
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Even Rise Gregersen

Simultaneous Control of Crane Tip
Position and Crane Load Oscillation
Dampening on Shipboard Cranes

Master’s thesis in Subsea Technology
Supervisor: Christian Holden
June 2023





Even Rise Gregersen

Simultaneous Control of Crane Tip
Position and Crane Load Oscillation
Dampening on Shipboard Cranes

Master’s thesis in Subsea Technology
Supervisor: Christian Holden
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering





Preface

This master thesis is written as a part of the course TPK4960 “Robotics and Automation,
Master’s Thesis ” in the spring of 2023. This thesis constitutes the final part of my master’s
degree in Subsea Technology at the Norwegian University of Science and Technology and
is written in cooperation with Sintef Ocean.

First of all, I would like to thank my thesis supervisor Christian Holden, whose keen
interest and thorough help have been invaluable. Linn Evjemo from Sintef Ocean deserves
a big thanks for her interest and input. I would also like to thank Olav Egeland for
providing some of the fundamental theories for this project.





Abstract

For operations in aquaculture and offshore industries shipboard cranes are extensively
used. Waves induce disturbances into the crane through the ship and wind disturbances
affect the crane load. These disturbances can cause pendulation in the crane load that
can put equipment and more importantly personnel at risk. To minimise these unwanted
pendulations a feedback control system can be employed.

In this master’s thesis, such control systems are investigated. Three different control
systems are designed together with dynamic and kinematic models for the crane-tip and
crane load. The control goals are to create simultaneous control of the crane-tip position
and crane load dampening. Different types of control are tried such as feedforward,
feedback, cascade and nonlinear model predictive control in different combinations.

Both promising and non-promising results were found. Using a feedback controller for
damping with feedforward control for the crane tip worked for the crane without dis-
turbances. Using a controller with feedback for both crane load damping and crane tip
position, and a controller with nonlinear model predictive control for crane tip position
and Lyapunov-based damping showed less promising results. Evaluation of the dynamic
model for the crane is promising there were, however, problems with the inverse kinematic
solution of the third crane joint position together with the solution for the velocity and
acceleration of the first joint.





Sammendrag

For operasjoner i akvakultur og offshore industriene er skipskraner til en stor grad tatt
i bruk. Bølger har evnene til å indusere forstyrrelser fra skipet inn i kranen og vind
påvirker kranlasten. Disse forstyrrelsene kan forårsake oscilleringer i kranlasten som kan
sette utstyr og personal i fare. For å minimere disse uønskede oscilleringene kan en
tilbakekoblingsregulator benyttes.

I denne masteroppgaven er slike kontrollsystem utforsket. Tre forskjellige kontrollsyste-
mer er designet sammen med dynamiske og kinematiske modeller for kran og kranlast.
Reguleringsmålet er å oppnå regulering av kran-tupp posisjonen og demping av kran-
lasten samtidig. Flere reguleringsmetoder er prøvd som fremoverkobling, tilbakekobling,
kaskade og ikke linear modell prediktiv styring.

Både lovende og ikke lovende resultater ble oppnådd. Ved bruk av tilbakekobling for
kranlastdemping og fremoverkobling for kran-tupp posisjon ble gode resultat oppnådd
for kranen uten forstyrrelser. Tilbakekobling for både demping og posisjon samt ikke
linear modell prediktiv styring for posisjon med Lyapunov-basert demping visste mindre
lovende resultater. Evaluering av de dynamiske modellene for kran og kranlast er lovende,
problemer med løsningen av posisjonen til kranens tredje ledd sammen med hastigheten
og akselerasjonen til det første leddet ble funnet i invers kinematikken.
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Chapter 1.

Introduction

1.1. Background and motivation
Cranes are an essential device for offshore and subsea operations and are often mounted
to floaters and ships. Some common applications of cranes in these environments are the
lifting of heavy loads, transfer of payloads from ship to ship and lowering of components
for subsea installations down into the ocean.

When a load is hung from the crane tip by a wire, this load will swing in all directions like
a spherical pendulum. When uncontrolled the pendulations of the load can be a significant
risk for personnel and equipment. Wind and waves are common disturbances for these
ship-mounted cranes. Waves will cause movements in the ship that will induce further
movement into the crane and payload. Furthermore if one has a large and heavy crane
on a smaller vessel, movement in the crane, for example, due to strong winds, can induce
movements in the vessel. In a report published by General Electric, it is estimated that
unexpected downtime accounts for roughly $49 million in losses annually in the offshore
oil and gas industry [1]. Reducing crane pendulation can therefore be beneficial as it will
make crane operations more reliable and safe for both personnel and equipment, and it
could potentially reduce the operation time of the crane.

The last few decades have seen a lot of research in control systems for crane load dampen-
ing. Ramli et al. [2] and Cao and Li [3] have conducted comprehensive literature reviews
on the topic of shipboard crane control. They both agree on the need for feedback control
in this type of crane. Several types of control have been tried.

The most studied types of cranes are, however, land-based stationary cranes. These types
of cranes do not experience the same amount of unpredictable disturbances like waves.
The operator can because of this more easily predict the load pendulations counteracting
them accordingly. This also means that controllers that work for this type of crane will
not necessarily work for a ship-mounted crane. The unpredictability and sometimes the
severity of the disturbances at sea will require feedback control, and precise models of the
crane, load, ship and disturbances.

A vast array of controllers have been successfully employed for crane applications. A
straightforward and effective starting point is the PID controller. These are, however,
linear controllers which can prove a challenge when put against nonlinear systems. As a
result, they can often be seen combined with other techniques to improve their perfor-
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mance. For example, using Neural Network Self Tuning has been used to estimate and
tune PD controller gains for gantry cranes. Other more complex controller schemes such
as the Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) have also
seen favourable results when used for crane control [2].

Sensor systems will also be important in the control of shipboard cranes. Tracking the
payload for example using IMUs (Inertial Measuring Units) which can measure their own
angular velocity and linear acceleration and computer vision has been tried. Using the
same crane as used in this thesis the thesis “ Crane Pose Estimation using IMU and
Computer Vision” by Espen Nilsen covers the topic [4].

1.2. Problem description
The goal of the project is to automate a shipboard crane for use in aquaculture operations.
The crane in question can be seen in figure 1.1, where it is placed upon the ship Torra.
The crane is actuated using hydraulics and is of the model Maxilift ML 270L.2. Both
the ship and crane are owned by Sintef Ocean, who is a collaborator in this project.
The actual crane has as of now no sensor system or automatic control and is controlled
manually using joysticks. This means the crane has to be retrofitted with a new sensor-
and control system.

Figure 1.1.: The boat Torra, with the crane [4].

This thesis is a continuation of the work done in [5]. The research goal of the thesis
is to achieve simultaneous control of the crane tip position and dampening of the load
oscillations. Several controllers were designed and tried to achieve the above control goals.
We also need a dynamic and kinematic model for the crane and a dynamic model for the
crane load. Since this thesis will focus on the control system all measurements will be
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considered perfect for the simulations. The research question formulated for the project
is:

“Can a satisfactory controller be designed that dampens the crane load oscillations simul-
taneously with the crane tip position on shipboard cranes?”

The main goals with stretch goals of the thesis are given as

Main goals:

• Expand the simulation from [5] to include crane motion

• Test the expanded model in simulation

• Develop multiple control schemes. Test and compare their performance in simulation

Stretch goals:

• Expand the model to include wave and wind effects

• Test the expanded model in simulation

• Expand control schemes developed to counter-act the environmental effects on the
load, test the results in simulation, and compare to the undisturbed case

1.3. Report outline
The Thesis is divided into five chapters:

Introduction Introduces the background and motivation for the thesis together with
the research question and thesis goals.

Theory Relevant theories about the kinematic and dynamic modelling of cranes and
crane load, and the control theory used are presented.

Method Here the relevant equations and material used to make the models are presented.

Results The results from the simulations are presented.

Analysis and Discussion The results are analysed and discussed to form a conclusion.

Conclusion and Future Work A conclusion is presented and future work needed to
complete the project is discussed.





Chapter 2.

Theory

This chapter contains the most important theory used throughout the thesis. First, the
theory for designing the dynamic and kinematic models is presented, and lastly, the control
theory used is presented.

2.1. Crane
Cranes are mechanical devices and its most primary function is to lift up heavy objects and
move them to another location. Abdel-Rahman describes in his journal paper “Dynamics
and Control of Cranes: A Review” [6] three different types of cranes. These are the
rotary-, gantry and boom cranes.

In figure 2.1 (b) we see the rotary crane. This crane moves the load by rotating on its
vertical axis and translating along its horizontal axis. Figure 2.1 (c) shows the gantry
crane, here translation along two axes is used to move the load. These two crane types
will usually utilise variable cable lengths to lower the load when at the right position. The
boom crane, depicted as (a) in figure 2.1, typically rotates its base and can lower its boom
to place the load at the right position. It is also typically smaller and more mobile than
the other crane types, often found on boats and various types of road vehicles. Usual
additions to boom cranes are prismatic joints to extend the boom and variable cable
length to lower the load.

The actuators used for cranes are typically done by electric, hydraulic or combustion
motors or some combination of these. Because of the nature of cranes high output forces
are usually preferred over speed, when it comes to actuation. This will ordinarily result
in slower crane movements but makes the crane able to lift heavier loads.

Unless dampened by a control system, pendulum-like oscillations can persist for a con-
siderable amount of time if not dampened by a control system. This is because of the
low-dampening characteristic exhibited by loads suspended by a wire. The University of
California conducted “Dry” tests of crane systems without a control system. This revealed
damping values in the range of 0.1 % to 0.5 % of critical damping [7]. The importance of
effective control systems for cranes is highlighted by these numbers.
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Figure 2.1.: Illustration of the crane types. (a): Boom crane. (b): Rotary crane. (c):
Gantry crane. [2]

2.2. Pendulum
A pendulum can be described as a mass suspended by a line attached to a pivot. The
pendulum swings freely around the pivot point. The bottommost position of the pendulum
is called it equilibrium point. When the pendulum deviates from this point, gravity will
induce a restoring force which will attempt to restore it to its equilibrium.

Here the pendulum is used as a model for the crane load, therefore, a pendulum-based
model with a moving attachment point is derived. The moving attachment point will
allow us to try and dampen out the oscillations of the pendulum with movements from
the crane-tip. The crane-tip acceleration is provided as input to the pendulum merging
the models. This also consequently gives us two control objectives: one is the dampening
of the pendulum oscillations, and the second is to keep the attachment point, or the
crane-tip in this case, at the position we want it to stay at.

The use of a pendulum-based model to simulate crane loads is not a novel concept. It has
been explored by Olav Egeland in his work note “ Crane-Load Dynamics and Control” [8]
where several pendulum models both 1D and 2D with and without moving attachment
points are derived by Lagrange Formulation. Geir Ole Tysse uses similar models in his
PhD thesis “Modelling and Control of Ship-mounted Cranes” [9]. In the project report
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preceding this thesis the concept of using a pendulum for the crane load simulation where
explored with pendulation-reducing control systems [5].

2.3. Crane kinematics
The materials presented in 2.3 and 2.4 are taken from “Modern Robotics: Mechanics,
Planning, and Control” by Lynch and Park [10] and “ Robotics Modelling, Planning and
Control” by Siciliano et al. [11].

It is possible to find the crane’sposiiton and orientation using a rigid body model. Using
the joint variables q as an input, the goal is to create a function that finds the orientation
and position of the crane end effector

f(q) = x =



ϑx

ϑy

ϑz

x
y
z


(2.1)

Solving this problem is commonly known as forward kinematics. Solving it the other way,
finding the joint variable using the end effector orientation and position is called inverse
kinematics.

2.3.1. Useful Functions and Theory for Crane Kinematic and
Dynamic Modelling

This section will provide some useful mathematical relationships, functions and theories
for 2.3 and 2.4.

Kinematics uses coordinate frames and transformations between them to analyse a robot’s
motion.

A homogeneous transformation matrix is in the special Euclidean group SE(3) and is
always 4 × 4 matrix in R3. If one has two frames {s} and {b} where the first is a fixed
frame and the latter a body frame. One can represent the position and orientation of {b}
in {s}-coordinates. This is done by using a rotation matrix R ∈ SO(3) which represents
the orientation of frame {b} in {s}, and the vector p ∈ R3 which represents the origin of
{b} in {s}. The Transformation matrix will then have the following form.

T =
[
R p
0 1

]
=


r11 r12 r13 p1
r21 r22 r23 p2
r31 r32 r33 p3
0 0 0 1

 (2.2)

Multiplication between transformation matrices causes the cancellation of subscripts as
follows
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T 0
1 T 1

2 = T 0
2 (2.3)

This relationship allows us to represent frame 2 with respect to frame 0, this will prove
valuable for calculating the forward kinematics.

Some other useful mathematical relations and functions are

Skew-Symmetric Matrix (3 × 3) The skew is denoted as [x] and for the vector x ∈ R3

the skew-symmetric matrix is as follows

[x] =

 0 −x3 x2
x3 0 −x1

−x2 x1 0

 (2.4)

Skew-Symmetric Matrix of a Twist (6×6) Using the (3×3) skew-symmetric matrix
the skew of a twist V is defined as

[V ] =
[
[ω] v
0 0

]
(2.5)

Adjoint The adjoint representation of a homogeneous transformation matrix T, [AdT ],
is written as

[AdT ] =
[

R 0
[p]R R

]
(2.6)

Adjoint map For a twist V the adjoint map given a transformation matrix T can be
written as

V ′ = [AdT ]V (2.7)

2.3.2. Forward Kinematics
The forward kinematics solves the position and orientation of the end effector based on
the joint configuration. A typical open-chain robot is modelled as n rigid body links
connected by joints. In figure 2.2, a 3R planar open-chain robot is shown, 3R means it
has 3 revolute joints. Although it is possible to find the forward kinematics using basic
trigonometry, this would become considerably more complicated the more joints there
are. A more common and systematic way to solve the Forward kinematics is to attach a
reference frame to each link. In figure 2.2 we have three link reference frames {1}, {2}
and {3}. One can write the forward kinematics for this example as four homogeneous
transformation matrices.

T04 = T01T12T23T34 (2.8)
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Figure 2.2.: 3R open-chain robot arm [10]

2.3.3. Product of Exponential Forward Kinematics
Using figure 2.2 another useful way to solve the forward kinematics is by the Product of
Exponential Formula (PoE). Setting all joint angles to zero, the “zero” or “home” position,
M can be defined as the position and orientation of frame {4}. In this example, M will
be

M =


1 0 0 L1 + L2 + L3
0 1 0 0
0 0 1 0
0 0 0 1

 (2.9)

Each link is the considered as zero-pitch screw axis. Setting θ1 and θ2 to zero one can
express the screw axis about joint 3 expressed in the {0} as

S3 =
[
ω3
v3

]
=



0
0
1
0

−(L1 + L2)
0


(2.10)

Confirming these results can be done by observations of figure 2.2. Imagine the arm is
stretched out in the zero-configuration at a turntable rotating ω3 = 1 rad/s about joint
3’s axis. At the origin of 0 the linear velocity v3 is in the ŷ0-direction at a rate of L1 + L2
units per second. This can be solved algebraically as v3 = −ω3 × q3, where q3 is any point
on the axis of joint 3 expressed in {0}, in this case, q3 = (L1 + L2, 0, 0)T .

We can express the screw axis S3 in se(3) matrix form as
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[S3] =
[
[ω] v
0 0

]
=


0 −1 0 0
1 0 0 −(L1 + L2)
0 0 0 0
0 0 0 0

 (2.11)

For any θ3, we can solve the matrix representation for screw motions as

T04 = e[S3]θ3M (for θ1 = θ2 = 0) (2.12)

Provided S1 and S2 we then have the following equations

T04 = e[S2]θ2e[S3]θ3M (for θ1 = 0) (2.13)

and

T04 = e[S1]θ1e[S2]θ2e[S3]θ3M (2.14)

where in this example

[S2] =


0 −1 0 0
1 0 0 −L1
0 0 0 0
0 0 0 0

 (2.15)

[S1] =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (2.16)

In figure 2.3 an Illustration of PoE used on an n-link open-chain robot arm can be seen.
It is also noteworthy to mention that in [10] θ is usually used to denote joint variables,
as in this example. For most of this thesis, however, q will be used to denote the joint
variables.
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Figure 2.3.: PoE for an n-link spatial open-chain robot arm [10]

2.3.4. Velocity- and Acceleration Kinematics
Given a minimal set of coordinates x ∈ Rm and the velocity ẋ = dx/dt ∈ Rm the forward
kinematics can be written as

x(t) = f(q(t)), (2.17)

where q ∈ Rm is the joint variables. Using the chain rule, one can find the time derivative
of this equation at time t as

ẋ = ∂f(q)
∂q

dq(t)
dt

= ∂f(q)
∂q

q̇ = J(q)q̇ (2.18)

where J(q) ∈ Rm×n is the Jacobian. Here, the Jacobian represents the end-effector velocity
ẋ to the joint velocity q̇ and is a function of the joint variables q.

To find the Jacobian of an open-chain robot one can consider the n-link open-chain forward
kinematics in the product of exponential form

T (q1, . . . , qn) = e[S1]q1e[S2]q2 . . . e[Sn]qnM (2.19)

With the spatial twist Vs given by [Vs] = Ṫ T −1, where

Ṫ =
(

d

dt
e[S1]q1

)
. . . e[Sn]qnM + e[S1]q1

(
d

dt
e[S2]q2

)
. . . e[Sn]qnM . . .

= [S1]q̇1e
[S1]q1 . . . e[Sn]qnM + e[S1]q1 [S2]q̇2e

[S2]q2 . . . e[Sn]qnM + . . .

(2.20)

and
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T −1 = M−1e−[Sn]qn . . . e−[S1]q1 (2.21)

The product of Ṫ T −1 is then

[Vs] = [S1]q̇1 + e[S1]q1 [S2]e−[S1]q1 q̇2 + e[S1]q1e[S2]q2 [S3]e−[S2]q2e−[S1]q1 q̇3 . . . (2.22)

Which can also be expressed in the vector form by adjoint mapping as

Vs = S1︸︷︷︸
Js1

q̇1 + Ade[S1]q1 (S2)︸ ︷︷ ︸
Js2

q̇2 + Ade[S1]q1 e[S2]q2 (S3)︸ ︷︷ ︸
Js3

q̇3 + . . . (2.23)

It should be observed that Vs is a sum of n spatial twists of the form

Vs = Js1q̇1 + Js2q̇2 + · · · + Jsn(q)q̇n (2.24)

In matrix form

Vs =
[
Js1 Js2 . . . Jsn

] 
q̇1
...

q̇n

 = Js(q)q̇ (2.25)

It should be noted that this is the space Jacobian i.e. the Jacobian in space frame coor-
dinates.

Further, to find the acceleration of the end effector, taking the time derivative of equation
2.18 again will provide us with the equation

ẍ = J(q)q̈ + J̇(q, q̇)q̇ (2.26)

which can be used to find the acceleration of the end-effector provided the joint position,
-velocity and -acceleration.

2.3.5. Inverse kinematics
The inverse kinematics of a robot arm gives us the joint coordinates from the end effector
orientation and position. The inverse kinematics can be solved both analytically and
numerically. One of the main issues with inverse kinematics is that a given end effector
position can often be achieved with several different combinations of the joint variables.
As can be seen in figure 2.4 even a simple open-chain robot as the 2R planar open-chain
has two different solutions for a single end-effector position. The “lefty” and the “righty”
solutions. Using the following forward kinematics ignoring the orientation of the robot
arm
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[
x
y

]
=
[
L1 cos θ1 + L2 cos (θ1 + θ2)
L1 sin θ1 + L2 sin (θ1 + θ2)

]
(2.27)

where we assume L1 > L2. An explicit solution (θ1θ2) for given (x, y) can be found. Using
figure 2.4 the angle β is restricted to the interval [0, π] and can be found using the law of
cosines

L2
1 + L2

2 − 2L1L2 cos β = x2 + y2 (2.28)

solving fore β gives us

β = cos−1
(

L2
1 + L2

2 − x2 − y2

2L1L2

)
. (2.29)

Similarly for α

α = cos−1
(

x2 + y2 + L2
1 − L2

2
2L1

√
x2 + y2

)
. (2.30)

Defining an angle γ as γ = atan2(y, x) the righty position an be found as follows

θ1 = γ − α, θ2 = π − β. (2.31)

And for the lefty solution we have

θ1 = γ + α, θ2 = β − π. (2.32)

Figure 2.4.: 2R planar open chain inverse kinematics [10]

In this thesis, the inverse kinematics is solved using iterative numerical methods. These
are used for situations where analytical solutions are difficult or impossible or just to
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improve the accuracy of the solution. The numerical algorithm used is the Levenberg-
Marquardt algorithm. The general algorithm is described below with information taken
from “ The Levenberg-Marquardt Algorithm: Implementation and Theory” by Moré [12].

Firstly we have F : Rn → Rm which is continuously differentiable. Moré then asks to
consider the “nonlinear least squares problem of finding a local minimizer of”

ϕ(x) = 1
2

m∑
i=1

f 2
i (x) = 1

2 ||F (x)||2. (2.33)

Chapter 2 of [12] describes the derivation of the Levenberg-Marquardt algorithm which
results in the final cited algorithm below:

(a) Given ∆k > 0, find λk ≥ 0 such that if

(JT
k Jk + λkDT

k Dk)Pk = −JT
k fk (2.34)

Then either λk = 0 and ||DkPk|| ≤ ∆k or λk > 0 and ||DkPk|| = ∆k

(b) If ||F (xk + pk))|| < ||F (xk)|| set xk+1 = xk + pk and evaluate Jk+1; otherwise set
xk+1 = xk and Jk+1 = Jk

(c) Choose ∆k+1 and Dk+1

2.3.6. Velocity and Acceleration Inverse Kinematics
For solving the inverse kinematics for finding the joint velocity we can solve equation 2.18
with respect to q̇ as follows

q̇ = J(q)−1ẋ. (2.35)

And for the joint acceleration, the same can be done by solving equation 2.26 with respect
to q̈

q̈ = J(q)−1(ẍ − J̇(q, q̇)q̇). (2.36)

Seeing how the Jacobian is only invertible if the robot has six joints, creating a 6x6
Jacobian, one might have to alter the Jacobian for this approach to work. One solution
is to remove the variables you do not need. For example if one has an open-chain robot
arm with three joint variables q = [q1 q2 q3]T ∈ R3 one can remove the rows of the
Jacobian corresponding to angular velocities, which using the space Jacobian formulation
form section 2.3.4 are the three first rows. Then only use the last three rows for solving
the linear velocities as described below.
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J(q) =



J11 J12 J13
J21 J22 J23
J31 J32 J33
J41 J42 J43
J51 J52 J53
J61 J62 J63


⇒

J41 J42 J43
J51 J52 J53
J61 J62 J63

 = J3×3(q) (2.37)

Then the Jacobian is a 3×3 matrix and therefore invertible. There are also other methods
of achieving this, such as the Moore-Penrose pseudoinverse.

2.4. Crane Dynamics
The dynamic model of the crane will, as the kinematic model, be a model of the motion
of the crane. However, with the dynamic model, the forces and torques that cause the
motions will be taken into account. The dynamic model for a crane is a set of second-order
differential equations of the form

τ = M(q)q̇ + C(q, q̇)q̇ + G(q) (2.38)

where q ∈ Rn is a vector of joint variables, τ ∈ Rn is a vector of joint forces and torques.
The matrix M(q) ∈ Rn×n is a symmetric positive definite mass matrix, C(q, q̇)q̇ ∈ Rn is
the centripetal and Coriolis matrix and G(q) ∈ Rn is the gravity matrix.

2.4.1. Lagrange Formulation
A common way to solve dynamics is by Lagrange mechanics. In the Lagrangian formu-
lation a set of independent coordinates q ∈ Rn are chosen to describe the configuration
of the system. These are called generalised coordinates. The generalized forces f ∈ Rn

can then be chosen. The forces are dual to the coordinate rates q̇, and the product fT q̇
relates to power. The Lagrangian function L(q, q̇) is defines as

L(q, q̇) = K(q, q̇) − P(q) (2.39)

where K(q, q̇) is the systems kinetic energy and P(q) is the systems potential energy.
With the Lagrangian function, it is possible to find the systems equations of motions by
the equation

f = d

dt

∂L
∂q̇

− ∂L
∂q

(2.40)

For an open-chain robot, the kinetic energy can be expressed as

K(q, q̇) = 1
2

n∑
i=1

n∑
j=1

mij(q)q̇iq̇j = 1
2 q̇T M(q)q̇ (2.41)
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where mij is the (i,j)th element of the n × n mass matrix. The dynamics equations can
be found by evaluating the right side of

τi = d

dt

∂L
∂q̇i

− ∂L
∂qi

, i = 1, ..., n (2.42)

With the kinetic energy expressed as in equation 2.41, the dynamics can be written
explicitly

τi =
n∑

j=1
mij(q)q̈j +

n∑
j=1

n∑
k=1

Γijk(q)q̇j q̇k + ∂P
∂qi

, i = 1, ..., n (2.43)

Γijk is known as the Christoffel symbol of the first kind and is defined as

Γijk(q) = 1
2

(
∂mij

∂qk

+ ∂mik

∂qj

+ ∂mjk

∂qi

)
(2.44)

Getting these dynamic equations as on the form seen in equation 2.38. G(q) is simply
equal to ∂P

∂q
. In this form C(q, q̇) ∈ Rn is defined as

cij(q, q̇) =
n∑

k=1
Γijk(q)q̇k (2.45)

where cij is the (i, j)th element of C(q, q̇).

With the model in equation 2.38 it is possible to solve the systems cranes forward and
inverse dynamics, where q̈ is solved using (q, q̇) and the joint forces and torques gives the
forward dynamics

q̈ = M−1(q)(τ − C(q, q̇)q̇ − G(q)) (2.46)

and the inverse dynamics is solved using equation 2.38.

2.4.2. Inertia Matrix
To solve the dynamics an inertia matrix is needed, the spatial inertia matrix has the form

Gb =
[
Ib 0
0 mI

]
(2.47)

where I is the 3 × 3 identity matrix, m is the mass of the joint, and Ib is the inertia
tensor. The easiest way to find the inertia tensor is to assume a basic shape of the joint
and calculate its moment of inertia. In this thesis, all joints of the crane are assumed to
be circular cylinders with uniform density. The only difference used in the calculation of
the moment of inertia is where the centre of mass is.
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This gives us two ways to calculate the moment of inertia. The first with the centre of
mass is in the middle of the cylinder.

Ib =


1
12(3r2 + h2) 0 0

0 1
12(3r2 + h2) 0

0 0 1
2mr2

 (2.48)

And the second with the centre of mass is at the end of the cylinder.

Ib =


1
3(3r2 + h2) 0 0

0 1
2(3r2 + h2) 0

0 0 1
3(3r2 + h2)

 (2.49)

where m is the same mass as used in equation 2.47, h is the height of the joint and r is
the radius of the joint.

2.4.3. Dynamic Equations in Closed Form
The dynamics in the model are solved using a recursive inverse dynamic algorithm and
can be used to solve a closed-form set of dynamic equations

τ = M(q)q̈ + C(q, q̇) + G(q) (2.50)

Firstly this method requires proof that the kinetic energy can be written in the manner of
equation 2.41. This is done by noting that K can be expressed as the sum of the kinetic
energy of each link

K = 1
2

n∑
i=1

VT GiVi (2.51)

where Vi is the twist from frame {i} and Gi is the spatial inertia matrix of link i as defined
by equation 2.47.

Vi = Jib(q)q̇, i = 1, ..., n (2.52)

The kinetic energy with this be written as

K = 1
2 q̇T

(
n∑

i=1
JT

ib(q)GiJib(q)
)

(2.53)

where the terms in the parenthesis are the mass matrix M(q):

M(q) =
n∑

i=1
JT

ib(q)GiJib(q) (2.54)
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To derive the closed-form set of dynamic equations, we first start by defining stacked
vectors

V =


V1
...

Vn

 (2.55)

F =


F1
...

Fn

 (2.56)

The following matrices are defined

A =


A1 0 . . . 0
0 A2 . . . 0
... ... . . . ...
0 . . . . . . An

 ∈ R6n×n (2.57)

G =


G1 0 . . . 0
0 G2 . . . 0
... ... . . . ...
0 . . . . . . Gn

 ∈ R6n×6n (2.58)

[adV ] =


[adV1 ] 0 . . . 0

0 [adV2 ] . . . 0
... ... . . . ...
0 . . . . . . [adVn ]

 ∈ R6n×6n (2.59)

[adAθ̇] =


[adA1q̇1 ] 0 . . . 0

0 [adA2q̇2 ] . . . 0
... ... . . . ...
0 . . . . . . [adAnq̇n ]

 ∈ R6n×6n (2.60)

W(q) =



0 0 . . . 0 0
[AdT21 ] 0 . . . 0 0

0 [AdT32 ] . . . 0 0
... ... . . . ... ...
0 0 . . . [AdTn,n−1 ] 0

 ∈ R6n×6n (2.61)

Finally, the following stacked vectors are defined



2.4. Crane Dynamics 19

Vbase =


AdT10(V0)

0
...
0

 ∈ R6n (2.62)

V̇base =


AdT10(V̇0)

0
...
0

 ∈ R6n (2.63)

Ftip =


0
...
0

AdT
Tn+1,n

(Fn+1)

 ∈ R6n (2.64)

The following inverse dynamics recursive algorithm can then be assembled

V = W(q)V + Aq̇ + Vbase, (2.65)

V̇ = W(q)V̇Aq̈ − [adAq̇](W(q)V + Vbase) + V̇base, (2.66)

F = WT (q)F + GV̇ − [adV ]T GV + Ftip, (2.67)

τ = AT F . (2.68)

We can then define L(q) = (I − W(q))−1 . It can be verified by direct calculations that

L(q) =



I 0 0 . . . 0
[AdT21 ] I 0 . . . 0
[AdT31 ] [AdT32 ] I . . . 0

... ... ... . . . ...
[AdTn1 ] [AdTn2 ] [AdTn3 ] . . . I

 ∈ R6n×6n (2.69)

Equation 2.65 to 2.68 can now be rewritten

V = L(q)(Aq̇ + Vbase), (2.70)

V̇ = L(q)(Aq̈ + [adAq̇]W(q)V + [adAq̇]Vbase + V̇base, (2.71)

F = LT (q)(GV̇ − [adV ]T GV + Ftip), (2.72)

τ = AT F . (2.73)

From these equations, the mass-, Coriolis- and centripetal-, and gravity matrix can be
expressed as

M(q) = AT LT (q)GL(q)A, (2.74)
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c(q, q̇) = −AT LT (q)(GL(q)[adAq̇]W(q) + [adV ]T G)L(q)Aq̇, (2.75)

G(q) = AT LT (q)GL(q)V̇base. (2.76)

This is not the most computationally effective way of simulating the dynamic. It is,
however, a straightforward and relatively easy method to code.

2.5. Control theory
In this section, the control theory used in the thesis is presented.

2.5.1. Feedforward Control
Feedforward control is a type of control that uses measurements of the most significant
disturbance variables to achieve control. The concept is to take corrective measures
before the disturbances upset the system. These corrective measures will, however, not
occur until after the process has generated a non-zero error signal. Feedforward gets
no feedback from the actual system making corrective measures needed for other causes
than the disturbance model provided can render the controller incapable of correcting the
errors. Combining feedforward with other types of control, often feedback control, can help
feedforward control to compensate for modelling errors and unmeasured disturbances[13].
In figure 2.5 a fundamental block diagram of a typical setup of feedforward control is
presented. Here D is the disturbance variable, U is the system input, Y is the system
output and Ysp is the set-point.

Feedforward 
Controller Process

Figure 2.5.: Feedforward block diagram



2.5. Control theory 21

2.5.2. Feedback Control
This section is based on the book “Multivariable feedback control” by Skogestad and
Postelwaith [14].

In feedback control, a set-point value describes the value where you want the system to
be. A measurement of the actual state value is subtracted from the set point giving us
the system error

e = ym − r (2.77)

where ym is the measurement ym = y + n where n is measurement noise, and r is the
set-point. This is called a negative feedback loop, as the state that is used in the feedback
loop is subtracted from the set point. Using the system error it can be sent to a controller
K whose task is to drive the error to zero. When the system error is zero it means that
there is no error between the desired state value and the measured state value. The
controller gives us the model input as follows

u = K(s)(r − y − n). (2.78)

Figure 2.6 shows a block diagram of a typical negative feedback loop, here G is the system
model and Gd is the disturbance model.

Figure 2.6.: Block diagram of a typical negative feedback loop [14].

It is often preferred to use feedback over feedforward. One of feedback control’s major
advantages is that it uses the system error always letting the controller know how far off
from the desired setpoint the system is. This makes controlling systems with unpredictable
disturbances easier, as it quickly notices changes in the system. Feedforward needs to
correct for disturbances before they happen, as it only uses the desired set point and
a model for the disturbance to create the controller input. This requires a very good
model of the disturbance, which can be difficult if the disturbance is of an unpredictable
nature like wind and wave disturbances. Making it mostly used in processes where good
disturbance models can be designed. There are also problems such as model uncertainty
and instability which feedback control handles better because of its use of the system
error.



22 Chapter 2. Theory

2.5.3. PID controller
One of the most common and versatile controllers used for feedback control is the PID
controller. The controller uses three adjustable gains: the proportional gain (P), the
integral gain (I) and the derivative gain (D). Depending on the system’s need one can
exclude or include any one of these gains, it is for example common to omit the derivative
gain in process control because process plants usually are stable with an over-damped
response [14]. A common way to formulate the PID controller is as follows

u(t) = kpe(t) + ki

∫
e(t)dt + kp

de

dt
. (2.79)

All the different gains have different contributions to the controller. Proportional to
the error we have the proportional gain, which is the gain most seldom excluded in the
controller. When a steady-state offset from the reference is present the integral gain is
commonly applied. Integral gain is a good way to minimise the offset without the use of a
very large proportional gain. To introduce an element of prediction into the controller the
derivative gain is employed. The derivative gain uses the rate of change of the error. The
derivative gain can amplify the noise, which is a common problem when differentiating
noisy signals [15].

2.5.4. Cascade Control
Cascade control is a form of control where two nested feedback loops with each its own
controller are used to make single system input. The first, or primary controller loop sets
the set-point for the secondary controller which is used to improve upon the first setpoint.
This gives the control two sensors and two controlled variables with a single manipulated
variable.

The benefit of using cascade control is that a disturbance affecting the secondary controller
has been corrected by this controller before it can affect the value of the primary controller.
Generally, the second controller is tuned to be faster than the primary, meaning the
process that needs the fastest control is in the inner loop [13]. An example of a typical
cascade control structure can be seen in Chapter 3 in figure 3.1.

2.5.5. Lyapunov Stability
Lyapunov is commonly used for the analysis of stability for equilibrium points. Lyapunov
is often used when ascertining the stability of nonlinear systems [14]. The following two
theorems are taken from “Nonlinear Systems” by Khalil [16]. The first theorem is defined
in Theorem 4.1 in [16].

Theorem 1 If we have the equilibrium point x for the system

ẋ = f(x) (2.80)

and a domain D ⊂ Rn containing x = 0. Then we let V : D → R be continuously
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differentiable such that

V (0) and v(X) > 0 ∈ D − {0} (2.81)

V̇ (x) ≤ 0 ∈ D (2.82)

Then x = 0 will be stable. If
ẋ(x) < 0 ∈ D − {0} (2.83)

then x = 0 will be asymptotically stable.

If a function V (x) is a differentiable function satisfying equation 2.81 and 2.82 it is called
a Lyapunov function. Another theorem given as Theorem 4.10 in [16] gives the conditions
for exponential stability in terms of Lyapunov as

Theorem 2 We set x as an equilibrium point for

ẋ = f(t, x) (2.84)

and D ⊂ Rn is a domain containing x = 0. We then have the continuously differentiable
function V : [0, ∞) × D → R such that

k1||x||a ≤ V (t, x) ≤ k2||x||a (2.85)

∂V

∂t
+ ∂V

∂x
f(t, x) ≤ −k3||x||a (2.86)

Which holds ∀t ≥ 0 and ∀x ∈ D. Here k1, k2, k3 and a are positive constants. If this
holds x = 0 is exponentially stable, and if the assumptions holds globally it is globally
exponentially stable.

2.5.6. Nonlinear Model Predictive Control
Subsection 2.5.6 and 2.5.7 are based on “An Introduction to Nonlinear Model Predictive
Control” by Findeisen and Allgöwer [17].

The basic principles of the model predictive control problem can be seen in figure 2.7.
At the time t a measurement is obtained, this is used by the controller to predict the
future dynamic behaviour of the system over a prediction horizon Tp. This in turn will
determine, over a control horizon Tc ≤ Tp, the input such that a predetermined open-loop
performance objective function is optimised.
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Figure 2.7.: The basic principle of model predictive control [17]

2.5.7. Mathematical Formulation of NMPC
Firstly, in the following equatins || · || denotes Euclidean vector norm in Rn. The use of the
semicolon “;” in a function argument indicates that the following symbols are parameters.
For example, f(x; γ) will mean that we have the function value at x with the parameter
γ. For clarity, the internal variables are denoted with bars, for example, x̄. This is to
distinguish between the real system and the system used to predict.

To explain the mathematical formulation of the NMPC we start with a set of nonlinear
differential equations

ẋ(t) = f(x(t), u(t)), x(0) = x0 (2.87)

subject to input and state constraints

u(t) ∈ U , ∀t ≥ 0 x(t) ∈ X × U , ∀t ≥ 0 (2.88)

where the vector of states are given by x(t) ∈ X ⊆ Rn and vector of inputs are denoted
as u(t) ∈ U ⊆ Rm. Here a set of feasible states are denoted X and a set of feasible input
values U . It is assumed X and U follow the following assumptions.

Assumption 1 It is assumed U ⊂ Rp is compact, U ⊆ Rn is connected and (0, 0) ∈ X ×U
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A box constraint denotes U and X on its simplest form

U := {u ∈ Rm|umin ≤ u ≤ umax},

X := {x ∈ Rn|xmin ≤ x ≤ xmax}.
(2.89)

Where umin, umax, xmin and xmax are constant vectors.

Assumption 2 Vector field f : Rn × Rm → Rn is continous satisfies f(0, 0) = 0 and is
Lipschitz continuous in x.

Assumption 3 The equation 2.87 in the region of interest, has unique continuous solu-
tions for any initial conditions. This also applies to any piecewise continuous and right
continuous input function u(·) : [0, Tp] → U .

A typical formulation of the finite horizon open-loop optimal control problem is as follows:

Find
min
ū(·)

J(x(t), ū(·); Tc, Tp) (2.90)

with
J(x(t), ū(·); Tp, Tc) :=

∫ t+Tp

t
F (x̄(τ), ū(τ)))dτ (2.91)

subjected to

x̄(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (2.92)

ū(t) ∈ U , ∀τ ∈ [t, t + Tc] (2.93)

ū(τ) = ¯τ + Tc, ∀τ ∈ [t + Tc, t + Tp] (2.94)

τ̄ ∈ X , ∀τ ∈ [t, t + Tp]. (2.95)

The solution of equation 2.92 is driven by the input in equations 2.93 and 2.94 with initial
conditions x(t).

Below the stage cost is defined as function F , here the desired control performance is
specified. The stage cost below is in the standard quadratic form as it is commonly used

F (x, u) = (x − xs)T Q(x − xS) + (u − us)T + R(u − us). (2.96)

Here Q and R are the positive definite symmetric weighting matrices, and xs and us are
the given set-points.

If one assumes the existence of an optimal solution it is denoted as ū∗(·; x(t), Tp, Tc :
[t, t + Tp] → U . At the sampling interval t = jδ, j = 0, 1, . . . , the open-loop optimal
control problem is solved repeatedly. The closed-loop control at the sampling instant is
defined as

u∗(τ) := ū∗(τ ; x(t), Tp, Tc), τ ∈ [t, δ]. (2.97)
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Finding the optimal value of the NMPC open-loop optimal control as a function of states
can be done as follows

V (x; Tp, Tc) = J(x, ū∗(·; x(t)); Tp, Tc). (2.98)

This function serves as a Lyapunov function candidate and is important in proving the
stability of various NMPC schemes.



Chapter 3.

Material and Method

In this chapter, the work done to make the different models are presented. Three models
are presented each with a unique controller and two different crane models are used.

3.1. Matlab and Simulink
All simulations are done using Matlab® and Simulink®. Block diagrams were made in
Simulink, with functions and scripts made with Matlab.

All the code and models created or discussed in this chapter are provided in the thesis’
digital attachment. Some of the necessary toolboxes needed to run the models and code
are given below. It should be noted that this may not include all the toolboxes required
but merely the most important ones.

• Robotics System Toolbox

• Model Predictive Control Toolbox

• Simscape®

The last toolbox needed is not provided by MathWorks® but by the creators of the book
“Modern Robotics: Mechanics, Planning and Control” [10]. Their software for Matlab can
be downloaded from Github through the following URL https://github.com/NxRLab/
ModernRobotics. This toolbox is needed for the crane dynamic and kinematic models
for models 2 and 3.

All models and codes introduced in this chapter and used for Chapter 4 can be found in
the digital attachment. In Appendix A all the contents in this attachment is described.

3.2. Control Scheme
The general scheme that all of the models try to follow can be seen in the block diagram
in figure 3.1. The pendulum oscillation is controlled by an inner loop where the angle
rate of the pendulum ϕ̇x and ϕ̇y is used as the feedback variable. The input of the pen-
dulum damping controller is created by an outer loop controlling the crane position, here
the feedback variables are the crane-tip position and -velocity provided by the forward

https://github.com/NxRLab/ModernRobotics
https://github.com/NxRLab/ModernRobotics
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kinematics. The desired position, velocity and acceleration are then sent to the inverse
kinematics block where the desired joint angles, -velocity and -acceleration are found.
These then go to the crane controller which sends the correct torque to the crane dy-
namics model. The joint variables from the dynamic model are then sent to the forward
kinematics block which gives the pendulum model the crane-tip accelerations ẍ0, ÿ0 and
z̈0 as input. As can be seen in the figure there is an inner and an outer loop which indi-
cates cascade control, which is a control method where two feedback loops are combined
into a single output. Where the output of the first controller (crane-tip position) adjusts
the set-point of the second controller (crane load damping) [13]. It should be noted that
this scheme is merely the first draft made and that the final models may differ to various
degrees.

The basic principle of this control scheme is that the crane-load oscillations are dampened
using movements in the crane tip, while it also places the crane tip at the correct x- and
y- positions. For all the models perfect measurements are assumed, and all movements in
the z-axis are also set to be constant with no change.

Crane 
Dynamic 

Model

Forward 
Kinematics

Inverse 
Kinematics

Crane Load 
Damping 
Controller

Crane Tip 
Position 

Controller

Crane Load 
Model

Figure 3.1.: General control scheme

3.3. Model 1
The first model uses the controller deduced in the preceding project report, the same
applies to the pendulum model used to simulate the crane load [5]. The pendulum model
and controller are based on the work note ”Crane-Load Dynamics and Control” by Olav
Egeland [8].

3.3.1. Pendulum Model
The spherical pendulum model is taken from Chapter 3.2 in Egeland’s work note. This
chapter describes the deduction of a 2D spherical pendulum model with a moving attach-
ment point using Lagrange mechanics.

To make the model the the position of the mass is first defined as

r⃗r = (x0 − sin ϕyL)n⃗1 + (y0 + sin ϕx cos ϕyL)n⃗2 + (z0 − cos ϕx cos ϕyL)n⃗3. (3.1)



3.3. Model 1 29

Here x0, y0 and z0 are the position of the attachment point and ϕx and ϕy are the pendulum
angles. It should be noted that z0 is the vertical position.

Derivation of this position with respect to time gives us the velocity of the mass. The
position and velocity can be used to find the kinetic and potential energy of the pendulum.
The kinetic energy is

K =1
2mL2

(
ϕ̇2

x cos2 ϕy + ϕ̇2
y

)
+ 1

2m(ẋ2
0 + ẏ2

0 + ż2
0) − mLẋ0ϕ̇y cos ϕy

+ mLẏ0
(
ϕ̇x cos ϕx cos ϕy − ϕ̇y sin ϕx sin ϕy

)
+ mLż0

(
ϕ̇x sin ϕx cos ϕy + ϕ̇y cos ϕx sin ϕy

)
,

(3.2)

and the potential energy
P = −mgL(cos ϕx cos ϕy − 1) (3.3)

Then the Lagrangian can then be found by L = K − P . By using the generalised co-
ordinates ϕx and ϕy and using Euler-Lagrange equations of motion we get the following
dynamic model for the crane load

ϕ̈x cos ϕy + g

L
sin ϕx = 2ϕ̇xϕ̇y sin ϕy − 1

L
ÿ0 cos ϕx − 1

L
z̈0 sin ϕx (3.4)

and

ϕ̈y + g

L
cos ϕx sin ϕy = − ϕ̇2

x sin ϕy cos ϕy + 1
L

ẍ0 cos ϕy

+ 1
L

ÿ0 sin ϕx sin ϕy − 1
L

z̈0 cos ϕx sin ϕy. (3.5)

3.3.2. Pendulum Control system
The control system is based on Chapter 3.3 in the work note.

With the assumption that the attachment point only is moving in the horizontal directions
x0 and y0 and that z̈0 = 0 we have the feedback damping controller

ÿ0 = 2ζω0Lϕ̇x (3.6)

and
ẍ0 = −2ζω0Lϕ̇y − 1

cos ϕy

ÿ0 sin ϕx sin ϕy (3.7)

where ω0 is given as
ω0 =

√
g

L
. (3.8)

In the project thesis, it was found that the cross term in equation 3.7 made little difference
in the controller and sometimes made for worse control. The cross term will therefore be
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omitted in this thesis [5].

For the crane tip position control, a similar controller to the one in Chapter 2.5 in the
work note was suggested in the project report. This controller has the form

us = kp(xd − x0) + kd(ẋd − ẋ0) (3.9)

and
us = kp(yd − y0) + kd(ẏd − ẏ0). (3.10)

The position and velocity denoted with the subscript d are here the reference values and
the ones with the subscript 0 are found by integrating equation 3.6 and 3.7.

Using the superposition principle the two controller outputs, here up for the pendulum
damping controller and us for the suspension point controller make one common input.

ẍ0 = up + us (3.11)

Another part of the controller that was added to the damping controller in equation 3.6
and 3.7 is nonlinear damping. Since the damping is based on the velocity component of
the pendulum we get the equation

u = ζu|ϕ̇i|ϕ̇i. (3.12)

Here ζu is the damper gain, absolute value is used so that when the velocity is negative
the sign of the damping controller does not change when it should not.

In figure 3.2 the controller for the x-position in Simulink is shown, and the controller for
the y-position is identical.

Figure 3.2.: The controller for the x-position, model 1
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3.3.3. Crane model
The crane model used for model 1 is from Espen Nilsen’s master thesis [4]. For a thorough
review of this model, the thesis should be consulted. The crane model consists of a
Simulink file and a rigid body tree.

The crane is modelled as an RRP robot arm as can be seen in Figure 3.3. The model
was created by using a URDF file and using the smimport(’model.urdf’) function. URDF
is an acronym standing for Universal Robot Description Format. In figure 3.4 the block
diagram made from importing the URDF file into Simulink is shown. Several parameters
can be set for each joint these include spring stiffness, a damping coefficient and limits for
joint velocity and position. The model is controlled by setting a joint position for each
joint. In this thesis, these a provided by an inverse kinematic block.

The rigid body tree is a representation of the structure of the robot. It can be used to
represent various types of robots including manipulators and other kinematic trees. A
rigid body tree consists of rigid bodies attached to one another through joints. A joint
defines each rigid body’s motion relative to its parent in the tree. By setting a fixed
transformation on each joint the transformation from one body to the next is specified
[18]. The rigid body tree made in Nilsen’s thesis is called “modelcodegen.m” and is used
in this thesis.

Figure 3.3.: Crane diagram [4]
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Figure 3.4.: Simscape block diagram [4]

3.3.4. Crane Kinematics
The forward kinematics in model 1 is solved internally in the model using the “Transform
Sensor” block from Sismcape. The block takes in information from all the previous joints
to calculate the position, velocity and acceleration of the crane end-effector.

The inverse kinematics is solved using the “Inverse Kinematics”-block from the Robotics
Toolbox. This block uses the rigid body tree from Espen Nilsen’s thesis “modelcode-
gen.m”. The block takes in the orientation and position of the end-effector which is
provided by a “Coordinate Transformation Conversion”-block which takes in the crane-
tip positions [x; y; z] and provides a homogeneous transformation matrix. It must also
be provided weights, here given as the vector [0 0 0 1 1 1] this indicates that we
want the position to weigh more than the orientation in the solver. An initial guess for
the joint configuration is also provided with the vector [0 0 0]. The solver is selected
as “Levenberg-Marquardt”, and uses this algorithm to solve the inverse kinematics. The
block returns the joint configuration of the crane q.

3.3.5. Model 1 Control Scheme
A block diagram depicting how model 1 is set up in Simulink can be seen in figure 3.5. As
can be observed the controller has feedback in the crane-load damping controller and the
crane-tip position control uses a sort of feedforward control where the feedback variable
is provided by the damping controller instead of from the crane model.
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Inverse 
Kinematics

Pendulum 
Model

Simscape 
Crane Model

Pendulum 
damping

Crane Tip 
Position 

Controller

Figure 3.5.: Model 1 control scheme

3.4. Model 2
For the second model, a similar controller was designed only it also incorporates feedback
for the position control. A new crane model was also made.

3.4.1. Crane model
To make the following crane model the software from “Modern Robotics: Mechanics,
Planning, and Control” [10] was used. This software contained Matlab-functions that
could calculate the Inertia matrix M(q) the Coriolis and centripetal force matrix C(q, q̇)q̇
and the gravity matrix g(q) so that the following dynamic model could be derived

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (3.13)

In Simulink, the system is solved as

q̈ = M(q)−1(τ − C(q, q̇)q̇ − g(q)) (3.14)

The functions used to generate the different matrices were

• M = MassMatrix(thetalist,Mlist,Glist,Slist)

• c = VelQuadraticForces(thetalist,dthetalist,Mlist,Glist,Slist)

• grav = GravityForces(thetalist,g,Mlist,Glist,Slist)

where Mlist is a list of transforms Mi−1,i, Glist is a list of spatial inertia matrices Gi,
Slist is a list of joint screw axes Si expressed in the base frame and g is the gravitational
constant. The lists thetalist and dthetalist are respectively the joint configuration q and
joint velocities q̇.

Mlist, Glist and Slist are all based on the same model Espen Nilsen used in his master
thesis [4] and are
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M1 =


1 0 0 0
0 1 0 0
0 0 1 0.3
0 0 0 1

 (3.15)

M2 =


0 0 1 0.3
0 1 0 0

−1 0 0 0.8
0 0 0 1

 (3.16)

M3 =


0 0 1 0.3
0 1 0 0

−1 0 0 0.8
0 0 0 1

 (3.17)

MEE =


0 0 1 0.6
0 1 0 0

−1 0 0 0.8
0 0 0 1

 (3.18)

Slist =



0 0 0
0 1 0
1 0 0
0 −0.8 1
0 0 0
0 0 0


(3.19)

The spatial inertia matrices are a combination of the inertia tensor and the mass matrix
and have the following form

Gi =
[

Ib 03x3
03x3 mI

]
(3.20)

where

I =

Ixx 0
0 Iyy 0
0 0 Izz

 (3.21)

All inertia tensors are modelled as solid cylinders, where for the first joint the centre of
mass is at the centre of the cylinder giving us

I1 =


1
12m(3r2 + h2) 0 0

0 1
12m(3r2 + h2) 0

0 0 1
2mr2

 (3.22)
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while the two latter joints have their centre of masses at the end of the cylinder giving us

I2,3 =


1
3m(3r2 + h2) 0 0

0 1
2m(3r2 + h2) 0

0 0 1
3m(3r2 + h2)

 (3.23)

The parameters used for the inertia matrices are based on the values found in “model-
codegen.m” and can be found in table 3.1. The density this code uses for the joints is the
density of carbon steel set to ρ = 7800kg/m3.

Parameter joint 1 joint 2 joint 3 unit
ri 0.12 0.10 0.08 m
hi 0.60 0.60 0.60 m
mi 211.71 147.03 94.10 kg

Table 3.1.: Parameters for crane inertia matrices

How the model is set up in Simulink is shown in figure 3.6. The initial values used for the
crane joints and -tip can be seen in table 3.2. We base the crane on the same parameters as
the one used in Nilsen’s thesis to continue to use the rigid body tree for future simulations.
A rigid body tree is necessary for most of the blocks provided by the robotics toolbox in
Simulink making this code valuable for the rest of the simulations.

Figure 3.6.: Crane dynamics in Simulink
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Parameter Initial value Unit
x0 0.6 m
y0 0 m
z0 0.8 m
q1 0 rad
q2 0 rad
q3 0 m

Table 3.2.: Initial values for the crane model

3.4.2. Crane control
A controller is also necessary for providing the crane dynamic model with a torque input.
The controller is of type feedforward plus feedback linearisation. Given a typical PD
controller with feedforward

(q̈d − q̈) + kd(q̇d − q̇) + kp(qd − q) = 0. (3.24)

This can be solved with respect to q̈

q̈ = q̈d + kd(q̇d − q̇) + kp(qd − q). (3.25)

This can in turn be inserted into the equation 2.38 which gives the following controller,
also known as the computed torque controller

τ = M(q)(q̈d + kd(q̇d − q̇) + kp(qd − q)) + C(q, q̇)q̇ + g(q). (3.26)

In figure 3.7 one can see how this is implemented in Simulink. One of the drawbacks of
such a controller is that it requires all three joint variables as input. This creates a need
for inverse kinematics that solves the joint position, -velocity and -acceleration.
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Figure 3.7.: Torque controller in Simulink

3.4.3. Crane Kinematics
The forward Kinematics is solved using the product of the exponential formula, the func-
tion used is taken from Nilsen’s master thesis [4]. For this model, there is also a need
to solve the forward kinematics for the crane-tip velocity and -acceleration. These are
solved using the equation 2.18 and 2.26. The Jacobian is solved using a function from the
modern robotics toolbox. The function is “Js = JacobianSpace(Slist,thetalist)”, which
takes in a list of joint screws and joint configuration to solve the space Jacobian Js(q).
The “Derivative” block in Simulink is used to create the time derivative of the Jacobian
J̇(q).

The second model uses the same inverse kinematics as the previous model for solving
the joint position, This can be done since we base the crane dynamic model on the same
parameters as the rigid body tree from model 1. However, this model also requires the
joint velocity and -acceleration for the input to the crane controller. These are solved
using equation 2.35 and 2.36. Since we only have 3 joints we have 6 × 3 Jacobian. In
order to make the Jacobian invertible, the size of the Jacobian is altered in the same
manner as equation 2.37. Since we only control the x- and y− position, we technically
could make do with a 2 × 2 Jacobian. However, the z-position is also included since this
position will also have to be controlled in future. Solving the Jacobian with only these
three positions in mind we get a 3 × 3 Jacobian which is invertible.

3.4.4. Crane-Tip Set-Points
To create the set-point for the crane position and if applicable the velocity and accel-
eration, transfer functions were used. With the help of a simple second-order transfer
function with a step function input the position can be represented as
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Gpos(s) = 1
T2s2 + T1s + 1 . (3.27)

The time derivative of position is velocity which can be represented as a transfer function
as

Gvel(s) = s

T2s2 + T1s + 1 . (3.28)

and the second time derivative of position is acceleration which is given as

Gacc(s) = s2

T2s2 + T1s + 1 . (3.29)

Where the “s” and “s2” in the numerator denote the derivative and second derivative
respectively. The functions can be tuned by adjusting T1 and T2. One issue with transfer
functions is that one cannot set initial conditions, for variables where this is necessary,
one can turn the transfer function into state space models by using the Matlab function
“tf2ss”. This function takes in the numerator adn denominator of the transfer function
and provides us with the A, B, C and D matrices which are needed to make a state space
model. These matrices are used in the “State-space”-block in Simulink in which initial
conditions can be specified.

The benefit of setting the set points this way, contrary to using normal step functions,
is that the velocity and acceleration set points make sense compared to the position we
want to achieve. Setting the set-point of the velocity to a constant zero while the position
is a step function from zero to one, will for example create a discrepancy between the
position we want and the velocity wanting to stay at zero. Using these transfer functions,
however, both the position and the velocity strive to achieve the same position.

3.4.5. Feedback controller
The feedback controller for crane-tip position control and damping of the crane load used
in Model 2 is based on the article “Vision-Based Control of a Knuckle Boom Crane With
Online Cable Length Estimation” by Geir O. Tysse [19]. It should be noted that cable
length estimation will not be included. The same pendulum model as model 1 is used,
this is slightly different from the one used in the paper which also includes variable cable
length. A noteworthy difference from model 1 is that the crane tip position controller is
in the outer loop and the pendulum damping controller is in the inner loop. Tysse relates
this to there is more need for fast control for the pendulum oscillations than for the crane
tip.

The following damping controller proposed

ẍ0 = 2Lζω0ϕ̇y + ux,

ÿ0 = −2Lζω0ϕ̇x + uy,
(3.30)

where ux and uy are the crane-tip position controller, which is a PD controller
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ux = kp(xd − x0) + kd(ẋd − ẋ0),
uy = kp(yd − y0) + kd(ẏd − ẏ0).

(3.31)

The gains can be selected as kp = ω2
s and kd = 2ζsωs. Where ωs << ω0 and ζs can

be selected in the range [0.7, 1]. Setting ωs = ω0/ks where ks ≥ 5 is noted by Tysse as
sufficient.

The paper notes that it in practice will be impossible to command the acceleration of
the crane tip. It, therefore, suggests using the following equations for commanding the
velocity instead

ω̇x = ẍ0, ω̇y = ÿ0, (3.32)

v̇x = 1
Tv

(ωx − vx),

v̇y = 1
Tv

(ωy − vy).
(3.33)

Tv is here the bandwidth of the velocity loop it is proposed by Tysse that this should be
sufficiently faster than the damping. It should be noted that in this model, countary to
the one Tysse designed in [19], the joint position, velocity and acceleration needs to be
provided to the inverse kinematics. This is for the crane torque controller. In Simulink
equation 3.32 and 3.33 is therefore modelled as seen in figure 3.8, providing the crane-tip
position, -velocity and -acceleration to the inverse kinematics.

Figure 3.8.: Equations 3.32 and 3.33 as modelled in Simulink

The block diagram in figure 3.9 shows how model 2 is built in Simulink. This control
scheme is a clear use of cascade control where we have two nested feedback loops. The
damping controller is here the inner loop and the crane-tip position control is the outer
loop.
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Figure 3.9.: Model 2 control scheme

3.5. Model 3
The same dynamic and kinematic models for the crane and crane load are used for the
third model. As with model 2, this model is based on Geir Ole Tysse’s PhD-thesis. This
controller is based on the article “Crane load position control using Lyapunov-based pen-
dulum damping and nonlinear MPC position control ” [20], and the complete derivation
of the controller can be found in this article.

The controller design starts with a basic damping controller as the feedback control laws,
similar to the ones used in the preceding models. It should be noted that here s and c
mean respectively sin and cos, the subscript x and y denote that we are either using the
angle ϕx or ϕy

ÿ0 = −2ζω0Lϕ̇x, (3.34)

ẍ0 = 2ζω0Lϕ̇y − ÿ0sxsy

cy

. (3.35)

These equations can be inserted into the pendulum model. The pendulum model used by
Tysse is similar to the ones from equations 3.4 and 3.5, but with z̈0 set to zero

ϕ̈xcy + 2ζω0ϕ̇xcx + ω2
0sx = 2, ϕ̇xϕ̇ysy (3.36)

ϕ̈y + 2ζω0ϕ̇ycy + ω2
0cxsy = ϕ̇2

xsysy, (3.37)

and then linearised with ϕx = ϕy = 0 and ϕ̇x = ϕ̇y = 0

ϕ̈x + 2ζω0ϕ̇x + ω2
0ϕx = 0, (3.38)
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ϕ̈y + 2ζω0ϕ̇y + ω2
0ϕy = 0. (3.39)

When the suspension point is stationary, the pendulum’s kinetic and potential energy can
then be used to analyse the closed-loop dynamics of the nonlinear system.

Vd = 1
2mL2(ϕ̇2

xc2
y + ϕ̇2

y) + mgL(1 − cxcy) (3.40)

Which has the time derivative along the trajectories of motion

V̇d = mLϕ̇xÿ0cycx + mLϕ̇y(ẍ0cy + ÿ0sxsy) (3.41)

Inserting equation 3.34 and 3.35 we then have its closed loop dynamics

V̇d = −2ζω0mL2(ϕ̇2
xcxcy + ϕ̇2

ycy) (3.42)

Using LaSalle’s theorem Tysse explains that at the equilibrium points, the same point as
the system is linearised at, it is asymptotically stable.

These equation leads to the second step of the controller design which is to design an
exponentially stable Lyapunov controller for the pendulum motions in ϕx and ϕy. The
accelerations of the suspension point are considered control variables ẍ0 = ux and ÿ0 = uy.

The feedback control laws used are

uy = −Lcy

cx

(kdϕ̇x + kpϕx) − 2Lsy

cx

ϕ̇xϕ̇y + g
sxs2

y

cx

(3.43)

ux = L

cy

(kdϕ̇y + kpϕy) − Lsyϕ̇2
x − uysxsy

cy

(3.44)

The controller gains are here kd and kp. The feedback variables are the angle and the angle
rate of the pendulum. The closed-loop dynamics of the system with the above controller
laws are

ϕ̈x + kdϕ̇x + kpϕx + ω2
0cysx = 0 (3.45)

ϕ̈y + kdϕ̇y + kpϕy + ω2
0cxsy = 0 (3.46)

The Lyapunov function can then be deduced, the state vector is set to

x = [ϕx, ϕ̇x, ϕy, ϕ̇y]T (3.47)

The Lyapunov function used is
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V (x) = 1
2xT Px + mgL(1 − cxcy) (3.48)

where P is the real symmetric positive definite matrix given by

P =


p11 p13 0 0
p13 p22 0 0
0 0 p11 p13
0 0 p13 p22

 (3.49)

where

p11 = (kp + ckd)p22, p13 = cp22, p22 = mL2 (3.50)

c is here a positive constant satisfying c < kd.

The following domain is considered

D = {x| |ϕx| <
π

2 and |ϕy| <
π

2 − δ} (3.51)

where 0 < δ < π/2. With further investigation of the Lyapunov function, Tysse finds the
Lyapunov function’s upper and lower bounds are bounded by

k1||x||22 ≤ V (x) ≤ k2||x||22. (3.52)

Using the smallest eigenvalue of P λmin, and P̃ = P + mgL diag(1, 0, 1, 0), we have that
k1 = (1/2)λmin(P ) and k2 = (1/2)λmin(P̃ ).

The time derivative of the Lyapunov function along the solutions of the closed-loop system
is found to be as follows

V̇ (X) = −p13kp(ϕ2
x + ϕ2

y) − p22kd(ϕ̇2
x + ϕ̇2

y)
−p13ω

2
0(ϕxsxcy + ϕysycx)

(3.53)

Tysse found with further analysis of the time derivative of the Lyapunov function that

V̇ (x) ≤ −k3||x||22 (3.54)

with k3 = min{p13kp, p22kd} and concludes that equations 3.45 and 3.46 are exponentially
stable in D.

Since it in practice will not be possible to use acceleration as a control input, non-vanishing
perturbations are introduced. Non-vanishing perturbations can be explained as distur-
bances that do not vanish. In this case, they are deviations between the input value and
the acceleration, and given as
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ẍ0 = ux + gx (3.55)

ÿ0 = uy + gy (3.56)

where ux and uy are the acceleration according to the control laws from equation 3.43
and 3.5. The closed-loop dynamics with non-vanishing perturbations then becomes

ϕ̈x + kdϕ̇x + kpϕx + ω2
0cysx − cx

cyL
gy = 0 (3.57)

ϕ̈y + kdϕ̇y + kpϕy + ω0cxsy + cy

L
gx + sxsy

L
gy = 0 (3.58)

Tysse then uses Lyapunov stability to show that the perturbed system satisfies

||x(t)||2 ≤ ke−φt||x(0)||2. ∀t < T (3.59)

and
||x(t)||2 ≤ b, ∀t ≥ T (3.60)

where T is finite and

k =
√

k2

k1
, φ = (1 − θ)k3

2k2
, b = k4

k3

√
k2

k1

γ

θ
(3.61)

The next step is to design the crane-tip position control, this is to be done by nonlinear
MPC. Tysse suggests the following closed-loop dynamic system for the NMPC.

ẍ0 = gx + L(kdϕ̇y + kpϕy) − Lcysyϕ̇2
x − uysxsy

cy

, (3.62)

ÿ0 = gy −
Lcy(kdϕ̇x + kpϕx) + 2Lsyϕ̇xϕ̇y − gsxs2

y

cx

, (3.63)

ϕ̈x = −kdϕ̇x − kpϕx − ω2
0cysx + cx

cyL
gy, (3.64)

ϕ̈y = −kdϕ̇y − kpϕy − ω2
0cxsy + cy

L
gx − sxsy

L
gy. (3.65)

Here the state vector is given as

z = [x0 ẋ0 y0 ẏ0 ϕx ϕ̇x ϕy ϕ̇y]T (3.66)

the control vector is given by the non-vanishing perturbations gx and gy
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w = [gx gy]T (3.67)

The following state space model is introduced

ż(t) = f(z(t), w(t)), z(0) = z0 (3.68)

where the perturbation is bounded by γ as follows

U := {w| |gx| < γ and |gy| < γ} (3.69)

To solve this system in Simulink the nonlinear MPC block is used. For this block to work
we need a state function and a state output function. The state function is based on 3.68
and solved as

ż = [x2 ẍ0 x4 ÿ0 x6 ϕ̈x x8 ϕ̈y]T (3.70)

where the states are set to

z = [x1 x2 x3 x4 x5 x6 x7 x8] (3.71)

The output function is set to

y = z (3.72)

so that each output can accept a reference.

In addition, the Jacobian for both the state- and output function is provided. The Jaco-
bians are found using the following equation for the state matrix

A(i, j) = ∂z(i)
∂x(j) (3.73)

for the input matrix

Bmv(i, j) = ∂z(i)
∂w(j) (3.74)

and for the output function

C(i, j) = ∂y(i)
∂x(j) = I8x8 (3.75)

where I8x8 is the 8x8 identity matrix.
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To create the inverse kinematics input a similar solution to model 2 is used, where the
velocity is commanded instead of the acceleration. For this model the equation used are

ω̇x = ux + gx, ω̇y = uy + gy, (3.76)

ẍ0 = 1
Tv

(ωx − ẋ0)

ÿ0 = 1
Tv

(ωy − ẏ0)
(3.77)

here 1/Tv is the bandwidth of the velocity loop. The weights of the NMPC are set to

Q = diag([Qx0 Qẋ0 Qy0 Qẏ0 0 0 0 0]) (3.78)

and the reference is set to

zr = [x0r ẋ0r y0r ẏ0r 0 0 0 0]T (3.79)

Some bounds were also set on the crane-tip position and velocity in the NMPC controller.
The velocity is bounded by |v| = 3.5γ where gamma is the same as used for the pertur-
bations. The position is bounded by ±1.2 which is the maximum reach of the crane in
both directions.

The Nonlinear MPC block requires a nonlinear object that defines the parameters and
functions that should be used by the block. The object and functions are provided in the
digital attachment. For more information about the NMPC block and nonlinear object,
the following MathWorks articles should be consulted [21, 22]. It should be noted that
the NMPC block needs a discrete input, usually, this is provided by state estimation,
by for example a Kalman filter. In this model the measurements are however assumed
perfect, the “Zero-Order Hold”-block is therefore used to make the discrete input. This
block provides the NMPC with an input that matches its own sample time.

The block diagram in figure 3.10 shows the setup of model 3 in Simulink. This also applies
a form of cascade where the outer loop is the NMPC position control and the inner loop
is the crane load damping controller.
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Figure 3.10.: Model 3 control scheme



Chapter 4.

Results

4.1. Model 1
In this section, the results from the simulation of model 1 are presented. This controller
uses only feedback for the pendulum damping controller and employs feedforward from
this controller into the crane tip position controller.

4.1.1. Model 1 Test 1
The first test was conducted using the parameters in table 4.1. In this test, the crane
load starts with no pendulation and there are steps in the crane-tip position control.

Parameter Value Unit
kp 1.6 N/A
kd 5 N/A
ζ 0.2 N/A
ζu 0.25 N/A
x0i 0.6 m
y0i 0 m
z0i 0.8 m
x0d 0.7 m
y0d 0.6 m
ϕxi 0 degrees
ϕyi 0 degrees

Table 4.1.: Parameters for controller, model 1 test 1
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Figure 4.1.: Model 1, test 1 x- and y-position

Figure 4.2.: Model 1, test 1 ϕx and ϕy
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Figure 4.3.: Model 1, test 1 acceleration in x- and y- direction

4.1.2. Model 1 Test 2
Test 2 uses the same parameters as test 1 but with initial conditions of the pendulum
angle set to −20◦ and 15◦ for ϕx and ϕy respectively.
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Figure 4.4.: Model 1, test 2 x- and y-position

Figure 4.5.: Model 1, test 2 ϕx and ϕy
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Figure 4.6.: Model 1, test 2 acceleration in the x- and y- directions

4.2. Model 2
For model 2 there is first a test of the new crane model. This model is then tested with the
new controller that has feedback for both the crane load damping and crane-tip position
controller.

4.2.1. New Crane Model
The crane model and torque controller are tested with a trajectory input where q, q̇ and
q̈ are provided. This trajectory is taken from the Espen Nilsens’s master thesis [4]. With
kp set to 10 and kd set to 15, we get the difference between the actual and desired position
seen in figure 4.7 and the joint torque inputs seen in figure 4.8.
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Figure 4.7.: Difference between the actual and desired orientation of crane joints

Figure 4.8.: Joint torque input from controller
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4.2.2. Model 2 Test 1
The first test of the new controller was conducted with the parameters seen in table
4.2. Here there are steps in the crane-tip position, but the crane load starts with no
pendulation. The steps occur at time 30 s to allow the system to stabilise first.

Parameter Value Unit
ζ 0.2 N/A
ζs 0.8 N/A
ωs

ω0
5 N/A

kpt 10 N/A
kdt 15 N/A
Tv 5 s
x0i 0.6 m
y0i 0 m
z0i 0.8 m
x0d 0.7 m
y0d 0.6 m
ϕxi 0 degrees
ϕyi 0 degrees

Table 4.2.: Parameters for controller, model 2 test 1

Figure 4.9.: Model 2, test 1 actual and reference x- and y-position of the crane-tip
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Figure 4.10.: Model 2 test 1 ϕx and ϕy

Figure 4.11.: Model 2, test 1 actual and desired x- and y - acceleration
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Figure 4.12.: Model 2, test 1 desired trajectory

4.2.3. Model 2 Test 2
The second test is made with the same condition as in table 4.2, with the initial conditions
for the crane load ϕxi and ϕyi changed to −20◦ and 15◦ respectively.
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Figure 4.13.: Model 2, test 2 actual and reference x- and y-position of the crane-tip

Figure 4.14.: Model 2, test 2 ϕx and ϕy
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Figure 4.15.: Model 2, test 2 actual and desired x- and y - acceleration

Figure 4.16.: Model 2, test 2 desired trajectory
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4.2.4. Model 2 Test 3
The third test is conducted with the same parameters as in table 4.2 but with x0d and
y0d set equal to their initial conditions x0i and y0i.

Figure 4.17.: Model 2, test 3 actual and reference x- and y-position of the crane-tip
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Figure 4.18.: Model 2, test 3 ϕx and ϕy

Figure 4.19.: Model 2, test 3 actual and desired x- and y - acceleration
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Figure 4.20.: Model 2, test 3 desired trajectory

4.3. Model 3
The third model uses Lyapunov-based damping for the crane load and NMPC for the
crane-tip position control. The dynamic and kinematic models are the same as in model
2.

4.3.1. Model 3 Test 1
In test 1 the tuning parameters from table 4.3 are used. In this simulation, all references
are set equal to the system’s initial conditions. Additionally, this test has no bounds on
the manipulated variables γ = 0. However, the output variables are all bounded using
γ = 1.
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Tuning parameter Value Unit
Ts 0.1 s
Tc 5 s
Tp 15 s
Tv 200 s
kpt 10 N/A
kdt 15 N/A
kp 2 N/A
kd 1 N/A
x0i 0.6 m
y0i 0 m
ϕxi 0 degrees
ϕyi 0 degrees

Table 4.3.: Parameters for controller, model 3 test 1

Figure 4.21.: Model 3, test 1 actual and reference x- and y position of the crane-tip
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Figure 4.22.: Model 3, test 1, ϕx and ϕy

Figure 4.23.: Model 3, test 1 manipulated variables gx and gy
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Figure 4.24.: Model 3, test 1 x- and y-position sent into the inverse kinematics block

4.3.2. Model 3 Test 2
The second test uses similar tuning parameters as the first but now with a step in both
the x- and y-position reference at the time of 40 seconds. The desired x-position is set to
0.7 m and the desired y-position is set to 0.6 m.
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Figure 4.25.: Model 3, test 2 actual and reference x- and y position of the crane-tip

Figure 4.26.: Model 3, test 2 ϕx and ϕy
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Figure 4.27.: Model 3, test 2 manipulated variables gx and gy

Figure 4.28.: Model 3, test 2 x- and y position sent into the inverse kinematics block
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4.3.3. Model 3 Test 3
Test 3 is conducted with the same conditions as test 2 but now with initial conditions for
ϕx and ϕy changed to −20◦ and 15◦ respectably. There is also set a limit γ equal to 1 on
the non-vanishing perturbations gx and gy.

Figure 4.29.: Model 3, test 3 actual and reference x- and y position of the crane-tip
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Figure 4.30.: Model 3, test 3 ϕx and ϕy

Figure 4.31.: Model 3, test 3 manipulated variables gx and gy
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Figure 4.32.: Model 3, test 3 x- and y-position sent into the inverse kinematics block

4.4. Kinematics Test
A final test was conducted using only kinematic models, to rule out any problems with
the kinematics. The Simulink model used can be seen in Figure 4.33. A fixed trajectory
providing q, q̇ and q̈ is given to the crane controller, and the dynamics are then solved.
The joint variables are then sent to the forward kinematics which solves the end-effector
position, -velocity and acceleration and the inverse kinematic turns these back into joint
variables. What we are interested in seeing here is if the joint variables solved by the
inverse kinematics match the reference trajectory. The trajectory used is the same as
in 4.2.1. Some of the plots show the difference between the reference and final joint
variables, this is because the plots were too similar to properly distinguish between them.
The controller gains are the same as for models 2 and 3, kpt = 10 and kdt = 15. The initial
conditions of the joint positions q in the dynamic model are here set to q0 = [0 0 0].
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Figure 4.33.: Kinematic test setup in Simulink

Figure 4.34.: Joint position reference value and joint position solved by inverse kine-
matic
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Figure 4.35.: Joint velocity reference value and joint velocity solved by inverse kinematic

Figure 4.36.: Joint acceleration reference value and joint acceleration solved inverse
kinematic
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Figure 4.37.: Crane-tip position solved by forward kinematics





Chapter 5.

Analysis and Discussion

In this chapter, the results are analysed and discussed. There are also discussed possible
solutions for improving the current models.

5.1. Model Analysis

5.1.1. Analysis Model 1
Two tests were conducted with the first model one with a step in the position and with
an initial value of the pendulum angle ϕx and ϕy set to 0◦ which can be seen in figure
4.1 to 4.3. And a second test with the same conditions but with the initial value of the
pendulum angles ϕx and ϕy set to −20◦ and 15◦ respectively, can be seen in figure 4.4 to
4.6.

As can be seen in the figures 4.1 to 4.6 the controller does meet the requirements set
for the controller. It dampens the pendulum oscillations to 0◦ and manages to put and
keep the end effector at the right x- and y-positions. An error in the initial conditions of
the x-position can be observed in both figure 4.1 and 4.4. Where the actual crane starts
at 0.9 m while the desired position starts at 0.6 m. This deviation is, however, handled
well by the controller and in both cases, they quickly meet up at the set-point. One
can also observe in figure 4.3 and 4.6 that the desired and actual acceleration follows a
similar pattern. Although the actual acceleration does in both cases have a slightly lower
amplitude and some more significant deviation spikes which can be observed at roughly
time 5 seconds from both figures and for both accelerations.

5.1.2. Analysis Model 2
New Crane Dynamic- and Kinematic Model

The second model has a new dynamic model for the crane and a new controller which
implements feedback for both the pendulum damping and position control. Forward
kinematic models for finding the end effector position, -velocity and -acceleration, together
with inverse kinematic models for finding joint velocity and -acceleration were also added.

As can be seen in figure 4.7 the error between the desired and actual orientation of the
crane joints is as small as 10−5. Which makes the difference between the two practically
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negligible. Figure 4.8 shows the torque input from the crane controller to the crane
dynamic model given in Nm, it can here be observed that the torque given to joint 3 ends
up at a value just below 1500 Nm, this is necessary for the actuators of the crane to hold
the crane up at a constant height of 0.8 m.

Later tests of the kinematic model as seen in figures 4.34-4.36, show that the inverse
kinematic models struggle with solving the joint 3 position and joint 1 velocity and ac-
celeration. Even though joint 1 velocity and acceleration are off the joint 1 position is on
target with a small error in the 10−4-range. It can also be observed by the end-effector
positions solved by the forward kinematic seen in figure 4.37 that the forward kinematic
that finds the crane-tip position uses the correct initial values for the end-effector position.

Controller Model 2

Three tests were conducted on the controller the first one with a step in the x- and y
direction in time 30 s. As can be seen in figure 4.9 to 4.12. In figure 4.9 it can be observed
that the position in both directions is stable at its initial condition until the step occurs,
both directions then take around 40 s to stabilise at 0 m. In figure 4.10 it can be observed
that even though the pendulum starts out with an angle of 0◦ they start to pendulate
quite quickly after the step happens at time 30 s and in the case of the y-direction it
already has small pendulation from the beginning. After the step, both directions reach a
maximum pendulation of about 40◦. In figure 4.11 it can be observed that the difference
in shape and amplitude of the desired and actual acceleration is great. Figure 4.12 shows
that desired position sent into the inverse kinematics block is quite far off from the actual
and reference position seen in figure 4.9 seemingly exponentially increasing, instead of
settling at a steady value.

Test 2 had many of the same problems as Test 1. The difference between the test is the
pendulum is given an initial condition of −20◦ for ϕx and 15◦ for ϕy. As can be seen in
figure 4.13 the position will, because of the initial movement of the pendulum, not stay
in its own initial conditions. And in the same fashion as test 1 it never reaches its new
set point after time 30 s but instead ends up at 0 m. As seen in 4.15, the pendulum angles
never go to 0◦. However, it never goes above or below 20◦ either, which is an improvement
from Test 1. The acceleration shown in figure 4.15 has similar problems as Test 1 where
the amplitude is lower and the general shape of the actual acceleration is off from the
desired acceleration. Similarly, the desired position shown in figure 4.16 is far from what
is represented in figure 4.13, and exponentially increasing.

A third test was made to see how the controller reacts when there are no changes in the
crane-tip position and the pendulum angles’ initial conditions are set to 0◦. Figure 4.17
shows that in these conditions the position remains mostly on the mark, with a 0.25 m
deviation in the first 10 s in the x-position. A similar deviation at the beginning of the
simulation in the x-position can be seen in figure 4.9. The y-position, however, is on the
mark with some minor deviation at the end. These deviations are, however, so small that
they are considered negligible. In figure 4.18 it is shown that the ϕx angle is steady at
0◦, the ϕy angle slowly grows more unstable reaching a max amplitude of 6◦ at the end of
the simulation. The desired and actual acceleration seen in 4.19 does not match, for the
y-acceleration this is not an issue considering how small the desired acceleration is. For
the actual x-acceleration, it is possible to see some very small oscillations resembling the
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one in the desired acceleration. However, it is still far off from the desired acceleration.
Note the desired position in 4.20 is more realistic to the actual movements of the crane
where the x-position still does not match. The y-position is a close match in shape, the
desired position, however, has an amplitude in the 10−14-range while the actual position
is in the 10−15-range. These values are so small that they both can be approximated to
zero.

5.1.3. Analysis Model 3
The third model uses the same dynamic and kinematic models as model 2. The controller
is however changed to use Lyapunov-based pendulum dampening and nonlinear MPC
position control. Three tests were conducted on the model.

The first test was conducted with the initial value of the pendulum angle set to 0◦ and
with no change in position. The goal of this test was to see if the controller could hold
the crane and pendulum steady with no change in the system. As can be seen in figure
4.21 and 4.22 the x-position has some initial movement but eventually settles at its initial
value, and yet again at time 90 s to 145 s it deviates but goes back to its initial value. The
y-position keeps itself steady at 0 m with only very small deviations in the 10−16-range,
which are negligible. The sudden movement in the x-position at the time 0 s leads to
a small pendulation in ϕy, this does eventually go the zero after about 50 s and is only
a minor deviation with a maximum amplitude of ±4◦. In figure 4.23 we can see the
manipulated variables of the system. It can be observed that there is only movement in
gx. Figure 4.24 the positions sent into the inverse kinematic block can be seen. The shape
and magnitude for the x-position do not represent what can be seen in figure 4.21. Here
the deviations in the y-position are also negligible as it is in the 10−14-range, which is
greater than the actual position but still negligible.

Test 2 was conducted with the same parameters as test 1, but in addition, a step in x-
and y-position was made. In figure 4.25 and 4.26 the end-effector position and pendulum
angles can be observed. The position holds to its initial value until the step is made at
time 60 s then both position eventually settles at 0 m at about time 95 s. This is not the
desired position. The x-position experiences an initial bump at time 0 s, which results
in a pendulation in ϕy, the pendulum also starts oscillating in both directions after the
position is changed at time 60 s. All three oscillations of the pendulum eventually die out.
In figure 4.27 one can see that both manipulated variables are in movement and neither
gx or gy are settling at zero. It can also be observed in figure 4.28 that the position sent
into the inverse kinematics block steadily increases to over 340 m for the x-position and
120 m for the y-position, similar to the exponential rise in the desired position as seen in
model 2.

The third test was done with initial conditions in ϕx and ϕy set respectively to −20◦ and
15◦ and with a limit on manipulated variables γ = 1. In figure 4.29 we can see a similar
trend as test 2. The x-position only briefly settles at its initial value, and it has the same
initial bump as can be seen in figure 4.21 and 4.25. The y-position spends around 20 s at
its initial position before it also starts to deviate. Both positions reach their maximum
reach of ±1.2 m before settling at 0 m as test 2 did. Figure 4.30 shows that the oscillation
of the pendulum alternates several times between growing worse and dampening down,
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but never settling at 0◦. The maximum amplitude of either pendulation direction does
not exceed ±25◦. The manipulated variable, seen in figure 4.31 quickly saturates at the
limit that’s been set for it and never goes to zero. Figure 4.32 shows the same problem
as test 2 where the position grows far greater than it should.

5.2. Discussion and Model Comparison
Model 1 worked well and managed to achieve all the control goals. The reason this model
was not built further on is that the crane tip position controller uses feedforward instead
of feedback control. It was thought that this type of position control would not be good
enough for an actual shipboard crane and that feedback from the actual crane-tip position
would be essential for good control of the crane tip. Since the input of the controller is
the crane tip acceleration created using crane loads angle rate and then integrated twice
to make the x- and y-positions used in the controller. The crane controller does not have
any reference of where the crane tip is and only knows for certain where we want it to
be. Especially if there are heavy disturbances from wind and waves further distorting
the measurements the feedforward controller can be vulnerable. With vulnerable it is
meant that the crane will struggle to end up at the reference position and start deviating.
Achieving feedback in the following controllers, therefore, became a major priority as can
be seen in both models 2 and 3.

Models 2 and 3 encountered many of the same problems. The discussion of these problems
is therefore merged where it is appropriate. For model 2 test 3 and model 3 test 1 both
managed to keep the position steady when there were no steps in position and the initial
condition for the pendulum is 0◦. Both did, however, perform quite poorly with steps
in the crane tip position and non-zero initial conditions in the crane load. Model 3 did
more consistently manage to dampen the pendulum oscillations, only not managing it in
the third test where the MV’s were bounded by γ ± 1, and the initial condition for the
pendulum was higher.

An anomaly can be seen in both models 2 and 3 where there are steps in the crane tip
position. In these cases, the position never reaches the new set-point or the old initial
position but rather settles at 0 m. The desired position in these cases all grows to very
high values, which are impossible for the actual crane to reach. Looking at the desired
positions one would assume these ended up at one of the limits ±1.2 m. There are a few
theories as to why these errors happen.

The most likely cause is as stated above, the desired position never resembles the actual
or reference position. A cause for this can be that to create this position input we have
to integrate values three times as can be seen in figure 3.8. When integrating oscillations
that do not oscillate around zero, the integration can cause an exponential increase.
The velocity created here has feedback which can stabilise the integration, the position
however falls outside this feedback loop. Without feedback, the integration can be allowed
to increase indefinitely under the right conditions. A solution to this may be to not use
position in the control but rather use the velocity and acceleration together or alone to
control the crane. The actual crane has a form of velocity control this was, however,
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discovered too late to implement1. One could also try to formulate these equations to
command the position instead of the velocity. As mentioned by Tysse in his PhD thesis
the crane-tip acceleration cannot in reality be used as an input [9], using the acceleration
will therefore only be a solution that works in simulations.

Another theory is that errors are collected throughout the model. Each subsystem has
an error that for the subsystem itself may not be too significant. It can, however, become
quite significant when all subsystems have a specific error or if one block has a large error,
these errors can then propagate throughout the system. A solution for this problem could
be better fine-tune every part of the model. Using an error measuring tool like RMS-error,
like in the project report [5], could help to uncover where the errors originate. This is
useful for finding more suitable gains. By process of elimination, one could look at the
results in 4.2.1 and see that the error most likely does not occur in the crane dynamic
model, this could also be said of the dynamic model for pendulum as it works quite well
for model 1 and in the project report [5]. This leaves us with the kinematic models and
controllers as the most likely sources for such errors. Which aligns quite well with the first
theory of integration difficulties. Problems have been discovered with the initial condition
of joint 3 and the x-position. As can be seen in figure 4.1 and 4.4 and see that the initial
condition here is set to 0.9 m whereas, in the subsequent models, it is set to 0.6 m. The
reason for this is that when the initial condition where set to 0.9 m in the controller the
initial condition of the actual position went up by around 0.3 m. This discrepancy is one of
the reasons a new crane model was tried. A residual of this can be seen in the x-position in
the subsequent models, especially in model 2 test 3 and model 3 test 1 where the position
seems to try to go up before settling at 0.6 m. As is seen in section 4.4 these problems
most likely originate in the inverse kinematics which sets a different initial condition for
joint 3 than the dynamic model.

Together with the initial condition problem, a problem with achieving feedback control is
a reason for making a new dynamic model for the crane. The Simscape model from Espen
Nilsen’s thesis [4] had a problem where algebraic loops would occur when the calculated
crane-tip position and -velocity was used in a feedback controller. This both made the
control quite bad together with simulation time going up drastically. It was tried using
unit delays to fix the algebraic loops. The “Unit delay”-block delays the input by the
sample time. This means you use the measurement one time step back instead of the
current one. This did rid the system of algebraic loops but did not improve the control
or the simulation time. Algebraic loops are usually a symptom that something is wrong
in the model, and since it proved difficult to find these issues for the Simscape crane a
new model was seen as the simplest solution to make a new dynamic model.

The new crane model works quite well when the trajectory is predefined with joint po-
sition, -velocity and -acceleration provided to the torque controller. Simulations of the
kinematic models and the dynamic model showed that some of the joint angles and veloc-
ities were not solved correctly. As can be seen in figure 4.34 -4.36, q3, q̇1 and q̈1 deviates
from the reference value to an unacceptable degree. The other joint variables have smaller
sometimes negligible deviations from the reference joint variables. In figure 4.34 the reason
for the deviation in joint 3 seems to be that the initial condition of the inverse kinematic
solver for the joint positions sets for q3 is different from the one set by the dynamic model

1Conversation with Linn Danielsen Evjemo, a researcher for Sintef Ocean
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and the trajectory. The inverse kinematics sets the initial condition to 0.3 m, while the
crane model, sets it to 0 m. It also flattens out after time 4 s to 17 s because 0.6 is the
joint limit. Other than the difference in the initial condition and that it saturates, joint 3
seems to have a similar shape to the reference trajectory. The velocity and acceleration of
joint 1 are also inaccurate according to the reference the position of joint 1, however, still
remains very close to the reference. While the velocity and acceleration for joint 3 are all
close on the reference but the position of joint 3 is off. The reason for the deviations in the
first joint can have the same origin as the deviation in joint 3. This fault can, however,
also have its origin in the 3 × 3 Jacobian inverse which is used for both velocity and ac-
celeration inverse kinematics. As mentioned in the theory, the only time the manipulator
Jacobian is naturally invertible is when the robot has six joints, which is why it is reduced
to a 3 × 3 matrix in this case. There are other solutions for inverting such matrices such
as the Moore-Penrose pseudoinverse [10], however, reducing the Jacobian seemed like the
more computationally effective approach. To make the time derivative of the Jacobian
necessary for the forward and inverse kinematics for the joint- and end-effector accelera-
tion the “Derivative”-block in Simulink is used. Numerical derivation can amplify noise
in the signals, it could therefore be beneficial for the system to solve J̇(q) analytically and
then make a function that solves it directly without the need for numerical derivation.
This could improve both the crane-tip and joint acceleration.

5.3. Possible Improvements
The suggested improvement for model 1 is to add feedback to the crane tip position
control, which is why models 2 and 3 were made. Therefore this section will mainly focus
on the two latter models. Both these models suffer from similar problems.

One of the first improvements that should be attempted is to get the velocity input to
work correctly. This can be attempted by changing the crane controller to only take in
velocity as input and providing the joint variables to the Jacobian by feedforward from the
crane dynamic model. Removing the need for integrating this input more than necessary.
Another possible solution is to try and command the position instead of the velocity.
However, since the actual crane has a type of velocity control, the first solution might be
preferred.

A second improvement that can be made in improving the inverse kinematic solution.
Preferably making an inverse kinematic solver that is independent of the rigid body tree.
So that the joint 3 position and joint 1 velocity and acceleration are solved correctly. A
good starting point here could be to alter the rigid body tree “modelcodegen.m” and try to
change the initial conditions here. Finding another way to solve the inverse Jacobian, and
analytically solving the time derivative of the Jacobian removing the need for numerical
derivation could also as mentioned improve the inverse kinematics solutions.

If none of these is the main cause of the problems looking at the controllers themselves can
be of use. And alternatively, design a whole new controller that employs feedback for both
the crane load and crane tip position. Feedforward works well for model 1 possibly adding
some feedforward control to the scheme proposed in figure 3.1 can better the controller
already proposed. One can also look into controlling the z-direction, as of now the crane
load model is underactuated as we only control the x and y-direction. Adding control to
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the z-direction will add another element of control that can be beneficial. Adding control
to the z-position of the crane-tip will eventually be necessary anyway to be able to lower
the crane load.

Even though the current crane does not have variable cable length, this can be retrofitted
to the crane, adding another controlled variable that can benefit the control system. The
control system used for model 2 was initially designed for a crane with variable cable
length making this an ideal start candidate for such control.





Chapter 6.

Conclusion and Future Work

6.1. Conclusion
Three main goals was set for the thesis. The first was to expand the model from the
project report [5] to include crane motion. This was done using two models one made
with Simscape and the other using differential equations. Both models worked as intended
when attached to the crane load model, however, the Simscape model had problems im-
plementing feedback making the differential equation approach the preferred option. The
forward kinematic model worked as intended, the inverse kinematic model experienced
some problems specifically in solving the position for joint 3 and the velocity and accel-
eration for joint 1.

Three controllers were proposed and the control goals set was to achieve simultaneous
control of the crane-tip position and crane load damping. The first model achieved the
control goals, however, because of the use of feedforward in the crane-tip control instead
of feedback it was deemed unsuitable for shipboard crane control. Neither the second
nor third model managed to achieve the control goals with model 3 performing somewhat
better in the crane load damping control. Both these models used feedback control with
the second model using cascade control where the inner loop controlled crane load damping
and the outer loop the crane tip position. The third model used nonlinear MPC for the
position control and Lypaunov-based damping for the crane load. None of the stretch
goals was attempted in this thesis, the main goals were all achieved with varying results.

To answer the research question “Can a satisfactory controller be designed that damp-
ens the crane load oscillations simultaneously with the crane tip position on shipboard
cranes?” the question cannot be satisfyingly answered in this thesis. Model 1 did, how-
ever, achieve all the control goals and cannot be fully discounted for use on shipboard
cranes without being tested for it. Models 2 and 3 might work if the suggested improve-
ments were to be done. However, none have been tested with the necessary disturbances,
and if the controller does not work without disturbances and with perfect measurements,
it will not work with the disturbances added.



82 Chapter 6. Conclusion and Future Work

6.2. Future Work
There is still a lot of work that needs to be made to make a satisfying control system for
the crane. This goes for both theoretical work and practical work on the crane itself.

A working control system with feedback for both the pendulum dampening and the crane
tip position controller should be designed. Possible improvements for the models used in
this thesis are described in chapter 5.3. It can also be desirable to try out new ideas for
the control system.

With a working control system, work should be done on testing it with wave and wind
disturbances. Preferably the crane should be attached to a ship model so that wave
disturbances can be induced from the ship into the crane. The wind disturbance should
mainly affect the crane load. Testing this model with simulations should then be done to
verify if the controller works in these conditions. At this stage, state estimation can be
employed for the estimation system states.

With a control system that can handle the wave and wind disturbances, the model should
be tried with a sensor system like the one in [4]. It could also be worth simulating the
crane dynamics with hydraulic actuators as the actual crane has. A controller for the
z-position for lowering the load when at the correct x- and y-position will also have to be
designed.

Sintef Ocean has plans to have the option of remote controlling the crane, which is located
in Frøya, from Trondheim. This will introduce transport delays in the system. the control
system will have to be fast enough to handle these as well. Some tests of the control system
from the project report [5] were done with both transport delay and mechanical delay
added. When all needed models and simulations are done the crane can be retrofitted
with a new control and sensor system and testing of the real crane can begin.
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Appendix A.

Digital Attachments

A zip file is provided with digital attachments this folder contains the models, scripts and
some of the literature used in the thesis. It should be noted that for models 2 and 3, and
the dynamic and kinematic model the crane folder needs to be added to the path. The
rigid body tree “modelcodegen.m” should also be added to the path for all models. The
list below describes all the contents of the different folders in the attachment.

• Literature

Crane - Olav Egeland Olav Egeland’s working note “Crane-Load Dynamics and
Control” [8], provided here with Egeland’s permission.

Project report Even Gregersen (the author’s) project report “Crane Load Pen-
dulation Control” [5], provided here since it is not published.

• Model 1

ScriptModel1.m Script containing parameters and variables for the controller.

constants.m constants for the crane model provided by Espen Nilsen’s thesis [4].

IMUFunctionGeneration.m Script initialising the IMUs in the crane model, is
necessary for the crane model to work properly. This is also provided by Espen
Nilsen.

modelcodegen.m The rigid body tree, used for the inverse kinematics block, is
also provided by Espen Nilsen’s thesis. This also needs to be on the path for
the succeeding models.

ForwardKinematics.m Forward kinematics solved using product of exponential
formula, the function is created in the “IMUFunctionGeneration.m” script.
This also needs to be on the path for the succeeding models.

crane.slx Simulink model of the crane, pendulum and controller.

readmeMod1.txt Text file containing correct run order for the scripts.

• Model 2

ScriptModel2.m Script containing the controller parameters and variables.

Model2.slx Simulink model of the crane, pendulum and controller.
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• Model 3

ScriptNMPC.m Script containing the controller parameters and variables.

NonLinearObject.m Nonlinear object used by the NMPC block in Simulink.

ninLinMPC.m State function used by the nonlinear object.

outputfunc.m Output function used by the nonlinear object.

JacobianStateFunc.m Jacobian of the state function use by the nonlinear object.

Model3_NMPC.slx Simulink model of the crane, pendulum and controller.

readmeMod3.txt Text file containing the correct load order of the scripts and
model.

• Crane

c_matrix.m Calculates the C(q, q̇)q̇-matrix for the crane dynamic model and con-
troller.

ForwardKinSpace.m Alternative Forward Kinematic solution, also based on the
product of exponentials formula.

gravityMat.m Calculates the G(q)-matrix for the crane dynamic models and con-
troller.

jacobianSpace.m Calculates the space Jacobian for the velocity and acceleration
kinematics.

jacobianSpaceThreebyThree Function solving the 3 × 3 space Jacobian for the
inverse kinematics.

jacobianSpaceInverse.m Function calculating the inverse of the 3 × 3 Space Ja-
cobian.

M_inverse.m Function solving the inverse of the M(q)-matrix for the crane dy-
namics.

M_matrix Calculating the M(q)-matrix for the crane controller.

• Dynamic and Kinematic Model

KinDynMod.slx Simulink model for simulating the dynamic and kinematic mod-
els used in models 2 and 3.

ScriptKinTest.m Script with controller parameters for KinDynMod.slx.

readmeKinDyn.txt Text file describing how to initialise this model.




	Preface
	Abstract
	Sammendrag
	Introduction
	Background and motivation
	Problem description
	Report outline

	Theory
	Crane
	Pendulum
	Crane kinematics
	Useful Functions and Theory for Crane Kinematic and Dynamic Modelling
	Forward Kinematics
	Product of Exponential Forward Kinematics
	Velocity- and Acceleration Kinematics
	Inverse kinematics
	Velocity and Acceleration Inverse Kinematics

	Crane Dynamics
	Lagrange Formulation
	Inertia Matrix
	Dynamic Equations in Closed Form

	Control theory
	Feedforward Control
	Feedback Control
	PID controller
	Cascade Control
	Lyapunov Stability
	Nonlinear Model Predictive Control
	Mathematical Formulation of NMPC


	Material and Method
	Matlab and Simulink
	Control Scheme
	Model 1
	Pendulum Model
	Pendulum Control system
	Crane model
	Crane Kinematics
	Model 1 Control Scheme

	Model 2
	Crane model
	Crane control
	Crane Kinematics
	Crane-Tip Set-Points
	Feedback controller

	Model 3

	Results
	Model 1
	Model 1 Test 1
	Model 1 Test 2

	Model 2
	New Crane Model
	Model 2 Test 1
	Model 2 Test 2
	Model 2 Test 3

	Model 3
	Model 3 Test 1
	Model 3 Test 2
	Model 3 Test 3

	Kinematics Test

	Analysis and Discussion
	Model Analysis
	Analysis Model 1
	Analysis Model 2
	Analysis Model 3

	Discussion and Model Comparison
	Possible Improvements

	Conclusion and Future Work
	Conclusion
	Future Work

	Digital Attachments

