
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Yngve Kippersund

A Recurrent Neural Network-Based
Model Predictive Controller

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
Co-supervisor: John-Morten Godhavn
June 2023

Yngve Kippersund

A Recurrent Neural Network-Based
Model Predictive Controller

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
Co-supervisor: John-Morten Godhavn
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Effective and accurate process control for gas and oil extraction is essential for the safety
of the rig crew, for minimizing environmental consequences from extraction as well as for
maximizing profits of operation. Traditional control methods include model predictive
control, and many applications use linear models. By instead utilizing neural networks’
vast modelling capabilities, an increase in control performance may be gained if the process
is inherently nonlinear. This thesis derives a mathematical formulation for one such model
predictive controller. A data set is then synthesized, on which a neural network-based
system dynamics model is trained. The neural network is then embedded into a self-
developed model predictive controller framework. The resulting application proves, as a
proof-of-concept, the viability of using a neural network as a model basis for a model
predictive controller for the sake of flow control in a subsea gas and oil well, as some
degree of target tracking is achieved. However, its resulting control performance unveils
significant challenges related to its implementational steps. An unbalanced data set is
identified as a severe source of predictive error in the resulting model, leading to degraded
control performance, and teacher forcing is identified as an insufficient way of training the
model. Suggested solutions and improvements for future similar work are provided.

i

Sammendrag

Effektiv og nøyaktig prosessregulering ved utvinning av gass og olje er avgjørende for
riggmannskapets sikkerhet, for å minimere klima- og miljøkonsekvenser av utvinningen og
for å maksimere profitt av drift. Tradisjonelle metoder for regulering inkluderer modell-
basert prediktiv regulering, hvor mange applikasjoner benytter lineære modeller. Nevrale
nettverk har omfattende modelleringskapasitet, og ved i stedet å utnytte dette, kan den
p̊afølgende reguleringen forbedres i de tilfeller der prosessen er intrinsisk ulinear. Denne
avhandlingen utleder en matematisk formulering for en slik modellbasert prediktiv reg-
ulator. Et datasett syntetiseres, og danner grunnlaget for å trene et nevralt nettverk
for prediksjon av dynamikk. Det nevrale nettet blir deretter inkorporert i et selvutiklet
rammeverk for modellbasert prediktiv regulering. Den ferdige applikasjonen fungerer s̊a
som et konseptbevis for nevrale nettverks anvendelighet som modellgrunnlag i en modell-
basert prediktiv regulator for regulering av gass- og oljeflytrate i en undersjøisk olje- og
gassbrønn, ettersom noen grad av referansefølging oppn̊aes. Imidlertid avdekker reguler-
ingsoppførselen betydelige utfordringer knyttet til implementasjonsprosessen. Et ubal-
ansert datasett identifiseres som en viktig kilde til prediktiv unøyaktighet i den trente
modellen, hvilket fører til forringet regulering. Det p̊avises at teacher forcing (norsk:
lærer-tvinging) er utilstrekkelig som metode for å trene modellen. Videre foresl̊aes det
løsninger og forbedringer for fremtidige liknende arbeider.

ii

Preface

This thesis is written as the final work of the author’s degree of Master of Science in
Cybernetics and Robotics at the Institute of Engineering Cybernetics, part of the Faculty
of Information Technology and Electrical Engineering at the Norwegian Universe of Science
and Technology (NTNU). The thesis is written in cooperation with Equinor, and Lars
Struen Imsland (representing NTNU) and John-Morten Godhavn (representing Equinor)
have provided supervision throughout the thesis work.

A list of the resources made available to the author in relation to the thesis, as well
as a list of otherwise utilized resources, are listed in completion in appendix A. A list
of acronyms is provided in appendix B, for the convenience of the reader. Note that
the project work preceding this thesis has laid the foundation for the developments done
in this thesis. Though some material is based on similar material in that project, all
reused material is either rephrased and expanded in order to accommodate a wider scope
or explicitly stated re-used in the case of full overlap. The linear step response model
predictive controller later elaborated, developed and discussed in this thesis, is based on
a collaborative work between the author, Simen Bergsvik and Amalie Gjersdal from that
project, but is refactored and improved for the occasion of this thesis.

This thesis is written regarding subjects in control theory as well as artificial intelligence.
Note then, that some material is elaborated on a level which to qualified people in either
field might seem trivial. This is nevertheless necessary, as the basics of either field must be
bridged in order to elaborate on a level which touches on both fields, in order to achieve the
high-level goals of this thesis. That a figure or variable is non-scalar is indicated by bold
font. Any figure signifying a prediction is, according to conventional notation, denoted
(̂·).

Acknowledgements

I would like to thank my advisors Lars and John-Morten for guiding me with constant
optimism. I would like to thank my family for their ever-open arms and late-night cups of
tea. I would like to thank the cinnamon bun crew for all the wonderful lunches, especially
on Wednesdays. I would like to thank my study crew for great coffee, banter and distrac-
tions when they were needed the most. I would like to thank Jarle for his never-ending
ambition, contagious drive and unrelenting friendship. Most of all, I would like to thank
my beloved and ever-supporting Silje.

iii

Table of Contents

Abstract . i

Sammendrag . ii

Preface . iii

Table of Contents . iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Thesis background and goal . 1

1.2 Literature review . 2

1.3 Contribution and problem description . 3

1.4 Case study: the single gas and oil well . 4

1.5 Thesis outline . 5

2 Theory 7

2.1 Model predictive control . 7

2.1.1 Background . 7

2.1.2 General MPC . 9

2.1.3 Linear MPC . 14

2.1.4 Nonlinear MPC . 16

2.2 Artificial neural networks . 16

2.2.1 Machine learning and deep learning 17

2.2.2 The multilayer perceptron . 18

2.2.3 MLP-based function dynamics approximation 20

iv

2.3 Training neural networks . 21

2.3.1 Training in deep learning . 22

2.3.2 Finding the gradient and backpropagation 29

2.3.3 Gradient-related issue: ReLU and neuron death 30

2.3.4 Regularization . 30

2.4 Recurrent neural networks . 31

2.4.1 General remarks on recurrent neural networks 31

2.4.2 Recurrent neural NARX-Model . 34

2.4.3 Gated RNNs . 35

2.4.4 The encoder-decoder structure . 38

2.5 A recurrent neural network-based MPC problem formulation 39

2.5.1 Recurrent neural network architecture for MPC 39

2.5.2 RNNMPC . 39

3 Implementation 43

3.1 Goals, specifications, tests and programmatic interfaces 43

3.1.1 Goal specifications . 43

3.1.2 Test specifications . 44

3.1.3 Programming the system and its configuration 46

3.2 Implementing the LSRMPC . 48

3.2.1 LSRMPC problem formulation . 48

3.2.2 LSRMPC: implementational details 48

3.2.3 Tuning the LSRMPC . 49

3.2.4 Notes on computation times . 53

3.3 Implementing the RNNMPC . 53

3.3.1 Data sets for training the model . 54

3.3.2 Training and testing of the model . 57

3.3.3 RNNMPC: implementational details 59

3.3.4 Tuning the RNNMPC . 61

3.3.5 Notes on computation times . 62

4 Results 63

v

4.1 Linear step response MPC . 63

4.1.1 Tuning and testing of the LSRMPC 63

4.1.2 Computation times of the LSRMPC 65

4.2 Results from implementing the model . 68

4.2.1 Hyperparameter grid search results 68

4.2.2 Choice of hyperparameter set . 69

4.3 Recurrent neural network MPC . 73

4.3.1 Tuning and testing of the RNNMPC 73

4.3.2 Computation times of the RNNMPC 75

5 Discussion 80

5.1 Performance of the LSRMPC . 80

5.2 The NNARX-model . 82

5.2.1 Qualities of the training data set . 82

5.2.2 Architectural implications . 84

5.2.3 Implications of implicit RNNARX multi-step modelling 84

5.3 Recurrent neural network MPC . 85

5.3.1 Performance of the RNNMPC . 85

5.3.2 Alternative modelling approaches . 89

5.3.3 Computational regards and potential for improvement 90

6 Conclusion 91

7 Future Work 92

Bibliography 93

Appendix . 97

A Resources . 97

B List of acronyms . 98

C Compiling a 64-bit FMU for Python 99

vi

List of Tables

3.1 Specifications of the desktop PC used to run all code developed for this thesis. 46

3.2 The static parameters of the oil and gas well system, their values and how
they were derived. These provide a numerical basis for later development
of the LSRMPC, Section 3.2.2, and the RNNMPC, Section 3.3.3. 47

3.3 The static parameters of the system, encoded into the relevant variables of
the LSRMPC problem formulation. 51

3.4 The tunable parameters of the system, encoded into the relevant variables
of the RNNMPC problem formulation. 51

3.5 The hyperparameters and their chosen values or ranges of candidate values.
Values are prior to grid search for best set of hyperparameters. 58

3.6 The static parameters of the system, encoded into the relevant variables of
the RNNMPC problem formulation. The values for ylb, yub, uub and uub

are directly based off Table 3.2. 61

3.7 The parameters of the RNNMPC problem formulation which must be tuned. 62

4.1 The final configuration of tunable parameters of the LSRMPC problem
formulation. 63

4.2 The hyperparameter configurations, numbered according to their specific
combinations of hyperparameter values. 68

4.3 The tunable parameters of the RNNMPC problem formulation and their
final tuned values. 73

4.4 Computation times of the initial iteration of the RNNMPC for a selection
of models from the grid search for optimal hyperparameters. The models
are directly fetched from Table 4.2, and the non-variable hyperparameters
are omitted for brevity. 79

vii

List of Figures

1.1 An illustration of the model to be discussed in this thesis: the single subsea
oil- and gas well. Illustration is fetched with permission from [20]. 6

2.1 Illustration of the MPC principle for a single time step: The actuation for
only the next time step is the first actuation value in the optimal trajectory
as calculated from the optimization problem. The figure is fetched with
permission from [24], p. 41. 8

2.2 An illustration of a simple MLP. The input layer has 3 neurons, the two
hidden layers have 4 neurons each, and the output layer has 2 neurons. . . . 18

2.3 A second-order polynomial and three linear functions approximating it.
Illustration is fetched from [19]. 20

2.4 The illustration shows three different polynomials of order 1, 3 and 10,
respectively, all performing regression to fit 4 data points to a function.
The points are drawn from a 3rd-order polynomial. The illustrations are
fetched from [19]. 23

2.5 An illustration of how generalization error and training error develop over
time, sinking initially, before Egen starts rising again, diverging from Etrain. 25

2.6 The procedure of training an NN. 25

2.7 The computation graph for the operations being applied on one input in
any generic node. The input xin is multiplied with a weight w, resulting
in an intermediate placeholder variable z1, which is added together with
a bias b, creating another intermediate placeholder variable z2, which is
finally passed through the activation function - in this case LReLU. The
result of the computations results in xout. Note that the final output of the
node is the sum of such operations applied on all the inputs to the node,
which is omitted from this illustration for simplicity. 29

2.8 The Jordan network, illustrated in a simplified fashion with general present-
ations of the layers for simplicity. 32

2.9 The Elman network, illustrated in a simplified fashion with general present-
ations of the layers for simplicity. 33

2.10 An RNN unfolded for N recurrences; the unfolded RNN consists of N MLP-
cells. 33

viii

2.11 An illustration of the flow of information and series of computations occur-
ring within a single cell of an LSTM. 37

2.12 An illustration of the flow of information and series of computations occur-
ring within a single cell of a GRU. 38

2.13 An illustration of the RNN resulting from chaining the single-step NNARX
model of the single well process dynamics, implementing multi-step dynam-
ics prediction as described in (2.27). The figure was first used in [19], there
based - with permission - on an illustration from [16], page 3. 40

3.1 In this example intended only for illustration, the best-performing combin-
ation of two values R0 and R1 for some arbitrary procedure must be de-
termined. The performance is measured on a scale p ∈ [1, 5], where higher
is better. The first iteration isolates R0 ∈ [100, 10000] and R1 ∈ [1, 100]
as neighbourhood within the original search area as the best-performing
region. The second iteration then explores that neighbourhood, while also
adjusting the performance scale according to the worst- and best-performing
grid points within the new neighbourhood, in order to accommodate the in-
creased resolution. The procedure may be repeated for as long as desirable,
but is here illustrated with only 2 iterations for simplicity. 53

3.2 The synthesized data set later used for training models. 56

3.3 A magnified snippet of the input profile for choke, as presented in Figure 3.2.
The snippet is intended to further clarify the structure of the excitation signal. 56

4.1 The LSRMPC’s control performance over the reference profile used for tun-
ing. Prediction error is given by a separate y-axis in green. 64

4.2 The LSRMPC’s control performance tested on references in high-valued
and low-valued regions, according to the specifications in Section 3.1.2.
Prediction error is given by a separate y-axis in green. 66

4.3 The LSRMPC’s control performance tested on references in performing a
step isolated to gas rate and oil rate, respectively, testing for the ability to
control the rates separately. Prediction error is given by a separate y-axis
in green. 67

4.4 The figures illustrate the computation times associated with the LSRMPC
simulation depicted in Figure 4.2a. Top: the times spent updating and
solving the optimal solution at each iteration. Mid: Total time spent at
each iteration. Bottom: The cumulative time spent on the full simulation. . 68

4.5 The MSE of all the tested models over the step test data sets. The graphs
show MSE as a function of hyperparameter number 69

4.6 The chosen model’s predictions for steps in the choke in low-, medium- and
high-valued working ranges, respectively, with gas lift kept constant at 0.
The orange, red, blue, and green lines are true outputs, predicted outputs,
actuated inputs, and prediction errors, respectively. 71

ix

4.7 An input profile resembling a ”staircase” in both choke and gas lift rate,
designed to drive the system to maximum gas and oil rates by prioritizing
choke. 72

4.8 The training and validation errors during training of the chosen model. As
expected, the training error decreases asymptotically towards zero, while
the validation oscillates somewhat more. 72

4.9 The RNNMPC’s control performance over the same reference profile used
for tuning the LSRMPC. Prediction error is given by a separate y-axis in
green. 74

4.10 The RNNMPC’s control performance tested on references in high-valued
and low-valued regions, according to the specifications in Section 3.1.2.
The reference profiles are identical to the ones to which the LSRMPC was
subjected in Figure 4.2 for comparison purposes. Prediction error is given
by a separate y-axis in green. 76

4.11 The RNNMPC’s control performance tested on references in performing a
step isolated to gas rate and oil rate, respectively, testing for the ability
to control the rates separately. The reference profiles are identical to the
ones to which the LSRMPC was subjected in Figure 4.3 for comparison
purposes. Prediction error is given by a separate y-axis in green. 77

4.12 The figures illustrate the computation times associated with the RNNMPC
simulation depicted in Figure 4.10a. Top: the times spent updating and
solving the optimal solution at each iteration. Mid: Total time spent at
each iteration. Bottom: The cumulative time spent on the full simulation. . 78

x

Chapter 1

Introduction

1.1 Thesis background and goal

In the extraction of oil and gas, the effectivization of flow rate control has the potential of
yielding a multitude of benefits. When desired reference values for gas and oil flow rates
are given, more effective and accurate control towards that reference yields both increased
economic return and the potential of utilizing actuators more carefully. This in turn has
the potential of increasing said actuators’ lifespan, thus reducing required maintenance
and associated costs. By controlling flow rates more effectively, redundant production
may be avoided, thus sparing the climate from e.g. the burning of excessively produced
gas. Controlling flow rates accurately also secures that the operating conditions of any
given equipment in the system are upheld more effectively, thus increasing the safety in use
of said equipment. Equinor operates multiple process industry locations, wherein effective
and accurate flow rate control is extremely important.

A method of control which has been widely employed in industry across a multitude of
domains for decades is model predictive control (MPC)[1]. This method is still popular
today and is much used by Equinor as well[2]. Central in MPC is the mathematical formu-
lation of the system model, which ensures that the dynamics of the system to be controlled
are considered during the calculation of the optimal actuation sequence. Thus, the MPC
has the potential for improved control performance when the accuracy of the system dy-
namics model increases. Since MPC is based on computing solutions to adequately posed
optimization problems, associated computational demand may become heavy. Solving op-
timization problems is much easier and more effective for linear model-based optimization
problems[3]. Consequently, many both traditional and modern industrially applied MPCs
are based on a linear system dynamics model, an example of which is linear step response
models[2]. However, in many cases, the system is in reality nonlinear, implying that a
linear model-based MPC may be subject to significant modelling error, which leaves room
for potentially significant control performance gain through improvement of the model.

Though there exist ways to somewhat remedy such accuracy loss, such as using different
linear models for different working ranges of the system[4], known as gain scheduling,
an alternative approach would be to model the system directly nonlinearly. A nonlinear
model carries the potential of describing the system’s full working ranges - not just around
a neighbourhood. The field of nonlinear system dynamics modelling presents many avail-
able options[5], [6]. A central issue of nonlinear system dynamics modelling, however,
is deriving a first principles-based model effectively, as this can involve time-consuming

1

mathematical analyses, and thus be resource-costly and expensive. A data-driven model
may then prove a favourable option in the case where data is readily available for the sys-
tem in question. Among the nonlinear data-driven modelling paradigms, neural networks
(NN) provide vast theoretical modelling potential due to their universal approximation
capabilities[7].

1.2 Literature review

Many modern examples of MPC successfully demonstrate the feasibility, potential effi-
ciency and accuracy of MPC using NN-based models (NNMPC) across a broad array of
different applications, thus utilizing available process data effectively, and proving the ap-
plied modelling potential of NNs empirically. Indeed, in the context of control applications,
they are often used for e.g. modelling a system’s dynamics entirely (black-box modelling),
modelling a system’s dynamics partly as a supplement to a first principles-based model
(grey-box modelling), or modelling the uncertainty of an already existing model[6]. NNs
may also be utilized as emulators of optimization algorithms, or to replace the controller
in full[6]. In [8], reinforcement learning is applied to adjust the parameters of a convex
NN-based cost function adaptively, which effectively compensates for model uncertainties.
As this thesis will focus on using NNs for black-box modelling, the interested reader is
referred to [6] for further details on broader applications of NNs in MPC.

Feasibility of NNMPC in safety-critical domains such as human-machine interactions is
demonstrated in [9], as they successfully implement an echo state gaussian process-based
MPC for target tracking. Power-efficient temperature control of a building, surpassing
prior control methods, is achieved in [10], where the NN-based model is even proven convex,
thus reducing the complexity of the resulting MPC implementation. [11] achieved a well-
performing and computationally feasible NNMPC on an embedded platform, controlling a
quadrotor vehicle - in spite of the platform’s restricted computational capacity. A complex
paper production pipeline is successfully controlled in [12], using the gated recurrent unit
(GRU)-variant[13] of the predecessing long-short term memory (LSTM) architecture[14]
wrapped within a variational encoder-decoder layer.

In [15], multi-step predictions of a steel pickling process’ dynamics are achieved by imple-
menting a single-step prediction model by means of a simple multilayer perceptron (MLP),
which takes in the values of the parameters known to affect the process. The MLP pre-
dicts the future value of one of the parameters, such that open-loop chaining the MLP for
a number of time steps equalling the prediction horizon yields a multi-step prediction of
that parameter, implemented as a recurrent neural network (RNN). This approach allowed
training the NN-based model as a simple MLP, but deploying it as an RNN. When applied
in MPC, significant improvements - relative to PI control performance on the same problem
- are observed. Building on a similar approach, [16] trains an MLP to perform single-step
predictions of the dynamics of a reactant’s concentration in a continuously stirred tank
reactor, and goes on to prove the input-to-state stability of the closed-loop controlled
system under certain conditions once employing said model recurrently within the MPC.
Differently, the model is here based on a nonlinear autoregressive model with exogenous
inputs (NARX), which allows the model to predict future state of the process based on
only historic and current values of its inputs and outputs. The resulting MPC yielded
results comparable with an MPC based on the already-known first principles-based model
for the same system, thus presenting a strong argument for the feasibility of the method.
Note that, once embedded in the MPC, the NARX-model implicitly becomes a recurrent

2

neural NARX-model (RNNARX), yielding multi-step process dynamics predictions[17].

Indeed, common to all the presented applications, is that they design the underlying model
such that, once embedded within the MPC implementation, it explicitly or implicitly
implements an RNN; the recurrence arises naturally or by design in order to implement
the multi-step dynamics predictions required to accommodate the prediction horizon of an
MPC. The term NNMPC is here used as an umbrella term for all MPC which use NNs in
some way, while RNNMPC implies that the MPC uses an RNN as an underlying model,
specifically. The approaches differ in the philosophical foundation on which dynamics
are modelled. This is exemplified well by investigating [16] and [12]. Implementing an
NN-based model with an underlying NARX state formulation (NNARX), [16] performs
dynamics prediction by effectively integrating all transient effects relevant for the next
time step in a simultaneous matter. Once deployed in the MPC, it becomes an RNNARX,
thus implementing an RNNMPC. Differently, [12] accumulates all transient information
over time and implement the model recurrently from the start, thus facilitating a more
adaptive dynamics integration.

The applicability of NN-based models in MPC applications is proven across several differ-
ent domains, indicating further promises for further applications. However, though derived
for individual cases, such as in [16], RNNMPC still lacks general proofs of stability and
robustness. Additionally, [18] argue that many current RNNMPC implementations have
unanswered challenges with regard to interpretability of the model and consequently its
consistency with respect to the underlying physical laws. They go on to demonstrate that
designing an RNNMPC by considering the physical laws governing the system, i.e. creat-
ing a grey-box NN-based model, yields improved control performance on their case study,
relative to the case of using a black-box NN-based model.

1.3 Contribution and problem description

The field of NNMPC yields a vast array of successful applications, providing a broad
foundation upon which future similar applications may be based. Nevertheless - to the
best knowledge of the author - NNMPC has not been employed in the control of flow
rates in subsea gas and oil extraction using a well with gas lift capabilities. Based on
the field’s successes in implementing NNMPC in many different domains, the author of
this thesis seeks to contribute to the field of NNMPC the following: a proof-of-concept
application of RNNMPC based on an appropriation of the RNNARX multi-step process
dynamics predictor employed in [16], designed to control the output gas and oil flow rates
of a single subsea oil and gas well. The specific system is described in further detail
in Section 1.4. The specific method of modelling is chosen for its conceptual simplicity
relative to alternative methods presented, as it is deemed desirable that a solution to the
control problem posed is retained as simple as possible. This is based on the author’s
hypothesis: a simpler implementation bears a stronger promise of being computationally
light in the case of actual application in the future. A linear step response model-based
MPC (LSRMPC), based on the work done in [2], is also implemented in order to attain a
grounds of comparison for the implementation of this application.

Based on the motivation presented in Section 1.1, the goal tackled in this thesis revolves
around determining whether such a method proves efficient and/or accurate in flow rate
control. In the case where the application of this method proves successful, key factors un-
derlying the success should be identified for the sake of reproducibility and usefulness for

3

future similar applications. Conversely, in the case where the application does not prove
successful, in addition to identifying the underlying factors causing the failure, mapping
alternative approaches is of the utmost interest. Regardless of success or failure: identify-
ing which central challenges must be addressed during the development of an RNNMPC
is central. Presently, the problem description of this thesis is formalized as a main goal,
facilitated by three sub-goals.

Main goal.

1. Investigate the feasibility of an RNNARX multi-step process dynamics predictor as
a black-box model basis for an efficient and accurate MPC for the control of gas and
oil flow rates of a single subsea gas and oil well compared to the performance of an
LSRMPC.

Sub-goals. The above goal implies implementing a data-driven model of the process
in question. As such, a foundation of data on which to train an RNNARX multi-step
process dynamics predictor which may be employed in an MPC implementation is ne-
cessary. Accordingly, the main goal is facilitated by the following three sub-goals, which
accommodate these required steps.

1. Perform data acquisition in order to create data sets suitable to train an RNNARX
multi-step process dynamics predictor.

2. Identify and tackle central issues in training an RNNARX multi-step process dy-
namics predictor.

3. Implement and simulate the control performance of an MPC based on an RNNARX
multi-step process dynamics predictor.

Note that implementing the LSRMPC is not defined as a sub-goal; with the exception
of its tuning, the LSRMPC’s implementation is a result of this thesis’ preceding project
work, see [19]. Its underlying theory, implementation and results are nevertheless briefly
presented throughout this thesis alongside the theory relevant to the NNMPC. This is
done to facilitate the understanding of their respective performances compared to each
other.

1.4 Case study: the single gas and oil well

This section presents the case system around which this thesis revolves. Since the system
is the same as in [19], this section is fetched directly from there, and altered slightly where
needed to encapsulate the modifications specific to this thesis.

As mentioned in Section 1.1, the goal of this thesis is to approximate the system dynamics
of a single well. The well consists of a pipe connecting a reservoir of oil and gas beneath
the seabed, to a valve - the so-called production choke, or choke for short - above the
seabed. Also connected to this pipe is a valve that allows an influx of gas into the fluids
flowing from the reservoir to above the seabed. An illustration of the system is given in
Figure 1.1. The system will be modelled as a MIMO system, with two inputs and two

4

outputs, where the two inputs are the variables available for control. The next paragraphs
explain these inputs and outputs in further detail.

Since the single well consists of a single pipe, leading all flow of gas and oil through the sea
floor, the function and purpose of the choke is to constrict the pipe’s cross-section where
it is placed. By controlling its degree of constriction, the flow rate through the pipe may
be controlled. Since the choke can be either fully open or fully constricted, its working
range is within [0, 100] [%]. Though the choke’s opening is in reality a discrete variable,
able to change ±2 [%] at each step, this thesis makes the simplification that its opening is
a continuous variable. Controlling the choke’s opening is an inexpensive means of control,
as it simply involves constricting or expanding a valve at a specific point of the pipe.

The second means of controlling flow in the well’s pipe is the gas lift rate. The gas lift
rate describes the rate at which gas is injected through the gas lift choke into the flow
transported from the reservoir through the sea floor. By injecting gas into the flow, the
viscous properties are altered, changing the flow dynamics of the fluid within the pipe, thus
ratifying the gas lift rate as a means of actuation. In reality, physical constraints to the
tools used in controlling the gas lift rate disallow a gas lift rate in the range (0, 2000) [m

3

h]1.
This thesis considers a simplified gas lift rate, which is not subject to this constraint.
The working range of the gas lift rate is then for the scope of this thesis assumed to be
[0, 10000] [m

3

h]. Note that this amount is from here-on assumed controlled externally with
respect to the scope of this thesis; even though the gas lift rate is in reality controlled
by the gas lift choke, the gas lift rate will be handled as a flow rate for the rest of this
thesis, measured in [m

3

h]. Conversely to the choke, the gas lift rate is an expensive means
of control, as it involves compressing large quantities of gas, which is a power-demanding
process. Ideally, then, the choke valve should be the prioritized actuator, and the gas lift
rate should only be used for control when necessary, i.e. for finer adjustments towards
reference values or to further increase the flow rate when the choke is fully opened.

The two outputs are the gas rate and the oil rate flowing from the reservoir and through the
choke, respectively. These flow as a mixed fluid, but are assumed separately measurable
in this thesis.

The work done in this thesis has not interfaced with the described system directly, but has
instead had available a digital model of the system. The digital model, as well as values
specific to the system, such as lower and upper bounds on outputs, actuation and change
in actuation, are all presented in further detail in Section 3.1.3.

1.5 Thesis outline

The further content of this thesis consists of six chapters. Chapter 2 presents the theoret-
ical foundation relevant for the further implementations and gathered results of this thesis
across five sections. Chapter 3 presents the specifications to which the MPC implement-
ations’ control performances should adhere, and details the considerations made during
the implementation of the LSRMPC, the NNARX-model, from here-on referred to as the
model, as well as the RNNMPC to which it is extended. The results from simulations of
control sequences for both the MPC implementations, as well as predictive performance of
the model are presented in Chapter 4. Chapter 5 discusses the observed results in light of
the presented theory and implementational choices made and draws attention to factors

10[m
3

h
] is allowed, as this simply means the gas lift valve is shut close.

5

Oil out

Tubing

Gas lift

Reservoir

Injection

valve

choke

Gas in

Production

choke

Annulus

Figure 1.1: An illustration of the model to be discussed in this thesis: the single subsea
oil- and gas well. Illustration is fetched with permission from [20].

that should and could be improved upon as well as why and how. Chapter 6 concludes
the most important factors identified from both the implementation and testing of the
two MPCs. Lastly, Chapter 7 provides suggestions as to how future work may succeed in
similar future applications, based on these identified factors.

6

Chapter 2

Theory

This chapter presents theory relevant for this thesis, on which implementations in Chapter
3 are based, and results in Chapter 4 discussed in Chapter 5. Specifically, Section 2.1
presents general, linear and nonlinear MPC, Section 2.2 covers the basic neural network
architecture, Section 2.3 the training of neural networks, Section 2.4 presents the extension
from basic neural networks to recurrent neural networks, and Section 2.5 details an MPC
problem formulation with a recurrent neural network-based model embedded within.

2.1 Model predictive control

While the introduction to MPC, Section 2.1.1, is fetched directly from [19] due to com-
plete overlap, the further sections Section 2.1.2, Section 2.1.3 and Section 2.1.4, though
conceptually very similar to content in [19], are reformulated and expanded to address the
wider academic scope in this thesis.

2.1.1 Background

Model Predictive Control (MPC) is a class of control methods that calculate the optimal
control sequence for some prediction horizon, given some description of the system’s dy-
namics - a system model. Note that, even though this prediction horizon may be infinite,
only finite horizon cases are considered in this project. In contrast to common control
alternatives, such as LQ-control, the MPC methods have an industrial origin, rather than
academic [21]. MPC bears similarities to LQ-control, of which this thesis does not cover
the details. The interested reader is referred to [22].

MPC is implemented by calculating the optimal control sequence for some finite predic-
tion horizon and applying only the first of these optimal control values to the process in
question. This is illustrated for a single iteration of an MPC in Figure 2.1. Repeating
the process for each time step, a feedback connection is implemented, making MPC a
closed-loop control method. As the prediction horizon is kept constant for each time step,
it recedes one step ahead into the future for each step ahead the system makes. This
control principle is thus called the Receding Horizon-principle. It is an essential aspect
of MPC, as it allows the trajectory of optimal control values to be adjusted according
to continuously occurring sources of inaccuracy, such as model imperfections (including
dynamics, kinematics and disturbance) and noise. The Receding Horizon-principle is an

7

Figure 2.1: Illustration of the MPC principle for a single time step: The actuation for
only the next time step is the first actuation value in the optimal trajectory as calculated
from the optimization problem. The figure is fetched with permission from [24], p. 41.

important reason for the robustness qualities that MPC exhibits [23], and is also one of
the main factors that distinguishes it as a control method from LQ-control.

Another essential aspect of MPC that distinguishes it from alternative control approaches,
is its ability to take into account physical model constraints. Constraints may include
upper and lower limits to state and/or actuation values, but importantly also enable the
engineer to encode the system model into the optimization problem formulation as an
equality constraint. The ability of MPC to take these into account stems from its use
of an optimization problem solver (from here-on referred to as a ”solver”). Solvers are
algorithms that find a minimum - or maximum, depending on convention - in any given
function, with the capability of restricting the accepted solution space to a sub-space
defined by a set of inequality and equality constraints that are formulated as part of the
optimization problem.

Even though the above-mentioned characteristics make MPC a widely used and state-of-
the-art process control method, it has drawbacks, mainly associated with computational
cost. This is briefly presented in Section 2.1.3 and Section 2.1.4.

Further details of the general MPC problem formulation and aspects regarding linear-
ity and nonlinearity are presented in the following sections. Theoretical background for
numerical optimization is not provided in this thesis. The interested reader is instead
referred to [3].

8

2.1.2 General MPC

MPC determines the optimal control sequence by means of minimizing the value of some
objective function l(·), often called the cost function:

min
x

l(x), (2.1)

while also taking into account the constraints to which the physical system must adhere,
by encoding said constraints as sets of equalities and inequalities:

min
x

l(x) (2.2a)

s.t.

g(x) = 0, h(x) ≥ 0 (2.2b)

The rest of this section covers relevant considerations for both the cost function and the
constraints and elaborates on how to formulate them thereafter, before briefly covering
optimization in MPC.

Cost function. Since the problem is one of minimization with respect to some set of
variables, any values causing the cost function to go towards −∞ would be preferred by the
solver. However, this poses two main issues. Firstly, if the cost function tends towards−∞,
the optimization will not converge, and the optimizer will not find an optimum. Secondly,
the cost function is simply a function designed to describe the degree of optimality in any
given solution with respect to the set of optimization variables. This implies that there
does not necessarily exist any direct link between a minimum in the cost function and a
desired, or even tractable, state in the actual physical system for such an optimum, unless
by intentional design. Thus, if the cost function design is poor, an optimum may yield
poor performance in the system, or even be physically intractable.

To avoid this, the cost function must be designed adequately. Firstly, there must be a
defined global minimum, such that the optimizer is able to converge. This is achieved
easily by defining the cost function to be quadratic with respect to at least (but not
limited to) the vector of optimization variables, here exemplified with a generic vector x
and a matrix Q consisting of scaling factors synonymously called weights.

l(x) = xTQx (2.3)

It is important that the weight matrix Q is positive semi-definite (PSD), Q ⪰ 0, such that
the cost function becomes monotonically increasing along all axes[3], and consequently that
a global minimum is guaranteed to exist. Furthermore, PSD quadratic cost functions have
the benefit of being convex, which ensures that any local optimum is a global optimum[3].

Note that a positive semi-definite function on the same form as (2.3) has its global min-
imum in the origin. By offsetting each variable with some value, for example the reference
value xref in the target-tracking case, the global optimum can be shifted thereafter, such
that it corresponds to the desired state in the true system:

9

l(x;xref) = (x− xref)
TQ(x− xref) (2.4)

Since the goal of optimization in MPC is to determine the optimal control action at
the current time step, the optimization variables should either explicitly or implicitly
determine the system’s degrees of freedom - the input variables - through which the system
state may be manipulated. In the explicit case, the input is used as the optimization
variable directly. Conversely, in the implicit case, optimization is performed with respect
to for example changes in input between time steps, ∆u, or state variables, y, both of
which implicitly determine the input’s values through system modelling in the constraints.
This is later exemplified in (2.8h) and (2.8c), respectively. Optimization is done based on
open-loop predictions of future state for some amount of time steps into the future. An
example of optimization that implicitly provides the optimal input may look like the
following:

min
∆uk:k+N−1

l(yk+1:k+N ,∆uk:k+N−1;yref,k+1:k+N), (2.5)

where l(yk+1:k+N ,∆uk:k+N−1;yref,k+1:k+N) is a generic scalar-valued cost function with
respect to the sequence of vector-valued variables yk+1:k+N and ∆uk:k+N−1 as well as
parameters representing a given reference yref,k+1:k+N , and N is a number of time steps
ahead into the future.

The cost function is usually designed to give some measure of penalty to a candidate
solution proportional to how well the solution follows the goals set for the MPC problem
formulation [21]. In (2.5) this can, for example, be how much yk+1 deviates from yref,k+1 -
the less the better - and how much change in actuation∆uk is required in order to minimize
this deviance - the less the better. Intuitively, the cost function’s global minimum will then
provide the optimal solution. Note that, in this specific case, no considerations regarding
the resulting value of the actuation itself are made, only its rate of change. In order to
avoid divergence in actuation and the breaking of physical actuators’ limits, upper and
lower bounds on actuation should be encoded into the optimization problem’s constraints.
This is later exemplified in (2.8f).

Formulating (2.5) in the quadratic fashion of (2.4) may provide a cost function as follows:

l(yk+1:k+N ,∆uk:k+N−1;yref,k+1:k+N) =
N−1∑
i=0

(yk+1+i − yref,k+1+i)
TQ(yk+1+i − yref,k+1+i)

+∆uT
k+iR∆uk+i,

(2.6)

Note that, while it suffices that Q ⪰ 0, R has to be positive definite (PD), R ≻ 0. This
is in order to avoid potentially cancelling the cost function’s actuation rate-term in (2.6),
which would imply the actuation could change at any arbitrary rate without impacting the
solution, resulting in arbitrary actuation values and quite possibly damage to the physical
actuation equipment. Intuitively, arbitrary values in actuation are not acceptable as a
solution, as this would cause arbitrary system behaviour. Furthermore, the cost function
as a whole must remain at least positive semi-definite, such that a defined global minimum
is guaranteed to exist, for the sake of convergence. Note that the strict requirement of

10

positive definiteness is not made for Q because the acceptable solution space is defined by
means of inequality constraints to be such that any value therein is acceptable with respect
to tractability in the physical system, later exemplified (2.8d). Furthermore, coherence
between input and state is enforced by means of encoding the system model as an equality
constraint, later exemplified in (2.8d) and (2.8c). Intuitively, any solution then existing
within the defined solution space is acceptable since it is not arbitrary, but comes as a
direct consequence of the calculated optimal actuation values.

The global optimum of the quadratic cost function will in every unconstrained case, as
in (2.1), be the (potentially shifted) origin, due to the cost function’s positive semi-
definiteness. This is not necessarily the case for any constrained case, as in (2.2), in
which the global, unconstrained optimum may be outside the legal bounds defined by the
constraints. Where the constrained global optimum lies depends on both the specific set of
constraints as well as the surface shape of the cost function. While the set of constraints is
usually derived from physical considerations, and not subject to alterations, this is not the
case for parameters defined as part of the cost function. In (2.6), these are the optimiza-
tion horizon N , as well as the weights Q and R, all of which are tunable; their values may
be determined by the user according to what yields the best behaviour. Consequently, the
control performance is directly affected by the specific values of the optimization horizon
and the weights.

The size of the optimization horizon N defines how many time steps, with which to achieve
its goals, the solver has at its disposition. A small N then indicates that the reference
values must be reached in fewer time steps, yielding the solution fewer degrees of freedom.
This will result in a more crude and aggressive optimal control sequence. Conversely, if
the prediction horizon is larger, the solution will have more degrees of freedom, and a more
optimal control sequence may be found. Indeed, a larger prediction horizon does result
in a better control performance, as indicated in [24]. However, solving an optimization
problem with more degrees of freedom involves higher computational costs. The exact
size of the prediction horizon thus presents a compromise between computational cost and
performance and is a parameter that must be tuned to fit any specific MPC scheme.

In (2.6), the control horizon is implicitly equal to the prediction horizon. However, separ-
ating the two is perfectly viable, in which case the expression may be altered:

l(yk+1:k+Hp
,∆uk:k+Hu ;yref,k+1:k+Hp

) =

Hp−1∑
i=0

(yk+1+i − yref,k+1+i)
TQ(yk+1+i − yref,k+1+i)

+

Hu∑
i=0

∆uT
k+iR∆uk+i,

(2.7)

Note that calculating any actuations for time steps beyond the prediction horizon is su-
perfluous, as the corresponding outputs would in such a case not be predicted, and the
extra actuation values will then have yielded no extra information. Coherent with the
definition in (2.7), any implementation should always define Hp > Hu.

The values of the elements of Q and R scale the variables in the cost function, thus af-
fecting the steepness of the cost function’s slopes along each axis. The higher the values
of the weights, the steeper the slope of the cost function along the corresponding vari-
able’s axis, the more impactful changes in that variable become. Thus, the magnitudes

11

of the weights imply the penalty contributed to the cost function from the corresponding
variable’s deviations from the value at the unconstrained optimum, and tuning Q and R
changes the behaviour of minima found during minimization. This can be used to alter
the MPC scheme’s effectiveness with respect to different aspects. In the case of quadratic
cost functions, such as (2.6), the weight matrices Q and R are usually implemented as
diagonal matrices, such that the cost function becomes a simple sum of a weighted square
of all variables. Then, high-valued elements of Q will penalize deviations from the refer-
ence, yk+1+i − yref,k+1+i, whereas high-valued elements of R will penalize rapid changes
in actuation, ∆uk+i. Intuitively, the weights are a means of encoding priorities in the
constrained optimum with respect to different aspects of the system. Finding the ideal
tuning of any cost function must be done on a case-by-case basis, as it will depend highly
on the system and desired behaviour.

Constraints. The true strength of MPC as a method of process control comes from its
ability to take into account constraints, which allows physical regards of the true system to
be facilitated. These are regards of the physical system, such as limits to actuation, limits
to the rate of change in actuation as well as consistency with the system dynamics. Note
that the constraints may encode more abstract concepts as well, such as mathematical
consistency with initial state. The encoding may be performed by reformulating the
generic equalities and inequalities in (2.2b), such that they instead represent individual
constraints of the system.

To exemplify this, a basic case of MPC is presented, where (2.7) is used as a cost function.
This example later lays the foundation for MPC problem formulations (2.11) and (2.30),
used in Section 3.2 and Section 3.3, respectively.

min
∆uk:k+Hu

Hp−1∑
i=0

(ŷk+1+i − yref,k+1+i)
TQ(ŷk+1+i − yref,k+1+i)

+

Hu∑
i=0

∆uT
k+iR∆uk+i

(2.8a)

s.t.

x̂k = xk (2.8b)

x̂k+1+i = f(x̂k+i,uk+i) ∀ i ∈ [0, Hp − 1] (2.8c)

ŷk+1+i = x̂k+1+i + vk+i ∀ i ∈ [0, Hp − 1] (2.8d)

ylb ≤ ŷk+1+i ≤ yub ∀ i ∈ [0, Hp − 1] (2.8e)

ulb ≤ uk+i ≤ uub ∀ i ∈ [0, Hp − 1] (2.8f)

∆ulb ≤ ∆uk+i ≤ ∆uhb ∀ i ∈ [0, Hu] (2.8g)

∆uk+i = 0 ∀ i ∈ (Hu, Hp − 1] (2.8h)

uk+i = uk−1+i +∆uk+i ∀ i ∈ [0, Hp − 1] (2.8i)

vk+i = yk − ŷk ∀ i ∈ [1, Hp − 1] (2.8j)

Given (2.8c) and (2.8d), the minimization problem (2.8a) is forced to comply with the
system dynamics, here assumed to be described by some state space formulation. Fur-
thermore, (2.8e) describes the region, with respect to predicted system state, within which

12

any solution is required to exist. Lastly, limits to actuation and rates of change in actu-
ation, as well as the consistency of change in actuation, are upheld by (2.8f), (2.8g) and
(2.8i), respectively. Note that (2.8h) is enforced as a requirement, to ensure consistency,
as uk+i:k+Hp−1 ∀ i > Hu would otherwise not be defined.

By adhering to the requirement in (2.8c) and (2.8d), the optimizer is performing open-
loop predictions of future state. Consistency with current state at step k is ensured by
the constraint in (2.8b). As is convention, this project will denote any prediction (̂·),
exemplified with ŷk+1+i.

Since any system model has inaccuracy, this should be possible to account for also in
the MPC problem formulation. This is exemplified in (2.8i), where the prediction error
vk+i = vk is assumed constant as a default case where no modelling inaccuracy dynamics
are known. Though the expression for vk should be tailored to any specific case, it is here
exemplified as an assumed constant difference between the last measured output yk and
the corresponding predicted output ŷk|k−1. The predicted output is denoted ŷk|k−1 to
indicate that the prediction was made for, but prior to, the current timestep.

The set of all the constraints in a constrained MPC problem formulation spans a subset
of the solution space of the unconstrained variant of the same MPC problem. We call
this subset the feasible set [24]. In the case of (2.8), the feasible set consists of only hard
constraints: the constraints are absolute, and the solution must adhere. When subject to
hard constraints, a minimization problem does not necessarily produce a solution within
the feasible set. Thus, it may be advantageous to allow the feasible set some degree of
flexibility. This can be done by introducing slack variables to the lower and upper bounds
of the constraints causing infeasibility, after which these constraints are now called soft -
they are no longer absolute. The flexibility is implemented by adding the slack variables
to the set of optimization variables, such that the feasible set may be expanded if required:

min
∆uk:k+Hu ,ϵy

Hp−1∑
i=0

(ŷk+1+i − yref,k+1+i)
TQ(ŷk+1+i − yref,k+1+i)

+

Hu∑
i=0

∆uT
k+iR∆uk+i

+ ρTϵy

(2.9a)

s.t.

x̂k = xk (2.9b)

x̂k+1+i = f(x̂k+i,uk+i) ∀ i ∈ [0, Hp − 1] (2.9c)

ŷk+1+i = x̂k+1+i + vk+i ∀ i ∈ [0, Hp − 1] (2.9d)

ylb − ϵy ≤ ŷk+1+i ≤ yub + ϵy ∀ i ∈ [0, Hp − 1] (2.9e)

ulb ≤ uk+i ≤ uub ∀ i ∈ [0, Hp − 1] (2.9f)

∆ulb ≤ ∆uk+i ≤∆uhb ∀ i ∈ [0, Hu] (2.9g)

∆uk+i = 0 ∀ i ∈ (Hu, Hp − 1] (2.9h)

uk+i = uk−1+i +∆uk+i ∀ i ∈ [0, Hp − 1] (2.9i)

vk+i = yk − ŷk|k−1 ∀ i ∈ [0, Hp − 1] (2.9j)

ϵy ≥ 0 ∀ i ∈ [0, Hp − 1] (2.9k)

13

where the dimensionalities of ϵy and ρ match that of y. Subject to linear constraints,
(2.9) is still convex [24] (p. 42). Like Q and R, ρ > 0 is a vector containing weights for the
slack variables and may be tuned, in order to alter the behaviour of the cost function with
respect to the slack variables. The values of ρ define how much the cost function increases
in value through adding slack to the constraints. If the solver is able to find a minimum
without applying slack, i.e. ϵy = 0, then no slack will be added, as this is the minimal
and optimal contribution the slack-term can give. This is true when (2.9k) is upheld and
under the assumption that ρ > 0. Like R, ρ must be positive definite, such that the slack
variables may not be varied arbitrarily. Arbitrary values in the slack variables would result
in arbitrary alterations of the corresponding constraints, defeating their purpose. In the
example of (2.9), the constraints are only made soft for yk+1+i in (2.9e), since allowing
slack in actuations would mean potentially allowing violation of physical constraints, such
as actuators’ saturations.

Optimization. The solver is the algorithm that finds the solution to the MPC problem
formulation as it is presented in (2.9) at every time step. Most numerical optimiza-
tion methods are gradient-based[3]. Delving further into the theoretical foundations and
concrete implementations of available solvers is beyond the scope of this project. The
interested reader is referred to [3]. Considerations made when choosing the solvers used
in this thesis are instead presented where relevant in Section 3.2 and Section 3.3.

A significant drawback of MPC is the computational cost associated with solving an op-
timization problem at each time step, as this in many cases becomes non-trivial. This,
however, depends on the MPC problem formulation. Broadly speaking, MPC problem
formulations fall under one of two categories: linear MPC and nonlinear MPC, which are
covered in the following two sections.

2.1.3 Linear MPC

MPC problem formulations fall under the category of linear MPC if their cost functions are
convex and their constraints linear [3]. Linear MPC-schemes observe vastly reduced com-
putational complexity because they bear the benefit of being solvable with convex solvers;
for convex functions, local extrema are guaranteed to be global extrema[24], meaning that
solving the MPC optimization problem becomes a matter of seeking a point where the
cost function’s gradient becomes zero. The interested reader is referred to [3] for a detailed
discussion regarding both convex and non-convex solving methods.

While a cost function is subject to design, and may be designed convex, nonlinearity in
the constraints is enough to make the whole MPC problem formulation nonlinear. Such
cases pose a tradeoff. If the constraints, e.g. the system model, are linearized such
that the full MPC problem formulation becomes linear, the computational complexity is
reduced, potentially at the cost of some control performance[25]. This might be both viable
and desirable in smaller systems with reduced computational capacity, such as embedded
systems[2], and especially if control performance is deemed good enough.

Linear Step Response MPC (LSRMPC). One example of a much-used method of
linearization is linear step-response modelling [2], used in linear step-response MPC (LSR-
MPC). The following text derives the LSRMPC and is directly fetched from ”Section
2.1.5 Linear Step Response MPC” in [19], with some typographical alterations as well as

14

improvements in the mathematical formulations.

The distinguishing factor between LSRMPC and the generic MPC derived in (2.9) is
the model used to describe the system dynamics. Linear step response modelling is a
way of modelling processes as input-output relations by linearizing around some working
point for the inputs. By applying a step on an input of the system and measuring the
response of an output of the system, a proportional relationship between the two may be
deduced. Deducing each such proportionality coefficient when applying a step input from
the beginning until the system has settled, results in a series of coefficients that map the
effects over time which changes in an input have on a corresponding output in a linear
fashion [21]. The first of these coefficients represents the effect a change in input has from
the moment it occurs to the next time step. The last coefficient represents the lasting
effect an input has had after the dynamics have settled. Since the step response model is
made around some working point, the linearization is only a viable approximation around
this working point. Depending on the system’s degree of nonlinearity, this linearization
can not be expected to yield accurate predictions far away from the linearization point.
For more detailed examples and literature, the reader is referred to [21] and [22].

The series of coefficients is the full step response model for the SISO relationship between
an input and an output [21], and is denoted S ∈ RN , where N is the number of steps
before the dynamics settle. Since the step response model describes a system’s dynamics,
it may be used to predict future output values at any step j into the future. As given in
[21] (equation (20-10)) for a SISO system:

ŷk+j =

j∑
i=1

[Si∆uk+j−i] +
N−1∑
i=j+1

[Si∆uk+j−i] + SNuk+j−N + vk+j (2.10a)

vk+j = yk − ŷk|k−1, (2.10b)

where ŷk+j is the predicted difference in output between timesteps k+j−1 and k+j, and
N is the settling time of the SISO relationship. The first two sums in (2.10a) represent
the contribution of future changes in input and the contribution of past changes in input,
respectively. The third term represents the lasting contribution to the output after it has
settled from some past input, and the last term corrects for a bias resulting from modelling
error, that is assumed constant - (2.10b). Altering (2.9) to instead comply with the model
of system dynamics as described in (2.10), we arrive at a new MPC problem formulation:

min
∆uk:k+N−1

N−1∑
j=0

[Q(ŷk+1+j − yref,k+1+j)
2 +R∆u2k+j] + ρϵy (2.11a)

s.t.

ŷk = yk (2.11b)

ŷk+1+j =

1+j∑
i=1

[Si∆uk+1+j−i] +

N−1∑
i=j+2

[Si∆uk+1+j−i] + SNuk+j−N + vk+j ∀ j ∈ [0, N − 1] (2.11c)

ylb − ϵy ≤ ŷk+1+j ≤ ylb + ϵy ∀ j ∈ [0, N − 1] (2.11d)

ulb ≤ uk+j ≤ uub ∀ j ∈ [0, N − 1] (2.11e)

∆ulb ≤ ∆uk+j ≤ ∆uub ∀ j ∈ [0, N − 1] (2.11f)

uk+j = uk−1+j +∆uk+j ∀ j ∈ [0, N − 1] (2.11g)

vk+j = yk − ŷk|k−1 ∀ j ∈ [0, N − 1] (2.11h)

15

The system is here assumed to be SISO - i.e. scalar input and output - for simplicity. The
SISO step response model may be generalized to MIMO by first identifying each SISO
relationship - as explained above - before combining them in a matrix to represent the full
MIMO step response model; the vector S is generalized to the matrix S ∈ RnoutN×nin :

S =


S1,1 S1,2 · · · S1,nin

S2,1 S2,2 · · · S2,nin

...
...

. . .
...

Snout,1 Snout,2 · · · Snout,nin

 , (2.12)

where each row represents the SISO relationships between all inputs and a single output,
and each column represents the SISO relationships between a single input and all outputs.

Integrating a MIMO step response model into an MPC problem formulation is covered in
the implementational details of the LSRMPC, Section 3.2.1.

In the cases where linearization is not an option, loss of control performance is not de-
sirable, or computational power is not a limiting resource, the MPC problem formulation
may be retained as nonlinear and handled thereafter.

2.1.4 Nonlinear MPC

MPC problem formulations fall under the category of nonlinear MPC if their cost functions
are non-convex and/or any of their constraints are nonlinear. Where convexity guarantees
that a local optimum is also a global one, the lack of convexity implies that there is no
such guarantee, and different methods of optimization must be utilized. Such nonlinear
optimization is necessarily more computationally demanding.

Nevertheless, nonlinear MPC is shown to perform better than linear MPC, e.g. in cases
where the system dynamics are fast and nonlinear, one example being autonomous drones[25].
Whether the added computational cost is a worthwhile investment or not is subject to con-
sideration on a case-by-case basis.

Nonlinear MPC is in its most general form described by (2.2), but a specific example is
later provided in Section 2.5.

2.2 Artificial neural networks

Though the following sections are based on similar sections from [19], they are altered to
better suit this thesis. Specifically, all sections are reformulated and expanded to be more
generally applicable as well as address the wider academic scope of this thesis.

Artificial Neural Networks (NNs) is the name of a class of machine learning models whose
structure is inspired by the brain’s (hence the name), processing information by mimicking
signals firing between interconnected neurons in order to produce some output[17].

Throughout this thesis, the term model refers to an NN trained to perform tasks relevant
to the thesis.

16

2.2.1 Machine learning and deep learning

A high-level explanation of machine learning is presented in [26](p. 2):

”A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.”

Paraphrasing this explanation in more intuitive terms, machine learning algorithms are
algorithms that perform their tasks better when given increased amounts of relevant data.

There are mainly two ways of using data to facilitate algorithms in modelling processes by
means of machine learning. One is to model processes based on the information directly
available in the data presented. This is called lazy learning [27], as the data is simply fed
through a model, yielding some output; it is a static operation, and exposure to data does
not provide opportunity to alter the model itself. Instead, the algorithm can be seen to
learn from the data, in the sense that it models the desired process more accurately, given
a more densely populated data set. The algorithm is able to utilize available data, but
has no inherent understanding of the process it models.

The complement to lazy learning is eager learning [27], a type of machine learning in which
the algorithm uses the given data to train some model of the process which the given data
represents. The process of training involves actively shaping the model, meaning that
exposure to data creates a lasting impact on how the algorithm models the process in the
future. The process of training a machine learning algorithm is covered in Section 2.3.

Deep learning represents the vast class of eager machine learning methods that are im-
plemented as NNs. Deep learning algorithms can be employed in a vast array of tasks,
such as classification, regression, language translation and anomaly detection, to name a
few[17]. This thesis will tackle problems of regression, further elaborated in Section 2.5
and Section 3.3. Consequently, all further derivations are based on NNs for regression.

Regression by means of deep learning is presented in [17](p. 99) as the following:

”[...] the computer program is asked to predict a numerical value given some
input. To solve this task, the learning algorithm is asked to output a function
f : Rn −→ R. [...]”

The dimensionality of the function to be approximated must of course be considered. In
general terms, one may alter the above statement to apply generally and say that the
learning algorithm should implement a function f̂ : Rn −→ Rm that predicts y = f(xin)
∈ Rm for xin ∈ Rn. When training a deep learning model to approximate a true system by
means of regression, it will always remain an approximation of the true system, meaning
that its predictions must always be expected to deviate to some extent from the true
values. Generally:

y = f(xin) ≈ f̂(xin) = ŷ, (2.13)

17

Figure 2.2: An illustration of a simple MLP. The input layer has 3 neurons, the two hidden
layers have 4 neurons each, and the output layer has 2 neurons.

2.2.2 The multilayer perceptron

The NN in its most basic form consists of an input layer, some number of hidden layers and
an output layer, each of which consists of some number of neurons. The input layer holds
all given input values - xin in (2.13) - and the output layer delivers the final function value
- f̂(xin) in (2.13). In the case of regression, the NN’s goal is to provide an output that
matches the ground truth - f(xin) in (2.13) - as closely as possible. The hidden layers are
implemented as intermediate steps between the input and the output, in order to facilitate
the approximation. All of the hidden layers and the output layer each implements a set of
parameters, collectively denominated as θ. These parameters shape the function f̂(xin;θ)
and how it approximates. Note that only the final result given by the output layer is of
interest, and thus we do not care about the specific values of the hidden layers, as long
as the final output is satisfactory - hence the name hidden. The layers’ parameters are
described in further detail below.

The type of NN here described is called a Multilayer Perceptron (MLP), an example of
which is illustrated in Figure 2.2.

Each neuron represents a function applied to its input and consists of three components.
That each neuron represents a function, means that each layer can be viewed as a vector-
valued function of the previous layer; the network as a whole is a sequential convolution
of every layer. In the specific case of the MLP illustrated in Figure 2.2:

f(xin;θ) = f3(f2(f1(xin;θ1);θ2);θ3), (2.14)

where the input layer xin provides values that pass through f1, then f2, before they are
output from the output layer f3. The following paragraphs aim to explain the vector-
valued function in each layer and provide rationale as to their structure.

Values are given to the MLP’s input layer by some external interface, for example the
user. The output is then calculated as a result of these input values’ propagation through
the MLP, illustrated by the arrows in Figure 2.2. Importantly, values are weighted as
they propagate through the MLP, meaning that every arrow represents some weight on

18

the value passing from a node in layer l − 1 to a node in layer l. The number of neurons
in any layer l - its width - is defined to be ηl in this thesis. A neuron in layer l takes in
the weighted sum of all values in layer l − 1, and so the description for a general layer l
becomes:

f l(x) = Wlx, (2.15)

where W ∈ Rηl×ηl−1 and x ∈ Rηl−1 is the collection of weights on the form:


w0,0 w0,1 · · · w0,ηl−1

w1,0 w1,1 · · · w1,ηl−1

...
...

. . .
...

wηl,0 wηl,1 . . . wηl,ηl−1


Additionally, a neuron contains a bias added to the weighted sum, rendering the layer l
as:

f l(x) = Wlx+ bl, (2.16)

where of course bl ∈ Rηl . Note that this function approximation is only a linear transform-
ation of the input, and is thus not able to approximate nonlinear dynamics. Furthermore,
linear transformations applied to linear transformations also remain linear[28], such that a
full network with layers as defined in (2.16) is only able to approximate linear behaviour.

The third and last component, the activation function, remedies this by passing the linear
transformation at each neuron through a nonlinear function, called the activation function,
a(·). The linear combination (2.16) is passed through the activation function at each
neuron, meaning the full vector-valued formulation of a layer becomes:

f l(x) = a(Wlx+ bl) (2.17)

Where the sum of all the neurons’ linear functions previously resulted in a linear function,
simply performing linear regression, now having introduced nonlinearity at every neuron
makes the resulting function (2.17) nonlinear. More specifically, the introduced nonlin-
earity can be understood to make each neuron’s linear function active for some regions of
input and inactive for others. The sum of such variously active linear functions creates
a manifold, which, with appropriate parameters (weights and biases) shaping the linear
functions, may approximate nonlinear functions. An example is provided in Figure 2.3. It
has been shown that the MLP can learn its parameters such that an arbitrary nonlinear
function may be approximated with as little as only one hidden layer[7], given a sufficient
amount of hidden neurons.

There exist many different activation functions, such as the sigmoid function, σ(x) =
1

1+e−x , and the hyperbolic tangent function, tanh(x) = e2x−1
e2x+1

. Maybe the most influential
of today, however, is the rectified linear unit (ReLU), defined as:

ReLU(x) = max{0,x}, (2.18)

19

−3 −2 −1 1 2 3

−5

5

10

15

Figure 2.3: A second-order polynomial and three linear functions approximating it. Illus-
tration is fetched from [19].

where vector-valued input is passed through ReLU element-wise.

ReLU usually provides great empirical results and is often the default choice of activa-
tion function in neural network design[17]. One disadvantage of the ReLU is that any
negative semi-definite input value will result in a zero-output. This may cause issues
during training, as later elaborated in Section 2.3.3. That the zero-output of ReLU may
prove problematic has motivated variants that avoid the issue of zero-output for negative
semi-definite input values.

One important such variant is the leaky rectified linear unit (LReLU), first introduced by
[29], which avoids dying neurons by slightly modifying (2.18), such that negative input-
values are mapped to non-zero outputs:

LReLU(x) =

{
x if x > 0

αx otherwise
(2.19)

where the so-called leak rate α > 0 is a value which must be determined by the user. In
[29], the authors propose the value α = 0.01, such that LReLU has a non-zero gradient
also for negative input-values, while still closely mimicking ReLU. Which value for α works
best must however be decided on a case-by-case basis.

2.2.3 MLP-based function dynamics approximation

A system’s discrete-time dynamics may be represented on the standard state space format:

xk+1 = f(xk,uk) +wk

yk = xk

(2.20)

where xk is assumed directly mapped to yk. Though any system usually must be assumed
affected by some noise wk, this thesis makes the simplification of not considering the
noise in further derivations, xk+1 = f(xk,uk). This is done, as the system basis for the

20

implementations in chapter 3 suffers no noise - see Section 3.1.3. Reformulating to match
the format of the basic model in (2.13), we then get a prediction model on the following
form:

ŷk+1 = f̂(xk,uk) (2.21)

Recalling that any nonlinear function may be approximated by an NN, it is reasonable to
assume that e.g. an MLP may suffice in system dynamics approximation if given the state
and current input, xk and uk.

Note that any non-Markovian system experiences transient responses. A static relation
between input and output is not sufficient to capture such transient responses, and so the
state vector xk must be formulated to reflect this by including data far enough into the
past to reflect the lengths of any transient effects present. Such data is well encapsulated
in a nonlinear autoregressive model with exogenous inputs (NARX) state-formulation:

xk ≜[y0,k, y0,k−1, · · · , y0,k−my ,

... ,

ynout,k, ynout,k−1, · · · , ynout,k−my ,

u0,k−1, u0,k−2, · · · , u0,k−mu ,

... ,

unin,k, unin,k−1, · · · , unin,k−mu],

(2.22)

Defining an MLP’s input layer to take in data in the form of the NARX-state vector (2.22)
as well as the current input values, uk, implements a neural NARX (NNARX) prediction
model. Such an NNARX prediction model yields single-step prediction of the output of a
discrete-time system’s dynamic behaviour.

Note that, even though NARX formulation is static - in that the NARX state vector (2.22)
takes in all values simultaneously - it is tightly linked to the system’s corresponding state
space formulation of the system’s dynamics, as detailed in [6] (eq. (4)-(7)). However, for
the NNARX prediction model to predict accurately by capturing all transient behaviour,
the (2.22) must contain data far enough into the system’s past to capture all still relevant
information regarding actions performed on the system.

Alternatively to taking in all relevant past data simultaneously, as described above, a
model may instead be designed cumulatively, in the sense that it gathers all relevant data
during application, and all predictions are valid once it has accumulated data from many
enough steps that all transients are accounted for. This may be implemented by recurrent
neural networks (RNNs), and is covered in more detail in Section 2.4.

2.3 Training neural networks

This section is based on material found in [17], and presents the basic theory of training
deep learning models, with some special emphasis on the theory relevant to training NNs
for the purpose of regression. Though Section 2.3.1 is based on similar sections from [19],

21

it is fully reworked and expanded to accommodate the wider academic scope in this thesis.
The same applies to Section 2.3.4.

2.3.1 Training in deep learning

As indicated by (2.13), a model will always be an approximation of the true process it
models. Deep learning algorithms are eager learning algorithms, implying that the user
may alter the algorithm and its behaviour by providing data. Since the goal is to model a
process as accurately as possible, the process of training a model may be summarized as
the process of altering its parameters such that the gap between it and the true process
is minimized.

After having defined the task to be solved by the NN, e.g. regression, its structure may
be determined by specifying its inputs and outputs, with which the data must match.
More specifically, the data used in training is sampled from the true process and is always
coupled with a label, which describes the true output from the process given the input
represented by the data. The data is then used as input, and the labels to judge the
performance of the resulting output. Such data may for instance be actuation-data for a
dynamic system, coupled with the corresponding measured outputs as labels.

Since the true process may be subject to disturbances and uncertainties, the samples
collected from it will be distributed around the true process with stochasticity dependent
on said disturbances and uncertainties. This distribution, ptrue(y|xin), is called the data-
generating process, and outputs the labels y given input-data xin. Though the type of
distribution depends on the specific system, the expectation value may still be stated
generally, as:

E[ptrue(y|xin)] = f(xin) (2.23)

This implies that driving a model to best model this process means shaping its parameters
such that it implements a function f̂ which most closely matches f , as previously indicated
in (2.13). If done successfully, the model will be able to predict samples drawn from
ptrue(y|xin) accurately, even if they were not part of the previously seen data in the
training data set; the model has then achieved generalization.

Presently, considerations regarding requirements on the model, shaping the training pro-
cess and requirements on the data sets are presented.

Capacity. An NN’s goal is to predict the value of the samples drawn from some data-
generating process, ptrue(y|xin). As indicated by (2.23), these samples’ expectation value
may be described by some function, whose degree of nonlinearity depends on the true
process described by ptrue(y|xin). The NN’s ability to attain some degree of nonlinearity
to accurately model such a function is called its capacity ; an NN with low capacity is
only able to capture low degrees of nonlinearity, whereas an NN with high capacity is
able to capture high degrees of nonlinearity. Figure 2.4 illustrates this, presenting data
points sampled from a noise-free third-order polynomial, and different approximations of
the underlying data-generating process. Figure 2.4a illustrates the case where an NN has
too low capacity, and very poorly models the underlying process, Figure 2.4b, in which
case the NN is considered underfitted. Conversely, Figure 2.4c illustrates the case where
an NN has quite high capacity relative to the underlying process. Note that, even though

22

(a) Underfitting a 1st-order
polynomial to the data-
points.

(b) Correctly fitting a 3rd-
order polynomial to the data-
points.

(c) Overfitting a 10th-order
polynomial to the data-
points.

Figure 2.4: The illustration shows three different polynomials of order 1, 3 and 10, re-
spectively, all performing regression to fit 4 data points to a function. The points are
drawn from a 3rd-order polynomial. The illustrations are fetched from [19].

this model correctly fits all data points present in the data set, it would not generalize to
any new, previously unseen sample drawn from the underlying process. Thus, the model
may intuitively be described as overdetermined, as it represents only one of many functions
that will correctly fit to the data points, but not generalize. In the regions around the data
points, the model is more nonlinear than the underlying process; the NN is too nonlinear
and is considered overfitted. Thus, the optimal capacity is neither too low nor too high, but
rather that which matches the degree of nonlinearity seen in the true, underlying process.

The NN’s capability of universal approximation, given enough hidden neurons - see Sec-
tion 2.2.2 - directly gives that an NN’s potential capacity is determined by its structure.
The structure is determined by parameters such as the amount of hidden layers and neur-
ons. These are called hyperparameters, as they are determined on a higher level than
the parameters within the actual model. The degree of nonlinearity achieved depends on
the execution of the training, though actually measuring the degree of nonlinearity in a
model after training is non-trivial. For discussions regarding measures of nonlinearity, the
interested reader is referred to [30].

Note that a model may, in theory, become perfectly fitted to any problem, if the training set
is exhaustive of all possible samples. Modeling digital logic, such as the XOR-function[17],
is an example of this. However, for continuously-valued problems of regression, any finite
set of samples will never be exhaustive with respect to the problem, and overfitting should
be avoided, as it will only lead to great performance on the training data set, but not
great performance in general.

Training, validation and testing. The matter of finding the parameters providing
the ideal model must be addressed. Then, a measure of what is optimal must be determ-
ined. By defining a metric measuring the model’s error during training, Etrain, variable
with respect to the model’s parameters, its gradient may be derived and used to seek the
optimum, which then provides the optimal set of parameters. In the case of multidimen-
sional regression tasks, Etrain is often defined to be the mean of the mean square error
(MSE):

23

Etrain(θ;Xtrain) =
1

I

I∑
i=1

||ŷi − yi||22 =
1

I

I∑
i=1

||f̂(θ;xi)− yi||22, (2.24)

where Xtrain ≜ {(xi,yi)} ∀ i ∈ [1, ..., I] is the invariant set of training data with I sample-
label pairs (xi,yi), passed as a set of parameters. Each sample-label pair i contains a
vector-valued sample of J elements, xi = [xi,0, xi,1, ..., xi,J], and the corresponding labels
yi = [yi,0, yi,1, ..., yi,J]. Etrain(θ;Xtrain), from here-on referred to as simply Etrain for sim-
plicity, then describes the mean of the squared euclidean distance between the predicted
output f̂(θ;xi) = ŷi and the true output yi over all samples (xi,yi) in the data set, as a
measure of how close the predictions come to the ground truths in general. In this case,
the optimum is the minimum, as lower values of Etrain imply better performance of the
model.

Containing the term f̂(θ;xi), Etrain is highly nonlinear with respect to θ, i.e. also non-
convex, and no general closed-form solution for its optimum can be assumed to exist.
In practice, this often means that Etrain will have several local minima. While finding
the global minimum would supply the ideal solution, any decrease in Etrain still means a
better-performing set of parameters. Thus, the problem instead becomes one of optimiz-
ation. Finding the optimum is nevertheless non-trivial, due to the nonlinearity of Etrain.
Optimization techniques tailored to machine learning have been derived, and are covered
in more detail in Section 2.3.2.

So far presented, the problem of training in machine learning is simply a problem of
unconstrained optimization by iteratively seeking the optimum. Each iteration is called
an epoch. However, the goal of finding the optimum during training as described above,
is in reality two-fold; as previously mentioned, in addition to minimizing Etrain, we want
the resulting model to be able to generalize. As stated in [17](p. 108):

”What separates machine learning from optimization is that we want the gen-
eralization error, also called the test error, to be low as well.”

The generalization error Egen is in general not available, as it would have to be computed
over every theoretically possible sample - infinitely many for continuously-valued prob-
lems. Thus, we approximate Egen with an alternative metric, Egen ≈ Etest(θ;Xtest) (from
here-on simply ”Etest”), being the measure of how well a trained model performs on pre-
viously unseen data Xtest. This approximation holds under the assumption that the test
data set Xtest contains only samples distributed according to the data-generating process
ptrue(y|xin). Since the ideal case would be Etrain = Etest, Etest is defined equivalently
to Etrain as the mean of the MSE, variable with respect to the model parameters, given
Xtest. In reality we instead have Etrain ≈ Etest, where Etrain < Etest, since the training
data set can not contain infinitely highly resoluted information about ptrue(y|xin). Given
that Xtrain and Xtest are identically and independently distributed (i.i.d.) according to
ptrue(y|xin), as well as completely disjoint, the assumption that Etest is a measure of the
model’s generalization capabilities is viable[17], reasons for which are elaborated further
below.

Since Xtrain and Xtest must be i.i.d. and disjoint, Etrain and Etest must be assumed differ-
ently shaped, meaning their minima will not lie at the same points. Consequently, during
training, both Etrain and Etest tend to decay up to some point, after which Etest starts
rising while Etrain continues decreasing. This causes Etrain and Etest to diverge from one

24

Epochs

Error (MSE)

Etrain

Egen

Optimal capacity

OverfittedUnderfitted

Figure 2.5: An illustration of how generalization error and training error develop over
time, sinking initially, before Egen starts rising again, diverging from Etrain.

Figure 2.6: The procedure of training an NN.

another, illustrated in Figure 2.5. While Etrain continues to decrease, indicating that the
model eventually becomes nearly perfectly fitted to the samples in Xtrain, this does not
indicate a decrease in Etest as training goes on. Instead, the parameters θ∗, for which a
minimum is found for Etrain, give rise to a sufficiently different NN than the parameters
at the optimum for Etest would. θ

∗ then implement an overfitted model, analogous to the
simplified case illustrated in Figure 2.4c; the model has low error for the training data,
but can not be assumed to perform well on previously unseen data. Since Etest is the best
approximation available for Egen, and generalization is the goal, it follows that training
an NN for indefinite times is not desirable.

Avoiding overfitting by reducing Etest may be achieved by regularization. This is looked
into in Section 2.3.4.

Training, as currently described, does not directly address the matter of the model’s struc-
ture, defined by hyperparameters such as the amount of hidden layers and the amount of

25

neurons. Finding the ideal set of hyperparameters is done by defining different candid-
ate sets, and performing the training process for each of them. Each resulting model’s
predictive accuracy, measured by the validation error Eval over a data set Xval, may be
calculated in the exact same fashion as the previously described Etest as a measure of the
model’s ability to generalize. The chosen model is that which minimizes Eval.

If Xtrain is large enough to cause prohibitively long computational times during the search
for hyperparameters, a smaller subset may be used instead, since the procedure is per-
formed only to isolate a set of hyperparameters likely to later yield good results during
training, not to train the final model. The process of determining both hyperparamet-
ers and parameters of a model then becomes as described by Figure 2.6. Note that the
requirements of i.i.d. and disjointness also apply between Xtrain and Xval.

Since Eval is used to optimize the structure for which the model yields the lowest Etrain, the
model is fitted not only to Xtrain, but partly also to Xval. Thus, most often, the following
holds:

Etrain < Eval < Etest ≈ Egen

Indicating the need for a separate testing phase after determining the optimal hyperpara-
meters, as illustrated in Figure 2.6.

Optimization: stochastic gradient descent. The material here presented regarding
stochastic gradient descent is heavily based on material found in [17], chapters 4 and 8.

Since training in machine learning is a problem of unconstrained optimization, a popular
way of tackling the problem is to reduce it to finding the gradient of the cost function
with respect to the model parameters, ∇θEtrain(θ;Xtrain); the negative gradient directly
gives the direction which lowers the cost function value the most. Once determined, a
step of some size may be made in that direction in order to lower the cost function value.
This process is repeated until the difference in the cost function between each epoch
e, ∆Etrain ≜ Etrain(θe−1;Xtrain) − Etrain(θe;Xtrain), is reduced below some user-defined
threshold value τ , or the training has gone through the designated amount of epochs.
This method of optimization is called gradient descent [17] (GD). Numerically deriving the
gradient is somewhat elaborated in Section 2.3.2.

Finding the gradient for Etrain can be very costly for a large data set Xtrain. Though
the gradient will be more precise if calculated over all samples in Xtrain, the average of
the gradients of some randomly chosen subset of the full set of samples is an unbiased
estimator for the gradient of the full data set[17]. Thus, the computational demand of
the gradient-based optimization may be reduced vastly by calculating the gradient with
respect to only some subset of the full data set; a mini-batch, the size of which is called
the batch size. Since the subset must be chosen uniformly randomly among the full data
set, this variant of gradient descent is called stochastic gradient descent (SGD).

Note that the estimated gradient will most likely deviate somewhat from the true gradient
it estimates. While some precision is lost, the optimum may nevertheless be found faster,
as simply training for more iterations may compensate for the lost precision. Training
for more iterations becomes feasible when the computational demand of each iteration is
vastly reduced by the batch size being significantly smaller than the size of the full data
set[17].

26

Algorithm 1: Stochastic Gradient Descent.

Input: training data set Xtrain, learning rate ϵ, batch size β, initial parameter
values θ0, threshold for required improvement at each step τ or maximal
amount of epochs e

Output: Optimal set of parameters θ∗

k ← 0;

∆Etrain ←∞;

while ∆Etrain > τ or k > e do

k ← k + 1;

Randomly sample a subset of from Xtrain: Xmini-batch = {(x1,y1), ..., (xβ,yβ)};
∇θEtrain(θ;Xmini-batch)← 1

β∇θ
∑β

i=1 ||f̂(θ;xi)− yi||22;
θk ← θk−1 − ϵ∇θEtrain(θ;Xmini-batch);

∆Etrain ← Etrain(θk−1;Xmini-batch)− Etrain(θk;Xmini-batch);

end

θ∗ ← θk

Since Etrain is nonlinear, it is not given that a step in the direction of the negative gradient
will result in a decrease of function value for any arbitrary step size. In fact, without further
measures, convergence is not even guaranteed at the optimum, since the gradient com-
puted in algorithm 1 is noisy, due to the samples being sampled randomly. Consequently,
the learning rate must be chosen adequately. In most modern training contexts, this is
performed automatically by the algorithm used, typically a variant of SGD (see further
below).

In addition to the learning rate, variants of SGD may employ the concept of momentum.
The idea is that previous iterations’ gradients should carry over to the current iteration
to some degree, affecting the direction of the current iteration’s gradient with some level
of ”momentum”. This is a way of reducing the amount of noise introduced by the random
sampling at each iteration, as the final direction of the step made for the parameter update
becomes an exponentially decaying moving average of the history of gradients.

There exist many variations of SGD. Some notable examples are AdaGrad, RMSProp and
Adam, based on different ways of adaptively choosing the learning rate and implementing
momentum. Adam implements, in addition to adaptive learning rates specific to each
parameter, adaptive moments - from which the name derives - estimating the mean and
the variance of the gradient, respectively. While the moments are implemented as expo-
nentially decaying moving averages, what sets Adam apart is that it uses both the first and
second moments, as well as bias-correcting them over time. This has shown improvements
in performance over predecessors, such as RMSProp[31].

Their specific details surpass the scope of this thesis, and the interested reader is instead
referred to [17](chapter 8) for further information.

Requirements on the data. Qualitative data is as important as large amounts of
data. Specifically, three main requirements are set for data sets used in training models.

Firstly - as previously argued - the data sets must all be identically and independently
distributed (i.i.d.), i.e. all samples must stem from the same data-generating process and
be independent from each other. Given that all data sets stem from the same data-

27

generating process, then a model trained on such data will learn patterns also present
in the test data, yielding increased predictive accuracy for previously unseen data, i.e.
improved generalization. Conversely, if all data is not identically distributed, a well-
executed training procedure will still result in a model that is unable to predict accurately
for the test data set, as it will have learnt different patterns than the ones present in the
test data. Furthermore, if the samples are correlated, then the model will not be able to
predict isolated samples drawn from the data-generating process.

Secondly, all data sets must be strictly disjoint. Recall that the goal of training is to
minimize the model’s generalization error Egen, which may only be estimated by using
previously unseen data. Thus, if the data sets are not disjoint, and data from either
the validation and/or test sets are included in the training data set, then later using the
validation and test sets to measure the model’s ability to generalize will not be a true test
of generalization, and of no actual interest. Knowing to some degree the model’s predictive
accuracy is important, even if the available data is limited. While the specific ratios may
be subject to tuning, the split of data into 70% for training, 15% for validation and 15%
for testing is one commonly used option - see for example[16].

Lastly, in the case of regression, normalizing the labels prior to training is important to
avoid that different outputs scale Etrain differently if they are of different magnitude; it is
the error relative to each output that is interesting. An example is provided by application
in Section 3.3.1.

A final, less strict, but nevertheless important aspect: the quality of the data is important.
The procedure of training can be intuitively thought of as algorithmically teaching each
layer in the model which patterns and features exist in the inputs and carry the most
important information with respect to the model’s output and shaping the parameters
thereafter, such that these features are detected. It is then important that the data-
generating process from which the data is sampled does not carry patterns irrelevant to
the task the model is designed to solve. If Xtrain contains patterns between data and labels
that do not generally apply outside Xtrain, the model will generalize poorly, as the features
in Xtrain will not be generally applicable. Generally: If all data-label pairs (xi,yi) used in
training, validation and testing are sampled from a non-general data-generating process,
i.e.

pgeneral(yi|xi) ̸= pdata sets(yi|xi), (2.25)

then the results during training may be good, but the model will still perform poorly
once exposed to general data. A notable example from research is that in which a model
was trained to distinguish between wolves and huskies in pictures. All training pictures
containing wolves also contained snow, whereas all pictures containing huskies contained
no snow. When asked to classify a picture of a husky containing snow in the background,
the model incorrectly classified the picture as a picture of a wolf, as it had ”learnt” from
the poorly chosen data that patterns of snow indicated a wolf. Effectively, the model had
learnt to detect snow in the background of pictures[32].

Also regarding the quality of the data: it is important that the data set is balanced in
its representation of the data-generating process’ behaviour. Less represented behaviours
will be learnt less effectively.

28

Figure 2.7: The computation graph for the operations being applied on one input in any
generic node. The input xin is multiplied with a weight w, resulting in an intermediate
placeholder variable z1, which is added together with a bias b, creating another intermedi-
ate placeholder variable z2, which is finally passed through the activation function - in this
case LReLU. The result of the computations results in xout. Note that the final output
of the node is the sum of such operations applied on all the inputs to the node, which is
omitted from this illustration for simplicity.

2.3.2 Finding the gradient and backpropagation

In order to perform SGD during training, the expression for the cost function’s gradient
with respect to the model’s parameters, ∇θEtrain(θ;Xtrain), must be derived explicitly.
Although this in theory may be done manually, the potential amount of parameters con-
tained within the vector θ would quickly prove the process prohibitively time-consuming.
This is especially true for a testing procedure, such as in Figure 2.6, where testing for
hyperparameters causes many different structures to be evaluated during one training
process, and each structure would have its distinct corresponding expression for the cost’s
gradient. Instead, ways of finding the gradient algorithmically have been derived. This
thesis briefly explains the method of backpropagation[33], which has been implemented in
open-source libraries for machine learning in Python, such as PyTorch[34].

Backpropagation is a way of using the calculated value of the cost function during one
step of SGD, to calculate what effect changes in θ would cause in the cost function value.
The algorithm is based on the chain rule for derivatives in calculus. More specifically,
since NNs are convolutions of layers - see (2.14) - any change to the parameters in early
layers affect the numerical outcomes in the consequent layers. As shown in (2.17), each
node in each layer applies a set of operations on the input. In order to trace the effect
from each variable’s value and each associated operation on the input, an NN may be
viewed as a computation graph. A computation graph is implemented as a directed acyclic
graph (DAG) with nodes holding variables and connections between nodes indicating oper-
ations[17]. A small example of a computation graph, illustrating the operations performed
on one input to a single, generic node, is presented in Figure 2.7.

By decomposing the full model into a computation graph, each node may be seen as a
function of all parts of the computation graph that eventually lead into it. Then, each
node’s gradient may be formulated by means of the chain rule, applied to all elements
in the part of the computation graph that leads into it, which in turn leads to the full
expression for the cost function’s gradient. Finding the specific gradient at each node
may be done by either symbolic or automatic differentiation. There are several different
implementations of backpropagation; the implementation later employed in this thesis, see
Section 3.3.2, is that of PyTorch, which uses automatic differentiation, details of which are
beyond the scope of this thesis. For specific details regarding the numerical considerations
in deriving the gradient, the interested reader is referred to [35].

29

Note that, while especially suited for finding the gradient of models, backpropagation is in
fact entirely general, and may be used to numerically derive any function’s derivate[17].

2.3.3 Gradient-related issue: ReLU and neuron death

Though ReLU usually provides great performance, it suffers the weakness of neuron death.
By neuron death is meant the phenomenon that a neuron’s parameters attain values during
training, which drives its output to a negative value, and consequently it outputs only 0.
When a neuron’s output is always 0, the gradient of the cost function with respect to
that neuron’s associated parameters is also always 0. Since the gradient becomes 0 with
respect to that set of parameters, they will no longer be altered during further training.
Thus, the neuron has stopped learning and effectively died.

2.3.4 Regularization

Due to the fact that a reduction in Etrain does not necessarily give a reduction in Etest,
methods have been devised to lower Etest specifically, namely regularization methods [17].
As there exist many methods of regularization, this thesis focuses only on the ones utilized
in Section 3.3.2: early stopping and weight decay.

Early stopping. Early stopping is meant to specifically remedy the issue of the over-
fitting that occurs when training for extended periods of time. This is done, as the name
suggests, simply by terminating the training early, even if the designated amount of epochs
has not passed. Specifically, early stopping terminates the training at the point of optimal
capacity - at the minimum of Eval for hyperparameter searching or Etest for training the
final model.

In practice, Eval is not guaranteed to develop monotonously; some iterations of training
may yield higher values for Eval than others, even if the trend is a decreasing value, as
will later be exemplified in Figure 4.8. This can lead to several local minima for Eval

as the amount of epochs increases. Thus, the concept of patience is introduced to the
early-stopping scheme. Patience defines how many iterations the training should continue
after the lowest value in Eval has been recorded, in order to avoid stopping early due to
”flukes”.

Weight decay. Weight decay is a regularization method designed to incentivize the
training process to approach lower-valued parameters and thus reduce overfitting by in-
jecting some added variance to the model’s certainty of its predictions over the data set
during training. This is achieved by adding a quadratic term with respect to the paramet-
ers, scaled with a weight decay coefficient α, to the training error. Extending the error
proposed earlier, (2.24), we get:

Etrain(θ;Xtrain) =
1

I

I∑
i=1

||f̂(θ;xi)− yi||22 + λ
1

2
θTθ (2.26)

The scaling factor 1
2 is included for simplicity in the expression of the resulting gradient,

and makes no difference in the outcome of the algorithm, as its presence, or lack thereof,

30

is trivially compensated for by setting λ accordingly.

The added term causes a linear penalty on the gradient for increasing parameter values.
Informally, for functions quadratic with respect to the parameters - such as (2.26) - the
weight decay coefficient λ expresses an added variance, which alters the optimum with
respect to the parameters. The added variance serves to reduce overfitting, as the model
is forced to become less ”certain”. Recall that the goal of regularization is reducing
Egen ≈ Etest, even if at the cost of an increased Etrain. This explanation of the effect
of weight decay is an informal one and given as such for the sake of brevity, as the
mathematical details are non-trivial. The interested reader is referred to [17] (7.1.2, p.
227) for the specific mathematical details.

2.4 Recurrent neural networks

2.4.1 General remarks on recurrent neural networks

In broad terms, recurrent neural networks (RNNs) are a class of NNs that are structurally
tailored to both processing and outputting sequences of data. While this makes them
especially suited and popular for e.g. language modelling, they can also be applied to
system dynamics prediction.

While an MLP may be easily designed to predict system state one step ahead - see Sec-
tion 2.2.3 - they may also be designed to both take in and output larger sequences of
data; an MLP’s input and output layers may be designed and trained such that the model
outputs the sequence of the next predicted N system state values, or just the system state
N steps ahead. However, this grants little flexibility to alter the value of N after the
model has been specified, as any MLP is fixed to tasks taking in and outputting data
on specifically the specified format. MLPs have strongly limited flexibility with respect
to sequence length, and are thus not considered especially suited to processing sequential
data[17].

Such generality may instead be achieved by modelling single-step system dynamics predic-
tion (with e.g. an MLP), furthering the resulting outputs’ system state information into a
new step of dynamics prediction. Structurally, this equals recurring a model’s output back
into its input. The recurrence may be repeated as many N times as desired, implementing
open-loop multi-step system dynamics prediction for that many steps. Throughout the
following details of RNN theory, the term ”time step” refers to the iteration of recurrence
in the RNN; an RNN of N recurrences has time steps {k, k + 1, ..., k +N}. Importantly,
N may be chosen freely without loss of validity in the model, as each step contains a
model with the same shared parameters as at each other step. While this may resemble a
simply very deep MLP, this type of network still differs from an MLP due to the shared
parameters at each chained instance. Note that even though the model is equally valid
at each time step ahead, it must be assumed to contain some modelling error. Any such
mismatch between the true system and the model may accumulate the farther into the
future the predictions are made - unless the mismatch is proven to have an expectation
value centered exactly on the true system’s expectation value. This is further discussed in
Section 5.2. Nevertheless, the recurrent structure enables modelling of both sequences of
arbitrary length as well as single values arbitrarily far into the future.

In the described case of multi-step system dynamics prediction, only the output from each
time step is passed on from one time step to the next, effectively discarding the latent

31

Figure 2.8: The Jordan network, illustrated in a simplified fashion with general presenta-
tions of the layers for simplicity.

information within the hidden layers. This yields a structure as illustrated in Figure 2.8,
and is commonly called a Jordan network after it was described in [36].

Such RNNs are vulnerable to loss of information at each step; data entering the network
through the input must always pass through the output layer before recurring back as
input to the hidden layer(s). Unless specifically designed to do so, the output layer carries
no guarantee that no information is lost by reducing the latent information within the
hidden layers to the desired format of the output. Building on the example of language
modelling: if a model is designed to predict the next word in a sentence, it may output
the same word for many different sequences of input. Thus the output information can
not unambiguously be reversed to latent information, and the output layer carries strictly
less information than the input and hidden layers. Though this loss of information may
not be an issue, depending on the use-case, it is an important observation, as it may mean
that the model in practice has less available data than may be desirable.

The alternative case is that in which information is passed directly between the hidden
layers across time steps. This still allows sampling the output for each step, but does
not require the information within the network to be filtered through the format of the
output before it is furthered to the next time step. Then, input data never actually leaves
the network, as any data that is fed into the network will continue circulating within the
hidden layer(s) across time steps. This implies that all information present in the data
is in theory available at any arbitrary time step. Returning to the language modelling
example: the next word in a partially-finished sentence is dependent on not singularly
the word that comes before, but rather a broader context, i.e. the rest of the sentence,
or even every piece of text preceding the word to be predicted. Retaining such latent
information within the hidden layers across time steps may thus be of utmost importance.
This variant of RNN is commonly called an Elman network after it was described in [37].
The mitigation of information loss provided by this structure actually makes the RNN
universally capable - as described in [17](p.372):

”The [Elman network] is universal in the sense that any function computable
by a Turing machine can be computed by such a recurrent network of a finite
size.”

Training RNNs is done with the backpropagation algorithm, as backpropagation is univer-
sally applicable on any function represented as a computational graph. When applied to
RNNs, however, some special concerns must be made. Firstly, since the RNN in concept

32

Figure 2.9: The Elman network, illustrated in a simplified fashion with general presenta-
tions of the layers for simplicity.

Figure 2.10: An RNN unfolded for N recurrences; the unfolded RNN consists of N MLP-
cells.

can recur indefinitely, it must be unfolded for as many iterations of recurrence as is de-
sirable for the modelling task. This turns the RNN into a finite DAG, see Figure 2.10,
which may be represented by a computational graph. Importantly, however, the shared
parameters of the original RNN have now caused the same parameters to repeat through-
out the DAG. As previously explained, this is a desirable quality, which should remain
also after the training. Secondly, BPTT must thus ensure that the parameters change in
unison during training, such that they remain equal also after the training. In order to
adhere to this requirement, the gradients with respect to each parameter must be defined
equally for each repetition of the individual parameter. When respecting this requirement,
BPTT is in truth simply an application of the generalized backpropagation algorithm, as
derived and presented in [38], and the gradient may be calculated accordingly. A concise
presentation of the generalized backpropagation algorithm is also presented in [17] (Al-
gorithm 6.5, p. 213), and the more in-depth presentation of the RNN’s general gradients’
expressions are presented in [17] (10.2.2, p. 380). Note that BPTT is a significantly more
resource and computationally demanding algorithm than the simplified backpropagation
presented in Section 2.3.2.

The main disadvantage of parameter sharing is that it may easily cause issues in the train-
ing of RNNs due to an either vanishing or exploding gradient. When the computational
graph for the network becomes sufficiently deep, and the same weight wi,j (on layer i’s
input j of each time step) is thus repeated as many times as the number of recurrences N ,
meaning the model contains weight terms that are exponential with respect to N : wN

i,j .

33

The gradient of the cost function with respect to any such weight will necessarily ”vanish”
towards 0 or ”explode” towards ±∞ for sufficiently high-valued N when wi,j is sufficiently
different from 1. As such, the RNN’s ability to learn based on its prediction error deep
into the network becomes lessened, as the gradient of the error will become either close to
zero or immense once sufficiently deep into the network. A zero gradient causes no further
change to parameters, and a too-high-valued gradient causes too-large parameter changes.
Both cases sabotage proper parameter learning for deep recurrent networks, effectively
sabotaging the RNN’s ability to consider long-term dependencies. The issue of a weak
understanding of long-term dependency in RNNs is further addressed in Section 2.4.3.

For networks on the Jordan form, the time steps of the RNNmay be viewed as disconnected
from each other during training; since only the output is passed on between time steps,
training may be performed by furthering the label instead of the current time step’s
prediction. This is called teacher forcing, and allows for much quicker training since
training does not have to be done on the full recurrent model with BPTT, but instead on
the underlying MLP with regular backpropagation[17].

Training by means of teacher forcing does introduce issues with respect to performance.
Specifically, the model is taught with respect to the ground truth - the samples presented
as inputs to the model are drawn from the distribution of the true data-generating process.
Even though the model may predict well for one step, problems arise when chaining single-
step predictions: since the model can not be assumed to predict perfectly after training,
the distribution of the ground truth can not be assumed to exactly equal that of the
predicted data. Consequently, when the model is later applied, and at each time step
receives input in the form of its own previous predictions, it is receiving inputs from an
essentially different data-generating process, than that of the data on which it was trained.
Recalling that a model will not necessarily perform well on data drawn from a distribution
not matching that of its training data set, (2.25), it must be assumed that the model will
perform worse than observed during training. The gap between data observed during
training and application resulting from teacher forcing is called exposure bias, and may
cause significantly decreased performance[17].

Scheduled sampling [39] has been proposed as a method of mitigating exposure bias from
teacher-forcing during training. The method is implemented by gradually replacing labels
from the data set with previously predicted values from the RNN itself. Starting from
no predicted values as labels and ending with only predicted values as labels, the method
teaches the model to predict based on both data from the true process, and incorrect
predictions, such that the model will be prepared to predict adequately, also in the face
of inaccurate inputs during application.

2.4.2 Recurrent neural NARX-Model

As detailed in Section 2.2.2, single-step dynamics prediction may be achieved by viewing
the process as an NARX model and implementing it by means of an MLP, (2.22) and
(2.21). As briefly explained in Section 1.2, this is done successfully in [16].

Extending the neural NARX-model for multi-step dynamics predictions may be done trivi-
ally by recurring a single-step predicting MLP’s output to its input, creating a recurrent
neural NARX-model (RNNARX) on the Jordan form as in Figure 2.8. By providing the
model an initial state xk for the current time step k, all future dynamics ŷk+i may be
predicted for i ∈ [1, N], given some defined, finite N:

34

ŷk+1+i = f̂MLP (ŷk+i:k+i−my
,uk+i−1:k+i−mu ,uk+i) (2.27)

This predictive structure applied to the oil- and gas well system presented in Section 1.4
is later illustrated in Figure 2.13.

Special regards must be considered for the cases where i > 1. Firstly, all uk+i:k+1 are
future actuation values and must be planned and supplied by the user or e.g. the optim-
ization algorithm during optimization in MPC. Secondly, ŷk+i:k+i−my

similarly consists
of previously predicted values ŷk+i:k+1, as well as historical, measured values yk:k+i−my

.
An implementation using the model (2.27) must then ensure that the vectors uk+i:k+i−mu

and ŷk+i:k+i−my
contain the appropriate combination of future and past historical values

in the correct sequence, relative to the future time step k + i, i > 1.

2.4.3 Gated RNNs

The so-far described RNNs are trivial extensions of the regular MLP; except for the added
connections which implement plain recurrence, no architectural changes are made. A class
of more advanced RNN architectures is that of the gated RNNs. In the way the so-far
described RNNs consist of a single cell with recurrent connections to itself, so do the gated
RNNs. Differently, however: the cells in the gated RNNs contain several more units of
computation, each creating and controlling their own part of the total flow of information.
While they are all contrived of linear transformations and an activation function - similar
to a hidden layer in a regular MLP - they are interconnected with simple mathematical
operations, such that the different flows of information are combined. Each unit of linear
transformation and activation function is called a gate, and may be regarded as a separate
hidden layer, parallel to the other gates.

The following paragraphs present two of the most significant gated RNN variants on a
relatively superficial level, such as to facilitate an intuitive understanding. This choice
of level of detail is made for brevity, as gated RNNs play no direct role in this thesis,
and only superficial knowledge of these models is relevant to the scope of this thesis as
a background for better understanding the survey in Section 1.2. The explanations are
based on material in [17]. Also provided are the associated mathematical formulations of
the architectures, though [6] (eq. (10)) provides a more concise formulation.

Long short-term memory. The most successful of the gated RNNs is the long short-
term memory architecture (LSTM) first introduced in [14], which was designed to mitigate
the vanishing and exploding gradient problems. It achieves this by structurally providing
the model with capabilities of understanding a context ck from the totality of all inform-
ation that is input over time, which is recurred with no external interference nor being
passed through any altering layer. The previously described RNNs suffered information to
either explode or vanish, due to the weights causing an exponential effect from being mul-
tiplied with the initial input as many times as the number of recurrences. For the LSTM
cell, ck is, due to its unhindered recurrence, unweighted between time steps, and the dis-
ruptive exponentiality is removed. This may be intuitively viewed as the structure of the
LSTM cell allowing its ”short-term” memory to be retained for longer periods of time -
hence the name. The further paragraphs explain the inner workings of an LSTM cell. For
a short-hand visual introduction, refer to the full LSTM cell architecture illustration in
Figure 2.11.

35

Though it can be a strength that RNNs with connections between the hidden layers
retain all information they ever receive, it is not given that all previous data is of interest
for a prediction arbitrarily far into the future. The forget, state candidate, input and
output gates implement the information flow control within the LSTM cell, which in turn
determines the impact each flow of information has in shaping the context ck. As ck
carries the LSTM cell’s contextual understanding of the totality of all given input, it is
this variable that is the basis for the final output.

The gates are implemented the same way as a standard MLP hidden layer; a linear trans-
formation is applied to its input, a bias is added, and the result is passed through an
activation function - see (2.17). The activation function for the state candidate gate may
be whichever suits the relevant prediction problem, as it plays the main role of shaping
the to-be output - completely similar to the hidden layers of a basic RNN. The input,
forget and output gates all instead employ the sigmoid activation function, σ(x) = 1

1+e−x ,
as they all serve the purpose of determining a factor fg ∈ [0, 1] which scales different parts
of the information flow in order to shape the impact each of the information flows has on
ck before it is output from the LSTM cell.

The forget gate outputs a factor ff , determining how much of the context from the pre-
vious time step, ck−1, should be furthered into this time step. The state candidate gate
determines a candidate contextual understanding c̃k, which serves as an updating term to
ck. The input gate outputs the factor fi, determining how impactful c̃k should be on the
updated context. Consequently, the updated context ck is a weighted sum of old and new
information:

ck = ffck−1 + fic̃k (2.28)

The output gate outputs a factor fo, determining how much of the context should be
output from the cell.

The final output of the LSTM cell is denominated the hidden state hk, as this variable
carries hidden information passed as input along with any externally given input to the
next cell of the unfolded LSTM network. This recurrent connection creates a structure
analogous to that of an Elman network. The hidden state must be fed through an output
layer if it is to be utilized as a model prediction. The form of the output layer depends on
the application.

While taking in the hk alongside xk allows the state candidate gate to predict c̃k the same
way a cell of a basic RNN would calculate predictions, it also allows the forget, input
and output gates to determine the factors controlling the information flow adaptively ; the
LSTM automatically learns what data to retain and what data to disregard by means of
ff , fi and fo as a result of training.

Note that, since all gates take in two variables, each of them may be mathematically
described as follows:

fg(xk,hk−1) = a(Wgxk +Ughk−1 + bg)

where g denominates the specific gate - forget, state candidate, input or output - and a rep-
resents the activation function of the respective gate. Consequently, the set of parameters
to be trained becomes significantly larger than for a basic RNN:

36

Figure 2.11: An illustration of the flow of information and series of computations occurring
within a single cell of an LSTM.

θLSTM = {Wg,Ug, bg}

In addition to these twelve parameters - three parameters for each of the four gates -
potential parameters of the output layer must lastly be considered.

Gated recurrent unit. The gated recurrent unit architecture (GRU), first introduced
in [13], is a simplified version of the LSTM. With fewer operations, it seeks to accomplish
much of the same as the LSTM, but computationally faster. It achieves this by removing
the context variable ck and using only the hidden state hk and externally given input xk.
Additionally, the forget, input and output gates of the LSTM are replaced by a reset and
update gate, both of which use the sigmoid function as activation function. Similarly to
the LSTM, all the gates take in hk−1 and xk, except for the state candidate gate, which
replaces hk−1 with frhk−1; the factor fr is produced by the reset gate as a means of
controlling the hidden state’s prevalence in the calculation of the hidden state candidate
h̃k.

The update gate calculates the two factors fu and 1−fu. The contribution of h̃k is scaled
with fu, and the contribution of the pre-existing hk−1 is scaled with 1−fu. This way, less
of previous hidden state information is included if the new information is deemed valuable
and vice versa, i.e. fu > 0.5 or fu < 0.5, respectively.

For a short-hand visual introduction, refer to the full LSTM cell architecture illustration
in Figure 2.12.

37

Figure 2.12: An illustration of the flow of information and series of computations occurring
within a single cell of a GRU.

Training gated RNNs. Training of a gated RNN must be performed by means of
the BPTT algorithm. Where the simpler RNNs, such as the RNNARX, may be trained
without BPTT by means of e.g. teacher forcing, there exists no similar easy way of
avoiding the use of BPTT for these models. Additionally, one would not want to simplify
the training procedure in such a way, as training the LSTM or the GRU for several samples
in sequence is integral in order to utilize its context-understanding capabilities and shape
the parameters, such that they alter the importance of each information flow according to
precisely sequential data. However, the use of BPTT and the LSTM’s increased amounts
of parameters with respect to e.g. the RNNARX does indeed make the training procedure
considerably heavier. Though the GRU architecture does contain fewer parameters, it still
contains more than a trivial RNN. Noteworthy, though, applications of LSTM and GRU
prove to be the best-performing variants of the gated RNNs[17] (p. 406), which makes an
argument that the added computational cost of training such models may be worth the
investment.

2.4.4 The encoder-decoder structure

Common to the gated RNNs is their more extensive architecture, compared to what may
be found in simpler RNNs such as the RNNARX. While the size does not necessarily
cause the model to be inhibitively computationally heavy, [13] and [40] both proposed a
way to work with the model’s information more effectively. Instead of working on the
system’s high-dimensional state, they proposed to encode the input information into a
lower-dimensional latent state formulation. A model trained on such encoded information
may then be implemented more compactly than a model trained on the original system
state information, and consequently perform calculations more effectively. Retrieving the
predictions made by the lower-dimensional model is then done by decoding the latent
state information to the desired output format. This output format may be of the same
dimensions as the original system’s state’s format, but does not have to be; the encoder-
decoder structure allows translating the input sequence’s length to an output sequence of
different length. Embedding a model within an encoder-decoder structure in this way is

38

exemplified successfully in [12].

Note that the encoder and decoder themselves must themselves be implemented by proced-
ures suited to process sequential data; they may for instance be implemented as RNNs[17].

2.5 A recurrent neural network-based MPC problem for-
mulation

The main distinguishing element between recurrent neural network-based MPC (RN-
NMPC) and other MPC is its use of an RNN-based model as the system model encoded
within the constraints. This section derives an NNMPC problem formulation suitable to
control the system presented in Section 1.4 to any feasible target reference values. Spe-
cifically, the chosen NN-based is presented in Section 2.5.1, and integrated into a general
MPC problem formulation in Section 2.5.2.

2.5.1 Recurrent neural network architecture for MPC

Many different modelling bases may be chosen on which to build a derivation of the
mathematical formulation for the RNNMPC. Recall the goals presented in Section 1.3:
the RNNMPC should be easily implementable, and the RNNMPC comparable to a lin-
ear MPC. Among the modelling options presented in Section 2.4, the RNNARX model
presents the simplest RNN architecture.

The second part of the goal implies that the modelling basis for the RNNMPC should bear
comparable similarities to the modelling basis for the LSRMPC, i.e. a linear step response
model. Among the presented modelling methods, the philosophy of the NARX-model - as
presented in (2.22) and (2.21) - is clearly reminiscent of the philosophy of the LSR-model
- as presented in (2.10); both present a model of future output of a process as a static
function of a history of previous inputs and outputs.

Based on the above considerations, the chosen RNN architecture for the RNNMPC in this
thesis is the RNNARX model, as presented in (2.27). Differences between implementing
the RNNMPC with the RNNARX model instead of e.g. an LSTM- or a GRU-based
model are discussed in Section 5.3.2. Once designed for the oil and gas well presented
in Section 1.4, the RNN becomes as illustrated in Figure 2.13. Following are the specific
mathematical formulations of the resulting RNNMPC.

2.5.2 RNNMPC

The considerations with respect to the cost function and the constraints here presented are
based on the ones presented in [19], as they share essential similarities, and the work done
in [19] was intended as a basis for future work. The specific MPC problem formulation is
somewhat expanded in order to include further considerations not made in [19].

Cost function. The goal of controlling the outputs to some given reference value mo-
tivates including a term penalizing deviations in the outputs from their given reference
values. Note that, contrary to [19], the references are here assumed variable with time.
The only requirement for the references is that they are known prior to optimization at

39

Figure 2.13: An illustration of the RNN resulting from chaining the single-step NNARX
model of the single well process dynamics, implementing multi-step dynamics prediction
as described in (2.27). The figure was first used in [19], there based - with permission -
on an illustration from [16], page 3.

each time step, such that the cost function is well-defined. The goal of performing control
that is economic with respect to wear and tear on actuators motivates a term penalizing
too-high values in change in actuation. The prediction and control horizons are chosen to
be equal for initial simplicity in implementation, Hp = Hu = N . The cost function is then
formulated in the standard quadratic fashion:

l(ŷk+1:k+N ,∆uk:k+N−1;yref,k+1:k+N) =

N−1∑
i=0

(ŷk+1+i − yref,k+1+i)
TQ(ŷk+1+i − yref,k+1+i)

+∆uT
k+iR∆uk+i

(2.29)

where i = 0, 1, 2, ..., N − 1 ensures all timesteps into the future are considered. Q ⪰ 0
∈ Rnout×nout is the diagonal matrix penalizing deviations in the outputs from their given
reference, and R ≻ 0 ∈ Rnin×nin the diagonal matrix penalizing too-high values in change
in actuation.

Constraints. Constraints implemented in the MPC optimization problem formulation
must ensure that optimization is always in accordance with the system model (2.27). This

40

implies two things. Firstly, the initial prediction of our model must equal that of the
system’s current state, meaning that

ŷk = yk

must hold. Secondly, the optimization is not free to alter the output predictions directly,
but must adhere to the system model:

ŷk+1+i = f̂MLP (ŷk+i:k+i−my
,uk+i−1:k+i−1−mu ,uk+i),

Note that the system model becomes implicitly recurrent for increasing i.

In order to adhere to a defined feasible region for the outputs, we require:

ylb − ϵy ≤ ŷk+1+i ≤ yub + ϵy

Note that the addition of slack variables ϵy implies an addition of a corresponding cost-
term in the cost function, also introducing a third tuning variable, ρ > 0. In addition to
the constraints formulated above, any physical system’s actuators have some saturation,
as do their rates of change. This can be formulated as follows:

ulb ≤ uk+i ≤ uub

∆ulb ≤∆uk+i ≤∆uub

Since the optimization is with respect to changes in actuations, the actual input value
uk+i must be maintained consistent with the changes in actuation:

uk+i = uk+i−1 +∆uk+i

In order to compensate for modelling errors, a bias assumed constant for all future time
steps during each iteration of the MPC’s optimization loop, is calculated as the difference
between the last measured output and the predicted output for that same step:

vk+i = yk − ŷk|k−1

The bias compensation is implemented by adding the bias to the model constraint. Lastly,
the slack variables ϵy are optimization variables and must be scaled by some weight defined
as ρ > 0, in which case also ϵy must be positive semi-definite in order for the full cost
function to remain positive semi-definite.

ϵy ≥ 0

41

RNNMPC Problem Formulation. Based on the semi-general MPC problem for-
mulation presented in (2.9), the considerations made above result in the following total
RNNMPC problem formulation:

min
∆uk:k+N−1,ϵy

N−1∑
i=0

[(ŷk+1+i − yref,k+1+i)
TQ(ŷk+1+i − yref,k+1+i)

+∆uT
k+iR∆uk+i]

+ ρTϵy

(2.30a)

s.t.

ŷk = yk (2.30b)

ŷk+1+i = f̂MLP (ŷk+i:k+i−my
,uk+i−1:k+i−mu ,uk+i) + vk+i ∀ i ∈ [0, N − 1] (2.30c)

ylb − ϵy ≤ ŷk+1+i ≤ yub + ϵy ∀ i ∈ [0, N − 1] (2.30d)

ulb ≤ uk+i ≤ uub ∀ i ∈ [0, N − 1] (2.30e)

∆ulb ≤ ∆uk+i ≤∆uub ∀ i ∈ [0, N − 1] (2.30f)

uk+i = uk+i−1 +∆uk+i ∀ i ∈ [0, N − 1] (2.30g)

vk+i = yk − ŷk|k−1 ∀ i ∈ [0, N − 1] (2.30h)

ϵy ≥ 0 ∀ i ∈ [0, N − 1] (2.30i)

Note that (2.30) is a nonlinear MPC problem formulation, and must be solved by a
nonlinear solver, as explained in Section 2.1.4.

42

Chapter 3

Implementation

This section describes the relevant implementational details of both the LSRMPC and
the RNNMPC, and how they both will be tested in accordance with the goals which
specify the qualities of good control performance. This lays the foundation for performing
the main overarching goal of this thesis: to compare an experimental nonlinear MPC
based on neural network-modelling against an efficient, industry-relevant linear MPC -
see Section 1.1. More specifically, Section 3.1 outlines the goals underlying the specific
formulations of the desired qualities of the control performance results in this thesis, as well
as the desired qualities of the tests to which the MPC-implementations will be subjected.
Additionally, the system configuration and hardware specifications relevant for this thesis
are presented. Section 3.2 and Section 3.3 present the implementations of the LSRMPC
and RNNMPC, respectively. Both of the MPCs will be both tuned and tested on the
same reference sequences, such that their control performances may be compared on equal
bases.

Note that the implementation of the LSRMPC is a direct continuation of the work from
[19]. The RNNMPC is instead fully a work of this thesis, while its underlying model is a
continuation on, and significant improvement of, the work from [19].

3.1 Goals, specifications, tests and programmatic interfaces

3.1.1 Goal specifications

The measure of a target tracking control scheme is mainly its ability to minimize the
deviation from the reference. Secondary to actually achieving the reference, but still of
interest, is to minimize the deviation from the reference as quickly as possible. Further
considerations based on which control performance may be deemed as good are based on
safety, economic and environmental factors.

Performing proper control is integral for the safety production facility crew, as well as
the long-term sustainability of surrounding areas. The Deepwater Horizon disaster[41]
as an example, though not caused by poor flow rate control specifically, illustrates the
importance of maintaining flow rates within a system’s specifications. Though components
of an oil rig should be specified to withstand extreme conditions, it is nevertheless desirable
to avoid volatile flow rates. For the sake of this thesis, this is condensed into a control
goal of avoiding oscillations in the flow rates, i.e. the system outputs.

43

Economically, though maximal production of oil and gas is ideal, unnecessary wear and tear
on actuation equipment should be avoided. This supports the goal of avoiding oscillations
also for the actuators, i.e. the system inputs. but also implies that maximal rates of
change should be defined for the actuators. In dialogue with this thesis’ partner, Equinor,
I have decided to assume that the choke should not go from closed to fully open faster in
less than 30 minutes. The gas lift rate is able to go from minimal to maximal actuation
in 5 minutes. Then we have that the maximal rate of change in choke and gas lift are
100[%]
30[min] ≈ 0.55 [%

10s], and
104[m3/h]
5[min] ≈ 333.3 [m

3/h
10s], respectively.

Additionally, the use of heavily power-demanding actuation should be minimized for max-
imal economic gain. In this thesis’ case, see Section 1.4, that means prioritizing the use
of the choke (low power demand) over using the gas lift (high power demand). Lastly,
in maximizing production capacity lies an implicit risk of overshooting the reference. If,
for any reason, an oil and gas rig has a higher gas flow rate than its production capacity,
the gas might not be sent to a refining facility, and must instead be burnt. Due to envir-
onmental considerations, the Norwegian government imposes fees on such excess burning
of gas. Overshooting the gas rate reference thus implies three main consequences: loss
of income from future unsold gas, environmental fees and excess CO2-emissions. In light
of recent international agreements on climate change, avoiding unnecessary and excessive
CO2-emissions should be prioritized alongside safety- and economic considerations.

Though overshooting the oil rate reference does not imply the same economic and envir-
onmental consequences, overshooting the reference still means that the system necessarily
will have oscillatory tendencies to some degree while approaching its reference. This thesis
then proposes to avoid overshoot also in oil rate as a goal.

In total, three main goals for the control performance in this thesis are proposed:

1. Track target references as closely (and quickly) as possible.

2. Avoid oscillations in both gas rate and oil rate, as well as both choke and gas lift
rate.

3. Avoid overshoot in either output, both gas rate and oil rate.

Target tracking performance may be measured by means of e.g. MSE between reference
output and measured output. Measuring the degree of oscillations and overshoot is more
difficult, and judging the control performance of the LSRMPC and the RNNMPC based
on these factors is done argumentatively, rather than numerically, in Section 4.1.1 and
Section 4.3.1, respectively.

In agreement with Equinor, the oil rate has been determined to be the main control goal
of this thesis, due to the expenses involved in using the gas lift. This only implies that
later tuning will be performed with a prioritized emphasis on meeting the reference values
for the oil rate over the reference values for the gas rate - if necessary.

3.1.2 Test specifications

The reference profiles used for testing the MPCs’ performances should test their ability
to accommodate the goals specified in Section 3.1.1. Specifically, the reference profiles for
testing should in total cover:

44

1. testing high-valued references,

2. testing low-valued references,

3. changing the reference in both gas rate and oil rate at different times, and

4. changing the reference in both gas rate and oil rate simultaneously.

The first and second of the above test specifications test the MPC for its ability to op-
erate in a broad working range, carrying implications of the model accuracy and general
applicability or alternatively the MPC’s robustness to the model’s lack thereof. The third
and fourth of the above test specifications test the MPC for its ability to control gas rate
and oil rate separately. While this thesis does not investigate the MPC’s ability to control
the system’s outputs to arbitrary combinations of steady-state values, it is of interest to
assess whether the MPC is able to control the gas and oil rates separately.

Though the above-proposed test specifications will be applied when testing the two MPCs,
I make some simplifications for the reference profiles to be used during tuning, in order to
be able to isolate which changes to the tuning have which effects on the control perform-
ance. Specifically, they will contain fewer steps with longer waiting times between them,
such that the dynamic response has more time to settle to steady-state for each step.
Additionally, due to time restrictions on development, I use somewhat shorter reference
profiles, such that iterating on tunings becomes faster. In spite of these simplifications,
the final reference profiles used are still designed to uphold the first and third of the
points presented above, such that the tuning results and test results are measured in light
of the same requirements, indicating that good tuning results will correlate with good
test results as well. The process of tuning the two MPCs are described in Section 3.2.3
and Section 3.3.4, and the above-described reference profiles are presented alongside the
consequent tuning results in Section 4.1.1 and Section 4.3.1.

For the sake of guaranteed achievability of the references used during tuning, I mapped the
steady-state values the system attains at different combinations of actuation. Since any one
such steady-state value must be achievable by at least one combination of actuation when
later performing control, they would serve as references the MPCs should be able to reach
in at least one way. I performed the mapping by applying, in sequence, all combinations of

choke ∈ {20, 22, 24, ..., 100} [%
10s]

1 and gas lift rate ∈ {0, 2000, 2200, 2400, ..., 10000} [m
3/h
10s].

Interfacing with the system was done as described in Section 3.1.3. The system was
allowed to reach steady-state between each new actuation, thus yielding each actuation
combination’s corresponding steady-states for gas and oil rates. These gas and oil rates
are later used for inspiration when designing the reference profile used during tuning -
see Section 4.1.1 and Section 4.3.1. Knowing these values also allows to ”warm up” the
system to meet the initial references for the tests of control performance later performed
in Section 4.1.1 and Section 4.3.1.

The approach of investigating guaranteed achievable set-points prior to tuning does ensure
that both the LSRMPC and the RNNMPC should be able to meet their references during
tuning, given a proper system model. Knowing this, any failed target tracking during
tuning becomes isolated to factors related to the specific MPC implementation, such as
a poor system model or poor tuning. In actual real-world applications, regards external
with respect to the system may decree what set-points should be attempted reached, and

1choke ∈ {0, 2, 4, ..., 18} [%
10s

] was not included in the set, as these are values below which regular
operation does not happen due to the degree of restricted gas and oil flow.

45

thus the achievable set-points approach does not necessarily reflect real-world operations.
Thus, I use this approach only for the tuning of the MPCs, whereas for the testing,
reference profiles will also investigate whether the gas and oil rates seem to be separately
controllable - as indicated in the enumerated list above. Concrete results are presented in
Section 4.1.1 and Section 4.3.1.

The computation times of both tuning and testing both the LSRMPC and the RNNMPC
are subject of interest as well. The computation times tend to increase with the mathemat-
ical complexity of the optimization problem and may become prohibitively long, depending
on the hardware platform on which the optimization is performed. Once the problem is
defined, however, the computation times are expected to remain approximately constant
across iterations. The specific parameters causing variations in the computation times
differ between the LSRMPC and the RNNMPC - see Section 3.2.4 and Section 3.3.5, re-
spectively. The observed computation times are presented - after the corresponding test
results - in Section 4.1.2 and Section 4.3.2.

The hardware platform used in the development of this thesis is described in Table 3.1.
This platform offers no parallelization software compatibilities, and thus no parallelization
has been employed throughout this thesis; all computations have been performed directly
using the CPU. Faster computations than the ones later observed might be achieved if some
parallelization techniques, like using CUDA[42] with a compatible GPU, are employed.

Processor Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz 3.10GHz

Installed RAM 32.0 GB (31.7GB usable)

System type 64-bit operating system, x64-based processor

Edition Windows 10 Education

OS build 19044.2965

Table 3.1: Specifications of the desktop PC used to run all code developed for this thesis.

3.1.3 Programming the system and its configuration

Here described are the programmatic interfaces used throughout this thesis, including
programming language and the way in which the digital system model was interfaced
with. All software used is additionally listed in Appendix A.

The programmatic work in this thesis, made available on GitHub[43], has been performed
in Python (version 3.10.6)[44]. The reason is two-fold. Firstly, the foundation from [19],
on which this thesis builds further, was implemented in Python. That includes both
a functioning implementation of a MIMO LSRMPC, see Section 3.2, as well as an in-
progress framework in which to develop neural networks utilized in Section 3.3.1 and
Section 3.3.2. Secondly, Python enjoys vastly available open-source libraries for many
functionalities, such as PyTorch[45] for developing neural networks. That the libraries’
implementations are open-source proved helpful during development, as any uncertainties
regarding functionality may be inspected at the core.

The work in this thesis has not been done with respect to the physical system described
in Section 1.4, but instead with respect to a digital model of the physical system; for the
sake of this thesis, the model has been made available in the form of a Modelica-model.

46

Modelica[46] is a programming language for encoding systems as non-causal models, where
sets of equations must be simultaneously upheld. This is different from the more common
causal structure implemented by e.g. Python, where a series of assignments to variables
lead to sequential behaviour in those variables. For further details on Modelica, the
interested reader is referred to [46]. Modelica-models may not be directly interfaced with
using Python, but must first be exported as a Functional Mock-up Unit (FMU). The way
in which the Modelica model was exported to an FMU during development for this thesis
is described in Appendix C. Using the Python-library pyfmi [47], an FMU may be given
inputs, for which it can simulate the physical system, after which the physical system’s
simulated outputs may be retrieved. Note that the FMU contains no noisy behaviour.

Embedded in the underlying Modelica-model of the physical system, and thus the FMU,
are the predefined hard limits to actuation to which the system must adhere, as described
in Section 1.4. Though not directly embedded into the FMU, these limits imply lower and
upper limits to the steady-state output values, which have been derived empirically by
applying minimal and maximal actuation until steady-state, respectively. The maximal
rates of change in actuation, see Section 3.1.1, are not directly embedded in the FMU,
but instead enforced manually within the implementation. Lastly, both the LSRMPC and
the RNNMPC later implement slack on the limits on the outputs, here represented by ϵy.
As explained in Section 2.1.2, ϵy > 0 is required as part of retaining the cost function
as positive semi-definite. Though no upper limit is theoretically required, it is included
in the system configuration for programmatic reasons, and tentatively set to 106 to serve
as simply a very high value. In total, the above arguments motivate the limits listed in
Table 3.2.

The sampling time of the system is defined to be ∆t = 10 [s] for both the LSRMPC and
the RNNMPC.

Variable Bounds Motivation

Choke [0, 100] [%] Given as specification

Gas lift [0, 10000] [m
3

h] Given as specification

Gas rate [0, 18537] [m
3

h] Empirically derived

Oil rate [0, 349] [m
3

h] Empirically derived

Rate of change in choke opening [−0.55, 0.55] [m
3

h] Given as specification

Rate of change in gas lift rate [−333.3, 333.3] [m
3

h] Given as specification

Slack on gas rate limits [0, 106] [m
3

h] Implementational necessity

Slack on oil rate limits [0, 106] [m
3

h] Implementational necessity

Sampling time 10 [s] Given as specification

Table 3.2: The static parameters of the oil and gas well system, their values and how they
were derived. These provide a numerical basis for later development of the LSRMPC,
Section 3.2.2, and the RNNMPC, Section 3.3.3.

47

3.2 Implementing the LSRMPC

3.2.1 LSRMPC problem formulation

The LSRMPC presented in (2.11) is a basic MPC problem formulation for the SISO case,
whereas the system in question is MIMO. While extending the SISO linear step response
model to the MIMO case is trivial, see (2.12), the integration of the MIMO system model
into an MPC problem formulation depends on the chosen problem representation. The
MIMO LSRMPC problem representation presented in [2] was developed in cooperation
with Equinor, and thus presented a suitable choice for an LSRMPC problem formulation
with industrial foundations, which may later be used as comparison grounds against the
experimental, nonlinear RNNMPC. This LSRMPC problem representation implements an
efficient MIMO LSRMPC. The matrices of the complete LSRMPC problem formulation
and their derivations are extensive, and, for the sake of brevity, this thesis does not provide
a comprehensive presentation of them. Instead, the interested reader is referred to the
summary in [2] (pages 34-39 and 59-60). Though extensive, this MIMO LSRMPC problem
representation still implements a linear MPC.

Importantly, by means of problem size reduction, [2] achieves to reduce the optimization
variables in [2] to only:

z ≜ [∆uk ϵy] (3.1)

This is noteworthy, as it later determines which specific parameters must be assigned
values during system configuration; see Section 3.2.3 and Table 3.3. Note also that the
tunable weight matrices, which in [2] are denominated Q̄ and P̄, are instead referred
to in this thesis as Q and R, respectively, so as to ensure a consistent naming scheme
throughout this thesis.

3.2.2 LSRMPC: implementational details

The implementation of the LSRMPC was a joint effort between Simen Bergsvik, Amalie
Gjersdal and the author in association with project work leading up to our individual
theses. This is well-documented in [19]. The implementation of the LSRMPC included
in this thesis is the same, with some bug fixes and optimizations for code readability and
running time improvements.

The main control loop of the LSRMPC requires four external elements: the FMU (see Sec-
tion 3.1.3, the configuration of system parameters (static and tunable, see Section 3.2.3), a
series of reference values which implement the desired target outputs to be tracked during
control, as well as the MIMO linear step response model. While the FMU was provided
for the sake of this thesis, the other three requirements must be supplied by us, the de-
velopers. The configuration of the system was encoded into a simple ‘.yaml‘-file, and the
reference values encoded into a simple ‘.csv‘-file - the interested reader is referred to [19]
for the specific details of the code.

The MIMO linear step response model was identified after the process described in Sec-
tion 2.1.3: The system was driven to steady-state for an input of [choke, gas lift rate] =

[50 [%], 0 [m
3/h
10s]], after which a step was made to [choke, gas lift rate] = [52 [%], 0 [m

3/h
10s]].

The outputs were then retrieved from the FMU for each subsequent timestep. Once

48

the input-output values were measured, the step response coefficients for each input-
output relation from step to steady-state were derived, yielding the vectors Sgas rate, choke ,
Soil rate, choke , Sgas rate, gas lift rate and Soil rate, gas lift rate . These vectors were stored separ-
ately as numpy arrays (‘.npy‘-files), and retrieved upon need during the main LSRMPC-
script.

With the external requirements satisfied, implementing the LSRMPC-loop itself is a mat-
ter of choosing an appropriate framework with which to implement the required matrices of
the LSRMPC problem formulation, as well as the solver required to solve the optimization
problem at each iteration. The Python library numpy [48] was chosen as framework for the
implementation of all matrices. The chosen solver is gurobi ’s[49] quadratic programming-
solver. Note that this solver is a commercial solver, and not openly available - an academic
license was used for the sake of the LSRMPC development. This solver was chosen for
its observed efficiency during the LSRMPC development process, but other, free-of-charge
alternatives, such as osqp[50], exist.

Though self-developed, the specific implementational details of the code implementing the
LSRMPC, and all its frameworks, is not included in the text of this thesis. Instead, an
algorithmic presentation of the main LSRMPC-loop is given in algorithm 2. For further
details, the interested reader is referred to the open-source code at [43].

3.2.3 Tuning the LSRMPC

The above-presented LSRMPC implementation requires both static and tunable paramet-
ers to be determined prior to running the control loop. Applying the system informa-
tion provided in Table 3.2 to the LSRMPC-equations, the list of parameters as listed in
Table 3.3 is derived. These values are parameters that configure the system and are static,
as they reflect physical properties or desired behavioral limits, from which the system is
not necessarily allowed to deviate. Recall the compact vector of optimization variables in
(3.1). Accommodating this formulation, the upper and lower limits to both the rate of
change in actuation ∆ulb and ∆uub, as well as to the slack variable ϵy in this LSRMPC
problem formulation are encapsulated within the variables zub and zlb, respectively.

In addition to the predefined parameters in Table 3.3, the system has tunable parameters
- listed in Table 3.4 - whose values should be determined by the user based on what
configurations provide the best control performance results. While not the core subject
of this thesis, the tuning of the LSRMPC should be properly addressed for the sake of
well-performing control.

49

Algorithm 2: Pseudo code for the program flow which implements the simu-
lation of control by means of the LSRMPC. This is not an exhaustive guide to
implementing an LSRMPC. For exhaustive details, the interested reader is re-
ferred to the open-source code at [43].

Input:

1. digital system representation (FMU)

2. initial actuation state u0

3. system configuration (tuned parameters, time step size ∆t, simulation length tfin)

4. reference value trajectory yref,0:tfin

5. MIMO linear step response model S

Output:

1. optimal trajectory of actuation values

2. corresponding trajectory of system outputs

Warm-start: apply u0 to FMU until steady-state is achieved;

t← 0;

k ← 0;

Retrieve current output yk from the FMU;

while t < tfin do

Update constraints and costs according to yk and yref,t;

Apply constraints and costs to optimization problem;

Call solver on updated optimization problem;

Retrieve optimal change in actuation ∆u∗
k;

u∗
k ← u∗

k−1 +∆u∗
k;

Apply optimal actuation to u∗
k to FMU;

Retrieve current output yk from the FMU;

t← t+∆t;

k ← k + 1;

end

50

Static parameters Value

ylb [0 0]

yub [18537 349]

ulb [0 0]

uub [100 104]

zlb [−0.55 −166.7 0]

zub [0.55 166.7 106]

Table 3.3: The static parameters of the system, encoded into the relevant variables of the
LSRMPC problem formulation.

Tunable parameters

Q ∈ R2×2

R ∈ R2×2

Hp ∈ R

Hu ∈ R

Hw ∈ R

[ρT
h ,ρ

T
l]

T ∈ R4×1

Table 3.4: The tunable parameters of the system, encoded into the relevant variables of
the RNNMPC problem formulation.

The main method I used for tuning the tunable parameters of the LSRMPC was grid
search. Grid search is a brute force method of searching for optimal parameter values: a
set of candidate values is defined for each n parameter, such that an n-dimensional grid
defines all possible configurations of all the parameter candidate values. The procedure,
based on which the performance of each combination of parameters is judged, is then run
for every single grid point in that grid, and the optimal choice of parameters is that which
performs the best on the procedure. An example of performing one such procedure for
a grid point could be to simulate a control sequence of an LSRMPC and measuring its
resulting target tracking capabilities. An additional example is that of training a model on
a specific hyperparameter candidate set, and then testing the model on a test data set. The
measure of its performance is then typically its mean MSE over the full data set. Note that
the amount of grid points grows in size as a product of the number of candidate values per
parameter. As such, it is a näıve and computationally resource-demanding search-method,
since every grid point is evaluated, regardless of considerations that could be made in
order to effectivize around e.g. better-performing configuration values. This method was
nevertheless chosen due to its implementational simplicity, as the tuning process itself is
not the main focus of this thesis, and some time spent tuning was acceptable, as this
may be done automatically in the background of other work. Other less näıve approaches,
such as genetic algorithms and random search may yield improved performance. The
interested reader is referred to [51] and [52](chapter 10) for introductory discussion of the
two methods, respectively.

The variables ρh and ρl serve as weights on the slack variables ϵh and ϵl, respectively.

51

Since we want any given solution to allow as little slack as possible, ρh and ρl were chosen
high-valued from the start and locked in place during further tuning procedure. This of
course relies on the assumption that high-valued ρh and ρl are feasible, a condition which
must be revisited if no good tuning is found during further tuning procedure.

Since the further parameters to be tuned involved all the horizons Hp, Hu and Hw as
well as the weight matrices Q and R, I performed the grid search in two rounds; one
for the horizons, and one for the weight matrices. I assumed that by first performing a
grid search with respect to the horizons, their values may later be locked in place without
significantly affecting the later tuning process of Q and R adversely. This assumption is
based on the argument that longer horizons tend to yield better performances in MPC
control schemes - see Section 2.1.1. I thus assumed that tuning the horizons would result
in the highest-valued horizons that I could justify with respect to computation times. The
assumption that higher-valued horizons always perform better also justifies that Q and
R may be locked into arbitrary values during this first grid search. The expectations I
had for the tuning of Q and R differ significantly; I do not assume that strictly higher (or
lower) values in Q and R will yield better performance - instead, the optimal values must
be assumed to be the combination of Q and R which optimizes the trade-off between
punishing deviations from the reference and punishing the use of actuation. For both
rounds of grid search, I started with rough initial guesses of the parameters’ values based
on performance observed during test runs during the development of the LSRMPC.

For the tuning of the horizons, I first defined Hw = 0, as I know of no reason there should
exist any time-delay in the system. I then grid searched for the optimal values of Hp and
Hu, with the criterion for the best combination of values being a compromise between
control performance and computation times. The resulting values for Hp and Hu are later
described in Table 4.1 in Section 4.1.1, and considerations regarding the computation
times of the LSRMPC are presented in Section 4.1.2.

After settling on values for the horizons, I performed a grid search over candidate values
for Q and R. Note that some level of effectivizing of the grid search procedure was
implemented. Using the tuning of Q and R as an example; candidate ranges for Q and R
were chosen, within which specific candidate values were chosen after a coarse resolution:
3 to 4 values per interval. The points were then logarithmically distributed, such that
any given point would provide a significantly different magnitude of the corresponding
penalty in the cost function than another. I performed the grid search iteratively; during
each iteration, every grid point was investigated, but the next iteration’s grid values were
chosen in a neighbourhood surrounding the values yielding the best performance. In
this way, the grid did not need to be high-resolution from the beginning. Instead, the
procedure became more analogous to a tree search, where only the interesting branch is
investigated. A hypothetical example, intended only for illustration of the concept, is
provided in Figure 3.1.

Lastly, after the coarse search for the ideal Q and R was performed by grid search, I
applied the logic presented in Section 2.1.2 in order to perform some last fine-tuning of Q
and R.

Once the tuning process was complete, the LSRMPC was tested on reference profiles as
described in Section 3.1.2. The results are presented in Section 4.1.1

52

Figure 3.1: In this example intended only for illustration, the best-performing combination
of two values R0 and R1 for some arbitrary procedure must be determined. The perform-
ance is measured on a scale p ∈ [1, 5], where higher is better. The first iteration isolates
R0 ∈ [100, 10000] and R1 ∈ [1, 100] as neighbourhood within the original search area as
the best-performing region. The second iteration then explores that neighbourhood, while
also adjusting the performance scale according to the worst- and best-performing grid
points within the new neighbourhood, in order to accommodate the increased resolution.
The procedure may be repeated for as long as desirable, but is here illustrated with only
2 iterations for simplicity.

3.2.4 Notes on computation times

The computation times associated with running the control loop of the chosen LSRMPC
problem formulation vary depending on different factors. However, while factors such as
hardware capabilities, programmatic efficiency in the implementation, and choice of solver
of course matter greatly, these are factors external to the specific LSRMPC problem
formulation, and may be addressed without regarding the specific parametric values of
the LSRMPC. The factors which instead stem from the LSRMPC problem formulation
itself are the values of the horizons Hp, Hu and Hw, as these directly determine the sizes
of most matrices involved in optimization - see [2](Table 3.1, p. 41).

Observed computation times as a function of horizon sizes are presented in Section 4.1.2.

3.3 Implementing the RNNMPC

This section describes the implementation of the MLP-based RNNARX, as described in
Section 2.4.2, underlying the later implementation of the RNNMPC, as described in Sec-
tion 2.5.2. Specifically, Section 3.3.1 details how the data sets utilized during the training
procedure of the model were gathered, Section 3.3.2 explains how the training procedure
was applied on these data sets, resulting in a model applicable for a full RNNARX-based
RNNMPC, whose implementation is presented in Section 3.3.3.

53

3.3.1 Data sets for training the model

This thesis has not had any data from real-life data-collection on which to train a model
available. Instead all data sets on which to perform training, validation and testing of
the model had to be synthesized by means of simulations of input-output responses using
the FMU in the way described in Section 3.1.3. In order to synthesize data sets, an
input profile must first be defined, then simulated through the FMU, which then produces
outputs corresponding to the given inputs. Logging these outputs alongside the inputs
yields synthetic data sets containing full sequences of input-output relations, which may
later be tailored into samples usable during training. I created several such data sets based
on different types of input sequences. Recall that the FMU is implemented without noisy
behaviour.

In the case of synthesizing data through the FMU, all output values are direct consequences
of the history of inputs - the degrees of freedom in the data are only the inputs. The
question of how to best represent the system’s dynamics by means of synthesized data is
raised.

The end goal of the training procedure is for the model to be able to generalize. As covered
in Section 2.3.1, this is better achieved if the distribution of the training data set matches
that of real-world data, i.e. that the data set contains input-output relations mirroring
the dynamics of the system. The ideal data set is entirely representing of the dynamics of
the system from which it is sampled. This thesis proposes that representing the system’s
dynamics by means of synthesized data is best achieved by spanning the input domain as
broadly as possible; the data set should contain as many combinations of values in choke
and gas lift rate as possible. Furthermore, since the system is dynamic, the history of
inputs - not only the current inputs - are relevant to the resulting outputs. As such, the
data set should also contain as many sequences of combinations of values in choke and gas
lift rate as possible.

This thesis proposes a way to create data set matching the above criteria by means of
an FMU: Semi-randomly walking the input-space in both degrees of freedom - choke and
gas lift rate - simultaneously, will tend towards covering all configurations within the
possible input-domain, as well as all possible sequences, over time given that the two
inputs are in asynchronous phase. Thus, given large enough simulation times, a close to
fully representative data set is generated, in the sense that application of the model will
encounter no new data which strongly deviates from any data contained within this data
set. This idea is an extension of the qualities implemented by the amplitude-modulated
pseudo-random binary signal (APRBS), acknowledged for its ability to emulate white noise
and excite all frequencies of the system by applying step inputs[5]. Note that [5] argues
that an APRBS signal is not necessarily an appropriate basis on which to identify nonlinear
models, due to lacking coverage of highly nonlinear regions. This thesis nevertheless uses it
as a basis for synthesizing a training data set, based on the argument that the data set may
be made to cover broadly enough; this thesis hypothesizes that allowing a semi-randomly
asynchronously walking APRBS-signal to semi-randomly walk across the inputs’ domains
will in fact grant the resulting data set broad enough coverage that the concerns raised
by [5] are mitigated.

Since the system has two inputs, spanning the input-domain of any one of them is not
sufficient; the data set should also span the domain of combinations of the two inputs. As
long as the frequencies of the random choke walk and the random gas lift rate walk are
proportional with an irrational number, allowing them to randomly walk makes the amount

54

of combinations of their respective domains increase as time increases. However, since this
thesis makes the assumption that the two inputs are continuous variables - their domains
are infinitely resoluted - fully spanning all possible combinations of the two in reality is
not possible; no data set may in practice be of infinite size. Furthermore, computation
times during training increase with increasing size of the training set, due to the sheer
amount of samples which need to be processed. This motivates restricting the data set.
The size of the model also matters somewhat, due to the amount of computations needed
to be made both during prediction and backpropagation. In general: when computational
resources are a limiting factor, a compromise between model size and training data set size
must be made against time considerations. Specific training times and reflections around
these are omitted for brevity, as the main focus of this thesis is the RNNMPC built with
the trained model.

Given the above reflections, I sought to create input profiles which spanned the input
domain as broadly as computationally possible, while retaining computational feasibility
during training of the model. I settled on the final sizes of the training and validation data
sets to be 200.000 and 30.000 number of samples, respectively. The specific size of the
training data set was chosen based on observations of computation times during training
of the model; I wanted to be able to use as many samples as possible without the training
over any one set of hyperparameters taking too long. The size of the validation data set
was made relative to the training data set, and was based on the popular 70% / 15% /
15% ratio of training, validation and test sets; though amount of available data is not an
issue in this thesis, this ratio justifies using a significantly larger data set for training than
for validation.

The input profiles are designed such that each step happens in either positive or negative
direction, with some uniform distribution over the values within the limits to the rate of
change. Both inputs start low, with a skewed probability of incrementing, such that the
semi-random walk will rise for some time. Once the maximal actuation value is reached
for one input, the probability of its next steps are skewed towards decrementing, and vice
versa once it reaches the minimal actuation value. In this way, both choke and gas lift rate
are made to repeatedly span their domains. Since choke and gas lift rate have different
limits to rate of change, see Table 3.2, their semi-random walks achieve asynchrony: gas
lift rate seems to span its domain a little more than three times faster than choke. In order
to also capture the transients, each input was forced to wait for some amount of time steps
randomly sampled from 20 to 50. Simulating these input-profiles yielded the training data
set shown in Figure 3.2. The validation data set was created exactly the same way. The
test data sets were instead created differently in order to test for more specific predictive
qualities of the trained models - see Figure 4.6 and Figure 4.7 in Section 4.2.2.

This training data set is intended for training of a model that may be chained into an
RNN of the structure presented in (2.27), where both histories of the inputs’ and outputs’
values to the system are given as input values to the model. Since gas rate, oil rate, choke
and gas lift rate all operate within different magnitudes, the data sets must be normalized
prior to training. This means that the final model expects every input value to reside
within [0, 1]. In order to ensure consistency, the validation and test data sets must also be
normalized accordingly. The values used for normalization are the individual inputs’ and
outputs’ upper and lower bounds, given in Table 3.2.

Due to being finite, the training data set can not be assumed to be fully representative of
the system’s dynamic behaviour for all configurations and working ranges of the system’s
inputs. Noteworthy: even if it had been fully representative, there would still exist no

55

Figure 3.2: The synthesized data set later used for training models.

Figure 3.3: A magnified snippet of the input profile for choke, as presented in Figure 3.2.
The snippet is intended to further clarify the structure of the excitation signal.

guarantee of the model perfectly learning the system’s dynamics, as the cost function used
by SGD during training, see Section 2.3.1, is highly nonlinear regardless of the training data
set used, since even a very simple model has a nonlinear activation function at each neuron.
Recall that SGD is inherently stochastic, and provides no guarantee of convergence to the
global optimum. Hence, even though a very representative training data set is helpful
in achieving an accurate model, it is no guarantee in and of itself. Whether the final
performance is sufficiently accurate is a matter of application specifications, and judging
whether the training data set is representative enough is then a matter of judging whether
the specifications are met. This question is further addressed in the case of this thesis
when the test results for the model and the consequent RNNMPC are presented, see
Section 4.2.2 and Section 4.3.1, respectively, and consequently discussed in Section 5.2.1
and Section 5.3.1.

56

3.3.2 Training and testing of the model

I implemented a training-testing scheme for training models as MLPs using Python 3.10.6
and PyTorch 1.13.0. Code details are not covered in this thesis - see instead [43]. All
the implementational work relevant to training and testing models is based off the theory
found in Section 2.3.1 and Section 2.3.4.

Before training a model, structural considerations must first be made. Firstly, the chosen
optimizer during training for this thesis is Adam, due to its proposed robustness in the
tuning of the hyperparameters, Section 2.3.1. Furthermore, Adam is a variant of SGD,
meaning all samples will be shuffled during training, removing all sequential correlation
between the samples within Figure 3.2.

Secondly, the optimal set of hyperparameters must be identified. I attempted this by iter-
ating over candidates for hyperparameters by means of grid search - completely similarly
to how I tuned the LSRMPC - see Section 3.2.3. The hyperparameters which must be
considered during such a process are outlined presently.

Adhering to the model’s structure, see (2.27), the model itself required the hyperpara-
meters mu, my and ηl ∀ l. The choice of activation function fell on LReLU , as it became
evident that several neurons died during training during initial developments when using
ReLU . Settling on LReLU seemed to remedy this issue, meaning that its leak rate α
is a hyperparameter which must be defined. I chose to implement early stopping (see
Section 2.3.4) as a regularization method to avoid overfitting, so the patience p must be
determined. Furthermore, since I chose the optimization algorithm Adam, the hyper-
parameters batch size β and learning rate λ must be defined. Additionally, Adam allows
the hyperparameter weight decay µ to be set, which implements L2-regularization - see
Section 2.3.4. Lastly, as a safe-guard for termination of training, some amount of max-
imal epochs e must be decided. All the required hyperparameters are summed up in the
Table 3.5.

Which figures should be varied over during the grid searched had to be addressed. The
four figures mu, my, the size(s) of the layer(s) ηl, and the number of layers l determine
the nonlinear capacity of the model as well as its total size. The nonlinear capacity is
important with respect to the models modelling capability, and the size is impactful with
respect to the computation times associated with later solving the optimization problem
at each iteration of the RNNMPC. These figures were thus deemed the most interesting
to vary during the grid search.

Regarding the specific grid searchable values of mu, my, ηl and l, the following considera-
tions were made. Firstly, reducing the amount of neurons within the model is important
to reduce the computational load on the optimization step of the RNNMPC control loop.
Since the universal approximation theorem[7] states that universal approximation may be
achieved with as little as one hidden layer, I decided to train all models in association
with this thesis with precisely only one layer in order to reduce the computational load in
the RNNMPC: l ≜ 1 and thus ηl = η. Not knowing which hidden layer size would yield
sufficient nonlinear capacity, I set η ∈ {20, 40, 200} as candidate values for the grid search.

Secondly, the issue of exposure bias arises when the model takes in its own predicted val-
ues, while it is not trained to do so, see Section 2.4.1. Intuitively, exposure bias might then
be pre-emptively mitigated by using a lower-valued my, such that fewer of the model’s
own predictions are fed back to the model’s input. Instead, the model may then rely on
the necessary information for system dynamics approximation being carried within the mu

57

long history of inputs. Using lower-valued my also contributes to lowering computation
times during RNNMPC optimization. Note that feedback of the model’s own predictions
may never be completely removed, as the model must have some knowledge of the sys-
tem’s outputs’ state, from which to understand how future dynamics will behave. The
ranges mu,my ∈ {5, 20, 50} were chosen for candidate values for the grid search, with the
condition that mu ≤ my, such that no configuration would make predictions based on a
longer history of output values than input values; while previous output values aid the
predictions of a NARX-model, it is the input to the system which ultimately determine
future output. Note also that as low as possible values for mu and my are beneficial with
respect to computation load.

Hyperparameter Values Description

mu ∈ {5, 20, 50} the candidate sizes of the history of inputs considered

my ∈ {5, 20, 50} the candidate sizes of the history of outputs considered

η ∈ {20, 40, 200} the candidate sizes of the single hidden layer

α 0.2 the leak rate of LReLU

p 5 the number of epochs to wait for a better Eval before terminating

β 64 the amount of samples used in each step of the training

λ 0.001 the learning rate used in Adam

µ 0.1 the weight decay coefficient used in Adam.

e 200 the number of epochs for which the NN should train

Table 3.5: The hyperparameters and their chosen values or ranges of candidate values.
Values are prior to grid search for best set of hyperparameters.

When using PyTorch to train regular models with linear units, like (2.17), the model’s
parameters - weights and biases - are initialized automatically according to the Kaiming
method, unless otherwise specified[53]. As there was no apparent need to specify the initial
parameters manually, I used this automatic initialization throughout all training.

Once all the above considerations were in place, the grid search could commence by training
a model for each hyperparameter configuration in accordance with the procedure described
in Section 2.3.1 and summed up in Figure 2.6.

Building on Section 1.1, the main goals of testing the model are to assess its ability to
capture the system’s nonlinear dynamics, as well as how broadly within the system’s
working range it is able to do so. The test data sets I used to assess the qualities of
each trained model contained a single step in actuation in order to test for predictive
accuracy around different working ranges for the system. The specific test data sets used
are elaborated below.

The gas and oil rates of the well are in reality controlled by a step-choke with additional use
of a semi-continuous gas lift supplementing when needed - see Section 1.4. This motivates
to evaluate the model’s ability to capture nonlinear dynamics by viewing its predictive
accuracy on the outputs for steps in the choke, while the gas lift is kept constant. Since it
is of interest that the model should perform well in all working ranges, steps are made in
the choke for low-valued, medium-valued, and high-valued working ranges. Three different
test data sets containing the three described steps were synthesized.

An additional test data set was synthesized in order to display the model’s predictive

58

accuracy more broadly: displaying a ”staircase” input profile, this test data set is meant
to emulate the ideal case where the choke is the preferred actuator, i.e. the one to be maxed
out first. The result from testing the model on this data set is presented in Figure 4.7.

Note that all the above-described test data sets are synthesized independently of all train-
ing and validation data sets in accordance with the theory presented in Section 2.3.1. The
results of testing the model on these test data sets, as well as the final choice of model to
employ in the RNNMPC, are presented in Section 4.2.2.

3.3.3 RNNMPC: implementational details

The LSRMPC and the RNNMPC are both implementations of MPC, and thus share
the same base structure; the high-level algorithmic representation of the control loop of
the RNNMPC, see algorithm 3 remains practically identical to that of the LSRMPC, see
algorithm 2. On a lower level, however, essential differences arise regarding their cost
functions and constraints; the different problem formulations not only implement different
cost functions and constraints, but the RNNMPC also requires symbolic expressions where
the LSRMPC did not. Specifically: the RNNMPC’s model constraint is implemented by
a symbolic expression representing the RNNARX-model, (2.30c). Furthermore, that same
symbolic expression is included in the cost function, (2.30a). The symbolic expression
may not be evaluated prior to optimization, meaning that later solving the optimization
problem requires differentiating symbolic expressions.

The above-described symbolic qualities of the RNNMPC mean the optimization prob-
lem during the control loop must be solved by a programmatic framework that supports
symbolic optimization. CasADi is one such framework, tailored to solve optimization
problems containing symbolic expressions efficiently - both linear and nonlinear[54]. Cas-
ADi achieves this by defining the symbolic expressions as computation graphs and finding
the corresponding gradients by means of automatic differentiation. Note that automatic
differentiation differs from symbolic differentiation, but associated details fall outside the
scope of this thesis. The interested reader is instead referred to [54] for further details
regarding automatic differentiation.

CasADi allows formulating tailored symbolic expressions and assigning these as constraints
to any optimization problem. Enforcing the model as a constraint is then reduced to
loading the trained model’s parameters into the RNNMPC formulation, and assigning
them to a function defined on the same form as the model itself. Though the trained model
is defined only as an MLP, the open-loop multi-step prediction of (2.30c) is implicitly
implemented when the constraint by defining the constraint for the desired amount of
future time steps. Note that when using CasADi for one or more constraints, all other
constraints, as well as the cost function, must be defined in the CasADi framework as well.

CasADi offers two different APIs for implementing optimal control problems: parametric
form and via the opti -stack[55]. The latter is a high-level abstraction layer of the prior. I
chose to use the opti-stack, as its simplified API made maintaining the code base for this
thesis easier and more streamlined.

CasADi has built-in compatibility with the open-source nonlinear interior point-based
solver IPOPT [56]. The interested reader is referred to [56] for details regarding the un-
derlying theory and implementation of IPOPT, as these details fall beyond the scope of this
thesis. Following the above arguments of symbolic expression compatibility and efficiency
as reasons to choose CasADi as the symbolic mathematical framework within which to im-

59

Algorithm 3: Pseudo code for the program flow which implements the simula-
tion of control by means of the RNNMPC. This is not an exhaustive guide to
implementing an RNNMPC. For exhaustive details, the interested reader is re-
ferred to the open-source code at [43].

Input:

1. digital system representation (FMU)

2. initial actuation state u0

3. system configuration (tuned parameters, time step size ∆t, simulation length tfin)

4. reference value trajectory yref,0:tfin

5. input history length my

6. output history length mu

7. NNARX-model f̂MLP (ŷk+i:k+i−my
,uk+i−1:k+i−mu ,uk+i)

Output:

1. optimal trajectory of actuation values

2. corresponding trajectory of system outputs

Warm-start: apply u0 to FMU until max(mu,my) time steps after steady-state is
achieved;

t← 0;

k ← 0;

Retrieve current and past outputs yk:k−my
from the FMU;

while t < tfin do

Update constraints and costs according to yref,t, yk:k−my
and uk:k−mu ;

Apply constraints and costs to optimization problem;

Call solver on updated optimization problem;

Retrieve optimal change in actuation ∆u∗
k;

u∗
k ← u∗

k−1 +∆u∗
k Apply optimal actuation u∗

k to FMU;

Time-shift: uk−1:k−mu ← uk:k−mu+1;

Time-shift: yk:k−my+1 ← yk−1:k−my
;

Retrieve current output yk from the FMU and add to yk−1:k−my
;

yk ← u∗
k;

t← t+∆t;

k ← k + 1;

end

60

plement the RNNMPC, choosing IPOPT as the solver for the RNNMPC implementation
becomes the natural choice.

Note that the calculations used in the RNNMPC are not with respect to normalized
data. Conversely, the training, validation and test data sets were all normalized prior to
training the model. Hence, all data must be normalized within the RNNMPC to ensure
consistency with the model, and the RNNMPC’s output optimal change in actuation must
be denormalized before being applied to the FMU. Elsewise, the model would handle data
very unlike what it has previously seen, and must be expected to yield highly different
performance than during training, validation and testing.

3.3.4 Tuning the RNNMPC

When implementing the RNNMPC, there are several figures, both static and tunable,
whose values must be determined. Combining the parameters as required by the RNNMPC
problem formulation in (2.30) with the system values as described in Section 3.1.3, yields
the configuration of the RNNMPC’s static parameters presented in Table 3.6.

In addition to the static parameters, the tunable parameters must be determined. Fol-
lowing (2.30), the RNNMPC’s tunable parameters are Q, R, N and ρ. Note that the
prediction and control horizons were chosen to be equal, Hp = Hu = N . As with the
tuning of the LSRMPC: even though the tuning of the RNNMPC is not the core subject
of this thesis, it should be addressed for the sake of well-performing control. I used grid
search also in the tuning of the RNNMPC. Both the justification of the choice of using
grid search, as well as the way in which I employed grid search, were completely similar to
the procedure described in Section 3.2.2; ρ was defined as a high value, then the horizon
was chosen as a compromise between computation times and performance, before lastly a
grid search was performed on Q and R.

Static parameters Value

ylb

[
0 0

]
yub

[
18537 349

]
ulb

[
0 0

]
uub

[
100 104

]
∆ulb

[
−0.55 −166.7

]
∆uub

[
0.55 166.7

]
ϵy,lb

[
0 0

]
ϵy,ub

[
106 106

]
Table 3.6: The static parameters of the system, encoded into the relevant variables of the
RNNMPC problem formulation. The values for ylb, yub, uub and uub are directly based
off Table 3.2.

61

Tunable parameters

Q ∈ R2×2

R ∈ R2×2

Hp ∈ R

Hu ∈ R

ρ ∈ R2×1

Table 3.7: The parameters of the RNNMPC problem formulation which must be tuned.

Once the tuning process was complete, the RNNMPC was tested on reference profiles as
described in Section 3.1.2, completely similar to the testing of the LSRMPC.

3.3.5 Notes on computation times

The computation times associated with running the control loop of the RNNMPC vary
depending on hardware capabilities, programmatic efficiency in the implementation as well
as the choice of solver. Again, however - as with the LSRMPC - these are factors external
to the specific RNNMPC problem formulation and may be addressed without regarding
the specific parametric values of the RNNMPC. The factors which instead stem from
the RNNMPC problem formulation itself are the value of the horizons N , as well as the
values of the hyperparameters mu, my and η which determine the size of the model; the
complexity of the model is highly impactful on the complexity of the optimization problem
to be solved at each time step. Thus, the choice of horizon and the final choice of model
are interconnected and must be assessed in tandem. Note that, since the computation
times associated with employing a trained model in an RNNMPC cannot be known prior
to actually employing it, the choice of model in Section 4.2.2 is interconnected with the
results observed in Section 4.3.1 and Section 4.3.2 in the sense that a model of lower
complexity must be assumed to result in lower computation times. The final tuning of the
RNNMPC is presented and assessed in Section 4.3.1.

Observed computation times as a function of horizon sizes and model hyperparameters
are presented in Section 4.1.2.

62

Chapter 4

Results

This chapter presents the results retrieved from the implementational developments presen-
ted in chapter 3. Section 4.1 presents the results obtained during tuning of the LSRMPC,
as well as the final control results obtained on a test reference profile to assess its final
target tracking capabilities. Section 4.2 presents the results from the search for the set of
optimal hyperparameters for the model, as well as the chosen model’s predictive capabilit-
ies on a selection of test data sets. Section 4.3 presents the results obtained during tuning
of the RNNMPC, as well as the final control results obtained on the same test reference
profile as that of the LSRMPC, in order to assess its final target tracking capabilities.

4.1 Linear step response MPC

4.1.1 Tuning and testing of the LSRMPC

The tunable parameters of the LSRMPC were derived according to the procedure ex-
plained in Section 3.2.3. After determining Hp and Hu to be 120, a total of 5 rounds of
grid search were required before finding a decent tuning for Q and R, which in turn could
be fine-tuned based on intuition. The resulting configuration turned out as summarized
in Table 4.1.

Tunable parameters Tuned values

Q

[
0.0001 0

0 0.1

]

R

[
1000 0
0 0.02

]
Hp 120

Hu 120

ρ
[
10000 10000 10000 10000

]T
Table 4.1: The final configuration of tunable parameters of the LSRMPC problem formu-
lation.

The choice of this tuning was based on the specifications listed in Section 3.1.1; it provided

63

Figure 4.1: The LSRMPC’s control performance over the reference profile used for tuning.
Prediction error is given by a separate y-axis in green.

the best trade-off between least overshoot, most accurate, and quick control performance
among the tested candidates. The control performance over the reference profile chosen
for tuning is shown in Figure 4.1. The control behaviour looks well-performing for gas
rate, both reaching and settling at the references relatively quickly, as well as achieving
this without any overshoot. Differently, the control behaviour is worse with respect to oil
rate; significant overshoot occurs, and actually reaching them happens slowly. Note the
smooth actuation profiles for both actuators, however; this is highly desirable. The only
sub-optimalities with respect to the control specifications are that the choke is not maxed
out before the gas lift rate is utilized, and that the gas rate seems somewhat prioritized
over the oil rate. Note also the very high model prediction error - shown by the green line
and the corresponding y-axis on the right-hand side - revolving around 4000 for the gas
rate and 200 for the oil rate.

After the tuning process, the LSRMPC was tested on more extensive reference profiles,
which aim at testing the LSRMPC according to the goals specified in Section 3.1.2. Fig-
ure 4.2 and Figure 4.3 demonstrate the control performance results. Note that the system
starts at steady-state values matching the initial references due to an initial warm-up
phase (not depicted), as described in Section 3.1.2.

Figure 4.2a demonstrates the control performance for high-valued reference profiles and
Figure 4.2b for low-valued reference profiles. Note that, even though the theoretically
possible domains for the output gas and oil rates have a span according to the minimum
and maximum values presented in Table 3.2, high-valued and low-valued reference profiles
are considered, for the sake of control performance in this thesis, regions matching those
of the reference profiles in Figure 4.2a and Figure 4.2b, respectively. That low-valued
reference profiles do not lie around the minimum values of both gas and oil rates has
its roots in the fact that a well usually operates around significantly higher values than
the minimum ones during actual control, and occupies the regions around the minimum
output values only during start-up.

In Figure 4.2a, the reference values for gas rate are all reached, albeit somewhat slowly. The

64

reference values are almost met for the gas rate, with exceptions being the first reference
step made, as well as the last. In both of these cases, the gas lift rate can be observed
to stay almost static, whereas the choke changes slowly. Completely similar behaviour
is observed for the case of Figure 4.2b, though more exaggerated; oil rate references are
consistently overshot, and the LSRMPC does not have time to reach the reference before
a step in reference is made. This reminisces closely the behaviour observed during tuning,
see Figure 4.1. Overall, the control performance is deemed satisfactory for the gas rate,
and satisfactory for much of the oil rate, except for the cases in which the reference values
are overshot strongly. Associated reasons for the behaviours observed in both of these
cases are discussed in Section 5.1.

The reference profiles used in Figure 4.3a and Figure 4.3b are intended to demonstrate
the LSRMPC’s ability to control gas and oil rate individually, i.e. its ability to control
one output to a different value, whilst attempting to maintain a stable value for the
other. Initial experiments - not depicted for the sake of brevity - with reference profiles
of similar qualities, but different values, showed that the LSRMPC struggled severely
with separately controlling the outputs around higher-valued actuation; though the one
which experienced a reference shift did not at all reach its reference, both of the outputs
were nevertheless moved away from their references. This caused the highly undesirable
situation that none of the outputs were able to track their references. Further experiments
showed that lowering the working range for the actuators alleviated the issue. As can be
seen in Figure 4.3, the new steady-state values are reached for both test cases, though it
takes a very long time, and both outputs vary drastically as a consequence of the actuation
which changes in response to the reference-change - not just the one to be altered in each
individual case. Furthermore, the values for choke can be observed to almost not vary;
in both cases, its maximal and minimal values for the simulation were less than 2 [%]
different. The LSRMPC’s varying ability to control the outputs individually is discussed
in Section 5.1.

Interestingly, the trajectory of the output gas rate can be observed to almost precisely
mirror that of the input gas lift rate in all tests.

4.1.2 Computation times of the LSRMPC

Figure 4.4 presents the computation times associated with running the simulation depicted
in Figure 4.2a. The choice of test for which to show the associated computation times
was arbitrary. However, it does illustrate a trend that was common for all LSRMPC
simulations: the trend of the time spent both updating and solving the OCP at each
iteration of the LSRMPC loop remained constant, thus causing a total simulation time
that was linear with respect to the length of the simulation in number of iterations. This
is as expected, desired, and required, as it means the LSRMPC may be run indefinitely
without issues, as long as the time spent on each iteration is within the specified limits.

65

(a) The LSRMPC’s control performance tested on high-valued references.

(b) The LSRMPC’s control performance tested on low-valued references.

Figure 4.2: The LSRMPC’s control performance tested on references in high-valued and
low-valued regions, according to the specifications in Section 3.1.2. Prediction error is
given by a separate y-axis in green.

66

(a) The LSRMPC’s control performance tested on a reference profile wherein only the
gas rate reference is varied.

(b) The LSRMPC’s control performance tested on a reference profile wherein only the
oil rate reference is varied.

Figure 4.3: The LSRMPC’s control performance tested on references in performing a step
isolated to gas rate and oil rate, respectively, testing for the ability to control the rates
separately. Prediction error is given by a separate y-axis in green.

67

Figure 4.4: The figures illustrate the computation times associated with the LSRMPC
simulation depicted in Figure 4.2a. Top: the times spent updating and solving the op-
timal solution at each iteration. Mid: Total time spent at each iteration. Bottom: The
cumulative time spent on the full simulation.

4.2 Results from implementing the model

4.2.1 Hyperparameter grid search results

Here presented are the results from performing the grid search outlined in Section 3.3.2
by training a model on each configuration of hyperparameters from Table 3.5. The hy-
perparameter configurations are repeated and numbered in Table 4.2 for convenience. In
total, since mu, my and η all had 3 different candidate values when accounting for the
condition of mu ≤ my, that meant testing 18 different configurations, all presented in
Table 4.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

mu 5 20 50

my 5 5 20 5 20 50

η 20 40 200 20 40 200 20 40 200 20 40 200 20 40 200 20 40 200

α 0.2

p 5

β 64

λ 0.001

µ 0.1

e 200

Table 4.2: The hyperparameter configurations, numbered according to their specific com-
binations of hyperparameter values.

68

Figure 4.5: The MSE of all the tested models over the step test data sets. The graphs
show MSE as a function of hyperparameter number

In order to determine the best-suited model among them after training, I tested them
over the three test data sets containing a step in the choke, as described in Section 3.3.2.
Specifically, the test data sets all excite the system with a positive 2 [%] step in choke
within a low-valued, medium-valued, and high-valued working range. An indicator of the
models’ abilities to handle the system’s span of nonlinearity across its different working
ranges is thus given. Figure 4.5 displays the MSEs for each of these tests as a function of
hyperparameter set.

4.2.2 Choice of hyperparameter set

Figure 4.5 only indicates which model is the best predictor, as it is simply a measure of
total prediction error; it does not say anything regarding the qualities of the ways in which
the respective models predicted correctly and/or incorrectly. Furthermore, seeking to find
a well-performing light model - in order to later reduce computational costs resulting
from high-valued mu, my and η, see Section 3.3.5 - the choice fell on the model with
hyperparameter set #0 in Table 3.5. Its performance on the described test data sets is
presented in Figure 4.6, and its performance on the ”staircase” test data set is presented
in Figure 4.7, illustrating the predictive accuracy over the system’s full working range.
Note that, as it is the NNARX model which is tested, the results display a concatenated
series of single-step predictions; they do not illustrate the model’s ability of multi-step
predictions. Though performing seemingly averagely in Figure 4.5, this model exhibits
relatively qualitatively accurate transient response predictions; its transients experience
approximately the same amplitude-shift as the ground truth and at approximately the
same speed. The higher MSE thus resulted from the constant prediction error produced
during steady-state.

Many of the other models, though producing a lower MSE over all the samples of the test
data sets due to their constant prediction error being lower, exhibited transient responses
which qualitatively did not match that of the ground truth as closely. As an example,
models with a larger hidden layer performed worse due to the shape of their predicted

69

transient trajectories. This caused a spiking behaviour in the prediction error around the
step which was more volatile and unpredictable than that of the chosen model. Though
this behaviour is present also in the chosen model, it is so to a lower degree; that the
prediction matches the truth more closely makes the prediction error spike more short-
lived.

The choice of model was, therefore, a tradeoff between less volatile prediction error around
the step and higher steady-state prediction error. Recall from Section 2.1.2 ((2.8) and
(2.9)) that an MPC problem formulation may correct for bias in closed-loop control as long
as it contains some model of model prediction error. In the cases presented in Section 2.1.2,
the model prediction error is assumed constant. The prediction errors exhibited by the
chosen model indicate that this may be a fair assumption in both low-valued, medium-
valued, and high-valued working ranges during steady-state. If the spike in prediction
error does not present a too-large issue, this indicates that the chosen model may prove
to perform well across all working ranges once later integrated into the RNNMPC, results
of which are later presented in Section 4.3.1.

A note on the training of the chosen model. Figure 4.8 depicts the development
of the training and validation errors from the training of the chosen model. Note the
discrepancy between the training and validation errors; the training error Etrain starts high
and then plummets for every subsequent epoch, while the validation error Eval starts and
stays low. This indicates that, while the random initialization of the model’s parameters
causes the initial Etrain during training to be high, the parameters are learned very quickly,
such that all predictions subsequent to the first epoch have much better accuracy, and all
consequent Etrain are much lower. Since validation is performed after the first training
epoch and onwards, it never suffers poor predictive accuracy resulting from the parameters
being untrained, and thus Eval starts and stays low.

Note also that both Etrain and Eval achieve their lowest values almost immediately - after
only the second epoch - with all subsequent errors being only almost as low. Reasons for
this are revisited and discussed in Section 5.2.

70

(a)

(b)

(c)

Figure 4.6: The chosen model’s predictions for steps in the choke in low-, medium- and
high-valued working ranges, respectively, with gas lift kept constant at 0. The orange, red,
blue, and green lines are true outputs, predicted outputs, actuated inputs, and prediction
errors, respectively.

71

Figure 4.7: An input profile resembling a ”staircase” in both choke and gas lift rate,
designed to drive the system to maximum gas and oil rates by prioritizing choke.

Figure 4.8: The training and validation errors during training of the chosen model. As
expected, the training error decreases asymptotically towards zero, while the validation
oscillates somewhat more.

Also important to note is the implications actually carried within the choice of hyperpara-
meters. Among the chosen model’s hyperparameters are mu = my = 5 - see Table 4.2.
This carries the implication that only 5∆t = 50[s] of historic actuation and corresponding
dynamic response is passed as information to the model. As is evident from all sub-figures
in Figure 4.6, the transient times of step responses in a nonlinear system vary depending
on its current working range; Figure 4.6c shows a very brief transient, whereas a same-
sized step cause longer-lasting transients for Figure 4.6a and Figure 4.6b. This has the
implication that only 50[s] of information about the system’s past necessarily becomes
insufficient to describe the lasting effects of a step in the input for most of the system’s
working ranges. Development and testing showed that such a lack of information caused

72

the system to experience a larger amplitude in the prediction error. On the other hand,
however, it seemed to cause the system to predict faster transient responses.

4.3 Recurrent neural network MPC

4.3.1 Tuning and testing of the RNNMPC

The tuning of the RNNMPC was performed according to the procedure outlined in Sec-
tion 3.3.4. After determining the highest feasible horizon to be Hp = Hu = N = 100, the
grid search spanned only 4 iterations, before settling on a best result for Q and R. Some
further intuition-based refinement led to the final tuning configuration as summarized in
Table 4.3.

Tunable parameters Tuned values

Q

[
1000 0
0 4000

]

R

[
125200 0

0 62600

]
Hp 100

Hu 100

ρ
[
10000 10000

]
Table 4.3: The tunable parameters of the RNNMPC problem formulation and their final
tuned values.

As with the choice of tuning for the LSRMPC, the chosen tuning was, among all tested
ones, the best-performing based on the specifications listed in Section 3.1.1. The grid
search for a good tuning was performed over the same reference profile as was done with
the LSRMPC for comparability, and the results are depicted in Figure 4.9. Though both
clear overshoot and some oscillatory behaviour are present - mostly in the oil rate - the
chosen tuning still represents the best found candidate with respect to minimizing these
aspects while still controlling towards a reference trajectory. Note the seeming stationary
error in the oil rate for the first half of the sequence, and the similar error observed in the
gas rate for the second half of the sequence - in addition to the control being somewhat
slow. Though the actuators experience some vague oscillations, this is not deemed critical,
as they vary relatively slowly over time.

In total, the presented results from tuning are not very positive; none of the control goals
of Section 3.1.1 are met to a satisfactory degree. Nevertheless, they indicate that the im-
plemented RNNMPC indeed might be able to fully track the given reference trajectories
for both outputs simultaneously. This indication is strengthened by the following para-
graphs, which present more extensive testing of the RNNMPC. Note that the RNNMPC
also was initiated by a warm-up phase (not depicted), in which the steady-state values
were driven to match the initial references.

The fully tuned RNNMPC was tested on the same reference profiles as the LSRMPC
for comparability. The results are mixed. While Figure 4.10a proves that the RNNMPC

73

Figure 4.9: The RNNMPC’s control performance over the same reference profile used for
tuning the LSRMPC. Prediction error is given by a separate y-axis in green.

is able to track the reference in gas rate relatively accurately, and even quicker than
the LSRMPC, this positive control performance comes at the cost of an oil rate which
both over- and undershoots its reference - almost without ever successfully tracking it.
Furthermore, this behaviour also clearly prioritizes the gas lift rate over the choke, thus
not adhering to the goals in Section 3.1.1, while also causing some mild spikes for the
choke’s behaviour.

The control behaviours observed for Figure 4.10b are the same as in Figure 4.10a, only
further exaggerated. Here, rapid oscillations can be observed for both the choke and the gas
lift rate when the choke is below 50 [%], further causing rapid oscillations also in the gas and
oil rates. Not does this make the RNNMPC barely reach the references for gas rate, but it
also causes the already relatively poor oil rate control to become worse. Furthermore, the
oscillatory input profiles would in a physical application be deemed completely detrimental,
as they would quickly wear out and ruin the actuators. This observed control behaviour is
not at all in line with the goals outlined in Section 3.1.1. Also symptomatic of severe issues
was that some experiments even showed that the optimization problem became infeasible
when applying reference profiles causing the optimal solutions to lead the choke sufficiently
below 50 [%], in spite of the slack embedded within the MPC problem formulation.

When testing the RNNMPC for the ability to control the outputs separately, some of
the results are more positive. Figure 4.11a shows that the RNNMPC is almost able to
accommodate the step in reference, as the gas rate is controlled to steady-state just below
the reference value. When prompted to return to the original gas rate reference, the
RNNMPC achieves this efficiently, though the oil rate takes long to settle. As with the
LSRMPC, control of the gas rate is not achieved completely separate from the oil rate;
the oil rate is significantly perturbed by the sudden shift in actuation.

Note also that the steady-state error in gas rate occurs not only after the step in reference,
but also at the very beginning of the simulation; the gas rate is controlled to lie just above
the reference, in spite of no external motivation to do so.

Lastly, controlling the oil rate separately was also tested, and Figure 4.11b depict the
results. This case is especially interesting, as it is evident the choke is almost maxed out,

74

and the gas lift rate nevertheless remains steady. As with the LSRMPC, all the tests of
the RNNMPC indicate that the trajectory of the output gas rate follows the trend of the
gas lift rate almost identically, suggesting a tightly linked connection. Raising the gas lift
rate higher would thus increase also the gas rate further. That the gas lift rate then is
not raised higher in order to help the oil rate reach its reference when the choke is almost
saturated, clearly shows that the chosen tuning of the RNNMPC prioritizes gas rate more
heavily than the oil rate.

In summary, though the RNNMPC is able to control the outputs to some given references,
substantial amounts of its observed control behaviour are very poor, and significant priority
seems to be given to the gas rate. Potential reasons include the tuning values, but even
more likely the model prediction error. This, along with potential remedies, is further
discussed in Section 5.3.1.

Noteworthy is that that model prediction error - shown by the green line and the cor-
responding y-axis on the right-hand side - is lower than the LSRMPC’s with orders of
magnitude; while the LSRMPC’s model prediction error revolved around 4000 for gas rate
and 200 for oil rate, it is centered almost around 0 for both the gas and oil rates. The im-
portant difference, however, is that the RNNMPC’s model prediction error behaves much
more volatile than that of the LSRMPC; especially so locally around the steps in actu-
ation as well as for intervals where the choke is below 50 [%]. This is likely an extremely
important factor contributing to the overall poor performance. More in-depth discussions,
covering its potential sources and remedies, are provided in Section 5.2.1.

4.3.2 Computation times of the RNNMPC

Figure 4.12 depicts the computation times associated with simulating the RNNMPC,
both cumulative and at each iteration. The ideal case would be that in which the solution
requires constant computation time across iterations - with some expected stochastic vari-
ation - meaning the cumulative computation time would increase linearly, as is the case
for the LSRMPC, see Section 4.1.2. Instead, Figure 4.12 shows that simulating the RN-
NMPC over any given reference profile consumes approximately linearly increasing time
across iterations. The linear growth is an estimate, and the exact order of growth of the
time spent per iteration is not known. Nevertheless, this has the immediate implication
that the cumulative computation time of the full RNNMPC simulation becomes quadratic
with respect to the number of iterations run. While the specific times observed will vary
depending on the hardware system on which the optimization is performed, this neverthe-
less quickly causes the control loop to consume prohibitive amounts of time - especially
for extensive periods of control. Indeed, in an actual application, where control is run
continuously, an increase in time spent for each iteration would accumulate indefinitely,
forcing the application to occasionally have to restart, such that the computation times
associated with a single time step do not supersede the size of one such time step - e.g.
∆t = 10[s], as in this thesis. This is clearly undesirable, and there is no inherent reason
why any MPC implementation should behave this way. As such, the issue is likely one of
implementation, rather than connected to the RNNMPC problem formulation itself.

75

(a) The RNNMPC’s control performance tested on high-valued references.

(b) The RNNMPC’s control performance tested on low-valued references.

Figure 4.10: The RNNMPC’s control performance tested on references in high-valued and
low-valued regions, according to the specifications in Section 3.1.2. The reference profiles
are identical to the ones to which the LSRMPC was subjected in Figure 4.2 for comparison
purposes. Prediction error is given by a separate y-axis in green.

76

(a) The RNNMPC’s control performance tested on a reference profile wherein only the
gas rate reference is varied.

(b) The RNNMPC’s control performance tested on a reference profile wherein only the
oil rate reference is varied.

Figure 4.11: The RNNMPC’s control performance tested on references in performing a
step isolated to gas rate and oil rate, respectively, testing for the ability to control the
rates separately. The reference profiles are identical to the ones to which the LSRMPC was
subjected in Figure 4.3 for comparison purposes. Prediction error is given by a separate
y-axis in green.

77

Figure 4.12: The figures illustrate the computation times associated with the RNNMPC
simulation depicted in Figure 4.10a. Top: the times spent updating and solving the
optimal solution at each iteration. Mid: Total time spent at each iteration. Bottom: The
cumulative time spent on the full simulation.

Indeed, the problem was isolated to occur around the step where the constraints of the
optimization problem were updated. Updating the full set of constraints used in optim-
ization problems implemented with CasADi’s opti-stack is a two-step process: first, all
previously set constraints must be cleared, before the full new set of constraints is de-
clared[55] (section 9.1). The step of declaring the full new set of constraints was the
singular step within the RNNMPC implementation which consumed increasing amounts
of time for each iteration. Suggested improvement regarding this issue is discussed in Sec-
tion 5.3.3. Additionally to this issue, the step of simply calling the solver on the declared
optimization problem via the opti-stack also consumed significant amounts of time before
performing the optimization itself; the larger the optimization problem, the longer this
pre-optimization spent. The optimization itself slowed down only slightly with respect to
increasing problem size, but does show a slight increase over time in Figure 4.12. This is
likely connected to the issue of redeclaring the constraints.

A clear correlation between the model’s size and the RNNMPC’s running time was ob-
served during grid search. Table 4.4 presents the computation time associated with the
first iteration of the RNNMPC simulated for the reference profile in Figure 4.10a for a
selection of models tested during the grid search. The time is measured only for the first it-
eration in order to exclude the issue of the ever-increasing time consumption of re-declaring
the optimization problem. Notably, model #17 (the largest) takes 531.9274[s]

0.9747[s] ≈ 546 times

longer than model #0 (the smallest). Evidently, the complexity of the model is essential
with respect to the computation time associated with solving the optimization problem
at each iteration. This is a strong argument in favour of choosing smaller, and thus
computationally lighter, models for applications - as previously indicated in Section 3.3.2.

As a further argument for choosing light models, it is of interest to view the relation
between model size and computation times in the current implementation more systemat-
ically. The model’s total amount of parameters, though not directly providing the number
of operations performed in the compiled optimization problem, are directly indicative of

78

the number of operations contained within a computation graph representing it within
an optimization problem, thus providing an indicator for its computational demand. The
gas and oil well system has nin = 2 inputs, each of which yields mu inputs to the model.
Additionally, it has nout = 2 outputs, each of which yields my inputs to the model. Since
all models here discussed contain only a single layer, the amount of parameters contained
within each of them is the sum of the elements contained within the 2 weight matrices
W1 ∈ Rη×ηin and Wout ∈ Rηout×η, as well as the 2 bias vectors b1 ∈ Rη and bout ∈ Rηout .
The figures ηin = ninmu+noutmy, η and ηout = nout are the sizes of the input, hidden and
output layer, respectively. A general expression for the amount of the parameters within
any model trained in this thesis may be derived:

ξ = ηηin + η︸ ︷︷ ︸
hidden layer

+ ηoutη + ηout︸ ︷︷ ︸
output layer

= (ηin + 1)η + η + 1ηout

= ([ninmu + noutmy] + 1)η + (η + 1)nout

= ([2(mu +my)] + 1)η + 2(η + 1)

(4.1)

0 3 6 7 17

mu 5 20 20 20 50

my 5 5 20 20 50

η 20 20 20 40 200

ξ 462 1062 1662 3322 40602

Time 0.9747[s] 3.4344[s] 10.3405[s] 38.4889[s] 531.9274[s]

Table 4.4: Computation times of the initial iteration of the RNNMPC for a selection of
models from the grid search for optimal hyperparameters. The models are directly fetched
from Table 4.2, and the non-variable hyperparameters are omitted for brevity.

Noteworthy is also the impactful contribution by the prediction and control horizons
Hp = Hu = N , set to N = 100 during the experiments which lead to the numbers in
Table 4.4; a higher-valued N quickly increased the observed computation times, com-
pounding on the effects described above. This has the intuitive explanation that, on top
of the model implementing a potentially quite large function, depending on mu, my and
η, it is numerically differentiated as many times as the size of N for each iteration of the
solver at each iteration of the RNNMPC.

79

Chapter 5

Discussion

5.1 Performance of the LSRMPC

This section briefly recaps the control performance of the LSRMPC, before detailing un-
derlying reasons and assessing the employed method. Though interesting to assess the
LSRMPC’s control performance and underlying reasons, it is mainly intended as a later
grounds for comparison for the RNNMPC. As such, the discussion of the LSRMPC is kept
brief.

The results presented in Section 4.1 show that the LSRMPC is relatively able to control
both gas rate and oil rate to their respective outputs, though oil rate experiences somewhat
slow control and overshoot, reasons for which are presently discussed.

Recall from Section 3.2.2 that the model was created as a linearization of the system

dynamics using a step from choke and gas lift rate of [50 [%], 0 [m
3/h
10s]] to [52 [%], 0 [m

3/h
10s]].

As reasoned in Section 2.1.3, a linearized model of a system describes the system best
in a neighbourhood around the point around which it was linearized. All the test results
shown in Section 4.1.1 include non-zero values for gas lift rate, and almost all include values
for choke not around 50 [%]. This immediately implies that the model prediction errors
should become quite high, which is indeed observed across all test results. Though a more
accurate model would likely yield significantly lower model prediction error, its magnitude
does not seem detrimental to the control performance. Noteworthy, the model prediction
error is very slow-moving. So much so, that it may be approximated constant - which in
the implementation it is. Even still, it is imaginable that e.g. low-pass filtering the model
prediction error could improve control performance, as it would make the optimizer not
react strongly in response to what is in reality model inaccuracy.

Tuning-related issues. The most important reason for the LSRMPC’s observed con-
trol performance is thus hypothesized to be its tuning. Recall especially the values for
Q and R presented in Table 4.1. The values in Q indicate that the deviation from the
reference in the oil rate should be penalized more strongly than that in the gas rate. Never-
theless, the results indicate the opposite occurring; the target tracking for gas rate against
the neglect of target tracking for oil rate in Figure 4.2b provides a suitable example. This
is likely due to the values in R penalizing changes in choke much more strongly than those
of gas lift rate. As briefly mentioned in Section 4.1.1, all the performed tests indicate that
the gas rate trajectory seems to closely mirror that of the gas lift rate. Intuitively, it stands

80

to reason that increasing the rate of gas injected into the fluid also necessarily increases
the resulting output gas rate, strengthening the claim that gas rate and gas lift rate ne-
cessarily are tightly linked. Thus, the LSRMPC is able to alter the gas rate more directly
and controlledly by means of using the gas lift rate, and the total penalty of achieving the
gas rate references more efficiently by means of the gas lift rate does not become high.
Conversely, altering both the choke and the gas lift rate in order to achieve the oil rate
reference efficiently would likely cause a high penalty from altering the choke too quickly.
Another clear example is how the LSRMPC achieves target tracking in both Figure 4.3a
and Figure 4.3b by altering mostly the gas lift rate and the choke only very little. The
result is an LSRMPC which clearly prioritizes the gas rate over the oil rate.

A high output gas rate then does not necessarily indicate high production of gas, as
significant parts of that output gas rate necessarily is a contribution from the gas lift rate,
supplied from the system, i.e. an expense. Furthermore, though the final tuning of the
LSRMPC yielded relatively adequate control performances, it took into account neither
the goal of prioritizing oil rate over gas rate as output, nor prioritizing the use of choke
over gas lift rate as input - both of which were underlying goals from Section 3.1.1. This
illustrates the weakness of the tuning method: grid search.

Notes on grid search. Grid search is an extremely näıve method of tuning, and yields
little exploration of the controller’s performance across various combinations of tuning con-
figurations, due to the quickly rising computational complexity associated with it. Since
the grid search here employed was based on coarsely spanning the possible configurations
of tuning values, and then limiting further searching to the most promising sub-region
of values based on some criterion as a means of reducing computational load, there ex-
ists no guarantee that other potentially better-performing candidate sub-regions - other
local optima - are not overlooked. Alternatively, both performing a sufficiently exhaust-
ive grid search, as well as processing all the resulting simulation data, is prohibitively
resource-demanding. Not only would it consume vast amounts of computation time, but
in order to ensure that the final tuning does not suffer discrepancies with the top-level
goals, each individual result must be judged accordingly - not only on target tracking abil-
ities. Judging each individual result based on higher-level qualities, such as the degree of
volatile behaviour in the inputs, or the degree to which one output or input is prioritized
over the other, would likely require involving human judgement, unless rigorous mathem-
atical descriptions of said higher-level qualities are derived. The grid search was ratified
by the rationale that it could be performed as a background process, searching in parallel
to other work. Requiring a human decision-maker to judge every grid search result defeats
this rationale, and does not necessarily even result in sufficiently good search results, due
to the issue of overlooking sub-regions.

All the above-made arguments are amplified with increasing dimensionality of the search;
the more variables are included, the more resource-costly performing such a search be-
comes. Grid search is thus not a recommended strategy. Instead, genetic algorithm-based
or random searches could be expected to perform better, as previously mentioned in Sec-
tion 3.2.3.

81

5.2 The NNARX-model

Section 4.2.2 shows that the NNARX-model used in this thesis is able to approximately
predict the general trends of the system’s dynamic response to step inputs. This proves,
as a proof-of-concept demonstration, that the NNARX-modelling paradigm is able to
capture much of the nonlinear behaviour of the system apparent in a sampled data set.
However not without fault: the predicted transient response is consistently slower than
the real transient response, and the model consistently produces steady-state prediction
error, which stays relatively constant within working ranges, but varies across working
ranges. Potential causes of and remedies for these issues are the subjects of discussion
in the following sections. Specifically, Section 5.2.1 discuss how the way the data set is
synthesized may cause issues upon training a model, Section 5.2.2 discusses the role of
implications arising from architectural choices, and Section 5.2.3 discusses how the thus
far presented reasons for loss of predictive accuracy compound to cause issues in multi-step
predictions when the model is connected recurrently.

5.2.1 Qualities of the training data set

Recall from Section 4.2.2 the development of the training and validation errors for the
chosen NNARX-model (Figure 4.8). That Etrain and Eval both achieved their minima
after only two epochs of training, indicates that the training data set is quite large, re-
lative to the number of parameters to be shaped - depicted in Figure 3.2, it contains
200.000 samples. If the training data set does not contain samples fully representative
of the data-generating process from which the model will receive samples during applic-
ation, training on a too-large data set can easily cause the model to become overfitted.
When vast amounts of potentially misinformative data are exploited to shape the model’s
parameters, they will be fit very well to the wrong process. After reaching its optimum,
Etrain stays around similar values for further epochs, and even increases somewhat. That
it does not monotonically decrease, as expected from Section 2.3.1, is likely due to the
noisy convergence properties observed by SGD-based algorithms, due to the stochasticity
involved in the random sampling of each mini-batch. Building on the argument that a
large and potentially misinformative training data set might cause overfitting, this thesis
hypothesizes that the reason the tested models of Table 4.2 with a larger hidden layer
performed worse than models with a smaller hidden layer, might be due to their increased
capacity facilitating the already somewhat present overfitting.

Thus the question of the training data set’s applicability is raised: does the training data
set accurately represent the full spectrum of dynamic behaviour which is desired that the
NNARX-model should be able to predict accurately? Recall that the training data set
used in this thesis was not sampled from the true process, but synthesized from a pre-
existing digital model of the system - the FMU. The generality of the synthesis was based
on the assumption that a semi-randomly asynchronously walking APRBS would excite
the system across all frequencies, thus yielding transient responses fully representative of
the system’s broad spectrum of dynamic responses. However, the assumption was likely
somewhat lacking. The following arguments justify how.

First recall that [5] argues that, while an APRBS-based excitation signal is well-suited
for identifying linear systems, it is not necessarily suitable for detecting the dynamics
of a nonlinear system, since the resulting input-output relations will have ”holes” in the
nonlinearities which they span. As generally holds: any data set containing samples of

82

continuous processes can not be assumed to be exhaustively descriptive of the process in
question, due to the infinite resolution. This thesis argues that the significance of such
”holes” depends on the system’s degree of nonlinearity in the region in question; if the
system is highly nonlinear, much dynamic behaviour is overlooked by assuming linearity,
and vice versa. In other words, the success of modelling nonlinear dynamic behaviour
based on an APRBS-based excitation signal depends on whether the signal’s resolution
in a region matches that region’s degree of nonlinearity. Whether the data set utilized
in training the NNARX model in this thesis is a sound basis on which to identify the
system’s nonlinearities accurately, depends on whether it contains a higher rate of samples
around highly nonlinear regions than linear regions, such that the stronger nonlinearities
are represented with a higher rate, thus affecting the learning procedure more. Note that
this does not imply that a high rate of samples around more linear regions causes worse
predictions, it simply implies that sufficient attention must be paid towards the more
nonlinear regions, lest they be approximated too coarsely. Investigating the predicted
nonlinear behaviour for different working ranges of the system might yield answers to
whether this has been the case.

The transient responses were indeed not modelled very accurately; recall how the predic-
tion error spikes in all test data sets of Figure 4.6, resulting from the system’s transients
being consistently predicted too slow-moving. This seems to be somewhat more the case
for the step made in a low-valued working range - see Figure 4.6a; the spike in predic-
tion error seems to take somewhat longer to settle to being constant than in the other
cases. This implies that the training data set does not describe the nonlinearities in the
lower-valued working ranges quite as well as in the higher-valued working ranges, as the
prediction is wronger for a longer time. Note also that the steady-state prediction errors
are the largest in this case. In total, the results imply that the NNARX model ”under-
stands” the lower-valued working ranges worse than the other working ranges. By looking
at Figure 3.2, there are very few samples present covering the same region as the step
in Figure 4.6a. When comparing all tests of Figure 4.6, the profile in Figure 4.6a looks
no less nonlinear than the others. The fact that values around that region are then un-
derrepresented in the training data set, substantiates that the model has been trained on
a data set which is unbalanced ; the training set is simply too low-resolution around the
lower-valued working ranges.

Thus, the initial assumption that the semi-randomly walking APRBS excitation signal
might be suitable likely lacked the distinction of semi-randomly walking with an even
frequency across all working ranges of the system, as the lower-valued ranges became
neglected. Furthermore, this has the implication that such a data synthesis should be
based on a mapping of the system’s degrees of nonlinearity across its working ranges,
such that the semi-random walk might be somewhat skewed towards the more nonlinear
regions, thus sufficiently representing them in the final data set. Not performing such a
mapping effectively leaves the data synthesis blind to the ”holes” that [5] describe might
occur from using an APRBS signal to excite a nonlinear system.

In summary, the training data set seems to be unbalanced: it represents the system’s non-
linear dynamic behaviour insufficiently around the system’s lower-valued working ranges,
which likely causes worse predictive accuracy of the trained model for lower-valued work-
ing ranges. Also, the sheer size of the data set has likely caused some overfitting to the
training data. There has been developed no guarantee that the training data is represent-
ative of the data which the model encounters during application. Section 5.2.3 outlines
how this may be a major contributory factor for the poor control behaviours observed
from the RNNMPC in Section 4.3.

83

5.2.2 Architectural implications

Recall from Section 4.2.2 that the lengths of transient times vary within a system depend-
ing on the current working range. One major weakness with the employed architecture
is then that the values for mu and my must be fixed after training. Since the model
should be applicable for the full range of samples for which it is trained, this is obviously
problematic, as the model should ideally take in only what information is relevant to its
prediction problem, not more, not less.

If too much information is consistently present, the model may learn correlations which
are not there - as an example, recall the wolf/husky-classification case of [32], briefly
presented in Section 2.3.1. Instead of a causal relationship between outdated outputs
and future output, the model should learn the causal relationship between the change in
actuation and the consequent outputs. However, if too long sequences of data are present,
that might mean that the model learns that there exists some correlation between the
output before a change in actuation and the output after the effect from the change in
actuation has passed.

Looking at the step responses observed in Figure 4.6, it is likely not the case in this thesis
that mu = my = 5 were chosen too large, as most transients seem longer than 5∆t = 50[s].
A different explanation may then stem from the model not receiving sufficient information,
with mu and my being chosen too low. If the model receives too little information, parts
of its predictions must necessarily be wild guesses. It then stands to reason that the model
will necessarily miss its target. This would cause errors in predictions of both transients
and steady-states.

While the unbalanced data set’s insufficient representations of certain working ranges
caused a loss of predictive accuracy in the trained model, so did likely the choice of mu

andmy. The faults in the choice ofmu andmy are two-fold. Firstly, better combinations of
values which might have existed were not identified, due to the coarseness of the employed
grid search; the grid search used to find the optimal set of hyperparameters suffered
the exact same disadvantages as the grid search used to find the optimal tuning of the
LSRMPC - as discussed in Section 5.1. Secondly, since the model is built on the NARX
assumption, the values for mu and my could likely never be precisely correctly chosen,
as they would ideally be required to vary across the system’s working ranges, which is
an impossibility for the employed architecture. Based on the results from [16], however,
there is reason to believe that the grid search provided the largest fault and that better-
performing values for mu and my could have been identified, as the NARX-modelling
paradigm has been proven in the context of RNNMPC before.

5.2.3 Implications of implicit RNNARX multi-step modelling

The model in this thesis performs in reality only single-step predictions, and extending
such single-step predictions to the multi-step case by means of recurrence is based on the
assumption that this is at all viable for the model in question. Section 2.4.1 presents
exposure bias as a notable issue related to implementing an RNN as has been done in this
thesis: by implicit recurrence as a model constraint of an RNNMPC over its prediction
horizon. Exposure bias arises due to the discrepancy observed between true and predicted
values. Since the model does not predict perfectly, see Figure 4.6, the recurrence during
closed-loop application causes the future input to follow a different distribution than that
of the data on which it was trained. Exposure bias must then be assumed to occur as soon

84

as on the first recurrence, and further be assumed to propagate for each further recurrence.

Additionally, though the excitation signal described in Section 3.3.1 and Figure 3.2 spans
many types of inputs, the commanded actuations from the optimization during RNNMPC
application are still not guaranteed to follow the same distribution as that of the train-
ing data set, to which the model might be overfitted. This causes a further potential for
discrepancy between input during closed-loop application and the training data set, im-
plying further prediction error, adding to the effect that inputs to the model do not follow
the same distribution as the training data during recurrence. Both of these effects then
add to the total effect of exposure bias in the model once it is applied in the RNNMPC,
and cause potentially very poor dynamics prediction in closed-loop application. However,
this thesis hypothesizes that the sum of the issues the model faces during deployment in
the RNNMPC is likely the very cause of the detrimental control performance challenges
experienced by the RNNMPC. Note that a method of investigating the degree to which
this is a problem is to assess the model’s multi-step predictions outside of application and
compare it against the model’s multi-step prediction which underlies the optimal solution
of the RNNMPC at every iteration.

Section 2.4.1 proposes scheduled sampling as a means to avoid the exposure bias the model
suffers after being trained by means of teacher forcing. This thesis strongly suggests that
scheduled sampling be employed in order to remedy the compounded effects of exposure
bias.

Alternatively, the training method BPTT provides a suitable alternative to teacher for-
cing. While BPTT might imply a more complex both training procedure and model
implementation, and cause training to consume larger amounts of time, it eradicates the
issue of exposure bias directly, as the model is trained to tackle sequential prediction from
the start. However, if using BPTT, the argument is raised that not much is gained by
selecting a simple architecture. The question is then raised, whether the model should be
replaced by a different model which is empirically proven more capable, such as the LSTM
or GRU. This topic is further discussed in Section 5.3.2.

5.3 Recurrent neural network MPC

This section discusses the reasons for the RNNMPC’s observed control performance, re-
lated to the underlying model, the RNNMPC’s tuning, as well as the grid search employed
to determine the tuning. Some model architectural alternatives are then presented, as well
as how they might improve the modelling capabilities, and consequently the RNNMPC’s
control performance.

5.3.1 Performance of the RNNMPC

The results presented in Figure 4.10 and Figure 4.11 show that the RNNMPC is partly
able to control both the gas rate and the oil rate to desired values. Compared to the
LSRMPC, the RNNMPC actually controls the gas rate to its reference value faster in the
case of a higher-valued reference profile. However the RNNMPC suffers several issues, such
as significant over- or undershoot in the oil rate, as well as severe oscillatory behaviour
in both inputs and outputs for the working range of choke below 50 [%]. Especially the
latter is control-wise an unacceptable issue.

85

Model-related issues. The issue likely arises mostly due to modelling inaccuracies.
Recall that the RNNMPC suffers model prediction errors much lower than that of the
LSRMPC. Nevertheless, the RNNMPC observes significantly worse control performance.
The ways in which inaccuracies affect the performance are two-fold.

Firstly, the spikes observed in prediction error upon steps in actuation are very significant
- see Figure 4.6 for examples. This is different from the LSRMPC where, in spite of
the prediction errors being large, they seem to vary according to a more constant profile.
The RNNMPC calculates the optimal actuation sequence at each iteration with ”blind
trust” in the model, correcting only for an assumed constant bias, see (2.30). Due to the
spikes in prediction error, this assumption does not hold as well as it does in the case of
the LSRMPC. As with the LSRMPC, this thesis hypothesizes that the associated issues
might be somewhat mitigated by adding a low-pass filter to the RNNMPC’s formulation
of the bias model. This would allow the optimization within the RNNMPC to calculate
solutions that do not account for precisely these prediction error spikes, and would likely
yield a less volatile control profile.

Secondly, the exposure bias resulting from even minor prediction errors likely causes the
model to predict very wrongly as early as the first recurrence. Compounded with spiky
prediction error, this effect is likely to only become worse. Figure 4.6 and Figure 4.7
demonstrate the model’s performance on data which matches the behaviour of its training
data set fairly well, though depict only a concatenated collection of single-step predictions
- completely analogous to predictions made during training, and not representative of
the recurrent predictions made during application. Conversely, the RNNMPC bases the
optimal actuation at each time step on a multi-step prediction, effectively trusting blindly
the model to be descriptive of the system - see (2.30c) - and solves for the optimal actuation
thereafter. In reality, the model is only somewhat descriptive of the system for single-
step predictions and likely performs significantly worse for multi-step predictions due to
exposure bias. This is likely the reason for the little ”bump” observed in gas rate the
beginning of the simulation depicted in Figure 4.10b; the exposure bias effect occurs even
if no change in control is performed, which provides the RNNMPC reason to believe
that the system will deviate, even at steady-state, thus prompting action and causing a
steady-state offset. A similar effect can be observed in Figure 4.9.

Though the predictive capabilities of the model are quite similar across all working ranges,
the issues observed are amplified for low-valued working ranges for the inputs. While the
MPC paradigm is known for its robustness to poor models, it is expected that the control
performance will degrade along with any degradation of the underlying model. With
the model being sufficiently misinformative of the true system dynamics, the optimization
problem eventually becomes infeasible. Note that the reference trajectories of Figure 4.10a
and Figure 4.10b are both followed (at least broadly speaking), though much better in
the case of the prior, as the case of the latter suffers many undesired qualities, strong
oscillations being the most prominent. It is reasonable to assume that the model is simply
sufficiently poor for the working ranges in Figure 4.10b compared to Figure 4.10a, that
the RNNMPC experiences the two above-explained issues strongly enough, such that the
issues observed arise. This hypothesis is strengthened by the fact that some reference
trajectories led to an infeasible optimization problem, as briefly noted in Section 4.3.1. A
slightly better model would likely alleviate the issues somewhat, and a much better model
would likely mitigate the issues completely.

This thesis therefore hypothesizes that the key to solving the observed control issues
is tightly linked with simply improving the model. Improvements might be achieved

86

by reducing the model’s predictive errors and eradicating its exposure bias as much as
possible, as discussed in Section 5.2, or by simply changing the chosen model architecture,
as later discussed in Section 5.3.2.

Tuning-related issues. The contribution of the tuning of the RNNMPC must also be
considered. It is unsurprising that the gas rate seems to be the prioritized output in both
Figure 4.10 and Figure 4.11. Recall the values presented in Table 4.3. The weights in
Q penalize deviations in oil rate only somewhat more than they do deviations in the gas
rate, while the gas rate operates around significantly higher values than the oil rate. This
causes the penalty on deviations from the oil rate reference to become effectively smaller
than the penalty on deviations from the gas rate reference.

Noting the values in R, the weight on the choke is double the value of the weight on the
gas lift rate. This implies that the RNNMPC should change the choke as little as possible,
such that using the gas lift rate as actuation becomes prioritized. This behaviour is further
strengthened by the same tight link between gas rate dynamics and the gas lift rate as
observed in the LSRMPC - see Section 5.1 - which makes the RNNMPC more able to
control by using gas lift rate. Consequently, the RNNMPC will prioritize tracking the gas
rate reference, and secondly, it will prioritize using the gas lift rate to make changes to
the output. None of these behaviours are in line with the goals presented in Section 3.1.1.
Also, the matter of separate controllability almost mirrors that of the LSRMPC. The step
in reference is met in Figure 4.11a, but not without the oil rate responding strongly to the
actuation. In the case of Figure 4.11b, the new reference is not even met, as the preference
for gas rate is strong enough that the RNNMPC does not make the required step in oil
rate.

Note additionally that it is inherently difficult to tune an MPC such as the RNNMPC
here implemented to prioritize one actuator over the other when weighing the change in
an actuator, and not its direct actuation value. Weighing the change in a variable does not
carry any direct consequence for that variable’s starting or final value. Hence, weighing the
choke heavily implies in this case that the choke should be reluctant to change, meaning it
evidently becomes the least prioritized actuator. Conversely, if the penalty on the use of
choke is very low, the choke will fluctuate much, and not have any incentive to maximize
before using some gas lift rate - as is the desired behaviour. Hence, if the RNNMPC
should prioritize choke by only using gas lift rate after the choke is saturated, as outlined
in Section 3.1.1, the RNNMPC problem should be reformulated. This thesis provides two
suggestions as to how.

A reference value for the actuator may be added to the cost function. That way, deviation
from that reference may be punished in exactly the same way as is done for the outputs, in
turn providing the RNNMPC incentive to achieve the output references, while also doing
this as closely to the desired actuator values as possible. However, this method requires
references for the actuators provided from a higher level; for instance, if the output ref-

erences may be achieved with for instance [choke, gas lift rate] = [90 [%], 0 [m
3/h
10s]], then

using a static reference of choke = 100 [%] - as an incentive for the RNNMPC to saturate
choke before using gas lift rate - would instead incentivize the RNNMPC to allow devi-
ations from the output rates in order to saturate the choke. As the system outputs must
be assumed prioritized higher than the exact actuation values, it follows naturally that
the reference actuation values must be determined on a higher level, based on the desired
output references. Such methods exceed the scope of this thesis and are not discussed.
However, if any such method is present in later applications, this method is recommended.

87

Alternatively, soft constraints bounding the actuators to the desired regions may be added
additionally to their hard constraints. By using a small weight on the corresponding slack
variables, the RNNMPC is incentivized, though not required if it provides sub-optimality,
to adhere to the desired soft bounds. Note that these must be added additionally to the
actuators’ hard constraints, as the hard constraints describe regions outside which the
physical equipment is not allowed to operate.

While this thesis hypothesized in Section 3.3.4 that Q and R would be the main factors
determining the RNNMPC’s control behaviour, potential gain may have been overlooked
in not investigating further the values of Hp and Hu. As noted in (2.7) in Section 2.5.2,
the horizons could have been chosen separately, though this was not done for this thesis.
In the case where the size of Hu matters less than the size of Hp, lowering Hu could allow
increasing Hp while retaining comparable computation times; recalling from Section 2.1.1
that an MPC’s robustness stems from the receding horizon principle, increasing Hp would
likely yield improved performance. Note that, due to the structure of (2.30c), this would
require a definition of ∆uk+Hu+1:k+Hp−1, such that uk+Hu+1:k+Hp−1 would be defined as
well. Adding a solution such as the one implemented by (2.9h) is suggested as a trivial
way of ensuring the RNNMPC problem formulation is well defined for all i ∈ [0, Hp − 1].

Notes on grid search. The chosen tuning stems from a grid search procedure entirely
similar to that of the LSRMPC, meaning the exact same issues apply: Dimensionality
makes the search prohibitively resource-demanding unless the search grid is divided very
coarsely - as was done in this thesis. Then, however, many local optima within the grid
might be overlooked, and the resulting tuning might be sub-optimal, even though it was
deemed best. Consequently, the best result from the grid search did not represent a tuning
in line with the specified goals.

Due to the issues related to computation times, described in Section 4.3.2, and for compar-
ability with the LSRMPC, the grid search was performed for the RNNMPC over the same
reference trajectory as was done for the LSRMPC. Notably, these references stay quite
high-valued, and thus none of the issues related to low-valued working ranges, as described
above, were detected during the search for a good tuning, which meant the issues were
not accounted for during development.

While both of the above issues could have been corrected by performing more extensive
grid searches and for larger working ranges of the system, there was not enough allocated
time to do new and extensive searches to find optima more in line with the goals. The
initial hypothesis was that the search would yield satisfactory results by simply running in
the background. However, grid search again proved to spend much time yielding not great
results, which additionally broke with the specified goals. Grid search is not recommended.

A summary of the RNNMPC’s control performance. The initial tests of the
RNNMPC’s control performance were promising. As the tests of the underlying model
proved somewhat satisfactory, and a decent-looking control profile was found during tun-
ing, the RNNARX-based MPC proved its conceptual feasibility. Though it proved worse
than the LSRMPC on almost every measure, it did provide better gas rate control in
Figure 4.10a. Noteworthy, that example shows vast usage of gas lift rate instead of choke,
which is undesirable. Furthermore, Figure 4.10b uncovered significant issues. These likely
stem from an imbalance in the training data set, architectural flaws of the chosen model,
flaws in the chosen training method of the model, as well as the employed tuning method
of the RNNMPC itself. Though these issues are not without probable solutions, their

88

totality, as is, nevertheless cause the RNNMPC to be, in spite of its proven conceptual
functionality, infeasible.

Presently, alternative approaches are briefly explored.

5.3.2 Alternative modelling approaches

This section discusses alternative modelling approaches, and how they would remedy weak-
nesses in the chosen modelling approach.

Though the weaknesses in the training data set mentioned in Section 5.2.2 likely cause
some of the issues related to the model’s predictive performance, they might also be
related to the model’s architecture. The values of mu and my are determined through a
grid search, and not based on observations of the durations of the transient responses of
the system. There may then be room for improvement by tailoring the values of mu and
my more targeted to the system, even specifically to each input and output. Even with
such an effort made to determine the ideal values for mu and my, however, recall from
Section 5.2.1, that mu and my cannot be decided perfect for the full working range of the
model. Even if the perfect mu and my are determined for specific working ranges of the
system, they will not apply for all working ranges.

To remedy this issue, recall the observation made in Section 1.2: the NARX-modelling
paradigm predicts future values based on evaluating all relevant data simultaneously, while
the GRU architecture, applied in [12], instead accumulates transient information over time,
thus facilitating a more adaptive dynamics integration. The latter is also common to the
LSTM architecture.

On the basis of [16], it is not given that a NARX-based model is inherently unfit for the
purpose of implementing an RNNMPC such as in this thesis. Many issues unrelated to the
architecture specifically have been uncovered, and mitigating their sources might improve
the RNNMPC’s control performance significantly. It was chosen for its simplicity, and
based on NARX being a long-known method for data-driven approximation[5]. Neverthe-
less, the LSTM or GRU architectures are acknowledged for their generally better results
than the more basic RNN-based structure[17] and represent promising options.

Recall from Section 2.4.3 that such recurrent architectures are more complex, and also
require the BPTT algorithm for training. Implementing and training them might thus
prove somewhat more difficult. Furthermore, when considering the results presented in
Section 4.3.2, there is reason to believe that a platform intended to run RNNMPC based
on an LSTM- or GRU-model would require more computationally capable hardware, due
to the increased complexity, than the one on which the work for this thesis has been
developed - see Table 3.1.

Lastly, the tested and discussed modelling methods are all based on black-box modelling.
Alternatively, on the basis of the results obtained in [18], a grey-box approach might
prove feasible also in the case of the subsea gas and oil well for this thesis. This is
especially interesting, as it would reduce the role of the NN-based model to fewer aspects of
the modelling, effectively making the model smaller and computationally lighter, without
necessarily losing predictive accuracy.

89

5.3.3 Computational regards and potential for improvement

The issue of the computation time spent at each iteration of the RNNMPC should be
made constant, instead of approximately linearly increasing. Since the RNNMPC problem
formulation requires re-declaring all constraints at each iteration, this issue is unavoidable
when using CasADi’s opti-stack, as the implementation follows the documentation. The
remedy then involves porting the implementation to a framework which does not cause
the same issue. As CasADi offers a lower-level API besides the opti-stack, the issue
might be promptly resolved by porting the implementation to that lower-level API. This
should indeed be done in order for the RNNMPC implementation to be scalable to longer
simulations or even continuous application.

Further computational improvements may be made to the current implementation by the
use of parallelization techniques. Recall from Table 3.1, that the desktop computer on
which the work in this thesis has been developed offered no such parallelization compat-
ibilities. However, if instead deploying the application on hardware supporting this, e.g.
through CUDA as suggested in Section 3.1.3, the computation times associated with the
underlying operations performed may likely be significantly sped up. Looking into how
parallelization techniques might speed up computations is recommended, as this would
allow feasible usage of a wider array of models without inhibitions due to their computa-
tional demand.

90

Chapter 6

Conclusion

This thesis has investigated the feasibility of a model predictive control (MPC) application
that uses a nonlinear autoregressive model with exogenous inputs (NARX) implemented
as a recurrent neural network (RNN), dubbed RNNMPC. The RNNMPC was intended
for the flow control of a subsea oil and gas well system, and the results were compared
with a linear model-based MPC, dubbed LSRMPC. The RNNMPC was implemented
successfully, and proved capable of some target tracking, thus serving as a proof-of-concept
application, showing that MPC built on a neural network-based model is indeed feasible for
such flow rate control. However, significant challenges arose. The desired level of control
performance was only observed for high-valued references, in which case the performance
was better than the LSRMPC’s only in gas rate control, and not oil rate control. In all
other cases, the RNNMPC proved far worse than the LSRMPC. Additionally, detrimental
qualities such as significant under- and overshoot, as well as strong oscillations in both
actuators and output flow rates, were observed. Though the implementation stands as
a proof-of-concept, the total feasibility of the specific RNNMPC implemented was thus
rejected due to severe such shortcomings.

The data acquisition was somewhat, but not sufficiently, satisfactory. An excitation signal
was designed, but without consideration of the differing degrees of nonlinearity across the
system’s working ranges. The resulting data did not describe the system’s nonlinearities
fully, and the consequently trained model’s predictive performance, in spite of promising
initial tests, proved insufficient.

Teacher forcing was used for training the model, on the assumption that the nature of
the model allowed organically scaling from single-step to multi-step predictions by means
of recurrence. While the tests of single-step predictions provided optimistic results, no
countermeasure was implemented against exposure bias, which arose upon multi-step pre-
diction and proved a significant hindrance.

Lastly, the RNNMPC was implemented using CasADi’s opti-stack for symbolic math-
ematics in optimization problems. Though the implementation worked, the constraints
needed to be re-declared at every iteration, causing increasing time consumption across
the iterations of the RNNMPC. The source for this error is unknown to the author and, to
the best of the author’s knowledge, to the CasADi community as well. The error implies
no conceptual fault with the RNNMPC, but nevertheless causes infeasibility for longer
simulations or continuous application.

91

Chapter 7

Future Work

In order to implement a successful RNNMPC application based on an NARX model,
some key considerations must be made. Firstly, the data acquisition must be performed
to match the problem at hand; the data sets should be sufficiently descriptive of the system
dynamics to be learnt by the model. The author suggests mapping the system’s degrees of
nonlinearities across working ranges as a way of understanding which working ranges the
data sets should be more descriptive of. Secondly, the neural network-based model must
be trained appropriately. When implementing the NARX architecture as the modelling
basis, scheduled sampling is suggested as a modification to the random sampling of the
training data set that is usually employed during the training of the model. This might
strengthen the model’s ability to perform decent predictions, also in light of poor input
data. Additionally, in the face of prediction errors which develop non-constantly, a low-
pass filter is suggested implemented, in order to facilitate a smoother development of the
perceived bias, as this might yield less volatile control in return. Furthermore, if using a
similar architecture, future similar works should port the RNNMPC implementation from
CasADi’s opti-stack to the lower-level API, such that the re-declaration of constraints does
not cause computation times to increase across iterations.

Alternatively, future similar works might consider utilizing different neural network archi-
tectures as a basis for the RNNMPC implementation. The gated recurrent unit is among
the RNN candidates which are also proven in other works considering RNNMPC. The long
short-term memory architecture is also popular due to its proven sequence modelling cap-
abilities. By instead utilizing such architectures, the challenges faced during training and
implementation in this thesis might be instantly mitigated: Training of such architectures
is done via the backpropagation through time-algorithm, which, though computationally
heavier than teacher forcing, gives rise to no exposure bias, as sequences are used for
training directly. Furthermore, RNNMPC problem formulations using such architectures
would likely yield no need to re-declare the constraints of the RNNMPC at every iteration,
effectively eradicating any associated issues.

If, however, such architectures prove too computationally demanding for the platform on
which the RNNMPC is run, the author suggests investigating the performance of a grey-
box RNN. This might prove as efficient as a black-box RNN in predictive accuracy and
might prove computationally lighter.

Limited computational resources might additionally be overcome by employing paralleliz-
ation techniques. The author suggests that parallelization platforms, such as e.g. CUDA,
may in such cases be employed to provide a substantial increase in computational capacity.

92

Bibliography

[1] S Joe Qin and Thomas A Badgwell. ‘An overview of industrial model predictive con-
trol technology’. In: AIche symposium series. Vol. 93. 316. New York, NY: American
Institute of Chemical Engineers, 1971-c2002. 1997, pp. 232–256.

[2] D.K.M. Kufoalor, Lars Imsland and Tor Johansen. ‘High-performance Embedded
Model Predictive Control using Step Response Models**This work is funded by the
Research Council of Norway (NFR) and Statoil through the PETROMAKS project
215684, and also by NFR, Statoil, and DNV through the AMOS project 223254.’ In:
IFAC-PapersOnLine 48 (Dec. 2015), pp. 1, 31–60. doi: 10.1016/j.ifacol.2015.11.073.

[3] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York,
NY, 2006. isbn: 978-0-387-40065-5.

[4] Wilson J. Rugh and Jeff S. Shamma. ‘Research on gain scheduling’. In: Automat-
ica 36.10 (2000), pp. 1401–1425. issn: 0005-1098. doi: https://doi .org/10.1016/
S0005-1098(00)00058-3. url: https://www.sciencedirect.com/science/article/pii/
S0005109800000583.

[5] Oliver Nelles. ‘Nonlinear Dynamic System Identification’. In: Nonlinear System Iden-
tification: From Classical Approaches to Neural Networks and Fuzzy Models. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 547–577.

[6] Fabio Bonassi et al. ‘On Recurrent Neural Networks for learning-based control: Re-
cent results and ideas for future developments’. In: Journal of Process Control 114
(2022), pp. 92–104. issn: 0959-1524. doi: https://doi.org/10.1016/j.jprocont.2022.
04.011. url: https://www.sciencedirect.com/science/article/pii/S0959152422000610.

[7] Kurt Hornik, Maxwell Stinchcombe and Halbert White. ‘Multilayer feedforward net-
works are universal approximators’. In: Neural Networks 2.5 (1989), pp. 359–366.
issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. url: https:
//www.sciencedirect.com/science/article/pii/0893608089900208.

[8] Katrine Seel et al. ‘Convex Neural Network-Based Cost Modifications for Learning
Model Predictive Control’. In: IEEE Open Journal of Control Systems 1 (2022),
pp. 366–379. doi: 10.1109/OJCSYS.2022.3221063.

[9] Yu Cao and Jian Huang. ‘Neural-network-based nonlinear model predictive tracking
control of a pneumatic muscle actuator-driven exoskeleton’. In: IEEE/CAA Journal
of Automatica Sinica 7.6 (2020), pp. 1478–1488. doi: 10.1109/JAS.2020.1003351.

[10] Felix Bünning et al. ‘Input convex neural networks for building MPC’. In: Learning
for Dynamics and Control. PMLR. 2021, pp. 251–262.

[11] Tim Salzmann et al. Real-time Neural-MPC: Deep Learning Model Predictive Control
for Quadrotors and Agile Robotic Platforms. 2022. doi: 10.48550/ARXIV.2203.07747.
url: https://arxiv.org/abs/2203.07747.

93

https://doi.org/10.1016/j.ifacol.2015.11.073
https://doi.org/https://doi.org/10.1016/S0005-1098(00)00058-3
https://doi.org/https://doi.org/10.1016/S0005-1098(00)00058-3
https://www.sciencedirect.com/science/article/pii/S0005109800000583
https://www.sciencedirect.com/science/article/pii/S0005109800000583
https://doi.org/https://doi.org/10.1016/j.jprocont.2022.04.011
https://doi.org/https://doi.org/10.1016/j.jprocont.2022.04.011
https://www.sciencedirect.com/science/article/pii/S0959152422000610
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1109/OJCSYS.2022.3221063
https://doi.org/10.1109/JAS.2020.1003351
https://doi.org/10.48550/ARXIV.2203.07747
https://arxiv.org/abs/2203.07747

[12] Nicolas Lanzetti et al. ‘Recurrent Neural Network based MPC for Process Industries’.
In: 2019 18th European Control Conference (ECC). 2019, pp. 1005–1010. doi: 10.
23919/ECC.2019.8795809.

[13] Kyunghyun Cho et al. ‘On the properties of neural machine translation: Encoder-
decoder approaches’. In: arXiv preprint arXiv:1409.1259 (2014).

[14] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-Term Memory’. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.
1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/
neco.1997.9.8.1735.pdf. url: https://doi.org/10.1162/neco.1997.9.8.1735.

[15] Paisan Kittisupakorn et al. ‘Neural network based model predictive control for a
steel pickling process’. In: Journal of Process Control 19.4 (2009), pp. 579–590.
issn: 0959-1524. doi: https://doi.org/10.1016/j.jprocont.2008.09.003. url: https:
//www.sciencedirect.com/science/article/pii/S0959152408001388.

[16] Katrine Seel et al. ‘Neural Network-Based Model Predictive Control with Input-to-
State Stability’. In: 2021 American Control Conference (ACC). 2021, pp. 3556–3563.
doi: 10.23919/ACC50511.2021.9483190.

[17] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[18] Zhe Wu, David Rincon and Panagiotis D. Christofides. ‘Process structure-based
recurrent neural network modeling for model predictive control of nonlinear pro-
cesses’. In: Journal of Process Control 89 (2020), pp. 74–84. issn: 0959-1524. doi:
https://doi.org/10.1016/j.jprocont.2020.03.013. url: https://www.sciencedirect.com/
science/article/pii/S095915241930825X.

[19] Yngve Kippersund. Towards Neural Network-Based Model Predictive Control. TTK4550
Specialization Project Report. 2022.

[20] Lars S. Imsland. ‘Topics in Nonlinear Control: output feedback stabilization and
control of positive systems’. PhD thesis. Norwegian University of Science and Tech-
nology, 2002.

[21] Dale E. Seborg et al. Process Dynamics and Control, 3rd Edition. Wiley, 2011,
pp. 414–427. isbn: 978-1-118-50671-4.

[22] L. Magni and R. Scattolini. Advanced and multivariable control. Pitagora, 2014. isbn:
9788837119058. url: https://books.google.no/books?id=d1d4rgEACAAJ.

[23] Mina Kamel et al. ‘Model Predictive Control for Trajectory Tracking of Unmanned
Aerial Vehicles Using Robot Operating System’. In: Robot Operating System (ROS):
The Complete Reference (Volume 2). Ed. by Anis Koubaa. Cham: Springer Interna-
tional Publishing, 2017, pp. 3–39. isbn: 978-3-319-54927-9. doi: 10.1007/978-3-319-
54927-9 1. url: https://doi.org/10.1007/978-3-319-54927-9 1.

[24] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Control. Mar.
2016. isbn: 978-82-7842-201-4.

[25] Mina Kamel, Michael Burri and Roland Siegwart. ‘Linear vs Nonlinear MPC for
Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles’. In: IFAC-
PapersOnLine 50.1 (2017). 20th IFAC World Congress, pp. 3463–3469. issn: 2405-
8963. doi: https : / / doi . org / 10 . 1016 / j . ifacol . 2017 . 08 . 849. url: https : / /www .
sciencedirect.com/science/article/pii/S2405896317313083.

[26] TomM. Mitchell.Machine Learning. McGraw-Hill Science/Engineering/Math, 1997,
p. 2. isbn: 0070428077.

94

https://doi.org/10.23919/ECC.2019.8795809
https://doi.org/10.23919/ECC.2019.8795809
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/j.jprocont.2008.09.003
https://www.sciencedirect.com/science/article/pii/S0959152408001388
https://www.sciencedirect.com/science/article/pii/S0959152408001388
https://doi.org/10.23919/ACC50511.2021.9483190
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.jprocont.2020.03.013
https://www.sciencedirect.com/science/article/pii/S095915241930825X
https://www.sciencedirect.com/science/article/pii/S095915241930825X
https://books.google.no/books?id=d1d4rgEACAAJ
https://doi.org/10.1007/978-3-319-54927-9_1
https://doi.org/10.1007/978-3-319-54927-9_1
https://doi.org/10.1007/978-3-319-54927-9_1
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.849
https://www.sciencedirect.com/science/article/pii/S2405896317313083
https://www.sciencedirect.com/science/article/pii/S2405896317313083

[27] Liangxiao Jiang et al. ‘Survey of Improving K-Nearest-Neighbor for Classification’.
In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD 2007). Vol. 1. 2007, pp. 679–683. doi: 10.1109/FSKD.2007.552.

[28] David C. Lay, Steven R. Lay and Judi J. McDonald. Linear Algebra and its Applic-
ations. Pearson, 2016. isbn: 978-0-321-98238-4. url: https://home.cs.colorado.edu/
∼alko5368/lecturesCSCI2820/mathbook.pdf.

[29] Andrew L Maas, Awni Y Hannun, Andrew Y Ng et al. ‘Rectifier nonlinearities
improve neural network acoustic models’. In: Proc. icml. Vol. 30. 1. Atlanta, Georgia,
USA. 2013, p. 3.

[30] A. Helbig, W. Marquardt and F. Allgöwer. ‘Nonlinearity measures: definition, com-
putation and applications’. In: Journal of Process Control 10.2 (2000), pp. 113–
123. issn: 0959-1524. doi: https://doi.org/10.1016/S0959-1524(99)00033-5. url:
https://www.sciencedirect.com/science/article/pii/S0959152499000335.

[31] Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for Stochastic Optimization’.
In: (2017). arXiv: 1412.6980 [cs.LG].

[32] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. ‘”Why Should I Trust
You?”: Explaining the Predictions of Any Classifier’. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’16. San Francisco, California, USA: Association for Computing Machinery,
2016, pp. 1135–1144. isbn: 9781450342322. doi: 10.1145/2939672.2939778. url:
https://doi.org/10.1145/2939672.2939778.

[33] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. ‘Learning repres-
entations by back-propagating errors’. In: nature 323.6088 (1986), pp. 533–536.

[34] A GENTLE INTRODUCTION TO TORCH.AUTOGRAD. url: https://pytorch.
org/tutorials/beginner/blitz/autograd tutorial.html. (accessed: 05.05.2023).

[35] Adam Paszke et al. ‘Automatic differentiation in pytorch’. In: (2017).

[36] Michael I. Jordan. ‘Chapter 25 - Serial Order: A Parallel Distributed Processing
Approach’. In: Neural-Network Models of Cognition. Ed. by John W. Donahoe and
Vivian Packard Dorsel. Vol. 121. Advances in Psychology. North-Holland, 1997,
pp. 471–495. doi: https://doi .org/10.1016/S0166- 4115(97)80111- 2. url: https:
//www.sciencedirect.com/science/article/pii/S0166411597801112.

[37] Jeffrey L Elman. ‘Finding structure in time’. In: Cognitive science 14.2 (1990),
pp. 179–211.

[38] Paul J. Werbos. ‘Generalization of backpropagation with application to a recurrent
gas market model’. In: Neural Networks 1.4 (1988), pp. 339–356. issn: 0893-6080.
doi: https://doi.org/10.1016/0893-6080(88)90007-X. url: https://www.sciencedirect.
com/science/article/pii/089360808890007X.

[39] Samy Bengio et al. ‘Scheduled Sampling for Sequence Prediction with Recurrent
Neural Networks’. In: Advances in Neural Information Processing Systems. Ed. by C.
Cortes et al. Vol. 28. Curran Associates, Inc., 2015. url: https://proceedings.neurips.
cc/paper files/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf.

[40] Ilya Sutskever, Oriol Vinyals and Quoc V Le. ‘Sequence to Sequence Learning with
Neural Networks’. In: Advances in Neural Information Processing Systems. Ed. by Z.
Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014. url: https://proceedings.
neurips.cc/paper files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.
pdf.

95

https://doi.org/10.1109/FSKD.2007.552
https://home.cs.colorado.edu/~alko5368/lecturesCSCI2820/mathbook.pdf
https://home.cs.colorado.edu/~alko5368/lecturesCSCI2820/mathbook.pdf
https://doi.org/https://doi.org/10.1016/S0959-1524(99)00033-5
https://www.sciencedirect.com/science/article/pii/S0959152499000335
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://doi.org/https://doi.org/10.1016/S0166-4115(97)80111-2
https://www.sciencedirect.com/science/article/pii/S0166411597801112
https://www.sciencedirect.com/science/article/pii/S0166411597801112
https://doi.org/https://doi.org/10.1016/0893-6080(88)90007-X
https://www.sciencedirect.com/science/article/pii/089360808890007X
https://www.sciencedirect.com/science/article/pii/089360808890007X
https://proceedings.neurips.cc/paper_files/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

[41] Deepwater Horizon oil spill. url: https://www.britannica.com/event/Deepwater-
Horizon-oil-spill/Environmental-costs. (accessed: 12.05.2023).

[42] CUDA Toolkit. url: https://developer.nvidia.com/cuda-toolkit. (accessed 04.06.2023).

[43] TTK4900 NNMPC. url: https : / / github . com/ yngveki /TTK4900 NNMPC/. (ac-
cessed: 12.05.2023).

[44] Python 3.10.6. url: https : //www.python . org/downloads/ release/python - 3106/.
(accessed 04.06.2023).

[45] PyTorch. url: https://pytorch.org. (accessed: 12.05.2023).

[46] The Modelica Association. url: https://modelica.org. (accessed 18.05.2023).

[47] Welcome. url: https://jmodelica.org/pyfmi/. (accessed 18.05.2023).

[48] NumPy. url: https://numpy.org. (accessed 18.05.2023).

[49] Gurobi Optimization, Python. url: https://www.gurobi.com/documentation/9.5/
quickstart mac/cs python.html. (accessed 18.05.2023).

[50] osqp. url: https://osqp.org. (accessed 18.05.2023).

[51] Sourabh Katoch, Sumit Singh Chauhan and Vijay Kumar. ‘A review on genetic al-
gorithm: past, present, and future’. In: Multimedia Tools and Applications 80 (2021),
pp. 8091–8126.

[52] Sigrún Andradóttir. ‘A Review of Random Search Methods’. In: Handbook of Simu-
lation Optimization. Ed. by Michael C Fu. New York, NY: Springer New York, 2015,
pp. 277–292.

[53] PyTorch. pytorch/torch/nn/modules/linear.py. https://github.com/pytorch/pytorch/
blob/master/torch/nn/modules/linear.py. 2022.

[54] Joel A E Andersson et al. ‘CasADi – A software framework for nonlinear optimiza-
tion and optimal control’. In: Mathematical Programming Computation 11.1 (2019),
pp. 1–36. doi: 10.1007/s12532-018-0139-4.

[55] Welcome to CasADi’s documentation! url: https://web.casadi.org/docs/. (accessed
28.05.2023).

[56] IPOPT Documentation. url: https://coin-or.github.io/Ipopt/. (accessed 18.05.2023).

96

https://www.britannica.com/event/Deepwater-Horizon-oil-spill/Environmental-costs
https://www.britannica.com/event/Deepwater-Horizon-oil-spill/Environmental-costs
https://developer.nvidia.com/cuda-toolkit
https://github.com/yngveki/TTK4900_NNMPC/
https://www.python.org/downloads/release/python-3106/
https://pytorch.org
https://modelica.org
https://jmodelica.org/pyfmi/
https://numpy.org
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_python.html
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_python.html
https://osqp.org
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
https://doi.org/10.1007/s12532-018-0139-4
https://web.casadi.org/docs/
https://coin-or.github.io/Ipopt/

Appendix

A Resources

Resources made available.

Resource Description of resource Provider

FMU Digital system model compiled to be interfacable with Python Equinor

Other resources used.

The documentation cells contain hyperlinks to their respective documentations. Should
hyperlinks not be available, the documentations are also listed in the bibliography for
convenience.

Resource
Description Documentation

Date accessed

Python 3.10.6 Open-source program-
ming language with vast
support for, among oth-
ers, artificial intelligence
development tools

Official documentation 04.06.2023

PyTorch Python library for the
development of neural
networks

Official website 12.05.2023

Modelica Programming language
for acausal systems mod-
elling

Official website 18.05.2023

pyfmi Python library for inter-
facing with FMUs

Official website 18.05.2023

numpy Python library for
multi-dimensional com-
putations

Official website 18.05.2023

gurobi Commercial Python lib-
rary containing effect-
ive optimization prob-
lem solvers

Documentation for Py-
thon

18.05.2023

CasADi A library for imple-
menting symbolic
mathematics-based op-
timization problems[54]

Official documentation 28.05.2023

IPOPT An open-source nonlin-
ear interior point-based
optimal problem solver
available within the Cas-
ADi library

Official documentation 18.05.2023

97

https://www.python.org/downloads/release/python-3106/
https://pytorch.org
https://modelica.org
https://jmodelica.org/pyfmi/
https://numpy.org
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_python.html
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_python.html
https://web.casadi.org/docs/
https://coin-or.github.io/Ipopt/

B List of acronyms

Acronym Meaning

MPC Model Predictive Control / Model Predictive Controller

LSRMPC
Linear Step Response-based Model Predictive Control/
Linear Step Response-based Model Predictive Controller

NN (artificial) Neural Network

MLP Multilayer Perceptron

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

NNMPC
(artificial) Neural Network-based Model Predictive Control/
(artificial) Neural Network-based Model Predictive Controller

RNNMPC
Recurrent Neural Network-based Model Predictive Control/
Recurrent Neural Network-based Model Predictive Controller

MIMO Multiple Input Multiple Output

SISO Single Input Single Output

PRBS Pseudo Random Binary Sequence

APRBS Amplitude-modulated Pseudo Random Binary Sequence

GD Gradient Descent

SGD Stochastic Gradient Descent

NARX(-model) Nonlinear Autoregressive model with Exogenous inputs

NNARX(-model) Neural NARX-model

RNNARX Recurrent Neural NARX-model

FMU Functional Mock-up Unit

98

C Compiling a 64-bit FMU for Python

The following description of exporting the FMU is directly fetched from [19], as the process
was the exact same during this thesis. Minor typographical alterations are made to the
formulations, but not to the content.

In order to compile Modelica-code to an FMU that will interface with a 64-bit Python
environment on Windows, some Python terminal with access to a library capable of com-
piling Modelica-code must be used. One solution, as found and utilized in relation to this
project, specific to 64-bit Windows 10, is as follows:

1. Install jModelica 2.1.4

2. Access the installation folder. This will typically be located at C:\Users\User\

AppData\Roaming\JModelica.org-2.14, but may vary between installations.

3. open the file Python64.bat. This will launch a 64-bit Python terminal. Within this
terminal, write the following commands

1 # Importing the necessary library function

2 from pymodelica import compile_fmu

3

4 # Compiling the FMU

5 fmu = compile_fmu('PathToModel',\

6 {'PathToModelDependency0', ..., 'PathToModelDependencyN'},\

7 target ='cs',\

8 version='2.0',\

9 compiler_log_level='error',\

10 compiler_options={"variability_propagation":False})

99

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis background and goal
	Literature review
	Contribution and problem description
	Case study: the single gas and oil well
	Thesis outline

	Theory
	Model predictive control
	Background
	General MPC
	Linear MPC
	Nonlinear MPC

	Artificial neural networks
	Machine learning and deep learning
	The multilayer perceptron
	MLP-based function dynamics approximation

	Training neural networks
	Training in deep learning
	Finding the gradient and backpropagation
	Gradient-related issue: ReLU and neuron death
	Regularization

	Recurrent neural networks
	General remarks on recurrent neural networks
	Recurrent neural NARX-Model
	Gated RNNs
	The encoder-decoder structure

	A recurrent neural network-based MPC problem formulation
	Recurrent neural network architecture for MPC
	RNNMPC

	Implementation
	Goals, specifications, tests and programmatic interfaces
	Goal specifications
	Test specifications
	Programming the system and its configuration

	Implementing the LSRMPC
	LSRMPC problem formulation
	LSRMPC: implementational details
	Tuning the LSRMPC
	Notes on computation times

	Implementing the RNNMPC
	Data sets for training the model
	Training and testing of the model
	RNNMPC: implementational details
	Tuning the RNNMPC
	Notes on computation times

	Results
	Linear step response MPC
	Tuning and testing of the LSRMPC
	Computation times of the LSRMPC

	Results from implementing the model
	Hyperparameter grid search results
	Choice of hyperparameter set

	Recurrent neural network MPC
	Tuning and testing of the RNNMPC
	Computation times of the RNNMPC

	Discussion
	Performance of the LSRMPC
	The NNARX-model
	Qualities of the training data set
	Architectural implications
	Implications of implicit RNNARX multi-step modelling

	Recurrent neural network MPC
	Performance of the RNNMPC
	Alternative modelling approaches
	Computational regards and potential for improvement

	Conclusion
	Future Work
	Bibliography
	Appendix
	Resources
	List of acronyms
	Compiling a 64-bit FMU for Python

