination.

6. The weld pool solidifies, forming a strong joint between the workpieces.

2.7.3 Key Features

Intelligent Process Control: The TPS/i welding system incorporates advanced process control

algorithms that optimize the welding process in real-time, ensuring high-quality welds and min-

imizing the need for post-welding rework. It is achieved with features such as LSC (Low Spatter

Control), PMC (Pulse Multi Control), and PCS (Pulse Controlled Spray Arc) [59], [63].

Communication and Connectivity: The TPS/i welding system supports various communica-

tion and connectivity options, such as Ethernet, USB, and WLAN, enabling remote monitoring,

diagnostics, and control. Moreover, the robot interface allows for seamless integration with differ-

ent types of robotic arms and communication protocols, such as DeviceNet, CANopen, EtherCAT,

and Profibus [60], [62], [64].

In summary, the Fronius TPS/i welding machine provides a comprehensive solution for various

industrial welding applications due to its flexibility, precision, and efficiency. With its compatibility

with robotic arms and support for multiple communication protocols, the TPS/i system is well-

equipped to meet the challenges of both manual and automated welding processes, making it a

valuable tool in modern manufacturing environments.

2.8 Yaskawa and Robotic Welding

Yaskawa Electric Corporation, established in 1915, is a worldwide leader in the production of

industrial robots, motion control systems, and automation solutions [65]. Yaskawa has a significant

presence in a variety of industries, including automotive, electronics, and material handling.

Yaskawa Motoman is a subsidiary of Yaskawa established in 1989 in the United States. It provides

automation products and solutions across a vast range of robotic applications and industries [65].

One of their key areas of expertise is robotic welding, which has transformed the welding industry

by offering heightened precision, productivity, and cost savings [65], [66].

2.8.1 Yaskawa Robotic Welding Solutions

Yaskawa Motoman offers various robotic welding solutions, including arc welding, laser welding,

and spot welding [67]. These solutions are designed to address the unique challenges of the welding

industry, such as maintaining consistent quality, reducing cost, reducing waste, and ensuring worker

safety [66].
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Yaskawa’s robotic welding solutions integrate innovative technologies and features that augment

the welding process, including [68], [69]:

• High-speed, high-accuracy robotic arms, which minimize the necessity for post-weld rework

due to consistently high-quality welding.

• State-of-the-art welding power sources from manufacturers like Fronius, which streamlines

the welding process for enhanced efficiency and energy conservation.

• User-friendly programming and simulation software, which simplifies the process of designing

and optimizing weld programs.

• Comprehensive safety features, which diminish the risk of accidents and injuries during the

welding process.

2.9 Yaskawa YRC1000 Robot Controller

The Yaskawa Motoman YRC1000 robot controller is a state-of-the-art control system designed to

operate Yaskawa industrial robots, including those used in robotic welding applications. The con-

troller is known for its precise control, advanced safety features, and high-speed performance [70].

2.9.1 High-Speed Processing

The YRC1000 is equipped with a high-speed, multitasking CPU that enables swift and precise

robotic control. This contributes to improved cycle times, heightened productivity, and enhanced

overall efficiency in the production process. The advanced processing capabilities of the YRC1000,

in conjunction with Yaskawa’s high-speed servos, allow it to manage complex automation tasks at

high speeds and accelerations effortlessly [68], [70].

2.9.2 Safety Features

Safety is one of the most critical concerns when dealing with industrial robotics. To this end, the

YRC1000 comes with two primary channels to ensure safe operation: the MSU (Emergency Stop

and Safety Signals for safe I/O communication) and the FSU (Functional Safety Board). Devices

such as safety scanners or light barriers can also connect directly to the controller. Additionally, the

YRC1000 incorporates features like Safe Torque Off (STO), which enhances the safety of both the

robot and the operator. These features ensure that the robotic system operates within predefined

safety parameters, minimizing the risk of accidents and injuries [68], [70].

2.9.3 Programming

The robot controller can be programmed using a language Yaskawa has developed called INFORM.

This can be done using the Standard Teach Pendant, which is a highly functional, menu/command-

line-based interface. INFORM is a language that uses instructions paired with additional items,

such as tags and numerical data. An example of an INFORM line is “MOVJ VJ=50.00”, where

“MOVJ” is the instruction, and “VJ=50.00” is the additional item. The instruction determines
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what operation is to be performed, while the additional item specifies parameters such as speed or

time. This structure makes INFORM an intuitive and straightforward programming language for

the robot’s movements and actions, enabling users to create complex automation tasks with relative

ease. The flexibility of the INFORM language ensures that the YRC1000 can be customized to

suit a wide range of applications [70], [71].

Motoman robots connected to the YRC1000 controller can also be programmed in other ways,

with different methods suiting various types of environments. Moreover, customers can develop

their own programs to interface with these systems using Yaskawa’s Software Development Kits

(SDKs), such as the MotoPlus C/C++ and MotoCom32 SDKs [70].
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3 Proposed Solution

The solution to the task presented in the Project Description in Section 1.2 involves utilizing a

Programmable Logic Controller (PLC) as a DeviceNet master to control the welding machine via

this protocol. Subsequently, this PLC is controlled through the OPC UA protocol, enabling any

computer to control it. Ideally, the controlling PC should operate the ROS2 for the robotic arm,

facilitating control via ROS2. Figure 19 illustrates how this proposed solution operates.

Figure 19: A concept illustration of the devised solution.

The selection was made to implement a PLC from Beckhoff, as equipment from the same manu-

facturer was already integrated within the pre-existing robot cell. The chosen PLC is a CX8190

Embedded PC, complemented by an EL6752 DeviceNet master terminal. The choice of the CX8190

was guided by its affordability, sufficient computational power, and compatibility with Beckhoff-

provided OPC UA software.

The configuration used for testing is illustrated in Figure 20. The control cabinet housing the PLC

is evident in the image. The grey Ethernet cable extends from the PLC and connects to the HP

network switch. Additionally, the purple DeviceNet cable emerging from the PLC and directed

toward the red welding apparatus in the background can be observed. The two computers utilized

in the testing process are interfaced with the PLC via the HP network switch.

In Figure 21 and Figure 22, the experimental setup employed to test the functionality of a PC

running Linux is portrayed. This test is crucial given that the computer destined to operate ROS2

will be a Linux machine. Figure 21 reveals that the Linux PC and the PC running TwinCAT

are connected to the PLC through a small router. This router is non-commercial, rendering

it unsuitable for obtaining performance metrics. However, it effectively demonstrates that the

communication between the PLC and the Linux PC is viable. As depicted in Figure 22, this router

is linked to a PLC which was not in the frame in the preceding figure.

24



Figure 20: A image depicting the test setup used for the tests done in the results section, Section 6.

Figure 21: A image depicting the test done with a Linux computer.

Figure 22: A image depicting the test done with a Linux computer from another angle, showing
the PLC in the control cabinet.
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4 Setting up the Computer, PLC, and cables

This section will provide a comprehensive walkthrough on how to configure the solution illustrated

in Section 3. It aims to clearly outline each step in the process, ensuring a thorough understanding

of the setup.

4.1 Setup of the Hardware

4.1.1 Commissioning the PLC

Proper installation of a Programmable Logic Controller (PLC) is crucial for its efficient operation.

The suggested practice is to mount the PLC on a D rail inside a control cabinet, as depicted in

Figure 23. This specific orientation is strategically advantageous as it allows the PLC’s passive

cooling mechanism to function effectively. The mechanism operates on the principle of natural

convection where warmer air ascends, leaving room for cooler air, thus helping maintain a suitable

operational temperature for the PLC.

Figure 23: The PLC (CX8190 with EL6752) mounted inside a control cabinet.

Next, we delve into the details of connecting the power supply to the PLC. As depicted in Fig-

ure 24a, which is derived from Beckhoff’s guide [72], it is crucial to connect +24V and 0V to the

ports marked similarly, in order to power the PLC itself.

Moreover, it is essential to connect 24V and 0V to at least one of the two ports labelled with +

or - respectively, for providing power to the modules attached to the E-bus or K-bus of the PLC.

It is equally important to remember to connect the grounding to one of the two ports designated

for that purpose. Figure 24b provides an exemplar illustration of how these connections can be

implemented in a real-world setting.
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(a) (b)

Figure 24: Sub-figure (a) shows how to connect the power supply to the CX8190 PLC from
Beckhoff’s guide [72]. Sub-figure (b) showcases a practical implementation.

4.1.2 DeviceNet Cable

Various types of connectors can be utilized for DeviceNet. Both the welding apparatus and the

PLC utilize a Straight Female Header Screw-terminal with a 5.08mm Pitch and 5 Poles. These

come with the PLC module for DeviceNet, but it does not fit with every type of cable shoe. Also,

one of the guide pins in the plastic was placed differently than normal, which can be rectified by

removing one of the plastic guide pins from another header.

A 24V power supply is needed on the cable from an external source. This can conveniently be the

same source that supplies power to the PLC. It is recommended to use cable shoes, to get a proper

and secure connection between the cable and the Female Header type connector. It’s important

to consider the necessary elements, as one can purchase a pre-made cable. A completed Cable can

be seen in Figure 25.

Figure 25: DeviceNet Cable

Connecting to Fronius will require permanent wiring, as shown in the Figure 26. For a permanent

connection, it is recommended to use the cable clamp that holds the cable in place and the plastic

cover, as demonstrated with the connection with the Yaskawa controller in Figure 26. However,

this can be cumbersome for testing purposes where one needs to disconnect and reconnect the
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original setup when not in operation.

(a) (b)

Figure 26: Figure 26a shows the DeviceNet connection to the Fronius welding machine with the
protective cover in place. Conversely, Figure 26a shows the connection without the cover, high-
lighting the cable clamp that ensures that the DeviceNet cable is in place.

4.2 Setup of the Software

In order to facilitate PLC programming and ensure full functionality, various software components

need to be installed on both the PC and the PLC.

4.2.1 Installing the Required Software for the PC

The installation of TwinCAT XAE, from [28], is required and necessitates the use of a Beckhoff

user account. It is important to note that TwinCAT XAR is included within the TwinCAT

XAE package; therefore, separate installation of XAR would result in the uninstallation of XAE.

TwinCAT XAE is Visual Studio-based, enabling users who either have or desire to incorporate

the XAE application into other Visual Studio versions and utilize them as an alternative. The

installation process is relatively straightforward, simply requiring adherence to the steps presented

in the installation wizard, which typically involves using the default settings. Figure 27 depicts

some of the stages of the installation wizard. If one has other versions of Visual Studio and wishes

to integrate TwinCAT XAE into them, it is crucial to ensure this option is selected during the

installation process. For local code execution and interim code testing, the utilization of seven-day

trial licenses is possible.

28



(a) (b)

(c)

Figure 27: Depiction of three stages in the installation wizard for Beckhoff’s TwinCAT3 XAE.

Upon successful installation of TwinCAT XAE, the next step is to install the relevant supple-

mentary modules. In this context, the OPC UA module TF6100 is required and can be obtained

from [73]. After the installation of this module, it’s necessary to ensure the activation of the cor-

responding license, which could be either a trial or a full license. Further details regarding this

process will be addressed in subsequent sections of this guide.

4.2.2 PLC Software

To install the OPC UA on the PLC, it must first be installed on the PC. Once accomplished,

it will reside within the directory where the TwinCAT XAE is installed, specifically under the

“Functions” folder. One must then navigate to the OPC UA (TF6100-OPC-UA) folder, wherein

various versions of it can be found.

Given that the PLC intended for this installation is a CX8190, an ARM-based PLC with Windows

CE, the appropriate folder is “CE-ARMV4I”. Within this folder, a CAB file is present, which

needs to be copied to the PLC. Multiple methods for this procedure are outlined in [73]. In this

case, the chosen method was to directly copy the file to the memory card with the PLC’s Operating

System (OS).

The location where the file is stored on the PLC is not critical, as long as it is accessible from the

PLC’s OS. Consequently, the file was copied to the “System” folder, see Figure 28.
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Figure 28: Copying the CAB file to PLC memory card. The computer is in Norwegian, the only
relevant difference is that “This PC” is “Denne PCen” in the image.

With the CAB file now on the memory card, the next step involves installing it on the PLC. This

process requires remoting into the PLC’s operating system, which can be accomplished using a

Remote Desktop Protocol. An appropriate tool for this is “cerhost”, which can be downloaded

from Beckhoff via [74]. It is important to ensure that the Remote Desktop feature is activated on

the PLC.

Activation can be achieved by opening TwinCAT on the PC when it is connected to the PLC via

an Ethernet cable, either directly or through a network switch. Within TwinCAT, create a new

project, then select “TwinCAT Projects” and “TwinCAT XAE Project (XML format)”, as shown

in Figure 29. Optionally, a name can be assigned to this project.
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(a)

(b)

Figure 29: Creating a new project in TwinCAT

To connect to the PLC, navigate to the dropdown menu under “Help” and “Attach”, where it

states “Local” or the name of the PLC you are potentially connected to, as shown in Figure 30a. A

window will appear, where you select the “Search (Ethernet)” button, as illustrated in Figure 30b.

If anything other than local is present, additional windows will prompt you to switch to local,

which must be done.

Upon entering the new window, press the “Broadcast Search” button, followed by the “OK” button

in the new window where network cards to be searched are selected. The PLC will then appear in

the list, as the one used in this project did see Figure 30c. If multiple options appear, select the

correct one and then hit the “Add Route” button.
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(a) (b)

(c) (d)

Figure 30: Depictions of the steps to connect TwinCAT XAE to the PLC

Ensure that “Secure ADS” is checked, and enter the username and password, as demonstrated in

Figure 30d. The default credentials provided by Beckhoff are user: “Administrator” and password:

“1”. After pressing “OK” if there is a padlock icon next to the Host Name in the Connected column,

the connection has been established. Additionally, note the IP address of the PLC listed in the

Address column, as it will be required in subsequent stages. You can then press “Close”, followed

by “OK” in the next window. A new window will appear, asking whether you would like to switch

platforms if the PLC has a different platform than the one previously selected. Click “Yes” to this

prompt.

Next, navigate to the “System” section in the Solution Explorer, followed by the “CX-settings”. At

this stage, a login prompt will appear; ensure that you log in using an administrator account. The

default Beckhoff credentials were used during the initial PLC connection in this project. Changing

the default credentials within this setting is advisable, which it suggests with a big banner and can

be seen in Figure 31.

Proceed to the “Device” section and then to “Boot”. Ensure the “Remote Display” setting is

switched to “On”, and confirm by clicking the check box next to it, as depicted in Figure 31. A

window will appear, indicating that the PC/PLC requires a restart. Confirm by clicking “OK”.

Once the system reboots and is operational again, it is prepared for a remote connection.

To initiate the Remote Desktop, execute the CERHOST.exe file located within the zip file accessible
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Figure 31: Activating Remote Display

via [74]. Once the program launches, establish a connection by navigating to “File” and then

“Connect”. A window will appear, prompting the input of the Hostname and Password. The

password should match the one used for the administrator account. If a connection cannot be

established using the Hostname, the IP address may be utilized instead, as shown in Figure 32.

Figure 32: Connecting to the PLC with CERHOST.
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Once the connection has been established, access the start menu and select “Run...”, as illustrated

in Figure 33a. A new window will appear, in which the “Browse” button should be selected.

Another window will then open, prompting the location of the saved CAB file. Navigate to the

“Hard Disk” folder, within which the “System” directory in which we saved the file.

To locate the CAB file, the setting needs to be adjusted from displaying only .exe files to all files.

This can be done by selecting “All Files” from the dropdown menu for type. The file can then be

found by scrolling to the right, as shown in Figure 33b. Upon confirming the correct file selection,

select “OK” to return to the previous window.

(a) (b)

(c) (d)

Figure 33: Steps depicting the installation of OPC UA on the PLC.

Ensure the correct file is selected, then press “OK” as shown in Figure 33c. This action will prompt

the opening of a new window similar to the one used for locating the CAB file, but this time for

choosing the installation location, as shown in Figure 33d.

However, with this version of TwinCAT, the chosen location is inconsequential, as the installation

will automatically occur in the appropriate location, and the CAB file will be removed upon

completion. Thus, press the “OK” button in the top right corner.

With OPC UA now installed, it is crucial to open the network port that will be used for this

communication. If this step is neglected, the connection might be blocked. Begin by selecting the

start menu and choosing “Control Panel”. A full-screen window with multiple icons will appear.

Double-click the “CX Configuration” icon, prompting a new window to appear. Select the “Fire-
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wall” tab in this window, as demonstrated in Figure 34a. Proceed by clicking the “Create Rule”

button.

In the next window, the port will be opened. Check the “Port” option in the “Type” section.

Then enter the minimum and maximum ports to be opened. As port 4840 is commonly used, only

this port is opened in this project. Enter a suitable description for the rule and click “OK”, as

shown in Figure 34b. Returning to the previous window, verify that the new rule has been added

to the list, and click “OK”.

(a)

(b)

Figure 34: Steps depicting the opening of the port used for OPC UA.

At this point, the PLC is ready for communication via OPC UA and, thus, is prepared for pro-

gramming.
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5 Programming the PLC

To commence programming the PLC, a new project needs to be created. This can be accomplished

in the same way as demonstrated in Section 4.2.2. A PLC project can be initiated by right-

clicking the “PLC” option in the Solution Explorer, located on the left side of the TwinCAT

window. Next, select “Add new item...” from the appearing menu. A new window will open; here,

choose “Standard PLC Project”, assign a suitable name, and click the “Add” button, as shown in

Figure 35.

Figure 35: Creating å PLC project.

When programming the PLC, it is essential to toggle from the “Local” system to the PLC. This

transition ensures that the programming activities are directly applied to the PLC. Alternatively,

one could prototype and execute the project locally when the “Local” system is selected. The

procedure for altering the system from “Local” to the PLC is outlined in Section 4.2.2. For those

who have previously engaged in this process, the PLC might already be listed in the initial window,

simplifying the procedure by allowing direct selection.

Programming the PLC within TwinCAT is performed within the previously established PLC pro-

ject. Navigating the POUs directory reveals a file named MAIN, which serves as the default

location for the program’s construction, as depicted in Figure 36. As stipulated in Section 2.4.2,

the programming approach conforms to the IEC 61131-3 standard, prescribing the use of variables,

data types, functions, function blocks, and so forth in the PLC programming process.

The data types available for utilization within PLC programming are specified in Table 10 of

Section 6.4.2.1 in the IEC 61131-3 standard [8]. For instance, the Byte data type is defined as

an 8-bit string, whereas a Word constitutes a 16-bit string. Understanding these definitions is

paramount, as bits, bytes, and words are used alongside Booleans and arrays of bytes to illustrate

the reasoning behind the specific programming and configuration of the PLC.

For a more intricate comprehension of PLC programming, it is recommended to delve into resources

such as the IEC 61131-3 standard [8], Beckhoff’s guidelines [75], or other relevant literature. These

comprehensive resources offer better insight into the intricacies of PLC programming, thereby
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Figure 36: The PLC project structure in TwinCAT3. Depicting where the main program is located.

enabling a broader understanding than what will be elaborated upon in the remainder of this

thesis.

5.1 Connecting to the Fronius Welding Machine

To connect to the Fronius Welding Machine, it is necessary to establish a connection to the PLC

in TwinCAT, and the PLC’s EL6752 module must be connected to the Welding Machine with the

DeviceNet cable. Ensure that TwinCAT, and hence the PLC, is in the configuration mode. This

can be verified by noting that the cog icon on the blue line at the bottom of TwinCAT XAE is

blue and that the blue version, not the green one, is highlighted in the toolbar at the top.

In the Solution Explorer, select the I/O module, and beneath it, there’s an option labelled

“Devices”. Right-click this option and select “Scan”, as shown in Figure 37a. A dialogue box

will appear - click “OK”, then another window will appear. This window displays all the devices

the PLC can scan directly. Leave all options checked per the default settings and click “OK”. An-

other dialogue box will appear - click “Yes”. A new dialogue box identifying the EL6752 module

will appear, as shown in Figure 37b. Click “Yes”.
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Figure 37: Scanning for IO in TwinCAT.

Subsequently, a dialogue box will appear where the Baudrate for DeviceNet is selected. Given

the setup of the Fronius Welding Machine, choose a 500k Baudrate, and click “OK”. In the next

window, click “Yes”. In the Solution Explorer, one can observe that EL6752 has become a separate

device. Thus, the system is ready to scan for DeviceNet I/O.

5.1.1 DeviceNet I/O

Analogous to the previous procedure where we scanned for devices connected to the PLC, we

will now scan for devices connected to the DeviceNet master, EL6752. Under the I/O section

in Devices, right-click “Device X (EL6752)”, where X refers to the specific device number (for

instance, in Figure 38, it is Device 3).

Figure 38: Scanning for DeviceNet devices.

The system scans all 63 MAC-IDs it can directly communicate with; however, upon completion, it
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does not find any slaves it can control. Instead, we receive an error message indicating that “Other

slaves found (not inserted in Device):” as shown in Figure 39. This is due to the need for an EDS

file that dictates how to manage the DeviceNet unit. Furthermore, the error message reveals the

MAC-ID of the device, as well as the information contained in the EDS file, such as the Vendor-ID,

Device-Type, Product-Code, and revision; these can be viewed in Figure 39. The required file can

be obtained from Fronius [64]; however, identifying the correct EDS file is imperative as there are

several variations.

Figure 39: Other slaves connected message window when searching for DeviceNet slaves.

After downloading the zip file containing the bus systems from Fronius [64], one can navigate

to the “DeviceNet - EDS” folder. Here, multiple options are presented. By examining the bus

card plugged into the Robot Interface in the Fronius Welding Machine, it is discerned that the

correct one is labelled “HMS (Anybus-CC M40)”, as depicted in Figure 40. Nevertheless, with

numerous choices within this folder, determining the appropriate selection is not immediately

evident. One strategy involves using software to open and read the information in the EDS files,

thereby identifying the one that corresponds to the details on the bus card and the error message

in Figure 40 and Figure 39 respectively.

Figure 40: The DeviceNet Bus Card, which is used with the Robot Interface with the Fronius
Welding Machine.

One such program, EZ-EDS, developed by the ODVA, can be downloaded from [76]. For the

versions utilized in this thesis, the suitable file is located in the “RI FB INSIDE MOD CC-M40

DeviceNet”, “EDS”, “1. Standard Image”, “Previous versions”, “V1.6” folder. Refer to Figure 41
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where it is demonstrated that this EDS file contains the same information as found in Figure 39

and Figure 40.

(a)

(b)

Figure 41: The EDS file opened with EZ-EDS, depicts the information in the EDS file, which
matches the setup used in this thesis.
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To incorporate this EDS file, right-click on “Device X (EL6752)” again, but this time select “Add

New Item...”. A new window will appear; scroll down to the bottom of the window, and under

“Miscellaneous” choose the sole option “DeviceNet Node” and click “OK” as shown in Figure 42a.

This action prompts the opening of a Windows file explorer window where one navigates to the

correct EDS file, selects it, and click “Open”. The file will now be added as a Box under “Device

X (EL6752)”, as illustrated in Figure 42b.

(a) (b)

Figure 42: Adding in the DeviceNet node with EDS file as a box under the EL6752 Device.

Scan “Device X (EL6752)” again for an update to correctly establish the connection. If all steps

are executed correctly, no error messages will appear. If the welding machine is connected and

switched on, navigate to Inputs under “Connection (Poll)” to observe that the variables have

updated based on the welding machine’s values, as demonstrated in Figure 43.

Figure 43: The inputs in TwinCat has been updated based on the Fronius Welding Machine.
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Upon examining these inputs and the corresponding outputs, one can identify 40 “Input Data XX”

and “Output Data XX” elements, where XX ranges from 1 to 40. If one looks at the EDS file

under IO Info, it is evident that 40 Bytes are allocated for both Inputs and Outputs, and they are

represented as Unsigned short integers (USINT) in TwinCAT. However, when taken alone, this

information may not provide a clear understanding. Therefore, a form of mapping is required to

make sense of these numbers.

5.1.2 Fronius Welder I/O Mapping

To determine the mapping for these values, referring to Fronius’s DeviceNet documentation might

be beneficial. This could lead to the discovery of the DeviceNet Operation Instructions [77],

which provides various mappings for DeviceNet and some insights into its functioning. However,

it quickly becomes evident that these do not align with our findings, and despite the information

being presented in a different format, it is not possible to discern a correlation between the formats.

Certain elements correspond, but others are entirely distinct. Although considerable relevant

information exists here, the mapping must be found elsewhere.

Consequently, if one accesses the Yaskawa robot controller, to which the Fronius Welding Machine

was initially connected, one can discover the mapping of the IO to which it is attached. From

here, the IO of the Fronius device can be tracked down; refer to Figure 44 for the first two bytes

of output, which are identical to the first two bytes of output in the poll from the DeviceNet box

created in TwinCAT.

(a) (b)

Figure 44: Images of the Yaskawa mapping. It is the two first bytes of the Output mapping

The logic behind locating the mapping here stems from the fact that the Yaskawa robot controller

operates the welding apparatus in its default configuration. Hence, it is logical to think that this

mapping is accurate, a proposition substantiated through testing and by carefully examining the

Operation Instructions for the Bus Card [78]. A notable distinction between the tables found

in [78] and those featured in this thesis lies in their indexing scheme. The tables in [78] utilize
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zero-based indexing, whereas those in this thesis adopt a one-based indexing strategy to align with

the TwinCAT environment. The first ten bytes of the output are presented in Table 2.

Table 2: The Output mapping of the ten first Bytes for the Fronius Welding Machine, found in
the Yaskawa Robot controller.

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

1 1 Welding start 2 1 Gas On
2 Robot ready 2 Wire forward
3 WorkingModeB0 3 Wire backward
4 WorkingModeB1 4 Error quit
5 WorkingModeB2 5 Touch sensing
6 WorkingModeB3 6 Torch blow out
7 WorkingModeB4 7 ProcessLine b1
8 Reserved 8 ProcessLine b2

3 1 Welding Sim 4 1 Reserved
2 SynchroPulseOn 2 Teach mode
3 Reserved 3 Reserved
4 Reserved 4 ActiveHeatCont
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Wire break on 7 Reserved
8 Torch Xchange 8 Reserved

5 1 Twin Mode b1 6 1 Reserved
2 Twin Mode b2 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Document Mode 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 DisableProcesCo

7 1 Reserved 8 1 Ext Input 1
2 Reserved 2 Ext Input 2
3 Reserved 3 Ext Input 3
4 Reserved 4 Ext Input 4
5 Reserved 5 Ext Input 5
6 Reserved 6 Ext Input 6
7 Reserved 7 Ext Input 7
8 Reserved 8 Ext Input 8

9 1 Job nr 10 1 Job nr
2 Low Byte 2 High Byte
3 3
4 4
5 5
6 6
7 7
8 8

These constitute the outputs from the perspectives of the Robot controller and the PLC; however,

from the vantage point of the Fronius welding machine, these will be considered as inputs. Only

the first ten are displayed because they are the most relevant, given that they contain bits and

encompass the format of the first word. The first word consists of the Low Byte, followed immedi-
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ately by the High Byte in the list. Refer to Table 3 for a complete table of all words, and Figure 45

for supplementary information. For a detailed understanding of the Working Mode bits in the first

byte, as indicated in Table 2, refer to Table 4, and is derived from [78].

Table 3: Low Byte values for the corresponding Output Words. The High Byte for each Word
can be calculated by adding one to the Low Byte. The factor indicates the multiplier needed to
convert real-world values to the format recognized by the welding machine. For instance, a desired
welding speed of 10.0 cm/min must be multiplied by a factor of 10 to achieve the corresponding
input value for the welding machine. These values pertain to the output of the PLC.

Low Byte Word Description
9 Job Number 0 to 1000, factor 1
11 Wire feed speed -327.68 to 327.67 [m/min], factor 100
13 Arc Length Correction -10.0 to 10.0 [steps], factor 10
15 Pulse/dyn Correction -10.0 to 10.0 [steps] or 0.0 to 10.0, factor 10
17 Wire Retract Correction 0.0 to 10.0 [steps], factor 10
19 Welding Speed 0.0 to 1000.0 [cm/min], factor 10
21 Process Controlled Correction See Figure 45 from [78] for more info
39 Seam Number 0 to 65,535

Figure 45: Value range for Process controlled correction from [78].

Table 4: Description of Bit Settings of WorkingMode

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Description
0 0 0 0 0 Internal welding parameter selection
0 0 0 0 1 Special 2-step mode characteristics
0 0 0 1 0 Job mode
0 1 0 0 0 2-step mode characteristics
0 1 0 0 1 2-Step manual mode
1 0 0 0 1 Stop cooling pump

By investigating the input mapping on the Yaskawa robot controller, we identify a correspondence

with the first ten bytes for input, as demonstrated in Table 5. This pattern extends to the words

depicted in Table 6. For a comprehensive mapping that includes all bits across the 80 bytes (40

inputs and 40 outputs), Appendix B should be consulted. Detailed elaboration of the mapping

can be found in [78].

Now that we have established the mapping of what the IO with Fronius means, we can utilize

this information in the program that will be run on the PLC. This process will be outlined in

Section 5.3. However, once we have created variables meant to represent the IO in the program,

they must be mapped to the IO. This is accomplished by navigating to the “-PLC project name-

Instance” within the PLC project in the Solution Explorer. In this program, which we will revisit,

an array consisting of 40 bytes for inputs and outputs has been established to reflect the structure

of the IO from the DeviceNet master. Navigate to the first byte in the output array as shown in

Figure 46. Click on the “Linked to..” button and select the corresponding byte from the IO, as

demonstrated in Figure 47, and press ok. Proceed to do this for the remainder of the bytes.
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Table 5: The Input mapping of the ten first Bytes for the Fronius Welding Machine, found in the
Yaskawa Robot controller.

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

1 1 Heartbeat 2 1 Collisionbox
2 Welder Ready 2 Robot Mot Rel
3 Reserved 3 Short Circuit T0
4 Process active 4 Reserved
5 Current flow 5 Reserved
6 Arc stable 6 Prm Sel Int
7 Main current 7 Character num
8 Touch signal 8 Torch Body Gripp

3 1 CommandValu UoR 4 1 Sensor Status 1
2 Correction UoR 2 Sensor Status 2
3 Reserved 3 Sensor Status 3
4 Limitsignal 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Main Supply Stat 7 Reserved
8 Reserved 8 Reserved

5 1 Reserved 6 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

7 1 Process bit 0 8 1 Ext Output 1
2 Process bit 1 2 Ext Output 2
3 Process bit 2 3 Ext Output 3
4 Process bit 3 4 Ext Output 4
5 Process bit 4 5 Ext Output 5
6 Reserved 6 Ext Output 6
7 Reserved 7 Ext Output 7
8 Twin Sync Active 8 Ext Output 8

9 1 Welding Voltage 10 1 Welding Voltage
2 Low Byte 2 High Byte
3 3
4 4
5 5
6 6
7 7
8 8

5.2 Deploying and Running the Code

In order to execute the code, it must initially be built. Navigate to the “Build” option in the

top menu and select “Build Solution”. Once the build process is complete, press the “Activate

Configuration” button, which is highlighted in yellow in Figure 48. This action prompts a window

that displays which project is set to be activated and the system to which it should be linked.

There is also an option to select if the system should auto-start when the PLC is turned on; this
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Table 6: Low Byte values for the corresponding Input Words. The High Byte for each Word can
be determined by adding one to the Low Byte. The values described as shifted to the right are the
measurements provided by the welding machine, which need to be adjusted to obtain the actual
represented value. For instance, a reported welding voltage of 2950 should be interpreted as 29.5V.

Low Byte Word Description
9 Welding Voltage 0.0 to 655.35 [V], shifting the decimal two places to the right.
11 Welding Current 0.0 to 6553.5 [A], shifting the decimal one place to the right.
13 Wire Feed Speed -327.68 to 327.67 [m/min], shifting the decimal two places

to the right.
15 Seam Tracking Actual real value; 0 to 6.5535, shifting the decimal four

places to the right.
17 Errornumber Gives the error number of the error, 0 is no error
21 Motor Current M1 327.68 to 327.67 [A], shifting the decimal two places to the

right.
23 Motor Current M2 327.68 to 327.67 [A], shifting the decimal two places to the

right.
25 Motor Current M3 327.68 to 327.67 [A], shifting the decimal two places to the

right.

Figure 46: Navigating to the TwinCAT variable to map

should be enabled when the PLC is ready for use. However, it might be advisable to leave this

unchecked during the development phase. Press “OK”. If there are no valid licenses, a notification

will appear requesting the creation of trial licenses. In such a case, click “Yes”, enter the captcha

in the subsequent window, and press “OK”. This can also be done under the “System-License”

section; refer to the PLC user manual for detailed instructions on how to proceed and how to add

a suitable license.

The system will then prompt if you would like to restart TwinCAT in run mode, click “OK”. Once

the system has completed logging in, and potentially started the program, you can set and read the

variables in the program via TwinCAT, which will control the welding apparatus. For additional

details, refer to the respective manuals.
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Figure 47: Mapping the IO within TwinCAT.

Figure 48: Activating the Configuration button.

5.3 Program Description

5.3.1 PLC Code

The programming of the PLC was carried out using the ST (Structured Text) language, one of

the languages defined in the IEC61131-3 standard [8]. As previously mentioned in Section 2.4, the

TwinCAT environment adheres to this standard for PLC programming. ST-code closely resembles

traditional programming languages, such as C, C++, and Python, which makes it the most intuitive

choice for this specific application.

In the Structured Text (ST) environment, the code is divided into two distinct text boxes: one for

defining the program and variables, and the other for specifying the code that will be executed in

a loop. As depicted in Figure 36, the upper text box is used to define variables, etc., while the

lower compartment contains the executable code. Below these is a terminal displaying outputs,

errors, and similar notifications.

The program executed in the Main section is relatively straightforward, as all functionality has

been delegated to function blocks responsible for handling the inputs and outputs of the Fronius

welding apparatus, respectively. Thus, the primary task within Main’s definition part involves

initializing these function blocks. A constant variable, redundant from an earlier program version,

also remains present.
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PROGRAM MAIN

VAR

// Initialising the IO

froniusOutputs : Fronius_Outputs;

froniusInputs : Fronius_Inputs;

END_VAR

VAR CONSTANT

ARRAY_LENGTH : UDINT := 40;

END_VAR

Within the code loop, the function blocks are simply invoked, ensuring they operate as intended.

froniusOutputs ();

froniusInputs ();

Refer to Appendix C for a comprehensive view of the PLC code. In the following sections, the

pertinent elements from the code will be extracted and indicate where the excerpt’s complete

version can be found in the appendix. The entire TwinCAT project incorporates this code and is

also included in the digital appendix. Please refer to Appendix E for a description of the included

materials.

The function block for the inputs commences similarly to the main program but starts with FUNC-

TION BLOCK rather than PROGRAM. Another distinguishing aspect is the inclusion of variable

input and output; being a function block, it can receive variables and return some. While this

feature isn’t used here, given the overall program design, it is utilized in a portion of the code

demonstrated later. This can be observed in the following listing, whereas the complete code can

be seen in Section C.2.1.

FUNCTION_BLOCK Fronius_Inputs

VAR_INPUT

END_VAR

VAR_OUTPUT

END_VAR

...

In the standard variable definition section, VAR, all variables are declared according to their

respective formats; thus, boolean variables are defined as boolean, and words are defined as such.

However, they must be specifically defined to link these variables to the 40 bytes provided by

the DeviceNet I/O. This is achieved by appending AT %I* after the variable’s name during its

definition, which is applied to an array of bytes encompassing all 40 bytes, even if they may not all

be utilized. This entire array is made accessible in OPC UA in case it is needed, but the intended

usage involves the other variables set based on their values in the array, as done in the program

part of this code.

The line “{attribute ’OPC.UA.DA’ := ’1’}” is used to make a variable available on the OPC UA

server hosted by the PLC and is placed over every variable that should be on the server. Conversely,

the line “{attribute ’OPC.UA.DA.Access’ := ’1’}” is only used for inputs, as it sets these variables

to read-only. The following listing shows that this is implemented for the array, one of the boolean

variables, and one of the words.

VAR

{attribute 'OPC.UA.DA' := '1'}
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{attribute 'OPC.UA.DA.Access ' := '1'}
iArray AT %I*: ARRAY [1.. ARRAY_LENGTH] OF BYTE;

Reserved : BOOL;

// Byte 1

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Access ' := '1'}
Heartbeat : BOOL; //Bit 1

...

// All the Words

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Access ' := '1'}
WeldingVoltage : WORD;

...

END_VAR

...

At the conclusion of the input definitions, there is a section where constant variables are established.

These are numbers exclusively used in the PLC code, either in the definition or in the loop code

section, and hence, are not made available on the OPC UA server, as it is unnecessary. These

constant variables include the array length for the previously defined array iArray and the low

byte indices for all input words. In the following listing, this can be observed for the array and the

first word.

VAR CONSTANT

ARRAY_LENGTH : UDINT := 40;

//All the indexes to the words , they are the index for the Low Byte

//High Byte index is Low Byte index +1

WeldingVoltageIndex : BYTE := 9;

...

END_VAR

The loop code initiates by systematically setting all boolean variables controlled by a bit from

different bytes. This is accomplished using the BYTE TO BOOL function. However, to ensure

the correct bit within the byte is utilized, bit shifting to the right is performed with the SHR

function. The bits are also subjected to an “and” operation with 1 to safeguard against any

influence from the other bits. The execution of this process for three variables defined by the first

three bits of the first byte can be observed in the following listing, while the complete code can be

accessed in Section C.2.2.

//Bits from Byte 1

Heartbeat := BYTE_TO_BOOL(SHR(iArray [1], 0) AND 1);

WelderReady := BYTE_TO_BOOL(SHR(iArray [1], 1) AND 1);

Reserved := BYTE_TO_BOOL(SHR(iArray [1], 2) AND 1);

...

For the word variables, both the low byte and high byte are read and combined to form a word.

This is accomplished by multiplying the high byte by 256 (expressed in hexadecimal, this operation

is equivalent to multiplying by 100 in decimal) and then adding the low byte. This process can be

observed in the following listing for the WeldingVoltage variable.

// Creating the words by multipling the high byte by 256 and adding the low byte

WeldingVoltage := (BYTE_TO_WORD(iArray[WeldingVoltageIndex +1]) * 16#0100) +

BYTE_TO_WORD(iArray[WeldingVoltageIndex ]);

...
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The definition section of the output function block closely resembles the input function block;

however, AT %Q* is added to the array definition since it pertains to output variables instead

of input variables. As we intend to write to the outputs, including the additional line for write

protection is unnecessary when making the variables accessible for the OPC UA server.

Byte 1 in the outputs is defined with an additional Boolean variable to select whether the variables

used by the welding machine should be set individually or if the entire byte should be set through

the specific byte in the array. This is simply set to TRUE, as it has been chosen that they should

be set individually. This functionality has not been extended to the other variables, which must

be set individually. The only bytes that can be directly set in the array are those not established

as separate variables because they were absent in the mapping.

The end of this section contains a constant variable definition part analogous to that for inputs

and hence is omitted below as it follows the same format. In the following listing, one can observe

the array definition, this set Boolean, and an example for one of the Boolean variables and words.

The entirety of this code segment can be viewed in Section C.3.1.

FUNCTION_BLOCK Fronius_Outputs

...

VAR

{attribute 'OPC.UA.DA' := '1'}
qArray AT %Q*: ARRAY [1.. ARRAY_LENGTH] OF BYTE;

// Byte 1

qByte1_Set_Type : BOOL := TRUE; (*True setting with the boolean variables , False

set in qArray *)

{attribute 'OPC.UA.DA' := '1'}
Welding_start : BOOL; //Bit 1

...

// The words that can be set

{attribute 'OPC.UA.DA' := '1'}
Job_nr : WORD; (*Sets the Job number if in Job mode in range 1 -1000. Over 1000 it

is still 1000 *)

...

In the looping code segment for the outputs, the variables are used to set the bytes in the array,

contrary to being set from them. To set the bytes that are controlled by the Boolean variables, the

Boolean variables are multiplied with their respective bit positions in the byte and subsequently

added together. The first byte, which is set in this manner, is contained within an IF statement

that verifies the set byte. However, as it is always TRUE, it is consistently set in the same manner

as the other bytes controlled by the Boolean variables. The two bytes set by a single word are

established using a method function described subsequent to this segment. This function accepts

the word and the low-byte index defined in the constant variables. The following listing illustrates

this for the first byte and first word, which is Job nr. The entirety of this code segment can be

examined in Section C.3.2.

IF qByte1_Set_Type THEN

qArray [1] := (BOOL_TO_BYTE(Welding_start) * 16#01) +

(BOOL_TO_BYTE(Robot_ready) * 16#02) +

...

Set_Word_TO_Bytes(setWord := Job_nr , Index := JobIndex);

...

The method used to set the bytes from the word is defined similarly to the other parts of the code,
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but it uses the METHOD keyword instead. Notably, it also possesses a return value: a boolean

indicating whether the method execution was successful. This method utilizes two inputs: the word

that sets the bytes, and the index which determines the appropriate bytes in the array. It requires

only these definitions, as methods have access to the variables within the function block they are

defined for. Hence, only the variable inputs are defined, as illustrated in the following listing. This

represents the entirety of this code segment, although it can also be located in Section C.3.3, where

the loop code segment also resides.

METHOD Set_Word_TO_Bytes : BOOL

VAR_INPUT

setWord : WORD;

Index : BYTE; // Index for the two Bytes is always High Byte index = Low Byte

index +1

END_VAR

The loop code segment straightforwardly sets the correct byte using the index, where the high byte

corresponds to the input index+1, considering that the index pertains to the low byte. For the high

byte, the word is divided by 256, thus producing an effect opposite to what was described for the

high bytes in the input section; this value is then converted to a byte via the WORD TO BYTE

function. For the low byte, the AND operation is employed in conjunction with 255 to ensure

that only the low byte portion is converted into the low byte. This process is demonstrated in the

following listing.

qArray[Index +1] := WORD_TO_BYTE(setWord / 16#0100); // Divide by 256 to get the

high byte

qArray[Index] := WORD_TO_BYTE(setWord AND 16#00FF); // AND with 255 to get the low

byte

5.3.2 Python Test Client Codes

The Python test clients utilized to assess the functionality of the OPC UA server on the PLC

were derived from the open-source project, Free OPC-UA Library, as introduced in Section 2.5.6.

Specifically, the opcua-asyncio library was employed for this purpose. The clients developed for

functionality and performance testing were based on the examples provided with the opcua-asyncio

library [79].

Welding test client.py This client was developed to test and provide a proof of concept that it is

possible to connect to the server with code-based OPC UA clients rather than solely using pre-built

test clients such as UA Expert. Some of the critical components of the code will be highlighted

here, but the entire code can be viewed in Section D.1. In the code segments presented below, lines

of unimported code have been removed. These are hashed-out lines and print statements used to

simplify the terminal output, although they do not contribute to the functionality.

Given that the OPC UA library is based on Asyncio, an async task (loop) is defined for executing

the code. In the main definition, this is called in the correct manner, according to Asyncio, with the

main initiation occurring at the very bottom. The first action in this task function is to establish

the necessary information for connecting to the server, including IP address and credentials. The

connection is then made with “async with client:”. All of this can be seen in the listing below.
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async def task(loop):

url = "opc.tcp://169.254.119.112:4840/freeopcua/server/"

client = Client(url=url)

credentials_file = 'credentialsPLC.txt'

# Read username and password from the file

with open(credentials_file, 'r') as f:

username = f.readline().strip()

password = f.readline().strip()

client.set_user(username=username) #########

client.set_password(password) #########

await client.set_security(

SecurityPolicyBasic256Sha256,

certificate=cert,

private_key=private_key#,

#server_certificate="certificate-example.der"

)

async with client:

. . .

def main():

loop = asyncio.get_event_loop()

loop.set_debug(True)

loop.run_until_complete(task(loop))

loop.close()

if __name__ == "__main__":

main()

To access the variables we are interested in, we must browse down through the client’s object

nodes, as direct addressing was not feasible. An example of the path to one of the variables we

wish to inspect is Robot ready, which becomes Objects → PLC1 → MAIN → froniusOutputs →
Robot ready. The code below shows how this browsing is performed from Objects to PLC1.

async with client: # This line is the same as above

objects = client.nodes.objects

children = await objects.get_children()

for child in children:

display_name = await child.read_display_name()

if 'PLC1' in display_name.Text:

plc1 = child

print(display_name)

print(plc1)

plc1_children = await plc1.get_children()

The same process is carried out all the way down to the lowest part, where all variables in this
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test client are selected to add the variables from OPC UA to one list for inputs and another list

for outputs. In the main section, both froniusInputs and froniusOutputs are being sought after.

The code below shows how the outputs are added to the list, and it is similar for the inputs.

outputs = []

for child in fOut_children:

display_name = await child.read_display_name()

if 'qArray' in display_name.Text:

pass

else:

outputs.append(child)

dVal = await child.read_data_value()

var_type = dVal.Value.VariantType

print('Output Variables: ',display_name.Text, '; ', var_type)

The excerpt below depicts a portion of the start function. It illustrates how to read and write to

OPC UA variables by using await with variable.write value(...) or variable.get value(). To index

the correct variable in the lists, they are printed in the code, though more efficient solutions for

storing them for later use can be implemented. Both the start and stop functions must be called

with await, and this must be done within the async with client: section of the task loop.

async def start(outputs, inputs):

weldStart = outputs[0]

robReady = outputs[1]

job = outputs[25]

weldReady = inputs[1]

await robReady.write_value(ua.DataValue(ua.Variant(True)))

await job.write_value(ua.DataValue(ua.Variant(12, ua.VariantType.UInt16)))

print(await job.get_value())

await weldStart.write_value(ua.DataValue(ua.Variant(True)))

print('weldReady', await weldReady.get_value())

print('processActive', await processActive.get_value())

print('weldStart', await weldStart.get_value())

The stop function bears considerable resemblance but instead turns off the welder by setting

weldStart to false. Towards the end of the task loop function, within the async with client: segment,

there is a while loop featuring a match case that calls for start, stop, or ends the program based

on basic user input in the terminal.

Welding test client loop.py

The portions of this code that differ from Welding test client.py can be viewed in Section D.2.

This code was designed to test the continuous operation of the client, enabling observation of the

server and PLC’s behaviour during use. However, this is not sufficiently reliable for testing time
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usage; thus, a new variant was developed, as detailed below.

Welding test client counter.py

In this code, the changes involve replacing the match case with a for loop, which only sets the robot-

ready signal and reads only the welder-ready signal. The length of time it takes from setting the

robot ready until the welder-ready changes are measured. This measurement is taken by recording

an end time when it changes and subtracting the start time. To improve accuracy, asyncio sleep

is used instead of time sleep, and an additional advantage of this is that it prevents the server

connection from being disrupted, which can happen when waiting too long with time sleep. The

results are added to a list, which is eventually written to a file. This can be seen below, and all

changes to this code from Welding test client.py can be viewed in Section D.3.

time_elapsed_list = []

robReady = outputs[1]

weldReady = inputs[1]

for i in range(100):

await robReady.write_value(ua.DataValue(ua.Variant(False)))

await asyncio.sleep(1)

#time.sleep(1)

start_time = time.time()

await robReady.write_value(ua.DataValue(ua.Variant(True)))

while not await weldReady.get_value():

await asyncio.sleep(0.001) # Check every millisecond

end_time = time.time()

time_elapsed = (end_time - start_time) * 1000

time_elapsed_list.append(time_elapsed)

print(f"Time elapsed: {time_elapsed} milliseconds")

await asyncio.sleep(1)

#print(time_elapsed_list)

# Write the times to a CSV file

with open('times.csv', 'w', newline='') as f:

writer = csv.writer(f)

writer.writerow(["Elapsed Time (ms)"])

for t in time_elapsed_list:

writer.writerow([t])
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6 Test Results

6.1 Communication Testing Results

Simple communication tests with different OPC UA clients have been conducted successfully. It is

feasible to set signals and change the job number. The Python test clients are operational, and the

results from the “Welding test client loop.py” script will be presented later in this section under

Section 6.2.2. A screenshot of the initial Python test client, presented in Section 5.3.2, can be

viewed executed on a Linux PC in Figure 49.

6.2 Metrics

6.2.1 UA Expert Performance Test

With UA Expert, briefly described in Section 2.5.5, one can assess the performance of the OPC UA

server. The results of conducting such a test can be viewed in Figure 50. This test was configured

for both read and write call testing. In Figure 51, one can see a zoomed-in version of Figure 50b,

featuring the first 400 cycles. These tests were conducted with the computer running the UA

Expert program directly connected to the PLC.

Figure 50a depicts a graph of the average call duration for all cycles for the different node counts,

with points for maximum and minimum call duration for both reading and writing. The maximum

points are of particular interest and therefore emphasized. For eight nodes case where it may

appear to only account for reading, the corresponding writing point is located underneath because

it was so close in value.

By examining the read graph in Figure 50b and the write graph in Figure 50c, a similar trend is

evident, which can be seen more clearly in Figure 51. The results cluster around their respective

mean times, as can be seen for reading in Test Run 1 in Table 7, and for the same test run in

Table 8. They often peak nearly at 30ms, but occasionally spike up to approximately 100ms. It’s

important to note that this may not necessarily occur throughout a complete run of 1000 cycles

for a given node count. This observation can be drawn from the tables displaying the maximum

call time for reading in Table 11 and for writing in Table 12. In the aforementioned tables, we

observe that the call duration spikes to approximately 100ms for one to two of the node counts for

a single test run.

Table 7: This table provides the average read
time during each test run for different node
counts, with 1000 cycles each run.

Average Read Times [ms]
Test Run 8 nodes 16 nodes 34 nodes 69 nodes

1 6.12 6.79 7.73 10.32
2 5.80 6.72 8.27 10.38
3 4.90 6.83 8.35 10.45
4 6.11 6.77 7.75 10.31
5 5.50 6.80 8.30 10.47
6 5.60 6.60 8.23 10.42
7 6.29 6.53 7.37 10.41
8 6.00 6.60 8.32 10.48
9 5.96 6.62 8.22 10.50
10 5.72 7.05 8.16 10.32

Table 8: This table provides the average
write time during each test run for differ-
ent node counts, with 1000 cycles each run.

Average Write Times [ms]
Test Run 8 nodes 16 nodes 34 nodes

1 6.30 6.45 7.54
2 5.80 6.93 8.25
3 6.03 6.87 8.03
4 6.16 6.39 -
5 5.77 7.02 8.41
6 5.38 6.74 8.20
7 6.29 6.41 7.98
8 5.06 7.00 8.32
9 5.28 6.91 8.15
10 6.24 6.62 7.97
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Figure 49: A screenshot demonstrating the Linux PC in Figure 21 executing the code detailed in
Section 5.3.2.

By examining the tables for minimum times Table 9 and Table 10 and comparing them with the

tables for average times Table 7 and Table 8, we observe that the minimum times are slightly lower.

However, they exhibit a tendency to increase with the number of nodes, similar to the trend seen

with the average times.
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(a)

(b)

(c)

Figure 50: Figure (a) presents the cumulative graph of UA Expert’s Performance View with
average, minimum, and maximum indicators for each node count. Figure (b) illustrates a complete
read call graph, with each line representing different node counts and the axes showing cycle
numbers and milliseconds used, respectively. Figure (c) offers a similar graph for the write call
instead.

By further analyzing the tables for maximum times in Table 11 and Table 12, we observe that

the times are approximately 26 to 30 ms. These times tend to be around 25-26 ms for lower node

counts and closer to 30 ms for higher node counts, excluding the random spikes to about 100 ms.

Therefore, except for these significant spikes, the maximum time tables also follow a trend similar

to the others, where the time slightly increases with the number of nodes.
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Figure 51: A zoomed in version of Figure 50b.

Table 9: This table provides the minimum read
time during each test run for different node
counts, with 1000 cycles each run.

Minimum Read Times [ms]
Test Run 8 nodes 16 nodes 34 nodes 69 nodes

1 3.93 5.09 5.63 8.55
2 3.83 4.59 5.93 8.92
3 3.64 4.85 6.00 8.78
4 3.91 5.16 5.55 8.39
5 3.86 4.76 6.07 8.71
6 3.57 4.83 5.74 8.86
7 3.94 5.14 5.59 8.88
8 3.92 4.97 5.87 8.38
9 3.87 4.91 5.87 8.96
10 3.73 4.92 5.84 8.83

Table 10: This table provides the minimum
write time during each test run for different
node counts, with 1000 cycles each run.

Minimum Write Times [ms]
Test Run 8 nodes 16 nodes 34 nodes

1 4.93 4.47 5.72
2 3.58 4.99 5.86
3 3.78 5.05 5.90
4 5.13 5.38 -
5 3.76 5.03 6.01
6 3.55 4.96 6.79
7 4.57 4.89 5.88
8 3.57 5.00 5.87
9 3.57 4.82 6.95
10 3.93 5.10 5.88

Table 11: This table provides the maximum
read time during each test run for different node
counts, with 1000 cycles each run.

Maximum Read Times [ms]
Test Run 8 nodes 16 nodes 34 nodes 69 nodes

1 26.44 26.41 112.09 29.99
2 111.95 24.38 28.34 110.03
3 24.64 27.88 28.16 109.45
4 26.82 27.85 105.90 20.00
5 109.16 25.95 28.01 111.64
6 98.82 24.97 28.54 115.14
7 26.01 25.94 113.97 29.99
8 79.98 27.85 27.91 111.00
9 74.85 24.96 29.96 85.97
10 23.69 24.79 110.85 30.02

Table 12: This table provides the maximum
write time during each test run for different
node counts, with 1000 cycles each run.

Maximum Write Times [ms]
Test Run 8 nodes 16 nodes 34 nodes

1 25.97 92.15 25.82
2 24.05 23.97 109.88
3 26.05 26.06 91.94
4 26.13 109.34 -
5 23.97 27.93 95.82
6 24.31 28.01 28.17
7 24.72 107.04 26.77
8 24.02 27.92 27.91
9 24.03 28.05 27.59
10 25.92 28.01 89.96

6.2.2 Python Code time test

This testing was performed using the Python test code described in Section 5.3.2. These tests were

conducted using the HP network switch shown in Figure 20 from Section 3. The results of the first

ten iterations from four different test runs can be viewed in Table 13. The bottom of the table

also includes the average of the results. If a specific test run was executed with more than ten

iterations, those additional iterations are factored into the calculation of the average. Graphical

representations of these results can be seen in Figure 52 and Figure 53.

The first graph, Figure 52, displays the results from the initial test run, which consisted of 10

iterations. As one can also discern from the column for Test Run 1 in Table 13, all results except
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Table 13: This table presents the elapsed time (in milliseconds) it takes for a change in the
robot’s Ready signal to affect a corresponding change in the welder’s Ready signal. Each column
corresponds to a specific run. Runs 1 and 2 show the times from all their tests, while Runs 3 and
4 were each performed 100 times, with only the first ten results displayed here.

Elapsed Time (ms)
Test Run 1 Test Run 2 Test Run 3 Test Run 4

Cycle 1 12.996 221.941 428.993 14.994
Cycle 2 13.001 16.955 12.993 12.995
Cycle 3 14.006 12.994 11.973 15.991
Cycle 4 16.005 16.949 33.002 13.999
Cycle 5 16.045 14.006 24.992 17.000
Cycle 6 15.997 44.950 14.957 14.954
Cycle 7 15.048 14.964 14.997 16.999
Cycle 8 13.953 16.952 15.055 20.990
Cycle 9 15.012 16.953 14.994 18.008
Cycle 10 27.001 12.954 14.953 16.955
Averages 15.906 38.962 19.272 15.690

the last lie between 13 and 16 ms, while the last one jumps to 27 ms. From the other test runs

in Table 13, it can be seen that the time usage usually falls within this range and a bit higher.

However, similar to the tests with UA Expert from Section 6.2.1, there are occasional minor spikes

and, very rarely, significant spikes. This can be observed in Figure 53, where two of the test runs

start with very high spikes and otherwise exhibit a few moderate spikes.

Figure 52: Graph of the first Python test run.
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Figure 53: Graph of all python test runs.

7 Discussion

7.1 ROS2

The rationale for the proposed use of ROS2 in controlling the robots designated for welding tasks

is detailed in the Motivation section of this thesis, as referenced in Section 1.1. Specifically, ROS2

facilitates the execution of more complex tasks, including the simulation and planning of intricate

paths around more challenging shapes for welding purposes. As discussed in Section 2.2, ROS2

provides various advantageous features, albeit with some disadvantages. Some of these aspects are

presented below.

Advantages:

• The modular architecture simplifies the development and integration of software components.

• The provision for real-time and safety-critical systems is significant for a multitude of indus-

trial applications.

• ROS2’s compatibility with multiple operating systems enhances the ease of deployment and

maintenance of industrial systems across diverse hardware platforms.

• As an open-source initiative, it is backed by a large and expanding community of developers.

This community support can streamline the process of locating resources and obtaining

assistance during application development.

Disadvantages:

• New users unfamiliar with ROS2 may encounter a learning curve, potentially prolonging

development and deployment durations.

• Compared to other software platforms specifically designed for industrial applications, ROS2

might lack or have incomplete packages and tools.
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• ROS2 may require higher hardware requirements and involve a more intricate installation

process than other software platforms, which could augment the cost and complexity of

deploying industrial systems.

• Potential compatibility issues might arise with existing software components that were de-

veloped for other platforms, thereby requiring further development or integration work to

resolve.

• ROS2 might not be the optimal choice for all industrial applications. Accordingly, assessing

other software platforms or custom development solutions may be crucial, depending on the

specific needs of a given application.

Several of the identified drawbacks of ROS2 are expected to diminish as the platform continues

to evolve and garner increased adoption within various industries, leading to more contributions

towards its development and refinement.

7.2 OPC-UA vs MQTT

MQTT, as described in Section 2.6, and OPC-UA, as detailed in Section 2.5, represent two widely

utilized communication protocols in the realm of Industrial IoT (IIoT). Each protocol carries

its unique advantages and disadvantages, and they are typically deployed for distinct purposes.

A selection of the most significant advantages and disadvantages of both protocols is presented

below.

Advantages of MQTT:

• Lightweight: MQTT is designed to be highly efficient and lightweight, making it ideal for

use in low-power and low-bandwidth devices.

• Scalable: MQTT uses a publish-subscribe architecture, which makes it highly scalable and

allows for efficient communication between multiple devices.

• Simple: The MQTT protocol is relatively simple and easy to implement, making it accessible

to a wide range of developers and devices.

• QoS levels: MQTT supports three levels of Quality of Service (QoS), which provides flexibility

in choosing the level of message delivery guarantee.

Disadvantages of MQTT:

• Limited security: MQTT’s inherent security mechanisms are restricted, potentially exposing

it to cybersecurity threats if not adequately secured.

• Limited metadata support: The support for metadata within MQTT is constrained, poten-

tially complicating the management and understanding of the transmitted data.

• Limited interoperability: MQTT, designed for simplicity and lightweight operation, may not

be suitable for complex systems or those necessitating high degrees of interoperability.

• Explicit definition of message structure required: The structure of the message must be

defined in more explicit detail when using MQTT.
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• Necessity for a broker: The use of MQTT necessitates the presence of a broker to facilitate

communication.

Advantages of OPC-UA:

• Enhanced security: OPC-UA is equipped with robust security mechanisms, including en-

cryption and authentication, rendering it a more secure option for IIoT applications.

• Comprehensive metadata: OPC-UA possesses an extensive set of metadata and informa-

tion modelling capabilities, which can simplify the management and understanding of the

transmitted data.

• Interoperability: OPC-UA is engineered to ensure high levels of interoperability, facilitating

communication between different devices and systems, irrespective of the manufacturer or

platform employed.

• Industry standard: OPC-UA is already widely adopted by a variety of industrial equipment

manufacturers, including those producing PLCs.

Disadvantages of OPC-UA:

• Complexity: OPC-UA is a complex protocol with a steep learning curve and higher imple-

mentation costs compared to MQTT.

• Resource-intensive: OPC-UA requires more processing power and bandwidth than MQTT,

making it less suitable for low-power and low-bandwidth devices.

• Limited scalability: OPC-UA is less scalable than MQTT, as it uses a client-server architec-

ture, which can limit the number of clients that can be connected to a server.

In summary, MQTT represents a lightweight and efficient protocol that is particularly suitable

for devices operating with low power and low bandwidth, in more traditional IoT rather than

IIoT. On the other hand, OPC-UA is a more intricate and secure protocol designed specifically

for complex IIoT applications requiring significant levels of interoperability. The protocol choice

largely depends on the application’s specific requirements, including available resources, security

needs, and data management prerequisites.

For this project, OPC-UA more effectively meets the requirements specified in the Project De-

scription, mainly due to its pre-existing integration into TwinCAT by Beckhoff. However, the

same holds true for MQTT. Moreover, given that the solution is not constrained by performance

limitations, the increased processing power introduced by OPC-UA poses no issue. Importantly,

OPC-UA’s architecture aligns more naturally with the ROS2 concepts that the solution is designed

to work with, removing the need for an additional intermediary, such as the broker that the MQTT

protocol relies upon.

7.3 The Solutions Explored

Multiple methodologies were explored to address the task provided in the Project Description, as

referenced in Section 1.2, which inherently served as one of the secondary objectives set. Thereby,

three primary approaches were explored in more detail.
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• Implementing OPC UA or an analogous protocol directly onto the welding apparatus

• Administering the welding apparatus via the robot controller

• Utilizing the DeviceNet connection more directly rather than through the robot controller

The initial trajectory pursued in depth involved establishing a direct connection to the welding

machine using OPC UA. As per the Fronius website [59], this approach initially appeared highly

promising. The site indicated full support for OPC UA and MQTT, with the former enabling both

the reading and setting of process parameters and the latter used for reading the parameters. This

was to be facilitated via their WeldCube solution and the accompanying WeldCube API. However,

it was not explicitly communicated that the WeldCube solution relies on a specialized computer

sold by Fronius, intended for connection with the welding apparatuses. The requirement of an

additional intermediary device rendered the solution less appealing than initially perceived.

The alternative solution investigated more thoroughly involved interfacing with the Fronius welding

apparatus via the Yaskawa Robot Controller already connected to it. Utilizing the Yaskawa SDK

and programming environment, this might have been a feasible solution. However, the advisor had

previously explored these possibilities and recommended pursuing different avenues for solving the

given task.

A USB to DeviceNet option was also considered. The advisor acknowledged the potential of

employing a device connected via USB, though emphasized that an Ethernet connection would

be preferable. An available USB to DeviceNet converter was discovered, but it remains uncertain

whether it would meet the project’s specific needs. This would require further investigation and

perhaps testing. This could facilitate the connection of a PC, Raspberry Pi or similar device to

host an OPC-UA server akin to the chosen solution. However, it may not offer the same level of

robustness and reliability.

7.3.1 Initial Solution That Commenced Development

The resolution was to employ a PLC - specifically, a CX7000 from Beckhoff - for managing the weld-

ing machine through DeviceNet, utilizing the DeviceNet master terminal EL6752. Subsequently,

the PLC is administered by a PC via an Ethernet connection. The preference for Beckhoff was

primarily dictated by the advisor’s recommendation, given the existing utilization of Beckhoff in

the robot cells. Other potential alternatives, such as Siemens, are also available.

Beckhoff is significantly more economical than Siemens, and according to several individuals from

the institute, Siemens has struggled with maintaining adequate supply. This supply issue was a

principal reason for the existence of the project thesis that the author participated in. Conversely,

Beckhoff provided a swift response and delivery of their products.

An advantage of this approach was that when the requirement to incorporate OPC UA capabilities

arose, even though it necessitated the purchase of a new PLC, it was possible to continue using

the same PLC code and other aspects of the system that had been developed. The only required

addition was the implementation of the features that enabled OPC UA functionality.
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7.3.2 The Final Solution Developed

The solution developed to address the task outlined in the Project Description, and to meet as

many of the set objectives as possible, is the one presented in Section 3. This solution is presented

extensively throughout the thesis, subsequent to that section.

With the implementation of this solution, the majority of the goals stipulated in the Objectives

section were achieved. Two of the secondary objectives pertained to the research and testing of

alternative solutions, objectives that inherently could not be fulfilled by a single solution. As

illustrated above, several alternatives were indeed examined during this project. However, no

additional solutions were tested or implemented.

The connection and communication between a computer and the PLC are facilitated via Ethernet

using the OPC UA protocol. This setup allows the control of the welding apparatus by choosing

the appropriate job. However, modifying parameters directly poses a more significant challenge.

Based on extensive testing of the communication with the welding apparatus, it remains unclear

whether the observed limitations are inherent to the Fronius robot interface or are related to

unidentified criteria necessary for effective control. Thus, the objective of complete control has not

been achieved.

Nonetheless, the existing functionality is plug-and-play. To set it up, one merely needs to connect

the PLC to the welding apparatus using the DeviceNet cable, link the PC via Ethernet, and connect

the power. At this point, the system is operational. A login is required when connecting to the

OPC UA server - a standard feature for such systems. Since the credentials can be stored on the

client side, system access can be secured simply by launching the client.

7.4 Time testing with a non-RT programming language and OS

All the tests providing metrics in the results section were performed using Windows PCs. This

is not ideal, as they should ideally be conducted on Linux machines that have been patched for

real-time operations. Nonetheless, these tests still indicate the time spent on communication and

offer worst-case scenario results, as it is possible with Windows PCs.

The test involving measuring the milliseconds from when a command is sent via OPC UA until

changes can be read. In this instance, a potential source of error is that the tests should ideally

be written in a real-time capable language such as C++ instead of Python. However, due to time

constraints, the tests were performed in Python as the test client had already been developed in

that language.

7.5 Test results

From the results in Section 6.2, it can be seen that the communication between the PC and PLC,

as per the UA Expert results in Section 6.2.1, and the entire round trip to the welding apparatus

and back, as demonstrated in the Python timing test in Section 6.2.2, occurs in the order of 10

ms, though it can occasionally spike higher.

The results from UA Expert reveal that the majority of the time, the latency remains around the

averages reported in the respective results section. However, frequent spikes to approximately 30
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ms and occasionally to about 100 ms are observed. The smaller spikes may originate from the

general communication with the PLC, while the larger spikes may be due to the PC being busy.

As mentioned earlier, these tests should ideally be conducted with an operating system optimized

for real-time operations. Without such testing, it is impossible to definitively determine whether

this is the cause of the larger spikes in latency.

The results shown in Section 6.2.2 exhibit similar tendencies to those seen from the UA Expert

results. Often, the response times hover around the average when numerous measurements are

taken. However, they occasionally spike to 2-3 times the average and, in rare instances, even more.

This behaviour can be seen quite distinctly in the first result of tests 2 and 3 in Table 13 and

very clearly in Figure 53. These particularly large spikes in time consumption might be due to the

PC being occupied with other tasks. Using a PC optimized for real-time operations might help

alleviate this, but testing would be necessary to confirm this hypothesis.

7.6 Errors and troubleshooting

Progress was sometimes stalled during the project due to minor errors or important aspects being

overlooked when setting up the various components. Below are some of the most significant errors

and the troubleshooting steps taken to resolve them:

7.6.1 No external power on the DeviceNet cable

The DeviceNet cable requires power from an external source. Without it, the terminal still appears

in TwinCAT, and things function partially. However, numerous error messages about ADS and a

WCstate set to 1 occur, indicating a fault. Searching for this problem online yields no solution,

merely indicating there is an issue and the communication isn’t functioning as it should, which

isn’t very helpful. However, this issue arises because the communication requires 24V power from

an external source. Once connected, the communication functions properly, and the WCstate

becomes zero. This error transpired despite the known fact that DeviceNet uses a twisted pair for

24 V power. An incorrect assumption was made that the DeviceNet terminal supplied this power,

given the requirement for a separate power connection on the PLC for the IO and IO terminals.

7.6.2 Opening the port on the PLC

During the installation of OPC-UA, issues were encountered when trying to connect to the server.

Considerable time was spent identifying the cause of these issues. In the documentation from

Beckhoff, which can be found here [73], various aspects regarding the port are mentioned. It is

pointed out that a router must be able to forward the port, and that 4840 is a default port for

many OPC-UA implementations and thus might already be in use, but there is little or no mention

that the port must be opened on the PLC itself. This is the reason why it is explicitly included in

the guide that the port must be opened on the PLC, and how to accomplish this with Windows

CE on the PLC, as this was the operating system of the PLC used in this master thesis.
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7.6.3 Variable trouble and Mapping

As mentioned in Section 5.1.2, the DeviceNet documentation from Fronius is not accurate compared

to what is present on the welding apparatus when it is connected to the PLC. Some parts are similar,

but it’s difficult to determine their exact placement by just referencing this documentation. Much

trial and error was required to identify some of these elements, and others are entirely different.

Therefore, finding a mapping inside the Yaskawa robot controller was beneficial. It makes sense

that this mapping is correct, as it was the default controller for the welding apparatus before the

new control solution was developed in this master thesis. The problem with this mapping lies

in the lack of detail regarding variables in the 16-bit word format, which encompasses variables

controlling aspects like the job number, welding current, etc., each composed of two distinct bytes.

As these are indeed formed from two bytes, they were presumed to represent 16-bit words directly.

However, the mapping from Fronius, located in the operation instructions for the bus card and

described the format of the 16-bit words, was unfortunately discovered too late to be implemented

into the program. With the EDS file, we only input the “USINT” (unsigned integers) data type

with the 80 bytes used by the PLC. Relying solely on the mapping from Yaskawa, we overlooked

that several of the set variables are “SINT16” (signed integers) and others are “UINT16” (unsigned

integers), where the latter of which corresponds one-to-one with the “WORD” data type. These

data types can both be represented by a generic 16-bit Word, as they are merely sequences of 16

bits. Generic Words can be interpreted in various ways depending on the context. For instance,

“UINT16” can only represent positive numbers, while “SINT16” can represent both positive and

negative numbers. In a different context, such as text encoding, a format like UTF-16 uses a 16-bit

Word to represent a single character.

It’s possible to incorporate and accommodate this factor in the client-side code that interacts with

ROS2 for complete control over the entire system, including the robot arm and welding apparatus,

for the variables that require SINT16. However, the optimal solution would be to modify the PLC

program so that it is not necessary for this client to consider this, simplifying the development of

future solutions.
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8 Conclusion and Further works

8.1 Conclusion

The solution developed to address the task outlined in the project description in Section 1.2,

has effectively achieved most of the objectives set in the objectives portion of the introduction at

Section 1.4. A detailed discussion of the solution presented in Section 3 is provided at Section 7.3.2.

The majority of the primary and secondary objectives stipulated were indeed achieved. The main

achievements include:

• Establishing communication between the welding apparatus and a computer.

• Enabling control over the Fronius welding apparatus by setting Boolean variables and select-

ing the predefined job for the welding task.

Supplementarily, the accomplishment of several secondary objectives is noted:

• Establishment of the connection over Ethernet.

• Investigation into alternative solutions.

• Provision of a step-by-step guide for implementation, as presented in Section 4 and Section 5.

• Achievement of plug-and-play functionality.

Nevertheless, a couple of the objectives were not completely fulfilled:

• The alternative solutions that were researched were not empirically tested.

• Comprehensive control over all the welding parameters was not achieved directly.

In conclusion, a satisfactory solution has been developed for controlling the welding apparatus.

This solution is prepared for integration with a system using ROS2 to control a welding robot.

8.2 Further work and possible expansions

8.2.1 Updating the PLC code

The PLC code should be updated to accommodate variables that should be in the SINT16 format,

as opposed to their current state as unformatted 16-bit words. This adjustment was the topic of

discussion in Section 7.6.3.

8.2.2 Implementing it into ROS2

A logical progression from the solution developed in this master thesis would be creating the OPC

UA client for controlling the welding apparatus. This client should be constructed to interact

effectively with ROS2, enhancing the control operations. This is the core purpose of the developed

solution, to ensure efficient integration with ROS2 via the OPC UA client.
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Appendix

A PLC architecture from IEC 61131-2

Figure 54: Typical interface/port diagram of a PLC-system (from IEC 61131-2)[9]
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B The Complete I/O Tables

The complete mapping from the Yaskawa robot controller of the DeviceNet I/O of the Fronius

welding machine TPS400/i. It has the two tables Table 2 and Table 5 from Section 5.1.2, to have

a complete mapping in one place.

Table 14: The Output mapping of the ten first Bytes for the Fronius Welding Machine, found in
the Yaskawa Robot controller.

Output

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

1 1 Welding start 2 1 Gas On
2 Robot ready 2 Wire forward
3 WorkingModeB0 3 Wire backward
4 WorkingModeB1 4 Error quit
5 WorkingModeB2 5 Touch sensing
6 WorkingModeB3 6 Torch blow out
7 WorkingModeB4 7 ProcessLine b1
8 Reserved 8 ProcessLine b2

3 1 Welding Sim 4 1 Reserved
2 SynchroPulseOn 2 Teach mode
3 Reserved 3 Reserved
4 Reserved 4 ActiveHeatCont
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Wire break on 7 Reserved
8 Torch Xchange 8 Reserved

5 1 Twin Mode b1 6 1 Reserved
2 Twin Mode b2 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Document Mode 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 DisableProcesCo

7 1 Reserved 8 1 Ext Input 1
2 Reserved 2 Ext Input 2
3 Reserved 3 Ext Input 3
4 Reserved 4 Ext Input 4
5 Reserved 5 Ext Input 5
6 Reserved 6 Ext Input 6
7 Reserved 7 Ext Input 7
8 Reserved 8 Ext Input 8

9 1 Job nr 10 1 Job nr
2 Low Byte 2 High Byte
3 M183 3
4 4
5 5
6 6
7 7
8 8
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Table 15: The Output mapping of Byte 11-20 for the Fronius Welding Machine, found in the
Yaskawa Robot controller.

Output

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

11 1 Wire Feed Speed 12 1 Wire Feed Speed
2 Low Byte 2 High Byte
3 M560 3
4 4
5 5
6 6
7 7
8 8

13 1 Arc length Cor 14 1 Arc length Cor
2 Low Byte 2 High Byte
3 M561 3
4 4
5 5
6 6
7 7
8 8

15 1 Pulse/dyn cor 16 1 Pulse/dyn cor
2 Low Byte 2 High Byte
3 M562 3
4 4
5 5
6 6
7 7
8 8

17 1 Wire Retract Cor 18 1 Wire Retract Cor
2 Low Byte 2 High Byte
3 3
4 4
5 5
6 6
7 7
8 8

19 1 Welding Speed 20 1 Welding Speed
2 Low Byte 2 High Byte
3 3
4 4
5 5
6 6
7 7
8 8
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Table 16: The Output mapping of Byte 21-30 for the Fronius Welding Machine, found in the
Yaskawa Robot controller.

Output

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

21 1 Process Cont Cor 22 1 Process Cont Cor
2 Low Byte 2 High Byte
3 3
4 4
5 5
6 6
7 7
8 8

23 1 Reserved 24 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

25 1 Reserved 26 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

27 1 Reserved 28 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

29 1 Reserved 30 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved
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Table 17: The Output mapping of Byte 31-40 for the Fronius Welding Machine, found in the
Yaskawa Robot controller.

Output

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

31 1 Reserved 32 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

33 1 Reserved 34 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

35 1 Reserved 36 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

37 1 Reserved 38 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

39 1 Seam Number 40 1 Seam Number
2 Low Byte 2 High Byte
3 3
4 4
5 5
6 6
7 7
8 8
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Table 18: The Input mapping of the ten first Bytes for the Fronius Welding Machine, found in the
Yaskawa Robot controller.

Input

Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

1 1 Heartbeat 2 1 Collisionbox
2 Welder Ready 2 Robot Mot Rel
3 Reserved 3 Short Circuit T0
4 Process active 4 Reserved
5 Current flow 5 Reserved
6 Arc stable 6 Prm Sel Int
7 Main current 7 Character num
8 Touch signal 8 Torch Body Gripp

3 1 CommandValu UoR 4 1 Sensor Status 1
2 Correction UoR 2 Sensor Status 2
3 Reserved 3 Sensor Status 3
4 Limitsignal 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Main Supply Stat 7 Reserved
8 Reserved 8 Reserved

5 1 Reserved 6 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

7 1 Process bit 0 8 1 Ext Output 1
2 Process bit 1 2 Ext Output 2
3 Process bit 2 3 Ext Output 3
4 Process bit 3 4 Ext Output 4
5 Process bit 4 5 Ext Output 5
6 Reserved 6 Ext Output 6
7 Reserved 7 Ext Output 7
8 Twin Sync Active 8 Ext Output 8

9 1 Welding Voltage 10 1 Welding Voltage
2 Low Byte 2 High Byte
3 M180 3
4 4
5 5
6 6
7 7
8 8
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Table 19: The Input mapping of Byte 11-20 for the Fronius Welding Machine, found in the Yaskawa
Robot controller.

Input
Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

11 1 Welding Current 12 1 Welding Current
2 Low Byte 2 High Byte
3 M181 3
4 4
5 5
6 6
7 7
8 8

13 1 Wire Feed Speed 14 1 Wire Feed Speed
2 Low Byte 2 High Byte
3 M182 3
4 4
5 5
6 6
7 7
8 8

15 1 Seam Tracking 16 1 Seam Tracking
2 Low Byte 2 High Byte
3 M185 3
4 4
5 5
6 6
7 7
8 8

17 1 Errornumber 18 1 Errornumber
2 Low Byte 2 High Byte
3 M184 3
4 4
5 5
6 6
7 7
8 8

19 1 Reserved 20 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved
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Table 20: The Input mapping of Byte 21-30 for the Fronius Welding Machine, found in the Yaskawa
Robot controller.

Input
Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

21 1 Motor Current M1 22 1 Motor Current M1
2 Low Byte 2 High Byte
3 M186 3
4 4
5 5
6 6
7 7
8 8

23 1 Motor Current M2 24 1 Motor Current M2
2 Low Byte 2 High Byte
3 M187 3
4 4
5 5
6 6
7 7
8 8

25 1 Motor Current M3 26 1 Motor Current M3
2 Low Byte 2 High Byte
3 M188 3
4 4
5 5
6 6
7 7
8 8

27 1 Reserved 28 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

29 1 Reserved 30 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved
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Table 21: The Input mapping of Byte 31-40 for the Fronius Welding Machine, found in the Yaskawa
Robot controller.

Input
Odd Bytes Even Bytes

Byte Bit Description Byte Bit Description

31 1 Reserved 32 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

33 1 Reserved 34 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

35 1 Reserved 36 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

37 1 Reserved 38 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved

39 1 Reserved 40 1 Reserved
2 Reserved 2 Reserved
3 Reserved 3 Reserved
4 Reserved 4 Reserved
5 Reserved 5 Reserved
6 Reserved 6 Reserved
7 Reserved 7 Reserved
8 Reserved 8 Reserved
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C PLC Code

C.1 Main

Main definitions:

1 PROGRAM MAIN

2 VAR

3 // Initialising the IO

4 froniusOutputs : Fronius_Outputs;

5 froniusInputs : Fronius_Inputs;

6

7

8 END_VAR

9 VAR CONSTANT

10 ARRAY_LENGTH : UDINT := 40;

11 END_VAR

Main code:

1 froniusOutputs ();

2 froniusInputs ();

C.2 Fronius Inputs Function Block

C.2.1 The definitions for Input Function Block:

1 FUNCTION_BLOCK Fronius_Inputs

2 VAR_INPUT

3 END_VAR

4 VAR_OUTPUT

5 END_VAR

6 VAR

7 {attribute 'OPC.UA.DA' := '1'}
8 {attribute 'OPC.UA.DA.Access ' := '1'}
9 iArray AT %I*: ARRAY [1.. ARRAY_LENGTH] OF BYTE;

10 Reserved : BOOL;

11

12 // Byte 1

13 {attribute 'OPC.UA.DA' := '1'}
14 {attribute 'OPC.UA.DA.Access ' := '1'}
15 Heartbeat : BOOL; //Bit 1

16 {attribute 'OPC.UA.DA' := '1'}
17 {attribute 'OPC.UA.DA.Access ' := '1'}
18 WelderReady : BOOL; //Bit 2

19 {attribute 'OPC.UA.DA' := '1'}
20 {attribute 'OPC.UA.DA.Access ' := '1'}
21 ProcessActive : BOOL; //Bit 4

22 {attribute 'OPC.UA.DA' := '1'}
23 {attribute 'OPC.UA.DA.Access ' := '1'}
24 CurrentFlow : BOOL; //Bit 5

25 {attribute 'OPC.UA.DA' := '1'}
26 {attribute 'OPC.UA.DA.Access ' := '1'}
27 ArcStable : BOOL; //Bit 6

28 {attribute 'OPC.UA.DA' := '1'}
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29 {attribute 'OPC.UA.DA.Access ' := '1'}
30 MainCurrent : BOOL; //Bit 7

31 {attribute 'OPC.UA.DA' := '1'}
32 {attribute 'OPC.UA.DA.Access ' := '1'}
33 TouchSignal : BOOL; //Bit 8

34

35 // Byte 2

36 {attribute 'OPC.UA.DA' := '1'}
37 {attribute 'OPC.UA.DA.Access ' := '1'}
38 Collisionbox : BOOL; //Bit 1

39 {attribute 'OPC.UA.DA' := '1'}
40 {attribute 'OPC.UA.DA.Access ' := '1'}
41 RobotMotRel : BOOL; //Bit 2

42 {attribute 'OPC.UA.DA' := '1'}
43 {attribute 'OPC.UA.DA.Access ' := '1'}
44 ShortCircuitT0 : BOOL; //Bit 3

45 {attribute 'OPC.UA.DA' := '1'}
46 {attribute 'OPC.UA.DA.Access ' := '1'}
47 PrmSelInt : BOOL; //Bit 6

48 {attribute 'OPC.UA.DA' := '1'}
49 {attribute 'OPC.UA.DA.Access ' := '1'}
50 CharacterNum : BOOL; //Bit 7

51 {attribute 'OPC.UA.DA' := '1'}
52 {attribute 'OPC.UA.DA.Access ' := '1'}
53 TorchBodyGripp : BOOL; //Bit 8

54

55 // Byte 3

56 {attribute 'OPC.UA.DA' := '1'}
57 {attribute 'OPC.UA.DA.Access ' := '1'}
58 CommandValu_UoR : BOOL; //Bit 1

59 {attribute 'OPC.UA.DA' := '1'}
60 {attribute 'OPC.UA.DA.Access ' := '1'}
61 Correction_UoR : BOOL; //Bit 2

62 {attribute 'OPC.UA.DA' := '1'}
63 {attribute 'OPC.UA.DA.Access ' := '1'}
64 Limitsignal : BOOL; //Bit 4

65 {attribute 'OPC.UA.DA' := '1'}
66 {attribute 'OPC.UA.DA.Access ' := '1'}
67 MainSupplyStat : BOOL; //Bit 7

68

69 // Byte 4

70 {attribute 'OPC.UA.DA' := '1'}
71 {attribute 'OPC.UA.DA.Access ' := '1'}
72 SensorStatus1 : BOOL; //Bit 1

73 {attribute 'OPC.UA.DA' := '1'}
74 {attribute 'OPC.UA.DA.Access ' := '1'}
75 SensorStatus2 : BOOL; //Bit 2

76 {attribute 'OPC.UA.DA' := '1'}
77 {attribute 'OPC.UA.DA.Access ' := '1'}
78 SensorStatus3 : BOOL; //Bit 3

79

80

81 // Byte 7

82 {attribute 'OPC.UA.DA' := '1'}
83 {attribute 'OPC.UA.DA.Access ' := '1'}
84 ProcessBit0 : BOOL; //Bit 1

85 {attribute 'OPC.UA.DA' := '1'}
86 {attribute 'OPC.UA.DA.Access ' := '1'}

83



87 ProcessBit1 : BOOL; //Bit 2

88 {attribute 'OPC.UA.DA' := '1'}
89 {attribute 'OPC.UA.DA.Access ' := '1'}
90 ProcessBit2 : BOOL; //Bit 3

91 {attribute 'OPC.UA.DA' := '1'}
92 {attribute 'OPC.UA.DA.Access ' := '1'}
93 ProcessBit3 : BOOL; //Bit 4

94 {attribute 'OPC.UA.DA' := '1'}
95 {attribute 'OPC.UA.DA.Access ' := '1'}
96 ProcessBit4 : BOOL; //Bit 5

97 {attribute 'OPC.UA.DA' := '1'}
98 {attribute 'OPC.UA.DA.Access ' := '1'}
99 TwinSyncActive : BOOL; //Bit 8

100

101 (*

102 //Byte 8

103 {attribute 'OPC.UA.DA' := '1'}
104 ExtOutput1 : BOOL; //Bit 1

105 {attribute 'OPC.UA.DA' := '1'}
106 ExtOutput2 : BOOL; //Bit 2

107 {attribute 'OPC.UA.DA' := '1'}
108 ExtOutput3 : BOOL; //Bit 3

109 {attribute 'OPC.UA.DA' := '1'}
110 ExtOutput4 : BOOL; //Bit 4

111 {attribute 'OPC.UA.DA' := '1'}
112 ExtOutput5 : BOOL; //Bit 5

113 {attribute 'OPC.UA.DA' := '1'}
114 ExtOutput6 : BOOL; //Bit 6

115 {attribute 'OPC.UA.DA' := '1'}
116 ExtOutput7 : BOOL; //Bit 7

117 {attribute 'OPC.UA.DA' := '1'}
118 ExtOutput8 : BOOL; //Bit 8

119 *)

120

121 // All the Words

122 {attribute 'OPC.UA.DA' := '1'}
123 {attribute 'OPC.UA.DA.Access ' := '1'}
124 WeldingVoltage : WORD;

125 {attribute 'OPC.UA.DA' := '1'}
126 {attribute 'OPC.UA.DA.Access ' := '1'}
127 WeldingCurrent : WORD;

128 {attribute 'OPC.UA.DA' := '1'}
129 {attribute 'OPC.UA.DA.Access ' := '1'}
130 WireFeedSpeed : WORD;

131 {attribute 'OPC.UA.DA' := '1'}
132 {attribute 'OPC.UA.DA.Access ' := '1'}
133 SeamTracking : WORD;

134 {attribute 'OPC.UA.DA' := '1'}
135 {attribute 'OPC.UA.DA.Access ' := '1'}
136 ErrorNumber : WORD;

137 {attribute 'OPC.UA.DA' := '1'}
138 {attribute 'OPC.UA.DA.Access ' := '1'}
139 MotorCurrentM1 : WORD;

140 {attribute 'OPC.UA.DA' := '1'}
141 {attribute 'OPC.UA.DA.Access ' := '1'}
142 MotorCurrentM2 : WORD;

143 {attribute 'OPC.UA.DA' := '1'}
144 {attribute 'OPC.UA.DA.Access ' := '1'}
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145 MotorCurrentM3 : WORD;

146

147

148 END_VAR

149 VAR CONSTANT

150 ARRAY_LENGTH : UDINT := 40;

151 //All the indexes to the words , they are the index for the Low Byte

152 //High Byte index is Low Byte index +1

153 WeldingVoltageIndex : BYTE := 9;

154 WeldingCurrentIndex : BYTE := 11;

155 WireFeedSpeedIndex : BYTE := 13;

156 SeamTrackingIndex : BYTE := 15;

157 ErrorNumberIndex : BYTE := 17;

158 MotorCurrentM1Index : BYTE := 21;

159 MotorCurrentM2Index : BYTE := 23;

160 MotorCurrentM3Index : BYTE := 25;

161 END_VAR

C.2.2 The executing Code for Inputs Function Block:

1 //Bits from Byte 1

2 Heartbeat := BYTE_TO_BOOL(SHR(iArray [1], 0) AND 1);

3 WelderReady := BYTE_TO_BOOL(SHR(iArray [1], 1) AND 1);

4 Reserved := BYTE_TO_BOOL(SHR(iArray [1], 2) AND 1);

5 ProcessActive := BYTE_TO_BOOL(SHR(iArray [1], 3) AND 1);

6 CurrentFlow := BYTE_TO_BOOL(SHR(iArray [1], 4) AND 1);

7 ArcStable := BYTE_TO_BOOL(SHR(iArray [1], 5) AND 1);

8 MainCurrent := BYTE_TO_BOOL(SHR(iArray [1], 6) AND 1);

9 TouchSignal := BYTE_TO_BOOL(SHR(iArray [1], 7) AND 1);

10

11 //Bits from Byte 2

12 Collisionbox := BYTE_TO_BOOL(SHR(iArray [2], 0) AND 1);

13 RobotMotRel := BYTE_TO_BOOL(SHR(iArray [2], 1) AND 1);

14 ShortCircuitT0 := BYTE_TO_BOOL(SHR(iArray [2], 2) AND 1);

15 PrmSelInt := BYTE_TO_BOOL(SHR(iArray [2], 5) AND 1);

16 CharacterNum := BYTE_TO_BOOL(SHR(iArray [2], 6) AND 1);

17 TorchBodyGripp := BYTE_TO_BOOL(SHR(iArray [2], 7) AND 1);

18

19 //Bits from Byte 3

20 CommandValu_UoR := BYTE_TO_BOOL(SHR(iArray [3], 0) AND 1);

21 Correction_UoR := BYTE_TO_BOOL(SHR(iArray [3], 1) AND 1);

22 Limitsignal := BYTE_TO_BOOL(SHR(iArray [3], 3) AND 1);

23 MainSupplyStat := BYTE_TO_BOOL(SHR(iArray [3], 6) AND 1);

24

25 //Bits from Byte 4

26 SensorStatus1 := BYTE_TO_BOOL(SHR(iArray [4], 0) AND 1);

27 SensorStatus2 := BYTE_TO_BOOL(SHR(iArray [4], 1) AND 1);

28 SensorStatus3 := BYTE_TO_BOOL(SHR(iArray [4], 2) AND 1);

29

30 //Bits from Byte 7

31 ProcessBit0 := BYTE_TO_BOOL(SHR(iArray [7], 0) AND 1);

32 ProcessBit1 := BYTE_TO_BOOL(SHR(iArray [7], 1) AND 1);

33 ProcessBit2 := BYTE_TO_BOOL(SHR(iArray [7], 2) AND 1);

34 ProcessBit3 := BYTE_TO_BOOL(SHR(iArray [7], 3) AND 1);

35 ProcessBit4 := BYTE_TO_BOOL(SHR(iArray [7], 4) AND 1);

36 TwinSyncActive := BYTE_TO_BOOL(SHR(iArray [7], 7) AND 1);

37
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38 // Creating the words by multipling the high byte by 256 and adding the low byte

39 WeldingVoltage := (BYTE_TO_WORD(iArray[WeldingVoltageIndex +1]) * 16#0100) +

BYTE_TO_WORD(iArray[WeldingVoltageIndex ]);

40 WeldingCurrent := (BYTE_TO_WORD(iArray[WeldingCurrentIndex +1]) * 16#0100) +

BYTE_TO_WORD(iArray[WeldingCurrentIndex ]);

41 WireFeedSpeed := (BYTE_TO_WORD(iArray[WireFeedSpeedIndex +1]) * 16#0100) +

BYTE_TO_WORD(iArray[WireFeedSpeedIndex ]);

42 SeamTracking := (BYTE_TO_WORD(iArray[SeamTrackingIndex +1]) * 16#0100) +

BYTE_TO_WORD(iArray[SeamTrackingIndex ]);

43 ErrorNumber := (BYTE_TO_WORD(iArray[ErrorNumberIndex +1]) * 16#0100) +

BYTE_TO_WORD(iArray[ErrorNumberIndex ]);

44 MotorCurrentM1 := (BYTE_TO_WORD(iArray[MotorCurrentM1Index +1]) * 16#0100) +

BYTE_TO_WORD(iArray[MotorCurrentM1Index ]);

45 MotorCurrentM2 := (BYTE_TO_WORD(iArray[MotorCurrentM2Index +1]) * 16#0100) +

BYTE_TO_WORD(iArray[MotorCurrentM2Index ]);

46 MotorCurrentM3 := (BYTE_TO_WORD(iArray[MotorCurrentM3Index +1]) * 16#0100) +

BYTE_TO_WORD(iArray[MotorCurrentM3Index ]);

C.3 Fronius Outputs Function Block

C.3.1 The definitions for Output Function Block:

1 FUNCTION_BLOCK Fronius_Outputs

2 VAR_INPUT

3 END_VAR

4 VAR_OUTPUT

5 END_VAR

6 VAR

7 {attribute 'OPC.UA.DA' := '1'}
8 qArray AT %Q*: ARRAY [1.. ARRAY_LENGTH] OF BYTE;

9

10 // Byte 1

11 qByte1_Set_Type : BOOL := TRUE; (*True setting with the boolean variables , False

set in qArray *)

12 {attribute 'OPC.UA.DA' := '1'}
13 Welding_start : BOOL; //Bit 1

14 {attribute 'OPC.UA.DA' := '1'}
15 Robot_ready : BOOL; //Bit 2

16 {attribute 'OPC.UA.DA' := '1'}
17 WorkingModeB0 : BOOL; //Bit 3

18 {attribute 'OPC.UA.DA' := '1'}
19 WorkingModeB1 : BOOL; //Bit 4

20 {attribute 'OPC.UA.DA' := '1'}
21 WorkingModeB2 : BOOL; //Bit 5

22 {attribute 'OPC.UA.DA' := '1'}
23 WorkingModeB3 : BOOL; //Bit 6

24 {attribute 'OPC.UA.DA' := '1'}
25 WorkingModeB4 : BOOL; //Bit 7

26

27 //Byte 2

28 {attribute 'OPC.UA.DA' := '1'}
29 GasOn : BOOL; //Bit 1

30 {attribute 'OPC.UA.DA' := '1'}
31 WireForward : BOOL; //Bit 2

32 {attribute 'OPC.UA.DA' := '1'}
33 WireBackward : BOOL; //Bit 3
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34 {attribute 'OPC.UA.DA' := '1'}
35 ErrorQuit : BOOL; //Bit 4

36 {attribute 'OPC.UA.DA' := '1'}
37 TouchSensing : BOOL; //Bit 5

38 {attribute 'OPC.UA.DA' := '1'}
39 TorchBlowOut : BOOL; //Bit 6

40 {attribute 'OPC.UA.DA' := '1'}
41 ProcessLineB1 : BOOL; //Bit 7

42 {attribute 'OPC.UA.DA' := '1'}
43 ProcessLineB2 : BOOL; //Bit 8

44

45 // Byte 3

46 {attribute 'OPC.UA.DA' := '1'}
47 WeldingSim : BOOL; //Bit 1

48 {attribute 'OPC.UA.DA' := '1'}
49 SynchroPulseOn : BOOL; //Bit 2

50 {attribute 'OPC.UA.DA' := '1'}
51 WireBreakOn : BOOL; //Bit 7

52 {attribute 'OPC.UA.DA' := '1'}
53 TorchXchange : BOOL; //Bit 8

54

55 //Byte 4

56 {attribute 'OPC.UA.DA' := '1'}
57 TeachMode : BOOL; //Bit 2

58 {attribute 'OPC.UA.DA' := '1'}
59 ActiveHeatCont : BOOL; //Bit 4

60

61 // Byte 5

62 {attribute 'OPC.UA.DA' := '1'}
63 TwinModeB1 : BOOL; //Bit 1

64 {attribute 'OPC.UA.DA' := '1'}
65 TwinModeB2 : BOOL; //Bit 2

66 {attribute 'OPC.UA.DA' := '1'}
67 DocumentMode : BOOL; //Bit 6

68

69 // Byte 6

70 {attribute 'OPC.UA.DA' := '1'}
71 DisableProcesCo : BOOL; //Bit 8

72

73 (*

74 //Byte 8

75 {attribute 'OPC.UA.DA' := '1'}
76 ExtInput1 : BOOL; //Bit 1

77 {attribute 'OPC.UA.DA' := '1'}
78 ExtInput2 : BOOL; //Bit 2

79 {attribute 'OPC.UA.DA' := '1'}
80 ExtInput3 : BOOL; //Bit 3

81 {attribute 'OPC.UA.DA' := '1'}
82 ExtInput4 : BOOL; //Bit 4

83 {attribute 'OPC.UA.DA' := '1'}
84 ExtInput5 : BOOL; //Bit 5

85 {attribute 'OPC.UA.DA' := '1'}
86 ExtInput6 : BOOL; //Bit 6

87 {attribute 'OPC.UA.DA' := '1'}
88 ExtInput7 : BOOL; //Bit 7

89 {attribute 'OPC.UA.DA' := '1'}
90 ExtInput8 : BOOL; //Bit 8

91 *)
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92

93 // The words that can be set

94 {attribute 'OPC.UA.DA' := '1'}
95 Job_nr : WORD; (*Sets the Job number if in Job mode in range 1 -1000. Over 1000 it

is still 1000 *)

96 {attribute 'OPC.UA.DA' := '1'}
97 WireFeedSpeed : WORD;

98 {attribute 'OPC.UA.DA' := '1'}
99 ArcLengthCor : WORD;

100 {attribute 'OPC.UA.DA' := '1'}
101 PulseDynCor : WORD;

102 {attribute 'OPC.UA.DA' := '1'}
103 WireRetractCor : WORD;

104 {attribute 'OPC.UA.DA' := '1'}
105 WeldingSpeed : WORD;

106 {attribute 'OPC.UA.DA' := '1'}
107 ProcessContCor : WORD;

108 {attribute 'OPC.UA.DA' := '1'}
109 SeamNumber : WORD;

110

111 END_VAR

112 VAR CONSTANT

113 ARRAY_LENGTH : UDINT := 40;

114 JobIndex : BYTE := 9;

115 WireFeedSpeedIndex : BYTE := 11;

116 ArcLengthCorIndex : BYTE := 13;

117 PulseDynCorIndex : BYTE := 15;

118 WireRetractCorIndex : BYTE := 17;

119 WeldingSpeedIndex : BYTE := 19;

120 ProcessContCorIndex : BYTE := 21;

121 SeamNumberIndex : BYTE := 39;

122 END_VAR

C.3.2 The executing Code for Outputs Function Block:

1 IF qByte1_Set_Type THEN

2 qArray [1] := (BOOL_TO_BYTE(Welding_start) * 16#01) +

3 (BOOL_TO_BYTE(Robot_ready) * 16#02) +

4 (BOOL_TO_BYTE(WorkingModeB0) * 16#04) +

5 (BOOL_TO_BYTE(WorkingModeB1) * 16#08) +

6 (BOOL_TO_BYTE(WorkingModeB2) * 16#10) +

7 (BOOL_TO_BYTE(WorkingModeB3) * 16#20) +

8 (BOOL_TO_BYTE(WorkingModeB4) * 16#40) +

9 (BOOL_TO_BYTE (0) * 16#80);

10 END_IF

11

12 Set_Word_TO_Bytes(setWord := Job_nr , Index := JobIndex);

13 Set_Word_TO_Bytes(setWord := WireFeedSpeed , Index := WireFeedSpeedIndex);

14 Set_Word_TO_Bytes(setWord := ArcLengthCor , Index := ArcLengthCorIndex);

15 Set_Word_TO_Bytes(setWord := PulseDynCor , Index := PulseDynCorIndex);

16 Set_Word_TO_Bytes(setWord := WireRetractCor , Index := WireRetractCorIndex);

17 Set_Word_TO_Bytes(setWord := WeldingSpeed , Index := WeldingSpeedIndex);

18 Set_Word_TO_Bytes(setWord := ProcessContCor , Index := ProcessContCorIndex);

19 Set_Word_TO_Bytes(setWord := SeamNumber , Index := SeamNumberIndex);

20

21 qArray [2] := (BOOL_TO_BYTE(GasOn) * 16#01) +

22 (BOOL_TO_BYTE(WireForward) * 16#02) +
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23 (BOOL_TO_BYTE(WireBackward) * 16#04) +

24 (BOOL_TO_BYTE(ErrorQuit) * 16#08) +

25 (BOOL_TO_BYTE(TouchSensing) * 16#10) +

26 (BOOL_TO_BYTE(TorchBlowOut) * 16#20) +

27 (BOOL_TO_BYTE(ProcessLineB1) * 16#40) +

28 (BOOL_TO_BYTE(ProcessLineB2) * 16#80);

29

30 qArray [3] := (BOOL_TO_BYTE(WeldingSim) * 16#01) +

31 (BOOL_TO_BYTE(SynchroPulseOn) * 16#02) +

32 (BOOL_TO_BYTE(WireBreakOn) * 16#40) +

33 (BOOL_TO_BYTE(TorchXchange) * 16#80);

34

35 qArray [4] := (BOOL_TO_BYTE(TeachMode) * 16#02) +

36 (BOOL_TO_BYTE(ActiveHeatCont) * 16#08);

37

38 qArray [5] := (BOOL_TO_BYTE(TwinModeB1) * 16#01) +

39 (BOOL_TO_BYTE(TwinModeB2) * 16#02) +

40 (BOOL_TO_BYTE(WireBackward) * 16#04) +

41 (BOOL_TO_BYTE(DocumentMode) * 16#20);

42

43 qArray [6] := (BOOL_TO_BYTE(DisableProcesCo) * 16#80);

C.3.3 Method for Output Function Block

The variables part:

1 METHOD Set_Word_TO_Bytes : BOOL

2 VAR_INPUT

3 setWord : WORD;

4 Index : BYTE; // Index for the two Bytes is always High Byte index = Low Byte

index +1

5 END_VAR

The code part:

1 qArray[Index +1] := WORD_TO_BYTE(setWord / 16#0100); // Divide by 256 to get the

high byte

2 qArray[Index] := WORD_TO_BYTE(setWord AND 16#00FF); // AND with 255 to get the low

byte
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D Python Code

D.1 “Welding test client.py”

The Python test client developed, based on the examples from the opcua-asyncio library:

1 import asyncio

2 import logging

3 import sys

4 import time

5 sys.path.insert(0, "..")

6 from datetime import datetime

7 from asyncua import Client, Node, ua

8 from asyncua.crypto.security_policies import SecurityPolicyBasic256Sha256

9

10 logging.basicConfig(level=logging.INFO)

11 _logger = logging.getLogger("asyncua")

12

13 cert_idx = 1

14 cert = f"certificates/peer-certificate-example-{cert_idx}.der"

15 private_key = f"certificates/peer-private-key-example-{cert_idx}.pem"

16

17 async def write_variable_fronius(node, value):

18 if type(value) == bool:

19 await node.write_attribute(ua.AttributeIds.Value, ua.DataValue(ua.Variant(value)))

20 elif isinstance(value, (int) ):

21 await node.write_value(ua.DataValue(ua.Variant(value, ua.VariantType.UInt16)))

22 else:

23 print('Unsupported type for fronius')

24

25 async def start(outputs, inputs):

26 weldStart = outputs[0]

27 robReady = outputs[1]

28 workB0 = outputs[2]

29 workB1 = outputs[3]

30 workB2 = outputs[4]

31 job = outputs[25]

32

33 weldReady = inputs[1]

34 processActive = inputs[3]

35

36 await robReady.write_value(ua.DataValue(ua.Variant(True)))

37 await workB0.write_value(ua.DataValue(ua.Variant(False)))

38 await workB1.write_value(ua.DataValue(ua.Variant(True)))

39 await workB2.write_value(ua.DataValue(ua.Variant(False)))

40 await job.write_value(ua.DataValue(ua.Variant(12, ua.VariantType.UInt16)))

41

42 print(job)

43 print(await job.get_access_level())

44 print(await job.get_value())

45

46 print('weldReady', await weldReady.get_value())

47 print('processActive', await processActive.get_value())

48

49 await weldStart.write_value(ua.DataValue(ua.Variant(True)))

50

51 print('weldReady', await weldReady.get_value())

52 print('processActive', await processActive.get_value())
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53 print('weldStart', await weldStart.get_value())

54

55

56 async def stop(outputs, inputs):

57 weldStart = outputs[0]

58 robReady = outputs[1]

59

60 weldReady = inputs[1]

61 processActive = inputs[3]

62

63 print('weldReady', await weldReady.get_value())

64 print('processActive', await processActive.get_value())

65

66 await weldStart.write_value(ua.DataValue(ua.Variant(False)))

67 await robReady.write_value(ua.DataValue(ua.Variant(False)))

68

69 print('weldReady', await weldReady.get_value())

70 print('processActive', await processActive.get_value())

71 print('weldStart', await weldStart.get_value())

72

73

74

75

76

77 async def task(loop):

78 #url = "opc.tcp://127.0.0.1:4840/freeopcua/server/"

79 url = "opc.tcp://169.254.119.112:4840/freeopcua/server/"

80 #url = "opc.tcp://localhost:4840/freeopcua/server/"

81 client = Client(url=url)

82

83 credentials_file = 'credentialsPLC.txt'

84 #credentials_file = 'credentials.txt'

85 # Read username and password from the file

86 with open(credentials_file, 'r') as f:

87 username = f.readline().strip()

88 password = f.readline().strip()

89 client.set_user(username=username) #########

90 client.set_password(password) #########

91 #client.s

92 await client.set_security(

93 SecurityPolicyBasic256Sha256,

94 certificate=cert,

95 private_key=private_key#,

96 #server_certificate="certificate-example.der"

97 )

98 async with client:

99 objects = client.nodes.objects

100 ##############################################################

101 #await browse_children_recursively(objects)

102 print('\n-------\n',objects,'\n--------------\n')

103

104 children = await objects.get_children()

105 print('\n--------------------------')

106 for child in children:

107 #print(await child.get_path())

108 display_name = await child.read_display_name()

109 if 'PLC1' in display_name.Text:

110 plc1 = child

111 print(display_name)

112 print('--------------------------\n')
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113

114 print(plc1)

115 plc1_children = await plc1.get_children()

116 #print(plc1_children)

117

118 for child in plc1_children:

119 display_name = await child.read_display_name()

120 if 'MAIN' in display_name.Text:

121 main = child

122 print(display_name)

123 print('--------------------------\n')

124

125 print(main)

126

127 main_children = await main.get_children()

128 #print(main_children)

129

130 for child in main_children:

131 display_name = await child.read_display_name()

132 if 'froniusOutputs' in display_name.Text:

133 fOut = child

134 elif 'froniusInputs' in display_name.Text:

135 fIn = child

136 print(display_name)

137 print('--------------------------\n')

138

139 print(fOut)

140

141 fOut_children = await fOut.get_children()

142 fIn_children = await fIn.get_children()

143

144 #print(fOut_children)

145 outputs = []

146 inputs = []

147

148 for child in fOut_children:

149 display_name = await child.read_display_name()

150 if 'qArray' in display_name.Text:

151 pass

152 else:

153 outputs.append(child)

154

155 dVal = await child.read_data_value()

156 var_type = dVal.Value.VariantType

157 print('Output Variables: ',display_name.Text, '; ', var_type)

158 print('--------------------------\n')

159

160 #print(outputs)

161

162 #print(fIn_children)

163

164 for child in fIn_children:

165 inputs.append(child)

166 display_name = await child.read_display_name()

167 if 'iArray' in display_name.Text:

168 pass

169 else:

170 inputs.append(child)

171

172 dVal = await child.read_data_value()
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173 var_type = dVal.Value.VariantType

174 print('Input Variables: ',display_name.Text, '; ', var_type)

175 print('--------------------------\n')

176

177 my_var = 0

178 while True:

179 my_var = int(input('1: Start, 2: Stop, 3: Finnished: '))

180 match my_var:

181 case 0:

182 pass

183 case 1:

184 await start(outputs, inputs)

185 my_var = 0

186 case 2:

187 await stop(outputs, inputs)

188 my_var = 0

189 case 3:

190 break

191 case _:

192 await stop(outputs, inputs)

193 print('error')

194 break

195

196 # await start(outputs, inputs)

197

198 # time.sleep(5)

199

200 # await stop(outputs, inputs)

201

202

203

204

205 def main():

206 loop = asyncio.get_event_loop()

207 loop.set_debug(True)

208 loop.run_until_complete(task(loop))

209 loop.close()

210

211

212 if __name__ == "__main__":

213 main()

The credentials file that is read in lines 83-90:

1 Administrator

2 1

The two other Python clients created for testing are modified versions of the client shown above.

Therefore, only the altered parts will be detailed below, while all complete files are attached as

described in Appendix E.
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D.2 “Welding test client loop.py”:

1 ...

2 async def start(outputs, inputs):

3 weldStart = outputs[0]

4 robReady = outputs[1]

5 workB0 = outputs[2]

6 workB1 = outputs[3]

7 workB2 = outputs[4]

8 job = outputs[25]

9

10 weldReady = inputs[1]

11 processActive = inputs[3]

12

13 await robReady.write_value(ua.DataValue(ua.Variant(True)))

14 await workB0.write_value(ua.DataValue(ua.Variant(False)))

15 await workB1.write_value(ua.DataValue(ua.Variant(True)))

16 await workB2.write_value(ua.DataValue(ua.Variant(False)))

17 await job.write_value(ua.DataValue(ua.Variant(12, ua.VariantType.UInt16)))

18

19 print(job)

20 print(await job.get_access_level())

21 print(await job.get_value())

22

23 print('weldReady', await weldReady.get_value())

24 print('processActive', await processActive.get_value())

25

26 #await weldStart.write_value(ua.DataValue(ua.Variant(True)))

27

28 print('weldReady', await weldReady.get_value())

29 print('processActive', await processActive.get_value())

30 print('weldStart', await weldStart.get_value())

31 ...

32 my_var = 0

33 counter = 0

34 while True:

35 counter +=1

36 if counter % 2 == 0:

37 my_var = 2

38 else:

39 my_var = 1

40 time.sleep(1000/1000) # waiting 500 [ms]

41 match my_var:

42 case 0:

43 pass

44 case 1:

45 await start(outputs, inputs)

46 my_var = 0

47 case 2:

48 await stop(outputs, inputs)

49 my_var = 0

50 case 3:

51 break

52 case _:

53 await stop(outputs, inputs)

54 print('error')

55 break
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The unique aspects of this loop code reside in the start function, where it only sets the robot’s

ready signal, not the weld start signal. Additionally, towards the end of the match case, rather

than awaiting user input, it alternates between start and stop every second.

D.3 “Welding test client counter.py”:

1 import asyncio

2 import logging

3 import sys

4 import time

5 import csv

6 sys.path.insert(0, "..")

7 from datetime import datetime

8 from asyncua import Client, Node, ua

9 from asyncua.crypto.security_policies import SecurityPolicyBasic256Sha256

10

11 ...

12

13 time_elapsed_list = []

14 robReady = outputs[1]

15 weldReady = inputs[1]

16 for i in range(100):

17 await robReady.write_value(ua.DataValue(ua.Variant(False)))

18 await asyncio.sleep(1)

19 #time.sleep(1)

20

21 start_time = time.time()

22 await robReady.write_value(ua.DataValue(ua.Variant(True, ua.VariantType.Boolean)))

23

24 while not await weldReady.get_value():

25 await asyncio.sleep(0.001) # Check every millisecond

26

27 end_time = time.time()

28 time_elapsed = (end_time - start_time) * 1000

29 time_elapsed_list.append(time_elapsed)

30 print(f"Time elapsed: {time_elapsed} milliseconds")

31 await asyncio.sleep(1)

32

33 #print(time_elapsed_list)

34

35 # Write the times to a CSV file

36 with open('times.csv', 'w', newline='') as f:

37 writer = csv.writer(f)

38 writer.writerow(["Elapsed Time (ms)"])

39 for t in time_elapsed_list:

40 writer.writerow([t])

41

42 ...

The variations in the counter code primarily lie in the import of the CSV library. Although the

start function from the loop code is used, it remains inactive, as the match case component has

been replaced with a for loop. Additionally, a section for writing to a file has been incorporated.
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E Attachments

E.1 Attached files:

• The TwinCAT project with the PLC code

• The Python test and testing clients

• The author’s Project Thesis

• The risk assessment done with a fellow student

• A video of the Linux test

E.2 Hardware:

The control cabinet with the Beckhoff CX8190 Embedded PC that was used as a PLC with the

EL6752 DeviceNet master terminal and the DeviceNet cable that was created.

96




	List of Figures
	List of Tables
	Introduction
	Motivation
	Project Description
	Previous Work
	Objective
	Structure of Thesis

	Background Theory
	Programmable Logic Controller (PLC)
	Control Systems and Controllers
	The Functions of PLCs
	The Hardware and Architecture of PLCs
	PLC Inputs and Outputs
	PLC Manufacturers and Models

	ROS2
	Introduction to ROS2
	Key Features of ROS2
	Standard Packages and Tools in ROS2
	ROS2 Architecture
	Community Support

	DeviceNet
	Introduction and Overview
	Architecture
	Communication and Network Features
	Reliability and Fault Tolerance Features

	Beckhoff Automation and its Technologies
	Beckhoff Automation
	TwinCAT
	EtherCAT
	Industrial and Embedded PC PLCs

	Introduction to OPC Unified Architecture (OPC UA)
	Overview of OPC UA
	Key Features of OPC UA
	OPC UA Architecture
	OPC UA in Industrial Applications
	UaExpert - OPC UA Client
	Free OPC-UA Library

	MQTT
	Introduction and History
	Architecture
	Key Features and Efficiency
	Quality of Service (QoS) Levels

	Fronius TPS/i Welding Machine
	System Architecture
	Working Principles
	Key Features

	Yaskawa and Robotic Welding
	Yaskawa Robotic Welding Solutions

	Yaskawa YRC1000 Robot Controller
	High-Speed Processing
	Safety Features
	Programming


	Proposed Solution
	Setting up the Computer, PLC, and cables
	Setup of the Hardware
	Commissioning the PLC
	DeviceNet Cable

	Setup of the Software
	Installing the Required Software for the PC
	PLC Software


	Programming the PLC
	Connecting to the Fronius Welding Machine
	DeviceNet I/O
	Fronius Welder I/O Mapping

	Deploying and Running the Code
	Program Description
	PLC Code
	Python Test Client Codes


	Test Results
	Communication Testing Results
	Metrics
	UA Expert Performance Test
	Python Code time test


	Discussion
	ROS2
	OPC-UA vs MQTT
	The Solutions Explored
	Initial Solution That Commenced Development
	The Final Solution Developed

	Time testing with a non-RT programming language and OS
	Test results
	Errors and troubleshooting
	No external power on the DeviceNet cable
	Opening the port on the PLC
	Variable trouble and Mapping


	Conclusion and Further works
	Conclusion
	Further work and possible expansions
	Updating the PLC code
	Implementing it into ROS2


	Bibliography
	Appendix
	PLC architecture from IEC 61131-2
	The Complete I/O Tables
	PLC Code
	Main
	Fronius_Inputs Function Block
	The definitions for Input Function Block:
	The executing Code for Inputs Function Block:

	Fronius_Outputs Function Block
	The definitions for Output Function Block:
	The executing Code for Outputs Function Block:
	Method for Output Function Block


	Python Code
	``Welding_test_client.py"
	``Welding_test_client_loop.py":
	``Welding_test_client_counter.py":

	Attachments
	Attached files:
	Hardware:


