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Abstract

Renewable energy is ever increasing in the modern energy grid with a growing portion from wind.
Arctic communities are still largely dependent on fossil fuels, with up to 79% entirely dependent
on diesel. Therein lies irony as arctic regions experience the e↵ects of climate change up to 7 times
greater than worldwide. Wind turbine design requires knowledge of horizontal wind speed at the
hub height to estimate annual energy production. Such wind profiles can be studied using LiDAR
data. However, LiDAR experiments are expensive to conduct. To cut costs and rapidly evaluate
potential wind energy generation sites, extrapolation methods are applied to pre-existing wind
speed measurements taken at a standard 10 m height. Wind speed profiles are constructed from
measurements taken in Adventdalen on Svalbard during the summer of 2022 using an automatic
weather station (AWS) and LiDAR. The LiDAR constructed profiles are a baseline for comparison
while the AWS data is used solely to construct model profiles. Four models are evaluated: the
power law following IEC-64100-3 standard, a power law variation proposed by Sedefian, the log
law, and log law with stability correction. The models are found to be dependent on stability as
previously found in other regions. However, the LiDAR baseline shows a decrease in wind speed
with height making all models tested di�cult to use. It is also found that the IEC method largely
overestimates wind speed. The power law proposed by Sedefian is found to perform similarly to the
log law with stability correction. The log law with stability correction is more sensitive to input
parameters and therefore less robust against less sophisticated instrumentation. The Sedefian
variation is found to be the least sensitive to wind speed errors.
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1 INTRODUCTION

1 Introduction

Renewable energy is ever increasing in the modern energy grid with a growing por-
tion from wind. Global wind production in 2021 was 823 GW out of 8013 GW, only
10.3%, according to the US Energy Information Administration. Arctic communities
are still largely dependent on fossil fuels, with up to 79% entirely dependent on diesel
(de Witt et al., 2021). Therein lies irony as Arctic regions experience the e↵ects
of climate change up to 7 times greater than worldwide with an average warming
across the Arctic region 4 times higher than over the globe (Rantanen et al., 2022).
There is also the issue of complicated logistics and substantial cost of fossil fuels for
remote Arctic regions (de Witt et al., 2021). As such, renewable energy is being
explored for Arctic use including solar, geothermal, hydroelectric, and wind. Wind
energy is desirable as there is high energy potential in the Arctic. Several key tools
are necessary to facilitate wind energy development in these areas.

Wind turbine installation requires knowledge of vertical profiles of horizontal wind
speed. Knowing the wind speed at the hub height is necessary to estimate an-
nual energy production. Knowing the entire profile allows for better estimates of
wind loading throughout the structure and blades, especially as turbines reach hub
heights of 100 m and beyond (Dimitrov et al., 2017). Further study of the wind
profile provides insight to turbulence at the site. The wind turbulence model used
and input properties such as length scale, dissipation, and anisotropy significantly
impact the wind loading on wind turbines.

Wind profiles can be studied using LiDAR data. However, LiDAR experiments
are expensive to carry out. To cut costs and rapidly evaluate potential wind en-
ergy generation sites, extrapolation methods are applied to pre-existing wind speed
measurements taken at a standard 10m height. Such methods are understood for
developed wind energy production regions such as the Midwest plains in the USA
(Newman & Klein, 2014). Further, the accuracy of models has a high impact on
predictions given the wind speed cube law. While many tools exist, the basic ex-
trapolation methods used for wind profiling are vital and must be well understood
(Murthy & Rahi, 2017). These methods are much less explored for remote regions
such as those found throughout the High Arctic. Some models contain coe�cients
for which the best value is still being discussed and contain assumptions of the
boundary layer which do not always mimic the natural world. Even if the extrapol-
ation is well tuned for a particular hub height, the full wind profile is not necessarily
captured accurately.

Further, the high Arctic in particular hosts unique characteristics and is less un-
derstood. The polar noon/midnight cycle produces a unique boundary layer which
is still being studied. Further, the surface varies much annually due to shifting
snow-pack and an active permafrost layer which adds another variable to the local
climate system. Known models are tested in moderate, lower latitude climates, by
comparison, which have a typical diurnal cycle and less annual ground variability.
These di↵erences leave open the question of validity for existing wind profile extra-
polation methods in Arctic regions. Wind profiles constructed from LiDAR data
can be used to test and evaluate such methods.
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1 INTRODUCTION

This project aims to construct and compare vertical profiles of horizontal wind
speed from wind speed measurements taken in the Adventdalen region on Svalbard
during the summer of 2022 using an automatic weather station (AWS) and a LiDAR
campaign. The LiDAR constructed profiles are a baseline for comparison while the
AWS data is used solely to construct model profiles. The goal being to evaluate the
performance of several models using typical 2 m and 10 m height AWS data. The
impact being that if any of the models are good enough, AWS stations can be used
for wind energy forecasting. In turn this would pave the way for a more cost e↵ective
alternative to wind mast and LiDAR installations for evaluating wind resources in
remote Arctic communities.

3



2 BACKGROUND

2 Background

2.1 Arctic Energy Resources and Development

553 remote Arctic communities were surveyed for their energy use and resources
by de Witt et al. (2021). It was found that while most were dependent on diesel,
54% of the power generated was from diesel and 44% was from hydropower. This
reflects the impact of higher upfront cost and minimum generation per site from
hydro than from diesel. Less than 3% of generation is from wind and other renew-
ables combined. They also note the distinction between dispatchable (e.g. diesel,
batteries) and non-dispatchable (e.g. wind, solar) energy sources. A community
may exclusively use dispatachable sources as they can quickly adjust to demand but
non-dispatchable sources always require some form of dispatachable source for gen-
eration lulls. Nonetheless, such hybrid systems significantly reduce emissions and
on-going cost for their community, albeit at higher upfront cost.

Diesel energy generation is well established in Arctic communities. And while a
developed network exists for their servicing and refueling, the logistical risks still
remain. Communities are also highly vulnerable to market shifts in price, supply,
and demand with little possible alternative.

Hydropower is a good alternative for larger communities and in fact somewhat
common, with 7 out of the 10 largest communities using it (de Witt et al., 2021).
Hydropower has high upfront cost, especially for smaller plants but guarantees a low
cost of electricity in the long term with minimal dependence on external markets.
Unfortunately, hydropower has a high upfront cost and requires either substantial
river flow or damming which has a significant environmental impact.

Solar energy generation is being used in the Arctic as well on very small scales
e.g. 10 kW, with most installations being private and for home energy supplement-
ation or remote cabins. Testing is already being done for larger scale expansion
in Longyearbyen, Svalbard (Lokalsamfunnsplan, 2023). While some generation is
possible, the odds are stacked against larger scale use. Photovoltaic cells have a
high energy and negative environmental cost of manufacturing. They also take up
significant ground area compared to other energy generation methods when it is not
possible to install panels on buildings. Lastly, snow coverage is a concern still being
investigated.

Wind power installations are already being tested in the Arctic and have good
potential. Canada has an ongoing program, ”A Cold Wind Blows: Seeking Smaller,
Ruggedized Wind Turbines for the Arctic”, which is funding the development of
turbines for high Arctic environments. Wind turbines face challenges of icing and
cold temperature material properties leading to shorter fatigue life (Wallenius &
Lehtomäki, 2015). There are also challenges related to installation on permafrost
and complex logistics (de Witt et al., 2021). Solutions to the technical challenges
are in development and some are already in use. However, much further study and
testing is still necessary to lower cost and optimize wind turbine design for the high
Arctic.
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2 BACKGROUND

Arctic regions su↵er a much higher cost of power outage and risk to the community
than in temperate regions (de Witt et al., 2021). As such, redundancy is critical to
energy system design. Diesel still presents itself as the ideal solution in this scenario
when compared to batteries. Even under successful implementation and operation,
the challenges above make for a high economic cost to households for electricity
with the average in Arctic communities being 30 USD ¢/kWh and up to 181 USD
¢/kWh. Given the high economic cost, cheaper methods of energy generation are
needed. Further, high cost of renewable energy severely limits the ability of Arctic
communities to make such a transition. Cheaper site evaluation methods can reduce
this cost.

2.2 Use of Automatic Weather Station Data

Automatic weather stations (AWS) record wind speed and temperature measure-
ments around 2 m and 10 m height. Such data is used for weather reporting and
forecasting for local communities as well as scientific research. Given AWS broad
use, they are relatively common providing a vast data-set which may be used for
wind energy siting. More direct measurements using wind masts or LiDAR are pre-
ferred given their accuracy. However, this is both expensive and time consuming as
at least 1 year of data is necessary to evaluate a site, preferably 3-10 yr.

Sjöblom (2014) investigates observation methods for heat flux using a field cam-
paign in Adventdalen, the same site used in this project. Methods using common
AWS instrumentation were compared against methods requiring more sophisticated
instrumentation. Two of the methods required calculation of the roughness length.
Roughness length was found to be sensitive to the wind direction and sensitive to
wind speed making calculation di�cult. As expected, the methods required more
sophisticated instrumentation had a better fit to the most direct method than the
method using common AWS instrumentation. The methods were found to also be
highly sensitive to the roughness length meaning heat flux calculations are highly
sensitive to data quality and therefore the instrumentation used.

Given the demonstrated high sensitivity to data quality, care is taken in hand-
ling AWS data following the approach taken by Sjöblom (2014). She also provides a
good comparison for checking methods and results as the data collection was from
the same site as used in this project. As Sjöblom (2014) emphasizes, the climate is
very local in Adventdalen due to the breadth of contributing factors. This means
the context of this project must be well-defined to produce good results. In this
project, the roughness length is a key value. Caution must be used in calculating it
for this region. Lastly, the empirical models used require some level of decision on
the coe�cients to use. Sjöblom’s approach here provides values for those coe�cients
and validates their use.
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2 BACKGROUND

2.3 Boundary Layer Wind Speed Profiles

The boundary layer is defined as the bottom the lowest part of the atmosphere
where the air is directly a↵ected by the ground. Stull (2009) further constrains the
definition to where the e↵ects of the surface are seen at periods of 1 hr or less. The
boundary layer thickness varies significantly. It can be less than 100 m to more than
3000 m. The surface layer is roughly the bottom 10% of the boundary layer. Wind
speed in the surface layer can studied using LiDAR or a wind mast, for example.
Both of the instrumentations are expensive to install. However, given AWS meas-
urements at only 2 m and 10 m height, extrapolation methods can be applied to
determine the wind speed at wind turbine hub height.

Typically, a designer will use one of several wind profile extrapolation methods to
determine the wind profile at the site. Data comes from metocean databases built
from on site-measurements or hindcast data. Wind masts and LiDAR stations can
also be installed to create a broader dataset. The extrapolation methods typically
used are empirically derived and as such have none to poor relation to analytical
models but can make good estimates of hub height wind speed (Gualtieri & Secci,
2014; Peterson & Hennessey, 1978). Analytically derived models do exist and are
used in meteorological contexts (Lopez-Villalobos et al., 2022; Newman & Klein,
2014).

The boundary layer has not yet been explored significantly in the Arctic. O↵shore
wind development has seen a surge in growth over the past decade. Wind energy has
been under development for several decades longer leading to a noticeable knowledge
gap between on and o↵shore wind modeling. Given the close proximity of Arctic
communities to the ocean, the knowledge gap can provide insight to the Arctic wind
energy knowledge gap. Kalvig et al. (2014) found that constant roughness length
could be a poor assumption as environmental factors such as snowfall, drifting, and
ground ice build up and vary throughout the year. Also, for Arctic regions such as
Svalbard, terrain features vary significantly over relatively short distances including
mountains, plateaus, valleys, and glaciers. This points to a need for evaluating these
and other models within the Arctic context.

2.3.1 Power Law

The power law is an empirical derivation which requires the assumption of neutral
stability. The power law is used in the IEC 61400-3 standard (Design requirements
for o↵shore wind turbines, 2019) with shear exponent ↵ = 1/7 shown in (1). uz is
the wind speed at height z, ur is the wind speed at the reference height zr, and ↵
is the shear exponent factor also known as Hellmann exponent. Peterson and Hen-
nessey (1978) validates the traditional use of ↵ = 1/7 in smooth terrain. The basic
power law assumes a constant shear exponent. However, this varies with height. (2)
can be used to calculate the shear exponent based on roughness length z0 and wind
speed height as found by Sedefian (1980). This improves the power law by taking
into consideration two key pieces of information.

z0 is the roughness length which is defined as the equivalent height at which the
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wind speed becomes zero assuming no ground obstacles. Typical values are shown
in table 1. In the Sedefian model, the shear exponent is calculated at each height
due to it’s dependence on height z. Surface roughness can also be calculated for an
area using (3) by relating the known wind speed at 2 m and 10 m heights. Rough-
ness length remains consistent as long as the ground conditions remain consistent.
While snow is present throughout winter in Adventdalen and varies annually, the
ground conditions were consistent throughout the the summer campaign. The calcu-
lated roughness length is 0.004 m using the median roughness calculated at neutral
conditions (fig 1). Median is chosen over mean as to minimize the e↵ect of several
outliers di↵ering on an order of magnitude greater. For comparison, Sjöblom (2014)
calculated the roughness length to be 0.0035 m but also found 0.0005 m to provide
for a better fit, albeit nonphysical. Also, the table of values compiled by Wieringa
(1986) gives 0.005 for comparable terrain which furhter validates.

uz = ur(z/zr)
↵ (1)

↵ = ln�1(z/z0) (2)

z0 = e
u2ln(z1)�u1ln(z2)

u2�u1 (3)

Table 1: (Wieringa, 1986) Estimated roughness length parameters for the boundary layer, experi-
mentally derived under neutral stratification

Class Description z0(m)
1 Sea - Open sea, fetch at least 5 km 0.0002
2 Smooth - Mud flats, snow: little vegetation, no obstacles 0.005
3 Open - Flat terrain; grass, few isolated obstacles 0.03
4 Roughly open - Low crops; occasional large obstacles 0.10
5 Rough - High crops; scattered obstacles 0.25
6 Very rough - Orchards, bushes; numerous obstacles 0.5
7 Closed - Regular large obstacle coverage; (suburb, forest) 1.0
8 Chaotic - City centre with high- and low-rise buildings > 2

Figure 1: Roughness length calculated near neutral values using AWS data at 2 m and 10 m
heights.
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2.3.2 Log Law

Typically, wind speed increases with height as friction dampens air flow to zero
at the ground. With increasing height, air pressure decreases and air flow simul-
taneously increases as a response following pressure-velocity relation in Bernoulli’s
equation. The log law is commonly used to describe the surface layer and derived
both empirically and analytically Stull (2009). Under statically stable conditions,
the wind speed follows a logarithmic relation with height which is the basis for the
empirical derivation. The derivation is further supported by the non-dimensional
relationship of mean wind speed to friction velocity U

u⇤
and height with roughness

length z/z0. Analytically, the log law is derived from integrating the momentum
flux term in the equations of motion for wind. Momentum flux is near constant in
the surface layer by definition which simplifies the equation. Integrating over the
height from roughness length produces the log law (4). u⇤ is the friction velocity
and requires flux measurements of wind in the cardinal and vertical directions. k
is the von Kárman constant; found to be 0.4 (Högström, 1996). zr is the height at
which ur is found and z0 is the roughness length.

Flux measurements require high speed capture which is not possible with the AWS
instrumentation. However, since the vertical profile of horizontal wind speed follows
a logarithmic profile, any two points along the profile can be related as shown in (5)
by dividing (4) at two heights. This provides a more simple method which is able
to use AWS data.

ur =
u⇤

k
ln(zr/z0) (4)

u2 = u1
ln(z2/z0)

ln(z1/z0)
(5)

2.3.3 Stability Considerations

In both power law models and the basic log law, stability conditions are not accoun-
ted for which means power performance is not adequately represented. Kalvig et al.
(2014) note that power estimations improve significantly if stability is taken into
account. Stability also needs to be accounted for in these models for wind loading.
By improving these models using simple correction terms, turbines can be better
design for long term fatigue on rotors. A stability term is added, giving (6). �m

is the integrated corrective function also known as the non-dimensional wind speed
shear term (7). L is the Monin-Obukov length.

u2 = u1
ln(z2/z0)� �m

ln(z1/z0)� �m

(6)

�m =

8
>><

>>:

2ln(1+x

2 ) + ln(1+x

2 )� 2tan�1(x) + ⇡

2 , for z

L
< 0

x = (1� 19 z

L
)
1
4

�5.3 z

L
, for z

L
> 0

0, for z

L
= 0

9
>>=

>>;
(7)

Within the surface layer, L is constant which allows for the stability term z

L
to be

recalculated at every height.
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2.4 Use of LiDAR Data

Given the high cost of wind mast installation and already available LiDAR data,
LiDAR is used as a baseline for evaluating the models. LiDAR has its own set of
challenges, however, regarding data availability and quality. (Beck & Kühn, 2017)
investigates methods of filtering LiDAR scans to maximize the quality while taking
an acceptable decrease in data availability. Some methods produce accurate data but
at the cost of significantly reducing the number of data-points which are usable. The
dynamic data filters simultaneously maintain good accuracy and ok data availabil-
ity and are computationally more advanced and expensive than traditional methods.

The first method is the most common. Carrier-to-noise ratios (CNR) are used as a
data threshold. This varies from manufacture to manufacture but as an example,
all values with a CNR value less than -24 dB are removed from the dataset. In ad-
dition to significant data being lost, CNR values tend to increase with range which
severely limits the area of data coverage. A dynamic filter will account for the range
in the cuto↵ or use methods independent of the CNR value altogether. In this case,
the filter aims to determine mean velocity which means the resolution of the scan
is significantly reduced. That is suitable for the applications of this paper but not
necessarily suitable for turbulence studies.

Several other filters are compared to the designed dynamic filters. A static two
standard deviation filter removes values based on a set standard deviation from the
mean. This method has potentially unpredictable performance as high noise data
might be under-filtered and low noise data might be over-filtered and in any case can
have significant data loss. This method also assumes specific data distribution which
may not be the case. As a similar approach, the interquartile range filter (IQR) has
a hard cuto↵ of the upper and lower 25% of datapoints. This makes no assumptions
regarding data distribution. The IQR filter produces middle tier quality data in their
analysis with high availability (93.5%) (Beck & Kühn, 2017). While more complex
filters are evaluated, including two proposed by the authors which perform even bet-
ter than the IQR, they are found to be more complex than necessary for this project.

Beck and Kühn (2017) conclude that wind speed errors do not fit a normal dis-
tribution explaining the limiting e↵ectiveness of standard deviation filters. While
a two standard deviation filter maintained 96% data availability, it had middle tier
accuracy. The CNR threshold is fast, but significantly lowers the data availability.
While the authors conclude that their proposed dynamic filter accuracy is worth the
loss in data availability, this is not acceptable for this project as data availability is
already a significant challenge.

2.5 Summary and Project Goal

Arctic communities tend to have limited resources and renewable energy installa-
tions are expensive, time consuming, and logistically complex. They require high
upfront costs for site evaluation typically using expensive tools such as computer
simulations, wind masts, LiDAR, or a mix of the above. The manufacturing and
logistics of installation also have high cost. Most Arctic communities are dependent
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on expensive fossil fuel resources for electricity generation, further inhibiting the
ability to make an energy transition. (de Witt et al., 2021) shows that Arctic com-
munities have established power with a need for an energy transition. While the
transition has many challenges, the potential is great. Hydropower, wind, and solar
present renewable options across a wide breadth of energy and cost scales. For it’s
abundance and wide scalability, wind is further investigated in this project. While
there are economic aspects to be considered, that is beyond the scope of this project.

(Beck & Kühn, 2017) provides a method of handling LiDAR data to ensure quality.
(Sjöblom, 2014) provides a method of handling AWS data, the foundational first
steps for calculating the models, and some direct comparisons. (Newman & Klein,
2014) provides a solid example of model analysis as well as a baseline comparison
for model performance. While set in a di↵erent context, the analysis used is a key
reference for this project.

This project focuses on the site evaluation step of wind energy installation, spe-
cifically the wind speed extrapolation methods used. AWS data may be usable for
site evaluation, providing a vastly cheaper and less time consuming option. AWS,
if not already installed, are relatively cheap and provide benefits to the local com-
munity far beyond energy prediction. This project aims to evaluate existing extra-
polation methods of vertical profiles of horizontal wind speed for their strengths and
weaknesses in an Arctic context. The models evaluated are all constructed solely
from AWS data to generate predictions of wind speeds at turbine hub-height. The
baseline profiles are constructed from LiDAR RHI scans.
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3 Method

3.1 Location

The data used in this project was collected as part of another project for Matthias
Henkies. A LiDAR station was setup near Longyearbyen at the old UNIS aurora
observatory in Adventdalen on Spitsbergen. The location is shown in figure 2.
Spitsbergen is an island within the Svalbard archipelago located north of Norway
from 74°to 81° N and 10° to 35° E. It is characterised by deep fjords, 60% coverage by
glacier, and broad valleys shaping a highly localized climate. The AWS coordinates
are 78° 12’ 10” N, 15° 49’ 41” E and 15 m altitude above sea level. The LiDAR was
placed approximately 100 m WNW of the AWS. The temperature over the course

Figure 2: Location of the LiDAR (purple) and AWS (black). The red arrows indicate the down
and up valley scan headings and reach. (Norwegian Polar Institute, n.d.)

of the campaign was an average of 8.3°C with a high of 16.6°C and a low of 1.3°C
at 10 m height. The average wind speed was 5.1 m/s with a high of 14.6 m/s and
a low of 0.0 m/s at 10 m height.

3.2 LiDAR

LiDAR at its most basic level works by measuring the Doppler shift of aerosols in
the air. A laser beam is emitted at an azimuth and elevation. The reflected light
from aerosols is measured for distance and Doppler shift along the line of sight.
The Doppler shift is used to locally calculate the radial wind speed away from the
LiDAR station at the azimuth and heading. This data is then filtered and processed
to create vertical profiles of horizontal wind speed. These profiles are then used as
a benchmark for wind speed extrapolation methods.
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3.2.1 Data-collection

The LiDAR station collects data through several routines. Range height indicator
(RHI) mode repeats the scan through the azimuth from 0° to 90° in 1° intervals to
produce a slice of the radial wind speed up and down the valley. Doppler beam
swinging (DBS) takes measurements directly overhead in pairs aligned with north-
south and east-west headings producing vertical profiles of horizontal wind speed
and direction. The LiDAR maximum range is 7100 m and the minimum is 100 m
with a range gate of 50 m. While DBS scans are a more direct measurement of the
wind speed profile, they require the instrument to be directly beneath the site of
the desired profile which is not always possible and measure only from the minimum
range upwards.

RHI scans can provide wind speed profile data throughout the investigated heights
through processing which is detailed below. DBS scans have a minimum measure-
ment height of 100m which is too high for boundary layer modeling. Therefore, RHI
scans are used for producing the vertical profiles of horizontal speed used in profiling
validation while DBS scans are used validate RHI data processing above 100m. In
addition, a nearby automatic weather station is used to validate processing at 10m
height.

The LiDAR unit collected data from 04-07-2022 10:05 until 23-08-2022 15:38. RHI
scans were taken continuously between xx:10 and xx:50 every hour with a full scan
period of approximately 3 minutes. DBS scans were taken at varying intervals res-
ulting in a calculated direction and speed around every 5 seconds.

3.2.2 Processing

Several processing steps are applied to the RHI scans before vertical profiles are cre-
ated (fig 3). Portions of the scan are removed for too high measurement angle. The
carrier to noise ratio (CNR) is used as a standard method of filtering poor quality
datapoints. Then corrections are made for horizontal windspeed. An interquart-
ile filter further removes poor quality datapoints. Lastly, the vertical profiles of
horizontal wind speed are constructed. Above 30°, the LiDAR scans consist of an

Figure 3: LiDAR processing steps. Solid gray blocks are inputs/outputs. Solid gold blocks are
data handling steps. Gold bordered blocks are filters.

increasingly strong vertical speed component of uvertical > 0.5ur where ur is the
measured radial speed component. To use more direct measurements of horizontal
wind speed, 30° is used as the cuto↵ angle. Also, at steeper angles there is a higher
chance of measuring the speed precipitating particles.
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The carrier to noise ratio (CNR) is a calculation of the backscatter of the return
signal. Typically, a manufacture recommended CNR value or one selected based on
prior studies from -22 dB through -27 dB is used to eliminate data points below that
threshold. Beck and Kühn (2017) found -24 dB to be most appropriate with their
data. Based on CNR vs radial speed plots taken over the dataset, a threshold of -27
dB is set. The lower threshold is also supported by an increase in speed variance
caused by lower aerosol content in the air (Piironen & Eloranta, 1995). A 30 year
study found lower aerosol counts in the Ny-Ålesund area than the rest of Europe
(Platt et al., 2022). It is then inferred that similarly lower aerosol content is in
Adventdalen given its’ relative proximity to Ny-Ålesund. Ny-Ålesund lies only 110
km NW of Longyearbyen and Adventdalen.

In an example plot (fig 4), The average of the more dense band of noise is around
-33 dB with upper and lower limits of noise around -27 dB and -35 dB, respectively.
From 0 to -8 m/s speed there is a high density region of data points. Based on (Beck
& Kühn, 2017), this is likely a set of otherwise quality data therefore a threshold of
-27 dB is used.
Following LiDAR processing, the data is merged and pre-processed with AWS data

Figure 4: CNR and radial speed on 2022-07-15 19:18:02 - 19:19:31 UTC

to create a set of suitable data points (fig 6). Since the LiDAR RHI scan meas-
ures radial windspeed, (8) is used to convert the measurements to the standard,
horizontal wind speed. ✓ is the elevation angle of the scan in degrees. Since radial
wind speed decreases with increasing elevation angle due to less direct measurement
of the horizontal wind, the interquartile filter is applied after the horizontal wind
speed correction. This prevents filter bias towards removing the highest or lowest
elevation angle points.

uradial

uhorizontal

= cos(✓) (8)

Since the CNR cuto↵ is lower than typically used, some poor quality data points still
get through. As such, an interquartile filter is used to remove these points shown in
(9). IQR is the middle 50% quartile range and uh is the horizontal wind speed with
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uh,25 being the lower quartile and uh,75 being the upper quartile. This approach is
selected based o↵ (Beck & Kühn, 2017) since it has high data availability (93.5% in
their case), good quality, and is easy to use. Ease of use is important to this project
as the LiDAR profiles themselves are not the focus. This filter applied to each scan
separately.

uh,25 � 1.5IQR < uh > uh,57 + 1.5IQR (9)

3.2.3 LiDAR Wind Speed Profile Construction

Since the wind profile is being constructed over only a fraction of the area recorded,
the data is cropped. This removes the influence of missing data and artifacts outside
the area of interest. As such, a total area for the wind profile construction, from 150
m to 1000 m distance and 0 m to 150 m height is designated. Following filtering,

Figure 5: Selection slices of an example RHI scan for calculating median vertical profile of horizontal
wind speed. Taken on 2022-07-15 19:18:02 - 19:19:31 UTC

median wind speed is calculated over a designated area. An example sketch of the
area used is shown in (fig 5). All points within each horizontal slice are selected
and then the median is taken. The area defined above is sliced into horizontal boxes
based on a selected resolution. The median is placed at an altitude of the midpoint
of the slice. For example, for 10 m height the points from 5 m to 15 m height are
used. Median is chosen over mean since high speed outliers may still pass through
the above filters and significantly influence the average in low to medium wind speed
scenarios. A minimum of 50 datapoints within the 150 m by 1000 m region is re-
quired to construct a profile. A minimum per slice is not set as incomplete profiles
are filtered out later on.
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Each box is a very small subset of the total possible area covered by RHI scans
in terms of area but still contains substantial datapoints. A shorter box has the
advantage of reducing the influence of topography and coastline. Often, little to
no quality points are reported beyond 2000 m distance due to high noise as can be
seen in the figure. A longer length for the box reduces turbulence e↵ects although
lengths greater than 100 m are su�cient for removing any small scale turbulence
e↵ects. Placing the starting point at a further distance from the instrument has the
advantage of reducing the reach of upper slices into the above 30° cropped region
which would reduce the e↵ective number of sampled points. Lastly, the maximum
height of the box is based on the height of boundary layer horizontal wind speed
profile to be evaluated, 200 m.

3.3 Automatic Weather Station

Automatic weather stations (AWS) take common measurements to more easily make
direct comparisons between sites. The World Meteorological Organization (WMO)
has a standard for taking measurements with flexibility for some criteria outlined in
”Generic Automatic Weather Station (AWS) Tender Specifications)”. This standard
is not always followed exactly. Nonetheless, temperature measurements are to be
taken somewhere between 1.25 m and 2 m and wind measurements at 10 m height.
Using these common measurements is key to this project as favorable methods can
then be used at similar sites around the world. While masts higher than 10 m are
certainly possible and do exist, the di�culty in setup and engineering rapidly in-
creases with height.

The AWS in Adventdalen has a breadth of instrumentation which in sum goes
beyond the WMO standard. Used in this project are wind speed and direction and
temperature, all with slow-response measurements at 1 Hz. The station is main-
tained by UNIS. For wind speed and direction at both heights, a 05103-34 Alpine
Wind Monitor made by R.M. Young Co., Traverse, Mi, USA is used. It has an
accuracy of ±0.3 m/s or 1%, whichever is greater. Temperature measurements are
taken using a naturally ventilated 41342 Platinum Temperature Probe made by
R.M. Young Co., Traverse, Mi, USA. It has an accuracy of ±0.1 deg C.

The temperature is taken at 2 m and 9 m heights and wind speed and wind dir-
ection are taken at 2 m and 10 m. The 9 m temperature measurement is below
10 m for geometry considerations of the structure. Temperature is reported every
1 second as an instantaneous value, the average over the past 1 second, standard
deviation and expected error. Wind speed and direction are reported every 1 second
as the averages over the past 1 second and the standard deviation. The data was
re-sampled to 10 minutes average before being used further on.

3.4 Pre-processing

Before profiles are constructed, several routines are followed to maintain data qual-
ity and validity in comparison (fig 6). The steps use a mix of either or both the
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AWS and the LiDAR RHI based profile and DBS scan datasets so the data path
of each is also shown. First, the datasets are re-sampled and synced. Then correc-
tions are made for wind speed and direction. Filters are then applied to keep only
data under conditions specific to this project and a last filter to check the impact
of specific conditions on the models. Lastly, the models are constructed from the
AWS data and compared to the LiDAR RHI based profiles. Given the RHI scan

Figure 6: LiDAR and AWS data pre-processing steps. Colored paths indicated the use of specific
datasets. Solid gray blocks are inputs/outputs. Solid gold blocks are data handling steps. Gold
bordered blocks are filters.

contained a 20 minutes gap every hour, the LiDAR and AWS data were re-sampled
to 1 hour period, closed and labeled on the right end on the hour. The datasets were
then synced providing a baseline for making corrections and comparisons between
parallel datapoints.

Several checks were applied for quality control of the data going into profiles, shown
in table 2. The LiDAR at 10 m height does not always match the AWS at 10 m.
The causes for this discrepancy and use of various filtering methods on RHI scans
is beyond the scope of this project so all data points with a di↵erence greater than
3 m/s are then removed. Since the wind direction is known only at 10 m (AWS)
and 100+ m (DBS), these heights are used for the wind speed and direction checks.
These heights are su�cient for this project as wind direction profiles are outside the
scope and only used for quality control. After the wind speed and direction checks,
the wind speed is corrected at each height using the wind direction and (10). �wind
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Table 2: Checks for data quality applied during pre-processing

Check Description

�u > 3m/s Di↵erence in wind speed measured by AWS from LiDAR profile at 10 m
height.

u > 2m/s Minimum wind speed. Below this, electrical power cannot be generated. The
speed is also too low to create an accurate profile as the error component
dominates the sensor reported values.

�� < 30° Similar to the 30° cuto↵, wind speed is poorly measured when the direction
is more than 30° from the RHI scan heading.

�0.5 < Ri < 0.2 Stability model is not valid outside these condition.

is the wind direction and �RHI is the LiDAR RHI scan heading.

ucorrected = u/cos(�wind � �RHI) (10)

3.5 Model Profiles Construction

There are two basic profiling methods commonly used, the power law and the log
law. Two variations on each of those methods are studied. In summary, they are
shown in table 3. The variable dependencies of each model are shown in table 4.
Dependency refers to required measurements and intermediate dependency refers
to quantities which are found during intermediate steps. The profiles constructed
prior from the LiDAR scans are used solely as a benchmark. The investigated
profiles are modeled entirely using data from the AWS in Adventdalen. The wind
speed direction and filtering used above are used only for making apples to apples
comparisons between the LiDAR and model profiles. If these models are applied,
only the speed at AWS heights would be used for filtering. The wind direction,
while necessary for evaluating shear and torque on the turbine, would not be used
for filtering prior to modelling as the wind speed measurements are accurate in all
directions.

Table 3: Profiling models used

Method Short-hand Variation Equation

Power Law IEC IEC 61400 standard ↵ = 1/7 (2)
Power Law Sedefian calculated shear exponent based on roughness length

and height
(1)

Log Law log-neutral basic form (5)
Log Law log-stability with stability correction (6)

Profiles are constructed using the four models from 10 m to 150 m heights at inter-
vals of 10 m meters. 10 m is the AWS measurement height and 150 m is arbitrarily
chosen as a height slightly above the likely maximum reach of wind turbines in
coastal regions. This is based o↵ publicly available data from The Norwegian Wa-
ter Resources and Energy Directorate (NVE) on wind farms in northern Norway.
The largest turbine has a hub height of 89.9 m with a rotor diameter of 115.4 m
which means a maximum reach of 147.6 m. Turbines with higher hub height and
maximum reach are commercially available so 150 m is selected to ensure coverage
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Table 4: Dependencies of each model. Measurement dependency is marked with ’x’ and interme-
diate dependency is marked with ’o’

Variable IEC Sedefian log-neutral log-stability

u1 x x x x
u2 x x x
z1 x x x x
z1 x x x
↵ x o
z0 x x x
T1 x
T2 x
Ri o
L o

in this analysis. 80 m height is focused further on as a common hub height seen in
Northern Norway.

There is a di↵erence in the AWS to LiDAR 10 m height measurements ranging
from -2 to 3 m/s. Since the di↵erence in LiDAR vs AWS measurement methods
is not being studied here and the use of LiDAR is to compare profile trends with
increasing height, the di↵erence in AWS and LiDAR measurement is added to the
entire LiDAR profile (12). This eliminates the bias caused by di↵erence in measure-
ment methods while still modelling based solely o↵ the AWS.

udi↵ = uAWS(10m)� uLiDAR(10m) (11)

uLiDAR,corr(z) = uLiDAR(z) + udi↵ (12)

3.5.1 Stability Considerations

The log-stability method requires stability to be considered. The thermal stability
term is z/L. Another non-dimensional parameter, Richardson’s number also indic-
ates thermal stability. The z/L term is related to Ri using the bulk Richardson’s
number by (13) as suggested by Arya (2001). There are three ways of calculating the
Richardson’s number. The flux Richardson number requires turbulent conditions so
it is not chosen. The gradient Richardson number requires knowledge of the tem-
perature and wind speed gradients which are not available. The bulk Richardson
number is simpler, using di↵erences in discrete points in space and can be further
simplified to using one discrete point using assumptions about temperature and
wind speed gradient. In the case of the Adventdalen AWS, data is available for two
discrete points as preferred. Sjöblom (2014) suggests that even with the assumptions
made in using the bulk Richardson number for one discrete point, the bulk method
is usable if care is taken in managing data quality. As such, the bulk method is
chosen for this project.

The bulk Richardson number is calculated using (14). g is the gravitational ac-
celeration constant 9.81 m/s2. T0 is the reference temperature commonly taken at
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2 m height for AWS and in Kelvin. �✓ is the change in virtual potential temper-
ature with height. However, due to prevailing dry air in Adventdalen, the potential
temperature is used. Further, the virtual potential temperature which accounts for
moisture content is not necessary as the moisture content has little e↵ect on stability
calculations in the context of wind energy (Van Wijk et al., 1990). Therefore the
dry adiabatic lapse rate yielding (15) in C° is used to calculate the potential tem-
perature at each point. �zT is the di↵erence in height for the potential temperature
measurements in m. For the AWS, these are 2 m and 9 m. �u is the change in wind
speed in m/s. �zu is the di↵erence in wind speed measurement heights in m. For
the AWS, these are 2 m and 10 m.

z

L
=

⇢
Ri, for Ri < 0

Ri

1�5Ri
, for 0 < Ri < 0.2

�
(13)

RiB =
g

T0

�✓/�zT
(�u/�zu)2

(14)

�✓ = T2 � T1 + 0.0098(z2 � z1) (15)

Since Ri=0 is very specific, neutral conditions were considered where �0.025 < Ri <
0.025 as used in Sjöblom (2014). Unstable conditions are Ri  �0.025 and stable
conditions are then 0.025  Ri < 0.2. For Ri  �0.5 and 0.2  Ri, the data point
is thrown out as the Ri to z/L relation is not valid.

3.6 Wind Energy Potential

The energy potential of wind is found using (16) known as the wind power cube
law. ⇢ is the air density. Ar is the swept area of the rotor. u is the wind speed.
C is the e�ciency coe�cient for the amount of energy which can be captured by
the turbine. The theoretical limit for C was found by Albert Betz in 1919 to be
59.3%. The wind speed cube term is the focus for wind energy potential. The cube
term means proper wind speed estimates are vital. For example, if the predicted
wind speed is 10 m/s and the actual wind speed is 8 m/s, that is an overestimate of
the energy generated by 156%. Therefore accurate models are vital for producing
su�cient energy without significantly overestimating the project cost.

Since (16) requires knowledge of the wind turbine size, it can be rearranged to
show the wind power density (17). The e�ciency term can also be ignored since
the predicted power density is being compared across di↵erent models for the same
conditions.

Ewind = 0.5C⇢Aru
3 (16)

E/A = 0.5⇢u3 (17)

3.7 Study Cases

To better understand the useful conditions of these models, several cases are setup
for limiting the context of their evaluation. Up valley vs down valley flow, stabil-
ity conditions, and wind speed are considered. Typical stability is evaluated for
each wind speed and flow direction case. The cases are outlined in table 5. Stability

19



3 METHOD

follows the definitions above. Wind speed is divided using the Beaufort wind classes.

Up valley and down valley flow are compared due to the terrain di↵erence. Down
valley flow is influenced by smaller feeder valleys and gullies along Adventdalen. Up
valley flow is influenced by Adventfjord. As such, there is expected di↵erences in
flow.

All models are limited by or dependent on stability conditions. As such, these
are compared. Given the lower number of data points, three classes are used as
opposed to five class typically found in literature such as Newman and Klein (2014),
Motta et al. (2005), and Van Wijk et al. (1990). z/L is used in these cases for de-
termining stability class since z/L is calculated using its relations to Ri. Therefore,
it is acceptable to directly use Ri here for stability classification. The same divisions
are used from earlier.

The wind speed is divided up following the Beaufort scale where the class 0-3 is
0-5.5 m/s, class 4 is 5.5-7.9 m/s, class 5 is 7.9-10.7 m/s, and class 6+ is �10.7
m/s. These are subjective divisions developed in 1805 by Sir Francis Beaufort of
the British Royal Navy for better communicating and making notes of wind speed.
While not necessarily used in discussions related to wind energy, they provide clear
divisions for wind speed cases to be evaluated. The 0-3 classes are grouped as mod-
ern turbines have a typical cut-in wind speed of 3-4 m/s (Abolude & Zhou, 2017).
Classes 6-12 are grouped based o↵ of the common wind speeds in the Adventdalen
area the summer campaign. The scale is applied to the AWS 10 m height data.

Case Parameter
0 all conditions
1 down valley flow
2 up valley flow
3 unstable conditions (�0.5 < Ri  �0.025)
4 stable conditions (0.025  Ri < 0.2)
5 neutral conditions (�0.025 < Ri < 0.025)
6 Beaufort 0-3 (0-5.5 m/s)
7 Beaufort 4 (5.5-7.9 m/s)
8 Beaufort 5 (7.9-10.7 m/s)
9 Beaufort 6-12 (>10.7 m/s)

Table 5: Cases for evaluating model usability
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4 Results

The context of the 7 weeks campaign is presented first with basic description of the
wind conditions and resultant data availability. It is expected that each model will
perform better under certain conditions or assumptions. As such, modelling during
up valley and down valley flow are compared along with stability conditions and
binned wind speed.

4.1 Wind Conditions

4.1.1 Data Availability

Given the multiple layers of sensitive filters applied to the data, availability must be
considered to provide context for how representative the models are. Availability is
calculated after re-sampling to 1 hr period. Over the course of the 7 weeks cam-
paign, 58.9% of the LiDAR RHI scans were suitable to used. Of those suitable data
points, 92.3% have a di↵erence in LiDAR and AWS 10 m wind speed measurement
less than 3 m/s. 56.0% show wind direction within 30°of the RHI scan heading up
or down valley at 10 m and 100 m through 150 m height. 69.4% show wind speeds
greater than 2 m/s at 10 m and 100 m through 150 m height. Combining the wind
direction and speed filters, leaves 47.6%. 10.9% of the suitable RHI scan points are
outside �0.5 < Ri < 0.2 The total availability after quality and usability checks is
26.3% of the data points collected over the summer campaign and re-sampled to 1 hr.

4.1.2 Direction

The wind direction sometimes varies with height in Adventdalen. The variation in-
creases with height as shown in figure 7. While wind direction tends to remain near
constant with increasing height, there is a minor trend where the direction at 10 m
holds a heading of roughly 310° while at 100 m and above the wind direction varies
from 100° to 330°. This trend increases with height as the cluster of points at 310°, 10
m height shift downwards from the 1:1 correlation line. At 150 m height, a hotspot
develops around 130° heading indicating opposing flow above the valley floor. Along
the 1:1 correlation line, three hotspots are seen: at 310 deg heading, 130 deg head-
ing, and at 220 deg which would be a crosswind. The crosswind is seen at all heights.

Figure 8 further shows that the trend of wind direction aligned up or down val-
ley is common. This further supports the trends seen in the correlation plot above.
At 10 m height, the wind direction is typically aligned with Adventdalen. At 100 m
and 150 m heights, the wind direction shifts slightly on occasion between 110° and
330°. At 10 m height, the wind direction typically does not deviate from aligning
with the valley with the clearest exceptions being on July 11, July 27-30, and August
18. Again, this is not common which aligns with the findings from the correlation
plots. The cases of crosswind and flow not aligned with Adventdalen are not being
evaluated in this project. Rather, this explanation is to provide context for the low
suitable data availability.
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Figure 7: Wind direction correlation at 10 m to 10 m, 100 m, and 150 m heights

Figure 8: Time series of wind direction at 10 m, 100 m, 150 m heights
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4.1.3 Stability Classes

Three stability classes are used for evaluating the models, unstable, neutral, and
stable. Figure 9 shows the relation between wind speed and stability class after
filtering for low wind speed and wind direction not aligned with the RHI scan direc-
tion. The 10 m height wind speed is always greater than the 2 m height wind speed,
as expected. Unstable conditions are seen primarily between 3 m/s and 7 m/s wind
speed. Neutral conditions are seen throughout all speeds, especially from 4 m/s to
10 m/s. Stable conditions are seen from 1.5 m/s to 5 m/s. 2 m height speeds go
below 2 m/s in spite of the filter because the filter is applied at 10 m height. For
neutral conditions, the speed increases at a slightly higher rate from 2 m to 10 m
height than in the other stability classes (table 6).

Figure 9: Stability classes based o↵ 2m and 10m heights

Table 6: Slope for 10 m vs 2 m height windspeed in fig. 9

Unstable Neutral Stable

1.17 1.21 1.18
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4.2 All Wind Profiles

The LiDAR and model profiles are constructed at each point in the timeseries. A
correlation plot provides a quick visualization of the performance of each model at 80
m height (fig 10). All models tend to overestimate the wind speed. The IEC model
has the highest and most frequent over-estimation. The Sedefian model has the most
under-estimation. Both log models show less deviation from the 1:1 correlation line.

Figure 10: Model to LiDAR profile correlation for all suitable profiles at 80 m height

The profile of medians taken over the data collection period is used for overall
comparison (fig 11). The median is chosen over the mean as the median will select
the most common values with less influence from extreme cases. Over the duration
of the summer LiDAR campaign, the log-stability model most closely matches the
measured profile up to 120 m height. The IEC model has the highest median
estimated wind speed and as expected, performs the worst. However, the Sedefian
model performs similarly to the log-stability model over the entire campaign. Of
note, the measured profile from LiDAR shows a general slight decrease in wind speed
with height starting at 50 m. As these models all assume an increase in wind speed
with height, it is then expected that a good fit is not possible.

The di↵erence in wind speed profiles highlights the significance of over estimation of
the wind speed using each method (fig 12). The Sedefian model performs nearly as

24



4 RESULTS

Figure 11: Median wind speed for all suitable profiles

well as the log-stability model, staying under 0.5m/s di↵erence up until just over 50
m. The log models run nearly parallel due to the stability correction present in the
log-stability model. This is due to the correction term being added and multiplied
by the same scalar ur (6).

Figure 12: Median di↵erence of models to LiDAR wind speed for all suitable profiles
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Figure 13: Percent distribution of di↵erence in model vs LiDAR wind speed for all suitable profiles
at 80m height

The percent distribution of the di↵erence in model from LiDAR wind speed at 80 m
height (fig 13) shows how frequently and by how much each model di↵ers from the
LiDAR profile. The percent is taken from the total number of suitable data points
used in modeling the all case. All models have a forward-weighted distribution
(meaning the model tends to overestimate). The IEC has a flatter profile indicating
higher variance in the di↵erence of model wind speed from the LiDAR wind speed.
The Sedefian model has a more symmetrical distribution centered around 1.0 m/s.
The shape of the distribution is sharper indicating less variance than the IEC model.
Both log models have an even sharper distribution and are also centered around 1.0
m/s. The approximately 18% spike around 0.8 m/s for the log-stability model fur-
ther indicates low variance.

Profiles of wind power density are shown in (fig 14). The wind speed cubed (17) has
significant impact on the model predicted wind power density as shown in figure 15.
At 80 m height, the median of the di↵erence in model predicted vs LiDAR based
wind power density is 50 W/m2 for the log-stability model while 45 W/m2 for the
Sedefian model (table 7). The standard deviation from the mean shows the breadth
of variation in power density over the 7 weeks campaign (fig 15). While the mean
di↵erence and standard deviation for the Sedefian and log-stability models are very
nearly the same, the median di↵erence in power density is a bit higher with the log-
stability model overestimating by 111% more than the Sedefian model. This further
shows that power density is a key metric. The Sedefian model has the least standard
deviation from the mean while IEC varies most. Both log models have slightly more
deviation than the Sedefian model with 0.73 m/s as opposed to 0.72 m/s for the
Sedefian model. This corresponds to 116 W/m2 and 133 W/m2, respectively.
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Figure 14: Median wind power density for all case

(a) Median of di↵erence in power density of
models from LiDAR for all case

(b) Standard deviation of di↵erence in wind
power density of models from LiDAR for all case

Figure 15: Comparison of power density profiles using median of di↵erence from LiDAR and
standard deviation of that di↵erence
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Table 7: Statistical values for all study case when comparing model to LiDAR profiles at 80 m
height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.5 0.89 1.1 0.91
Std. Dev. [m/s] 0.79 0.72 0.73 0.73
r2 0.6 0.82 0.77 0.81
Median Dif. Power Density [W/m2] 87 45 58 50

4.3 E↵ect of Up Valley vs Down Valley Flow

Up valley flow occurs for 72.7% of the evaluated points and down valley flow for the
remaining 27.3%. Figure 16 compares the model to LiDAR correlation for the two
scenarios. Up valley shows tighter correlations and generally lower speeds centered
around 6 m/s while down valley has a full breadth of wind speeds for the campaign
with speeds centered around 10 m/s. Table 8 shows the statistics for the up valley
case while table 9 shows the statistics for the down valley case. Up valley flow has
very poor correlations for all models. Sedefian and log-stability models have the
same mean di↵erence and median di↵erence in power density of 1.0 m/s and 48
W/m2, respectively. Down valley flow has much better correlations with r2 slightly
higher for Sedefian than the log models. The Sedefian model also has significantly
lower mean di↵erence in wind speed and median di↵erence in power density com-
pared to both log models. The up valley case had primarily unstable conditions,
67.5% of the time then 17.1% stable conditions and 15.4% neutral conditions. The
down valley case had primarily neutral conditions, 60.2% of the time then 37.5%
stable conditions and 2.3% unstable conditions.

(a) Up valley flow at 80 m (b) Down valley flow at 80 m

Figure 16: Model to LiDAR correlation for up and down valley cases

The median wind power density is significantly di↵erent between up valley and down
valley flow due to overall di↵erence wind speed. For up valley flow at 80 m height,
the Sedefian model predicts slightly lower energy density than the log-stability model
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Table 8: Statistical values for up valley flow when comparing model to LiDAR profiles at 80 m
height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.6 1.0 1.2 1.0
Std. Dev. [m/s] 0.61 0.5 0.53 0.54
r2 -0.32 0.37 0.2 0.38
Median Dif. Power Density [W/m2] 78 48 56 48

Table 9: Statistical values for down valley flow when comparing model to LiDAR profiles at 80 m
height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.3 0.46 0.7 0.65
Std. Dev. [m/s] 1.1 1.0 1.0 1.0
r2 0.69 0.87 0.83 0.84
Median Dif. Power Density [W/m2] 174 36 61 61

with 105 W/m2 and 108 W/m2, respectively. However, LiDAR predicts a median
energy density of 58 W/m2, merely slightly over half the model predicted power.
For down valley flow, both log models near perfectly overlap suggesting dominant
neutral stability. The decrease in wind speed with height for LiDAR starts at 70 m
height as opposed to 50 m height for up valley so the di↵erence in predicted energy
density is much less. The Sedefian model has a lower estimate than the log models
with 401 W/m2 and 433 W/m2, respectively. LiDAR predicts 347 W/m2 which is
closer than in the up valley but still significantly less.

(a) Up valley flow (b) Down valley flow

Figure 17: Median wind power density for up and down valley cases

4.4 E↵ect of Stability

Stability is a key consideration for all models. For the basic power and log laws,
neutral stratification is assumed. Therefore it is useful to compare the impact of
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stability on model predictions. For comparison convenience, neutral condition is
defined as �0.025 < Ri < 0.025. Stable conditions are when 0.025 � Ri < 0.2 and
unstable are when �0.5 < Ri  �0.025. Unstable conditions occurred 49.7% of the
time; neutral occurred 27.6%, and stable occurred 22.7%. The correlation plots for
each are shown in figure 18. As seen in the stability correlation plot above, unstable
conditions occur at lower speeds, stable conditions at lower through middle speeds,
and neutral conditions throughout all speeds.

The coe�cient of determination for all models in the unstable case are very poor
with the highest being log-stability with r2 = 0.39 (table 10). The correlation is
significantly better for the neutral case (table 11) where the best correlation is for
Sedefian model with r2 = 0.90. As expected, both log models perform exactly the
same as the correction term is 0 per definition. Also, both log models have slightly
lower correlation than the Sedefian model. The stable case (table 12) has worse
correlation coe�cients than the neutral case for all models. In the stable case, the
log-stability model has better correlation than the log-neutral model as expected
given the correction term. The mean di↵erence in wind speed decreases for all
models going from the unstable, to neutral, to stable case. The standard deviation
decreases for all models in the same order. However, the lowest mean speed is for
stable conditions, then unstable and finally neutral conditions indicating that neut-
ral conditions have the tightest fit. Of note is that the IEC model has the highest
standard deviation in all cases with the Sedefian model having the lowest standard
deviation, even when out-performed in terms of correlation or mean di↵erence. And
while the unstable case has very poor coe�cients of determination, it has the lowest
standard deviations across all models.

Table 10: Statistical values for unstable conditions when comparing model to LiDAR profiles at
80 m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.7 1.1 1.3 1.1
Std. Dev. [m/s] 0.6 0.51 0.53 0.54
r2 -0.38 0.34 0.16 0.39
Median Dif. Power Density [W/m2] 98 58 68 53

Table 11: Statistical values for neutral conditions when comparing model to LiDAR profiles at 80
m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.5 0.71 0.93 0.93
Std. Dev. [m/s] 0.87 0.82 0.83 0.83
r2 0.76 0.9 0.87 0.87
Median Dif. Power Density [W/m2] 119 48 65 65

In the unstable and stable cases, the log-stability model has the closest prediction of
wind energy density up to 120 m (fig 19). The fit is not significantly di↵erent above
this height. In the neutral case, the Sedefian model performs noticeably better. The
decrease in wind speed with height for LiDAR profiles once again accentuates the
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(a) Unstable conditions (b) Neutral conditions

(c) Stable conditions

Figure 18: Model to LiDAR profile correlation for unstable, neutral, and stable stability conditions
at 80 m height

Table 12: Statistical values for stable conditions when comparing model to LiDAR profiles at 80
m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.1 0.59 0.74 0.59
Std. Dev. [m/s] 0.92 0.83 0.85 0.85
r2 0.53 0.77 0.72 0.76
Median Dif. Power Density [W/m2] 48 21 31 20

generally poor model fits. For unstable conditions, the decreases starts around 50
m. For stable conditions, the decrease starts around 70 m. For neutral conditions,
the decrease appears to also start around 70 m. The jagged shape of the curve is
due to high variance as seen in the correlation plot.
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(a) Unstable conditions (b) Neutral conditions

(c) Stable conditions

Figure 19: Median wind power density for unstable, neutral, and stable stability conditions

4.5 E↵ect of Wind Speed

Of the total suitable data set, 60.6% were in class 0-3, 27.3% were in class 4, 8.7%
were in class 5, and 3.4% were in class 6+. The speeds are shown in the plot de-
scriptions. The correlation of model to LiDAR wind speed is shown in figure 20.
The variance increases with increase in speed across the models. The IEC model is
seen clearly as the worst performing while the Sedefian and both log models require
closer investigation.

In each speed class, the correlation is very poor for all models with most values
being negative and the highest value being 0.34. Due to the dependence of wind
energy density on velocity, not much can be said about the median di↵erence in pre-
dicted wind energy density of the models from the LiDAR when comparing speed
classes. Nonetheless, the IEC model has a median di↵erence in wind energy density
approximately two times the other model’s di↵erence in all speed classes.
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(a) Wind speed 0-5.5 m/s (b) Wind speed 5.5-7.9 m/s

(c) Wind speed 7.9-10.7 m/s (d) Wind speed 10.7+ m/s

Figure 20: Model to LiDAR profile correlation at 80 m height for four di↵erent speed classes based
o↵ 10 m height AWS wind speed: a) 0-5.5 m/s, b) 5.5-7.9 m/s, c) 7.9-10.7 m/s, d) 10.7+ m/s

Table 13: Statistical values for 0-5.5 m/s wind speed when comparing model to LiDAR profiles at
80 m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.3 0.82 0.95 0.81
Std. Dev. [m/s] 0.62 0.57 0.59 0.62
r2 -0.94 0.03 -0.21 -0.0091
Median Dif. Power Density [W/m2] 60 34 41 32

Table 14: Statistical values for 5.5-7.9 m/s wind speed when comparing model to LiDAR profiles
at 80 m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.8 1.0 1.3 1.0
Std. Dev. [m/s] 0.86 0.86 0.86 0.8
r2 -2.0 -0.41 -0.78 -0.32
Median Dif. Power Density [W/m2] 192 108 131 109

Wind speed was also evaluated using overlapping divisions of 0-7 m/s, 5-11 m/s,
7-13 m/s, and 9+ m/s. Wind speed was also evaluated using quartiles. In both of
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Table 15: Statistical values for 7.9-10.7 m/s wind speed when comparing model to LiDAR profiles
at 80 m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 2.1 1.1 1.4 1.3
Std. Dev. [m/s] 1.0 0.98 0.99 0.96
r2 -2.6 -0.41 -0.89 -0.76
Median Dif. Power Density [W/m2] 427 236 287 259

Table 16: Statistical values for 10.7+ m/s wind speeds when comparing model to LiDAR profiles
at 80 m height

Method IEC Sedefian log-neutral log-stability

Mean Dif. [m/s] 1.8 0.42 0.8 0.8
Std. Dev. [m/s] 0.87 0.84 0.85 0.85
r2 -2.1 0.34 -0.048 -0.048
Median Dif. Power Density [W/m2] 892 251 423 423

these cases, the trends between increasing wind speed and model fit were less clear
than in the case shown using the Beaufort classes. An increase in r2 values was seen
using the overlapping divisions indicating that at this limited quantity of data, the
r2 is driven more by the number of data points than by the case parameters.

The shape of the LiDAR profile shows an increasingly strong low level jet with
increasing speed. The height of decreasing wind speed increases with increasing
wind speed, going from 40 m to 50 m to 60 m to 90 m. As the speed class increases,
the LiDAR profile approaches the log laws. The log-neutral and log-stability models
approach closer to each other with increasing speed until they overlap at 7.9+ m/s.
The overlap indicates primarily neutral conditions at higher speeds as shown in the
stability correlation plot shown in (fig 18). The shape of the median LiDAR profile
also gets increasingly jagged as the variance increases with increasing speed. In the
highest speed class, the profiles suggest the log models have the best fit.
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(a) Wind speed 0-5.5 m/s (b) Wind speed 5.5-7.9 m/s

(c) Wind speed 7.9-10.7 m/s (d) Wind speed 10.7+ m/s

Figure 21: Median wind power density for four di↵erent speed classes based o↵ 10 m height AWS
wind speed: a) 0-5.5 m/s, b) 5.5-7.9 m/s, c) 7.9-10.7 m/s, d) 10.7+ m/s

35



5 DISCUSSION

5 Discussion

The Sedefian and log-stability models have the best performance as seen through-
out the results. As such, they are the focus of discussing the impacts of each case.
Nonetheless, each model’s performance is summarized. The baseline LiDAR is first
discussed noting a median decrease in wind speed with increasing height. While
this presents challenges in evaluating model performance, the models are compared
noting their sensitivity to error, impact of the explored cases across models, and
general estimation at 80 m height across models. Sensitivity referring to how the
estimated wind speed varies with di↵erence in wind measurement. Error referring to
the di↵erence in wind for any reason including instrument error and large variance
in measurements which could a↵ect roughness length calculation.

5.0.1 Baseline LiDAR Profiles

The median decrease in wind speed with increasing height defies the basic assump-
tion of all models investigated as part of this project, that wind speed increases with
increasing height (fig 11). While some cases, such as neutral stability, have strong
correlations, the quality of model fit for unstable vs stable conditions is inverse from
those typically found in literature. The median decrease in wind speed with height
is likely caused by a frequent low-level jet. Note that the cause and modelling of
low-level jets are not explored in this project. Simply, it is an observed phenomena
which much be acknowledged as it is outside the basic assumption of all models
tested: increasing wind speed with height.

Kilpeläinen et al. (2012) investigated the occurrence and core height of LLJs in
Kongsfjord on Spitsbergen. The geography there is similar to that found in Ad-
ventfjord and Adventdalen. The core height is the point of local maxima where
the wind speed starts to decrease with increasing height. It was found that 53% of
the observations contained an LLJ with the core height often being  100 m. This
validates the median LiDAR profile showing decreasing wind speed with increasing
height. As such, direct comparisons from the LiDAR to model profile shape are
limited. While the profile shape and percent di↵erence are not directly evaluated
for the reasons above, the baseline LiDAR provides a reference point to base model
sensitivity o↵ of. This reference point is used to show error as defined above.

5.1 Study Case Findings

5.1.1 Up vs Down Valley Flow

Up and down valley flow are driven by di↵erent features. Up valley flow is influ-
enced by Adventfjord and Isfjord beyond, two large bodies of water. Down valley
flow is influenced by the broad valley Advendalen and its’ surrounding mountain
features such as plateaus, valleys, and gullies. While the models themselves are not
tuned to surrounding terrain features lying several hundred meters and beyond the
AWS, investigating up and down valley flow provide insight to the specific context
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of LiDAR profiles. And, more relevant to this project, they can provide insight to
model performance.

The down valley profiles (fig 17) are similar to the neutral condition profiles (fig
19). Higher wind speeds tend to correlate with neutral stability within this dataset
(fig 18) so this is expected. The up valley profiles appear to match a mix of stable
and unstable conditions. The median LiDAR profile better matches the unstable
condition profile while the median model profiles, when compared to each other,
more closely match the stable condition profiles.

5.1.2 Stability

As expected, model performance varies through the stability classes. Best perform-
ance for all is under neutral conditions and worst is for unstable conditions in terms
of correlation (table 11). However, the unstable case has the lowest standard devi-
ations indicating low sensitivity to error and good fit to a model, albeit a di↵erent
one (table 10). The stable condition case lies in the middle for correlation values and
has the highest scatter indicating low reliability for all models (table 12). It also has
mixed mean di↵erence for the di↵erent models indicating higher model sensitivity
to stable conditions.

The results for the unstable condition case match the findings of Newman and Klein
(2014). The power law, while assuming neutral stratification, tends to have a less
scattered fit than in neutral conditions and especially more than stable conditions.
They also found that unstable conditions tended to underestimate while stable con-
ditions tended to overestimate. This is not seen in the results discussed here due to
the wind speed tending to decrease with height. All of the explored models assume
an increase in wind speed with height.

The standard deviation is a key indicator for this analysis since it shows how con-
sistent the model is in it’s prediction. This is necessary as the LiDAR cannot fully
be relied on for evaluation. High standard deviation means the model does not
closely follow a trend related to the LiDAR while low standard deviation means the
model closely follows a trend. High standard deviation indicates high sensitivity of
the model to error. This metric works regardless of how good the model fit is. In
the stability cases, the standard deviation is lowest for unstable conditions (table
10). This indicates the models are well-suited to unstable conditions as found by
Newman and Klein (2014) with regard to log law models. While the correlation is
low, the models can be tweaked or a new model developed since some correlation is
shown to exist.

The standard deviation increases with stability indicating increased sensitivity to
error (tables 11, 12). The poorer fit in stable conditions for log law models also
matches the findings of Newman and Klein (2014). There is a net increase in wind
speed going from unstable to neutral conditions. However, this trend does not con-
tinue into stable conditions where the wind speeds are similar to the unstable case.
This indicates that model reliability decreases with increased stability. The models
are best tuned to neutral conditions but the Sedefian and log-stability model can
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produce good results in unstable conditions. The Sedefian model is better suited for
the neutral case than log-stability model.

5.1.3 Wind Speed

Wind speed classes do not reveal a direct trend in model performance for any of the
models explored here. All have poor correlation values (tables 13, 14, 15, 16). The
mean di↵erence and standard deviation appear to increase with increase in wind
speed, as would be expected, but then decrease significantly for the highest speed
class. Both are likely caused by too few points, albeit in di↵erent ways.

Poor correlation could be due to too small a range of wind speeds. In the case
here, the scatter of model vs LiDAR wind speeds is rather like a blob than a long,
thin cluster for all speed classes. Visually, one would expect poor correlation val-
ues for each category then. Attempts were made to improve the range of values
by using overlapping categories (e.g. 0-5 m/s, 3-7 m/s, 5-9 m/s, and 7+ m/s) or
quartile divisions of wind speed. Using both methods, the a↵ect of wind speed was
less clear with no improvement to correlation coe�cients. Likely, the cause was that
the highest speed class of both approaches were dominated by lower wind speeds
than those in Beaufort 6+ division. As such, the lower limit of their highest speed
class was not su�ciently high enough to capture the relationship between higher
wind speeds and neutral stability. Based on the stability correlation plot (fig 18),
neutral stability dominates at 8+ m/s. Using quartiles, the 0.75 quartile is at 6.3
m/s which is significantly less than the point of dominate neutral stability. And with
overlapping divisions, an upper speed class starting at 7 m/s, for example still has a
low percentage of points leading to poor correlation values and unclear trends again.

One correlation can be drawn from using the Beaufort speed classes, however. With
increase in wind speed, an increase in the occurrence of neutral stability is seen. This
was earlier shown in figure 18 where primarily neutral stability was seen at higher
wind speeds. In the wind power energy density profiles (fig 21), the log-neutral and
log-stability models grow closer to overlapping with increasing wind speed until they
overlap from 10.7+ m/s. At the highest speed class, the median of log models over-
lap with the median of LiDAR near perfectly. The Sedefian model under-performs
in the highest speed class as the increasing wind speed portion of the profile extends
up high enough that the decreasing portion no longer dominates the comparison.

Emeis (2005) notes that with higher wind speeds stability conditions tend to be-
come neutral. This matches the conditions described prior where the highest wind
speeds all occurred under neutral conditions. This also explains the trend seen here
where model performance decreases with speed until relatively high (10.7+ m/s)
wind speeds are reached at which point the performance is significantly improved.
Wind speed still should not be used as a filter for selecting models, but does provide
insight to their performance. Stability conditions appear to be dependent on wind
speed and therefore should be used for selecting models.
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5.2 Models

5.2.1 IEC Power Law

The IEC model has very poor performance when compared to both the LiDAR
baseline and the other tried models. Not only is the di↵erence from baseline poor,
1.50 m/s, the standard deviation is the highest in all cases. There is an overestim-
ation of 82.4 W/m2 on average or 123% (61.0 W/m2 and 133% for median) at 80
m height when compared to the best fitting model. Compared to the LiDAR, the
IEC model is 135 W/m2 or 219% greater on average. Then, the high standard of
deviation means a simple scalar cannot be used to correct the model as the model
fit varies too much. This contrasts with the findings of Sedefian (1980) where this
model is described as ”conservative but reasonable”. The results here show a model
far from conservative as it strongly tends to highly overestimate the wind speed and
there for power density.

There are several key contributors to the IEC model results. The model assumes
neutral stratification and has no correction for other conditions. While neutral sta-
bility occurred roughly 1/4th of the time, the IEC model still overestimated the
wind speed and with the highest mean di↵erence (table 11). However, the neutral
case did have the best fit for the IEC model compared to all other cases. The high
mean di↵erence coupled with high standard deviation indicates that in spite of the
fitness, the model was sensitive to error. In the neutral case, the IEC model was
significantly outperformed by all other models as also shown by Newman and Klein
(2014).

The high overestimation of the IEC model found here contrasts with the findings of
Sisterson et al. (1983) where they found the IEC model to underestimate the wind
speed by 15% and therefore wind power density by 40%. The underestimation was
attributed to stable conditions. However, their study site contained high vegetation
and therefore a much larger roughness length than in Adventdalen. It is then not-
able that in Adventdalen the median IEC profile overestimates wind speed even at
heights where the wind speed still increases with height. This is attributed to the
very smooth terrain.

The shear exponent, ↵ = 1/7, is empirically derived for neutral conditions over
smooth terrain (Peterson & Hennessey, 1978). This is another large contributor to
the model’s performance. The value determined for the roughness length in Ad-
ventdalen is approximate to the smooth class given by Wieringa (1986). Given the
high overestimation of the IEC model even under the assumed neutral conditions
over smooth terrain, it is inferred that there are other factors to consider. The
shear exponent has been shown to depend on a variety of factors including terrain
features, roughness, and stability (Sedefian, 1980). In the case of Sedefian, the shear
exponent is also a function of height. As such, the shear exponent is not constant
but rather continuously decreasing with height. This function is factored into the
here-named Sedefian model, also explored in this project.
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5 DISCUSSION

5.2.2 Sedefian Model

The Sedefian model tends to have lower standard deviation values (tables 7-16).
This makes it well suited to use when errors can be large. Using 10 m data can have
a significant impact on estimates at greater heights as found by Motta et al. (2005).
They saw non-correlated variation in di↵erence between the model and observed
wind speed at 70 m across di↵erent sites.

In stable conditions the Sedefian model performs well and even identically to the
log-stability model at 80 m height (table 12). At 20 m and 30 m height the Sedefian
model more closely matches the LiDAR profile (fig 19). This contrasts with other
findings mentioned earlier which state these models perform worst under stable con-
ditions. The flip in performance hierarchy is attributed to the decrease in wind
speed with increasing height.

The Sedefian model also tends to have lower wind speed estimates. Under neut-
ral conditions they are close to the log-stability model (fig 19). This matches the
derivation proposed by Sedefian (1980) and used here. Emeis (2005) further explores
this method. He finds that under neutral conditions the fit between power and log
laws become closer with decrease in roughness length. As a low roughness length
fitting a very smooth surface is used in this project, the findings here match. Given
that, and the lower sensitivity to error, the Sedefian model is preferred under neutral
conditions. Lopez-Villalobos et al. (2022) also found that the Sedefian method was
preferred if wind measurements were available at two heights. However, they also
suggested using the log law if temperature was also available.

5.2.3 Log Law

While two variations of the log law are investigated, they can be treated as nearly
the same given that the stability correction term is additive. The log-stability model
performs best under neutral conditions, followed by stable conditions (tables 11, 12).
Performance is worst for unstable conditions (table 10) contrasting with Newman
and Klein (2014) and Van Wijk et al. (1990).

Stable conditions are challenging to model as demonstrated by Optis et al. (2015) as
they are highly sensitive to the correction term derived from the wind speed shear.
There is debate on which coe�cients best suit this term. As such, the Sedefian
model is preferred for its’ robustness shown with lower standard deviations. How-
ever, with future improvements to the correction term, the log law could be the
preferred model in all conditions. Optis et al. (2015) found that a simple calculation
of the roughness length, the same used in this project, provided the best fit of the
correction term.
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6 CONCLUSION

6 Conclusion

Four methods of extrapolating vertical profiles of horizontal wind speed within the
boundary layer using AWS measurements were investigated. A LiDAR campaign
was conducted in Adventdalen on Spitsbergen to provide baseline profiles for eval-
uating the models. A series of quality checks and filters limit profiles to the most
direct comparisons between LiDAR scans and AWS data. The median profile con-
structed from LiDAR scans showed a decrease in wind speed with height. While
physical and previously shown to occur in comparable regions, this breaks the found-
ational assumption of all models tested; that wind speed increases with increasing
height.

All methods perform less than satisfactory given decrease in wind speed with height.
However, there are clear di↵erences in performance which are summarized in the
list below. The IEC model severely overestimates the wind power density with high
sensitivity to wind speed error (sensitivity referring to how much the estimation
varies for a given measurement di↵erence). The Sedefian model is the least sensitive
to wind speed measurement di↵erences. The log-neutral model produces profiles
parallel to the log-stability model, as expected. Using a simple factor of safety mul-
tiplier may be possible however, the log-neutral model is sensitive also to roughness
length. When coupling a best guessed factor of safety with the log-neutral model’s
sensitivity to roughness length a severe under or over-estimation of the wind power
density is likely. However, with the correction term added and further understand-
ing of stable conditions, the log-stability model has the potential to perform better
than the Sedefian model. Given the level of uncertainty and unknowns, the Sedefian
model is best suited to use in all conditions.

Summary

• The IEC power law model severely overestimates the wind speed in all cases.

• The log-stability model has lowest median wind speed estimation making it the
best fit for the LiDAR baseline.

• The log-neutral model estimates in parallel to the log-stability model but is too
sensitive to coe�cient estimations to leave o↵ the correction term.

• The Sedefian model has the least sensitivity to wind speed error and bias mak-
ing it ideal for potentially unreliable measurements.

41



BIBLIOGRAPHY

Bibliography

Abolude, A., & Zhou, W. (2017). A preliminary analysis of wind turbine energy yield. Energy
Procedia, 138, 423–428. https://doi.org/10.1016/j.egypro.2017.10.189

Arya, S. P. (2001). Introduction to micrometeorology (2nd ed). Academic Press.
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Kilpeläinen, T., Vihma, T., Manninen, M., Sjöblom, A., Jakobson, E., Palo, T., & Maturilli, M.
(2012). Modelling the vertical structure of the atmospheric boundary layer over arctic
fjords in svalbard. Quarterly Journal of the Royal Meteorological Society, 138 (668), 1867–
1883. https://doi.org/10.1002/qj.1914

Lokalsamfunnsplan. (2023). https://www.lokalstyre.no/energiplan.581707.no.html
Lopez-Villalobos, C., Martınez-Alvarado, O., Rodriguez-Hernandez, O., & Romero-Centeno, R.

(2022). Analysis of the influence of the wind speed profile on wind power production.
Energy Reports, 8, 8079–8092. https://doi.org/10.1016/j.egyr.2022.06.046

Motta, M., Barthelmie, R. J., & Vølund, P. (2005). The influence of non-logarithmic wind speed
profiles on potential power output at danish o↵shore sites. Wind Energy, 8 (2), 219–236.
https://doi.org/10.1002/we.146

Murthy, K., & Rahi, O. (2017). A comprehensive review of wind resource assessment. Renewable
and Sustainable Energy Reviews, 72, 1320–1342. https://doi.org/10.1016/j.rser.2016.10.038

Newman, J., & Klein, P. (2014). The impacts of atmospheric stability on the accuracy of wind speed
extrapolation methods. Resources, 3 (1), 81–105. https://doi.org/10.3390/resources3010081

Norwegian Polar Institute. (n.d.). Adventdalen region. Retrieved 30th September 2010, from https:
//toposvalbard.npolar.no

Optis, M., Monahan, A., & Bosveld, F. C. (2015). Limitations and breakdown of monin-obukhov
similarity theory for wind profile extrapolation under stable stratification. Wind Energy,
19 (6), 1053–1072. https://doi.org/10.1002/we.1883

Peterson, E. W., & Hennessey, J. P. (1978). On the use of power laws for estimates of wind power
potential. Journal of Applied Meteorology, 17 (3), 390–394. https://doi.org/10.1175/1520-
0450(1978)017h0390:otuopli2.0.co;2

Piironen, A. K., & Eloranta, E. W. (1995). Accuracy analysis of wind profiles calculated from
volume imaging lidar data. Journal of Geophysical Research, 100 (D12), 25559. https://
doi.org/10.1029/94jd02605

Platt, S. M., Hov, Ø., Berg, T., Breivik, K., Eckhardt, S., Eleftheriadis, K., Evangeliou, N., Fiebig,
M., Fisher, R., Hansen, G., Hansson, H.-C., Heintzenberg, J., Hermansen, O., Heslin-
Rees, D., Holmén, K., Hudson, S., Kallenborn, R., Krejci, R., Krognes, T., . . . Tørseth,
K. (2022). Atmospheric composition in the european arctic and 30 years of the zeppelin

42

https://doi.org/10.1016/j.egypro.2017.10.189
https://doi.org/10.3390/rs9060561
https://doi.org/10.1016/j.renene.2021.01.025
https://doi.org/10.1016/j.renene.2021.01.025
https://doi.org/https://doi.org/10.1016/j.renene.2016.10.001
https://doi.org/https://doi.org/10.1016/j.renene.2016.10.001
https://doi.org/10.1016/j.renene.2013.07.003
https://doi.org/10.1007/bf00120937
https://doi.org/10.1002/we.1572
https://doi.org/10.1002/we.1572
https://doi.org/10.1002/qj.1914
https://www.lokalstyre.no/energiplan.581707.no.html
https://doi.org/10.1016/j.egyr.2022.06.046
https://doi.org/10.1002/we.146
https://doi.org/10.1016/j.rser.2016.10.038
https://doi.org/10.3390/resources3010081
https://toposvalbard.npolar.no
https://toposvalbard.npolar.no
https://doi.org/10.1002/we.1883
https://doi.org/10.1029/94jd02605
https://doi.org/10.1029/94jd02605


BIBLIOGRAPHY
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