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Abstract

In an era where autonomous systems are increasingly shaping industries and everyday
life, the field of maritime navigation has witnessed a significant transformation. This
Master’s thesis showcases the advancements made in docking procedures, specifically for
Autonomous Surface Vessels (ASVs), within the dynamic and intricate maritime envi-
ronment. It presents an exploration into the complex problem of docking ASVs while
adhering to the Convention on the International Regulations for Preventing Collisions at
Sea (COLREGs).

Recent work by Ødven et al. (2022) has shown promise in solving the docking problem for
ASVs by combining computational geometry and nonlinear control theory. Triangulation
is utilized to generate waypoints at safe distances from harbors and obstacles. A search al-
gorithm navigates through these waypoints to identify the shortest collision-free path from
the initial location to the docking point. Subsequently, a nonlinear optimal control prob-
lem (NOCP) is numerically solved to yield the optimal trajectory and control sequence
corresponding to this path. Spatial constraints representing the harbor and any obstacles
are seamlessly integrated into this approach to ensure safe navigation.

In an innovative extension of these methods, this thesis utilizes a collision avoidance
(COLAV) system considering the COLREGs to identify rules relevant to a specific sce-
nario, thereby facilitating realistic ASV maneuvering. Other contributions include a path-
smoothing algorithm that ensures a collision-free path and takes COLREGs into account
and an adaptive approach to adjusting the number of time steps in the MPC to balance
computational time and accuracy.

The findings in this thesis contribute to the growing field of ASV research, offering in-
novative strategies and algorithms that enhance docking safety, efficiency, and compliance
with international regulations. Moreover, the results show that combining triangulation
and search algorithms to obtain a collision-free path, combined with optimal control the-
ory, presents a feasible and promising solution for automating the docking problem. By
employing an optimization-based approach, the vessel can uphold its dynamics while ac-
counting for the constraints of actuators and spatial limitations.
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Preface
This thesis is a culmination of my Master’s degree at the Department of Engineering Cy-
bernetics at the Norwegian University of Science and Technology (NTNU). It has been a
journey through the trials and tribulations, triumphs and breakthroughs, of seeking a so-
lution to the docking problem that autonomous surface vessels (ASVs) face. My hope is
that the findings presented here will open doors for future research and development in
the area of ship autonomy and advance the field toward safer, more efficient, and reliable
automatic docking procedures.

Several initiatives are currently engaged in researching and conducting experiments on
autonomous ships. Notably, recent advancements utilizing optimal control theory have
shown promising results regarding the automatic docking of ASVs. One such approach,
proposed by Ødven et al. (2022), draws inspiration from the works of Martinsen et al.
(2019) and Bitar et al. (2019). Building upon the foundation laid by these prior studies,
this Master’s thesis serves as a continuation of their research, as well as an extension of my
specialization project (Nordhus (2022)). It will, therefore draw upon many similar aspects
regarding motivation, theory, and methodology. The relevant information has therefore
been included in this thesis, with some adjustments. The abstract, preface, and introduc-
tion are inspired by and draw on resembling content to the project thesis. The complete
list of included contents are: Chapter 2 - Section 2.1, 2.2.1, 2.2.3, and 2.4; and Chapter 3
- Section 3.1.1, 3.1.3, 3.2, and 3.3.

This work illustrates how a complex task can be divided into manageable segments, com-
bining computational geometry, search algorithms, optimal control theory, and collision
avoidance systems while considering COLREGs. To manage such a task, the versatile,
flexible, and powerful language, Python, was utilized for the implementation of these
methods and algorithms. CasADi, developed by Andersson et al. (2018), offers an effi-
cient approach for implementing and computing solutions to the nonlinear optimal control
problem. All of the work in this thesis has been developed from scratch with helping
advice from supervisors and fellow students. The simulation and computation work was
carried out on a Dell Optiplex 7090.

I would like to thank my supervisors Anastasios Lekkas, Morten Breivik, and Thomas
Johansen, for the valuable discussions, helpful feedback, and insights regarding the dock-
ing problem. Furthermore, I extend my thanks to Simon Lexau for offering assistance
whenever I needed help. I am truly grateful to my fellow students, whose presence has
made each day of this semester exciting and memorable. Lastly, heartfelt thanks go to my
partner and my family, whose enduring support and positivity have been invaluable in this
endeavor.

13.06.2023
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Sammendrag

I en æra hvor autonome systemer i økende grad former industrier og hverdagsliv, har
området for maritim navigasjon opplevd en betydelig transformasjon. Denne masteropp-
gaven viser fremskrittene som er gjort i dokkingsprosedyrer, spesielt for autonome over-
flatefartøy (ASV), innenfor dynamiske og komplekse maritime områder. Den presenterer
det komplekse problemet med å dokke ASV-er samtidig som man overholder Konvensjo-
nen om internasjonale regler for å forhindre kollisjoner til sjøs (COLREGs).

Nylig arbeid av Ødven et al. (2022) har vist lovende resultater i forbindesle med dokking
for autonome overflatefartøy (ASV) ved å kombinere geometri og ikke-lineær kontrollte-
ori. Triangulering brukes til å generere veipunkter med tryg avstand fra havner og hin-
dringer. En søkealgoritme navigerer gjennom disse veipunktene for å identifisere den ko-
rteste kollisjonsfrie banen fra den opprinnelige plasseringen til fortøyningspunktet. Deretter
løses et ikke-lineært optimalt kontrollproblem (NOCP) numerisk for å gi den optimale
kontrollsekvensen som passer til denne banen. Begrensninger som representerer havnen
og eventuelle hindringer er sømløst integrert i denne tilnærmingen for å sikre sikker navi-
gasjon.

I en innovativ utvidelse av disse metodene, benytter denne avhandlingen et kollisjons-
forebyggende (COLAV) system som tar hensyn til COLREGs for å identifisere hvilke
regler som er relevante for et spesifikt scenario, og dermed legge til rette for realistiske
ASV-manøvrer. Andre bidrag inkluderer en ny baneglattende algoritme som sikrer en kol-
lisjonsfri bane og tar hensyn til COLREGs, samt en adaptiv tilnærming til å justere antall
tidssteg i MPC for å balansere beregningstid og nøyaktighet.

Funnene i denne avhandlingen bidrar til det voksende feltet av ASV-forskning, og tilbyr
innovative strategier og algoritmer som forbedrer dokkingsikkerhet, effektivitet og over-
holdelse av internasjonale forskrifter. Videre viser resultatene at kombinasjonen av trian-
gulering og søkealgoritmer for å oppnå en kollisjonsfri bane, kombinert med optimal kon-
trollteori, presenterer en gjennomførbar og lovende løsning for automatisering av dokking-
problemet. Ved å bruke en optimaliseringsbasert tilnærming, kan fartøyet opprettholde sin
dynamikk mens det tar hensyn til begrensningene av aktuatorer og andre fysiske begren-
sninger.
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1
Introduction

1.1 Background and motivation
The evolving research domain of autonomous systems has gained significant traction over
the past few decades. The drive towards autonomy arises from goals such as enhancing
efficiency and safety, mitigating costs and emissions, and accomplishing tasks deemed
monotonous for humans. Many sectors within maritime operations, including transporta-
tion, seabed mapping, underwater inspection, and service, could benefit from increased
autonomy. Currently, shipping accounts for 90% of worldwide freight transport [12]. A
study by Allianz reveals that 75% of marine accidents are due to human error, presumably
related to evasive maneuvers to prevent collisions [13]. Recent progress in autonomous ve-
hicles shows the potential for achieving high situational awareness and autonomy. There-
fore, autonomous surface vessels (ASVs) are considered pivotal for constructing a safe
and sustainable shipping industry.

Various initiatives have explored automating the shipping industry, particularly in areas
such as path planning and autonomous docking. The Centers for Research-based Innova-
tion (SFI), funded by The Research Council of Norway, is one of these initiatives. SFI’s
primary objective is to augment the commercial sector’s capacity to innovate and generate
value through a focus on long-term research. One crucial project within SFI is the SFI
AutoShip, established eight years ago to reinforce Norway’s position in safe autonomous
ships for sustainable operations [14, 15].

Several companies have conducted experiments and developed full-scale ASVs. For in-
stance, Rolls Royce (now Kongsberg Maritime) and Finferries developed Falco, the world’s
first autonomous ferry, in 2018. This ferry can follow a predefined course, modify it to
avoid collisions, adjust its speed, and dock autonomously [16]. Kongsberg Maritime and
Bastø Fosen collaborated to conduct the world’s first adaptive ferry transit in 2020 [17].
Other innovative developments in autonomous shipping have emerged in the Norwegian
maritime area in recent years. Varying from research projects investigating sensor fusion

1



1 Introduction 1.1 Background and motivation

Figure 1.1: Picture from the opening ceremony of milliAmpere 2’s shuttle transit across the main
channel in Trondheim (Photo: Kai T. Dragland/NTNU). [7].

and collision avoidance (COLAV) - with companies such as Marine Robotics, DNV GL,
Kongsberg, and NTNU - to development of the world’s first zero emission, autonomous
ship, Yara Birkeland [17, 18]. After a two-year trial period, the Yara Birkeland was put
into operation in 2022, intended to operate autonomously [19]. The ship travels 12 nauti-
cal miles from the coast between Herøya and Breivik port. The berthing and unberthing
procedure will be done without human interaction [20].

In 2022, NTNU tested the world’s first urban autonomous passenger ferry, milliAmpere
2. With a capacity of 20 passengers, the project successfully transported passengers over
three weeks. Over the course of 6 years, the project has involved over 300 people, includ-
ing professors, students, and public authorities, establishing the largest research setting
dedicated to this field globally [7].

Denmark is another Nordic country that has achieved significant progress in ASVs. In
December 2022, a team from the Technical University of Denmark exhibited a driverless
catamaran ferry crossing the Limfjord [21]. They developed and trained an Artificial Intel-
ligence (AI) algorithm by gathering data, such as photos of objects and other ships. Thus,
utilizing radar, cameras, and sensors to register and avoid objects in proximity to the ferry
[21]. However, the system was not run in real-time and they utilized Wärtsilä autodocking
system in the demo.

Globally, advancements in ASVs continue to emerge. For instance, software from Orca
AI was deployed on a cargo ship to complete a nearly 500-mile voyage, autonomously
navigating 99% of the trip [23]. IBM has developed an AI-driven boat, the Mayflower,
set to cross the Atlantic Ocean, although it experienced unexpected issues and had to stop
in Canada [24]. These developments indicate that the shipping industry is making strides
towards ASVs. However, it is challenging to determine the level of autonomy of these
ships, as most details remain unpublished.
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For a ship to achieve full autonomy, it must successfully navigate through three sailing
phases [25]:

• Undocking: Departing from a harbor’s quay to open waters.

• Transit: Navigating through a broader water area to reach a designated harbor.

• Docking: Approaching a harbor’s docking point from open waters.

Docking is considered as the hardest phase of sailing, and will therefore be the main focus
of this paper. It is a high-risk operation and increasingly challenging when obstacles hin-
der the path toward the docking point. The docking point is usually in a confined harbor
area containing both dynamic and static obstacles. Successful docking requires precise
maneuvering at low speeds and accurate allocation of control inputs. This action bears a
close dynamic resemblance to dynamic positioning (DP) and can be leveraged to execute
a successful docking maneuver.

To safely maneuver within a harbor and account for other vessels, the ASV must demon-
strate predictable maneuvers and situational awareness. The Convention on the Interna-
tional Regulations for Preventing Collisions at Sea (COLREGs) provides a comprehensive
framework for maritime navigation, outlining the rules and responsibilities to be followed
by vessels at sea. These regulations establish guidelines for maintaining a safe distance,
determining the right-of-way, and signaling intentions to prevent collisions between ves-
sels. By incorporating the principles and guidelines set forth by COLREGs, ASVs can nav-
igate in compliance with established standards, promoting the safety of both autonomous
and manned vessels within harbor areas. Understanding and implementing the COLREGs
is therefore essential for the development and deployment of autonomous docking sys-
tems, ensuring the seamless integration of ASVs into the existing maritime framework.

1.1.1 Previous work
Several research papers focus on automating the docking phase. Due to the highly nonlin-
ear nature of the ASV’s equations of motion, accurately predicting the model’s behavior
and addressing the control allocation problem poses significant challenges. Early works
such as Rae and Smith (1992) used fuzzy logic control to dock autonomous underwater
vehicles, where behavior is modified based on a set of rules. Yamato (1990) pioneered the
use of Artificial Neural Networks (ANNs) as an alternative solution to the docking prob-
lem.

Subsequent works by Rørvik (2020) expanded the use of ANN by incorporating Deep
Reinforcement Learning (DRL) techniques such as Proximal Policy Optimization (PPO)
and Deep Deterministic Policy Gradient (DDPG) for docking. In a more recent study,
Martinsen et al. (2022) proposed a reinforcement learning-based (RL) model predictive
control (MPC) method for trajectory tracking of ASVs, which proved successful in opti-
mal tracking control and control allocation. The proposed method demonstrates effective
implementation of optimal tracking control and control allocation. Additionally, the uti-
lization of RL-MPC enhances the robustness of the vessels against model discrepancies
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(a) Vessel docking from Martin-
sen et al. (2019) at Hurtigruten
terminal in Trondheim Norway.

(b) Vessel docking with obstacles
from Ødven (2022) at Hurtigruten ter-
minal in Trondheim Norway.

Figure 1.2: Results from the methods proposed in Martinsen et al. (2019) and Ødven (2022). Both
simulations were performed at Hurtigruten terminal in Trondheim Norway.

and external disturbances.

On the other hand, a recent research effort by Wakita et al. (2022) applied an RL method
to reduce collision probability for tracking control during docking, but it exhibited certain
weaknesses. The controller was trained solely using obstacles with line segments larger
than the ASV’s length, which could lead to collisions in real-life scenarios, as many obsta-
cles are smaller. Moreover, the successful docking scenario was vaguely defined, resulting
in collisions even at slow speeds. Furthermore, the method was only simulated in a single
harbor, limiting the assessment of its robustness and versatility.

The most effective methods utilize optimal control with trajectories planned using con-
vex optimization. However, most of these methods focus solely on docking within an
unobstructed and convex harbor environment, devoid of external disturbances. Martinsen
et al. (2019) solved the docking procedure as a NOCP, applying spatial constraints to en-
sure COLAV (Figure 1.2a). This innovative approach laid the groundwork for subsequent
full-scale experiments conducted on the autonomous urban ferry, milliAmpere [25, 31].
In these experiments, the ASV utilized harbor maps and sensor data to successfully avoid
static obstacles and complete the docking procedure.

The primary disadvantage of representing the docking procedure as an optimization prob-
lem is that nonlinear optimization has the propensity to converge to a local optimum.
Warm-starting the optimization problem is a possible approach to address this issue. In
the research presented by Miyauchi et al. (2022), optimal control is successfully deployed
to dock an ASV within a complex harbor geometry. Although promising, this methodol-
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ogy’s computational complexity proved to be a major drawback, requiring several days to
compute a successful simulation. To address this issue, Rachman et al. (2022) utilized a
warm-start approach to enhance results. They also introduced a COLAV method to handle
convex and non-convex obstacles. Nonetheless, their proposed methodology fell short in
effectively dealing with obstacles represented as polygonal holes.

Inspired by the research of Martinsen et al. (2019) and Bitar et al. (2019), Ødven et al.
(2022) developed two methods to address the docking problem, particularly in the pres-
ence of dynamic obstacles that obstruct the shortest path to the docking point. The first
method partitioned the non-convex harbor containing obstacles into feasible convex sets
without obstacles, employing the A* search algorithm to calculate the optimal sequence
of connecting convex sets for a waypoint-to-waypoint approach. The second method ap-
plied triangulation to generate waypoints around the obstacles, similarly utilizing the A*
search algorithm for sequence calculation to warm-start the NOCP. This resulted in suc-
cessful docking without collisions as shown in Figure 1.2b. Odven’s methods demon-
strated promising results for practical implementation of docking with obstacle avoidance,
forming the basis for this Master’s thesis to replicate parts of each method for safe docking
amid dynamic and static obstacles.

While compliance with COLREGs is crucial to safe navigation, the integration of these
rules in ASV control and navigation remains a challenge. A notable research by Ni et al.
(2023) proposed a distributed coordinated path planning algorithm for multi-ship encoun-
ters in accordance with COLREG rules. However, this method could be computationally
intensive and lacks clear guidelines for real-time implementation optimization. The dy-
namic Bayesian network used to model ship motion uncertainty requires the computation
of probabilities for numerous potential ship trajectories, which might be time-consuming.

Eriksen (2019) and Thyri (2022) contributed significantly to this area through their PhD
research at NTNU. Eriksen (2019) approached the problem by partitioning it into three
segments, utilizing a hybrid architecture to maximize the strengths at different naviga-
tion phases. Thyri (2022) developed a COLREGs classification algorithm that determines
the encounter type and thus the maneuvering obligations of the ASV in vessel-to-vessel
encounters. Both theses offered valuable insights into safe and efficient ASV maneuver-
ing. However, they did not directly address the docking problem, which involves accu-
rately aligning the ASV with the docking station and DP at the endpoint. This thesis will
therefore investigate the possibility to incorporate COLREG awareness into an established
method for successfully docking ASVs. The level of awareness is determined by the COL-
REGs classification algorithm, inspired by Thyri (2022).

1.2 Problem description
• Problem: Dock a ship without causing a collision with a quay or potential obstacles,

whilst adhering to COLREG rules.

• Proposed solution Split the problem into several smaller components.
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1. Triangulate the archipelago area that includes the initial and desired positions,
with the aim of creating waypoints that will safely circumvent any obstacles
and land.

2. Find the shortest collision-free course from starting point to the docking point
by utilizing the waypoints.

3. Generate a feasible smooth path for the vessel to follow.

4. Generate feasible convex sets along the optimal path that the vessel can ma-
neuver within.

5. Determine the optimal control sequence required to reach the docking point by
solving an Optimal Control Problem (OCP) within a Model Predictive Control
(MPC) framework.

6. Prevent collisions with other vessels by calculating the Closest Point of Ap-
proach (CPA), classifying the encounter according to COLREG rules, and then
following the required rules for that specific encounter.

7. Successfully dock the vessel by performing DP at the desired endpoint.

1.3 Contributions
This Master’s thesis is a recreation and continuation of the proposed methods from Ødven
(2022), Martinsen et al. (2019) and Nordhus (2022). Moreover, elements regarding COL-
REG awareness from Thyri (2022) have also been recreated. The motive for reconstructing
the methods was to improve learning outcomes and provide different views of the docking
problem. The following elements from the mentioned articles were recreated:

• Formulating the docking problem as an OCP. Thus, transforming the OCP into a
nonlinear programming (NLP) problem using direct collocation.

• Utilizing the methods from Bitar et al. (2019) and Martinsen et al. (2019) to effi-
ciently modify and add spatial constraints to the NLP, representing both the harbor
and other obstacles.

• Implementing a constrained Delaunay triangulation and Voronoi diagram to produce
safe waypoints. This in turn enables the computation of the shortest collision-free
route by exploring these waypoints.

• Automatic generation of convex sets which provide a safe maneuverable area for the
ASV, drawing upon the work from Martinsen (2021).

• A COLREGs classifying algorithm utilized to determine which rules are relevant
for a specific scenario, inspired by Thyri (2022).

In addition, this thesis introduces several methods for effectively implementing an OCP
with COLREGs-aware COLAV, resulting in the following contributions:

6



1 Introduction 1.4 Outline of the report

• Continuing the progress from Nordhus (2022), further advancements have been
made. This includes improving the awareness of the search algorithm to incorporate
both COLREGs and areas anticipated to be unoccupied in the future. The resulting
path is then utilized to warm-start the OCP.

• A path-smoothing algorithm that guarantees a collision-free route, also taking into
account COLREGs, with an easy and flexible implementation strategy.

• An adaptive approach to adjusting the number of time steps in the MPC, aiming to
reduce computational time while preserving accuracy.

• An alternative approach to generating convex sets automatically that is computa-
tionally feasible and easy to implement.

• Investigation of solving an entire dock-to-dock scenario as an OCP.

1.4 Outline of the report
The thesis consists of 5 chapters:

• Chapter 1 gives an introduction to the docking problem, motivation for making it
autonomous, previous work, problem description as well as contributions.

• Chapter 2 presents a thorough explanation of the theory involved in order to solve the
docking problem. Hereunder, are vessel kinematics and dynamics, obstacle avoid-
ance, motion planning, and the optimization problem.

• Chapter 3 presents the methodology and utilized library.

• Chapter 4 presents the simulations and results achieved and discusses the subsequent
implications of solving the docking problem.

• Chapter 5 concludes the thesis.

• Appendix A and B outline the vessel model and the different parameter values ap-
plied in the simulations, respectively.
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2
Background theory and methods

This chapter presents the relevant theory used in this thesis to solve the docking problem.
Firstly, a definition of the vessel model and thrust allocation. Secondly, convex polygons
and a method for traversing around objects within a convex set are presented. This is es-
sential for defining which area the vessel can maneuver within. Thereby, a presentation of
how to plan a feasible path while adhering to the conventions at sea. Lastly, an introduc-
tion to the optimization problem and a method used to solve such a problem numerically.
It should be noted that this thesis is a continuation of the project report, Nordhus (2022),
and it will therefore draw on the same theoretical background.

2.1 Vessel model

2.1.1 Kinematics and dynamics
A three-dimensional rigid body has 6 degrees of freedom (DOF). The same goes for
maneuvering a marine vessel. It can move freely along three perpendicular axes, for-
ward/backward (surge), left/right (sway), and up/down (heave), also known as {x, y, z} in
classic mathematics. Additionally, it can freely rotate around each of these axes’. Rotation
around x, y, and z are normally represented as yaw, pitch, and roll, respectively. This is
illustrated in Figure 2.1. The notation for the kinematics is represented in table 2.1 and
is similar to the notation used by the Society of Naval Architects and Marine Engineers
(SNAME).

When a marine vessel is docking, heave motions as well as pitch and yaw rotations are
normally small. Consequently, the dynamics of the vessel can be simplified to 3-DOF as a
sufficiently good approximation.

In order to represent a vessel’s coordinates by these notations, it is essential to use ge-
ographical reference frames. Essentially, two frames are needed. One frame for represent-
ing the marine craft and one for representing the marine craft’s movement relative to the

8



2 Background theory and methods 2.1.1 Kinematics and dynamics

Figure 2.1: Marine craft maneuverability with 6 DOF. Illustration from Fossen (2011).

BODY NED

DOF Forces and
moments

Linear and
angular velocities

Positions and
Euler angles

1 Motions in the xb-direction (surge) X u xn

2 Motions in the yb-direction (sway) Y v yn

3 Motions in the zb-direction (heave) Z w zn

4 Rotation about the xb-direction (roll) K p ϕ
5 Rotation about the yb-direction (pitch) M q θ
6 Rotation about the zb-direction (yaw) N r ψ

Table 2.1: SNAME notation for kinematics of a marine vessel [6].

earth. An earth-centered inertial (ECI) frame, where Newton’s laws apply, can be utilized
to depict the earth. However, it is not necessary to utilize a geographical frame of the entire
earth when maneuvering a marine craft over a small area. Therefore, the ECI is simplified
to the North-East-Down frame. In Fossen (2011), the reference frames are defined as:

• The North-East-Down (NED) reference frame: {n} = {xn, yn, zn}, is defined
relative to the earth reference ellipsoid, usually as the tangent plane to the ellipsoid.
The xn axis points to true North. The yn axis points East. The zn axis points
downward normal to the Earth’s surface.

• The Body-Fixed (BODY) reference frame: {b} = {xb, yb, zb} is a moving coor-
dinate system fixed to the marine craft body in order to represent the vessel inertia
and dynamics. The xb axis points from aft to fore. The yb axis points starboard. The
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zb axis points from top to bottom.

Rotation matrices are used in order to relate one reference frame to another (while keeping
the vessels kinetics) without changing the geometry of the vessel. The transformation
between different coordinate systems results in different rotation matrices. The rotation
matrix

Jψ =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (2.1)

where ψ is the heading angle, is used to transform the kinematics and kinetics from the
BODY frame to the NED frame.

The dynamics of a marine craft consist of kinematics and kinetics. Kinetics studies the
motions and forces involved, whereas kinematics studies motion without considering what
forces caused them. A 3-DOF marine craft’s dynamics can be described by the equations
of motion in vectorial form as

η̇ = Jψν, (2.2a)
Mν̇ +Cν +Dν = τ , (2.2b)

where M ∈ R3×3,C ∈ R3×3, D ∈ R3×3 and τ ∈ R3 are the inertia matrix, Coriolis
matrix, dampening matrix, and control input vector, respectively.

2.1.2 Thrust allocation
In Fossen (2011), a marine craft’s control inputs, τ , are determined by the thrust config-
uration matrix T (α). This matrix allocates the distinct thrust forces f applied to each of
the motors given an angle α. Forces acting in the surge and sway (x, y) direction cause
momentum about the yaw (z axis). Therefore, are the control inputs on a 3-DOF marine
vessel represented by

τ = T (α)f =

XY
N

 , (2.3)

where X and Y are forces in surge and sway direction and N is the momentum generated
about the yaw axis, as presented in table 2.1. The forces and moments are distinct for each
thruster and can be further specified for a single thruster, i, as

Ti(α)fi =

 Fx,i
Fy,i

Fy,ilx,i − Fx,ily,i

 =

 fi cos(αi)
fi sin(αi)

fi(lx,i sin(αi)− ly,i cos(αi))

 . (2.4)

Selecting the correct angles α and force f formulates the thrust allocation problem. A
vessel is fully-actuated if the number of control inputs is equal to or greater than the de-
grees of motion. Moreover, the allocation problem depends on the thruster characteristics.
This thesis will only consider one type of thruster:
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Figure 2.2: Thruster configurations of the milliAmpere utilizing two azimuth thrusters. Illustration
from Pedersen (2019).

• Azimuth thrusters: are propellers placed in a pod that can rotate typically at any
angle, α, about the normal (z) axis. Therefore, they will produce a force in both the
lateral and longitudinal (x, y) direction.

The research vessel milliAmpere, depicted in Figure 2.2, is a fully-actuated monohull
vessel located at SFI Autoship. Although the ferry is designed to carry a maximum of six
people, it is not authorized for commercial passenger transportation. Its primary purpose is
to function as a testing ground for system components such as motion control, autonomy,
and various sensor configurations (Brekke et al. (2022)). The vessel is specified further in
Appendix A.

2.2 Computational geometry
A search algorithm must have a feasible search space in order to find a optimal solution.
Computational geometry and a grid-based approach are two common methods for parti-
tioning the continuous search space into a discrete search space. Grid-based approaches
are simple and easy to implement by dividing the search space into a grid of cells. How-
ever, the grid resolution and connectivity have a significant impact on the efficiency of this
approach. If the grid resolution is too low, large cells, the optimal path may not be able
to avoid obstacles. On the other hand, if the resolution is too high, the search space can
become too large by increasing the computational time required to find the optimal path.
Connectivity issues occur typically when the resolution is too low, where some cells may
not be connected to each other since obstacles occupy part of them.

Utilizing computational geometry, on the other hand, to partition the continuous search
space can address some of these issues. This approach allows for more flexibility, as the
cell shapes may take obstacles into account. Additionally, providing more precise informa-
tion about the environment. This approach can also reduce the computational requirements
by reducing the number of necessary cells.
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2.2.1 Convex set
A set in Euclidean space is convex if any given point inside the set can be connected by
a line segment that will always stay inside the set. Similar to Martinsen et al. (2019), this
thesis makes use of properties given by a convex set and can be referred to as a convex
polygon due to its shape. Convex polygons can easily be implemented in an optimization
problem since they can be described as a solution to the linear inequality constraints

Avi ≤ b, ∀i ∈ [1, . . . ,m] (2.5)

where A ∈ Rm×3, b ∈ Rm×1,vi ∈ R2 and m is the number of vertices in the polygon.

2.2.2 Automatic convex set generation
Convex sets are essential to the optimization problem since they decide where it is safe for
the vessel to maneuver. Islands and harbor areas are typically non-convex. Therefore, it
is important to generate convex sets that the vessel safely can travel within. There exist
many different methods for generating convex hulls within complex surroundings such as
Bergman et al. (2020) and Martinsen (2021). The method proposed in Martinsen (2021),
inspired by [40, 41], involves 5 steps:

1. Expanding an ellipse from a center point pc until it intersects with an environmental
constraint.

2. Find the point, pab, along the intersecting constraint that is closest to pc.

3. Obtain the tangent line to the expansion ellipse that intersects with the point pab.

4. Repeat the ellipse expansion and linear constraint generation process for each line
segment making up the environmental constraints.

5. Remove redundant constraints by obtaining the final convex inner approximation of
the non-convex area.

The execution of these steps involves solving various optimization problems. Firstly, an
optimization problem is solved to determine the closest point pab. Next, a linear equality
is solved to find the tangent line. Lastly, a Linear Programming problem is solved to elim-
inate redundant constraints.

To optimize the constraints, a normalization technique is applied by multiplying each con-
straint row with a normalizing factor. This ensures that the resulting matrix has unit length
rows, facilitating meaningful physical interpretations and enabling the addition of margins
or relaxation of the constraints.

Overall, the presented method provides a comprehensive approach for computing the con-
vex inner approximation set for the automatic docking and berthing of ASVs. The vessel-
centered approach, utilization of line segments as obstacles, and optimization techniques
contribute to the efficient and effective computation of the convex inner approximation,
ensuring safe navigation in the presence of environmental obstacles.
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Figure 2.3: Illustration of the duality between Voronoi diagram and Delaunay triangulation [4].

2.2.3 Triangulation
There are several existing techniques for partitioning non-convex 2D space into smaller
convex polygons. This thesis will focus on two popular methods for partitioning non-
convex polygons; Delaunay triangulation and Voronoi diagram. They represent the same
concept from different points of view.

Voronoi diagram

Given a set of points qi ∈ S for i = [1, . . . , n], and n is the number of points, the Voronoi
diagram is a method for finding which region or cell is closest to each point qi. The edge
of each cell provides information about where there is an equal distance between the points
in q. A Voronoi cell νqj can then be defined as

νqj = {x ∈ R2 | ||x− qj || ≤ ||x− qi||, ∀qi,qj
∈ S, i ̸= j}, (2.6)

where x is an arbitrary point and qj is the point generating a Voronoi cell.

Simplified, the edges of the Voronoi cells are generated by creating a line segment between
the neighboring points in q. Then, the perpendicular bisector of that line will represent the
edge of the Voronoi cell. Any point along this line will be at an equal distance to each
point qi.

Delaunay triangulation

Delaunay triangulation is the dual problem of the Voronoi diagram. Let’s define the same
set of points as in the Voronoi diagram, qi ∈ S for i = [1, . . . , n], and n is the number
of points. The Delaunay triangulation is generated by creating a line segment between
each neighboring point, whereas the circumcircle around each generated triangle cannot
contain any of the other generating points. Figure 2.3 illustrates each of the triangulation
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methods. It is visible that the Voronoi edges are the perpendicular bisector of the Delaunay
triangulation, highlighting the duality of the two methods.

2.3 Motion planning

2.3.1 Convention on the International Regulations for Preventing Col-
lisions at Sea (COLREGs)

In order to plan a safe, collision-free trajectory towards the desired goal, while avoiding
dynamic obstacles, it is highly beneficial to have a sense of the obstacles’ movement. The
Convention on the International Regulations for Preventing Collisions at Sea (COLREGs)
is an international agreement that establishes a set of rules and regulations designed to pre-
vent collisions between vessels at sea. The convention was first adopted in 1972 and has
since been updated to reflect advances in technology and changes in the maritime industry.

The main goal of this convention is to ensure the safety of all vessels and crew on the
water and to prevent collisions that can cause damage, injuries, or loss of life. By provid-
ing a set of clear and consistent rules that are recognized and followed by all seafarers, the
convention helps to minimize the risk of accidents and promote safe and efficient maritime
operations. However, the rules only consider instances with two vessels in proximity to
each other.

The COLREGs include 41 rules divided into six sections. However, only specific rules
may be of relevance when maneuvering an autonomous ship within a confined area. Herein
section B, steering and sailing, including the conduct of vessels in any condition of visibil-
ity, and the conduct of vessels in sight of one another. Rules 5-9 are applicable since they
cover requirements on visibility, safe speed, risk of collision, action to be taken to avoid a
collision, and preferred maneuver within a narrow channel, respectively. Moreover, rules
13-17 are also applicable as they deal with overtaking, head-on situations, crossing situa-
tions, and the action of the give-way and stand-on vessel, respectively. On the other hand,
rule 10 is less relevant, as it is specific to traffic lanes at sea, which this thesis will not
focus on. Rule 12 is also less relevant, as it is specific to sailing vessels. Rule 18 is less
applicable, as the autonomous ship may not have an obligation to keep out of the way of
other vessels, but it still has a responsibility to avoid a collision. The relevant rules for an
autonomous ship within a harbor area are described in Table 2.2 [11, 42, 43].
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Rule Description

5

Look-out: Every vessel shall at all times maintain a proper lookout by sight
and hearing as well as by all available means appropriate in the prevailing
circumstances and conditions so as to make a full appraisal of the situation
and of the risk of collision.

6
Safe speed: Every vessel shall at all times proceed at a safe speed so that she
can take proper and effective action to avoid collision and be stopped within
a distance appropriate to the prevailing circumstances and conditions.

7
Risk of collision: Every vessel shall use all available means appropriate to
the prevailing circumstances and conditions to determine if risk of collision
exists. If there is any doubt such risk shall be deemed to exist.

8

Action to avoid collision: If a vessel needs to take action to avoid collision,
it should be large enough to be readily observable of other ships, implying
that series of small alternations in speed and/or course should not be applied.
Course changes should be prioritized over speed changes if there are enough
free space available, and that maneuvers must be made in ample time.

9
Narrow channels: A vessel proceeding along the course of a narrow channel
or fairway shall keep as near to the outer limit of the channel or fairway which
lies on her starboard side as is safe and practicable.

13

Overtaking: Any vessel overtaking another vessel shall keep out of the way
of the vessel being overtaken. A vessel approaching another vessel from a
direction of more than 22.5 deg abaft her beam is an overtaking vessel. Any
subsequent alternation of bearing between the two vessels shall not relieve
the overtaking vessel of the duty of keeping clear of the overtaken vessel
until she is finally past and clear.

14

Head-on situation: When two power-driven vessels are meeting on recipro-
cal or nearly reciprocal courses so as to involve risk of collision each shall
alter her course to starboard so that each shall pass on the port side of the
other vessel.

15

Crossing situation: When two power-driven vessels are crossing so as to
involve risk of collision, the vessel which has the other on her own starboard
side shall keep out of the way and shall, if the circumstances of the case
admit, avoid crossing ahead of the other vessel.

16
Action by give-way vessel: Every vessel which is directed to keep out of
the way of another vessel shall, so far as possible, take early and substantial
action to keep well clear.

17

Action by stand-on vessel: Where one of two vessels is to keep out of the
way, the other shall keep her course and speed. The latter vessel may take
action to prevent collision if it is apparent that the vessel required to keep out
of the way is not taking appropriate action.

Table 2.2: COLREG rules 5-9, 13-17 and their specifications.

15



2 Background theory and methods 2.3.2 Collision risk assessment

2.3.2 Collision risk assessment
Evaluating the collision risk is an important aspect of path planning when dealing with
dynamic obstacles. Calculating the closest point of approach (CPA) is a common method
used to assess the collision risk of the current path of the vessel. The CPA is found by
calculating the time to CPA, tCPA, and distance at CPA, dCPA, given by

tCPA =
(pOS − pTS) · (vOS − vTS)

∥vOS − vTS∥
, (2.7)

dCPA = ∥pOS + vOStCPA − (pTS + vTStCPA)∥ , (2.8)

where p and v are the position and velocity vectors of the ownship (OS) and target ship
(TS). The norms are the Euclidean norm, defined by

∥x∥2 :=
√
x21 + . . .+ x2n . (2.9)

In Kuwata et al. (2014) and Candeloro et al. (2017), the motion planner evaluates if the
COLREGs rules are relevant for a moving vessel by checking whether there is a possibility
of a collision or near collision in the immediate future. The evaluation is done by checking
if

0 ≤ tCPA ≤ trisk ∩ dCPA ≤ drisk, (2.10)

where trisk and drisk are design parameters chosen according to how aggressive or passive
a vessel should be when observing other vessels.

2.3.3 Path planning
Path planning is a critical task in robotics that involves finding a feasible path to navi-
gate from a starting point to a goal point while avoiding obstacles and minimizing various
criteria such as time, energy, or distance. Solving the path planning problem is gener-
ally considered an NP-hard problem [46, 47]. NP-hard problems are problems that are at
least as hard as the hardest problems in the class NP (nondeterministic polynomial time),
meaning they cannot be solved in polynomial time by any known algorithm. Solving the
path planning problem optimally requires exploring an exponentially large search space of
possible paths, making it computationally intractable for many robotic applications. On
the other hand, several methods exist for finding a feasible path efficiently for practical
purposes and can be classified typically into three different approaches.

• Algorithmic: There are typically two algorithmic approaches, search-based meth-
ods, and sampling-based methods. Search-based algorithms, such as A*, Dijk-
stra’s algorithm, and depth-first search, search for a path by exploring a search
space, whereas sampling-based algorithms, such as Rapidly Exploring Random Tree
(RRT), probabilistic roadmap (PRM), and potential fields, sample the environment
to generate a set of feasible paths.

• Model-based: Model-based path planning utilizes a system’s dynamics, the oper-
ational environment, and the planning objective. This knowledge can be used to
simulate several trajectories and evaluate them based on the desired objective.
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2 Background theory and methods 2.3.3 Path planning

• Environmental: Most path planning approaches require a definition of the environ-
ment which they are operating within, such as 2D or 3D, static or dynamic, known
or unknown. However, some methods exist, such as Simultaneous Localization And
Mapping (SLAM), which allows the robot to simultaneously explore and build a
map of its environment as it moves. Other methods, such as RRT*, can adapt to
changes in the environment during planning by dynamically updating the tree struc-
ture.

Search algorithm

In this thesis, the operational environment is assumed to be known, and computational
geometry will be utilized to generate a statically discrete state space where the popular
search algorithm, A*, can find the shortest feasible path.

The A* algorithm is an extension of Dijkstra’s algorithm that uses heuristics to guide
the search from the starting node to the goal node. Dijkstra’s algorithm selects the closest
nodes, while A* additionally uses a heuristic estimate of the remaining cost to the goal
node to guide the search from the starting node to the goal node. The cost function is
defined as f(n) = g(n) + h(n), where g(n) is the travel cost from the current node to
the neighboring node n, and h(n) is the heuristic estimate of the cost from node n to the
goal node. The heuristic function must be admissible, meaning it never overestimates the
actual cost to the goal node.

The A* algorithm repeatedly selects the node with the lowest cost function and expands
nodes based on their costs and heuristic estimates. As it progresses, it updates the cost
values of nodes based on the costs of their neighbors and the heuristic estimates. This pro-
cess continues until the goal node is reached or there are no more nodes to evaluate. A*
guarantees both optimality and completeness, meaning that it will find the shortest path if
one exists. The pseudocode of the A* algorithm from Sharma et al. (2012) is shown in
Algorithm 1.

Computational efficiency is an important aspect of any search algorithm that is not to be
used offline. The A* algorithm’s time complexity depends on the assumptions about the
state space and the efficiency of the heuristic function. The relative error of the heuristic
is defined as

ϵ =
h∗ − h
h∗

, (2.11)

where h∗ is the actual remaining cost. In a practical sense, the relative error is constant or
growing, since the error, h∗−h, is proportional to the path cost. The computational cost of
the A* algorithm is, therefore, O(bϵd), where b and d are the branching factor and depth of
the solution, respectively. Computation time is not, however, A*’s main drawback. Since
it keeps all generated nodes in memory, A* usually runs out of space long before it runs
out of time (Russell and Norvig (2010)).
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2 Background theory and methods 2.3.4 Path smoothing

Algorithm 1: A* algorithm

Input:
A graph with source node, startNode, and goal node, endNode

Initialize
Initialize an empty open and closed list
g(startNode) = 0
h(startNode) = Distance(startNode, endNode)
f(startNode) = g(startNode) + h(startNode)
Append startNode to open

1 while open ̸= ∅ do
2 currentNode← node ∈ open with lowest cost f(node)
3 if currentNode = endNode then
4 return
5 open.pop(currentNode)
6 closed.append(currentNode)
7 for every neighborNode of currentNode do
8 if neighborNode ∈ closed then
9 continue

10 cost← g(currentNode) + Distance(currentNode, neighborNode)
11 if neighborNode ∈ open and cost < g(neighborNode) then
12 open.pop(neighborNode)

13 if neighborNode ∈ closed and cost < g(neighborNode) then
14 closed.pop(neighborNode)

15 if neighborNode /∈ open and neighborNode /∈ closed then
16 open.append(neighborNode)
17 g(neighborNode) = cost
18 h(neighborNode) = Distance(currentNode, endNode)
19 f(neighborNode) = g(neighborNode) + h(neighborNode)

20 return failure

2.3.4 Path smoothing
A path normally contains several waypoints, where a waypoint is defined as the Cartesian
coordinates (x, y). In this thesis, a waypoint i is defined as a pose, ηi = [xi, yi, ψi]

⊤,
which in addition to the Cartesian coordinates, includes the heading of the vessel. Addi-
tionally, the waypoints contain information about the desired forward speed, Ui the vessel
should have when passing through waypoint i.

Finding the shortest path with a search algorithm may render a path that is infeasible
or illogical for a vessel to follow due to sharp turns. An often-used workaround method
within marine guidance is waypoint-switching with a circle of acceptance. In this ap-
proach, a vessel moves along a piecewise linear path, and if the vessel is within a circle
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2 Background theory and methods 2.3.4 Path smoothing

of acceptance with radius Ri around waypoint (xi, yi) the next waypoint (xi+1, yi+1) is
selected. Another method applies only the along-track distance, xe (Figure 2.4), to switch
waypoints (Breivik and Fossen (2009)). It is advantageous to not have any restrictions on
the along-track error, ye, if the waypoints do not have any inherent value and are only used
to define a piecewise linear path. Alternatively, a feasible path can be generated by utiliz-
ing smoothing techniques. There exist several methods for generating a smooth path from
waypoints or control points, such as polynomial fitting, Bézier curves, splines, or Dubin’s
curve, some illustrated in Figures 3.9 and 3.10.

Bézier curves

Bézier curves are defined by a set of n+1 control points, P0, P1, . . . , Pn, where the curve
always passes through the first and the last control point. Bernstein polynomial is utilized
in order to generate the Bézier curve

C(t) =

n∑
i=0

PiB
n
i (t), t ∈ [0, 1], (2.12)

where t is a normalization value indicating the distance along the path and Bni (t) is the
Bernstein polynomial given by

Bni (t) =

(
n

i

)
ti(1− t)n−i. (2.13)

De Casteljau’s algorithm is a recursive method for evaluating Bézier curves. The algo-
rithm computes points on the curve by recursively computing the convex combination of
pairs of adjacent control points. The algorithm starts by linearly interpolating between
each pair of adjacent control points to generate a new set of points and then repeats the
process with the new set of points until a single point is obtained. The final point is a point
on the Bezier curve.

The benefit of utilizing this method is that the control points can be placed to generate
the curve with desired characteristics. Since de Casteljau’s algorithm does not assure a
collision-free path, more control points can be added to get a curve with desired features.
However, the placement of these control points can be difficult, and increasing the number
of control points increases the computational cost equivalently.

B-Spline

B-Splines is a generalization of a Bézier curve. Unlike a Bézier curve, splines can easily
be controlled by placing more control points along the desired path without increasing the
computational cost noticeably. In order to ensure a collision-free path, control points can
easily be placed on the original path where it is in proximity to an obstacle. A B-Spline is
found with n+ 1 control points, P0, P1, . . . , Pn, by computing

C(t) =

n∑
i=0

PiB
n
i (t), t ∈ [0, 1], (2.14)
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where t is a normalization value indicating the distance along the path and Bni (t) is the
basis function given by

Bni (t) =
t− ti

ti+n − ti
Bn−1
i (t) +

ti+n+1 − t
ti+n+1 − ti+1

Bn−1
i+1 (t) (2.15)

Dubin’s curve

A common approach to generating a smooth path in marine guidance is by utilizing straight
lines and circle arcs to connect the waypoints, also known as Dubin’s curve, which can be
summarized as (Fossen, Dubins (2011, 1957)):

The shortest path (minimum time) between two poses of a craft moving at a constant
speed U is a path formed by straight lines and circular arc segments.

This method generates a path with discontinuous curvature with a desired curvature that
can consider the turning radius of the vessel. However, a drawback with this method
compared to splines is the jump in desired yaw rate which produces a small offset during
cross-tracking.

2.3.5 Path following
In marine guidance, path following refers to the task of steering a vessel along a predefined
path by controlling the heading and speed in order to minimize deviation. There are many
methods that can be used for path following, such as Line-of-Sight (LOS), vector-field,
pure-pursuit (PP), or constant bearing (CB) to name a few [50].The LOS guidance law,
depicted in Figure 2.4, is relatively simple and works well on straight paths or when the
vessel is traveling at high speed. In this thesis, the vessel will follow a curved path at a
relatively low speed. In order to minimize the deviation from the desired path, this thesis
will in, addition to the LOS guidance law, also consider a time-varying lookahead distance
guidance law and a PP guidance law from Lekkas and Fossen (2012) and Fossen (2011).
Convergence to the desired path is achieved by choosing the desired heading as

ψd = ψLOS − arctan

(
ye
∆

)
, (2.16)

where ye and ∆ > 0 are the cross-track error and lookahead distance, respectively. The
angle ψLOS ∈ (−π, π) is the path-tangential angle expressed as αk in Figure 2.4. The
angle is given by

ψLOS = arctan

(
yLOS − y
xLOS − x

)
, (2.17)

where p = [x, y]⊤ is the vessel’s current Cartesian coordinates and pLOS = [xLOS, yLOS]
⊤

is the point on the desired path that the vessel should be pointing at.

In order to optimize the convergence towards the path, a time-varying lookahead distance
can be chosen as

∆(ye) = (∆max −∆min)e
−γ|ye| +∆min, (2.18)
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2 Background theory and methods 2.3.5 Path following

where γ > 0 is a design parameter to ensure convergence, and ∆max and ∆min are the
maximum and minimum chosen values for ∆, respectively. A time-varying lookahead dis-
tance returns a small ∆, and therefore a more vigorous behavior, if the cross-track error is
considerable, and a large ∆ when the vessel is close to the path. This maneuver minimizes
the chances of overshooting when converging to the desired path [10].

In addition to a waypoint containing information about the desired pose, it is also com-
mon to include information about the desired forward speed the vessel should have when
passing the vessel. The PP guidance law is one way of deciding the vessel’s speed through
waypoint i. The desired velocity vd = [ud, vd]

⊤ at waypoint i is found by

vd,i = −κ
p̃

∥p̃∥
, (2.19)

where κ > 0 and p̃ := pi − pn is the distance between waypoint i and waypoint n in a
path with n waypoints.

CB guidance utilizes similar geometry as PP guidance whilst taking into account the ve-
locity vector of a target. The goal of this approach is to reduce the LOS rotation rate,
closing in on the target in a direct collision course. The desired CB velocity is then given
by

vd = vt + va (2.20)

va = −κ p̃

∥p̃∥
(2.21)

where va = [ua, va]
⊤ is the approach velocity vector which gives the desired approach

speed Ua = ∥va∥. From Breivik and Fossen (2007), κ is given as

κ = Umax
∥p̃∥√

(p̃)⊤p̃+∆2
, (2.22)

where Umax > 0 is the maximum approach speed toward the target, waypoint n. In this
thesis, the target point is a stationary waypoint and the CB guidance becomes therefore
equal to the PP guidance.
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2 Background theory and methods 2.4 Optimization problem

Figure 2.4: Illustration of the geometry and variables utilized in LOS guidance. Courtesy of Lekkas
and Fossen (2012).

2.4 Optimization problem
An optimization problem is the problem of finding the best solution from all feasible so-
lutions, typically for dynamic systems. A dynamic system describes a current state and
how it will develop over time. In order to discover the optimal ways to control a dynamic
system, the mathematical field of optimal control theory was developed. Optimal control
theory solves optimization problems by determining a control law that can be applied to the
dynamic system. It can be applied to a range of disciplines such as business, economics,
and engineering. For this thesis, optimal control is used to find the optimal trajectory and
control inputs for a DP controller to dock successfully.

An optimization problem typically consists of four components:

• An objective function that is desired to minimize or maximize.

• Decision variables, commonly control and state variables related to each other by a
set of differential equations.

• Constraints that limits and describes the physical system.

• A mathematical model that represents the problem to be solved, typically in the
form of equations and inequalities.
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2 Background theory and methods 2.4 Optimization problem

The optimization problem is called a nonlinear programming (NLP) problem if the objec-
tive function is nonlinear and/or the feasible region is determined by nonlinear constraints
[53]. A general NLP can be expressed as

min
w

J(w) (2.23a)

subject to g1(w) ≤ 0 (2.23b)
g2(w) = 0, (2.23c)

where J is the objective function, w is the decision variables, and g1(w) and g2(w) are
the inequality and equality constraints, respectively. In certain scenarios, the constraints
may be too strict to find a good solution to the optimization problem. Slack variables may
then be added to allow for certain constraints to be violated. The slack variables s ≥ 0
are added to the inequality constraints g1(w) ≤ 0, replacing it with an equality constraint
g1(w) + s = 0, and a non-negativity constraint [54].

Solving the docking problem can be described as a nonlinear optimal control problem
(NOCP) due to the highly nonlinear nature of the ASV control problem. The NOCP can
be formulated as in Kirches et al. (2012) as

min
x(·),u(·)

∫ t0+T

t0

L(x(t),u(t))dt (2.24a)

subject to x(t0) = x0, (2.24b)
ẋ(t) = f(x(t),u(t)), t ∈ [t0, t0 + T ], (2.24c)
h(x(t),u(t)) ≤ 0, t ∈ [t0, t0 + T ], (2.24d)

where x(·) and u(·) are the state and control variables, L is the cost function, t0 is the
initial time, and T is the time horizon. In order to solve the NOCP, the initial constraints
(2.24b), state dynamics (2.24c), and path constraints (2.24d) have to be satisfied.

There are commonly used three different methods for solving an optimal control prob-
lem (OCP) numerically:

• Dynamic Programming breaks down the optimization problem into smaller sub-
problems and stores the solution to each sub-problem so that it is only solved once.
Methods for solving this problem numerically suffer from Bellman’s ”curse of di-
mensionality” and are restricted to a small state space [56, 57].

• Indirect methods apply Pontryagin’s maximum principle [58] which provides an
efficient way of evaluating the gradient cost with respect to the control input, thereby
indirectly optimizing the controls numerically. Even though this approach is often
very accurate, challenges occur from implementing the state constraints and the need
to formulate first-order necessary conditions for every problem instance [59].

• Direct methods solve the optimal control problem for purely continuous, nonlinear
systems based on a discretization with respect to time [60]. They are less accurate
than indirect methods, but benefit from flexible handling of constraints and being
numerically stable. This bodes well for a practical implementation of the OCP.

23



2 Background theory and methods 2.4.1 Direct collocation method

Direct methods can be split into two main classes; sequential methods and simultaneous
methods. Sequential methods, such as direct single shooting [61], are almost certain to
fail when solving complicated problems such as an NLP problem. It only uses control in-
puts as optimization variables to calculate the objective and constraints. Resulting in small
problems with no structure. Simultaneous methods, such as direct multiple shooting and
direct collocation [62, 63], use both control inputs and states as optimization variables to
directly represent the state trajectory. These methods only satisfy the dynamics constraint
at specific points along the trajectory [64]. The system model is included as equality con-
straints, resulting in large optimization problems with very structured constraints. Direct
multiple shooting and direct collocation offer the same optimization stability. Even though
direct multiple shooting has a more flexible approach than direct collocation, it solves the
problem slower. This is due to the direct collocation method solving the numerical inte-
grations as a part of the optimization problem. This thesis will therefore utilize the direct
collocation for solving the NLP, similar to Martinsen et al. (2019) and Ødven et al. (2022).

2.4.1 Direct collocation method
The direct collocation method discretizes the controls and states on a grid tk with k ∈
[0, N ] for the OCP. A set collocation points are chosen for each collocation interval [tk, tk+1]
for tk,i, where i ∈ [0, d]. A polynomial pk(t, vk) ∈ Rn with coefficients vk ∈ Rnx(d+1)

is used to approximate the trajectory of each state on the collocation interval. Continuity
across the interval boundaries is required, i.e. that

pk(tk+1,vk)− sk+1 = 0, (2.25)

must hold for k ∈ [0, N ], where sk is the discrete states on the grid points tk. In order to
integrate the system dynamics over a collocation interval, the following equations must be
solved [65]:

ck(vk, sk, qk) =


vk,0 − sk

ṗk(tk,1,vk)− f(vk,1, tk,1, qk)
...

ṗk(tk,d,vk)− f(vk,d, tk,d, qk)

 = 0 (2.26)

for the variables vk,i ∈ Rnx with i ∈ [0, d], where ck are the collocation conditions.

Moreover, a quadrature formula must approximate the cost function integral (2.24a), dis-
cretized as

∫
t

tk+1

k L(x,u)dt, on each collocation interval using the same points. This
is denoted as lk(vk, sk, qk). The direct collocation method results in an NLP which is
rewritten as
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min
v,s,u

N−1∑
k=0

lk(vk, sk, qk)

subject to s0 − x0 = 0 (fixed initial value),
ck(vk, sk, qk) = 0, k ∈ [0, N − 1] (collocation conditions),

pk(tk+1,vk)− sk+1 = 0, k ∈ [0, N − 1] (continuity conditions),
h(sk, qk) ≤ 0, k ∈ [0, N − 1] (path constraints).

2.4.2 Model predictive control
A Model Predictive Control (MPC) is a flexible method for solving an optimization prob-
lem over a predetermined, finite time horizon. The method splits the process into N time
steps. It optimizes the control inputs needed for the system to reach the desired endpoint
as an open-loop process, based on the dynamic model. Thereafter, it only performs the
first control action before it solves the optimization problem again, with the current state
values as initial conditions. This results in a close-loop optimization problem, which is
more robust to modeling errors [66].

In determining the time step and horizon for the MPC, several factors must be consid-
ered. A large time step might result in a coarse approximation of the system dynamics,
potentially leading to inaccurate model predictions. On the other hand, a small time step
can yield more precise predictions, but this comes with the trade-off of increasing the com-
putational time and complexity due to the increased number of calculations required.

The selection of the time horizon is also crucial. A short time horizon may not capture
the long-term behavior of the system and might lead to myopic control decisions. Con-
versely, an excessively long time horizon could unnecessarily increase the computational
burden and may include irrelevant future information.

The choice of these parameters should strike a balance between computational efficiency
and predictive accuracy. This is typically achieved through a process of trial and error,
guided by system-specific knowledge and requirements.
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3
Methodology

The following chapter gives a presentation of how the theory is implemented to solve the
docking problem. The first section offers a comprehensive explanation of the steps taken
to prevent collisions. This includes defining the harbor and obstacles and elucidating their
integration into the OCP. Furthermore, it describes the measures taken to ensure consider-
ation of COLREGs. Moving forward, the chapter describes the algorithms employed for
determining the shortest and smoothest path from the starting point to the docking point.
The subsequent section focuses on explaining how the OCP is reformulated to represent
the dynamic system. Lastly, an introduction is given to the software utilized for numeri-
cally solving the OCP.

3.1 Collision avoidance
To safely maneuver the vessel within a harbor, it is vital to have a good representation of
the harbor and possible obstacles. Obstacles situated within the harbor area need to be
taken into account and represented as outside the safe maneuverability area. Martinsen
et al. (2019) provides a method for representing the harbor as spatial constraints which
can be implemented in the OCP. Moreover, Bitar et al. (2019) and Ødven et al. (2022)
offer a way of representing obstacles and generating safe waypoints by utilizing elliptic
constraints and triangulation. This thesis utilizes a smooth path to warm-start the OCP.
The implementation of these methods while taking into account the COLREG rules repre-
sentation of the harbor, inspired by Eriksen et al. (2020), is explained in this section.

3.1.1 Harbor representation
A convex polygon Ss is defined as a representation of the harbor by choosing the largest
convex area that encloses the desired endpoint. The convex polygons Sv and Sb are given
as a representation of the vessel and a safety boundary enclosing the vessel, respectively.
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Figure 3.1: Illustration of the vessel Sv with black dashed lines as safety boundaries, Sb, and the
spatial constraints Ss represented by a blue dashed line. The orange line shows the heading of the
vessel.

The illustration of these convex polygons is illustrated in Figure 3.1 and defined as:

Ss = {∀ vNEDi ∈ Vertex(Sb) |Asv
NED
i ≤ bs}, (3.1)

Sb = Conv(Sv ⊕M), Sb ⊆ Sv. (3.2)

M is the safety margin surrounding the vessel, As ∈ Ri×3, bs ∈ Ri×1 and vNEDi ∈ R2,
where i is the number of vertices. Since the vertices are represented in the NED reference
frame, they must be transformed into the BODY frame to represent it as path constraints in
the OCP. Consequently, the inequality constraints ensuring safe passage within the harbor
is given by

As

(
R(ψ)vbi +

[
x
y

])
≤ bs ∀ vbi ∈ Vertex(Sb), (3.3)

where [x, y]⊤ is the vessel position represented as Cartesian coordinates. ψ is the heading
angle that is used to transform the kinematics and kinetics from the BODY frame to the
NED frame with the rotation matrix

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
.

Figure 2.4 illustrates the vessel heading and position relative to the NED frame.
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3 Methodology 3.1.2 Automatic convex harbor generation

3.1.2 Automatic convex harbor generation
This thesis aims to perform simulations in realistic, confined archipelagic areas. Such
areas are often non-convex. Section 2.2.2 explains a method used in Martinsen (2021)
in order to generate feasible convex harbors that can be implemented in the optimization
problem as inequality constraints. Even though the method is efficient, it is comprehensive
to implement. The main scope of this thesis is not to find the optimal method for convex
set inner approximation and utilizes therefore a simple and sufficient approximation of
the method. The implemented method uses the Python library, Shapely [67], in order to
simplify the convex set generation process. On the other hand, the same concepts as in
Martinsen (2021) and Deits and Tedrake (2015) are applied.

The Shapely library offers many intuitive functions for geometric manipulation and anal-
ysis. This makes finding the convex inner approximation trivial by following the steps:

1. Grow an ellipse from a center point pc along the desired path until it intersects with
an environmental constraint.

2. Find the tangent line of the intersection.

3. Grow an ellipse in one direction until it intersects with an environmental constraint.

4. Find the closest point, pab, of intersection between the point pc and the intersecting
environmental constraint.

5. Find the normal line from pc to pab.

6. Repeat the process of growing an ellipse in desired directions and obtain the linear
constraints.

7. Finding the convex inner approximation by splitting the non-convex harbor with the
tangent lines and keeping the polygon containing the vessel.

In addition, this method provides a flexible implementation that simplifies the inclusion
of the next waypoint when identifying the convex harbor. To ensure convexity when in-
corporating the next waypoint into the convex harbor, the algorithm can be initialized by
creating an ellipse between the points (if possible), thus widening it until it intersects with
an environmental constraint [40]. Increasing the feasibility and robustness of the system
naturally involves including as many details about future movements as possible.

3.1.3 Obstacle representation
Triangulation

The convex set Ss represents the largest convex set within a harbor area that does not
contain any landmass. It may therefore contain obstacles that a vessel must avoid. The
triangulation presented in Section 2.2.3, offers a simple way of finding a set of points at
an equal distance from the generating points. This method is used to find safe waypoints
for the vessel by representing the generating points as the center of the obstacle. The way-
points are represented as the Voronoi edges’ vertices, shown in Figure 3.2. To generate
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3 Methodology 3.1.3 Obstacle representation

Figure 3.2: Constrained Delaunay triangulation and Voronoi diagram.

Figure 3.3: Constrained Delaunay triangulation and Voronoi diagram with added vertices along the
convex set.

points that are at an equally safe distance from the harbor and the obstacles, the vertices
defining the convex harbor region can be used to generate a constrained triangulation.

If the number of obstacles in a harbor area is increased, scenarios may occur whereas the
few waypoints generated are not possible to traverse to without colliding with an obstacle.
Therefore, increasing the number of vertices representing the harbor will simultaneously
increase the waypoints with equal distance between the harbor and each obstacle. Figure
3.2 and 3.3 illustrates how the triangulation differs with an increase of vertices in the con-
vex set Ss. Moreover, to increase the number of possible waypoints between each obstacle,
the waypoints can also be defined as the center of each Delaunay triangle. Consequently,
the convex set Ss could contain several waypoints avoiding the obstacles. It is important
to note, as mentioned in Section 2.3.3, that the worst-case computational complexity of
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3 Methodology 3.1.4 COLREGs compliance

the A* search increases exponentially with the depth of the search tree. Therefore, the de-
sired amount of generated waypoints must be chosen carefully in order to ensure a readily
search algorithm. This thesis will therefore only utilize the Voronoi diagram and resort
to Delaunay triangulation combined with Voronoi diagram only when no feasible path is
found.

Ellipse constraints

The triangulation does offer waypoints that can be used when planning a collision-free
path. On the other hand, it does not give the OCP any information as to where it can and
cannot maneuver. Therefore, it’s vital to incorporate these as constraints in the OCP. In
this thesis, the obstacles are symmetric polygons with a given width and length. In order
not to maneuver too close to the obstacles, they are represented by a region of collision
(ROC) as elliptic inequalities that can be encoded as constraints in the OCP. An ellipse is
given by the function (

x− xc
xa

)2

+

(
y − yc
ya

)2

≥ 1, (3.4)

where xc and yc are the centre of the ellipse, and xa and ya are elliptic axes. From this,
the inequality constraints that are encoded in the OCP are described similarly as in Ødven
et al. (2022), inspired by Bitar et al. (2019),

− log

[(
(vx,i − ox,j) cos(α) + (vy,i − oy,j) sin(α)

xa,j

)2

+

(
(vy,i − oy,j) sin(α) + (vy,i − oy,j) cos(α)

ya,j

)2

+ ϵ

]
+ log(1 + ϵ) ≤ 0, ∀vbi ∈ Vertex(Sb), (3.5)

where ox,j and oy,j are the center of the obstacle j in Cartesian coordinates, where
j ∈ [1, . . . , n] and n is the number of obstacles. The elliptic axes for each obstacle are
given by ya,j and xa,j . In order to avoid singularity when vx,i → ox,j and vy,i → oy,j , a
small constant ϵ > 0 is added.

The uncertainty around the positioning of dynamic obstacles is typically larger than static
obstacles. Additionally, the COLREGs state that the vessels should keep out of the way of
each other. The region of collision (ROC) is, therefore, larger for dynamic obstacles and
dependent on their velocity. The implementation of and differentiation between dynamic
and static obstacles are illustrated in Figure 3.4.

3.1.4 COLREGs compliance
To ensure that the vessel follows the COLREG rules (Table 2.2) it is important to have a
clear definition of how they are implemented when solving the docking problem. Com-
plying with COLREGs involves two steps. The first step is to identify the rules that are
relevant to the situation, followed by executing the appropriate course of action based on
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Figure 3.4: Illustration of the vessel Sv with black dashed lines as safety boundaries, Sb, and the
spatial constraints Ss represented by a blue dashed line. A static and a dynamic obstacle are also
illustrated as black polygons with respective regions of collision (ROC) shown in transparent red.
The orange lines show the heading of the vessel and the dynamic obstacle.

those rules [43]. Once the situation is classified this thesis utilizes the COLREGs by gen-
erating a forbidden area respective to each rule. Thereby, implementing these forbidden
areas in the search algorithm. The sizes of the forbidden areas are also dependent on the
speed of the dynamic obstacle in order to relieve unnecessary occupied space. An illustra-
tion of the COLREGs interpretation is shown in Figure 3.5. Figures 3.6 and 3.7 illustrate
how penalized areas are implemented in the search algorithm based on the COLREGs in-
terpretation.

The COLREGs provide situations, such as head-on encounters, where the OS must adjust
its course to starboard and overtake the TS on its port side. Therefore, in such scenarios,
the forbidden areas include an extra penalty in order to favor this maneuver, as shown
in Figure 3.7. It is important to note that the COLREG rules only apply to one-on-one
encounters between vessels. This thesis will consider several vessels, each independently
with regards to COLREGs, therefore the proposed method is merely COLREGs inspired.

Classification

In order to classify which COLREGs are applied to the OS, two assumptions have been
made:
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Figure 3.5: Illustration of COLREG rules 13-17 interpretation from Eriksen et al. (2020).

• Assumption 1: All details regarding the TS’s pose are known to the OS.

• Assumption 2: During an encounter, all target ships keep constant course and
speed [43].

Although the first assumption may not be a realistically feasible assumption, it is a nec-
essary assumption in order to test the efficiency and robustness of the proposed method.
On the other hand, technology such as automatic radar plotting aid (ARPA) and light de-
tection and ranging (LIDAR) have shown to be effective at estimating moving obstacles
[68, 69, 70]. The second assumption is reasonable in overtaking and give-way scenarios
as the COLREG rules oblige the TS to keep a constant speed and heading to comply with
rule 17.

To adhere to the conduct of vessels in any condition of visibility, assumption 1 along
with CPA is used to cover rules 5 and 7. Rules 6 and 8 are taken into account with putting
the OS in different maneuverable states as described in Section 3.1.5. Thereby, weighting
the cost matrices and computing the desired speed along the path with equation (2.20), ac-
cordingly. Rule 9 is implemented by adding a small penalty to the possible waypoints on
the port side of the harbor when the OS is faced toward the docking point. As for adhering
to the conduct of vessels in sight of one another, rules 13-17, scenario classification is vital.
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Figure 3.6: Illustration of the vessel and harbor, similar to Figure 3.4, where the transparent green
is the vessel’s movement constraint. Two TS’ are shown, one in a head-on scenario and one in a
give-way scenario. The TS’ are illustrated with their penalized area, which is implemented in the
search algorithm, according to the COLREGs.
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Figure 3.7: An illustration of the vessel Sv and a dynamic obstacle, similar to Figure 3.6. This
figure shows how an additional penalty is added to the forbidden area in a scenario where the vessel
must pass the TS on its port side.
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In Tam and Bucknall (2010) and Eriksen et al. (2020), the COLREGs are interpreted by
evaluating the relative bearing of the TS to the OS by computing

ϕ = arctan

(
yTS − yOS
xTS − xOS

)
− χOS , (3.6)

where χOS is the OS’s course, and pTS = [yTS , xTS ] and pOS = [yOS , xOS ] are the
position to the TS and OS, respectively. The relative bearing along with the TS’s heading
relative to the OS’s heading, χrel = χTS − χOS , classifies the situation as one of the
following [11]:

• Overtaking (OT)

• Head-on (HO)

• Give-way (GW)

• Stand-on (SO)

• Safe (SF)

Similarly to Eriksen et al. (2020), the overtaking scenario is denoted into two different
scenarios, OTs and OTp. These two different scenarios determine whether the OS should
pass the TS on the starboard or port side, respectively. Overtaking on the port side is
chosen if χrel ≥ 0 and starboard if χrel < 0. The different scenarios and their geometrical
interpretation are illustrated in Figure 3.5. The different sectors are given by the angles
[θ1, θ2, θ3] = [22.5o, 90o, 112.5o] relative to the OS’s course. Moreover, the circles with
different situations, represent the TS in each relative bearing sector. In sectors containing
two different scenarios, the former is chosen if the TS travels at a greater speed than the
OS, and the latter if it is equal or smaller.

COLREGs and CPA

The COLREGs establish a set of rules that must be followed by all seafarers. However,
within a harbor where the speeds typically are restricted to 5 knots, certain scenarios
may occur where following the COLREGs does not render an acceptable maneuver. For
instance, if the COLREGs evaluation result in an advice to overtake the TS, it may need
to increase its speed to get safely ahead of the TS before docking. Therefore, utilizes this
thesis TCPA and DCPA (2.7) to also verify if the COLREGs advice is feasible. If not, the
vessel gives way to the TS.

3.1.5 Path planning
The vessel’s maneuverable states

Maneuvering through a congested harbor will lead to different scenarios, desiring different
behaviors. In order to make a more robust system, the scenario is evaluated and the vessel
is given a state. These states are used to help weight the different cost functions formulated
in section 3.2. The different maneuverable states have been chosen as:
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• Transit: the COLREGs consider the scenario as safe.

• Crossing: the COLREGs consider the scenario anything other than safe.

• Docking: the vessel is in proximity to the desired end state.

• Wait: there is no collision-free course that exists from the initial to the desired state.

For a vessel to be considered successfully docked, it must fulfill three criteria: zero speed,
correct heading, and correct position. While the vessel is in the docking state, it constantly
checks which of these criteria it has not fulfilled, and weights the cost function accordingly.
Moreover, the docking phase is initialized when the vessel is in proximity to the desired
end point. In this thesis, that is within four times the vessel’s length.

Shortest path

The Voronoi diagram generates a set of waypoints that avoids any obstacles. If a collision-
free course exists from the initial to desired state, the A* algorithm is guaranteed to find
the shortest one by traversing through the waypoints. The algorithm finds the shortest
piecewise linear path by exploring the neighboring nodes and using heuristics to calculate
the cost and guide its search [72]. In Bitar et al. (2019), the map is split into a uniform
grid with subsequent drawbacks described in Section 2.2. To address some of these issues,
Ødven et al. (2022) utilized the connected medial axes points to find the shortest path. One
drawback with the method presented in Ødven et al. (2022), was that the algorithm and
shortest path did not take the vessel’s hull into account.

This thesis utilizes an adjusted A* algorithm that considers the COLREGs, and the ves-
sel’s heading and hull. The COLREGs are included in the algorithm as a penalized area
in which the shortest path can not intersect. Similarly, the vessel’s heading is taken into
account by generating a speed-dependent, movement constraint around the vessel which
the shortest path can not cross either, both illustrated in Figure 3.5. The vessel’s hull is
considered by checking if maneuvering toward the neighboring node will cause a collision.
However, the implementation of forbidden areas in the search algorithm considerably re-
stricts the search process. To address this issue, waypoints based on the vessel’s predicted
movement are included in order to increase the chances of finding a collision-free course.

Additionally, gray areas can be utilized to represent the space left by an obstacle, pro-
viding opportunities for later maneuvers. A set of waypoints are generated within the gray
areas to help find a feasible path. If a path is found by utilizing the gray areas, the first
point within that area is chosen as a temporary endpoint, namely waitpoint. This maneu-
ver generates a human-like behavior and will help the vessel continue to move toward the
desired endpoint and avoid unnecessary stopping. In case there is no feasible path to the
desired state, a temporary endpoint, namely waitpoint, is set to a reachable waypoint with
the lowest cost, and the vessel is set in a waiting state. In case the waypoint with the low-
est cost is the same as the initial waypoint, the temporary endpoint is set to be the closest
reachable waypoint. This will keep the vessel moving and avoid local minima by explor-
ing new paths. The pseudocode for the adjusted A* algorithm is shown in Algorithm 2.
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Algorithm 2: Search algorithm

Initialize
waypoints← VoronoiDiagram(harbor, obstacles)
waypoints← ConnectPointsToVoronoi(startNode, endNode)
Initialize an empty open and closed list
g(startNode) = 0
h(startNode) = Distance(startNode, endNode)
f(startNode) = g(startNode) + h(startNode)
Append startNode to open
moveConstraint← GenerateMovementConstraint(vessel)
waypoints← ConnectPointsToVoronoi(predictedPoints)

1 if vessel.COLREG is not Safe then
2 forbiddenArea← GenerateForbiddenArea(obstacles)
3 waypoints← PenalizeWaypoints(forbiddenArea)
4 grayArea← GenereateGrayArea(obstacles)

5 while open ̸= ∅
6 currentNode← node ∈ open with lowest cost f(node)
7 if currentNode = endNode then
8 return
9 open.pop(currentNode)

10 closed.append(currentNode)
11 for every neighborNode of currentNode
12 if neighborNode ∈ closed then
13 continue
14 if Collision(currentNode, neighborNode) then
15 continue
16 possiblePath← StraightLine(currentNode, neighborNode)
17 if possiblePath intersects with forbiddenArea or moveConstraint then
18 continue
19 cost← g(currentNode) + Distance(currentNode, neighborNode)
20 if neighborNode ∈ open and cost < g(neighborNode) then
21 open.pop(neighborNode)

22 if neighborNode ∈ closed and cost < g(neighborNode) then
23 closed.pop(neighborNode)

24 if neighborNode /∈ open and neighborNode /∈ closed then
25 open.append(neighborNode)
26 g(neighborNode) = cost
27 h(neighborNode) = Distance(currentNode, endNode)
28 f(neighborNode) = g(neighborNode) + h(neighborNode)
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28 waitNode← startNode
29 f(waitNode) =∞
30 backupNode← closest feasible neighboring node to startNode
31 for every node ∈ closed do
32 if Collision(waitNode, node) then
33 continue
34 possiblePath← StraightLine(waitNode, node)
35 if possiblePath intersects with forbiddenArea or moveConstraint then
36 continue
37 if f(node) < f(waitNode) then
38 waitNode← node

39 if waitNode = startNode then
40 waitNode← backupNode

41 vessel.state = WAIT
42 return Path to waitNode)

Algorithm 3: Waypoint-reduction algorithm.

1 i← N∗
2 P← InitializePath(p∗

i )
while i > 1 do

for j = 1 to i− 1 do
if ¬Collision(p∗

i , p
∗
j ) then

3 AddPoint(P,pj∗)
4 i← j
5 break

It is undesirable to have a path with waypoints close to each other, as this prolongs the
docking procedure. The waypoint-reduction algorithm from Bitar et al. (2019), is there-
fore implemented to shorten the path further. Ultimately, the shortest path is found with
as few waypoints as possible. The pseudocode for the waypoint-reduction algorithm is
shown in Algorithm 3 and further described in Bitar et al. (2019).

3.1.6 Path smoothing
Offering a smooth path for a vessel to follow is vital in order to keep the planned path
kinetically feasible. As mentioned in Section 2.3.3, there exist several techniques for
smoothing a tangential discontinuous path. This thesis compares three different smoothing
techniques, whereas the Bézier curve and B-spline are two of them, and chooses the short-
est one. However, these two methods can only account for obstacles by adding control
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Algorithm 4: Recursive path-smoothing algorithm.

1 oldPath← reducedPathstart
Repeat

SmoothPath (newPath← oldPathstart, oldPath, waypointIndex← 2)
2 i← waypointIndex
3 if oldPathi = oldPathend then
4 newPath← AddPoint(oldPathi)
5 return newPath
6 waypoint← newPathend
7 nextPathStretch← StraightLine(oldPathi−1, oldPathi)
8 midpoint← nextPathStretch.interpolate(0.5, normalized=True)
9 exp← 2

while Collision(waypoint,midpoint) or
intersectsPenalizedArea(waypoint,midpoint) do

10 midpoint← nextPathStretch.interpolate(0.5exp, normalized =True)
11 exp← exp + 1

12 centroid← center of Triangle(waypoint, midpoint, oldPathi−1)
13 newPath← AddPoint(centroid)
14 newPath← AddPoint(midpoint)
15 return SmoothPath(newPath, oldPath, i+ 1)

16 oldPath← newPath

points in proximity to an obstacle, and the path must be verified as feasible by traversing
the path and checking for a collision. This thesis makes use of a recursive path-smoothing
algorithm, outlined in Algorithm 4. This algorithm guarantees a path that is both collision-
free and shorter than the original path, while also maintaining curvature continuity. The
algorithm is inspired by de Casteljau’s recursive method.

The algorithm takes the reduced path from Algorithm 3 and the starting point as input.
Thereby, it finds the midpoint on the line segment from the next waypoint to the one after.
As long as this point causes a collision with an obstacle or COLREGs forbidden area, a
new midpoint is found in the middle of the next waypoint and the previous midpoint. In
order to ensure a curved path, a triangle is generated between the current waypoint, the
next waypoint, and the midpoint. Thereafter, the triangle centroid along with the midpoint
is utilized to generate a new path. This procedure is executed for each of the waypoints
given by the reduced path. Running this algorithm once does not ensure a smooth path as
shown by the blue line in Figure 3.8. Repeating the procedure several times with the new
path instead of the reduced path, however, will return a path with continuous curvature.

It is desirable to find a new path quickly if the current path indicates collision risk. There-
fore, becomes the time complexity of generating a smooth path an important aspect of
path smoothing. There are mainly three elements that prolong the computational time of
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Figure 3.8: Illustration of the different collision-free paths generated by Algorithm 4.
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Algorithm 4; how many times a new midpoint has to be calculated, the length of the pro-
posed path, and finally how many times the whole procedure is repeated. The midpoint is
typically not calculated no more than six or seven times, since it is always moving closer
to a feasible waypoint, and at the waypoint when 0.5exp ≪ 1. Therefore, the worst-case
computational time of one recursion isO(log(d)), where d is the distance between the two
waypoints, indicating the number of times the line could be split to find a feasible point.
The amount of waypoints in the proposed path determines how many times the recursive
function will call itself, leading to a time complexity of O(kN ), where N = log(d) is
the time complexity of one recursion, and k is the number of waypoints in the proposed
path. The algorithm’s worst-case time complexity is O(R × klog(d)), where R indicates
the number of times the procedure is repeated. This computational complexity is not ideal,
however, the algorithm’s base-case complexity is expected to be O(1) because of various
factors. Firstly, the distance between waypoints in a harbor is typically short. Secondly,
the number of waypoints is usually a small constant value. Finally, the amount of times
the whole procedure is repeated is decided by the user, and as illustrated in Figure 3.8, two
repetitions will render a sufficient path. Ultimately, leading to a fast computational time.

The smoothing algorithm also offers the possibility to adjust the desired curvature of the
path by choosing the centroid point either as several points in a Dubin’s curve or by a
Fermat spiral, utilized in Candeloro et al. (2017) to generate a smooth path. However,
utilizing the centroid point generates a sufficiently smooth and collision-free path and will
therefore be used in this thesis.

Furthermore, this algorithm can be utilized to initiate a more feasible path for the Bézier
curve and B-spline to follow. Figures 3.9 and 3.10 illustrate the resulting enhanced paths.
The number of repetitions in Algorithm 4 used for initiating the Bézier curve and B-spline
depends on the desired amount of control points. In Figure 3.10, only one repetition is uti-
lized and it is clear that this will generate curves that are close to the initial path. Evidently,
the proposed path from Algorithm 4 is the shortest feasible one, as the Bézier curve will
make the vessel maneuver within the ROC.
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Figure 3.9: Shortest path from the initial state, η0, to the desired state, ηd, with no added vertices
along each side of the convex set. The black shapes are obstacles and the red ellipses surrounding
them, are the elliptic constraints for the respective obstacle.
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Figure 3.10: Shortest path from the initial state, η0, to the desired state, ηd, with 10 added vertices
along each side of the convex set. The black shapes are obstacles and the red ellipses surrounding
them, are the elliptic constraints for the respective obstacle.
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3.2 Optimal Control Problem
The OCP (2.24) can be reformulated by utilizing the vessel model and constraints pre-
sented in sections [2.1, 3.1]. The cost function, which will be minimized, consists of three
components. The first component, cη , is a simple quadratic cost function penalizing the
positional error, velocity, input, and cross-track error, and is given by

cη = ||η − ηd||2Qη
+ ||ν||2Qν

+ ||u||2Ru
+ ||ye||2yew

(3.7)

where ηd = [xd, yd, ψd]
⊤ and Qη,Qν and Ru are diagonal matrices used to weight the

penalty of the respective states and control inputs. yew is the penalization of the cross-track
error. The quadratic positional cost is only utilized when far away from the docking point.
When in proximity to the docking pose, a Pseudo-Huber function is utilized to calculate
the positional cost, similarly to Ødven et al. (2022). This function provides better results
to the optimization problem as it improves the numerical stability (Gros and Diehl (2022)).
The function is given by

cx,y = σδ2
(√

1 +
(x− xd)2 + (y − yd)2

δ
− 1

)
, (3.8)

where σ and δ are a tunable variables.

The second component, cψ , adds a penalty on the vessel’s heading. Similar to Martin-
sen et al., Ødven et al. (2020, 2022), the cost function is formulated as

cψ =
1

2

(
1− cos(ψ − ψd)

)
e

1
2δ2

(
(x−xd)

2+(y−yd)2
)

(3.9)

A slack is added to the desired end state to reduce the need for tuning the penalty weight
matrices and give the OCP more room to find an optimal solution. Resulting in the in-
equality constraints −ϵ ≤ ηd − ηend ≤ ϵ, where ϵ > 0 is a small constant and ηend is
the final state calculated by the OCP.
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Ultimately, the OCP is given by:

min
η,ν,f,α

∫ T

0

cη + 20cψ dt (3.10a)

subject to η̇ = J(ψ)ν, (3.10b)
Mν̇ +Dν = T (α)f , (3.10c)

As

(
R(ψ)vbi +

[
x
y

])
≤ bs ∀vbi ∈ Vertex(Sb), (3.10d)

− log

[(
vx,i − ox,j

xa,j

)2

+

(
vy,i − oy,j

ya,j

)2

+ ϵ

]
+ log(1 + ϵ) ≤ 0, ∀vbi ∈ Vertex(Sb),

(3.10e)

− ϵ ≤ ηd − ηend ≤ ϵ, (3.10f)
fmin ≤ f ≤ fmax, (3.10g)
αmin ≤ α ≤ αmax, (3.10h)
|α̇| ≤ α̇max, (3.10i)
Initial conditions on η, ν, f,α, (3.10j)

where the objective function cη + cψ is minimized over a time horizon T > 0. The
state dynamics is formulated as (3.10b) and (3.10c). The path constraints (3.10d), (3.10e)
and (3.10f), saturation constraints (3.10g), (3.10h), (3.10i) and initial conditions (3.10j)
must also be satisfied. This thesis utilizes the same saturation constraints as in Martinsen
et al. (2019), where the maximum thrust for the azimuth and tunnel thrusters are ±1/30
and ±1/60 of the dry ship’s weight, respectively. The constraints on the azimuth angles
(3.10h) are ±170o giving a forbidden area of 20o such that they will not generate thrust in
opposite directions, potentially damaging the thrusters. A maximum turnaround time for
the azimuth thrusters is also added as 30s per revolution to give a realistic simulation of
how azimuth thrusters move.

The OCP (3.10) is utilized as a fundament for solving a nonlinear MPC. If the OCP were
only to be solved once, it would give an open-loop trajectory over the time horizon. The
process is therefore divided into N time samples, where the OCP is solved for a finite
time horizon with the vessel states used as initial conditions. Before the prediction of
the following time step, only the first predicted control action is executed. Resulting in a
closed-loop optimization problem, making the method more robust to modeling errors.

3.3 CasADi
CasADi is an open-source software tool, developed by Andersson et al. (2018), which is
used to simplify the implementation of optimization problems. CasADi offers several dif-
ferent numerical solvers to solve an OCP. This thesis will utilize an interior point optimizer
(IPOPT) [74] for solving the NLP given by a direct collocation transformation of the OCP
(3.10). The implementation of the direct collocation method is a recreation inspired by
Andersson’s implementation in 2016 [75].
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4
Simulation results and discussion

The following chapter presents and discusses the results obtained from solving the docking
problem while adhering to COLREG rules. The optimal path is determined by traversing a
Voronoi Diagram using Algorithm 2, reducing the number of waypoints with Algorithm
3, and subsequently smoothing the path with Algorithm 4. The determined optimal path
ensures avoidance of static obstacles by checking for collision-free trajectories with re-
spect to the vessel’s hull. Furthermore, the path accounts for dynamic obstacles while
adhering to COLREGs. This is achieved by calculating the TCPA and DCPA using 2.7,
determining the relevant COLREG rule, and recalculating an optimal path accordingly. In
addition, considering the non-convex nature of the maneuvering area, online generation of
feasible convex areas is necessary. Convex sets are generated and stored along the initial
optimal path to optimize computational efficiency. The simulations are performed on a
Dell Optiplex 7090.

The simulations took place in the Kragerø archipelago, as shown in Figure 4.1. This
harbor area is typically crowded with leisure boats during the summer, posing increasing
challenges to the docking problem. The simulations are divided into two sections: COL-
REG scenarios and a complex scenario. The simulations in the first section demonstrate
the vessel’s adherence to COLREGs, while the second section showcases the system’s be-
havior when faced with multiple obstacles in the harbor area.

The OCP was implemented as a closed-loop Nonlinear Model Predictive Control (NLMPC).
To balance computational time and prediction accuracy, an adaptive time step and time
horizon were employed. The time horizon was determined by the approximate time it
would take for the OS to reach the LOS pose, given by

Ti = min
(
Tmax,max

(
Tmin,

∆

||vOS ||
))
, (4.1)

at iteration i, where Tmin = 10s and Tmax = 30s were chosen as the minimum and maxi-
mum time horizon, respectively.
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Figure 4.1: Illustration of the simulation area, the Kragerø archipelago. The blue dotted lines
represent typical ferry crossings.

The number of time steps was determined to linearly increase with the cross-track error,
as given by

Ni = min(Nmin + ye, Nmax) (4.2)

at iteration i, with Nmin = 10 and Nmax = 30 as the chosen minimum and maximum time
steps, respectively.

The ASV follows the optimal path using the LOS-guidance law (2.16) with an adaptive
lookahead distance. The desired speed at each LOS point is determined using CB guid-
ance (2.20), with a maximum approach speed equal to the ASV’s operating speed. The
milliAmpere’s maximum speed is 5 knots ≈ 2.57 m/s, whilst it has an operating speed
of 3 knots ≈ 1.54m/s [9].

4.1 COLREG scenarios
In this section, the ASV started at the Kragerø ferry terminal and docked at a jetty on Øya.
The objective was to test COLREG rules 13-17. The optimal path was computed within
1.1 seconds, and new convex areas were generated in less than 0.06 seconds. The initial
and desired positions were the same for all the following scenarios. Consequently, the
relevant convex areas were loaded before initializing the OCP. The operating convex area
was chosen to contain the vessel and as much of the optimal path as possible.
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Figure 4.2: Optimal path from initial pose η0 to the desired pose ηd.

4.1.1 Give-way scenario
The give-way scenario depicted a realistic situation where the ASV crossed the port ex-
it/entrance while another vessel was exiting the harbor, requiring the ASV to give way and
adhere to COLREGs. The TS was traveling at 2 m/s and had dimensions of 25 meters in
length and 10 meters in width. When a collision risk was detected, a new optimal path
was computed within 1.2 seconds. The ASV’s trajectory and predicted movements before
and after replanning were illustrated. Since the replanned path was significantly different
from the initial path, no convex areas encompassed the entire trajectory. Therefore, new
convex sets were computed in 0.06 seconds. Once the TS had passed and the scenario was
considered safe, the optimal path was updated within 0.7 seconds.

The docking problem was successfully solved in the give-way scenario while maintaining
a safe distance from the land and the dynamic obstacle, as shown in Figure 4.6. Moreover,
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Figure 4.3: Trajectory of the give-way docking scenario, when the systems detect a collision risk.
The current position is plotted in black, desired LOS-pose in green, future predictions in orange, and
shadow ships in gray. The blue-lined convex set is the current safe operation area for the ASV.

the ASV took an early action that was large enough to be readily observable for the target
ship. The total simulation took approximately 355 seconds while computing the entire
scenario took 137 seconds. Rendering an average of 0.39 seconds to compute each itera-
tion in the NLPMC. Since the system computed the next scenario faster than it executed
it, it was realistic and feasible.
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Figure 4.4: Illustration of the ASV’s reaction to detecting a collision risk in a give-way scenario.
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Figure 4.5: Illustration of the ASV updating the optimal path when the situation is considered safe.
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Figure 4.6: Complete trajectory of the give-way docking scenario, zoomed in on the final position.
The final position is plotted in black, desired position in green, future predictions in orange, and
shadow ships in gray.
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Figure 4.7: States η and ν, along with cross-track error and distance from obstacle when crossing
and docking in a give-way scenario.
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The ASV’s states, η and ν, for the give-way scenario, are shown in Figure 4.7. Around
50 seconds into the simulation, the optimal path is updated, causing a spike in the cross-
track error. The vessel maintained its surge speed around the operating speed until 200
seconds into the simulation when the scenario was deemed safe. It is evident that the ASV
changed its heading before coming into close proximity to the obstacle, thereby adhering
to the COLREGs. Although the azimuth angles’ saturation constraints were satisfied,
they exhibited more oscillation than would be ideally desirable. Examining the azimuth
angles, yaw rate, and maneuver depicted in Figure 4.6, it becomes evident that the vessel
effectively utilizes the azimuth features, executing a docking maneuver resembling human-
like behavior.

4.1.2 Head-on scenario
Head-on scenarios pose a significant risk of collision, where both parties must alter their
course to starboard to avoid a collision. However, there is no guarantee that the target ship
will take the right action in time. The following simulation is therefore performed under
similar assumptions as the rest, proposed in Section 3.1.4.

In this scenario, the TS is headed for the fuel station next to Kragerø terminal, which
could potentially cause a head-on collision. The TS had the same constant speed and di-
mensions as in the give-way scenario. Figure 4.8 illustrates the moment when the OS
detects a head-on collision risk. A new optimal path, considering the COLREGs, is found
within 0.6 seconds and is shown in Figure 4.9. The replanning was initialized when the
OS was relatively close to the TS. However, the OS was aware of the collision risk early
on, but the replanning of the optimal path was triggered based on a tuning variable that
could be adjusted. By keeping this variable relatively small, it illustrated the OS’s ability
to react quickly and avoid the TS.

Once the ASV considered the scenario safe, it updated the optimal path, which was found
in less than 1 second, as shown in Figure 4.10. The updated path was found in less than
1 second. Similar to the give-way scenario, the total simulation time took about 355 sec-
onds, where 70 of which were spent in the docking phase. It took a total of 151 seconds to
compute the entire scenario, however, it took only 85.8 seconds to compute the trajectory
up until the docking phase. Resulting in an average of 0.3 seconds to compute each itera-
tion in the NLMPC before docking, and 0.93 seconds when docking. This was due to the
vessel reaching a local minimum before successfully docking, as depicted in Figure 4.11.
However, due to the different weighting of the objective function (Section 3.1.5), the ASV
was able to converge to the desired endpoint. The suboptimal pose near the desired pose
may have been caused by the relatively sharp turn preceding the docking phase. Neverthe-
less, the OS successfully solved the docking problem by passing the dynamic obstacle on
its port side, complying with the COLREGs.

The ASV’s states, including cross-track error and distance from the obstacle, are shown in
Figure 4.13. The cross-track error was only measured until the vessel reaches the dock-
ing phase, starting approximately 285 seconds into the simulation. By not measuring the
cross-track error after the vessel was in proximity to the final destination, the OCP was
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Figure 4.8: Trajectory of the give-way docking scenario, when the systems detect a collision risk.
The current position is plotted in black, desired LOS-pose in green, future predictions in orange, and
shadow ships in gray. The blue-lined convex set is the current safe operation area for the ASV.
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Figure 4.9: Illustration of the ASV’s reaction to detecting a collision risk in a give-way scenario.
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Figure 4.10: Illustration of the ASV updating the optimal path when the situation is considered safe.
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Figure 4.11: Illustration of the ASV reaching a local minimal in the docking phase of the simulation.
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Figure 4.12: Complete trajectory of the give-way docking scenario, zoomed in on the final position.
The final position is plotted in black, desired position in green, future predictions in orange, and
shadow ships in gray.
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Figure 4.13: States η and ν, along with cross-track error and distance from obstacle when crossing
and docking in a give-way scenario.
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Figure 4.14: Trajectory of the overtaking scenario when the systems detect a collision risk. The
current position is plotted in black, desired LOS-pose in green, future predictions in orange, and
shadow ships in gray. The blue-lined convex set is the current safe operation area for the ASV

given more freedom to find the optimal control sequence. However, this approach could
also lead to convergence to local minima. Consequently, it was imperative to monitor the
success of the docking maneuver. The different states indicate the effort that was made
around 295 seconds into the simulation in order to reach the global optima.

4.1.3 Overtake scenarios
Overtaking plays a vital role in marine navigation as it enables an ASV to pass another
vessel while adhering to the COLREGs and maintaining efficient navigation. As discussed
in Section 3.1.4, there are two possible overtaking scenarios for the OS. It can overtake the
TS either on its port side or starboard side, depending on the TS’s heading and its relative
position to the OS’ heading.
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Figure 4.15: Illustration of the ASV’s reaction to detecting a collision risk in a give-way scenario.

Overtaking on port side

Figure 4.14 illustrates the early detection of a collision risk by the ASV during the sim-
ulation. The replanned path was generated in 3.3 seconds and had a direction similar to
that of the obstacle, as shown in Figure 4.15. The relatively long replanning time was due
to the forbidden area ahead of the TS, which initially resulted in an optimal path going in
the opposite direction of the desired position. According to the COLREGs, the overtak-
ing vessel must continue to keep clear of the other vessel until it has passed completely.
Additionally, since the TS and OS were traveling at approximately similar speeds, it was
challenging for the OS to overtake. Therefore, the optimal path was not updated until
around 275 seconds into the simulation, as depicted in Figure 4.16.

The states of the OS, along with the distance from the optimal path and TS, are presented
in Figure 4.18. The ASV successfully docked at the desired position while keeping clear
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Figure 4.16: Illustration of the ASV updating the optimal path when the situation is considered safe
during an overtaking scenario on the port side.

of the overtaken vessel, maintaining an average cross-track error of 0.65 meters. Through-
out most of the simulation, the ASV maintained a speed close to the operational speed.
The total simulation time was approximately 360 seconds, with a computation time of 160
seconds. This resulted in an average computational time of 0.44 seconds per iteration.
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Figure 4.17: Complete trajectory of the overtaking scenario on the port side, zoomed in on the final
position. The final position is plotted in black, desired position in green, future predictions in orange,
and shadow ships in gray.
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Figure 4.18: States η and ν, along with cross-track error and distance from the obstacle, during the
crossing and docking in an overtaking scenario on the port side.
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Figure 4.19: Trajectory of the overtaking scenario when the systems detect a collision risk. The
current position is plotted in black, desired LOS-pose in green, future predictions in orange, and
shadow ships in gray. The blue-lined convex set is the current safe operation area for the ASV.

Overtaking on starboard side

In the case where the OS is advised to overtake the TS on its starboard side, it shall keep
out of the way of the vessel being overtaken. The TS in this scenario was traveling at a
constant speed of 1.4 m/s, with dimensions of 15 meters in length and 7 meters in width.
Figure 4.19 illustrates the time step before the ASV calculated the TCPA and DCPA to be
below the risk threshold. The new optimal path was determined in less than 1 second. The
path, as shown in Figure 4.20, was clearly directed towards the TS. However, it took into
account the area that the TS would vacate as it moved forward. If the TS were to stop or
reduce its speed, the collision risk would increase, requiring a new path calculation. Once
the ASV passed the TS, it updated the optimal path in 1.4 seconds, as depicted in Figure
4.21. The ferry successfully docked at the jetty in 278 seconds. The simulation took 90
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Figure 4.20: Illustration of the ASV’s reaction to detecting a collision risk in an overtaking scenario.

seconds to compute, with 20 seconds spent in the docking phase. Resulting in an average
computational time of 0.32 seconds per iteration in the NLMPC.

The optimal path through the simulation did not require any sharp turns, except closing
in on the desired endpoint. In Figure 4.23, showing the ASV’s states, it is clear that the
vessel easily followed the optimal path, with only an average deviation of 0.24 meters.
Moreover, the energy put into following the final turn is visible by examining the thruster
force along with the increase in sway speed.

66



4 Simulation results and discussion 4.1.3 Overtake scenarios

178200 178300 178400 178500 178600 178700
East [m]

6.5386

6.5387

6.5388

6.5389

6.5390

6.5391

No
rth

 [m
]

1e6

Figure 4.21: Illustration of the ASV updating the optimal path when the situation is considered safe.
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Figure 4.22: Complete trajectory of the give-way docking scenario, zoomed in on the final position.
The final position is plotted in black, desired position in green, future predictions in orange, and
shadow ships in gray.
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Figure 4.23: States η and ν, along with cross-track error and distance from obstacle when crossing
and docking in a give-way scenario.

69



4 Simulation results and discussion 4.2 Complex scenario

177900 177950 178000 178050 178100 178150 178200 178250
East [m]

600

650

700

750

800

850

900

950

No
rth

 [m
]

+6.538e6

Figure 4.24: Illustration of the initial optimal path and first predicted states. Zoomed in on the
current position (in black) and predicted states as orange dotted lines.

4.2 Complex scenario
In order to visualize the limitations of the proposed method, the ASV was simulated dock-
ing in a confined harbor area with several dynamic and static obstacles. In this scenario,
the ASV avoided two dynamic obstacles, where it considered COLREG rules 13 and 17.
Moreover, static obstacles were placed in proximity to the docking pose to increase diffi-
culty.

In this scenario, the COLREG advised the ASV to overtake the first occurring TS, TS1,
on its starboard side. Figure 4.24 and 4.25 illustrate the scenario before and after the ASV
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has replanned, respectively. The optimal path is updated, as shown in Figure 4.26 when
the scenario is deemed safe. The replanning and updating of the optimal path took 2.2 and
4.4 seconds respectively. Indicating the computational complexity of finding the shortest
path in a non-convex, complex area.

Moving forward, a dynamic obstacle, TS2 crossing the harbor appeared ahead of the OS.
The harbor and obstacles and their respective forbidden areas vacated the area towards the
desired docking pose. The ASV was therefore set in a waiting state, as shown in Figure
4.27. While the vessel was in this state, it continuously updated the optimal path in order
to move as close to the docking point as possible. These updating computations took be-
tween 1-2 seconds to compute, leading to a total computational time of 47 seconds while
the vessel was in a waiting state. In Figure 4.28, the ASV updated the optimal path on
its way behind the TSs. Finally, in Figure 4.29 it is able to find a feasible path past the
dynamic obstacles. This figure also illustrates a weakness in the smoothing algorithm.
The reduced shortest path, depicted in red, has a small angle and the smoothing algorithm
is limited by the movement constraint of the vessel. Resulting in a smooth path that has
sharp angles. Utilizing a look-ahead distance large enough such that the vessel moves past
such waypoints, is crucial for a smooth trajectory.

Figure 4.29 showcases that the ASV updated the optimal path again as it reached the
end of the previous optimal path. It is also visible that the ASV is moving sideways as it
moves close to the harbor and has limited maneuverability. Indicating that utilizing OCP
also for the transit phase may render sub-optimal solutions. The final optimal trajectory
with the respective states is illustrated in Figure 4.31 and 4.32, respectively. Figure 4.32
illustrates that the vessel is never at collision risk with the dynamic obstacles. On the other
hand, it does travel in close proximity to especially the last obstacle. It is therefore vital
to have a clear definition of static and dynamic obstacles in a practical sense. The spike
in cross-track error occurs when the vessel is set in a waiting state and the optimal path
is not directly connected to the ASVs current position. Rendering a faster convergence to
this state.

The total simulation time took 283 seconds, while computing the entire scenario, took
392 seconds, including the 47 seconds spent on updating the optimal path in the waiting
state. Such a long computational time is not ideal for real-world implementations. Mea-
sures must therefore be taken in order to reduce the computational time to render a feasible
solution for such complex scenarios.
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Figure 4.25: Replanning of the optimal path, as the ASV detects collision risk with the dynamic
obstacle. It classifies the scenario as overtaking on the TS’ starboard side (OTs).
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Figure 4.26: Illustration of the ASV updating the path as the relevant dynamic obstacle is no longer
ahead of the OS. The OS still has to pass the TS on its starboard side.
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Figure 4.27: Illustration of the ASV detecting collision risk with another dynamic obstacle. The
ASV classifies the scenario as a give-way scenario. With no feasible path, it is put in a wait state.
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Figure 4.28: The ASV updates the optimal path, still giving way to the dynamic obstacle. However,
moving closer to the endpoint.
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Figure 4.29: Visualization of the moment the ASV updates the optimal path and is able to find a
feasible path past the dynamic obstacles.
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Figure 4.30: Figure depicting the ASV updating the optimal path as it has reached the end of the
previous optimal path.
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Figure 4.31: Complete trajectory of the give-way docking scenario, zoomed in on the final position.
The final position is plotted in black, desired position in green, future predictions in orange, and
shadow ships in gray.
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Figure 4.32: States η and ν, along with cross-track error and distance from obstacle when crossing
and docking in a give-way scenario. The distance to the dynamic obstacles is shown in purple and
brown. The remainder colors are distances to static obstacles.
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4.3 Discussion
Autonomous docking systems can play a crucial role in ensuring safe and efficient vessel
navigation while complying with the COLREGs. The simulations presented in this study
demonstrate the system’s ability to achieve COLREG compliance and perform safe dock-
ing maneuvers. The ASV effectively followed the relevant rules, maintained appropriate
distances from other vessels, and successfully completed the docking procedures without
compromising safety.

One of the core aspects of this research was to ensure safe docking while remaining com-
pliant with COLREGs. However, implementing these regulations into the decision-making
process of autonomous systems remains challenging. While it may be trivial to classify
the applicable COLREG rules for a given situation, maneuvering in compliance with these
rules remains a challenging task. The regulations are primarily designed for one-on-one
encounters and often rely on qualitative descriptions, allowing humans to rely on experi-
ence and skills when assessing situations. In complex scenarios like crowded harbor areas,
the interpretation of these regulations for an ASV can be ambiguous. Further research is
needed to develop a framework facilitating safe and efficient maneuvering in trafficked
areas. This would considerably enhance the safety of autonomous urban ferries in future
applications.

One important aspect to consider in collision risk detection is the limitation of using the
CPA as the sole measure. While CPA is commonly used, it relies on the assumption that
the obstacle will maintain a constant heading and speed. This assumption does not always
hold true, particularly in congested harbors where dynamic changes are more prevalent.
Therefore, relying solely on CPA for collision risk detection may not provide reliable re-
sults. Future research should explore alternative methods that consider dynamic changes
in the trajectories of obstacles to enhance collision risk detection accuracy. New research
by Zhu and Ding (2023) proposes an algorithm for finding the optimal collision avoidance
point, which may help assess the collision risk and take appropriate action.

In autonomous docking systems, ensuring computational feasibility is crucial. Path gener-
ation becomes more computationally demanding with an increasing number of waypoints,
particularly evident in complex scenarios such as navigating through an archipelago. To
address this issue, the replanned path was connected to the original optimal path at an ap-
propriate point. Additionally, the replanning phase could run in parallel to the NLMPC.
This approach could save time, provide a seamless transition between motion planning
and control, and mirror a realistic operation for an ASV. Moreover, utilizing forbidden
areas to represent different COLREG rules in order to find an optimal path, showed to be
a promising approach to achieving an optimal path while considering the COLREG rules.

In terms of solving OCPs in a closed-loop MPC, balancing computational feasibility
and accuracy is a significant challenge. Formulating the docking problem as an OCP
offers an effective way of solving the control allocating problem and adhering to phys-
ical constraints while preserving the vessel’s dynamics. On the other hand, the nature
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Figure 4.33: Illustration of the vessel diverging from the optimal path as the OCP converges to a
local minimum.

of optimization-based control approaches introduces unpredictability and convergence to
local minima. There are no guarantees for finding an optimal solution, particularly in sce-
narios where an optimal solution is imperative, such as in close proximity to obstacles. In
an attempt to overcome this issue, the OCP was placed in a closed-loop MPC. However,
by doing this, it becomes more dependent on finding feasible trajectories. Increasing the
computational accuracy drastically increases the computational complexity. This compu-
tational complexity can pose challenges in real-time decision-making.

Tuning the control parameters can be a complex task, as it involves considering various
factors such as lookahead distance in LOS guidance, time horizon and step size, and the
different cost functions. Figure 4.33 showcases a scenario where the vessel is not able to
follow the desired path as it continuously converges to a local minimum. When the fully-
actuated vessel is in transit, it may be given too much room to find an optimal solution
and may end up converging to a local optimum. It could therefore be beneficial to utilize
an underactuated model, such as in Ødven et al. (2022), to render better solutions while in
transit. Moreover, deviation from the desired path could also be tackled by implementing
terminal cost in the OCP. By incorporating a terminal cost, the OCP can prioritize achiev-
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ing a particular final state while considering other objectives and constraints. It provides a
mechanism to guide the system’s behavior toward a desired outcome [77, 78, 79].

In practical scenarios, a combination of longer prediction horizons and a Proportional–
Integral–Derivative (PID) controller has proven effective in handling path deviations and
ensuring accurate trajectory following. Furthermore, parallel optimization approaches,
such as finding optimal paths in separate threads, can help improve control performance
and minimize deviations. Alternatively, methods such as RL, PID, and sliding mode con-
trol be utilized to follow the optimal path, while the OCP could generate an optimal control
sequence in order to successfully dock the vessel [10, 80].
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5
Conclusion and future work

This thesis successfully integrates a COLREGs-aware collision avoidance (COLAV) sys-
tem, which combines computational geometry and nonlinear optimal control, to facilitate
safe docking and obstacle avoidance. The simulations conducted provided evidence of
successful docking and obstacle avoidance across various scenarios, demonstrating the
viability of formulating the docking problem as an Optimal Control Problem (OCP). Ad-
ditionally, the simulations illustrated the vessel effectively utilizes the azimuth features,
executing a docking maneuver resembling human-like behavior.

In terms of methodology, this study adopts techniques from Bitar et al., Martinsen, Thyri
(2019, 2021, 2022), and Ødven et al. (2022) to tackle the docking problem. The process
commences with the triangulation of the non-convex area to generate feasible waypoints
that circumvent obstacles. Subsequently, an optimal, smooth path is determined through
an A* search algorithm, a waypoint-reduction algorithm, and a path-smoothing algorithm.
Convex sets are auto-generated, yielding a feasible area for the vessel’s maneuvers. Lastly,
an OCP is implemented within a closed-loop Model Predictive Control (MPC) to track the
optimal path and perform human-like docking maneuvers. The computational complexity
arises from the nonlinear vessel model, and representing obstacles and harbor area as spa-
tial constraints in the docking scenario.

While the method proposed in this thesis has shown proficiency in docking across nu-
merous scenarios, it is not without limitations. Nonlinear optimal control problems have
a natural tendency to converge to a local optimum. Even though initializing the OCP with
an optimal path is an attempt to mitigate this issue, it does not guarantee that the OCP will
find the global optimum. Consequently, the formulation of efficient cost functions and the
inclusion of terminal cost could be an important aspects to consider in future implementa-
tions.

Furthermore, the method’s reliance on the Closest Point of Approach (CPA) for collision
risk assessment, coupled with its assumption of constant speed and heading for dynamic
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obstacles, oversimplifies the complexities of maneuvering in a congested harbor area. De-
spite providing a robust testing ground for COLREG-aware methods, a more comprehen-
sive collision assessment logic is crucial for real-world Autonomous Surface Vessel (ASV)
implementation

Additionally, the method does not account for external disturbances. Research by Mar-
tinsen et al. (2022) explored RL-MPC for tracking control of ASVs, and it would be
intriguing to test the incorporation of Reinforcement Learning based Model Predictive
Control (RL-MPC) tracking control instead of MPC for docking scenarios in future work.
This could yield a solution that is more resilient to uncertainties and external disturbances,
providing a practical solution that is not reliant on calm winds and currents.

In conclusion, the proposed method shows promising results as a way of solving the dock-
ing scenario with obstacle avoidance. It is able to efficiently maneuver to the docking
point, and successfully dock while avoiding any obstacles by accounting for international
regulations. Furthermore, this thesis serves as a steppingstone in the ongoing pursuit of
developing viable and efficient methods for safely docking an ASV while considering its
surroundings and maritime obligations, with several interesting and feasible approaches
for further enhancing the method in the future, potentially yielding practical and promis-
ing results.

5.1 Future work
The proposed method presents various intriguing aspects that have the potential for further
improvement to optimize the docking scenario. The following are recommendations for
enhancing these aspects:

• Implement a PID controller in parallel with an MPC to ensure a more robust path-
following sequence. This would facilitate the vessel’s response to real-time changes,
ultimately enhancing maneuverability and docking precision.

• Introduce a terminal cost in the OCP to generate a trajectory more likely to achieve
the global optimum. By doing so, the system would have a higher chance of con-
verging to the best solution, improving the vessel’s docking efficiency and accuracy.

• Investigate more advanced collision risk assessment techniques that do not rely ex-
clusively on the CPA. Implementing more sophisticated methods would account for
dynamic changes in the harbor environment, thus offering a more robust and reliable
collision prediction system.

• Investigate an RL-MPC tracking controller instead of PID controller. This approach
could help create a docking system for an ASV that is more resilient to model un-
certainties and external disturbances. By improving the system’s ability to adapt to
unexpected changes, the ASV would become more reliable and safe in real-world,
unpredictable conditions.
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• Investigate the application of Machine Learning (ML) methods to find an optimal
path that complies with COLREG rules. The use of ML could provide a more
nuanced understanding of the various constraints and considerations that come into
play when determining the optimal path, leading to more effective navigation and
improved adherence to maritime regulations.

• Conduct real-world testing of the proposed system to assess how it performs under
various conditions.
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Appendix

A Vessel model
This thesis performed simulations on the research vessel milliAmpere. The vessel model
is a simplified 3 DOF surge-coupled model and the parameters were retrieved from [9].
The model is presented in section 2.1 and given by:

η̇ = Jψν, (5.1a)
Mν̇ +Cν +Dν = τ . (5.1b)

The inertia matrix M , Coriolis matrix C(ν), and dampening matrix, D(ν) and can be
specified further as

M =

m11 0 0
0 m22 m23

0 m32 m33

 , (5.2a)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0

 , (5.2b)

D(ν) =

d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

 , (5.2c)

The vessel model is assumed to utilize two azimuth thrusters, one aft and one bow, as
illustrated in 2.2. Resulting in the thruster configuration matrix

T (α) =

 cosα1 cosα2

sinα1 sinα2

lx,1 sin(α1) lx,2 sin(α2)

 (5.3)
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B Simulation parameters

Parameter Value Parameter Value
m11 2389.657 Xu -27.632
m22 2533.911 X|u|u -11.064
m23 62.386 Xuuu -13.965
m32 28.141 Yv -52.947
m33 5068.910 Y|v|v -116.486
c13 −m22v −m23r Yvvv -24.313
c23 m11u Y|r|v -1540.383
c31 −c13 Yr 24.735
c32 −c23 Y|v|r 572.141
d11 −Xu −X|u|u|u| −Xuuuu

2 Y|r|r -115.457
d22 −Yv − Y|v|v|v| − Yvvvv2 Nv 3.524
d23 −Yr − Y|v|r|v| − Y|r|v|r| N|v|v -0.832
d32 −Nv −N|v|v|v| −N|r|v|r| N|r|v 336.827
d33 −Nr −N|v|r|v| −N|r|r|r| −Nrrrr2 Nr -122.860
N|r|r -874.428 Nrrr 0
N|v|r -121.957 L 5
lx,1 1.8 ly,1 0
lx,2 -1.8 ly,2 0

Table 5.1: milliAmpere model parameters.
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Parameter Value

Qη

35 0 0
0 35 0
0 0 0


Qν

0 0 0
0 200 0
0 0 100


Ru


1× 10−2 0 0 0

0 1× 10−2 0 0
0 0 1× 10−2 0
0 0 0 1× 10−2


δ 10
σ 0
ϵ 1× 10−3

∆max 2.5 ×L
∆max L
γ 0.1
yew log(

∑N
i=2 ye + 1)2

w 1× 10−1

Table 5.2: Optimization parameters for the vessel in transit.

Parameter Value

Qη

0 0 0
0 0 0
0 0 0


Qν

150 0 0
0 200 0
0 0 100


Ru


1× 10−2 0 0 0

0 1× 10−2 0 0
0 0 1× 10−2 0
0 0 0 1× 10−2


δ 40
σ 100
ϵ 1× 10−3

yew 0
w 1× 10−1

Table 5.3: Optimization parameters for the vessel when docking.
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