
N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g 
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g 

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Håvard Rakbjørg Minsås

Tag Inference

Feature extraction and sensor classification from
time series data

Masteroppgave i Datateknologi
Veileder: Patrick Mikalef
Medveileder: Filip Henrik Larsen & Nisha Dalal
Juni 2023





Håvard Rakbjørg Minsås

Tag Inference

Feature extraction and sensor classification from
time series data

Masteroppgave i Datateknologi
Veileder: Patrick Mikalef
Medveileder: Filip Henrik Larsen & Nisha Dalal
Juni 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk





Feature extraction and sensor classification from
time series data

Håvard Rakbjørg Minsås

CC-BY 2023/06/11





Abstract

The works in this thesis have been done with a goal of classifying time series
data originating from a number of different building sensors, such as temperature
sensors, valves, and pressure sensors. The samples are processed in such a way
that each data point comes at equal intervals, before features are extracted by
feature extraction libraries TSFresh and Catch22. The features are then passed
into a number of different models, and the models fine tuned so to give the best
accuracy for inferring the time series. The work done here show that gradient
boosting methods achieve the highest accuracy, and using smaller intervals sizes
is beneficial for most models. The task and data was provided by Piscada [1].

iii





Sammendrag

Moderne bygg bruker i større grad enn tidligere ulike sensorer for å overvåke ulike
deler av konstruksjonen. Slik data lagres gjerne som en tidsserie, hvor verdier as-
sosieres med et tidsstempel. I denne oppgaven behandles denne tidsseriedataen
slik at den egner seg til klassifisering basert på karaktertrekk, med et mål om
å kunne identifisere typen sensor dataen har opphav ifra. Flere ulike algoritmer
for klassifisering undersøkes og sammenliknes, deriblant nærmeste nabo, beslut-
ningstre og gradientforsterkede tre. I tillegg undersøkes hvordan hyppigheten på
datapunkter i en tidsserie påvirker nøyaktigheten på klassifiseringen. Resultatene
viser at gradientforsterkede tre gir den høyeste nøyaktighet på 91.7 prosent. Det
vises også at kortere intervaller mellom datapunktene har en positiv innvirkning
på evnen til å klassifisere korrekt. Oppgaven er skrevet på vegne av Piscada.

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.4 Weak learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.5 Strong learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 TFM naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Time series classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Grouping of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Invalid features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Handling of outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Scikit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Vector search approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 K nearest neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.12 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.13 Gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 Gradient boost tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



viii CoPCSE@NTNU: Tag inference

3.15 Histogram gradient boosting tree . . . . . . . . . . . . . . . . . . . . . 25
3.16 Inference by majority vote . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.17 Investigating wrongly inferred files . . . . . . . . . . . . . . . . . . . . 26

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Simple vector search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 K neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Gradient boosted tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Histogram Gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Majority voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Wrongly infered time series . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Fixed size intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 Catch 22 feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Interval sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Catch22 feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Inferred files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A Additional Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Figures

2.1 TFM naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Raw data plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Fixed interval plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Fixed interval plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Different interval sizes plot . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Box plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 K-nearest neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Gradient boost tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Decision tree sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 G7 time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 G5 time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix





Tables

3.1 Sensor overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Raw data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Sensor groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Group distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Outlier distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Majority vote distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Vector similarity results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Vector similarity inferred . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 K-neighbours results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 K-neighbours inferred . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Decision tree results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Decision tree inferred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Random forest results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Random forest inferred . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Gradient boost tree results . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 Gradient boost tree inferred . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.11 Histogram gradient boosting results . . . . . . . . . . . . . . . . . . . . 35
4.12 Histogram boosting inferred . . . . . . . . . . . . . . . . . . . . . . . . 36
4.13 Majority voting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.14 Histogram majority vote results . . . . . . . . . . . . . . . . . . . . . . 37
4.15 Histogram majority vote inferred . . . . . . . . . . . . . . . . . . . . . 37
4.16 Time series heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.17 Interval size accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.18 Catch22 Interval size accuracy . . . . . . . . . . . . . . . . . . . . . . . 40

xi





Chapter 1

Introduction

1.1 Background

Sensory equipment for monitoring in buildings are widely used across the world.
This equipment makes it possible to monitor status in parts of buildings, as well
as power consumption at all times, and are also a necessary part for automation.
Within this technology a huge potential to reduce power usage, and optimize
the operation of a building to suit individual needs. Currently there is no global
or major regional naming convention for these types of sensors, resulting in the
naming often being left to the operator of the building.

Statsbygg, the norwegian directorate of public construction and property, have
defined a naming convention for sensor equipment in Norway. This ensures the
same names and identification is used across buildings and industries, to help
with optimal operation and communication across projects. This standard is called
"Tverrfaglig merkesystem" (TFM). When TFM is used across buildings and indus-
tries transitions are made easier, mitigating the need for manual re-labeling of
sensors. Without it, changing the owners can result in expensive and time con-
suming work to handle naming conventions. Communication across industries
also becomes easier, as the same type of sensor will have the same naming con-
vention, making misunderstanding less likely to happen. TFM is not mandated in
every construction in Norway, but always used by Statsbygg and Forsvarsbygg. It
is also becoming more common for larger projects to follow this standard. This is
likely because the usefulness of the convention might not be as apparent in smal-
ler buildings, but in larger buildings it makes the work to re-identify the exact
type of sensor a lot easier.

The task in this project is to label sensors based on time series data, making
transitions between naming conventions easier. The objective of this work is to de-
velop a system for automatically transition between sensor naming convention.
Making it easier for new users to transition to a common naming system. It is
worth noting that any such model is not likely to be one hundred percent accur-
ate, as there tend to be outliers when working with real world data. However, in
generating an automatic system for such labeling, it is likely the number number

1



2 CoPCSE@NTNU: Tag inference

of instances needing to be manually handled will be substantially reduced. The
same model can also be used to identify sensors that behave abnormally, by using
the same model to predict the sensor it belongs to. If the wrong prediction occur,
some investigation into as of why might be necessary.

1.2 Terms

This section covers a brief description of terminology.

1.2.1 Time series

A time series is a collection of data points that are ordered sequentially based on
time. While it is beneficial for the data points to have a regular spacing, it is not
a strict requirement. However, having a constant interval spacing in time series
analysis often simplifies the analysis process, and is a requirement for certain fea-
tures to be extracted. Time series data is commonly observed in various fields,
including stock market analysis, health data, and climate monitoring.

1.2.2 Feature

In this thesis, the term "features" is employed in the context of time series analysis.
Features refer to specific characteristics of a time series, such as maximum value,
median, or average. They provide valuable insights into the overall data set. By
using features, one can represent a time series as tabular data, summarizing its
properties rather than representing individual data points.

1.2.3 Inference

Inference entails deriving a conclusion from the given data. In the context of this
thesis, inference is utilized to explain the process of analyzing input data, enabling
the identification of the probable sensor type to which the data belongs.

1.2.4 Weak learner

A model that perform slightly better than random guessing. A typical example of a
weak learner is a decision tree. For binary classification, i.e. when there is only two
possible answers, the definition states that its accuracy should be slightly better
than 50 percent. For multi-class classification the criteria are not so clear. The
requirement of better than random guessing is said to be too weak of a description,
and also more than 50 percent accurate is too strict of a requirement.



Chapter 1: Introduction 3

1.2.5 Strong learner

Strong learners are models that have an arbitrary good accuracy. While there is
no set definition to how well it needs to perform, one can expect a strong learner
to perform significantly better than random guessing.

1.3 Motivation

The goal of this project is to make a model that can, with a high percent of accur-
acy, determine what type of sensor a time series originated from by analysing fea-
tures extracted from said time series. In turn this method can make re-labeling of
sensory equipment within buildings easier, either by directly inferring the sensor,
or limiting the pool of possible sensors. The idea and data used in this project
have been provided by Piscada [1].

1.4 Research approach

When working with real world data as in this project the task can be divided into
three main parts. First the data set needs to be prepared in the necessary ways.
For this project that means handling features with invalid value extracts such as
NaN and Inf, removing outlier files from the training set and standardize the time
interval between data points. When the data is prepared a number of different
models are selected, and trained on the training set. The models are tested with a
number of different parameter-settings, as to help find the best approach. Lastly
the models are evaluated by inferring time series from the test data set, and the
results are compared.





Chapter 2

Related work

2.1 TFM naming convention

TFM stands for TverrFaglig-Merkesystem and is a naming convention created by
Statsbygg intended for building parts and technical installations [2]. This naming
convention consists of mainly three parts; location, system and component. Below
you can see an example of a TFM code, used to describe a "outside air temperature
sensor".

+215301=360.001-RT901

The three parts are denoted by their own character, namely the plus sign (+),
the equals sign (=) and the hyphen (-). The reason for this is to easily be able to
separate the individual parts, and also be able to reference a specific section of
the code without having to list the entire code for the sensor.

Starting with the pluss sign that refers to main element number one. This
references the location of the building the sensor is a part of, this code is set by
the contractor who set up the system. In the example above building 215301 is
being referenced.

Thereafter comes the equals sign that references the system the sensor is a
part of, also known as main element number two. The system that this sensor is a
part of is denoted by the number 360, and by looking up in Statsbyggs document
for systems codes [3] one can see that this is a system for air treatment. Given
that each system can also consist of multiple sensor of the same type there is also
a serial number attached to main element number two. This is so that one is able
to distinguish between like sensors. In this example the serial number is 001, and
comes after the dot.

Lastly there is main element number three, denoted by the hyphen. Main ele-
ment number three references the component. In this example the component is
of the type RT. By looking up in the component code list [4] one see that RT means
a temperature sensor. The remaining numbers are serial numbers like the system
code in main element number two.

5



6 CoPCSE@NTNU: Tag inference

The TFM naming convention is also summarized in figure 2.1, showing the
structure of how a sensor code is built.

Figure 2.1: Image representation of TFM [5]

2.2 Feature extraction

Feature extraction is an important part of time series classification, as this trans-
form the data from a set of timestamp-value pairs into a tabular data set. The latter
opening the possibility to build classification models. There are several libraries
for Python that focus on feature extraction, and this section will look at some of
them.

TSFresh [6] is an automatic feature extraction library that builds upon the
FRESH algorithm [7]. FRESH stands for FeatuRe Extraction based on Scalable Hy-
pothesis tests. Not only does it extract a wide variety of features from each time
series, but also evaluate the p-values of each feature. This way the algorithm is
also able to filter out non-significant features from the data set. The algorithm was
tested against, among others, all binary classification problems in the UCR time
series classification archive [8] and benchmarked against other feature extraction
algorithms such as linear discrimination analysis [9] and dynamic time warping
[10]. The algorithms were evaluated on their ability to successfully extract relev-
ant features and how long it took them to do so. To determine the meaningful-
ness of features a classification algorithm was applied to the extracted features
under the assumption that the classification would perform better when the fea-
tures were more meaningful. The classifier used is Random Forest, based on the
findings in "Do we Need Hundreds of Classifiers to Solve Real World Classification
Problems?" by Fernandez-Delgado et al. [11]. Additionally AdaBoost [12]were se-
lected as another classifier. The paper concludes that the FRESH algorithm is able
to filter features so that AdaBoost and Random Forest classifier do not achieve
worse accuracy for most data sets.

TSFEL [13], Time Series Feature Extraction Library, is another popular library
to extract time series characteristics. An overview over feature can be found in
TSFEL documentation at [14]. The features are divided into three categories, tem-
poral, statistical and spectral, based on the domain of which they are calculated.
It differs from libraries such as TSFresh in that it focuses more on the temporal
complexity of the extracted features, making it more suited for computers with
limited resources.



Chapter 2: Related work 7

Catch22 [15], CAnonical Time-series CHaracteristics, is a feature extraction
library that focuses solely on proven and highly informative features, removing a
lot of the redundancy that other, larger feature extraction libraries often end up
with. The features were selected based on test done across 93 time-series clas-
sification data sets, and the most informative features were selected out from a
filtered version of hctsa feature library [16]. The reduction of features allows for
the computational time to be reduced approximately 1000-fold, while only drop-
ping accuracy when classifying by about 7 percent.

2.3 Time series classification

As the number of Internet of Things (IoT) devices continue to surge in the mod-
ern world, the amount of data continue to rise with it. A significant portion of this
is time stamped data. Whether it be from devices monitoring traffic along roads,
sensors monitoring temperature outside or sensors monitoring water pressure in
a pipe. This data can grow in size rapidly, depending on the reporting interval,
and quickly becomes too much for a human to manually interpret. However, data
without insight to what it means has little value. So to gain insight we need al-
gorithms and models to help us interpret this large set of data.

With the rise of time series data, as monitoring becomes more common, there
is no surprise that there is a lot of research done on this topic. The research covers
everything from binary and multi-class classification, to forecasting and predic-
tion. For this thesis, however, the focus will be on multi-class classification, and
investigate papers related to this topic.

While many innovations happen within machine learning using deep learn-
ing or neural networks, Léo Grinsztajn and his co-authors in "Why do tree-based
models still outperform deep learning on tabular data?" [17] have conducted a
study on medium sized tabular data sets at about 10 thousand samples where
they found that tree-based models still outperforms their more complex machine
learning counterparts. Both the type of data and the size of the set align very well
with the ones in this thesis. They found that tree-based models are better at hand-
ling high-dimensional and correlated data than their deep learning counter parts,
using less space and time while also providing better accuracy. One of the reasons
listed for this is that some machine learning approaches do not handle uninform-
ative features as well, meaning features that does not help identify the class. Tree
based approaches as the decision tree have ways to determine what features are
informative and not, often using the Gini index or a similar approach to calculate
the gain or value for doing a split at a certain feature.

Anthony Bagnall et al. in their paper "The great time series classification bake
off: a review and experimental evaluation of recent algorithmic advances" [18]
have conducted a study evaluating recent algorithm advances for time series clas-
sification. The reason for this is that many of these algorithms are only tested
on a single synthetic data set, making them seem better than they might be in
reality. Therefore, these recently published algorithms are tested on several dif-



8 CoPCSE@NTNU: Tag inference

ferent data sets, to see how well they do. Among these algorithms are Derivative
transform distance [19] and Collective of Transformation-Based Ensembles [20],
where the later was found to be the best algorithm by far using their benchmarks.
On average more than 8 percent more accurate than their benchmarks, 1-nearest
neighbour and rotational forest. In total 18 algorithms was evaluated, many of
them performed worse than the benchmarks. Evaluation looked at accuracy when
classifying, scalability and speed.

Hassan Ismail Fawaz et al. "Deep learning for time series classification: a re-
view" [21] take a look at deep learning approaches for time series classification.
While the field of time series classification is quite popular, and hundreds of al-
gorithms have been proposed to deal with classification problems of this nature,
very few of these approaches utilize deep learning. 8730 deep learning models
was trained on 97 time series data sets and evaluated. Architectures such as Fully
Convolutional Neural Networks and deep Residual Networks are able to achieve
accuracy on level with the leading time series classification methods.

While XGBoost [22] is not used as a part of this thesis, it is still a widely used
and recognised library for gradient boosting. During the 2015 machine learning
challenge hosted by Kaggle a total of 17 out of 29 winning solutions used XGBoost
in some form to achieve their result. The reason for its success in the market can be
explained by its scalability, allowing it to run faster than other gradient boosting
implementations, and also scale to a large number of examples.



Chapter 3

Method

3.1 Sensors

The data set and thereby the classification problem is based on being able to dif-
ferentiate different types of equipment based on feature characteristics from their
time series. The sensors and the number of files in both the training set and test
set are listed in table 3.1.

While one ideally would like to be able to differentiate between all the 21
different types of sensor, that is not possible. The reason why it is not possible to
differentiate the finer levels is that these sensors can behave differently based on
the systems they are a part of. For instance a supply water temperature may be set
to value ranges that equal the return water temperature of another system, making
them indistinguishable from each other. These same values may also fluctuate over
time in the same system. Therefore, the focus will be on trying to differentiate
groups of these sensors with similar characteristics from each other. These groups
can be found in table 3.3.

3.2 Raw data

The raw data used for this project is stored in .feather files, containing a data frame
with two columns. The first column "timestamp" consist of a date-time referencing
when the data was received. Associated with each timestamp there is a column
"value", that contains the value at the time of the time stamp. The systems are set
up so that they only write a new row when a change is detected in the sensor.
Causing the spacing between timestamps to be uneven. The length of observation
for time series are also different, varying between 6 hours up to two weeks.

The feather files are further divided into folders based on their sensor type,
i.e. Chilled water return temperature sensors, and also split into folders based on
the weak and year the data are from. The data is divided into two sets, one for
training and one for testing. All of these files originate from the same data set,
and have been divided for practical purposes by people working at Piscada. The

9



10 CoPCSE@NTNU: Tag inference

Sensor name # Files Train # Files Test
Chilled Water Return Temperature Sensor 215 58
Chilled Water Supply Temperature Sensor 138 46
Cooling Valve 40 6
Differential Pressure Sensor 1214 289
Discharge Air Static Pressure Sensor 624 171
Energy Sensor 2 1
Heat Exchanger 372 86
Hot Water Supply Temperature Sensor 313 93
Outside Air Temperature Sensor 654 146
Power Sensor 232 68
Preheat Supply Air Temperature Sensor 632 166
Pump 532 102
Reheat Valve 245 71
Return Air Temperature Sensor 810 217
Return Fan 634 145
Return Water Temperature Sensor 759 197
Supply Air Static Pressure Sensor 588 158
Supply Air Temperature Sensor 939 232
Supply Fan 624 174
Valve 582 165
Variable Frequency Drive 358 88
Total 10507 2679

Table 3.1: List over sensor types and number of files.

"train" data folder consist of 10507 files, that will be used to train the model. The
"test" folder consist of 2679 files, that will be used to evaluate the accuracy of the
model. This brings the total number of files to 13186.

Below, in table 3.2, you can see an extract from a time series data frame. This
data is taken from a chilled water return temperature sensor. More specifically it
is retrieved from the time series 2021-23_+215301=360.003-RT561_MV.feather.

Figure 3.1 show the same data as displayed in 3.2 but plotted as a graph using
Matplotlib’s PyPlot library [23].



Chapter 3: Method 11

Timestamp Value
2021-06-06 21:57:54.135000+00:00 20.9
2021-06-07 02:56:22.772000+00:00 20.8
2021-06-07 03:38:34.540000+00:00 20.9
2021-06-07 03:40:04.983000+00:00 20.8

... ...
2021-06-11 19:44:47.176000+00:00 20.3
2021-06-11 20:17:56.156000+00:00 20.4
2021-06-11 20:20:56.862000+00:00 20.3
2021-06-11 20:22:27.282000+00:00 20.4

Table 3.2: Time series for Chilled Water Return Temperature Sensor.

Figure 3.1: Time series for Chilled Water Return Temperature Sensor

3.3 Grouping of data

As stated in section 3.1, differentiating between the finer levels of sensors is not
possible to do accurately. Instead the focus is at being able to tell groups of sensors
apart. Sensors within these groups portray similar characteristics, making them
difficult to differentiate. The sensors are divided into 10 groups, shown in table
3.3, and models are built around classifying a time series within the correct group.
The groups are made up so that similar sensor types are grouped together, for
example are most temperature sensors located in G1, and valves in G2. These
groups show fairly little overlap between them, and still allow for good predictions
to be made. With these groupings the distribution of files are as seen in table 3.4.



12 CoPCSE@NTNU: Tag inference

Group Sensors
G0 Outside Air Temperature Sensor
G1 Chilled Water Return Temperature Sensor

Chilled Water Supply Temperature Sensor
Hot Water Supply Temperature Sensor
Preheat Supply Air Temperature Sensor
Return Air Temperature Sensor
Return Water Temperature Sensor
Supply Air Temperature Sensor

G2 Cooling Valve
Reheat Valve
Valve

G3 Differential Pressure Sensors
G4 Discharge Air Static Pressure Sensor

Supply Air Static Pressure Sensor
G5 Heat Exchanger

Variable Frequency Drive
G6 Return Fan

Supply Fan
G7 Power Sensor
G8 Pump
G9 Energy Sensor

Table 3.3: Grouping of sensors



Chapter 3: Method 13

Sensor name # Files Train # Files Test
G0 654 146
G1 3806 1009
G2 867 242
G3 1214 289
G4 1212 329
G5 730 174
G6 1258 319
G7 232 68
G8 532 102
G9 2 1

Total 10507 2679

Table 3.4: File distribution by groups

3.4 Data preprocessing

As stated in the previous section, the intervals between data points are not even
by default. This is due to the way sensors are set up, that they do not report values
at set intervals, but rather when a change is detected. That solution is nice in of
itself, so that one is not transmitting more data than necessary, however it does
cause some problems when extracting features. Some of the features extracted by
TSFresh only makes sense if the spacing between data points are of equal length.
One might be tempted to choose an interval size that is equal to the minimum time
dependent interval change given in the entire data set, so that no data points are
lost, and all samples are unaltered in that sense. This however, will cause the files
to become much larger, and in return feature extraction for a large number of
files will be both time consuming and computationally expensive, compared to
if a smaller interval size is chosen. While time and computational cost might not
be an issue when one have access to cloud computing, it does impose a limit on
the work done in this thesis, as it is done on an ordinary desktop. Therefore, an
interval size that still capture the characteristics of time series, without causing
the computational overhead to grow to large is chosen. Many time series were
looked into, both the raw data and associated plots to decide on an interval that
would enable affordable feature extraction while keeping as much of the original
information in place. In figure 3.2 three different samples are plotted with their
original interval compared to the 10 minute interval that is proposed here. From
left to right the sensors plotted are heat exchanger, chilled water supply temperat-
ure sensor and variable frequency drive. As one can see from the figure, the plots
still keep their characteristics, even though several data points are lost.

Using a 10 minute interval size makes it easier to do feature extraction, and
reduce the time it takes for most samples to between 3 and 5 seconds. To equalize



14 CoPCSE@NTNU: Tag inference

Figure 3.2: The figure shows the difference between the original time series, and
their 10 minute interval copies. Top plot shows unaltered, bottom plot shows 10
minute intervals.

the interval sizes the start point and end point of each time series was extracted,
and pandas date range was utilized to create 10 minutes intervals between these
dates. This new date range was then filled with values from the original frame
using forward fill, so that the most recent value occupies a given 10 minute block.

A possible benefit to choosing an interval size that is larger than the minimum
time dependent interval is that some faulty data points might be eliminated. In
figure 3.1 one can see a value that looks out of place for a temperature sensor,
where it suddenly drops to zero for a short amount of time before being corrected.
However, when utilizing a bigger interval this value is overridden, as seen in figure
3.3. And since such erroneous values are much less common than correct values
in the time series, it is also more likely that erroneous values will be overridden
using 10 minute intervals with forward fill.

In addition to the main interval size of 10 minutes, features will also be extrac-
ted at intervals of 1 minute, 1 hour and 5 hours. This is to compare the accuracy
for each model, depending on the interval size. While it would also be interest-
ing to reduce the interval size even further, it was not feasible with the available
resources. Extracting features on a 1 minute interval took more than two weeks
for the entirety of the data set. These features will then be tested at the differ-
ent models, so that the results can be compared. This will show how much of an
impact different interval sizes has when it comes to capturing characteristics of a
time series. Below in figure 3.4 one can see how the interval size effects the plot
of a time series. The bigger the interval, the smoother the plot becomes.



Chapter 3: Method 15

Figure 3.3: Time series for Chilled Water Return Temperature Sensor with even
interval size

Figure 3.4: Time series plot over 4 different interval sizes.

One thing to note is that when attempting to extract features on the 1 minute
interval some files become too big to be able to do so on an ordinary desktop
computer. Therefore, the number of samples in both the training set and the test
set have decreased some. The training set was reduced from 10507 samples down
to 10466 samples, meaning that feature extraction failed for 41 samples. The
test set was reduced from 2679 samples down to 2659, meaning that 20 samples
failed. This lead to the calculation of an additional accuracy for approaches when
utilizing the 1 minute interval. This accuracy portrays a worst case scenario, where



16 CoPCSE@NTNU: Tag inference

it is assumed that every time series that could not have its features extracted were
inferred wrongly.

3.5 Feature extraction

Comprehensive features from TSFresh [6] is the main feature extraction library
used in this project to extract features. This is a library that allows extraction of
a wast range of features from each time series, and is very useful in capturing
the characteristics of each one. Using the comprehensive features parameter TS-
Fresh will use 63 time series characterization methods, and compute a total of
794 features for each time series. A list over extracted features can be found in
[24]. One thing to keep in mind is that a fair number of these features can not be
calculated for the time series, and will return Nan-values. Many of these features
can be considered redundant, but which ones is not known until a model is con-
structed. The decision is to keep them all, and let the different approaches figure
out what features are relevant. This functionality is essential in decision trees, but
methods like k-nearest neighbours do not have a way to sort features, and might
suffer from this decision.

Additionally, Catch22 [15] is tested on most of the models. Catch22 is a feature
extraction library that only extract a limited amount of features that have proven
themselves well for a range of real world classification problems. This is a lot
faster than using TSfresh’s comprehensive features, but of course comes at the
cost of a number of features than can prove useful for the models. There is also an
additional parameter for the Catch22 feature extraction, enabling the extraction
of an additional two features. Mean and standard deviation, essentially making
it Catch24. The complete list of features extracted by this library can be found
in [25]. The reason for also including Catch22 as a feature extraction library is
comparing a set of minimally redundant feature up against a fairly redundant
one, and comparing the gain or loss in accuracy from the additional features using
TSFresh.

3.6 Invalid features

With the wast number of features extracted when using TSFresh and the variation
in time series, one expect it to return a few features that result in NaN-values.
Scikit does not take these values as input for all models, and therefore there is a
need to handle NaN-values in some way. Simply removing the features that are not
valid for a time series only for that time series is not an option, as scikit needs all
time series to have the same dimensions. There are mainly two ways NaN-values
can be handled.

Either remove all features that have NaN-values from all of the time series,
this will significantly reduce the number of features in the data set. However, as
TSFresh extract so many features there are still more than 200 features that are



Chapter 3: Method 17

valid across all time series. This will also speed up the time it takes to train a
model, as there will be less features to consider when calculating splits. This is
especially noticeable with the gradient boosting tree, reducing the time it takes to
construct by 1 to 2 hours.

The other option is to insert a default value whenever a NaN-value is en-
countered. Again there are a couple of approaches to choose from here. NaN-
values can be replaced with a value that does not commonly occur within the
data set, making it so NaN-values still stand out from other values in the data set.
This can be a viable approach, as while NaN-values are not numerical, they can
still be argued to be a feature characteristic for the time series. Alternatively a 0 or
a 1 can be inserted in its place, and let the Scikit library figure out the best splits.
The different approaches were tested with the decision tree, and the approach
with the highest accuracy was chosen.

Some models might get a slight increase in accuracy using one of the other
approaches, but for better comparability, the same approach is used in across all
models. The difference in accuracy is marginal. Difference between removing all
invalid features from the data set and using a default value of 1 was around 0.2
percent for the decision tree. Meaning that no models was greatly impacted by
the choice made here.

3.7 Handling of outliers

Given the large number of files in the training set and test set, a modular solution
for identifying and removing outliers is preferred. For this task the interquartile
range [26] was chosen. This approach is easily visualized, and can be tuned to fit
the need in a given data set by changing the ranges it operates on.

The original approach is based on identifying the first and third quartile. The
first quartile, Q1, is defined as the value that has 25 percent of values with a lower
or equal value to itself. The third quartile is defined as having 25 percent of other
values greater than or equal to itself. Then you find the interquartile range that is
defined as:

IQR=Q3−Q1 (3.1)

This is the value range that separate the first quartile from the third quartile.
The next step is defining boundaries for outliers. The lower boundary is found by
taking the first quartile and subtracting the interquartile-range multiplied by 1.5.
For the upper boundary one take the third quartile and add the interquartile-range
multiplied with 1.5.

lower_bound =Q1− 1.5× IQR (3.2)

upper_bound =Q3+ 1.5× IQR (3.3)



18 CoPCSE@NTNU: Tag inference

Box plot is a built in pandas method that visualize the IQR-method, see figure
3.5. The black rectangles represent the range between Q1 and Q3, the purple lines
are the lower and upper boundaries and the black circles represent outliers. Lastly
the median is represented by the green line.

Figure 3.5: IQR-method visualized by pandas box plot. The black boxes show
the first and third quartiles, while the purple lines show the upper- and lower-
boundaries. The plotted dots are features outside of the bounds. Green line shows
the median. Visualization is based on features extracted by Catch22 for outside
air temperature sensor

Then comparing values against the lower and upper bounds. If a feature value
is outside of either of these values it is identified as an outlier in the data set. Given
that there are many features there is also a need to set a threshold for how many
outlier features a time series can have before it is discarded. For instance if a sensor
has more than 200 features outside of the IQR boundaries, it is to be discarded.
Note that outliers are only calculated for each type of sensor group, not for the
entire training set at once. This is to prevent discarding time series for sensors
without a lot of data, for instance the energy sensor. The goal is to only discard
time series that do not align with the group it is a part of. This ensures that the
models are not trained on files that are obviously erroneous.

The IQR multiplier can be adjusted to allow for a wider range of values, or the
quartiles can be adjusted to guarantee keeping at least 80 percent of the files. This
make outlier detection stricter, ensuring that only the most noticeable outliers are
removed from the data set. Ideally files that accurately portray the group it is a
part of would not be discarded. This causes the outlier requirements to be stricter
than the default implementation described above. The quartiles were changed
from 0.25 and 0.75 to 0.10 and 0.90, making it so that at least 80 percent of
features are considered within range. TSFresh extract a high number of features,



Chapter 3: Method 19

where many of these can be considered uninformative. That means that they do
not reflect any characteristics of the group a time series belongs to, and can be
considered noise. This create the need for a high threshold for number of features
outside of the range set by the IQR-approach before a time series is discarded.
Several thresholds were tested. The threshold that have the highest accuracy was
selected, that being a threshold of 275.

This approach is only performed on the training data, as here it is known
what type of sensor it is. While the sensor for each time series in the test set is
also known, this would not be the case in a real world application of this method.
To eliminate files before inference is done one could use other approaches, such
as setting a minimum number of data points in the time series.

When removing sensors using the parameters described above, a total of 68
files is removed from the training set. The removed files are distributed as shown
in table 3.5.

When testing with different interval sizes it could be considered naturally to
apply this method in each individual case. However, as this would require further
fine tuning of the parameters for each individual interval size, the outliers found
applying the IQR-approach on the 10 minute interval is kept regardless of interval
size. With the current setting no outliers would be detected for either 1 hour
intervals and 5 hour intervals. This is done as to give all models the same files to
build upon.

Sensor name # Files removed
G0 2
G1 1
G2 0
G3 59
G4 0
G5 0
G6 0
G7 6
G8 0
G9 0

Total 68

Table 3.5: Outliers from each group

It is clear that some of these outliers do not represent sensor values in a way
that one would expect. In figure 3.6 the two outsiders for G0, outside air tem-
perature sensor, are compared to two normal time series for this sensor. From the
plots it is clear that the outliers do not behave in a way that would be considered
normal for this type of sensor. One would expect them to fluctuate much in the
same was as the two normal sensors, with temperatures rising in the morning and
dropping towards the evening. The outliers are linear before abruptly reaching a



20 CoPCSE@NTNU: Tag inference

maximum value.

Figure 3.6: The top two plots show two outliers for outside air temperature sensor
compared to two normal time series for the same sensor, seen in the bottom two
plots. The interval size for all plots are 10 minutes



Chapter 3: Method 21

3.8 Scikit

Most models will be implemented by using the Scikit-learn library [27] for Python
as these have a very similar implementation across models, making it possible
to pass data in the same format to different models. This way one can ensure
that when changes are made to data, it only has to be done in one place, before
passing the new data into the models. This library also implements some handy
functions on top of each model, making it easy to evaluate the accuracy of each
model created, as well as easy to extract what time series were wrongly infered.
Namely the score function that returns a score reflecting from 0 to 1 how many
files were correctly infered, and there is also a useful method called predict, that
returns an array with all the predicted values for a test set. With the similar style
of implementation for each model, and the practical methods for evaluating the
test set, Scikit-learn is a great way to easily compare methods. Methods where it is
relevant also have a parameter called random_state that can be set to ensure that
the same "random" choices are made every time, making the results replicable. For
all models where this is relevant, such as the decision tree and gradient boosting
tree this parameter is set to be equal to 0.

3.9 Vector search approach

To set the baseline for the results a very simple implementation was chosen. Some-
thing one would expect to achieve better results than random guessing, but not by
a large margin. The approach that was settled on was a simple vector search, and
was implemented from scratch in Python. Here the training data is used to cal-
culate an average value for each feature in each sensor group. Then this average
value for each group is compared against the time series that is to be inferred. The
distance is calculated to each of these average vectors using Manhattan distance,
and infer the sensor to be belonging to the closest average vector.

For features to have maximum impact values are also normalized, such that
all features will have a similar impact on the distance measure. If one were to
not do this some features overshadowing the wast majority of other features. I.e.
a feature that have values in the thousands will have a much larger impact on
the distance measure than a feature with values around 1. So all features are
normalized by finding the maximum value in the entire training set, and dividing
all feature values with this maximum value for that feature. This ensures that all
values in the training set will have values between 0 and 1. The same guarantee
can not be made for the test set, but it will likely be very close.

Below is the formula used to normalize feature values:

n
∑

i=1

F⃗i

max Fi
= [ f1, f2, ..., fn] (3.4)

Then the sensor is inferred by calculating the Manhattan distance to all aver-



22 CoPCSE@NTNU: Tag inference

age vectors and selecting the minimum.
After normalization each feature from the sensor one would want to infer is

compared against each feature in an average sensor, and then summarized to find
the total distance. This is done for each of the average sensors.

dist i =
n
∑

i=1

abs(Fi − Ai) (3.5)

Having calculated all of these distances, dist, the shortest distance is found.

sensor = min(dist1, dist2, ..., distn) (3.6)

Whatever average sensor this shortest distance was between, is the sensor that
the time series will be inferred as.

3.10 K nearest neighbours

K neighbours [28] checks the time series up against all time series in the train-
ing set, then selects the k nearest neighbours by distance in the n-dimensional
space. Then the sensor is infered by a soft vote. A number of different k-values
were tested. The accuracy dropped off after k = 5, therefore 5 was selected as
the k-value for this approach. Additionally the distance weight showed the most
promise, where weights are calculated from the inverse distance from the point.
Rather than a pure majority vote, distance also effect to result. This way neigh-
bours that are closer in distance carry more influence over the inference than
neighbours further away.

In figure 3.7 a black data point can be seen positioned in a two dimensional
space and infered based on a soft majority vote. In this illustration the black point
will be inferred as a member of the light green set.

To build this model the scikit implementation, called the KNeighborsClassifier
[28], was used. The following arguments were used:

clf = KNeighborsClassifier(n_neighbors=5, weights="distance")

3.11 Decision tree

Decision tree is a natural choice when it comes to this sort of classification prob-
lem. This is because features with values are extracted, creating a problem where
one is trying to identify a unique combination of feature values that identify a
group. By extracting features, the data is transformed from a data set consisting
of time series, into a data set of tabular data. Another reason that a decision tree is
a good model for classification is that it is easily explainable. Having built the tree



Chapter 3: Method 23

Figure 3.7: Illustration of K-neighbours method in a 2-dimensional space. The
black point is infered by a soft vote over its 5 nearest neighbours, in this case
light green will get the majority-vote.

it is possible to manually infer the answer by looking at the tree and navigating
down to a leaf node.

The main thing to be aware of when constructing a decision tree is to limit
the possibility of over fitting. If the boundaries of the tree are not limited, one
might end up with a tree that fit the training data so well that it will struggle on
data that differ only a little bit from the one it was trained on. Luckily there are
some parameters that can be passed into the method to counter the possibility of
over fitting. These are min samples leaf, that sets a lower boundary for how many
samples you need to have before you can construct a leaf node. Closely related to
this you have the min samples split, that sets a lower limit for how many samples
a node needs to have before you can split it. This ensures that no splits are done
on nodes that have very few samples. Lastly, the one that is used here, is the max
depth parameter, limiting how deep the constructed tree can be.

Another small modification that must be done when dealing with the scikit
library is that groups need to be renamed to numerical values, there G0 is labeled
0, G1 labeled 1 and so on.

The construction of the tree is not limited too much, only setting a max_depth
= 12, for the rest the construction the tree is allowed to govern itself, as this
seemed to give the best results. Other than that, the default value for invalid
features is set to 1. Outlier time series are removed from the training data set,
using the parameters described in section 3.7.

The Scikit implementation of DecisionTreeClassifier [29] is used to build the
tree, and the following arguments were set.

clf = tree.DecisionTreeClassifier(max_depth=12, random_state=0)



24 CoPCSE@NTNU: Tag inference

3.12 Random forest

Random forest work by constructing a set number of randomly generated decision
trees, then having a majority vote to decide on what sensor to infer it as. This
approach should yield better results than the decision tree, without taking much
longer to train. Given that it does not take a lot of time to construct a random forest
tree, one can play around with a high number of estimators without worrying
about growing old of age. There is however a limit where increasing the number
of estimators do not have an impact on the final result. The difference between
using a 1000 estimators, and using 10 000 estimators is as little as 0.001, or 0.1
percent. Making the model correctly infer an additional 1 in a 1000 time series.
Even the difference between 400 estimators and 1 000 estimators is as little as
0.0004, or 0.04 percent. Therefore, a total number of 400 estimators were settled
on in the random forest model.

The scikit module RandomForestClassifier [30] is used to construct the ran-
dom forest model, and the following arguments were used:

clf = RandomForestClassifier(n_estimators=400, max_depth=16,
random_state=0, verbose=10)

Verbose is set to 10 so that Scikit displays the progress during construction.
This goes for all methods where this is useful.

3.13 Gradient boosting

Gradient boosting is a common and efficient technique used when construction
classifier models. This thesis covers two gradient boosting approaches, namely
the Gradient boosting tree and Histogram Gradient boosting. Gradient boosting
combines several weak learners and combine them into a strong learner. This is
done by iteratively building new learners, where each subsequent learner focuses
on correcting the errors of the last one. The final estimate can be expressed as in
equation (3.7) taken from [31]. Where a Function takes a input value, and the
class is estimated by an initial guess and the sum of all the subsequent functions.

FM (X ) = F0(X ) +
M
∑

m=1

FM (x) (3.7)

3.14 Gradient boost tree

A gradient boost tree carries some resemblance to a decision tree, but have a
slightly different approach to inferring the results. While a decision tree uses a leaf
node to decide on the sensor, a gradient boost tree use lots of trees to gradually
come closer to the result. It starts with an initial guess (e.g. average of all the
training data), then builds trees iterably continuously attempting to minimize the



Chapter 3: Method 25

loss function (the average distance from the correct answer). The trees are also
assigned a learning rate, that carries the weight of each subsequent tree.

Figure 3.8 shows an illustration of a gradient boost tree, and how subsequent
trees help adjust the initial estimate. V_0 is the initial guess, often just the average
value for what one want to infer. Then more trees are built, often of greater depth
than what is visualized here. Splits are based on feature values the same way a
decision tree does, prioritizing splits that have a high "gain". The leaf nodes have
an adjustment value, that will be multiplied with the learning rate and added to
the previous estimate. When the values from each sub-tree is added together the
classification is complete.

One of the main drawbacks of this method is that it takes a lot longer to finalize
this model compared to its counterparts like decision tree and random forest.
This, however, is only for training, and using the model for inferring is as fast
as any other approach. It does however make testing different combinations of
arguments more time consuming.

Figure 3.8: Illustration of gradient boosting tree. Inspired by [32].

Scikits GradientBoostingClassifier [33] were used to build the gradient boos-
ted tree, and the following arguments were set when building the model:

clf = GradientBoostingClassifier(n_estimators=400, learning_rate=0.1,
max_depth=6, random_state=0, verbose=10)

3.15 Histogram gradient boosting tree

Histogram gradient boosting is a much faster to build than for instance gradient
boosting trees, when the number of samples for training grows large. The Scikit
histogram gradient boosting also have support for Nan-values, but to keep the



26 CoPCSE@NTNU: Tag inference

playing ground level the previous approach of replacing NaN-values with 1 is also
kept for this method.

The Histogram Gradient boosting tree resembles the Gradient boosting tree,
but has a different approach to figuring out splits that enables it to construct the
model a lot faster when the feature space grows large. Scikits implementation is
inspired by LightGBM [34], and map the continuous feature values into discrete
bins. The bins are then used to construct feature histograms and are utilized to
find the best splits efficiently.

Scikits HistGradientBoostingClassifier [31] builds the model and the following
arguments were set.

clf = HistGradientBoostingClassifier(max_iter=1000, verbose=10,
random_state=0, learning_rate=0.02, early_stopping=False)

3.16 Inference by majority vote

Examining the test data one can see that several time series originate from the
same sensor, therefore it is of interest to see how well gradient boosting works
in identifying the sensors based on all the available data. So instead of treating
each sample as its own sensor, they will be grouped together by their original
sensor in the test data set. Each sample is then inferred as done previously, but
instead of directly inferring based on this result, it is added to a list with all other
samples belonging to this particular sensor. Then the sensor will be inferred on
the majority vote of the inferred samples in this list. Here three possible outcomes
are allowed. Correct, when the correct sensor was infered either directly (when
only one time series is available) or by a majority vote. Wrong, when the wrong
sensor was infered either directly or by majority vote. Lastly inconclusive results
are introduced, when the majority vote could not be settled. A majority vote could
not be settled when there are two or more sensors with the same amount of votes,
and have more votes than any other suggestions. This approach was tested for all
methods except simple vector search.

Since each sample is no longer treated as its own sensor the number of sensors
to infer is reduced. Table 3.6 show how this effect the distribution of samples.
Going from a total of 2679 samples to only 302.

Note that the only difference done here is to summarize the inferred sugges-
tions, and working out the majority vote. No changes has been done to arguments
for different models.

3.17 Investigating wrongly inferred files

After having constructed a variety of models, it is interesting to study some of the
time series that could not be correctly inferred. There are two types of errors that
are of particular interest. The ones where a member of Gn often is inferred as a



Chapter 3: Method 27

Group #Files
G0 16
G1 102
G2 31
G3 35
G4 29
G5 23
G6 31
G7 7
G8 27
G9 1

Total 302

Table 3.6: Grouped time series distribution

member of GM , as this can help identify groups that resemble each other more
than normal. Additionally, investigating time series where only one member of Gn
was inferred as a member of Gm as this can typically be outliers.





Chapter 4

Results

4.1 Simple vector search

Table 4.1 and table 4.2 summarize the results from the simple vector search ap-
proach. Correct describes the case when the nearest average sensor was the correct
one. Wrong is when the nearest average sensor was of another type.

Sensor name Correct Wrong Accuracy
G0 123 23 0.842
G1 511 498 0.506
G2 0 242 0.000
G3 19 270 0.066
G4 29 300 0.088
G5 31 143 0.178
G6 256 63 0.803
G7 26 42 0.382
G8 101 1 0.990
G9 1 0 1.000

Total 1097 1582 0.409

Table 4.1: vector similarity results

Additionally, what the faulty suggestions entail have been recorded, showing
the distribution of all suggestions. This is summarized in table 4.2. Reading the
rows of the table show how members of a group was distributed across all groups.
The columns give an overview over how many times this group was inferred, and
where these suggestions came from.

Overall this approach perform better than random guessing, but the results
are still very weak for what it tries to achieve. Most interestingly one can see that
no sensor belonging to G2 was correctly inferred, commonly being mistaken for
G1 and G0.

29



30 CoPCSE@NTNU: Tag inference

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 123 9 0 0 0 0 11 2 1 0
G1 430 511 0 0 0 1 51 8 8 0
G2 18 48 0 0 0 55 88 0 33 0
G3 49 79 0 19 2 5 110 6 19 0
G4 29 126 0 9 29 2 118 1 15 0
G5 10 54 0 0 1 31 62 0 16 0
G6 187 37 0 0 0 5 256 0 4 0
G7 1 21 0 0 0 1 3 26 1 15
G8 0 0 0 0 0 0 1 0 101 0
G9 0 0 0 0 0 0 0 0 0 1

Table 4.2: vector search inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

4.2 K neighbours

For the K nearest neighbours approach the accuracy increased greatly from the
simple vector search approach. The results are summarized in table 4.3 and table
4.4.

Sensor name Correct Wrong Accuracy
G0 94 52 0.644
G1 977 32 0.968
G2 102 140 0.421
G3 153 136 0.529
G4 200 129 0.608
G5 75 99 0.431
G6 200 119 0.627
G7 23 45 0.338
G8 96 6 0.941
G9 0 1 0.000

Total 1920 759 0.717

Table 4.3: K-neighbours results

4.3 Decision tree

In figure 4.5 and 4.6 you can see the results of our decision tree. Most groups
perform fairly well, only leaving G5 and G7 with a accuracy a fair bit lower than
the other groups. A little bit surprising is the fact that a ordinary decision tree



Chapter 4: Results 31

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 94 41 4 4 1 2 0 0 0 0
G1 12 977 4 12 0 1 3 0 0 0
G2 1 8 102 24 10 36 49 1 11 0
G3 21 68 5 152 19 0 20 0 4 0
G4 0 17 20 23 200 46 18 0 5 0
G5 1 4 51 11 7 75 21 0 4 0
G6 7 0 36 26 27 21 200 0 2 0
G7 2 10 0 16 6 0 4 23 7 0
G8 0 0 6 0 0 0 0 0 96 0
G9 0 0 0 0 0 0 0 1 0 0

Table 4.4: K-neighbours inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

succeeds in predicting the Energy Sensor, since there are only 2 such files in the
training set. One could think that the gain associated with giving this group a leaf
node would be so small that it would not be considered beneficial.

Sensor name Correct Wrong Accuracy
G0 100 46 0.685
G1 973 36 0.964
G2 180 62 0.743
G3 214 75 0.740
G4 280 49 0.851
G5 94 80 0.540
G6 255 64 0.799
G7 38 30 0.441
G8 102 0 1.000
G9 1 0 1.000

Total 2237 442 0.835

Table 4.5: Decision tree results

The tree itself grows a bit to big to be comfortably displayed here, but figure
4.1 shows what an small section of the tree looks like The first line in a node ref-
erences the feature selected for a split, and the criterion for splitting. Line number
two shows the Gini value, a value associated with how good the split is. This value
reflects the gain from doing a split at this node and feature. A high value reflects
that the split is useful for differentiating different groups. Third line shows the
distribution of sensors at this node, since Scikit does not allow string values for
classes during the construction, this is represented as a list, where each index is



32 CoPCSE@NTNU: Tag inference

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 100 38 1 5 0 2 0 0 0 0
G1 21 973 4 3 0 0 5 3 0 0
G2 0 0 180 16 4 20 21 0 1 0
G3 6 47 3 214 10 0 7 1 1 0
G4 0 9 1 31 280 0 3 5 0 0
G5 2 1 62 3 1 94 5 5 1 0
G6 0 4 37 13 1 9 255 0 0 0
G7 1 1 3 9 16 0 0 38 0 0
G8 0 0 0 0 0 0 0 0 102 0
G9 0 0 0 0 0 0 0 0 0 1

Table 4.6: Decision tree inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

associated with a sensor. Lastly one can see what class this node belongs to, that
is the most populous sensor at this node.

Figure 4.1: Small sample of the generated decision tree

4.4 Random forest

Unsurprisingly the Random forest model does achieve better results than the or-
dinary decision tree. This can be related to the Condorcet Jury Theorem [35], that
states if an independent group of deciders, all with more than 50 percent chance
of having correct, then the accuracy will tend to increase with more deciders. See-
ing that the decision tree has more than 80 percent accuracy total, and more than



Chapter 4: Results 33

50 percent accuracy for most sensor groups, one should also expect our random
forest tree to do better than that. While it could occur to expect even higher ac-
curacy than what is seen here, one need to remember that some time series are
abnormal for the group that they belong too, and therefore might not be infered
by any, or only just a few deciders.

Also here as with the decision tree it seems that the accuracy for G5 and G7
is a bit behind the other groupings. Mainly being misinterpreted as members of
G2 and G4 respectively. However, the accuracy does increase a fair amount from
the single decision tree. Also note that for the random forest classifier it did not
succeed in inferring the Energy sensor (G9).

Sensor name Correct Wrong Accuracy
G0 120 26 0.822
G1 996 13 0.987
G2 206 36 0.851
G3 216 73 0.747
G4 301 28 0.915
G5 115 59 0.661
G6 261 58 0.818
G7 43 25 0.632
G8 102 0 1.000
G9 0 1 0.000

Total 2360 319 0.881

Table 4.7: Random forest results

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 120 24 1 1 0 0 0 0 0 0
G1 6 996 0 3 0 0 4 0 0 0
G2 0 0 206 2 2 18 13 0 1 0
G3 5 52 1 216 7 0 4 0 4 0
G4 0 10 3 9 301 0 6 0 0 0
G5 0 0 49 6 0 115 3 0 1 0
G6 0 0 8 30 0 20 261 0 0 0
G7 0 1 5 2 17 0 0 43 0 0
G8 0 0 0 0 0 0 0 0 102 0
G9 0 0 0 0 0 0 0 1 0 0

Table 4.8: Random forest inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.



34 CoPCSE@NTNU: Tag inference

4.5 Gradient boosted tree

Gradient Boost tree is an extension of the ordinary decision tree where new trees
are created iterably, trying their best to improve upon the results in the previous
tree. For this method several parameter combinations were tested, to find the ones
that yielded the best results. Several parameter combinations gave similar results,
but the best one was with a learning rate of 0.1, max depth equal to 6 and 400
estimators. The results are summarized in the tables 4.11

Sensor name Correct Wrong Accuracy
G0 135 11 0.925
G1 999 10 0.990
G2 203 39 0.839
G3 234 55 0.810
G4 313 16 0.951
G5 120 54 0.690
G6 279 40 0.875
G7 43 25 0.632
G8 102 0 1.000
G9 1 0 1.000

Total 2429 250 0.907

Table 4.9: Gradient boost tree results

Additionally, what the faulty suggestion entail have been recorded, meaning
what other sensor group they were infered as, this is summarized in 4.10. Read-
ing the rows of the table you can see how the sensors belonging to a particular
grouped was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

Gradient boosting takes considerably more time to construct than the other
approaches thus far, but also yields the best results. While it takes a couple of
minutes to construct a random forest classifier with 400 deciders, it takes closer
to 7 hours to do the same for a gradient boosting classifier.

4.6 Histogram Gradient boosting

The histogram classifier resembles the gradient boost tree, but takes a different
approach to figuring out what splits to make. This approach also results in a much
faster construction of the classifier, taking around 30 minutes to complete. The
methods also seems to be able to find better splits for the classifier, resulting in a
slight increase in accuracy of about 1 percent.

Overall there is a high degree of accuracy for the gradient boosting methods,
but it is apparent that also these are struggling the most with classifying members
of G5 and G7.



Chapter 4: Results 35

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 135 11 0 0 0 0 0 0 0 0
G1 4 999 0 1 0 0 5 0 0 0
G2 1 0 203 6 0 21 11 0 0 0
G3 9 33 1 234 5 0 5 0 2 0
G4 0 8 0 4 313 1 3 0 0 0
G5 0 0 47 1 0 120 5 0 1 0
G6 0 1 15 7 2 15 279 0 0 0
G7 0 1 1 6 17 0 0 43 0 0
G8 0 0 0 0 0 0 0 0 102 0
G9 0 0 0 0 0 0 0 0 0 1

Table 4.10: Gradient boost tree inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

Sensor name Correct Wrong Accuracy
G0 132 14 0.904
G1 1000 9 0.991
G2 209 33 0.864
G3 239 50 0.827
G4 309 20 0.939
G5 125 49 0.718
G6 297 22 0.931
G7 43 25 0.632
G8 102 0 1.000
G9 1 0 1.000

Total 2457 222 0.917

Table 4.11: Histogram gradient boosting results

4.7 Majority voting

The above mentioned approaches was all, with the exception of vector similarity,
tested with a majority voting as well. The results from this is briefly summarized
in table 4.13.

More thorough results for the histogram gradient boost model are listed in
table 4.14 and the distribution of inferred files in table 4.15, as this was the best
achieving model. Keep in mind that when the accuracy is calculated the incon-
clusive results are treated as wrong. Therefore the accuracy is calculated using
the formula seen in equation 4.1



36 CoPCSE@NTNU: Tag inference

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 132 14 0 0 0 0 0 0 0 0
G1 5 1000 0 2 0 0 2 0 0 0
G2 0 0 209 5 0 23 5 0 0 0
G3 7 32 1 239 4 0 4 0 2 0
G4 0 8 0 9 309 0 3 0 0 0
G5 0 0 39 5 0 125 4 0 1 0
G6 0 1 4 7 1 9 297 0 0 0
G7 0 1 1 6 17 0 0 43 0 0
G8 0 0 0 0 0 0 0 0 102 0
G9 0 0 0 0 0 0 0 0 0 1

Table 4.12: Histogram boosting inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

accurac y =
cor rect

cor rect +wrong + unresol ved
(4.1)

Sensor name Correct Wrong Unresolved Accuracy
K-neighbours 229 57 16 0.758
Decision tree 264 31 7 0.874

Random forest 269 26 7 0.891
Gradient boost tree 277 20 5 0.917

Histogram gradient boost 281 15 6 0.927

Table 4.13: Majority voting results

Keep in mind that sensors that were unconclusive are not listed in table 4.15,
so that the numbers will add up to 297 here, instead of 302.

One thing to note here is that accuracy increased for most of the groupings,
but actually dropped a considerable amount for G5 and G7, the groups that have
been consistently the most difficult to classify correctly. This might point towards
some of the sensors behaving fairly differently from what can be observed in the
training data, and that the time series from these individual sensors are faulty or
different in some way.

4.8 Wrongly infered time series

Looking at some of the time series that were wrongly infered, and investigate how
their plots might differ from what one would expect to see based on other time
series in the test data. Expectation is that quite a few of these will be faulty in the



Chapter 4: Results 37

Sensor name Correct Wrong Unresolved Accuracy
G0 15 0 1 0.938
G1 102 0 0 1.000
G2 29 1 1 0.935
G3 31 3 1 0.886
G4 28 1 0 0.966
G5 14 6 3 0.609
G6 28 3 0 0.903
G7 4 3 0 0.571
G8 27 0 0 1.000
G9 1 0 0 1.000

Total 279 17 6 0.927

Table 4.14: Histogram boosting with majority vote results.

Sensor G0 G1 G2 G3 G4 G5 G6 G7 G8 G9
G0 15 0 0 0 0 0 0 0 0 0
G1 0 102 0 0 0 0 0 0 0 0
G2 0 0 29 0 0 1 0 0 0 0
G3 1 2 0 31 0 0 0 0 0 0
G4 0 1 0 0 28 0 0 0 0 0
G5 0 0 5 0 0 14 1 0 0 0
G6 0 0 2 0 0 1 28 0 0 0
G7 0 1 0 1 1 0 0 4 0 0
G8 0 0 0 0 0 0 0 0 27 0
G9 0 0 0 0 0 0 0 0 0 1

Table 4.15: Histogram boosting with majority vote inferred.
Reading the rows of the table you can see how the sensors belonging to a partic-
ular group was infered across all groups, while if you read the columns you’ll see
how many times the sensor was infered from each group.

way that the plots will not look like one would expect based on the sensor types.
That is common for real world data sets that have not been manually inspected
and verified. Primarily investigating wrongly infered sensors from the Histogram
Gradient classifier, as this had the highest accuracy.

Looking at G7 for the histogram classifier one can see that these sensors are
often miss-inferred to be a member of G4. Looking at the different plots in figure
4.2 one can see why that might be, as a typical Power Sensor seem to be step wise,
while the wrongly inferred time series seem to vary a lot up and down with more
abrupt changes. Something that seems to align better with the plots seen of G4
on the right.



38 CoPCSE@NTNU: Tag inference

Figure 4.2: The two plots to the left represent two time series that was wrongly
inferred. The two plots in the middle represent time series that were correctly
inferred as members of G7. The two plots on the right shows two time series
correctly inferred as members of G4.

While looking at the most common "mistake" for each grouping give a good
indication in terms of groups that have the most similar feature characteristics,
looking at the time series that were only inferred to be part of another group once
can be a good way to locate time series where there is something wrong with
the data. As seen in figure 4.3 where the member of G5 was miss-inferred as a
member of G8, there seem to be something unfortunate about this time series, as
it is constant.

Figure 4.3: The plot to the left show the miss-inferred time series belonging to
G5. The middle plot show a correctly inferred member of G5. Right plot show a
correctly inferred member of G8.



Chapter 4: Results 39

Investigating further into the time series that was miss-inferred as a member
of G8 and looking at the values within the feather file, one can see the reason for
this unusual time series. The values are listed in table 4.16. The value is supposed
to change to 100 a total of five times over the time series. Unfortunately, when
using forward fill and standardizing the interval size to 10 minutes one ends up
overwriting all of these values. Making a time series that appears to be constantly
0. This is an unfortunate case where the interval start align in such a way that no
occurrence of the value 100.0 is the one to override the next 10 minute interval,
and no occurrence of the value 100.0 last for a duration longer than 10 minutes.
For sensor that frequently update their values, such as a temperature sensor, has
a low probability for something like this happening. However, sensor that change
values less frequently and for short amount of time are more likely to have this
happen.

Timestamp Value
2021-08-07 21:38:13.579000+00:00 0.0
2021-08-09 04:02:04.707000+00:00 100.0
2021-08-09 04:07:09.340000+00:00 0.0
2021-08-10 04:02:08.696000+00:00 100.0
2021-08-10 04:07:09.349000+00:00 0.0
2021-08-11 04:02:07.328000+00:00 100.0
2021-08-11 04:07:08.110000+00:00 0.0
2021-08-12 04:02:08.869000+00:00 100.0
2021-08-12 04:07:09.564000+00:00 0.0
2021-08-13 04:02:08.009000+00:00 100.0
2021-08-13 04:07:15.799000+00:00 0.0

Table 4.16: Timestamps and corresponding values for Heat exchanger. File: 2021-
32_RC_360009LX001_C.feather’

4.9 Fixed size intervals

Up until now the focus has been on creating models using the interval size of 10
minutes. In this section the models are tested on four different interval sizes, and
compared. The question that is looking to be answered is if it is worth spending
much time to perform feature extraction, or can similar accuracy be achieved by
using bigger interval sizes? In addition to the 10 minute interval size the mod-
els are tested for interval sizes of 1 minute, 1 hour and 5 hours. Less frequent
intervals mean smaller time series, and less time and resources spent extracting
characteristics. One thing to keep in mind is that not all interval sizes will be able
to extract features from every time series, especially with 1 minute intervals some



40 CoPCSE@NTNU: Tag inference

files require to much ram for us to be able to do so. Even smaller interval sizes
would likely increase the number of time series that fails feature extraction.

In table 4.17 summarize how the interval size effected the accuracy of each
model.

Interval size 1 minute 10 minutes 1 hour 5 hours
K neighbours 0.701 (0.696) 0.717 0.691 0.696
Decision tree 0.843 (0.837) 0.835 0.798 0.791
Random forest 0.895 (0.889) 0.881 0.859 0.834
Gradient boost tree 0.920 (0.913) 0.907 0.885 0.856
Histogram gradient boost 0.933 (0.926) 0.917 0.894 0.863

Table 4.17: Accuracy for different models with the different interval sizes. Paren-
thesis denote the accuracy if the missing files were added and treated as wrongly
inferred.

As mentioned in 3.4 the 1 minute interval size leave us with fewer files both
for training and testing, something that might give a skewed impression of the
accuracy. Therefore, an additional accuracy have been calculated, written in par-
enthesis. This accuracy takes the number of correctly inferred files and divide them
by the total number of files in the testing data. In this case all files that could not
have their features extracted are automatically treated as wrong, giving a worst
case estimate.

4.10 Catch 22 feature extraction

Given that feature extraction using TSFresh for a fine granularity use a long time,
on the scale of weeks for 1 minute intervals (for the entire data set), it is inter-
esting to examine a faster library for feature extraction, to see how it compares.
Therefore, features were extracted on the same intervals as with TSFresh, using
Catch 22. Each model were tested with these features to see how it compares. The
results can be seen in table 4.18. Also here the same outliers that was found using
TSFresh with a 10 minute interval has been utilized.

Interval size 1 minute 10 minutes 1 hour 5 hours
K neighbours 0.607 0.713 0.729 0.729
Decision tree 0.787 0.774 0.739 0.739
Random forest 0.882 0.858 0.831 0.831
Gradient boost tree 0.879 0.854 0.828 0.828
Histogram gradient boost 0.895 0.869 0.839 0.839

Table 4.18: Accuracy for different models with the different interval sizes, using
the Catch22 feature extraction library



Chapter 5

Discussion

When building a model for inference many of the important choices are done on
how to manipulate the data that is used for training and testing. This is rarely
something the model itself is able to handle, and therefore it is up to the user to
make these decisions.

5.1 Results

Unsurprisingly the simpler approaches such as vector search, decision tree and
k-nearest neighbours were outperformed by approaches utilizing gradient boost-
ing. One explanation for this can be that Gradient boosting allows for gradual
approach to the correct answer, rather than deciding on the first iteration, or by
a simple majority vote. When using a decision tree the leaf node has the final say
in what the sensor is to be inferred as, while with gradient boosting it is the sum
of the values in the leaf node that collectively decide. This also allows for some
of these leaf nodes to give suggestions that might not be correct for all sensors
within a group, but in a subsequent tree being able to rectify this.

K-nearest neighbours did perform surprisingly well on the TSFresh extracted
features, given that a large number of these features can be considered uninform-
ative, meaning that the could have a disruptive effect when calculating distance.
It seems likely that k-nearest neighbours would perform better if feature selection
was done, and only features that are descriptive of sensors were kept as part of
the data set. K-nearest neighbours have no way of determining feature signific-
ance and therefore all features are weighted the same. The impact of each feature
is only dependant on its value, and where it places in relation to the other data
points in the feature space. The same problem can be said to be with the simple
vector search, and the reason it performs so poorly is that a large number of the
features are uninformative by themselves, and no approach is taken to weigh them
differently. Another draw back of this simple implementation is that even though
outlier time series are removed from the training set, individual outlier feature
values are not removed when calculating the average vectors. The IQR-approach
could have been used here as well, only using feature values between the upper

41



42 CoPCSE@NTNU: Tag inference

and lower limit to calculate the average vectors. The other approaches that were
tested all calculate some form of gain to figure out the next best approach, and is
by that able to ignore features that are not descriptive of a sensor grouping.

While it is often advised to limit models such as a decision tree with max
leaf size and minimum samples split to combat overfitting, this did not have a
positive effect on accuracy for this data set. While the max depth was limited to
12, to keep the tree from growing very large, limiting the splits or samples in
leaf seemed to reduce accuracy. The reason for this is not obviously clear, but a
possible explanation for this could be that the data in the training set and test set
originate from many of the same buildings. Manning that a certain level of over-
fitting is beneficial, since the time series in the test set have a lot in common with
the training set. Utilizing the models on data from different buildings, countries
and climates might make it perform significantly worse. Random forest that is a
combination of multiple decision trees managed an accuracy a little less than 5
percent higher than the decision tree, and was in line with what one would expect.

Lastly there is the gradient boosting models, that also achieved the highest
classification accuracy. Both approaches are comparable in terms of their success-
ful prediction, with the histogram based approach scoring 1 percent higher, and
yielding the best results for independent sample classification. Histogram gradi-
ent boosting also achieved the highest accuracy for majority voting, increasing its
accuracy by 1 percent over the individual sample predictions. The fact that the
increase in accuracy for majority voting was relatively small might point towards
that many of the time series that were miss-inferred generally contain data that
does not align well with the same sensor-type based on samples from the training
set. Thereby being inherently difficult to classify correctly.

When working with real world data it is unlikely that a model is able to reach
100 percent accuracy unless one have strict criteria for what type of time series
one is willing to infer. Thereby disqualifying a sample from being tested. Things
to look after could be making sure that the number of data points is at a certain
minimum, ensuring that enough information is in place. Additionally one could
verify that the time series is not an outlier for all groups within the set of groups.
If a sample is an outlier for all groups then it is likely that any inference made will
be wrong.

5.2 Interval sizes

For all methods, bar the K-nearest neighbours, one can see that accuracy increase
as the interval size decreases. Even the worst case scenario for the 1 minute inter-
val, still outperform the accuracy of the 10 minute interval. This is as one would
expect as a smaller interval size will be a more accurate portrayal of the actual
time series. However, given the large amount of time it takes to extract features
for the training set, around 10 days, it was difficult to extract for smaller interval
sizes with the resources available. The reason for K-nearest neighbours jumping
a bit back and forth in terms of accuracy is also not unexpected as it is reliant



Chapter 5: Discussion 43

on information gained from its neighbours, and when a large amount of features
are uninformative, it might disrupt the inference. One issue with the way features
are handled, without any filtering of informative features, for the K-nearest neigh-
bours approach is that the many uninformative features are not removed. That is
features that might vary much even within the same sensor grouping, and these
values will have an effect on the position in space, and therefore also the distance
to the sensor one would like to infer. TSFresh do have implementation to filter
out the most descriptive features, something that is likely to have increased the
accuracy for both vector search and k-nearest neighbours.

5.3 Catch22 feature extraction

Table 4.18 the results for classification based on catch22 is summarized. Most of
the results are unsurprising for the majority of models. However, given that these
features supposedly are highly expressive, it is surprising to not see any notable
increase in accuracy for the distance based K-nearest neighbours approach. Given
that there should be very few non-expressive features in the data, one would ex-
pect distance based inference to achieve better results than with all the noise
present in TSFresh’s extracted features.

5.4 Inferred files

When looking at the inference tables 4.2, 4.4, 4.6, 4.8, 4.10, 4.12, 4.15, one can
see that G9 generally is a good group in the sense that other sensors relatively
rarely is inferred to be part of this group, meaning that the characteristics are
generally unique enough to be filtered out. One thing to keep in mind for this
group in particular though is that both the training set and testing set is very
small for the energy sensor, having only two time series for training and one for
testing. The, in total, three time series for the energy sensor also originate from
the same building, and are part of the same system, making them very similar.
G8, pump, is also fairly good at inferring the correct files, and at least for gradient
boosting methods few other Groups are mistaken to be part of group 8.

Generally for all models one can see that G5 and G7 are the groups with the
lowest accuracy, and looking at the inferred tables for the gradient boosting ap-
proaches one see that G5 is most commonly mislabeled as G2. Meaning that the
heat exchangers and Variable frequency drives can be mistaken to be a Valve be-
longing to G2. G7 is most commonly mislabeled as to be part of G4, meaning that
the Power sensor can be mistaken to be a Air pressure sensor.

Something interesting was also that, even when using majority voting, the
groups G5 and G7 under-performed compared to the other categories, and looking
into the distribution of the inferred files further one can see that some sensors have
0 time series associated with themselves that are correctly inferred. Among these
are the heat exchanger with the following code 360001LX471_C. This sensor have



44 CoPCSE@NTNU: Tag inference

12 time series associated with itself, where, out of these 12, 7 were miss-inferred
as members of G2, 3 as members of G6 and the last two as members of G3.

The same goes for the power sensor s434005OE001_Effekt, where all 12 were
miss-inferred as members of G4. From this it becomes apparent that some of these
sensors behave abnormally compared to their sensor group, and is a big reason
for G5 and G7 underperforming in terms of accuracy.

5.5 Testing

While the gradient boosting approaches showed some very promising results, be-
ing able to classify more than 90 percent of the time series present in the test set,
there are some considerations to make when reading the results. Primarily that
the methods are all trained and tested on static data sets. In turn this can cause
parameter tuning that is reliant on this exact data, and exposes the process to the
possibility of overfitting. To verify the integrity of these methods one should be
able to test it on more data. This is the same concern that is raised by Anthony
Bagnall et al. in their paper "The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances" [18]. Where classi-
fication algorithms are tested on a single static data set that fits well with the task
the given algorithm is well suited at handling. This in turn make algorithms seem
better than they generally are.

5.6 Future work

For this project to expand into a complete system it is encouraged to develop
methods to detect time series that are likely to not be accurately inferred. To do
this one should be able to detect time series that behave abnormally. This can be
time series that have a lot of values one would not expect, like dropping abruptly
outside of normal range as seen in figure 3.1. Also to ensure that enough inform-
ation can be obtained there could be a minimum number of data points in a time
series before executing classification. There is also room to investigating further
approaches for classification. Especially neural networks and deep learning ap-
proaches is interesting to compare against the mostly tree-based methods tested
in this thesis.



Bibliography

[1] Piscada, https://www.piscada.com/, Accessed: 2023-06-10.

[2] A. Fylling, Pa 0802 tverrfaglig merkesystem (tfm), https://dok.statsbygg.
no/wp-content/uploads/2022/10/PA-0802-Tverrfaglig-merkesystem-
TFM.pdf, Accessed: 2023-05-19, 2017.

[3] T. Mosleth, Pa 0802 vedlegg 9.1 – systemkodeliste, https://dok.statsbygg.
no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.1-Systemkodeliste.
pdf, Accessed: 2023-05-30, 2020.

[4] T. Mosleth, Pa 0802 vedlegg 9.2 – komponentkodeliste, https://dok.statsbygg.
no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.2-Komponentkodeliste.
pdf, Accessed: 2023-05-30, 2020.

[5] A. Fylling, Pa 0805 bruk av standard norges tverrfaglig merkesystem (ns-tfm)
i statsbygg, https://dok.statsbygg.no/wp-content/uploads/2022/10/
PA-0805-Bruk-av-Standard-Norges-Tverrfaglig-Merkesystem-NS-
TFM-i-Statsbygg.pdf, Accessed: 2023-06-04, 2022.

[6] M. Christ, N. Braun, J. Neuffer and A. W. Kempa-Liehr, ‘Time series feature
extraction on basis of scalable hypothesis tests (tsfresh–a python package),’
Neurocomputing, vol. 307, pp. 72–77, 2018.

[7] M. Christ, A. W. Kempa-Liehr and M. Feindt, ‘Distributed and parallel time
series feature extraction for industrial big data applications,’ arXiv preprint
arXiv:1610.07717, 2016.

[8] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen and G. Batista,
The ucr time series classification archive, www.cs.ucr.edu/~eamonn/time_
series_data/, Accessed: 2023-06-06, Jul. 2015.

[9] B. D. Fulcher and N. S. Jones, ‘Highly comparative feature-based time-
series classification,’ IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 12, pp. 3026–3037, 2014.

[10] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann and E. Keogh,
‘Experimental comparison of representation methods and distance meas-
ures for time series data,’ Data Mining and Knowledge Discovery, vol. 26,
pp. 275–309, 2013.

45

https://www.piscada.com/
https://dok.statsbygg.no/wp-content/uploads/2022/10/PA-0802-Tverrfaglig-merkesystem-TFM.pdf
https://dok.statsbygg.no/wp-content/uploads/2022/10/PA-0802-Tverrfaglig-merkesystem-TFM.pdf
https://dok.statsbygg.no/wp-content/uploads/2022/10/PA-0802-Tverrfaglig-merkesystem-TFM.pdf
https://dok.statsbygg.no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.1-Systemkodeliste.pdf
https://dok.statsbygg.no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.1-Systemkodeliste.pdf
https://dok.statsbygg.no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.1-Systemkodeliste.pdf
https://dok.statsbygg.no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.2-Komponentkodeliste.pdf
https://dok.statsbygg.no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.2-Komponentkodeliste.pdf
https://dok.statsbygg.no/wp-content/uploads/2021/02/PA-0802-Vedlegg-9.2-Komponentkodeliste.pdf
https://dok.statsbygg.no/wp-content/uploads/2022/10/PA-0805-Bruk-av-Standard-Norges-Tverrfaglig-Merkesystem-NS-TFM-i-Statsbygg.pdf
https://dok.statsbygg.no/wp-content/uploads/2022/10/PA-0805-Bruk-av-Standard-Norges-Tverrfaglig-Merkesystem-NS-TFM-i-Statsbygg.pdf
https://dok.statsbygg.no/wp-content/uploads/2022/10/PA-0805-Bruk-av-Standard-Norges-Tverrfaglig-Merkesystem-NS-TFM-i-Statsbygg.pdf
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


46 CoPCSE@NTNU: Tag inference

[11] M. Fernández-Delgado, E. Cernadas, S. Barro and D. Amorim, ‘Do we need
hundreds of classifiers to solve real world classification problems?’ The
journal of machine learning research, vol. 15, no. 1, pp. 3133–3181, 2014.

[12] Y. Freund and R. E. Schapire, ‘A desicion-theoretic generalization of on-line
learning and an application to boosting,’ in Computational Learning Theory:
Second European Conference, EuroCOLT’95 Barcelona, Spain, March 13–15,
1995 Proceedings 2, Springer, 1995, pp. 23–37.

[13] M. Barandas, D. Folgado, L. Fernandes, S. Santos, M. Abreu, P. Bota, H. Liu,
T. Schultz and H. Gamboa, ‘Tsfel: Time series feature extraction library,’
SoftwareX, vol. 11, p. 100 456, 2020.

[14] List of available features, http://www.cs.ucr.edu/~eamonn/time_series_
data/, Accessed: 2023-06-05.

[15] C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher and N. S.
Jones, ‘Catch22: Canonical time-series characteristics: Selected through
highly comparative time-series analysis,’ Data Mining and Knowledge Dis-
covery, vol. 33, no. 6, pp. 1821–1852, 2019.

[16] B. D. Fulcher and N. S. Jones, ‘Hctsa: A computational framework for auto-
mated time-series phenotyping using massive feature extraction,’ Cell sys-
tems, vol. 5, no. 5, pp. 527–531, 2017.

[17] L. Grinsztajn, E. Oyallon and G. Varoquaux, ‘Why do tree-based models still
outperform deep learning on tabular data?’ arXiv preprint arXiv:2207.08815,
2022.

[18] A. Bagnall, J. Lines, A. Bostrom, J. Large and E. Keogh, ‘The great time
series classification bake off: A review and experimental evaluation of re-
cent algorithmic advances,’ Data mining and knowledge discovery, vol. 31,
pp. 606–660, 2017.

[19] T. Górecki and M. Łuczak, ‘Non-isometric transforms in time series classi-
fication using dtw,’ Knowledge-based systems, vol. 61, pp. 98–108, 2014.

[20] A. Bagnall, J. Lines, J. Hills and A. Bostrom, ‘Time-series classification with
cote: The collective of transformation-based ensembles,’ IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522–2535, 2015.

[21] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar and P.-A. Muller,
‘Deep learning for time series classification: A review,’ Data mining and
knowledge discovery, vol. 33, no. 4, pp. 917–963, 2019.

[22] T. Chen and C. Guestrin, ‘Xgboost: A scalable tree boosting system,’ in Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, 2016, pp. 785–794.

[23] Pyplot documentation, https://matplotlib.org/3.5.3/api/_as_gen/
matplotlib.pyplot.html, Accessed: 2023-06-11.

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html


Bibliography 47

[24] M. C. et al., Overview on extracted features, https://tsfresh.readthedocs.
io/en/latest/text/list_of_features.html, Accessed: 2023-03-25,
2023.

[25] B. D. Fulcher, Featurelist, https://github.com/DynamicsAndNeuralSystems/
catch22/blob/main/featureList.txt, Accessed: 2023-04-13, 2023.

[26] H. Vinutha, B. Poornima and B. Sagar, ‘Detection of outliers using interquart-
ile range technique from intrusion dataset,’ in Information and Decision Sci-
ences: Proceedings of the 6th International Conference on FICTA, Springer,
2018, pp. 511–518.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., ‘Scikit-learn: Ma-
chine learning in python,’ the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011.

[28] Sklearn.neighbors.kneighborsclassifier, https://scikit-learn.org/stable/
modules/generated/sklearn.neighbors.KNeighborsClassifier.html,
Accessed: 2023-05-26.

[29] Sklearn.tree.decisiontreeclassifier, https://scikit-learn.org/stable/
modules / generated / sklearn . tree . DecisionTreeClassifier . html #
sklearn.tree.DecisionTreeClassifier, Accessed: 2023-05-26.

[30] Sklearn.ensemble.randomforestclassifier, https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html,
Accessed: 2023-05-26.

[31] J. Garcia, Histograms for efficient gradient boosting, https://robotenique.
github.io/posts/gbm-histogram/, Accessed: 2023-05-24, 2020.

[32] J. S. Andrea Perlato, Gbm(gradient boosting model), https://www.andreaperlato.
com/theorypost/ensemble-learning-with-gradient-boosting/, Ac-
cessed: 2023-05-10, 2020.

[33] Sklearn.ensemble.gradientboostingclassifier, https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.
html, Accessed: 2023-05-26.

[34] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu,
‘Lightgbm: A highly efficient gradient boosting decision tree,’ Advances in
neural information processing systems, vol. 30, 2017.

[35] P. J. Boland, ‘Majority systems and the condorcet jury theorem,’ Journal
of the Royal Statistical Society: Series D (The Statistician), vol. 38, no. 3,
pp. 181–189, 1989.

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://github.com/DynamicsAndNeuralSystems/catch22/blob/main/featureList.txt
https://github.com/DynamicsAndNeuralSystems/catch22/blob/main/featureList.txt
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://robotenique.github.io/posts/gbm-histogram/
https://robotenique.github.io/posts/gbm-histogram/
https://www.andreaperlato.com/theorypost/ensemble-learning-with-gradient-boosting/
https://www.andreaperlato.com/theorypost/ensemble-learning-with-gradient-boosting/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html




Appendix A

Additional Material

Relevant code can be found at https://github.com/HavardRMinsas/Tag_Inference.
git

49

https://github.com/HavardRMinsas/Tag_Inference.git
https://github.com/HavardRMinsas/Tag_Inference.git



	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Introduction
	Background
	Terms
	Time series
	Feature
	Inference
	Weak learner
	Strong learner

	Motivation
	Research approach

	Related work
	TFM naming convention
	Feature extraction
	Time series classification

	Method
	Sensors
	Raw data
	Grouping of data
	Data preprocessing
	Feature extraction
	Invalid features
	Handling of outliers
	Scikit
	Vector search approach
	K nearest neighbours
	Decision tree
	Random forest
	Gradient boosting
	Gradient boost tree
	Histogram gradient boosting tree
	Inference by majority vote
	Investigating wrongly inferred files

	Results
	Simple vector search
	K neighbours
	Decision tree
	Random forest
	Gradient boosted tree
	Histogram Gradient boosting
	Majority voting
	Wrongly infered time series
	Fixed size intervals
	Catch 22 feature extraction

	Discussion
	Results
	Interval sizes
	Catch22 feature extraction
	Inferred files
	Testing
	Future work

	Bibliography
	Additional Material

