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Abstract

Massive Open Online Courses (MOOCs) have been used in e-learning over the
last decade, and their emergence sparked during the COVID-19 pandemic. New
courses are becoming available frequently, making the learners overwhelmed and
struggling to find courses that align with their interests. Combined with the drop-
out rate on MOOCs being 90%, this makes it even more critical for learners to
find suitable courses. As a result, Recommender Systems have emerged to reduce
the time spent searching by filtering out irrelevant courses and recommending the
most relevant ones to learners. However, these systems must be improved to help
learners find suitable courses to reduce the drop-out rate in MOOCs.

Recent works in other domains show that combining reviews with ratings im-
proves recommendations. This thesis aims to adopt this idea by developing a Re-
commender System that incorporates sentiment from course reviews into Course
Recommendations. The sentiment is extracted by performing Sentiment Analysis
using a BERT model and combined with the original ratings using weights. A set
of recommendation algorithms were implemented to analyze the impact of the
adjusted ratings. Then, the Recommender System was evaluated on the COCO
dataset, containing 4.5M course reviews.

Ultimately, all the recommendation algorithms performed slightly better with
the adjusted ratings. The algorithm with the most significant improvement was
ALSImplicitMF, which improved its nDCG score by 1.54%. However, the overall
performances of the algorithms were poor compared to related research, partly
because of the sparsity of the dataset.
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Sammendrag

Massive åpne nettkurs (MOOCer) har blitt brukt i e-læring det siste tiåret, og
fremveksten deres eksploderte under COVID-19-pandemien. Nye kurs blir stadig
tilgjengeliggjort, noe som gjør at studentene blir overveldet og sliter med å finne
kurs som passer deres interesser. Dette, kombinert med at frafallet på MOOCer
er 90%, gjør det enda viktigere for studentene å finne passende kurs. Som et
resultat har anbefalingssystemer blitt utviklet for å redusere tiden som brukes på
å finne kurs, ved å filtrere ut irrelevante kurs og anbefale de mest relevante til
studentene. Disse systemene må imidlertid forbedres for å hjelpe studentene med
å finne passende kurs og redusere frafallet fra MOOCer.

Nylig forskning innen andre fagområder viser at det å kombinere anmeldelser
med tallvurderinger forbedrer anbefalinger. Målet med denne oppgaven er å ad-
optere denne ideen ved å utvikle et anbefalingssystem som inkorporerer sentiment
fra kursanmeldelser i kursenes tallvurderinger. Sentimentene uthentes gjennom
sentimentanalyse ved hjelp av en BERT-modell, og kombineres deretter med de
opprinnelige tallvurderingene ved bruk av vekter. En rekke anbefalingsalgoritmer
ble implementert for å analysere innvirkningen av de justerte tallvurderingene.
Deretter ble anbefalingssystemet evaluert på COCO-datasettet, som inneholder
4,5 millioner kursanmeldelser.

Alle anbefalingsalgoritmene presterte noe bedre med de justerte tallvurderin-
gene. Algoritmen med den største forbedringen var ALSImplicitMF, som forbedret
sin nDCG-score med 1,54%. Imidlertid var algoritmene generelt dårlige sammen-
lignet med lignenede forskning, blant annet siden datasettet har få interaksjoner
per student og kurs.
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Chapter 1

Introduction

This chapter provides an introduction to the thesis. First, the motivation of the
thesis is presented in Section 1.1. Based on the thesis’ motivation, the research
goals and questions were formed. These are provided in Section 1.2. Finally, the
contributions are summarized in Section 1.3 before an outline of the thesis is given
in Section 1.4.

1.1 Motivation

The vast amount of data on the Web increases continuously. In fact, according to
Marr [1], 2.5 quintillion bytes of data are created daily. Further, with the arrival
of affordable technology and internet access, e-learning fully emerged during the
COVID-19 pandemic. Also, during the pandemic, many people obtained technolo-
gical skills leading to more people using and generating even more content on the
web. This has caused an information overload problem for the users. As a result,
Recommender Systems (RSs) have emerged to reduce the time spent searching
through content [2]. They assist users by filtering out irrelevant information and
providing the most relevant content to them.

RSs have found applications in various domains such as movies, online shop-
ping, traveling, news, social media, and more. In the past decade, the use of RSs
has also extended to education, where students in educational institutions and
users of Massive Open Online Course (MOOC) platforms spend considerable time
searching for courses and learning resources. MOOC platforms contain hundreds
or thousands of courses available to learners worldwide. In 2020 and 2021, ap-
proximately 60 and 40M learners signed up for at least one MOOC [3]. With the in-
creasing number of learners, the numbers of courses and instructors also increase.
Then, finding suitable courses on these platforms can become overwhelming.

Another challenge of MOOCs is that the drop-out rate is 90% [4, 5]. Numer-
ous things could cause learners to drop out of courses, but this trend is negative
regardless of why they drop out. To assist users in discovering courses that align
with their interests, RSs can be used. This could lower the drop-out rates and
enhance the overall learning experience.
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Even though the use of RSs has emerged to solve the presented problems,
they are not flawless. They experience challenges connected to the data the re-
commendations are based on and the entering of new users, to mention some.
By mitigating these challenges, the recommendations can be improved. In addi-
tion to helping users find their desired content more efficiently, the RSs should be
enhanced to handle the continuous increase in data on the Web.

Most RSs base their recommendations on numerical ratings. As stated by Al-
Ghuribi and Mohd Noah [6], recommending items solely based on their overall
rating can lead to inaccurate ratings since these may not accurately represent the
users’ preferences. Further, as only the overall rating is considered, a lot of avail-
able data is not used for recommendation. Therefore, the addition of other fea-
tures has been researched. For example, in Course Recommendation (CR) much
information about the MOOCs, learners, and instructors is available. Zheng et
al. [7] express that users explain their ratings through reviews. Hence, some of
the meaning could be lost if an RS only considers the numerical ratings when re-
commending items. If the reviews are taken into account, the recommendations
can be improved.

Several approaches have been followed to include user reviews in the recom-
mendation process. One of these is to combine actual ratings with ratings inferred
from the reviews to enrich the original ratings. This is usually done by extracting
the sentiment of the reviews through Sentiment Analysis (SA). Then, the two rat-
ings can be combined using weights [8–10], the average of the two [11], or other
approaches [12, 13]. To the best of the author’s knowledge, no research combines
actual and inferred ratings in CR using weights.

1.2 Research Goals and Questions

This research aims to assess the potential improvement in the recommendation of
MOOCs by incorporating SA techniques to adjust the ratings derived from course
reviews. To evaluate this incorporation thoroughly, different recommendation al-
gorithms were used. By analyzing the impact of sentiment-based adjustments,
the study aims to enhance the performance and ranking accuracy of course re-
commendations for learners, ultimately improving their learning experience and
satisfaction. However, this research was time-limited as it was conducted in a mas-
ter’s thesis. Therefore, the following research questions were identified with this
limitation in mind.

RQ1 How does incorporating sentiment analysis of course reviews, and ad-
justing rating values based on sentiment, affect the performance and
ranking accuracy of course recommendations in MOOCs?

RQ2 To what extent does the choice of rating-based approaches impact the
performance and ranking accuracy of popularity-based recommender
systems for course recommendation in MOOCs?
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RQ3 How is a popularity-based recommender system’s performance and
ranking accuracy with various rating-based approaches affected by in-
corporating sentiment from course reviews?

The following should be noted about the research questions. First, for the
second research question, a rating-based approach means how items are measured
as popular. This could be the average or number of ratings for online courses,
for example. Additionally, the third research question combines the two first by
looking at the impact the adjusted ratings have on the rating-based approaches.

1.3 Contributions

The research in this thesis contributes to the field of CR and the understanding
of rating-based approaches in popularity-based RSs. By incorporating sentiment,
more information provided by the users could be exploited to generate recom-
mendations. Experiment 1 contributes to the understanding of how the RS’s per-
formance is affected by considering textual reviews in the recommendation. An RS
incorporating sentiment from course reviews into recommendation is proposed.
The research also contributes to the way in which the sentiment is combined
with the actual ratings. By adopting methods used in other domains, this research
provides a thorough analysis of the impact on the recommendation of MOOCs.

Moreover, Experiment 2 contributes to the understanding of popularity-based
RSs through the focus on finding the most popular items in various ways. Sev-
eral rating-based approaches are proposed and compared. The takeaways from
the experiment can be used in other domains than education, as popularity-based
RSs are used broadly. Finally, Experiment 3 contributes to the domain of CR and
popularity-based RSs as it combines the two former experiments. An analysis of
the impact of recommendations in popularity-based RSs when incorporating sen-
timent is provided.

1.4 Thesis Outline

The following is an overview of the thesis, including descriptions of each chapter.

Chapter 1 - Introduction The current chapter introduces the thesis, in-
cluding its motivation, goals, research ques-
tions, and contributions.

Chapter 2 - Theoretical
Background

Contains the necessary theoretical background
to follow the work done in the thesis, focusing
on RSs and Natural Language Processing.
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Chapter 3 - Related Work Gives an overview of research related to Course
Selection, RSs in education, and review-based
and popularity-based RSs.

Chapter 4 - Data Presents the dataset used for evaluation in this
research, as well as preprocessing and splitting
of the data.

Chapter 5 - Method Gives an overview of the system architecture
and the approach followed in the thesis.

Chapter 6 - Experiments Describes the experimental plan and the imple-
mentation details of the experiments.

Chapter 7 - Results Presents the results obtained in the experi-
ments.

Chapter 8 - Discussion Contains the discussion of the results related to
previous research and expectations.

Chapter 9 - Conclusion Wraps up the research conducted in this thesis,
along with some comments on possible future
work.



Chapter 2

Theoretical Background

The following chapter contains the necessary theoretical background to follow the
discussions and reflections in the thesis. First, some concepts related to Recom-
mender Systems are introduced in Section 2.1, followed by Natural Language
Processing in Section 2.2.

2.1 Recommender Systems

RSs have emerged to provide the users with the most relevant content, as intro-
duced in Section 1.1. The aim of RSs is to recommend relevant content to users
based on their previous interactions with a system. Aggarwal [14, p. 3] states that
the recommendation problem may be formulated differently. On one side, the pre-
diction model tries to predict the rating a user would give to an item. Conversely,
the ranking model recommends the top-k items to a user. In this approach, it is
not necessary to predict the exact rating a user would give an item but to rank the
best possible options.

This section continues with a description of a set of recommendation tech-
niques in Section 2.1.1. Later, some challenges in RSs are elaborated on in Sec-
tion 2.1.2, before some thoughts about evaluating RSs are given in Section 2.1.3.
Finally, the usage of RSs in specific domains is discussed in Section 2.1.4.

2.1.1 Recommendation Techniques

RSs are used to predict and suggest items that a user may be interested in. There
are various techniques used in RSs, each with its own strengths and weaknesses.
Here, the techniques used in this thesis are presented.

Ranking

Ranking-based RSs recommend items to users based on a ranking of their relev-
ance to the user’s preferences. The RS generates a list of items that are likely to
be of interest to the user and then ranks them according to how relevant they are

5
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to the user’s preferences. In the end, the items at the top of the list are considered
the most relevant and recommended to the user.

Popularity-based recommendation models are a type of ranking-based recom-
mendation model. These models suggest items to users based on popularity or
trends. As they do not consider the users’ preferences, they are helpful in situ-
ations where there is limited user data available or to promote popular items.
Therefore, they can, for example, be used when dealing with new users, as there
is no data about them. Several aggregation functions are used to decide which
items are the most popular. For example, one can look at the number of users that
have reviewed or interacted with an item or the item’s average rating. Hence,
popularity-based models use historical data to determine the most popular items.

Collaborative Filtering

In Collaborative Filtering (CF), items are recommended to users based on similar-
ity. There are two types of CF; user- and item-based. User-based CF recommends
items to a user based on similar users’ preferences. Imagine that a user usually
takes online courses related to web development. Then, the recommender model
can find users who have taken similar courses and recommend courses these have
taken but that the target user has not. This idea is based on the assumption that
users with similar tastes in the past are likely to have similar tastes in the future.
On the other hand, item-based CF recommends items similar to items the user has
previously liked. More information about CF can be found in [14, p. 8].

Figure 2.1 shows examples of both types. Figure 2.1a displays an example
of user-based CF. As Users 1 and 3 are similar, because of their interactions with
Items 3 and 4, User 3 is recommended Items 1 and 2. Hence, the recommendations
are based on what a similar user prefers. However, in Figure 2.1b, an example of
item-based CF is shown. Here, User 3 is recommended Item 1 because of the
similarity between Item 1 and Item 3. The similarity of the items is based on the
fact that both User 1 and User 2 like them.

The user-based approach tends to be more accurate when there are fewer
items than users, while the opposite applies to the item-based approach. How-
ever, both approaches can suffer from sparsity and cold start problems. These
CF-specific problems are discussed further by Su and Khoshgoftaar [15].

K-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is a classifier that can be used in RSs.
It classifies or predicts data points based on their proximity to neighboring points.
This is done by grouping together k of these points in clusters. The algorithm was
first introduced by Fix and Hodges [16] before Cover and Hart [17] expanded on
the theory. These papers go through the algorithm in detail. In recommendation,
k-NN is used as a type of CF algorithm as it classifies the items based on users’
previous interactions. Then, the preferences of the users in the same groups are
used to generate recommendations.
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(a) User-based CF.
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(b) Item-based CF.

Figure 2.1: User and item-based Collaborative Filtering. Solid lines represent
interactions, dotted lines with two arrows represent similarity, and dotted with
one arrow represent a recommendation.

Matrix Factorization

Matrix Factorization (MF) is another technique used in CF for RSs. The idea is to
represent the user-item matrix in two lower-rank matrices, one for the user prefer-
ences and the other for the item features. Then, these two matrices are multiplied
together to reconstruct the original user-item matrix. The resulting matrix has val-
ues that can be used to predict the likelihood of a user interacting with an item.
Thus, the technique allows the RS to infer user preferences through implicit feed-
back, described in Section 2.1.3. Therefore, MF handles large and sparse datasets
well. Funk originally presented the idea in his blog post [18] during the Netflix
Prize challenge [19]. Later, it was further developed and can be read about in
various papers, such as by Koren et al. [20].

Alternating Least Square (ALS) is a type of MF that uses an alternating op-
timization strategy to factorize the matrix and learn latent factors for users and
items [14, p. 105]. It is most commonly started with random initial values to avoid
being stuck in a local optimum and to explore a wider range of solutions [21].

Content-Based Filtering

Another algorithm often used in RSs is Content-Based Filtering (CBF). It recom-
mends items to users based on the characteristics of the item. Each item is rep-
resented by a set of characteristics, such as a course’s title, description, instructor,
average rating, etc. The recommender model bases its recommendations on the
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similarity between a user’s preferences and an item’s characteristics. Figure 2.2
shows an example of CBF. The two items are similar, represented by the bidirec-
tional arrow. As User 1 likes Item 1, they are recommended Item 2 because of the
items’ similarity.

Compared to CF, CBF has other advantages. Firstly, CBF can recommend items
that are not popular among other users but match better with a user’s preferences.
Secondly, CBF is less vulnerable to the cold start problem when new users enter
the system, as it rather looks at the similarity between a user’s preferences and an
item than the similarity between users. A third advantage over CF is the ability
to explain the recommended items based on their attributes. However, CBF can
suffer from the overspecialization problem, which leads to a lack of diversity in
recommendations. For more information about CBF, see [14, p. 14].

Figure 2.2: Content-Based Filtering.

Hybrid

Hybrid RSs are combinations of different recommendation techniques. They were
introduced to overcome the shortcomings of individual techniques. By combin-
ing them, the strengths of each can be exploited, and some of the weaknesses
omitted. How the different algorithms are combined depends on the system’s cre-
ators and is affected by the purpose of the system, among others. As an example,
a CF technique could be combined with a ranking-based RS through top-N re-
commendations to get a ranked list of recommendations. Hybrid approaches are
further explained in [14, p. 19] [22].

2.1.2 Challenges in Recommender Systems

RSs face several challenges that can make it difficult to provide accurate and use-
ful recommendations to users. By overcoming these challenges, RSs can provide
users with more accurate and useful recommendations, increasing engagement
and satisfaction. Here, the challenges relevant to the thesis are described.
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Data Sparsity

One of the main challenges is data sparsity. This occurs when insufficient data
is available to predict user preferences accurately [15]. This can be particularly
problematic for new items with limited user data available. In online courses, the
sparsity problem can occur when many courses are available, but each course
only has a small number of enrolled students. As mentioned in Section 2.1.1, CF
is vulnerable to sparsity problems.

Overfitting

Overfitting is another challenge for RSs, where the model becomes too specialized
to the training data and performs poorly on new data [23]. This can lead to poor
generalization and inaccurate recommendations. Two factors that can be adjusted
to avoid overfitting are the training data size and the training process duration.
For example, suppose the RS on an online course platform relies too heavily on
past user behavior to make recommendations. In that case, it may not adapt well
to users that change their preferences.

Scalability

Scalability is another challenge for RSs, especially as the number of users and
items in the system grows. The computational complexity of the algorithms used
to generate recommendations can become a bottleneck, making it difficult to scale
the system to handle large volumes of data. This could happen in any platform,
for example, online course platforms, because of the growing number of users or
courses. More information about scalability can be found in [15].

Cold Start Problem

Another challenge is the cold start problem, which occurs when a new user or item
is added to the system and there is not enough data available to make accurate
recommendations [14, p. 24] [15]. This can be particularly challenging for CF
methods, described in Section 2.1.1, as they rely on user behavior data to make
recommendations. Imagine that a new user signs up for an online course platform.
Then, the RS may not have enough data to generate recommendations for this user
accurately. Or that a user has not taken any courses yet, so the RS does not know
enough about the user to recommend courses.

Overspecialization

Overspecialization refers to the problem where an RS only recommends items that
are similar to the ones the user has already liked [22]. This leads to a lack of
diversity in the recommended items, as the users are not exposed to new con-
tent. Overspecialization can happen when a CBF algorithm is used, as it tends to
recommend items based on the similarity between their characteristics and the
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user’s preferences. An example of overspecialization is if a user who has taken
web development courses only gets recommended other courses about this topic.
The user is likely interested in other topics, so recommending diverse courses is
important to increase user satisfaction and engagement.

2.1.3 Evaluation of Recommender Systems

Evaluating an RS is essential to measure its effectiveness in providing relevant and
accurate recommendations. This evaluation is necessary to ensure that the system
performs as intended and meets the needs of its users. In addition, evaluation can
identify areas where the RS can be improved, for example, by identifying patterns
in user feedback that indicate dissatisfaction with the system. Following, differ-
ent types of evaluation and feedback are explained. In addition, some evaluation
metrics are presented.

Online and Offline Evaluation

Evaluation of an RS can be done either with online or offline methods [14, p. 225].
In online methods, the users directly participate based on the generated recom-
mendations. In offline methods, on the other hand, the users participate based
on a previously obtained dataset. An advantage of the former is the possibility of
observing the users and asking why they act as they do. Further, online evaluation
requires more time and resources, as the users are followed up manually, whereas
offline evaluation can be performed whenever it suits the participants. Also, in
offline evaluation, the data the RS is tested on can easily be changed to ensure a
generalized system. Whether online or offline evaluation suits the best depends
on the task and resources at hand, although offline evaluation is by far the most
common from a research perspective [14, p. 226].

Explicit and Implicit Feedback

Users provide feedback continuously when interacting with a system. Explicit feed-
back is provided directly from the users, for example, through ratings or com-
ments [14, p. 347]. On the contrary, implicit feedback is information that can be
interpreted through user actions, such as clicking on a link. These are actions
where one cannot know for sure that the user, for example, watched the whole
video or read the whole article. In addition, whether the user enjoyed the con-
tent is unknown. Several examples of explicit and implicit feedback are given in
Table 2.1.

Explicit feedback is more descriptive and meaningful than implicit feedback.
However, it is more time-consuming to obtain the former, as the user needs to
spend time giving feedback. Implicit feedback, on the other side, is more accessible
but needs more follow-up work and interpretation to be usable. Therefore, the
decision of which type of feedback to use in evaluation depends on the goal and
resources of the project.
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Table 2.1: Examples of explicit and implicit feedback.

Type of feedback Action

Explicit Write textual comment
Give rating
"Like"/"Dislike" an item
Give feedback in questionnaire

Implicit Clicking on a link
Watching a video
Reading an article
Time spent on a website

Evaluation Metrics

Evaluation metrics play a crucial role in assessing the performance of RSs as they
evaluate the quality of the provided recommendations [14, p. 226]. Several types
of metrics, for example, decision support and ranking metrics, measure different
aspects of the system. It is essential to use multiple metrics to provide a compre-
hensive evaluation of an RS’s performance.

Decision support metrics measure how well an RS helps users make good de-
cisions. Precision and recall are examples of these. The former measures the per-
centage of recommended items relevant to the user [24]. Its formula is presented
in Equation (2.1), where rk is the number of retrieved relevant documents at k
and k is the number of specified documents. Recall, on the other hand, measures
the percentage of relevant items the system recommends. Its formula is present
in Equation (2.2), where rk is the number of retrieved relevant documents at k
and R is the total number of relevant documents.

Precision@k=
rk

k
(2.1)

Recall@k=
rk

R
(2.2)

Both of these metrics are represented with values between 0 and 1; the closer
to 1, the better. Additionally, both can be specified to look at the k first recom-
mendations. As an example, precision@10, where k is 10, measures the precision
among the ten first recommended items.

A shortcoming of the decision support metrics is that they fail to capture the
order in which items are recommended. The aim of ranking metrics is to meas-
ure an RS’s ordering of items based on how it would have been ordered by the
user [14, p. 242] [25]. Normalized Discounted Cumulative Gain (nDCG) is a rank-
ing metric proposed by Järvelin and Kekäläinen [26] that values putting highly
relevant documents high up the recommended lists. Its primary advantage is that
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it considers the graded relevance values. This is useful for datasets where the rel-
evancy of the items is not boolean but rather on a scale. The equation for nDCG
is provided in Equation (2.3), where DCGk is Discounted Cumulative Gain (DCG)
at k and IDCGk is the Ideal Discounted Cumulative Gain at k (max possible DCG
at k). DCG weighs each relevance score based on its position. Hence, the items at
the top of the list get a higher weight. A shortcoming is that the relevance score
depends on the number of items, meaning a recommender with more items is
more likely to have a higher score. An expansion of this is the Normalized Dis-
counted Cumulative Gain (nDCG) metric. It normalizes the values to mitigate the
downside of DCG.

nDCGk =
DCGk

IDCGk
(2.3)

Another ranking metric is Mean Average Precision (MAP). The Average Pre-
cision (AP) is the average of the precision scores computed after each relevant
document is retrieved. In this way, it considers the order of the retrieved items.
Thus, MAP looks at two aspects: the relevancy and order of the recommended
items. However, it does not consider how relevant the recommended items are.
This downside is mitigated if the number of recommendations is relatively low. Its
formula is provided in Equation (2.4), where r is the position of a relevant doc-
ument and R is the total number of relevant documents. Then, to get the MAP,
the AP is averaged over many queries. More information about MAP can be found
in [14, p. 246].

AveragePrecision=

∑

r Precision@r

R
(2.4)

2.1.4 Recommender Systems in Different Domains

RSs play an important role in our everyday lives. They are used in various applic-
ations, such as movies, music, news, and social media. Here, the usage of RSs in
the educational domain is described and compared to other domains.

Recommender Systems in Education

In the educational domain, RSs are used to recommend items such as learning
resources and courses. The recommendation of learning resources can be focused
on teachers to find the best resources for their students or on students to help
them find the best resources. In Course Recommendation (CR), the aim is to help
learners find the most suitable courses and for them to spend as little time as
possible doing so.

CR is used in several types of education, as discussed by Urdaneta-Ponte et
al. [2]. Some RSs focus on formal education through recommending university
courses. In contrast, others focus on non-formal education, for example, by re-
commending courses to users on MOOC platforms. Non-formal education differs
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from formal education because it evolves around learning individuals do outside
the school system. For further explanations and examples about types of educa-
tion, see [2].

Compared to a university and its courses, a MOOC platform contains hundreds
or thousands of courses available to users on the Web. These can be taken by
many users simultaneously, which raises challenges such as scalability, explained
in Section 2.1.2. With the massive number of courses available, recommending
courses to the users is even more critical. Then, users can take courses suitable
for them instead of being overwhelmed and spending a lot of time searching for
courses.

Comparison with Other Domains

As mentioned, RSs are used in many domains. Two well-known RSs are Netflix’s1

movie recommender [14, p. 5] and Amazon’s2 recommender [27]. According to
Netflix [28], using RSs on their platform reduces the time spent searching for
movies and series and helps the users find shows and movies of interest. On the
other hand, Amazon developed its own recommendation algorithm because the
existing algorithms could not scale to their needs [27]. They also need to immedi-
ately react to changes in a user’s data and provide meaningful recommendations
to users regardless of the number of items purchased. The goals of RSs in eCom-
merce are to increase revenue, build brand trust, and convert visitors into buyers3.

The aims of the different domains have both similarities and differences. Net-
flix’s aim of reducing time spent searching for content is similar to the aim of CR of
helping learners spend as little time as possible searching for courses. Even though
some MOOCs are priced, the application of RSs is not to maximize revenue but
rather to help users find the most suitable courses. This aim differs from the aim
of eCommerce of increasing revenue. Thus, the aim of applying RSs differs for
various domains.

2.2 Natural Language Processing

Natural Language Processing (NLP) is a part of Artificial Intelligence (AI) that
focuses on making computers able to understand, interpret, and generate human
language. Thus, it helps improve communication between humans and machines.
NLP involves developing algorithms and models that can process and analyze text
similarly to how humans understand language.

Some text preprocessing techniques are described in Section 2.2.1. Then, Lan-
guage Models and Sentiment Analysis are presented in Sections 2.2.2 and 2.2.3.

1https://www.netflix.com/
2https://www.amazon.com/
3https://influencermarketinghub.com/ecommerce-recommendation-system/
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2.2.1 Text Preprocessing

Natural language is unstructured, meaning there are no predefined rules for the
data format. In addition, it is noisy and can contain typos because of human errors,
which makes it difficult for machines to interpret it. Therefore, human language
has to be preprocessed for machines to understand it. Text preprocessing aims to
clean and transform the raw text into a format more suitable for NLP analysis.
Which preprocessing steps to perform depends on the situation and below, some
of these steps are described.

Noise Reduction

The human language has many meaningless characters, especially in the "social
media" language. One step of textual preprocessing is noise reduction. This ac-
counts for removing special characters, punctuation, and numbers irrelevant to
machines. Many English words are combined with an apostrophe to create a con-
traction. One way of handling these is to expand the contractions back into the
words they consist of. An example is "we’ll" which can be expanded into the words
"we will". Digits can also be replaced by their textual representation, for example
replacing "20" with "twenty". Which characters or words are noisy depends on the
task at hand. Other noisy examples are text in languages other than the desired
one, abbreviations, and erroneous data.

Normalization

Another preprocessing step is the normalization of text. This is the process of con-
verting a token into its base form. This makes the data more consistent and more
manageable for machines to process. One aspect of normalization is the casing
of letters. As lowercase and uppercase words are assumed to have no difference,
all letters should be converted to the same casing [29]. By lowercasing all words,
"English" and "english" would be handled as the same, disregarding typos. Further,
extra spaces should be removed as they can create extra noise in the NLP process.

Another normalization step is lemmatization. It is the process of reducing dif-
ferent forms of a word into its meaningful base form [30]. Compared to stemming,
which removes the last characters from a word [14, p. 145], lemmatization bases
its reduction on the context. A comparison of the two is visualized in Table 2.2.
The two words "information" and "informative" are both turned into the word
"inform" for the stemmed version, whereas the words are unchanged in the lem-
matized version because of the context. More information about normalization
can be found in [30].

Stop Word Removal

Stop words are non-informative high-frequency words that can be removed from
the text [31]. These include articles, prepositions, pronouns, and conjunctions.
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Table 2.2: Stemming and lemmatization of a selection of words.

Word Stemmed Lemmatized

information inform information
informative inform informative
computers comput computer
feet feet foot

Stop words vary from language to language and task to task, but have in com-
mon that they do not carry information. Some English words that usually are
considered stop words are "the", "as", and "or". The data size could be reduced by
removing these words, and the accuracy of NLP models increased.

2.2.2 Language Models

A Language Model (LM) is an AI system that has learned the patterns and structure
of languages. It can generate human-like text based on input and perform tasks
such as question-answering, language translation, and creative writing. The topic
has been researched extensively in recent years, leading to the introduction of
BERT and GPT, which are presented here.

BERT

Bidirectional Encoder Representations from Transformers (BERT) was presented
as a language representation model in 2019 by Devlin et al. [32]. It was trained
unsupervised on a large corpus of English data. In this way, BERT learned a rep-
resentation of the English language, which enabled it to obtain good results on
NLP tasks.

The B in BERT stands for bidirectional. This means the model reads all words
in a sequence simultaneously, meaning it reads from both left and right. In this
way, it can understand the context of texts. The T stands for transformers, a mech-
anism presented in 2017 by Vaswani et al. [33]. Its goal is to learn the contextual
relations between words in a text. Therefore, to make BERT perform as best as
possible, removing stop words discussed in Section 2.2.1 may not be needed.

GPT

Another type of LMs is Generative Pre-trained Transformer (GPT) models. These
are also based on the transformers architecture, as BERT. However, in contrast
to BERT being bidirectional, they are autoregressive. This means they generate
text by predicting the next word given the preceding context. The models were
introduced by OpenAI4, respectively GPT-1 in 2018 [34], GPT-2 in 2019 [35],
GPT-3 in 2020 [36], and GPT-4 in 2023 [37].

4https://openai.com/
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2.2.3 Sentiment Analysis

Sentiment suggests a settled opinion reflective of one’s feelings, according to the
Merriam-Webster Dictionary5. Sentiment Analysis (SA) evolves around compu-
tationally deciding a text’s sentiment, opinion, or subjectivity [38]. Often, SA is
performed on shorter texts where people express thoughts, such as tweets or re-
views. The output from a model that performs SA can vary, from the most common
positive vs. negative labeling, to, for example, a rating of 1-5. The process can be
used to learn more about the text’s authors or intercept information.

SA can be performed using LMs or other methods such as ML algorithms or
rule-based methods. The steps of SA include preprocessing, tokenization, and pre-
training before the model can predict the labels. Pretraining a model means train-
ing it to perform NLP tasks. How this process is done affects the results of the la-
beling process. If the model has been trained too much on the same type of data, it
can become overfitted, as discussed as a challenge for RSs in Section 2.1.2. When
the model has predicted the labels, it is evaluated using metrics that, for example,
could be the ones presented in Section 2.1.3.

5https://www.merriam-webster.com/
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Related Work

The current chapter gives an overview of related research done in the domain.
First, research related to Course Selection is presented in Section 3.1. Then, the
use of RSs in the educational domain is discussed in Section 3.2. Further, research
on review-based RSs is presented in Section 3.3 and rating-based approaches in
popularity-based RSs in Section 3.4.

3.1 Course Selection

Course Selection (CS) revolves around selecting courses in different environ-
ments, such as in universities or on MOOC platforms. Finding the courses to
follow is tedious, and many factors affect the process. On online platforms, the
courses are available for everyone. However, some may be advanced courses
expecting the users to have specific prerequisites. Several studies have been con-
ducted on the topic of CS. Most of them are focused on formal education but are
still applicable to CS on MOOC platforms.

Based on the work of Kerin et al. [39], the students’ significant considerations
during CS are their interest in the area, the course’s content, the instructor, and the
course’s compatibility with the field. Even though this study was conducted almost
50 years ago, the results are still relevant for formal and non-formal education and
CS.

Several researchers discuss how grades affect the selection of courses. Ogna-
jovic et al. [40] conclude that the most crucial factor is how a student’s Grade
Point Average (GPA) is compared to the course average. Another factor they dis-
cuss is how a course correlates with the student’s career objectives. Other studies
that mention grades as an essential factor are [41, 42]. Though, the focus on GPA
is not relatable to CS of MOOCs. MOOCs could be used as support for learning
the contents of courses in formal education, but as they are not graded, they are
not chosen based on this.

Lynn and Emanuel [42] focus on eight factors that impact CS. These are
personal interest, simplicity, future career goal, course format, instructor, social

17



18

status, schedule, and examination protocol. The first five could also be related to
CS of MOOCs, whereas the last three are linked explicitly to formal education.
The study does not conclude which is the most crucial factor, as this depends on
the individual.

Babad and Tayeb [43] divide CS into two groups related to academic and
personal considerations. The former group is focused on course and course char-
acteristics. These involve the instructor’s mode of teaching, personality, style, and
the course’s academic quality. The factors related to the instructors are also highly
relevant for MOOCs.

According to Zheng et al. [44], 65% of courses in the fourteen platforms sur-
veyed grant course certificates upon completion. As certifications could be used
as proof of knowledge one has obtained, it is a motivating factor in CS of MOOCs.
As stated in the study, some universities in China also recognize MOOC certific-
ates with credits. This way, completing MOOCs could also be a motivating factor
during the completion of an educational degree.

Some considerations should be taken based on the literature in the domain of
CS. First, there are many factors affecting the selection of courses. Some relate
to the learner, such as personal interests, prerequisites, and career objectives. On
the other hand, some are related to the course and instructor, for example, the
instructor’s teaching style and personality. As which factors are the most crucial
depends on the individual, the target users’ motivations should be kept in mind
while developing an RS.

3.2 Recommender Systems in Education

RSs have found applications in various domains such as movies, online shopping,
traveling, news, social media, and more, as introduced in Section 1.1. In the past
decade, the use of RSs has also extended to education. Following, some of the
various research topics RSs are used for in education are presented.

One research topic is the recommendation of study sequences and learning
paths. Pang et al. [4] recommend subsequent courses based on the learner’s his-
tory. Hou et al. [45] cluster courses based on prerequisite dependencies. Then,
they recommend courses after the ones the learner has taken. Another approach
is followed by Zheng et al. [46]. Based on their descriptions, they construct a
Knowledge Graph (KG) of courses. Later, they find a learning path for the learner
based on their interests.

Other studies focus on helping students and teachers with learning and teach-
ing. Some studies look into the recommendation of learning resources, such
as [47, 48]. Hajri et al. [49] help learners learn a course’s prerequisites by re-
commending open educational resources. They also provide resources to ensure
the learner has understood the material after completing a course section. An-
other research topic is the recommendation of resources for teaching practice.
For example, Sergis and Sampson [50] aid teachers in their selection of learning
objects.
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The largest proportion of research on RSs in education is related to Course
Recommendation (CR). CR is present in formal and non-formal education, intro-
duced in Section 2.1.4. Below, research in the two domains is presented.

3.2.1 Course Recommendation: Higher Education

Students commonly have to select some elective courses in formal education, such
as universities or other higher educational institutions. The information available
about these courses differs significantly in quality and amount for different institu-
tions. To make the CS process as easy as possible, RSs are used. Many approaches
have been tested to simplify the CS process; some are based on the factors dis-
cussed in Section 3.1. Research related to CR in higher education is presented
here.

A commonly used approach in CR is the prediction of grades. Olapido et
al. [41] uses logistic regression to predict the score they will obtain by taking
the course and use this to predict if the student will take the course. Ceyhan et
al. [51], on the other hand, use a CF approach to predict grades. They use in-
formation about previous students and their obtained grades to predict grades
for students based on similarity. The process of recommending courses based on
grades works well for students that care a lot about their GPA. However, it may
have flaws for students who select courses based on other factors, such as personal
interest, schedule, or instructor.

Instead of using CF to find users with similar grades, the technique could be
used to find users with other similarities. For example, Bhumichitr et al. [52]
looked at student similarities through their course templates. They created user
profiles based on students’ academic records. Then, they recommended the
courses similar users had taken. This approach is more focused on students’
interests and personalities. By recommending courses based on shared interests,
the students will likely get more intriguing recommendations but have to do some
practical work themselves by looking up the schedules and course formats, etc.
Deraman et al. [53] also focused on the students’ personalities and interests.
However, the implementation is poorly developed through if-then-statements and
only tested on twelve students.

Another approach to recommending courses is through social constraints.
Channarukul et al. [54] use information from Facebook1 in the recommenda-
tion. They recommend course schedules based on the schedules of the students’
Facebook friends. This approach is attractive as much information is available on
the Web. Although, because of GDPR, such information must be provided with
consent from all involved parties.

Lastly, hybrid approaches have been used to develop RSs in CR. Unelsrød [55]
created an RS that recommended courses to students at NTNU based on data from
the course evaluation website Classmate. It combined CF and CBF techniques to
overcome the sparsity problem explained in Section 2.1.2.

1https://www.facebook.com/
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3.2.2 Course Recommendation: MOOCs

The amount of courses on MOOC platforms has increased massively since "The
Year of the MOOC" [56] in 2012. At the same time, the drop-out rate on these
platforms is 90% [4, 5]. Further, Gomez et al. [57] observed that the decision-
making process is challenging for learners as existing MOOC platforms contain
courses with extremely positive ratings. With these challenges in mind, some re-
search focused on CR of MOOCs is presented.

Some research on learners on MOOC platforms have been conducted. Gütl
et al. [5] investigated the reasons why learners drop out of MOOCs. They asked
the subjects about personal and academic reasons, among others. Regarding aca-
demic reasons, 70% emphasized that it was challenging to study and work simul-
taneously, 14.93% that they were not technically prepared for the course, 8.96%
indicated that the course was too difficult, etc. Based on the results of this study,
there is no definitive answer to why learners drop out of courses. Instead, feedback
for courses could be used to improve the courses to lower drop-out rates.

An approach to lower the drop-out rate for MOOCs is to focus on the course
prerequisites. Pang et al. [4] state that learners drop out of courses because of
prerequisite inadequacy. Therefore, they recommend courses with objectives that
cover the prerequisites of a learner’s desired courses. Zhao et al. [58] also focus
on course prerequisites. They use a neural attention network to combine pre-
requisites of various courses with the learners’ background knowledge. These ap-
proaches both help to minimize the gap between learners’ knowledge and the
prerequisites of other courses.

Other approaches cluster learners based on their interests, personalities, and
preferences. Jain and Anika [59] cluster users based on their learning style. Active
learners are recommended courses based on supervised learning, while unsuper-
vised learning is used for passive learners. A potential flaw of this research is the
rigid system of two categories. The learners between these two categories will
most likely be put in one of the categories pretty randomly. Yanhui et al. [60]
clustered users based on preferences and former courses. Then, the information
about all learners in a cluster was used to recommend courses to the whole group.
This approach exploits information from similar users, meaning there can be some
errors in case of outliers. Otherwise, it could be a reasonable mitigation against
the sparsity problem explained in Section 2.1.2.

Another focus is the removal of noise and confusing data. Zhang et al. [61]
remove courses not contributing when predicting suitable courses for users. For
example, unfinished courses or courses taken over a very long time. This approach
could be followed as a pre-recommendation step to clean the data. However, as
less than 5% of learners complete their courses [62], this approach could make
the data even sparser. Thus, this must be taken into account when considering
removing data.

Using a Knowledge Graph (KG) has increased in CR in recent years. Some
studies combine information from KGs with CF to mitigate its challenges with
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sparsity and the cold start problem as elaborated on in Section 2.1.1. Jung et
al. [63], for example, complement information from MOOCs with data from an
external KG to handle these problems. Zhao et al. [64] focus on dealing with the
sparsity problem. They enrich sparse matrices through information from two KGs.
The first contains course data and models the courses based on prerequisites. The
other one represents a structure of prior and subsequent courses. By combining
these, the study aims to improve CR for MOOCs using KGs.

Another focus is dealing with the scalability problem explained in Sec-
tion 2.1.2. Hou et al. [65] propose an extensive data-supported course RS to
deal with the increasing time and space complexities because of the increase in
courses. An alternative approach is to narrow the items used to generate recom-
mendations. Garg and Tiwari [66] use CF but focus on a minor part of the users
when finding similar users. This decreases the complexity as the generation task
is time-consuming when looking at all users.

To sum up, there has been much research on CR. Some focus on mitigating the
challenges of RSs, introduced in Section 2.1.2, while others use other approaches
to improve the recommendations. Additionally, a wide range of techniques have
been used in these applications.

3.3 Review-Based Recommender Systems

Recommending items solely based on the overall rating value could lead to in-
accurate ratings, as these ratings may not accurately represent the users’ prefer-
ences, according to Al-Ghuribi and Mohd Noah [6]. Further, they state that looking
at the implicit user preferences through reviews is claimed to be a more accurate
approach to determining the users’ preferences, as users will write their opinions
exclusively regarding the items. Additionally, Zheng et al. [7] express that users
explain their reasoning behind ratings through the reviews. Therefore, research
combining RSs and reviews is examined.

There are several advantages to including user reviews in the recommenda-
tion process. First, the data sparsity problem explained in Section 2.1.2 could be
reduced in the case of missing ratings [6]. Further, including reviews can mitigate
the cold start problem, also explained in Section 2.1.2. For example, as seen in
the work of Wang et al. [67], through enriching users’ preferences by predicting
the missing information. Reviews can also provide rich information in domains
where users’ preferences are not well-represented by numerical ratings. Other ad-
vantages of using reviews in RSs can be found in [6].

Sentiment Analysis of Reviews in Recommender Systems

Most of the research conducted on Review-Based RSs uses Sentiment Analysis
(SA) to extract information from the reviews [6]. Leung et al. [68] inferred rat-
ings through performing SA on movie reviews. This was the first attempt at using
information extracted from textual reviews to generate recommendations. The
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proposed system was, however, not evaluated. Different approaches to incorpor-
ating information from reviews in RSs have been researched. These are presented
below.

Infer Ratings From Reviews

Given that no explicit ratings are available, implicit ratings can be inferred from
the reviews. Several approaches have been followed to predict missing ratings.
Ma et al. [69] utilized information in tweets to predict ratings using MF, while
Zheng et al. [7] used neural networks to predict missing ratings. Other research-
ers have focused on extracting the sentiment related to specific aspects for predic-
tion. Musat et al. [70] established a correlation between review texts and ratings
by comparing the predicted opinions of particular aspects to the actual ratings.
Further, Yang et al. [71] predicted the ratings using tensor factorization based on
the opinions expressed towards different aspects. D’Addio et al. [72] followed this
approach using an CF technique for prediction.

Combine Actual and Inferred Ratings

According to Chen et al. [73], combining actual and inferred ratings would likely
return better recommendations. Thus, when explicit ratings are available, the im-
plicit ratings could be used to enhance the original ratings. The approach of com-
bining these ratings differs between research. Also, some research adapts based
on whether explicit ratings are present or not, while others only deal with the
former case.

The most common approach to combining actual and predicted ratings is by
summing the ratings using weights. The following works are adaptable regarding
the existence of explicit ratings. Osman [8] presents an electronic product RS that
predicts ratings using SA on reviews. They are predicted if an item’s review does
not contain a rating. If it includes an actual rating, the predicted rating is added
using the weights 0.3, 0.5, and 0.7. In the end, the weight of 0.7 performs best,
meaning the actual rating contributes to 70%, and the predicted to 30% of the
summed rating. Zhang et al. [11] also use the predicted ratings explicitly when
no actual ratings are available. On the other hand, instead of using weights, they
are averaged with the original ratings if present.

The following works combine actual and predicted ratings using weights but
only work when explicit ratings are present. Li et al. [9] first denoise the rat-
ings and normalize the sentiment scores from reviews before weights combine
the ratings and sentiment scores. Wang et al. [10] also combine the original and
predicted ratings using weights. However, they first generate recommendations
using a hybrid system with CF and CBF before the score from this is combined
with the predicted score from SA of the reviews.

Several other approaches than weights have been conducted to combine actual
and inferred ratings. Lee et al. [12] performed SA using the BERT model to predict
the sentiment and emotion. Then, they combined the actual and inferred ratings
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into a subgraph using a link prediction method before using them in a Graph-
Based Movie RS. However, Ling et al. [13] combined the ratings and review texts
using LDAMF, proposed by McAuley and Leskovec [74].

Using Sentiment in Course Recommendation

The research presented earlier in this section was evaluated in various domains,
such as movies, social media, and e-commerce. However, none of them are related
to education. Some research using sentiment in CR is presented here.

Ng and Linn [75] created a CR that bases its recommendations on various
features. Among these were a rating predicted by MF and SA of reviews. A back-
propagation model combined the features and fed them into the RS. Hazar et
al. [76] also predicted ratings using SA of student reviews. Then, they analyzed the
differences between the actual and predicted ratings to detect user requirements
and interests. The original rating was used during the recommendation for users
who have not given a review. Other studies that use sentiment in CR are [77–79].
However, the latter has no implementation, only a proposal of using sentiment
scores to boost recommendations.

As learned from the presented research that combines actual and inferred rat-
ings, the most common approach is to combine these using weights. To the best
of the author’s knowledge, no research combines original and predicted ratings in
CR using weights. Thus, this approach can be followed to close this research gap.

3.4 Rating-Based Approaches in Popularity-Based Re-
commendation

Popularity-Based RSs recommend items based on popularity or trends, as intro-
duced in Section 2.1.1. They tend to be used as non-personalized baselines, as
in the research of Jannach et al. [80]. Both because they are computationally in-
expensive and since they are hard to beat [81]. However, the approach used to
determine which items are popular affects the recommendations significantly. In
this section, studies using different approaches are presented.

The most common way of defining popularity in recommendation is by an
item’s number of ratings [82]. Additionally, Jannach et al. [80], and Rakshit et
al. [83] propose that application-specific approaches, such as looking at the num-
ber of purchases or accumulated revenue could be used. Numerous studies use
this approach, some of them included here [80–86].

According to Cremonesi et al. [81], popularity-based RSs only provide trivial
recommendations and are not helpful for either users or content providers. Fur-
ther, Cañamares and Castells [84] mention that an obvious disadvantage of
popularity-based recommendation is the lack of novelty. However, the latter de-
veloped a formal analysis of the effectiveness of popularity-based RSs to determine
if popularity is effective in the recommendation process. They defined popularity
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using three approaches: based on the largest number of ratings, the largest num-
ber of positive ratings, and average ratings. The difference between the two first is
that the first can give misleading signals as it only looks at the number of ratings
but not what the ratings are. Thus, as the second approach looks explicitly at the
positive ratings, the aim is to represent better courses that users liked. The same
authors also used these two approaches in another earlier research, where they
discuss biases in popularity-based recommendation [82]. Further, they propose
employing the average rating as a potentially more desirable non-personalized
indicator compared to the number of favorable preferences.

Another research that determines popularity using the number of ratings and
the average rating is Jannach et al. [80]. They base their choice of rating-based
approaches on an analysis of the popularity of the recommended items. They state
that the average rating approach is limited by not considering the number of rat-
ings. Looking at the average rating, one cannot know how many ratings the item
has. Thus, an item that has gotten one rating of 5.0 would be defined as popular,
even though only one person has rated the item.

However, Cremonesi et al. [81] observed that using the average rating resulted
in worse accuracy than using the number of ratings. Another strategy is used by
Rashid et al. [85]. They balance popularity-based and entropy-based techniques.
Popularity-based techniques represent that many users have rated an item, but
they do not represent the value of the ratings. On the contrary, entropy-based
techniques represent the value of each rating but not the number of ratings re-
ceived. Thus, they combine the two approaches to get the best of both worlds. To
the author’s knowledge, this approach has not been used to combine the average
rating with other rating-based approaches.

Bellogín et al. [86] prompt some challenges with popularity-based RSs. Their
observations are based on the fact that the number of ratings for each item determ-
ines popularity. They observe that the recommender would perform at the same
level as a random recommender if all items were equally popular. On the other
hand, if many users like a few items, and few like the rest, the popularity-based
approach will obtain the maximum precision possible. These challenges should be
considered when using popularity-based RSs.
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Data

Evaluating the performance of an RS is essential, as described in Section 2.1.3. To
evaluate the RS in this thesis, offline evaluation is performed. The dataset to use in
the evaluation should be in the domain of online courses and contain information
and ratings of the courses and other user interactions, such as textual feedback,
that can be used to adjust the ratings. In this chapter, some existing datasets in
the educational domain are presented in Section 4.1, followed by Section 4.2 that
focuses on the COCO dataset.

4.1 Existing Datasets

There are many publicly available datasets in the domain of online education.
Some datasets are related to learning resources, such as the EdNet1 dataset. As it
contains student interactions [87], it is irrelevant to online course selection. An-
other dataset is the Open University Learning Analytics Dataset (OULAD)2 [88]. It
contains data about courses and students and the relations between them. How-
ever, as this dataset only contains data about seven courses and focuses more on
students’ enrolments, it was ruled out as insufficient.

Kaggle3, a website for Machine Learning projects and open datasets, has sev-
eral free datasets on online courses. The EdX Courses Dataset4 contains course
titles, descriptions, and difficulty levels of 717 courses on EdX5. As this does not in-
clude any course reviews, it was deemed irrelevant. Further, the Coursera Courses
Dataset6 contains course titles, descriptions, difficulty levels, and ratings for 3416
courses on Coursera7. Even though this dataset contains ratings, it does not have
any other interactions with the user, making it impossible to adjust the ratings.

1https://github.com/riiid/ednet
2https://analyse.kmi.open.ac.uk/open_dataset
3https://www.kaggle.com/
4https://www.kaggle.com/datasets/khusheekapoor/edx-courses-dataset-2021
5https://www.edx.org/
6https://www.kaggle.com/datasets/khusheekapoor/coursera-courses-dataset-2021
7https://www.coursera.org/
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Hence, it was set aside. The Coursera Free Courses Dataset8 is another dataset
with courses from Coursera. In addition to standard course information, it also
contains ratings and the number of reviews for each course. Thus, it has the same
flaw as the previous dataset from Coursera, as it does not contain user interactions
other than ratings. The same applies to the Udacity Courses Dataset9, a course
dataset from the Udacity10 platform that also contains standard course informa-
tion and ratings. Hence, there are many available course datasets, but many only
have ratings, not reviews or additional comments.

A dataset focused on course reviews is the 100K Coursera’s Course Reviews
Dataset11. It contains around 140k course reviews scraped from Coursera. These
reviews include both a labeled rating and a comment. The distribution of the
different ratings in the dataset is shown in Figure 4.1. It is pretty unbalanced,
with a lot more positive ratings than negative. This could be because users cannot
leave reviews before completing the course [89], and if someone completes an
entire course, they likely enjoy it. However, this dataset was discarded because of
the small number of reviews with ratings of 1, 2, and 3.
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Figure 4.1: 100K Coursera’s Course Reviews: Distribution of ratings.

Another dataset in online courses is the Collection of Online Courses (COCO)
dataset. It contains data about courses, instructors, and learners from the Udemy12

8https://www.kaggle.com/datasets/yasirabdaali/coursera-free-courses-dataset
9https://www.kaggle.com/datasets/khusheekapoor/udacity-courses-dataset-2021

10https://www.udacity.com/
11https://www.kaggle.com/datasets/septa97/100k-courseras-course-reviews-

dataset?select=reviews_by_course.csv
12https://www.udemy.com/
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platform. Dessì et al. [90] presented the dataset because of the lack of available
datasets in technology-enhanced learning. It contains more than 4.5M reviews
for 42k courses. The distribution of the ratings is visible in Figure 4.2. As with the
100K Coursera dataset, it is relatively unbalanced. However, in contrast, it con-
tains many more reviews, so there are many reviews for each rating. In addition,
the dataset includes further information about the courses, and some information
about the instructors, making it possible to personalize recommendations.
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Figure 4.2: COCO: Distribution of ratings.

The examined datasets are compared and summarized in Table 4.1. As can be
observed, the COCO dataset contains the most courses and reviews. Because of
this, the COCO dataset was chosen to be used in the evaluation.

Table 4.1: Existing datasets in the domain of online courses.

Dataset title Courses Reviews Updated

EdX Courses 717 - 2021
Coursera Courses 3 416 - 2021
Udacity Courses 262 - 2021
Coursera Free Courses 717 - 2023
100K Coursera’s Course Reviews 1 835 140 000+ 2017
COCO 42 113 4 530 508 2017
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4.2 The COCO Dataset

This section describes the dataset in detail, including more characteristics, chal-
lenges, preprocessing, and splitting strategy.

4.2.1 Obtaining the Dataset

The dataset is unavailable online but can be obtained by contacting the authors of
the COCO paper [90]. Therefore, Dr. Mirko Marras13 at the University of Cagliari
was contacted. Then, a dataset release agreement was signed, containing inform-
ation on how the data can be used and for which purposes. Ethical issues must be
addressed when using data owned by someone else. One cannot use the data in
any way not stated in the agreement or discredit the owners of the dataset. Also,
the data owners could withdraw the dataset anytime during the research process.
This was considered when deciding which dataset to use, but this was considered
unlikely. Another essential aspect when dealing with user data is that it should
not be possible to identify the users through the data. As this is impossible with
the COCO dataset, there was no need to sign a privacy agreement.

4.2.2 Characteristics

The dataset’s structure is present in Figure 4.3, with a rotated and enlargened
version in Appendix A. After obtaining the dataset, a deep dive was done to get
an overview of the data. The insights obtained are summarized in Table 4.2 and
further presented in detail in this section.

Figure 4.3: COCO: The structure of the dataset, retrieved from Dessí et al. [90].

13https://aibd.unica.it/people/mirko-marras
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Table 4.2: COCO: Summary of characteristics.

Characteristic Amount

Courses 42.113
Instructors 16.963
Users 2.426.398
Reviews 4.530.508

Courses

The dataset contains information about more than 42.000 courses on Udemy. The
information about each course is shown in the Course table in the figure. This
includes short and long descriptions, objectives, requirements, and the course’s
language, subtitles, and target audience. Figure 4.4 displays the 11 languages
used in most courses on Udemy. As can be observed, the languages with the most
courses are English, Spanish, and Portuguese.
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Figure 4.4: COCO: Number of courses taught in each language. The top 11 most
popular languages are shown.

The courses are also put into two levels of predefined categories, such as "Busi-
ness" and "Finance", where the latter is under the former category. Additionally,
COCO has specific information about each course’s different chapters and sec-
tions, such as descriptions of the videos, practices, and quizzes. These are present
in the Curriculum, Lesson, and Chapter tables in the figure.
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Instructors

COCO also contains data about the instructors of the courses. This is present in the
Instructor table in the figure. Along with the instructor’s ID on Udemy, a descrip-
tion of their job title is present. In addition, the number of courses, enrolments,
and reviews the instructor has are also provided. The Teach table connects the
instructors to the courses they have taught.

Reviews

The most significant proportion of the data in COCO is course reviews, present in
the Evaluate table in the figure. These are connected to both a course and a user.
Additionally, they consist of a rating, possibly a comment, and the timestamp of
when the review was given. The ratings are between 0 and 5, and the distribution
of the ratings is visible in Figure 4.2. As can be seen, there are a lot more positive
ratings than negative ones, but the number of each rating is significant.

Further, Figure 4.5 shows how many reviews contain comments and which do
not. Hence, about a third of the reviews have a comment. From these comments,
the rating distribution can be seen in Figure 4.6. The distribution looks very similar
to the one for all reviews in Figure 4.2, and the number of reviews for each rating
is still enough to evaluate.

With comments Without comments

1.27 M

3.26 M
Reviews in COCO with and without comments

Figure 4.5: COCO: Reviews with and without comments.

As short and low-quality reviews weaken the performance during recommend-
ation [69], the lengths of the comments were looked into. Figure 4.7 shows the
distribution of the comment length for reviews in COCO. The intervals span from
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Figure 4.6: COCO Distribution of ratings in reviews with comments.

zero to 250. All comments longer than 250 characters are put into the last bar. As
can be observed, the distribution is quite even, and many comments are longer
than a few characters.
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Figure 4.7: COCO: Distribution of review lengths.
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Another interesting aspect is how many reviews each user has left. As seen
in Figure 4.8, most users have only reviewed one course. Further, when the num-
ber of reviews increases, the number of users decreases. However, there are still
quite a lot of users that have given more than one review.

1 2 3 4 5-130
Reviews

Nu
m

be
r o

f u
se

rs

615 k

113 k

39 k
18 k 28 k

Number of reviews users have given

Figure 4.8: COCO: Numbers of users that have given between 1 and 130 reviews.

4.2.3 Challenges and Limitations

As mentioned in Section 2.2.1, there are several challenges when working with
human language. Below, some challenges in the COCO dataset are discussed.

Language

As the Udemy platform is available to everyone on the Web, the users and in-
structors can be from anywhere in the world. As seen in Figure 4.4, most courses
are taught in English. Although, there are also many courses taught in Spanish,
Portuguese, and German. The courses are taught in different languages, but the
reviews are also expected to be in other languages. This challenge should be ad-
dressed when working with textual data, as different languages must be handled
differently.

Quality of the Data

As instructors and users manually enter the course information and reviews on
Udemy, they are prone to errors. For some courses, the data in each attribute are
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wrongfully shifted to the following attribute. For example, the short description
is entered as the long description; the long description is entered as the course’s
objectives; the objective is entered as the prerequisites, and so on. In addition,
typos and other human errors are present in the data. These challenges should be
mitigated through preprocessing.

Distribution of Ratings in Reviews

As addressed earlier in the section, the distribution of the ratings in the course
reviews (Figure 4.2) is pretty unbalanced. Schoenmueller et al. [91] analyzed
millions of reviews and found that most online reviews are on the positive end of
the scale. Hence, this distribution is expected but still needs to be dealt with. If
not, it could cause problems when performing NLP tasks such as SA, as the model
could perform poorly on negative reviews because of a lack of training data.

Sparsity

As described in Section 2.1.2, data sparsity occurs when insufficient data is avail-
able to predict user preferences accurately. The COCO dataset contains around
4.5M reviews, given by more than 800k users. However, as seen in Figure 4.8,
615k users have only reviewed one course. Hence, the data of these users are
very sparse, as they only have interacted with one item each.

4.2.4 Preprocessing

Preprocessing helps machines to understand human language and mitigates the
challenges presented in Section 4.2.3. When the dataset was obtained, there was
no previous data preprocessing. Therefore, the steps on the left-hand side in Fig-
ure 4.9 were conducted. These are explained in further detail in Section 2.2.1.
The right-hand side of the figure shows an example of a review comment being
preprocessed. This example is fictional because of the signed data agreement, as
explained in Section 4.2.1.

The first step was normalization, where all letters were turned into lowercase.
Then, the numbers were removed, as they did not provide any meaning to the LM
performing the SA. Later, the contractions were expanded before the stop words
were removed. Finally, the punctuation was removed, and the remaining terms
were lemmatized. Lemmatization was selected instead of stemming because of
the trade-off between time spent and quality. As the dataset size was not massive,
the lemmatization step could be performed in a reasonable amount of time. After
conducting these steps, the result was a preprocessed sentence.
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Normalization

Number Removal

Expand Contractions

Stop Word Removal

Punctuation Removal

Lemmatization

Raw data

Preprocessed data

This course was SUPERB!! I rate it 10/10!
Can't wait to see your other courses

this course was superb!! i rate it 10/10!
can't wait to see your other courses

this course was superb!! i rate it /! can't wait
to see your other courses

this course was superb!! i rate it /! cannot
wait to see your other courses

course superb ! ! rate / ! wait see courses

course superb rate wait see courses

course superb rate wait see course

Figure 4.9: Data preprocessing steps with a fictional example on the right-hand
side.
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4.2.5 Data-Splitting Strategy

To evaluate an RS, the data must be split into a training and test set to make sure
the same data is not used for tuning the parameters and for testing [14, p. 236].
The strategy for doing this is explained here.

The first step in the data-splitting strategy is to remove the reviews that do not
contain a comment. This is done because the recommender model needs reviews
that consist of both a rating and a comment during training. Also, for the users
that have reviewed the same course multiple times, only the last review is used,
based on the assumption that this is the most updated one. Hence, it has been
made sure that there is a maximum of one review for each course per learner.

Next, a split ratio of 80/20, where 80% of the data is used in the training set
and the remaining 20% in the test set, was chosen to have sufficient size for both
splits. Since the recommender model aims to recommend items to users based
on their and similar users’ preferences, the training and test splits must contain
reviews from all the users to be able to evaluate the recommendations for each
user.

As the chosen split ratio is 80/20 (i.e., 4:1), all users that have given less
than five reviews are ignored, as including these would not fulfill the minimum
requirement of reviews for the split ratio. Then, for each of the users, 20% of their
reviews are put into the test split, and the remaining 80% in the training split. For
users with more than five reviews, every fifth review is put in the test set, while
the four others are put in the training set, meaning the split ratio is not necessarily
80/20 for all users. By looking at Figure 4.8, one can see that 28k users have given
a review with a comment to five or more courses. With a rough estimate, the total
number of reviews is therefore 140k. Thus, the training and test splits contain
112k and 28k reviews, respectively.

As the comments are only used in the training set and not in the test set, the
users who have given five reviews, where only four contain a comment, could
also have been included. However, for simplicity reasons, only the users that have
given five reviews or more containing comments were included. Comprising these
as well would have increased the sizes of the training and test splits, but as they
are sufficiently large, this was deemed unnecessary.
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Method

Three experiments were conducted to answer the three research questions pro-
posed in Section 1.2. This chapter provides an introduction to the approaches
followed to perform these. The motivation behind the architectural choices and a
comparison to alternative decisions are also included.

First, the overall system architecture and approaches for all experiments are
presented in Section 5.1. Then, the process followed to answer the first research
question, i.e., Experiment 1, is elaborated on in Section 5.2, followed by the ap-
proaches followed to answer the second and third questions, i.e., Experiments 2
and 3 in Sections 5.3 and 5.4.

5.1 System Architecture

This section describes the architecture of the system used in the experiments.
Figure 5.1 presents a systematic architecture overview. The yellow boxes related
to data handling are included in all the experiments. The COCO dataset presented
in Section 4.2 was used to generate recommendations and evaluate them. To make
use of the course reviews in the dataset, they were extracted, preprocessed, and
split into training and test sets, as described in Sections 4.2.4 and 4.2.5.

Further, the green boxes, related to rating handling, are relevant in Exper-
iments 1 and 3. The process in these steps is further described in the sections
related to these experiments, Sections 5.2 and 5.4. Lastly, the orange boxes are
related to the recommendation process. The generation of recommendations dif-
fers for the experiments and will therefore be explained in each of the following
sections. However, the evaluation of the RS was similar for all experiments.

Recommendation

As seen in Figure 5.1, the recommendation process comprises generation and
evaluation. The following sections describe the generation process, but as the
evaluation applies to all experiments, it is described here. After generating re-
commendations based on the training set, they are evaluated using the test set

37



38

Data Preprocessing

Data Splitting

Rating Prediction

Rating Adjustment

Recommendation
Generation

Recommendation
Evaluation

Raw data

Training set Test set

Metrics

       Data
       Ratings
       Recommendation

Figure 5.1: System architecture for the experiments. Yellow boxes represent steps
related to the data, green boxes to ratings, and orange boxes to recommendations.
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obtained through data splitting. As explained in Section 2.1.3, some evaluation
metrics are needed to assess the system.

A common denominator for all the research questions is that the accuracy
and ranking performance of the RS should be evaluated. To evaluate the accuracy
of an RS, the two decision-support metrics Precision and Recall are often used.
Therefore, these two metrics are used in this evaluation.

Further, some metrics are needed to evaluate the ranking accuracy of the RS.
As explained in Section 2.1.3, nDCG is an expansion of DCG that measures the
order in which items are recommended. Further, MAP looks at both the relevancy
and order of the recommended items. Another ranking metric that was considered
is Mean Reciprocal Rank (MRR). It measures where the first relevant item is, mak-
ing it pretty simple to compute. However, as it does not evaluate the items after
the first relevant one, it is not applicable here.

Based on these observations, the Precision, Recall, nDCG, and MAP metrics
were used to evaluate the RS. These four metrics were described in Section 2.1.3.

5.2 Experiment 1: Adjustment of Ratings

As introduced in Section 1.2, the first research question is to figure out how the
incorporation of sentiment from course reviews and adjustment of rating values
based on sentiment affects the ranking accuracy of CR in MOOCs. In Section 3.3,
some previous research on this topic was presented. This research question was
inspired by the statement of Chen et al. [73] about how combining actual and in-
ferred ratings would likely return better recommendations. Also, several other ad-
vantages of using reviews in RSs are presented by Al-Ghuribi and Mohd Noah [6].
Thus, a method to exploit information from the course reviews was needed.

As described in Section 3.3, SA is the most common approach to extracting
information from course reviews. Meanwhile, several strategies could be used to
exploit textual content. As this experiment aims to adjust the ratings based on
course reviews, SA is suitable as it could be used to predict ratings based on the
reviews’ comments. When the ratings had been predicted, the original ratings had
to be adjusted. To conduct this experiment, approaches were needed to perform
SA on the course reviews and adjust the rating values based on this. Possible meth-
ods for these are discussed in Sections 5.2.1 and 5.2.2. Additionally, algorithms
used to generate the recommendations are discussed in Section 5.2.3.

5.2.1 Rating Prediction Using Sentiment Analysis

The first step to answer the research question was to perform SA on the COCO
course reviews to predict the ratings. The two well-known types of LMs introduced
in Section 2.2.2, namely BERT and GPT, were taken into consideration for this
task. A comparison of two BERT models and one GPT model follows.
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BERT

As presented in Section 2.2.2, the BERT LM could be used to perform tasks such
as SA. The version of BERT taken into consideration is the bert-base-multilingual-
uncased-sentiment model1 provided by Hugging Face2. It has been fine-tuned for
SA on product reviews in six different languages, including English, Spanish, and
others. This suits the task well, as the data in the COCO dataset is multilingual.
However, the model is fine-tuned on product reviews, not course reviews.

As this model predicts a label between 1 and 5 stars, this could easily be trans-
lated to correspond to the ratings of 1-5 in the COCO dataset. Then, these pre-
dicted ratings could be used to adjust the original ratings. Further descriptions of
how BERT works can be found in Section 2.2.2.

SiEBERT

Another LM based on BERT is the Sentiment in English Bidirectional Encoder
Representations from Transformers (SiEBERT) model3, introduced by Hartmann
et al. [92]. It is specifically trained for the task of SA on 15 data sets with English
data from diverse text sources. It outperforms models only trained on one type of
text, such as the BERT model above.

The model predicts the sentiment of data as either positive or negative. This
is a disadvantage compared to the BERT model, as the labels cannot directly be
translated into ratings. Also, it is not trained in languages other than English,
which is another disadvantage as the comments in the COCO dataset are in mul-
tiple languages.

GPT

A third possible LM is the GPT-3 model [36]. In comparison to BERT, it is autore-
gressive, while BERT is bidirectional, explained in Section 2.2.2. Because of this,
BERT tends to perform better on tasks such as SA and Natural Language Under-
standing, as it bases its predictions on both left and right context. GPT models
only consider the left context when predicting words in a sentence. As the task in
this thesis is SA, the GPT model was not used.

Conclusion

Even though the SiEBERT model outperforms models trained only on one text
type, it is unsuitable for multilingual data. Therefore, the multilingual BERT model
was chosen as it seemed best suited as it handles texts in multiple languages well
and predicts labels between 1 and 5 stars.

1https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
2https://huggingface.co/
3https://huggingface.co/siebert/sentiment-roberta-large-english
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5.2.2 Rating Adjustment Based on Predicted Ratings

After predicting the rating values based on the course reviews, the predictions
were used to adjust the original ratings. As the original and predicted ratings
were numerical values, these could be combined into one adjusted rating. Various
research has used different approaches to combine actual and inferred ratings, as
seen in Section 3.3.

The most common approach seen in the literature is to combine the ratings
with different weights, as for example done by Osman [8]. This way, one can
observe how different combinations of the two ratings affect the performance,
and the best weights can be obtained. Based on these observations and previous
literature, the original and predicted ratings were combined with different weights
in this RS.

Some of the previous research also summed the ratings and took the average
of them, such as Zhang et al. [11]. As this is the same as having the same weights
for both ratings, equal weights were tested in this thesis. Several other approaches
have been used to combine ratings and review texts, but as the data to combine
both are numerical, the approach of using weights was chosen.

Specifically, the adjusted rating was calculated as seen in Equation (5.1),
where W denotes the weight used. Given that W is between 0 and 1, the resulting
adjusted rating will be on the interval [0, 5], as both the original and predicted
ratings are on this interval. Using the weight 0 results in 100% of the rating being
decided by the original rating. In the opposite way, a weight of 1 results in the
predicted rating. All values between 0 and 1 result in combinations of the original
and predicted ratings, where a weight of 0.5 results in the average of the two.

Adjusted rating=W ∗ Predicted rating+(1−W ) ∗Original rating (5.1)

5.2.3 Algorithms to Generate Recommendations

To evaluate how the adjustment of the ratings affects the overall ranking and
ordering of recommended MOOCs, an RS was implemented. Therefore, some al-
gorithms had to be chosen to generate the recommendations, as shown in the
first orange box in Figure 5.1. By selecting a set of algorithms, the impact of the
adjusted ratings could be analyzed thoroughly.

A common algorithm to include for comparison is Random. As it recommends
items randomly, all other algorithms should outperform it. Another type of al-
gorithm is Content-Based Filtering (CBF), which recommends items based on their
characteristics, as described in Section 2.1.1. As the recommender bases its recom-
mendations on the adjusted ratings and no other characteristics, CBF algorithms
were disregarded. Following, a few more recommendation algorithms are presen-
ted.
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Popularity-Based

Other commonly used recommendation algorithms are popularity-based ones,
such as Most Popular. As elaborated on in Section 2.1.1 these suggest items based
on popularity. Thus, they can for example be used for new users on a platform
to mitigate the cold start problem described in Section 2.1.2. Popularity-based
algorithms are usually fast and low in complexity. Also, these rank items while re-
commending, which is desirable for the RS in this research. However, a downside
is that these algorithms do not personalize recommendations, meaning the same
items are recommended to all users.

Collaborative Filtering

As the reviews from each user are considered to generate recommendations, it
is interesting to examine how personalized recommendations perform instead of
generalized recommendations. A type of algorithm that considers each user’s in-
terests is CF, introduced in Section 2.1.1. These algorithms recommend items to
users based on the interests of similar users or the similarity of items.

There exist many techniques used in CF, such as k-NN, MF, SVD, and Deep
Learning. The latter is an interesting technique but was disregarded due to its
complexity. A challenge for large datasets such as the COCO dataset is the sparsity
problem, introduced in Section 2.1.2. SVD’s dimensionality reduction can bene-
fit large and sparse datasets. However, as Sarwar et al. [93] notes, SVD-based
RSs provide limited scalability because of the computationally expensive MF step.
Thus, this algorithm was ruled out as MOOC platforms tend to need scalabil-
ity, as described in Section 2.1.2. However, there exist MF techniques that are
less computationally expensive. These are advantageous through their handling
of sparsity and scalability and providing personalized recommendations. How-
ever, they can struggle to handle the cold start problem and should be used in
combination with other algorithms to mitigate this challenge. MF is further ex-
plained in Section 2.1.1. At last, k-NN algorithms also introduced in Section 2.1.1
are simple and flexible. They also struggle with scalability and data quality, as
noise can impact its accuracy.

Conclusion

All in all, the algorithms above have advantages and disadvantages. With the
COCO dataset and course reviews in mind, the algorithms considered were Ran-
dom, Most Popular, and CF. The techniques used for CF were k-NN for its simplicity
and flexibility and MF for its handling of sparsity and scalability. The diversity in
the choice of algorithms laid a foundation for a thorough analysis of the impact
of adjusted ratings.



Chapter 5: Method 43

5.3 Experiment 2: Rating-Based Approaches in Recom-
mendation

As described in Sections 2.1.1 and 5.2.3, popularity-based recommendation al-
gorithms can be used to recommend items to new users or users with few pref-
erences. An essential aspect in popularity-based RSs is the rating-based approach
used to find the most popular items, as presented in Section 3.4. The second re-
search question provided in Section 1.2 revolves around comparing and analyz-
ing the performance and ranking accuracy of a popularity-based RS using various
rating-based approaches. Thus, the following five approaches were examined and
analyzed with ranking accuracy in mind in this experiment.

5.3.1 Number of Ratings

A simple approach to finding the most popular course is to count its reviews. This
approach is commonly used in the literature [80–86]. The most significant ad-
vantages of this approach are the calculation time and the simplicity. However, it
only defines an item’s popularity based on the number of reviews and does not
consider what they contain. For example, if many users review a course poorly, it
will be deemed popular with this approach. Even though many users have taken
and reviewed the course, they were not happy about it, and it should not be con-
sidered popular. As this approach does not consider the rating values, it behaves
equally with the original and adjusted ratings.

5.3.2 Sum of Ratings

Another approach is summing the ratings in the reviews of each course. This way,
the ratings are considered when finding the most popular items. Generally, ratings
are very positive [91], which also applies to the COCO dataset, as shown in Fig-
ure 4.2. Therefore, this approach was expected to have a similar result as counting
the number of ratings. However, it was included as it looks at the rating values,
which can also impact the recommendations based on the adjusted ratings.

5.3.3 Average of Ratings

A third approach is calculating each course’s average rating, e.g., used in [80, 84].
This approach differs from the two above and focuses more on the rating values.
Therefore, it benefits courses that have good ratings but have not been taken by
many users. However, as introduced in Section 3.4, this approach also has some
disadvantages.

Courses with fewer reviews will have a higher probability of being ranked
high, a limitation introduced by Jannach et al. [80]. Say, for example, that course
X has been reviewed by three users and course Y by 100 users. Both the courses
have received a lot of positive reviews. X has received 100 reviews, where 99
have a rating of 5.0, and the last has a rating of 1.0. Thus, the average course
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rating is 4.96. On the other hand, course Y has received three reviews, all rated
as 5.0, giving an average rating of 5.0. By looking at the average rating to define
popularity, course Y is more popular than course X. As the probability of a rating
other than 5.0 increases when more reviews are given, this favors courses with
fewer ratings. This is both an advantage and a disadvantage. On one side, new and
undiscovered courses with potential can be exposed to more users. Conversely,
courses taken and liked by many may be hidden.

5.3.4 Combination of Average and Summed Ratings

As explained, the approach of using average ratings has both advantages and dis-
advantages. Compared to the approaches of the number and sum of ratings, the
average rating favors the rating values more. However, as observed, the average
rating favors courses with fewer reviews. Though, as discussed earlier, the num-
ber of times a course has been reviewed could also represent popularity. As seen
in Section 3.4, Rashid et al. [85] combined popularity-based and entropy-based
techniques to get the advantages of both techniques. The disadvantages of both
were attempted mitigated by adopting a similar approach by combining the ap-
proaches of average rating and the sum of ratings.

Combining these approaches could be done with different weights for explor-
ation. However, in this research, the approaches were only weighted equally be-
cause of time limitations. To combine the approaches, they must be on the same in-
terval, e.g., [0, 5]. The average ratings were already on this form, but the summed
ratings were not. Therefore, two ways to convert the summed ratings into this in-
terval are proposed below.

One way of converting the summed ratings is to distribute them along the
interval with the ratio between them intact. In other words, the ratings were dis-
tributed unevenly. Figure 5.2 shows a visualization of this conversion. First, each
item’s summed rating was divided by the maximum of all summed ratings to con-
vert all ratings to the interval of [0, 1]. Then, the ratings were multiplied by the
maximum value of the interval, which was five as the interval is [0, 5]. This calcu-
lation is shown in Equation (5.2). The ratios between them were kept by dividing
the summed rating by the maximum summed rating. Therefore, the points in Fig-
ure 5.2 are equally located for the summed and unevenly converted ratings, but
the interval and numerical values changes. This method favors the rating values
as the ratios between the items are kept.

Unevenly converted rating=
Summed rating

Maximum summed rating
∗Max value of interval

(5.2)
Another way is to evenly distribute the summed ratings without respecting the

ratio between them. In other words, the interval of [0, 5] was split into as many
parts as there were items. Then, the items were evenly placed in the interval based
on their ranking value. Therefore, some ratings increased while others decreased,
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Figure 5.2: Conversion of summed ratings to another interval. The arrows show
the conversion of selected points.

as observed in Figure 5.2. As this approach considered the ranking, which is based
on the summed ratings but not the summed ratings themselves during placement,
the ratios between the summed ratings were not kept. The first step was to cal-
culate the distance between each item by dividing the max value of the interval
by the number of items, as shown in Equation (5.3). Given that the items were
ranked ascending by their summed ratings, the converted ratings were calculated
by multiplying each item’s rank by the distance, as in Equation (5.4).

Distance=
Max value of interval

Number of items
(5.3)

Evenly converted rating= Item rank∗ Interval size (5.4)

The two rating values could be combined after converting the summed rat-
ings to the same interval as the average ratings. The outcome of combining the
values differed for the two approaches as the converted values varied, but the
average ratings did not. An example of this combination is shown in Figure 5.3.
The average ratings are given for two courses, x and y. Additionally, the unevenly
and evenly converted ratings are shown in Figures 5.3a and 5.3b, respectively.
The average and converted ratings were averaged to find the combined ratings.
Therefore, as shown in Figure 5.3a, the combined rating for x is greater than the
one for y for the unevenly converted ratings. However, for the evenly converted
rating shown in Figure 5.3b, the combined rating for y is greater than for x. Thus,
the combined ratings depend on which approach is followed.

To sum up, the five rating-based approaches that were analyzed are Number of rat-
ings, Sum of ratings, Average rating, Combination of average and unevenly converted
ratings, and Combination of average and evenly converted ratings.

5.4 Experiment 3: Rating-Based Approaches With Adjus-
ted Ratings

The third experiment was a combination of the two previous experiments. As
formulated in Section 1.2, the third research question aims to examine how a
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Figure 5.3: Combining average rating with converted ratings.

popularity-based RS’s performance and ranking accuracy with various rating-
based approaches is affected by incorporating sentiment from course reviews.
Thus, to answer this question, the third experiment expanded on adjusting ratings
to improve recommendations. In contrast to Experiment 1, this experiment fo-
cused on the Most Popular recommendation algorithm presented in Section 5.2.3.
More specifically, the performances of the rating-based approaches analyzed in
Experiment 2 were compared. The motivations behind the two previous experi-
ments were presented in Sections 5.2 and 5.3. This experiment was conducted to
expand on the earlier experiments and more thoroughly analyze the performance
of popularity-based RSs with adjusted ratings.

As with the other experiments, this experiment used the course reviews in
the COCO dataset. The process was similar to the one for Experiment 1, visible
in Figure 5.1. First, the data was gathered, preprocessed, and split into training
and test sets. Then, the ratings were predicted using SA with BERT before the
ratings were adjusted using the algorithm explained in Section 5.2.2. Then, the
recommendations were generated using the five rating-based approaches presen-
ted in Section 5.3. Finally, the recommendations were evaluated using the metrics
presented in Section 5.1.
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Experiments

As introduced in Chapter 5, three experiments were conducted in this work. This
chapter provides a technical overview of the conducted experiments and related
techniques. First, the experimental plan is described in Section 6.1 before the
experimental setup is covered in detail with tools and parameters in Section 6.2.

6.1 Experimental Plan

The research aims to improve course recommendations as presented in Sec-
tion 1.2. The three experiments described in Chapter 5 were conducted to do this.
Experiments 1 and 3 had the same overall structure, while Experiment 2 differs
as it did not include the rating prediction and adjustment process. Common to all
experiments was the need for data, recommendation of courses, and evaluation
of recommendations. The plan to conduct the experiments is presented in this
section.

The first step of the experiments was to prepare the data. As described in Sec-
tion 5.1, the course reviews had to be extracted, preprocessed, and split into train-
ing and test sets to be usable. Since the BERT model used for SA might perform
better with stop words, as explained in Section 2.2.2, different versions of the
dataset were created, with various preprocessing steps conducted. Then, the data-
set versions were split into training and test splits following the strategy described
in Section 4.2.5.

After having prepared the data, the plan differed between the experiments.
For Experiments 1 and 3, the next step was performing SA on the course reviews
in the training set. This process resulted in a predicted rating of 1-5 for each com-
ment, which then was stored as a new attribute for each review. Subsequently, the
original ratings had to be adjusted based on the predicted ratings. This was done
using different weights described in Section 5.2.2. These steps were not conducted
for Experiment 2, as it based its recommendations on the original ratings.

The last steps of the experiments were generating and evaluating the recom-
mendations. Thus, an RS had to be implemented. For Experiment 1, the algorithms
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presented in Section 5.2.3 were used to generate the recommendations. On the
other hand, for Experiments 2 and 3, the Most Popular algorithm was used with the
various rating-based approaches discussed in Section 5.3. For Experiment 2, the
original ratings were used to generate recommendations, whereas Experiments
1 and 3 used the adjusted ratings. Finally, the recommendations were evaluated
using the Precision, Recall, MAP, and nDCG metrics as described in Section 5.1.

6.2 Experimental Setup

The Python1 programming language was used to conduct the experiments. This
section describes the tools and parameters used to perform the experiments in Sec-
tions 6.2.1 and 6.2.2.

6.2.1 Tools

Below, the Python libraries used in the work are presented. The versions for each
library are given inside the parentheses, and brief descriptions of the libraries and
their usages are included.

Contractions2

(0.1.73)
Handles contractions or combinations of words in a
text. This thesis used it to expand contractions as a pre-
processing step to standardize the text.

huggingface-hub3

(0.10.1)
Makes ML models available to the public and provides
lots of tools to set up and test these quickly. It was used
to perform SA on the comments in the COCO dataset.

LensKit4 (0.14.2) Is a toolkit by Dr. Michael Ekstrand [94] for recom-
mender experiments that has built-in recommender al-
gorithms, evaluation techniques, and metrics. It was
used to implement the recommendation algorithms and
generate recommendations in this thesis.

Matplotlib5

(3.7.1)
Provides tools to create visualizations of data. It was
used to analyze and gather statistics about the dataset
and present results.

NumPy6 (1.23.4) Provides tools to perform mathematical operations on
arrays. In this thesis, it was used to handle NaN values.

1https://www.python.org/
2https://pypi.org/project/contractions/
3https://huggingface.co/
4https://lenskit.org/
5https://matplotlib.org/
6https://numpy.org/
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nltk7 (3.5) Is a Natural Language ToolKit for python. It was used to
preprocess the data through the usage of the stopwords,
punkt, and wordnet modules. The former removes stop
words, while the second was used for tokenization and
the latter for lemmatization.

pandas8 (1.0.5) Is a data analysis and manipulation tool. In this thesis,
it was used to handle operations on the COCO dataset
efficiently and cleanly.

RanX9 (0.3.8) Is a library for ranking evaluation metrics in Python. It
was used to evaluate this thesis’ RS.

6.2.2 Implementation Details

Some parameters must be specified to run the RS. Some are specific to the al-
gorithms in the LensKit library, while others are specific to the program. The re-
commender was tested with different parameters to find the optimal ones. In this
section, the approach to finding these is presented, along with a description of the
implementation in detail, focusing on the parameters.

Recommender Model

The LensKit Python library is the successor to the Java-based LensKit project10,
which was developed from 2012 to 2016. According to their research page11, it
has been used in 39 papers. The library was used to implement the RS because it
provides various recommendation algorithms. Bałchanowski and Boryczka [95]
inspired the implementation of the recommender model through their develop-
ment of an RS using LensKit.

The algorithms used for recommendation in this thesis, PopScore, Random,
UserkNN, ItemkNN, and ALSImplicitMF were predefined12 in LensKit. These were
chosen based on the reasoning presented in Section 5.2.3. The ALSImplicitMF al-
gorithm is based on MF and ALS, which were introduced in Section 2.1.1. The
PopScore algorithm is LensKit’s version of the Most Popular algorithm. To enable
different rating-based approaches for the popularity-based recommender in Ex-
periment 2, the evaluation function of PopScore was overridden and implemented
manually for each approach. However, for Experiments 1 and 3, the approach of
Sum of ratings was used.

7https://www.nltk.org/index.html
8https://pandas.pydata.org/
9https://amenra.github.io/ranx/

10https://github.com/lenskit/lenskit
11https://lenskit.org/research
12https://lkpy.readthedocs.io/en/stable/algorithms.html
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Some parameters had to be specified for the k-NN and ALSImplicitMF al-
gorithms. For the k-NN algorithms, the nnbrs, feedback, center, and aggregate
parameters were specified. nnbrs is the maximum number of neighbors used to
score each item, i.e., k as described in Section 2.1.1. The recommender model
was run with different values for both ItemkNN and UserkNN to find the value
of k that provided the best results. Then, the results were evaluated using nDCG
and MAP to decide the value for k.

The feedback parameter was set to explicit, as the data type in COCO is explicit.
As with nnbrs, the center and aggregate parameters were tested to find the best
combination. The former represents whether the rating vectors were normalized
before the computation of similarities and aggregation of user rating values and
could either be set to true or false. The latter represents the aggregation method
and could be "sum" or "weighted average". The values for these parameters were
also tested for both UserkNN and ItemkNN. Beyond these parameters, the default
values of the k-NN algorithms in LensKit were used.

Further, some parameters for the ALSImplicitMF algorithm were defined. First,
the use_ratings parameter was set to True so that the dataset’s ratings were con-
sidered during prediction. The other specified parameter was the number of fea-
tures. As with k for k-NN, different values for the parameter were tested. Other-
wise, LensKit’s default parameters for the ALSImplicitMF algorithm were used.

Sentiment Analysis

To perform the SA on the comments, a multilingual uncased BERT model from
Hugging Face was used, as described in Section 5.2.1. It had been fine-tuned for
the task of SA on product reviews in multiple languages. The task for the classi-
fier was set to sentiment analysis for the best possible performance. Additionally,
comments were truncated, or shortened, into sequences of 256 characters to en-
able conversion to fixed-size tensors13. These were specified by the truncation and
max_length parameters in Hugging Face.

Evaluation

The RS was evaluated with metrics from the RanX library. The LensKit library
also provides evaluation metrics, but as the MAP metric is not provided, the RanX
library was used. In addition to MAP, it provides precision, recall, and nDCG. One
limitation of the library is that it only accepts integers for the test set. Therefore,
the ratings were converted from floating points to integers during the evaluation.

Program-Specific Parameters

When running the program, three parameters must be provided. The first one
is the number of recommendations to generate for each user. The recommender

13https://huggingface.co/docs/transformers/pad_truncation



Chapter 6: Experiments 51

was tested with 10, 100, and 1000 recommendations to analyze its performance.
These tests were performed on the ratings in the original COCO dataset for each
of the five implemented algorithms used in Experiments 1 and 3.

Further, three versions of the dataset exist, each preprocessed by a different
number of steps from the ones presented in Section 4.2.4. The second parameter
is which dataset version to run the experiment on. This is represented by one
of all, WOstop_words, or WO_lemmatization. The three alternatives represent all
preprocessing steps, all steps except stop word removal, and all steps except stop
word removal and lemmatization. The recommender was tested on each data-
set version to find the best one. To obtain the baseline results to compare with
in Experiments 1 and 3, the RS based its recommendations on the original val-
ues. Therefore, only the numerical values were considered, not the reviews. Thus,
it did not make sense to analyze the performance of the RS for the baseline, as
which preprocessing steps were performed would not impact the recommend-
ations. Hence, the recommender was tested on the three dataset versions with
adjusted ratings.

Finally, the third parameter is the experiment type. This could either be
baseline to run the recommender on the original ratings or sa_sentences to run it
on the adjusted ratings. Hence, to get the baseline results for Experiments 1 and
3, the baseline parameter must be provided. To get the results for the adjusted
ratings, the sa_sentences parameter must be provided. To obtain the results for
Experiment 2, the parameter for experiment type is baseline, as it is based on the
original ratings.





Chapter 7

Results

The experiments conducted in this thesis were described in Chapter 5, and their
implementation details in Chapter 6. The results obtained through the experi-
ments are presented in this chapter. First, the results of the parametric testing
described in Section 6.2.2 are displayed in Section 7.1. Then, the best paramet-
ers from these experiments are used to evaluate the recommender model and
algorithms.

To evaluate the recommender model, the COCO dataset, presented in Sec-
tion 4.2 was used. Further, the evaluation metrics used to test the RS were de-
scribed in Section 5.1. The results of the three main experiments in this thesis are
presented in Sections 7.2 to 7.4.

7.1 Parametric Testing

The RS was tested with different parameters to find the optimal ones, as de-
scribed in Section 6.2.2. In this section, the results from these tests are shown.
First, the parameters for the LensKit algorithms are shown in Section 7.1.1. Then,
the program-specific parameters are shown in Sections 7.1.2 and 7.1.3.

7.1.1 Parameters for k-NN and ALSImplicitMF

Some parameters must be specified for the k-NN and ALSImplicitMF algorithms.
All the tests were done using the nDCG and MAP metrics. For the k-NN algorithms,
the recommender model’s performance was evaluated with values of nnbrs from
0 to 15. The results for UserkNN and ItemkNN are shown in Figures 7.1a and 7.1b,
respectively. As can be observed, the model’s performance quickly improves before
it stagnates around 6 nnbrs for both algorithms. For ALSImplicitMF, the features
parameter was tested similarly, but with values between 0 and 20. The results
from the test are visible in Figure 7.1c. The performance quickly improves until
around ten features before increasing steadily.
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Figure 7.1: LensKit algorithms’ performances with different values for specified
parameters.

Further, the k-NN algorithms were tested with different values for center and
aggregate. The results from these tests are displayed in Table 7.1. The best com-
bination of the parameters was not normalizing the center and using sum as the
aggregation mode. Thus, this was used in future experiments.

Table 7.1: The RS’s performance with different values for parameters for the k-
NN algorithms.

Center Aggr. Algorithm NDCG MAP

True Sum UserkNN 0.00054 0.00032
ItemkNN 0.00062 0.00030

WA UserkNN 0.00029 0.00017
ItemkNN 0.00126 0.00071

False Sum UserkNN 0.00899 0.00602
ItemkNN 0.00688 0.00504

WA UserkNN 0.00175 0.00105
ItemkNN 0.00222 0.00141
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7.1.2 Number of Recommendations

The first program-specific parameter tested was the number of recommendations
to generate for each user, as described in Section 6.2.2. The results of the experi-
ments can be seen in Table 7.2.

Table 7.2: The RS’s performance with different numbers of recommendations.

Algorithm Num recs NDCG MAP P R

10 0.09789 0.07053 0.02292 0.16079
ALSImplicitMF 100 0.15285 0.07969 0.00621 0.41461

1000 0.19244 0.08110 0.00110 0.70401

10 0.01878 0.01297 0.00471 0.03184
UserkNN 100 0.03578 0.01564 0.00169 0.11170

1000 0.05871 0.01633 0.00044 0.28475

10 0.01118 0.00827 0.00249 0.01750
ItemkNN 100 0.01660 0.00914 0.00064 0.04299

1000 0.03351 0.00952 0.00028 0.17633

10 0.01854 0.01103 0.00531 0.03643
PopScore 100 0.04422 0.01514 0.00231 0.15718

1000 0.08193 0.01626 0.00068 0.44294

10 0.00018 0.00009 0.00006 0.00039
Random 100 0.00100 0.00023 0.00007 0.00419

1000 0.00556 0.00026 0.00007 0.04117

As can be observed, the results for nDCG, MAP, and Recall (R) increased for
more significant numbers of recommendations. In contrast, the Precision (P) val-
ues decreased for larger numbers of recommendations. The one exception was
the precision values for the Random algorithm, which were almost the same for
all numbers of recommendations. In future experiments, the number of recom-
mendations was set to ten because users would not want to search through tens
or hundreds of recommendations.

7.1.3 Preprocessing Steps

The other program-specific parameter that was tested represents the preprocessed
versions of the dataset to run the recommendations for, elaborated on in Sec-
tion 6.2.2. The tests were run for the three versions of the dataset; all prepro-
cessing steps, all steps except lemmatization, and all steps except lemmatization
and stop word removal. These are labeled respectively in the table: All, All - L,
and All - LS. The performance of the RS with the different preprocessing steps is
shown in Table 7.3.
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Table 7.3: The RS’s performance with different preprocessing steps.

Algorithm Preproc. steps NDCG MAP P R

All 0.09888 0.07122 0.02315 0.16284
ALSImplicitMF All - L 0.09631 0.06872 0.02284 0.16044

All - LS 0.09635 0.06886 0.02269 0.15991

All 0.01907 0.01324 0.00473 0.03215
UserkNN All - L 0.01899 0.01316 0.00472 0.03206

All - LS 0.01895 0.01312 0.00474 0.03205

All 0.01103 0.00817 0.00246 0.01725
ItemkNN All - L 0.01108 0.00820 0.00247 0.01732

All - LS 0.01117 0.00825 0.00249 0.01761

All 0.01863 0.01105 0.00535 0.03675
PopScore All - L 0.01839 0.01096 0.00528 0.03596

All - LS 0.01866 0.01107 0.00536 0.03682

All 0.00029 0.00017 0.00009 0.00060
Random All - L 0.00018 0.00009 0.00007 0.00035

All - LS 0.00009 0.00005 0.00003 0.00023

As one can observe, the ALSImplicitMF, UserkNN, and Random algorithms per-
formed best when all preprocessing steps were performed. There was one excep-
tion, as the Precision (P) values for UserkNN were not the best with all prepro-
cessing steps, but the results were very close. ItemkNN and PopScore, on the other
hand, performed best with all steps except lemmatization and stop word removal.
In future experiments, the last dataset version was used.

7.2 Experiment 1: Adjustment of Ratings

Experiment 1 involves incorporating SA from course reviews and adjusting the
rating values based on the predicted sentiment. It is described in more detail
in Section 5.2. The results from this experiment are presented in this section.

7.2.1 Comparison of Rating Distributions

After having predicted and adjusted the original ratings, these were compared.
One thing to note is that the rating values are on the same interval, i.e., [1, 5] but
are represented differently. The original ratings are floating points that can end
in .0 or .5, whereas the predicted ratings are represented as integers between one
and five. As the adjusted ratings are combinations of these, they are floating points
ending in .0, .25, .5, or .75. Therefore, the ratings were rounded to the nearest
integer in this comparison. Also, only the ratings adjusted with the weight of 0.5,
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i.e., the average between original and predicted ratings, are compared.
The comparison of the distributions of the original, predicted, and adjusted

ratings is shown in Figure 7.2. Notice the significant difference in the number of
predicted ratings of 5.0 compared to the original ones. However, there are twice
as many predicted ratings of 4.0 than the original ones.
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Rating
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Comparison of rating distributions

Original ratings
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Figure 7.2: Original, predicted, and adjusted rating distributions.

7.2.2 Performance of Recommender With Adjusted Ratings

For Experiment 1, the RS was run on the adjusted ratings using different weights
as described in Section 6.1. As the aim of the first research question was to ex-
plore how the RS’s performance and ranking accuracy was affected by adjusting
the ratings, the metrics Precision (P), Recall (R), nDCG and MAP were measured.
Table 7.4 displays the results from the experiment.

The performance for each of the five algorithms is presented for each adjust-
ment weight. The table’s second column represents the weights used. A weight
of 0 is the original rating, whereas 1 is the predicted rating. The three values
between these, 0.25, 0.5, and 0.75, are adjustments of the original ratings based
on the predicted sentiment. The closer to 0, the more the original rating weighs,
and the closer to 1, the more the prediction weighs. A more in-depth description
of this weighing can be found in Section 5.2.2.

Based on the results from the parametric tests in Section 7.1, the experiment
was run with ten recommendations and all preprocessing steps except stop word
removal and lemmatization. ALSImplicitMF and UserkNN performed best with a
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weight of 1, with improvements of their nDCG scores of 1.18% and 1.54%, re-
spectively. On the other hand, ItemkNN and PopScore performed best with adjus-
ted ratings, with improvements of 0.36% and 0.65%, respectively. In other words,
the improvements in performance were minor.

Table 7.4: Experiment 1: The RS’s performance with adjusted ratings.

Algorithm Weight NDCG MAP P R

0 0.09711 0.06978 0.02279 0.16031
0.25 0.09732 0.06975 0.02286 0.16081

ALSImplicitMF 0.5 0.09768 0.07023 0.02296 0.16108
0.75 0.09663 0.06900 0.02286 0.16046
1 0.09826 0.07059 0.02304 0.16217

0 0.01878 0.01297 0.00471 0.03184
0.25 0.01892 0.01310 0.00474 0.03189

UserkNN 0.5 0.01895 0.01312 0.00474 0.03205
0.75 0.01898 0.01312 0.00475 0.03211
1 0.01907 0.01311 0.00482 0.03246

0 0.01118 0.00827 0.00249 0.01750
0.25 0.01122 0.00830 0.00250 0.01760

ItemkNN 0.5 0.01117 0.00825 0.00249 0.01761
0.75 0.01109 0.00815 0.00250 0.01758
1 0.01108 0.00816 0.00249 0.01755

0 0.01854 0.01103 0.00531 0.03643
0.25 0.01866 0.01107 0.00536 0.03682

PopScore 0.5 0.01866 0.01107 0.00536 0.03682
0.75 0.01842 0.01098 0.00529 0.03604
1 0.01842 0.01098 0.00529 0.03604

0 0.00024 0.00014 0.00008 0.00045
0.25 0.00018 0.00009 0.00006 0.00040

Random 0.5 0.00025 0.00014 0.00009 0.00054
0.75 0.00017 0.00008 0.00007 0.00033
1 0.00028 0.00013 0.00011 0.00055
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7.3 Experiment 2: Rating-Based Approaches in Recom-
mendation

The aim of Experiment 2 was to analyze the impact different rating-based ap-
proaches have on the performance and ranking accuracy of a popularity-based RS.
The recommender was run for the PopScore algorithm with the five approaches
described in Section 5.3. Additionally, the Random algorithm was tested for com-
parison purposes. The results can be found in Table 7.5.

Note that the approach of Combining the average and unevenly distributed rat-
ings performs the best for the nDCG, Precision (P), and Recall (R) metrics. How-
ever, for MAP, the approach of the Number of ratings performed best, with the
previous approach following right behind. In addition, all the approaches except
Average rating outperformed the Random algorithm.

Table 7.5: Experiment 2: The RS’s performance with different rating-based ap-
proaches.

Rating-based approach NDCG MAP P R

Average Rating 0.00006 0.00004 0.00001 0.00011
Sum of Ratings 0.01854 0.01103 0.00531 0.03643
Number of Ratings 0.01860 0.01110 0.00531 0.03657
Avg and Uneven Distribution 0.01868 0.01107 0.00535 0.03691
Avg and Even Distribution 0.00642 0.00378 0.00195 0.01253
Random 0.00024 0.00014 0.00008 0.00045

7.4 Experiment 3: Rating-Based Approaches With Adjus-
ted Ratings

The aim of Experiment 3 was to combine the two previous experiments, as de-
scribed in Section 5.4. In other words, the rating-based approaches from Exper-
iment 2 were tested on the adjusted ratings. Additionally, the Random approach
was included for comparison. The results of the experiment are visible in Table 7.6.
As for Experiment 1, the closer the weights are to 0, the more the original value
weighs. Thus, the values for 0 in the table are the same as in Experiment 2, as seen
in Table 7.5. A further description of the weight values can be found in Section 7.2.

Some results should be noticed. First, the Number of ratings approach had the
same results for all weights. Second, this almost applied to the Average rating ap-
proach, except for the Recall (R) metric. Further, the Sum of ratings, Combination
of average and unevenly converted ratings, and Combination of average and evenly
converted ratings approaches differed for which weights they perform the best.
They have in common to have the best results for weights between 0 and 0.5.
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Table 7.6: Experiment 3: The RS’s performance with different rating-based ap-
proaches on adjusted ratings.

Algorithm Weight NDCG MAP P R

0 0.00006 0.00004 0.00001 0.00011
0.25 0.00006 0.00004 0.00001 0.00013

Average Rating 0.5 0.00006 0.00004 0.00001 0.00013
0.75 0.00006 0.00004 0.00001 0.00013
1 0.00006 0.00004 0.00001 0.00013

0 0.01854 0.01103 0.00531 0.03643
0.25 0.01866 0.01107 0.00536 0.03682

Sum of Ratings 0.5 0.01866 0.01107 0.00536 0.03682
0.75 0.01842 0.01098 0.00529 0.03604
1 0.01842 0.01098 0.00529 0.03604

0 0.01860 0.01110 0.00531 0.03657
0.25 0.01860 0.01110 0.00531 0.03657

Number of Ratings 0.5 0.01860 0.01110 0.00531 0.03657
0.75 0.01860 0.01110 0.00531 0.03657
1 0.01860 0.01110 0.00531 0.03657

0 0.01868 0.01107 0.00535 0.03691
0.25 0.01868 0.01107 0.00535 0.03691

Avg and Uneven 0.5 0.01836 0.01095 0.00526 0.03589
0.75 0.01837 0.01095 0.00526 0.03589
1 0.01823 0.01093 0.00518 0.03537

0 0.00648 0.00378 0.00195 0.01253
0.25 0.00670 0.00480 0.00158 0.01037

Avg and Even 0.5 0.00497 0.00274 0.00156 0.01039
0.75 0.00447 0.00252 0.00138 0.00898
1 0.00373 0.00196 0.00126 0.00820

0 0.00024 0.00014 0.00008 0.00045
0.25 0.00018 0.00009 0.00006 0.00040

Random 0.5 0.00025 0.00014 0.00009 0.00054
0.75 0.00017 0.00008 0.00007 0.00033
1 0.00028 0.00013 0.00011 0.00055



Chapter 8

Discussion

The current chapter discusses the results presented in Chapter 7. The discussions
relate to the previous work presented in Chapter 3 and architectural choices made
in Chapter 5. The chapter mainly follows the same structure as the results in the
previous chapter. Therefore, the results of the parametric testing are discussed
in Section 8.1. Later, the results from each experiment introduced in Chapter 5
are presented in Sections 8.2 to 8.4. Finally, some limitations and challenges are
discussed in Section 8.5.

8.1 Parametric Testing

The recommender was tested with different parameters to find the optimal ones.
The results from these tests were shown in Section 7.1. First, the results of the
parametric tests related to the LensKit algorithms are discussed in Section 8.1.1
before the results associated with the program-specific parameters are discussed
in Section 8.1.2.

8.1.1 Parameters for k-NN and ALSImplicitMF

The RS’s performance using k-NN quickly improved before it stagnated around
a k value of six, as seen in Figures 7.1a and 7.1b. As described in Section 2.1.1,
k points were grouped into clusters that the recommendations were based on.
Thus, low values of k would make the algorithm sensitive to noise and outliers in
the data, decreasing performance. Further, a too large k would include irrelevant
points in the clusters. Thus, the number of k chosen was six.

Using ALSImplicitMF, the algorithm also quickly improved until round ten fea-
tures, but it continued to improve steadily afterward, as shown in Figure 7.1c.
As this parameter refers to the dimensionality of the latent factors that represent
users and items in the model, the RS’s performance varied with different values.
For low numbers of features, the model struggled to present the underlying pat-
terns and preferences in the data accurately. Then, the performance was reduced
as the model could not capture as many user-item relationships. On the other
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hand, more features allowed the model to capture more intricate and nuanced
patterns in the data. However, using too many features leads to overspecializ-
ation, explained in Section 2.1.2. Therefore, twenty features were used, as the
model still improved until this value. Extensive tests were not done since the same
configurations were used for baseline and further experiments, and the aim was
to observe the impact of the adjusted ratings. Regardless of the number of features
chosen, the ALSImplicitMF algorithm would obtain different results each time it
was run, as it is based on randomness as explained in Section 2.1.1.

Even though the optimal parameters depend on the data, a comparison was
made to another study using the LensKit library. The values used by Bałchanowski
and Boryczka [95] for k were 23 for UserkNN, 44 for ItemkNN, and 21 for features
in ALSImplicitMF. In this thesis, the value of six was chosen for k for both al-
gorithms. For increased performance, different values for k for the two algorithms
could have been tested, but by looking at the plotted results, the difference would
have been minor. Regarding the value for features, their chosen values are lar-
ger than the optimal ones in this thesis, implying that they used a more intricate
dataset.

8.1.2 Program-Specific Parameters

Some parameters must be provided when running the program, as elaborated on
at the end of Section 6.2.2. Here, the results of the tests of the two program-
specific parameters Number of recommendations and Preprocessing steps are dis-
cussed.

Number of Recommendations

The number of recommendations to generate for each user was tested with values
of 10, 100, and 1000. The results of the tests can be found in Table 7.2. All the
algorithms behaved similarly, except the Random algorithm’s Precision scores. The
RS’s performances and ranking accuracies in these tests are discussed here.

As mentioned in Section 2.1.3, the nDCG metric considers both relevance and
ranking position. When more recommendations are included in the evaluation,
additional relevant items will likely be included in the list. Therefore, the nDCG
values increased for larger numbers of recommendations. However, this increase
would stagnate with more recommendations if the additional items are less rel-
evant.

Increasing metric values for many recommendations also applied to the MAP
metric. Including more recommendations would give a higher chance of captur-
ing additional relevant items, which gives a higher average precision. As MAP is
calculated by taking the average precision of each user and averaging these, it
increases for higher parameter values. As with nDCG, the metric scores would
stagnate at some point.

The Recall scores also increased for larger numbers of recommendations. This
was expected as the metric is calculated by dividing the number of retrieved rel-
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evant items by the total number of relevant items, as explained in Section 2.1.3.
Thus, including more items in the evaluation would likely lead to the inclusion
of more relevant items. However, an increased Recall score does not imply higher
performance, as it does not consider the ranking or relevance of the recommend-
ations.

The Precision metric represents the percentage of the relevant recommended
items, as described in Section 2.1.3. In contrast to the other metrics, the scores
decreased with more recommendations for the four first algorithms. This behavior
shows that the RS successfully places relevant items higher in the recommenda-
tion list. For the Random algorithm, on the other hand, the scores were almost
identical for all numbers of recommendations. This is because this algorithm ran-
domly recommends items, and the relevant items will likely be distributed evenly
throughout the list.

Experiments 1 and 3 compared the performance of the RS with original and
adjusted ratings. However, the differences would likely be more significant with
more recommendations based on the observations above. However, as users
would not want to search through hundreds or thousands of recommendations,
ten were considered in the experiments, as noted in Section 7.1.2.

Preprocessing Steps

As introduced in Section 2.2.1, human language has to be preprocessed for ma-
chines to understand it. Therefore, the RS was tested on three dataset versions. All
versions included the first three preprocessing steps introduced in Section 4.2.4,
normalization, number removal, and expansion of contractions. The first version
also consisted of removing stop words and punctuation, and lemmatization. The
second version included the three common steps and the two former steps, while
the third version only included the three common steps and the removal of punc-
tuation. Further descriptions of the versions and preprocessing steps were given
in Sections 4.2.4 and 6.2.2. As can be observed in Table 7.3, the performance of
the RS differed slightly using the different versions.

The hypothesis of the testing was that the rating predictions would be more
accurate when stop words were included, as BERT is expected to perform bet-
ter when stop words are preserved, as explained in Section 2.2.2. Therefore, the
results for All - LS were expected to outperform the other dataset versions. This
applied for ItemkNN and PopScore, but not for the remaining algorithms. Thus,
which dataset version to use for optimal results depends on the algorithm.

Each recommendation algorithm was affected differently by the dataset ver-
sions. However, note that the version only excluding lemmatization never per-
formed the best. Thus, this was disregarded when choosing which one to use in
further experiments. For the two other versions, some algorithms performed bet-
ter with all preprocessing steps, while others performed better without stop word
removal and lemmatization. As there was no common pattern in the results, the
All - LS version was chosen based on the hypothesis of BERT’s performance.
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8.2 Experiment 1: Adjustment of Ratings

As mentioned in Section 5.2, the first experiment aimed to answer the first re-
search question, i.e., how incorporating SA of course reviews, and adjusting rat-
ing values based on sentiment, affects the performance and ranking accuracy of
course recommendations in MOOCs. These two aspects and some trade-offs and
considerations are discussed in this section.

8.2.1 Incorporation of Sentiment Analysis

The incorporation of SA in the recommendation was expected to improve the
performance of the RS, based on previous research [8–13, 73]. Specifically, this
hypothesis was based on the observation of Zheng et al. [7] that users explain their
reasoning behind ratings through their reviews. Therefore, the different rating
distributions in Figure 7.2 were wanted. If the distributions had been identical,
incorporating sentiment would not have affected the recommendations. Instead,
the predicted ratings were distributed more evenly along the five ratings than the
original ones. Thus, incorporating sentiment helped to mitigate the challenge of
distribution introduced in Section 4.2.3 by providing more diversity in the ratings.

Notice that the sum of original and predicted ratings of four and five was
almost the same. Hence, many users give a rating of five, but based on their at-
tached reviews, these were predicted to be ratings of four. This could result from
how users rate items, in the sense that some users leave more positive ratings than
others on average. Hence, this approach could also be used to normalize ratings.
For ratings two and three, almost the same number was present for the three types
of ratings. However, for one, there were more predicted ratings than the original
ones, which can result from inadequate reviews that were wrongfully predicted.

8.2.2 Adjustment of Ratings Using Weights

In previous literature, actual and inferred ratings have been combined using dif-
ferent approaches, as described in Section 3.3. This thesis combined the original
and predicted ratings using weights, elaborated on in Section 5.2.2. The results
from the experiment can be seen in Table 7.4.

Generally, any rating adjustment outperformed the RS’s performance with
original ratings. The only exceptions were the nDCG and MAP of the Random
algorithm. However, again, this algorithm randomly recommends items, so its
recommendations were not affected by the ratings and can be ignored. For the
remaining algorithms, which weight gave the best results differed. Based on this
observation, using weights is a better approach than averaging, as done by for
example Zhang et al. [11]. If the ratings had been combined with their average,
these observations would not have been made, and the best results would not
have been obtained.

By analyzing the results, one can observe that ALSImplicitMF and UserkNN per-
formed best with predicted ratings (Weight = 1). Compared to using the original
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ratings, their nDCG scores were improved by 1.18% and 1.54%, respectively, as
noted in Section 7.2. However, the ItemkNN and PopScore algorithms performed
best with weights of 0.25. The improvements for these two were minor compared
to the original ratings, being 0.36% and 0.65%. These slight improvements when
incorporating the sentiment differed for each algorithm because of how they work.

Li et al. [9] is the only research found using any of the same algorithms as
in this thesis. They used different versions of ALS, introduced in Section 2.1.1, in
their CF approach. However, they did not use the same metrics to evaluate their
RS. Thus, the comparison is not valid but can pinpoint the expected behavior of
the ALSImplicitMF algorithm. In their experiment, the ALS method with compre-
hensive ratings performed 5-12% better than the original ratings. This improve-
ment is more significant than the one obtained here, but various factors can cause
this, such as the data at hand. Comparisons to previous research for the other al-
gorithms could not be made as no work was found using k-NN or popularity-based
algorithms - in a reasonable amount of time.

As noted in Section 8.2.1, the predicted ratings were more evenly distributed
along the five rating values. The adjusted ratings in Figure 7.2 are the average of
the original and predicted ratings. By combining these ratings with their average,
the rating distribution would naturally be normalized. As can be observed, the
distribution of the adjusted ratings was more similar to the original ratings, with a
preponderance of positive ratings. However, combining the actual ratings with the
predicted ones made the ratings more spread out. The distributions of the adjusted
ratings with different weights could have been included in the comparison but
were not because the adjusted and predicted distributions represent the weights
well enough.

8.2.3 Trade-offs and Considerations

The first consideration to note about Experiment 1 is regarding the evaluation.
The impact of incorporating sentiment in course recommendations was measured
using evaluation metrics. It would be interesting to conduct an online evaluation
through user surveys or interviews, as described in Section 2.1.3, to explore how
this incorporation affects user satisfaction and experience. Further, the users might
have different expectations regarding the role of sentiment in recommendations.
This and possible solutions, such as enabling or disabling sentiment in recom-
mendations, could be looked into.

Another consideration is the time and resources needed to experiment. First,
the number of recommendations discussed in Section 8.1.2 impacted the time
required. Thus, even though the best results were obtained with 1000 recom-
mendations, this was too time-consuming to do for all experiments. Second, the
recommendation algorithms affected the necessary time and resources. The Most
popular and Random algorithms were very fast, whereas the ALSImplicitMF and
k-NN algorithms took more time during the recommendation. However, the dif-
ferences were minor for smaller datasets and numbers of recommendations. How-
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ever, they differed more with larger datasets, such as COCO. As the computational
duration was some hours instead of days, this trade-off was taken to compare the
RS’s performance using different algorithms. Further, using original, predicted, or
adjusted ratings did not affect the computational complexity, as they are all float-
ing points on the same interval. However, the prediction step was time-consuming
because SA is a resource-heavy process. Thus, the SA should be performed as few
times as possible.

The implementation used a BERT model to predict ratings. As elaborated on
in Section 5.2.1, several other LMs could have been used for this. Thus, interesting
insights could be obtained by analyzing the prediction of ratings using another
model. Similarly, there exist many recommendation algorithms. Using the same
algorithms used by other researchers, the results could be more easily compared
to other studies. Another aspect that affects the performance of the prediction is
the quality of the data.

8.3 Experiment 2: Rating-Based Approaches in Recom-
mendation

The second experiment aimed to analyze and compare the impact of different
rating-based approaches in popularity-based RSs for MOOCs, as elaborated on
in Section 5.3. To analyze the performance and ranking accuracy of the RS using
different approaches, the nDCG, MAP, Precision, and Recall metrics were meas-
ured. The results from the experiment were presented in Section 7.3. The impact
of different rating-based approaches and some trade-offs and considerations are
discussed here.

8.3.1 Impact of Rating-Based Approaches

The three approaches Sum of ratings, Number of ratings, and Combination of av-
erage and uneven distribution of ratings performed the best. The two first would
perform equally if all ratings were the same, as elaborated on in Section 5.3.2. As
shown in Figure 4.2, the COCO dataset’s rating distribution is pretty unbalanced
with a preponderance of positive ratings. Therefore, these two approaches were
expected to have quite similar results, but not identical. In fact, Number of ratings
slightly outperformed Sum of ratings for all metrics except Precision, where they
performed the same. The hypothesis for Sum of ratings was that it would out-
perform Number of ratings because considering the rating values would improve
the recommendations, compared to only looking at the number of reviews given.
However, this hypothesis is rejected because this performed worse than Number
of ratings.

The Average rating approach was not expected to perform well because of
the disadvantages described in Section 5.3.3. It was included for comparison as
it has obtained adequate results in previous research [80, 84]. Although, here,
the approach performed worse than Random for all metrics. However, combining
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it with other approaches could improve these. With the hypothesis that Sum of
ratings would outperform Number of ratings in mind, the former was combined
with Average rating for the best possible results. Based on the observation that
Number of ratings outperformed Sum of ratings, it could be interesting to test the
combination of this with Average rating, in addition to the combination with Sum
of ratings.

Two ways were used to convert the Sum of ratings to combine it with the
Average rating approach, described in Section 5.3.4. When using the Unevenly
converted ratings, the RS performed almost three times as well as with the Evenly
converted ratings for all metrics. Based on the observation that Sum of ratings
massively outperformed the Average rating approach when used individually, this
is not surprising as the Unevenly converted ratings favors the summed ratings. Ul-
timately, combining the Average rating with Unevenly converted ratings performed
the best.

8.3.2 Trade-offs and Considerations

Fundamentally, the advantage of popularity-based recommendation models is
their simplicity, as described in Section 5.2.3. However, they have some disad-
vantages that restrict and limit the results. They solely rely on aggregating ratings
and do not consider individual preferences. This lack of personalization can res-
ult in less relevant recommendations for individual users. Although, as explained
in Section 2.1.1, they could effectively mitigate the cold start problem introduced
in Section 2.1.2. Therefore, the usage of such algorithms should be based on
the situation. For example, they can be used when new users enter the platform
or to expose them to new courses. Usually, popularity-based recommendation
algorithms are used with other algorithms, such as CF or CBF, for the best results.
However, as the goal of this experiment was not to obtain the best possible results
but rather to compare different rating-based approaches, this was not considered
an option.

As the best rating-based approaches performed similarly in this experiment,
they were analyzed beyond their performances. First, the computational complex-
ity of the approaches differed. The Number of ratings, Sum of ratings, and Average
rating approaches had the lowest complexities, as they count, sum, and calculate
the mean of the ratings. The combined approaches were more complex because
of the conversion of the summed ratings. Beyond this, they were similar to the
former approaches as they combined the summed ratings with the Average rat-
ing by calculating the mean. Further, the time spent during the recommendation
depends on the computational complexities. Finally, all these approaches recom-
mended items quickly, and the time and resources needed to experiment were
therefore not a problem.
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8.4 Experiment 3: Rating-Based Approaches With Adjus-
ted Ratings

Experiment 3 aimed to analyze how incorporating sentiment from course reviews
affected a popularity-based recommender system’s performance and ranking ac-
curacy with various rating-based approaches. The results of the experiment were
presented in Section 7.4.

The first thing to note is that the Number of ratings approach was not affected
by adjusted ratings as it does not consider the ratings when recommending. There-
fore, the results were the same for all weights for this approach. In retrospect, the
method of Jannach et al. [80] of counting the number of positive ratings instead
of all ratings could have been more useful in this experiment. However, as seen
in Figure 7.2, the rating distributions of the original and adjusted ratings were
pretty similar, so the changes would not have been massive. Although, the ap-
proach would have been affected by the adjusted ratings as opposed to the total
number of ratings.

The Average rating approach was also unaffected by the adjusted ratings, ex-
cept the Recall scores. This was expected as the distributions of the original and
adjusted ratings were similar, making it likely that the average ratings would be
similar. This also applied to the Sum of ratings approach since it was calculated by
summing the rating values. Further, as in Experiment 1, the results for the Ran-
dom algorithm were unaffected by the adjustment of the ratings because it bases
its recommendations on randomness.

As experienced in Experiment 2, Number of ratings outperformed the Sum of
ratings approach for the original ratings. Based on the hypothesis that consid-
ering the rating values would improve the recommendations, these were again
compared. However, when basing the recommendations on the adjusted ratings,
Sum of ratings outperformed Number of ratings. As the two approaches have very
similar results for original and adjusted ratings, this improvement was minor but
still present.

The combined approaches’ performances did not improve significantly by in-
corporating sentiment. The Combination of average and evenly converted ratings
approach performed worse using predicted ratings. Depending on the metrics, it
performed best with a weight of 0.25 or 0 - being the original metrics. The Com-
bination of average and unevenly converted ratings approach also performed best
for these two weights. However, the performance was not that different using the
other weights. Based on the observations about how the original and adjusted rat-
ing distributions affected the Average rating and Sum of ratings approaches, this
lack of improvement was expected as these were the approaches combined.

Several studies incorporating sentiment in the literature are compared to
popularity-based RSs. Still, no studies incorporating sentiment in the recommend-
ation using these RSs could be found. Therefore, the results were not compared to
any other research. To conclude, based on the results and the observations about
the rating distributions, the performance and ranking accuracy of the RS was
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not affected significantly by incorporating sentiment for different rating-based
approaches.

8.5 Limitations and Challenges

Generally, the results for the different experiments were pretty bad compared to
other studies. This section discusses limitations and challenges that could have
impacted the results. First, the evaluation metrics used in the assessment are dis-
cussed in Section 8.5.1 before the experimental design and data in Sections 8.5.2
and 8.5.3.

8.5.1 Evaluation Metrics

The metrics used to evaluate the RS were nDCG, MAP, Precition, and Recall, as
described in Section 5.1. These were selected as the research questions aimed to
measure the performance and ranking accuracy of the RS. Other metrics that could
have been used are, for example, MRR and MAE. As explained in Section 5.1, MRR
was not applicable as it only focuses on the first relevant item. MAE, on the other
hand, was disregarded because of its handling of missing values. This was not
fitting as the COCO dataset used for evaluation is very sparse.

The choice of metrics resulted in some limitations. First, the selected metrics
did not measure the diversity and novelty of the recommendations. As these are
essential factors to consider when evaluating an RS, additional metrics, such as
diversity measures or serendipity metrics, could have been included. Further, for
Experiments 2 and 3, the results have not been compared to any related work.
Not a lot of related work is present, but the results could have been compared
more easily by including some of the metrics used in these other works.

Another limitation of these metrics was their lack of measuring user satisfac-
tion. This is a common problem when evaluating an RS with offline feedback.
In contrast, if online feedback was used in addition, user satisfaction and utility
could have been measured as described in Section 2.1.3. However, due to time
and resource constraints, this was disregarded.

Lastly, a limitation was that the metrics do not consider contextual factors such
as time, location, or user preferences. Recommendations can vary depending on
these factors, and the measured performance might not reflect future perform-
ance [14, p. 251]. The course reviews in the COCO dataset contain a timestamp,
which could have been considered to weigh reviews differently.

8.5.2 Experimental Design

Some libraries used to develop and evaluate the RS were in early stages, as
shown in Section 6.2.1. Specifically, this applied to the Contractions, Hugging
Face, LensKit, and RanX libraries. The first one expanded contractions in reviews
into combinations of words. Thus, it affected the SA, but ultimately, it would not
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affect the results as these words do not contain much sentiment. The Hugging
Face library provided the LM used to perform SA. The fact that the library was
in its early stages did not matter, as the quality of the provided models is what
was important. The utilized model had been downloaded almost 1M times over
the previous month. Thus, the model was expected to perform well. However, the
model’s performance depended on the quality of the data.

The LensKit library was used to implement the RS, as described in Sec-
tion 6.2.2. Getting started using LensKit was challenging as the library’s docu-
mentation contained errors. Additionally, not many researchers that have used
the library have their code publicly available. However, after coming across the
research of Bałchanowski and Boryczka [95], implementing the RS became sig-
nificantly more manageable. Thus, alternative libraries were not examined, as
the library contained all the preferred recommendation algorithms. In retrospect,
other libraries could have been investigated to compare them to LensKit.

An aspect to consider is that the LensKit and RanX libraries obtained differ-
ent results when evaluating the RS. The differences were not groundbreaking but
still present. This was also noted by Bałchanowski et al. in their code1. However,
which library had the erroneous results is not known. To figure this out, using the
Scikit-learn library2 for evaluation was attempted. Though, this attempt was un-
successful because of the format of the recommendations. As the results in LensKit
and RanX were not too large, the attempt was canceled due to time constraints.
However, the validity of the results was weakened because of this.

8.5.3 Data

The dataset used for evaluation can significantly impact the evaluation results
and the assessment of the system’s performance. After comparing existing data-
sets in the educational domain, the COCO dataset was chosen for evaluation, as
described in Chapter 4. However, some aspects of the dataset are discussed here.

One aspect that affected the evaluation results is the data quality. The course
reviews have been given by online users with diverse backgrounds related to lan-
guages, ages, genders, cultures, education, etc. This could impact the nature of
how reviews are given and should be considered. As an example, the course re-
views can be in any language. Thus, a multilingual BERT model was chosen in-
stead of removing the multilingual data. However, a multilingual model might
perform worse on English reviews than an LM trained explicitly on English data.
In a possible extension of the experiments, this could have been investigated.

Some preprocessing was done on the reviews to make the LM able to perform
SA. Still, typos were not handled, meaning some information could be misun-
derstood by the LM. Additionally, the removal of punctuation could result in un-
wanted behavior. For example, one of the reviews contained "cool..at". The periods
were removed in the preprocessing, and the two words were merged into "coolat".

1https://github.com/mbalchanowski/RecRankAgg/blob/main/rec_rank/helpers/helpers.py
2https://scikit-learn.org/
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The LM is not able to understand that the words should be split up, and the mean-
ing of the word "cool" will not be included in the SA. Such problems result from
the unstructured and difficult-to-handle human languages, decreasing the qual-
ity of the SA. For example, further steps should be taken to avoid such issues by
adding spaces between the two words in the example.

Some reviews ended up empty after the preprocessing because of the stop
word removal. These were dropped due to time constraints. This could affect the
performance of the RS as there is less training data. However, as these reviews only
contained stop words, one can argue that they would not be valuable in the SA.
Alternatively, instead of dropping these reviews, the original ratings could have
been used. Considering the research questions, this alternative is not applicable
as the ratings could not have been adjusted.

After preprocessing the dataset, the reviews were split into training and test
sets based on the strategy described in Section 4.2.5. Using this splitting strategy,
140k reviews were distributed between the two splits, as shown in Figure 4.8.
Hence, a lot of the data is disregarded. Using another split ratio than 80/20, the
RS could have been trained on more data. For example, a split ratio of 75/25
would have resulted in 90k additional reviews. However, this increase is not too
significant compared to the total number of reviews in the dataset. The COCO
dataset is pretty sparse, as most users have given one review, shown in Figure 4.8.
If the model could have been trained on reviews only containing a rating and not
necessarily a comment, the training set would have been much larger. Addition-
ally, cross-fold validation should have validated the RS to ensure reliable results.

Based on the reflections above, extensive tests should have been done to de-
termine why the RS performed poorly compared to other studies. To figure out if
it was because of the data or libraries used in the implementation, the RS should
have been tested using another dataset, such as a MovieLens dataset3. Then, the
results obtained could have been compared to other research to determine why
the results in this thesis were poor.

3https://grouplens.org/datasets/movielens/
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Conclusion and Future Work

The increasing amount of data on the Web has caused an overload problem for
the users. As a result, Recommender Systems have been developed to reduce the
time spent searching for content online. Several researchers have combined re-
views with ratings to improve recommendations by using unused information in
the reviews. Various approaches have been utilized to combine these, where the
most common one is with weights. However, this is yet to be done in Course Re-
commendation.

This thesis aimed to improve Course Recommendation by focusing on three
approaches. In the first approach, ratings of course reviews in the COCO data-
set were predicted by performing Sentiment Analysis using a BERT model. Then,
these predictions were combined with the original ratings using different adjust-
ment weights. Following, a Recommender System with several recommendation
algorithms was implemented and evaluated on the original, predicted, and ad-
justed ratings. The second approach compared different rating-based approaches’
impact on the Course Recommendations. Then, these two approaches were com-
bined into a third one, where various rating-based approaches were evaluated on
the original, predicted, and adjusted ratings.

The remaining parts of this chapter will present the contributions of the thesis
in Section 9.1 and some possible directions for future work in Section 9.2.

9.1 Summary of Contributions

Three research questions were proposed in Section 1.2 to accomplish the object-
ives of the thesis. Answering these research questions gives a summary of the
contributions to the field.

RQ1 How does incorporating sentiment analysis of course reviews, and adjust-
ing rating values based on sentiment, affect the performance and ranking
accuracy of course recommendations in MOOCs?

An RS was implemented to analyze how its performance was affected by adjusting
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ratings based on sentiment. In conclusion, all the compared algorithms performed
better with adjusted than original ratings. The ALSImplicitMF algorithm’s nDCG
score was 1.54% better, while the remaining algorithms’ improvements were smal-
ler. The UserkNN and ALSImplicitMF algorithms performed best with predicted
ratings, whereas ItemkNN and PopScore performed best with a weight of 0.25. In
summary, incorporating SA and adjusting ratings based on sentiment improved
the performance and ranking accuracy of course recommendations in MOOCs.

RQ2 To what extent does the choice of rating-based approaches impact the
performance and ranking accuracy of popularity-based recommender sys-
tems for course recommendation in MOOCs?

Five approaches were implemented to analyze how different rating-based ap-
proaches impacted the performance of a popularity-based RS. Then, the recom-
mendations generated by the RS for each approach were evaluated. To conclude,
the three best-performing approaches performed about as well as each other, while
the two others performed significantly worse. The approach Combining the average
and unevenly distributed ratings performed the best, closely followed by Number
of ratings and Sum of ratings. Which of these approaches being used did not im-
pact the popularity-based RS significantly, but the two other approaches should
be disregarded.

RQ3 How is a popularity-based recommender system’s performance and rank-
ing accuracy with various rating-based approaches affected by incorpor-
ating sentiment from course reviews?

The rating-based approaches above were evaluated on the adjusted ratings to
analyze how various rating-based approaches were affected by incorporating sen-
timent from course reviews. To conclude, the approaches of the Average rating
and Number of ratings were unaffected. In contrast, Sum of ratings, Combination
of average and unevenly converted ratings, and Combination of average and evenly
converted ratings had minor improvements compared to the original ratings. How-
ever, these improvements were so small they could be disregarded.

9.2 Future Work

Based on the results and findings of this research, several directions can be pur-
sued to conduct further research on the topic.

An interesting approach to extending this work could be to explore other LMs
for predicting labels and different ways of incorporating the sentiment into the
ratings. Several fascinating approaches have been used in the literature, as presen-
ted in Section 3.3. As the COCO dataset is so sparse, evaluating the recommender
model using another dataset could provide valuable insights. Additionally, other
algorithms could be used in the recommendation or a hybrid system to see how
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this is affected by adjusted ratings. Further, an extension to work related to the
rating-based approaches in popularity-based RSs could be done. As mentioned,
the Number of ratings approach is unaffected by the adjusted ratings. However,
counting the number of positive ratings would affect this approach as it would be
based on the rating values.

The primary source for the recommendation process in this work is a single-
criterion, or overall, rating score. One future approach is extracting information
about different course aspects through the reviews. Then, sub-ratings could be
inferred through, for example, SA, similar to the ones present on TripAdvisor1,
where a restaurant’s overall rating is divided into sub-ratings such as food, ser-
vice, and value. Examples of possible categories for online courses are the course’s
difficulty and pace and the instructor’s engagement. Based on the sub-ratings and
user preferences, a multi-criteria RS could be developed to recommend courses.
This would be quite a different way of combining ratings and reviews.

Another future approach is to perform more advanced SA on the reviews.
Each review could be split into sentences or smaller parts and examined. Then,
based on the content, they could be included or excluded in the SA. Because of
the varying quality of the reviews, this approach could focus on exploiting the
well-written reviews to improve the course recommendations. Thus, the time and
resources needed to perform the SA would be lowered, meaning the resources
could be used smarter by focusing on the well-written reviews. Optionally, this
approach could be combined with the one above to focus on different aspects of
the reviews.

Lastly, a possible future approach is to include more features from the data-
set in the recommendation. For example, the COCO dataset contains much data
about the courses and instructors that could be exploited. By examining the data,
some features could be extracted and merged with the current work or used by
themselves to improve the course recommendations.

1https://tripadvisor.com/
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Appendix A

COCO Dataset Structure

The structure of the COCO dataset is present in this appendix. It contains different
tables in which the data is included and the attributes in each table.
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