
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Oscar Brunell Mørk

SimSerpent: A Physics-based
Simulator for a Next Generation
Snake Robot

SimSerpent: En Fysikkbasert Simulator for en
Neste Generasjons Slangerobot

Master’s thesis in Cybernetics and Robotics
Supervisor: Øyvind Stavdahl
Co-supervisor: Jostein Løwer
June 2023

Oscar Brunell Mørk

SimSerpent: A Physics-based Simulator
for a Next Generation Snake Robot

SimSerpent: En Fysikkbasert Simulator for en Neste
Generasjons Slangerobot

Master’s thesis in Cybernetics and Robotics
Supervisor: Øyvind Stavdahl
Co-supervisor: Jostein Løwer
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Abstract

Boa, a next-generation sensor-driven snake robot, is currently under development at the
Department of Engineering Cybernetics (ITK) at the Norwegian University of Science and
Technology (NTNU). As a result, an assignment has been issued to research and develop
a contemporary snake robot simulator that can aid in the rapid development of state
estimation and control strategies for Boa. This master thesis goes into the development
part of the assignment and aims to present a fully-fledged simulator along with results
demonstrating its efficacy.

To begin with, the thesis presents relevant background information about snake robot
research at ITK as well as the foundational theory on physics-based simulators. Sub-
sequently, the thesis proceeds to showcase the development process of the simulator,
including software specification, choice of framework, and a detailed explanation of the
code itself.

Moreover, the thesis showcases four experiments completed on the snake robot simulator,
where each experiment assesses a different aspect of the simulator. The first experiment
demonstrates the simulator’s versatility in reconfiguring the snake robot in various ways.
The second experiment showcases the simulator’s ability to accurately simulate collisions
between objects, examining whether the results adhere to energy conservation and mo-
mentum principles. The third experiment showcases the snake robot’s ability to generate
sinusoidal movements both in the presence and absence of friction and discusses possi-
ble causes for the experiment’s deviation from the expected theory. Lastly, the fourth
experiment demonstrates the robot’s utilization of collision forces to generate movement,
a vital concept within snake robot research. Overall the simulator performed well and
within expectations, with only minor issues present at the end.

Keywords: Robotics technology, Snake Robots, Robotic simulator, Physics Engines

i

Sammendrag

Sammendrag

Boa, en neste generasjons sensordrevet slangerobot, er for tiden under utvikling ved Insti-
tuttet for teknisk kybernetikk (ITK) ved Norges teknisk-naturvitenskapelige universitet
(NTNU). Som et resultat har det blitt gitt en masteroppgave for å forske på og utvikle en
moderne slangerobotsimulator som kan hjelpe til med rask utviklingen av estimerings- og
kontrollstrategier for Boa. Denne masteroppgaven går inn i utviklingsdelen av oppgaven
og har som mål å presentere en fullverdig simulator sammen med resultater som beviser
dens effektivitet.

Først presenterer oppgaven relevant bakgrunnsinformasjon om slangerobotforskning ved
ITK samt grunnleggende teori om fysikkbaserte simulatorer. Deretter fortsetter oppgaven
med å vise frem utviklingsprosessen til simulatoren, inkludert programvarespesifikasjon,
valg av rammeverk og en detaljert forklaring av selve koden.

Videre viser oppgaven frem fire eksperimenter utført på slangerobotsimulatoren, der hvert
eksperiment vurderer forskjellige aspekter ved simulatoren. Det første eksperimentet
demonstrerer simulatorens allsidighet i å rekonfigurere slangeroboten på forskjellige måter.
Det andre eksperimentet viser simulatorens evne til å nøyaktig simulere kollisjoner mel-
lom objekter, og undersøker om resultatene overholder prinsippene om energisparing og
fart. Det tredje eksperimentet viser frem slangerobotens evne til å generere sinusformede
bevegelser både i nærvær og fravær av friksjon og diskuterer mulige årsaker til eksperi-
mentets avvik fra den forventede teorien. Til slutt demonstrerer det fjerde eksperimentet
robotens utnyttelse av kollisjonskrefter for å produsere fremdrift, som er et viktig konsept
innen slangerobotforskning. Totalt sett presterte simulatoren godt og som forventet, med
bare mindre problemer til stede på slutten.

Nøkkelord: Robotikk teknologi, Slange robotikk, Robotikk simulator og Fysikkmotor

ii

Preface

Preface

This master’s thesis is written in the spring of 2023 for the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology. This thesis signifies
the end of a 2-year study in cybernetics and robotics and covers a total of 30 ECTS. I
want to thank Jostein Løwer for his continued guidance throughout this report, Øyvind
Stavdahl for administrative assistance, and ITK for assistance with computers and office
space.

- Oscar Brunell Mørk June 6, 2023

iii

Contents

Contents

Abstract i

Sammendrag ii

Preface iii

1 Nomenclature/Glossary 1

2 Introduction 2
2.1 Structure of thesis . 2
2.2 Caveats . 3

2.2.1 Comment on references in the thesis 3
2.2.2 Time limitations . 3

2.3 Interpretation of thesis assignment . 3
2.4 The thesis assignment . 4

3 Background and Theory 5
3.1 Obstacle-Aided Locomotion (OAL) . 5
3.2 Contemporary snake robots developed at ITK 6

3.2.1 The Mamba snake robot . 7
3.2.2 The Boa snake robot . 8

3.3 Previous simulators created for snake robot research 8
3.3.1 SnakeSim . 9
3.3.2 Simulator for OAL . 9
3.3.3 Motivation for creating another novel snake simulator 10

3.4 The structure and theory of physics simulators 10
3.4.1 The rendering engine . 10
3.4.2 The physics engine . 11

3.5 Contemporary physics engines . 11
3.5.1 Bullet . 11
3.5.2 ODE . 11
3.5.3 MuJoCo . 11
3.5.4 PhysX . 12

3.6 Common weaknesses in contemporary physics engines 12
3.7 The MJCF robot modeling language . 12

3.7.1 The structure of MJCF . 12
3.7.2 The main classes of MJCF . 13

3.8 Friction and snake robots . 14
3.8.1 Friction . 14
3.8.2 Isotropic and anisotropic friction . 15
3.8.3 Effects of isotropic and anisotropic friction on snake robots 15

4 Software specification 16
4.1 Design goal: User-friendliness . 17
4.2 Design goal: Physical realism . 17

iv

Contents

4.3 Design goal: Data acquisition and presentation 18
4.4 Design goal: Maintainability . 18
4.5 Design goal: Affordability . 19
4.6 Design goal: Expandability . 19
4.7 Prioritized list of desired features . 19

5 Development of the simulator 20
5.1 Development with Isaac-sim . 20
5.2 Problems with Isaac-sim . 21
5.3 Switching to MuJoCo . 22
5.4 MuJoCos simulator platform . 22

6 The design and structure of the simulator 23
6.1 Software module setup . 23
6.2 Simulation module . 23

6.2.1 simulate_snake.py . 25
6.2.2 get_snake_info.py . 25
6.2.3 ctrl_snake.py . 26
6.2.4 view_model.py . 27

6.3 Configuration module . 27
6.4 Generate simulation world module . 28

6.4.1 gen_snake_model_mjcf.py and gen_terrain_model_mjcf.py 28
6.4.2 gen_mjcf_main.py . 29

6.5 Storing and plotting information module . 30
6.6 Trade offs during development . 30

6.6.1 Using MJCF instead of URDF . 30
6.6.2 Using simulated sensors instead of taking data directly 31

6.7 How to use the software . 31
6.7.1 How to run a simulation . 31
6.7.2 How to control the snake robot . 32

7 Experiment method 33
7.1 Experiment I, Configuring the snake . 33
7.2 Experiment II, Collision experiments . 33
7.3 Experiment III, Lateral undulation . 34
7.4 Experiment IV, Form closure . 35

8 Experiment results 37
8.1 Experiment I, Configuring the snake . 37
8.2 Experiment II, Collision experiments . 38
8.3 Experiment III, Lateral undulation . 43
8.4 Experiment IV, Form closure . 47

9 Discussion and results 48
9.1 Experiment I, configuring the snake . 48
9.2 Experiment II, Collisions tests . 48
9.3 Experiment III, Lateral undulation . 49
9.4 Experiment IV, Form closure . 50

v

Contents

10 Conclusion 51

11 Future work 52
11.1 Better control algorithms . 52
11.2 Force/torque measurement changes . 52
11.3 Divide up snake.xml into three separate files 52
11.4 Implement contact pair for anisotropic friction 53

12 Appendix 57
12.1 Configuration file . 57
12.2 MJCF file for snake robot with two linkages 58
12.3 Specialization project report fall 2022 . 60

vi

Contents

1 Nomenclature/Glossary

ITK Department of Engineering Cybernetics
NTNU Norwegian University of Science and Technology
HOAL Hybrid Obstacle Aided Locomotion
OAL Obstacle Aided Locomotion
POAL Perception Obstacle Aided Locomotion
API Application Programming Interface
GUI Graphical User Interface
XML Extensible Markup Language. Used for storing and structuring data
CSV Comma-Separated Values. Used for storing data
Simulator Collective term for physics and rendering engines working together
Physics engine Software designed for simulating the physical behavior of objects
Rendering engine Software designed for generating visual representation of physics
PID PID (Proportional-Integral-Derivative) is a control algorithm used

to move a system towards a setpoint

1

Introduction

2 Introduction

Following Pål Lilljebekk’s doctoral paper [1], which presented a new force/torque mea-
surement technique related to HOAL, NTNU initiated research on snake robotics to im-
plement this concept. This research, along with other benefits, has led to the creation
of two snake robots at NTNU, named Mamba and Boa. One of the main goals of these
snake robots was through experimentation to develop new state estimation and control
strategies as well as prove HOAL as a viable method for locomotion. However, performing
physical experiments can be both time-consuming and costly. This led to the necessity of
a simulator to enhance cost-effectiveness and turnaround time when developing control
strategies and is the basis for this master thesis.

After it was decided that a simulator would be developed, a project assignment and a
master thesis were produced. The goal of the project assignment was to lay the ground-
work for the master thesis, and the assignment therefore focused on researching existing
simulators and physics engines. Based on this research, a few simulators or physics en-
gines were selected and experimented with to determine which platform was optimal for
developing a snake robot simulator. The results indicated that all tested physics engines
were suitable. Still, Isaac Sim was preferred due to its continuous updates and limited
prior research, making it an intriguing platform for development.

This master thesis is the continuation of the previously mentioned project assignment
completed during fall 2022 at NTNU and aims to produce a full-fledged simulator by
its end. The master thesis presents previous research on snake robotics at NTNU, the
development process, and an explanation of the code. Lastly, it presents experiments on
the simulator that showcase its efficacy and discusses future development options.

2.1 Structure of thesis

To begin with, the thesis presents relevant background information about snake robot
research at ITK as well as the foundational theory on physics-based simulators. It is
important to mention here that Chapter 3 to 3.6 of this theory is adapted from 12.3,
which was written as a preliminary project during the fall of 2022. Subsequently, the
thesis proceeds to showcase the development process of the simulator, including software
specification, choice of framework, and a detailed explanation of the code itself.

Moreover, the thesis showcases four experiments completed on the snake robot simulator,
where each experiment assesses a different aspect of the simulator. The first experiment
demonstrates the simulator’s versatility in reconfiguring the snake robot in various ways.
The second experiment showcases the simulator’s ability to accurately simulate collisions
between objects, examining whether the results adhere to energy conservation and mo-
mentum principles. The third experiment showcases the snake robot’s ability to generate
sinusoidal movements both in the presence and absence of friction and discusses possible

2

Introduction

causes for the experiment’s deviation from the expected theory. Lastly, the fourth ex-
periment demonstrates the robot’s utilization of collision forces to generate movement, a
vital concept within snake robot research.

2.2 Caveats

2.2.1 Comment on references in the thesis

The thesis has multiple references to other research articles, software solutions, and com-
panies to help explain various concepts. To make the thesis read more fluently, it was
decided to reference each new concept, article, software, and company the first time they
are mentioned and not after. This means that if a reference is missing, it can often be
found earlier in the thesis. However, in cases where it remains appropriate, references will
be reiterated.

2.2.2 Time limitations

After experiments had been conducted and results had been recorded, it was noticed
that experiment three, lateral undulation, deviated from theory. It was later discovered
that MuJoCo does not natively support anisotropic friction, which was thought to be the
leading cause. However, to properly conduct the experiment, anisotropic friction would
have to be added manually which would be quite time-consuming. Due to this issue being
discovered during the last week before the delivery date, the project did not have time to
implement this. This is also mentioned during the report, but this subchapter acts as a
more detailed description of the problem.

2.3 Interpretation of thesis assignment

The thesis assignment is shown in 2.4 and clearly states the goals of the master thesis in an
ordered list. Goal number one and two have been perceived as stated and are presented in
Chapter 3 and 4. Goal number three has been perceived as making an educated decision
based on the results of the project assignment combined with the software specification to
select an optimal physics engine and develop a simulator on top of it. Goal four has been
perceived as answered by a combination of this master thesis, well-documented code, and
a readme file for the software present on GitHub. Lastly, goal five has been answered as
part of this project’s experiments showcased in Chapter 8.

3

NTNU Faculty of Information technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

Project Assignment

Student’s name: Oscar Mørk

Field: Engineering Cybernetics

Title (Norwegian): Fysikkbasert simulator for neste generasjons slangerobot

Title (English): Physics-based simulator for a next generation snake robot

Description:

Boa, a next generation sensor-driven snake robot, is currently under development at ITK. This assignment seeks to

develop a physics-based snake robot simulator, enabling rapid development of state estimation and control strategies for

the snake robot. Snake robot simulation poses strict requirements on the performance of the physics engine both in terms

of accuracy and execution time. In this assignment you will further develop the results from the prior project thesis into a

complete snake robot simulator.

1. Give a brief overview of the history and development of snake robots at ITK.

2. In collaboration with the HOAL-team at ITK, create a prioritized list of requirements and features for the snake

robot simulator.

3. Develop and implement the snake robot simulator, based on the aforementioned requirements and features,

and the results from the project thesis.

4. Create complete and accessible documentation for the software.

5. (Optional) If time permits: Showcase the performance of your simulator with a simulated snake robot.

Co-supervisor(s): Jostein Løwer, NTNU

Trondheim, 24.08.2022

Øyvind Stavdahl
Supervisor

Introduction

2.4 The thesis assignment

4

Background and Theory

3 Background and Theory

Chapter 3 to 3.6 is adapted from 12.3, which was written as a preliminary project during
the fall of 2022

This chapter covers relevant theory and background for the report. It explains the theory
behind Obstacle Aided Locomotion (OAL), the current state of snake robots at ITK as
well as what a simulator is and why it is beneficial for further development of the snake
robot.

3.1 Obstacle-Aided Locomotion (OAL)

In 2008, Transeth et al. published a paper named Snake Robot Obstacle-Aided Locomo-
tion: Modeling, Simulations, and Experiments [2]. This paper discusses two methods
serpents use to advance through the terrain, called lateral undulation and obstacle-aided
locomotion. The first term, lateral undulation, explains how snakes exploit the asymmet-
rical scales and scutes on their belly to create friction in a single direction, thus leading
to propulsion. This method of locomotion is the most researched and implemented in
snake robotics [3], but it makes the robot overly dependent on the surface it moves upon.
The paper, therefore, instead looks at the other method of propulsion, obstacle-aided loco-
motion called OAL for short. This method employs the concept of obstacle exploitation,
which implies that instead of avoiding obstacles, the snake uses them to push against and
create momentum. In this way, the snake and snake robots become more adaptable to
their environment, allowing them to move where their entire body cannot make contact
with the ground. OAL has also evolved into a more specialized version called Hybrid
Obstacle Aided Locomotion or HOAL for short. HOAL is the combination of obstacle-
aided locomotion and a technique called HPFC, Hybrid Position/Force Control. HPFC
as explained by T.Yoshikawa et al. [4] is a control strategy that combines position control
and force control to achieve a specific task. It is relevant to know of HOAL for later
explanations, but OAL will remain the focus of this report.

The mathematical theory behind OAL is extensive. One essential part of this theory, as
explained by Løwer et al. [5] is contact force estimation which can be explained by looking
at an example snake robot shown in Figure 1. A snake robot consists of multiple linkages,
which are represented by red, blue, and green cylinders. In each of these linkages, there
exists a servo motor to generate torque as well as a force/torque measurement system
to measure said torque. In an ideal world, where it is assumed that the friction acting
on a linkage is either known or equal to zero, the only forces acting on a linkage are
the forces/torques of the previous and next linkage as well as that of external objects
the linkage is in contact with. Friction is denoted FR, force measurement from contact
with previous linkage as hn−1, force measurement from contact with the next linkage as
hn, external forces as fext and the summation of all external force vectors as ftot. Based
on Newton’s second law shown in Equation (2), the sum of forces equals mass times

5

Background and Theory

acceleration. The equation for external forces acting on a linkage can then be shown
mathematically as (3). By adding up all the external force vectors as shown in Equation
(4), it is possible to calculate a total force vector that gives the direction of motion the
snake will achieve by pushing against the external objects.

FR ≈ 0 (1)
ΣF =ma (2)

fext =ma − hn − hn−1 (3)
ftot = fext1 + fext2 + fext3 ... + fextn (4)

Figure 1: Forces and torques applied on a 2-jointed 2D-snake pushing up against an
object. Courtesy of [6].

3.2 Contemporary snake robots developed at ITK

In 2011 a researcher named Pål Liljebäck published his doctorate thesis titled Modelling,
development, and control of snake robots [1]. The thesis presents experiments with two
different snake robots named Wheeko and Kulko, where Kulko was used to experiment on
the premise of OAL. Kulko succeeded in measuring contact forces with external objects
and was, as stated by Pål Liljebäck, fit for further OAL research. He did however in
the last chapter of Kulko propose another method for environment sensing based on force
measurements which could simplify the snake robot design. This led to The Department of
Engineering Cybernetics called ITK at NTNU starting work on creating a new functional
snake robot based on OAL with this new environment sensing method in mind. The team
that works on this is called the HOAL team and will be referred to this for the remainder
of the report. As per writing, the HOAL team has produced two contemporary snake
robots, Mamba and Boa.

6

Background and Theory

3.2.1 The Mamba snake robot

The following subsection is adapted from [6]

Figure 2: The Mamba snake robot, courtesy
of [7]

Mamba is the second snake robot based on
the OAL premise created at the Norwe-
gian University of Science and Technology,
shown in Figure 2. NTNU used the snake
robot for experiments on both the ground
and in water. One of the main differences
between Mamba and the previous version
Kulko presented by Pål Lilljebekk was the
new intrinsic force/torque sensor system.

The sensor system of the Mamba
snake robot
The force/torque measurement system in
the Mamba robot is based on strain gauges.
As shown in Figure 3, the strain gauges are
mounted on an aluminum frame perpendicular to each other, enabling it to measure force
and torque on three axes, making it a 6-axis/multi-axis force torque transducer. Figure
3a and Figure 3b present two different versions of the sensor system, as several attempts
have been made to create and improve the system. The situation, however, as indicated
by Fredrik Veslum [7], showed that both systems had problems with noise, hysteresis, and
temperature deviation. This, including that Mamba’s electronics had become outdated at
the time of Fredrik Velum’s experiments, made the robot unfit for further development.

(a) 3D-model of an older version(v0) of the
force-torque measurement system

(b) The strain gauge sensor system (v3)
mounted on the amplifier circuit board

Figure 3: The strain gauge sensor system in the Mamba snake robot. Courtesy of [7]
.

7

Background and Theory

3.2.2 The Boa snake robot

Figure 4: The Boa snake robot, courtesy of
[5]

After the problems with Mamba, the
HOAL team started developing a new
snake robot called Boa. It is the third
snake robot based on OAL created at
NTNU and is currently close to being in
a runnable state and being used for ex-
perimentation. Compared to the previous
snakes, the Boa snake robot employs a new
version of Pål Liljebäck’s measurement sys-
tem based on industrially created sensors
instead of Mambas in-house design.

The sensor system of the Boa snake
robot
Boas measurement system, similar to
Mambas, still uses strain gauge measure-
ment technology to measure forces and
torques but has instead opted into using
commercially available sensors combined together. This sensor combination is developed
by the HOAL team in cooperation with [6] and uses two different sensors locked together
by a 3D-printed linkage to achieve necessary measurements. Boa is, however, still under
development, so the sensor system solution may have changed since the time of writing.

Figure 5: Boa sensor system, courtesy of [6]

3.3 Previous simulators created for snake robot research

The topic of creating a viable simulation environment at ITK for a snake robot has been
attempted twice before. The first attempt, created in 2018, was called Snakesim shown
in [8], and the second attempt was a master thesis produced in 2019 called Simulator for
Obstacle Aided Locomotion in Snake Robots shown in [9].

8

Background and Theory

3.3.1 SnakeSim

The first simulator, as mentioned, was called Snakesim [8] and was a ROS[10] + Gazebo[11]
based simulator created to provide a virtual rapid-prototyping framework for Perception
Driven Obstacle-Aided Locomotion (POAL). It featured the ability to simulate a snake
robot in environments cluttered with obstacles, as well as the ability to add or remove
sensors as necessary. A depiction of how the software system communicated can be seen
in Figure 6. According to the research article’s conclusion, the simulator worked very
well. It made it possible to swap out the sensor reading portion in the simulator with the
sensors from the physical snake robot. In this way, it was a plug-and-play system that
could first asses how a snake robot would react to an environment and then experiment
with the robot in the same environment.

Figure 6: Snakesim software architecture, courtesy of [8]

3.3.2 Simulator for OAL

The second simulator created at NTNU for snake robot research was Simulator for Ob-
stacle Aided Locomotion in Snake Robots[9]. This simulator was developed as part of
a master’s thesis and was created with guidance from one of the creators of Snakesim.
Instead of using an existing simulator framework, this simulator was developed solely
in Matlab, implementing the physics functions directly. This allowed the simulator to
be tailor-made towards testing specific concepts, but as the paper discusses, there were
cases where the laws of energy conservation and momentum were violated. This means
it ended up with simulations that do not match the real world, making the results of the
simulations less valuable. The paper does however conclude that the premise of HOAL
should be further researched.

9

Background and Theory

3.3.3 Motivation for creating another novel snake simulator

As shown in Chapter 3.3.1 and 3.3.2, both present a viable option to provide simulations
for snake robot research. However, due to different circumstances, such as lack of version
control and lack of git commits, both are either lost or nonfunctional as of writing. They
are by no means useless as they provide an abundance of information on how to develop a
simulator, but it does require a new one to be created. This also underlines the importance
of thorough version control for the coming master thesis.

3.4 The structure and theory of physics simulators

Another important subject is the concept of what a simulator is, what it consists of, and
its use cases. This is because a simulator is a widely used term to explain anything which
digitally mimics a real-world phenomenon, but a simulator usually consists of multiple
programs interacting. Here namely, the physics engine and the rendering engine work in
unison, as shown in Figure 7.

3.4.1 The rendering engine

The rendering engine is the software responsible for controlling and rendering graphics
in a simulation. It does this by continuously receiving information from the physics
engine and using the positional data to appropriately move the objects in the simulation.
It is a valuable tool to provide a more human-interactable environment and varies from
simulator to simulator. Some of the most common rendering engines are OpenGL[12] used
by MuJoCo[13] and PyBullet[14] and OGRE [15] used by Gazebo[11] and Isaac Sim[16].

Figure 7: The simulation loop where the rendering engine is marked blue and the physics
engine is marked orange

10

Background and Theory

3.4.2 The physics engine

The physics engine is the piece of the simulator that calculates how the simulation should
proceed, from one timestep to the next. It is essential in any real-time simulation system,
and many different versions exist. The physics engine can be further broken down into
two parts, namely collision detection and the physical engine calculation part. These two
work together to calculate and check for collisions continuously in the simulation, making
the movement and behavior of objects in the virtual world appear more realistic.

3.5 Contemporary physics engines

In today’s market, there exist many viable physics engines. However, some stand out and
appear more often than others in both research and games. Four of these physics engines,
which are relevant to robotic research, are presented here.

3.5.1 Bullet

Bullet [14] is, at the time of writing, one of the more implemented physics engines within
robotic research. It is an open-source project built in 2013 and is offered by many front-
runners within simulation, such as Gazebo[11], CoppeliaSim[17], and many video game
platforms. It is written in C/C++ and is continuously updated by the community to help
it evolve and stay updated with current needs. Its latest release at the time of writing is
Bullet 3.2.4, released on the 25. April 2022.

3.5.2 ODE

ODE [18] is another of the more used physics engines similar to Bullet. It is also open
source and is present in almost all widely used robotics simulators such as Gazebo, We-
bots[19], and CoppeliaSim. It is written in C/C++ and was first released on 8. may 2001,
making it relatively old from a technological perspective. Its last stable release was July
30, 2020, meaning it is still being updated to this day.

3.5.3 MuJoCo

MuJoCo [13] is one of the newer physics engines starting to make more and more appear-
ances in simulator usage. It is known to be very good at specifically collision physics [20],
making it interesting for OAL’s premise. It is likewise to the others written in C/C++
and is open source. MuJoCo was first released in 2015 but re-released as MuJoCo 2.0
in 2018. Its latest stable release is MuJoCo 2.3.0, released on the 18. Oct 2022 and is
continuously being updated through community contributions.

11

Background and Theory

3.5.4 PhysX

PhysX [21] is an open-source real-time physics engine developed by Nvidia [22] as part
of their Nvidia GameWorks software suite. It was initially released as just PhysX in
2003 but has since then been updated all the way to the newest PhysX 5, which has its
latest stable release on October 12, 2021. It is mainly known as a video game engine, but
in NVIDIA’s newest project Isaac Sim, it has been included as the sole physics engine
meaning Nvidia is trying to make it more applicable to research as well. It has interfaces
with both C and Python.

3.6 Common weaknesses in contemporary physics engines

In general, one of the common issues with physics engines is the concept of collision de-
tection and its problem with high-velocity objects. It is something that stems from the
very nature of physics engines and how they use time steps to move physics forward. This
means that if two objects manage to collide between time steps, they are not caught by
the physics engine leading to objects intertwining. This further leads to physics breaking
down and, as a result, can ruin simulations. This kind of collision detection that evaluates
objects at every time step is called DCD (Discrete collision detection). However, a solu-
tion to this problem exists, which is called CCD (Continuous collision detection). CCD,
instead of just checking for collisions at each time step, also tries to predict the movement
of the object until the next time step occurs. In this way, it is able to prevent collision
problems but does, in turn, require a lot more computational power meaning that it is
not always a viable solution when real-time is of the essence. It is worth mentioning that
ODE, Bullet, MuJoCo, and PhysX all offer CCD.

3.7 The MJCF robot modeling language

Before a robot is able to be simulated in any way, shape, or form, it first has to be
declared in a way a computer understands. This is where the robot modeling language
MJCF becomes important and is the primary way the simulated robots have been created
during this master thesis. More information on how MJCF files work can be found in
Reference [23], but the most important parts are covered in this subchapter.

3.7.1 The structure of MJCF

The MJCF modeling language is an XML-based language consisting of many data object
types combined in varying parent/child relationships to create fully functioning robots.
It creates these parent/child relationships by using indentation quite similar to Python,
where the less indented object becomes the parent of the more indented object. An
example of how a simple MJCF formatted file looks can be seen in code snippet 8. In this

12

Background and Theory

example, one can see how the primary parent <mujoco > contains the child < worldbody >
(the simulation world), which again has the child < body > (the box_and_sphere). If one
executes the XML example, it will produce the object shown in Figure 9.

Figure 8: MJCF example code from deepminds MuJoCo python tutorial [24]

Figure 9: Executed version of code snippet 8 from deepminds MuJoCo tutorial [24]

3.7.2 The main classes of MJCF

As seen in code snippet 8, there are many XML tags that are used to create Figure 9,
such as worldbody, body, joint, and geom. In the MJCF file format, there exists probably
upwards of 100 different tags one can use to customize one’s robot but to help simplify
for the reader, this chapter will cover the most important ones used in the thesis. The
entire XML file for one configuration of the snake robot can be seen in Appendix 3 for a
more elaborate MJCF structure.

13

Background and Theory

XML-tag About

mujoco Tells the compiler that this is a MuJoCo model. Other examples
could be the URDF tag or HTML tag.

worldbody The main simulation world, where all simulated objects are added.

option Specific simulation options for the physics engine such as integrator
type, timestep size, and gravity.

asset Used to define texture and material options to give color and pat-
terns to objects in the simulation.

default

Used to define properties for all instances in a simulation to help
reduce code duplication. (For example, if one declares a joint with
range = -90 90, every joint in the simulation will have this property
if not told explicitly otherwise).

body An abstract container for physical elements such as geom and joints.
geom A physical geometrical figure such as cylinder, sphere, or box.
joint A physical joint such as a hinge, ball, or slide.
actuator Collective tag for actuators such as servomotors and muscles.

sensor Collective tag for sensors such as accelerometer, velocimeter, and
gyroscope.

Table 1: The main XML tags used in the snake robot

3.8 Friction and snake robots

One important subject to discuss regarding snakes and how they propel their bodies is
the concept of friction. This is because snakes behave differently based on the underlying
friction type of the ground, meaning for simulation purposes, it is important to realize
what friction types are being used.

3.8.1 Friction

Friction is a force that occurs when two surfaces come into contact and attempt to move
or slide relative to each other. This will create a force that moves in the opposite direc-
tion of motion between the two objects, thus either preventing or reducing momentum.
Friction can be divided into different categories, where two of the main ones are static
friction and kinetic friction. Static friction, also known as resting friction, is friction that
prevents objects from moving while standing still. Static friction provides an increasingly
counteractive force toward momentum until it is overcome, allowing an object to start
sliding or moving. Kinetic friction is friction that acts on two surfaces moving relative to
each other. Both these types of friction refer to the concept of dry friction or Coloumb
friction, which is widespread in simulator usage [25] including MuJoCo.

14

Contents

3.8.2 Isotropic and anisotropic friction

Friction can be divided into several categories based on the nature of the friction and the
objects it interacts with. Two other categories that refer to different properties of friction
in relation to the directionality of forces and motion are isotropic and anisotropic friction.
Isotropic friction occurs when the frictional properties are the same in all directions. In
other words, regardless of the direction the object is moving, the amount of dry friction
it receives will be the same. On the other hand, anisotropic friction is when the frictional
properties are not the same in all directions. This means an object can receive more
counteractive friction when moving upwards than left or right. Figure 10 shows an example
of this concept, where the arrows have varying sizes to indicate varying amounts of friction.

Figure 10: Example of isotropic (left box) and anisotropic friction (right box). The boxes
indicate the same object, and the arrows indicate the amount of friction forces the box
receives moving in each direction. One can clearly see here that when isotropic friction is
present, the friction amount is the same in every direction, while this is not the case for
anisotropic friction

3.8.3 Effects of isotropic and anisotropic friction on snake robots

Snakes behave differently based on the friction type of the material it moves upon, meaning
whether the material allows for anisotropic friction or not. Suppose the material allows
for anisotropic friction by allowing the snake to use the scutes on its belly to achieve more
friction in one direction than the other. In that case, it is able to create propulsion in that
direction, as stated by Pål Liljebäck [1]. If the material does not allow for anisotropic
friction due to the scales’ inability to achieve contact with irregularities in the ground, it
will simply stay in place during movement. This concept is the basis for lateral undulation
mentioned in Chapter 3.1.

15

Software specification

4 Software specification

Before starting the implementation of the snake robot simulator, it was decided to create a
software specification outlining the main goals of the software. This chapter presents these
main goals as bullet points from Subchapter 4.1 to Subchapter 4.6. Lastly, this chapter
presents a task list that was used to prioritize implementation assignments to help prevent
mission creep during development. Mission creep is the concept of a project continuously
adding more tasks and goals to its original development plan. This can often lead to the
project slipping out of hand, causing missed deadlines and lacking functionality. A more
compact version of the software specification bullet points presented in this chapter can
be seen in Figure 11.

Figure 11: Compact version of the software specification goals presented in this chapter

16

Software specification

4.1 Design goal: User-friendliness

The first point on the list was making sure the software was user-friendly. This was
important as the software, upon completion, was to be handed over to other researchers
that may or may not have strong programming knowledge but still should be able to use
the software. This meant that the software had to be produced and structured in such
a way that anyone with general programming and math knowledge should be able to
understand what was happening and should also be able to edit the simulation to their
needs. To achieve this, the software should therefore contain:

1. Interface in a known programming language (Python, C++, etc.). Doing this in-
creases the likelihood that researchers could use and test the software even if they
are not very good at programming.

2. Easy to configure (Well structured code + config file). This will help reduce the
turnover time between different experiments and simplify configuring the software
for specific purposes.

3. Modular code meaning many stand-alone models that interact with well-defined
interfaces to make locating software errors easier.

4. Easy to start and interact with the simulation meaning clear entry points for where
to start the simulator, where to control the robot, where to add more objects to the
simulator, and where to store data.

5. README file or other documents explaining the code and use cases to help reduce
the necessary learning time to use the software.

4.2 Design goal: Physical realism

The second point on the list was ensuring that the simulations presented from the simula-
tor were realistic. This meant that the simulator should be able to simulate an object, in
this case, a robotic snake, and the values returned from the simulator, such as position,
velocity, acceleration, interaction force, and torque, should all be reasonable and correct
values. This is important so that experiments run in the simulator realistically mimic ex-
periments run on the real-world counterpart, allowing control algorithms to be developed
on the simulator and used for the real-world snake robot. To achieve this, the software
therefore had to be able to:

1. Deliver reasonable physical values for position, velocity, acceleration, force, and
torque. By reasonable, the project means there should be a connection between
the size of the snake and how much force is present. For example, if a snake has
a linkage that is 15 cm long and 8 cm across, there should not be more actuator
torque present than about ±3nm.

17

Software specification

2. Complete realistic collisions (meaning that newtons law of Force = mass times
acceleration holds and that objects are not able to penetrate one another)

3. Use an established physics engine to prevent breaking the laws of energy conservation
and momentum as in a previous simulator attempt. See Chapter 3.3.2 for more
information.

4. Emulate measurement errors on all measurements, such as position, velocity, accel-
eration, force, and torque, to help mimic real-world conditions.

4.3 Design goal: Data acquisition and presentation

The third point on the list was creating software that was able to both fetch, store
and present different types of simulation data in an understandable manner. This was
important so that during the simulation run time as well as after, it was possible to
scrutinize the data and create plots, renderings, or videos for research and research articles.
This meant that the software had to be able to:

1. Store information from simulation to CSV or other table formats

2. Plot data from simulation in an understandable manner

3. Create images and renderings from the simulation

4. Create videos from the simulation

4.4 Design goal: Maintainability

The fourth point was making sure that the software should be easily maintainable, mean-
ing that if changes had to be made, it should be described somewhere how the code works,
what each part does, and how to apply changes. This meant that the code should be:

1. Well documented with inline comments, doc strings, and documents.

2. Version controlled with Git [26] to ensure all changes are stored and can be reverted
if needed.

3. Using a coding standard such as pep 8 [27] for Python and consistent naming to
make it easier to understand.

4. Runnable on any Windows operating system without significant changes to the
code so that when the program is run on a new computer, it can be started quickly.
This means no hard-coded paths, requirements file for downloading packages, and
a virtual environment to prevent version collisions between packages and Python
versions.

18

Contents

4.5 Design goal: Affordability

The fifth point was ensuring the simulator did not require too much monetary investment.
This was important as this is supposed to be used for research purposes, and therefore
the lower the cost, the better. The best case scenario would be if it were completely
open source so that it could easily be shared with other researchers. This meant that the
simulator, if possible, should be:

1. Based on open-source works to reduce cost and promote accessibility for other re-
searchers

2. Do not require specific hardware such as Graphics Processing Unit (GPU)

4.6 Design goal: Expandability

The final point in the software specification was making sure the software had the ability
to evolve. This means it should be attempted as far as possible to write code that does
not lock the software to one single XML-type robot so that it can be adapted for other
uses later on if necessary. This means that the code should be able to:

1. Simulate different robot types, such as snake or humanoid, without too many
changes to the main simulation file

2. Import mesh files to create terrain so that new terrain can easily be added

3. Use a well-known file format for robots such as MJCF discussed in Chapter 3.7 or
URDF discussed in this Article [28]

4.7 Prioritized list of desired features

The priority list is tabular based on the software specification that tries to create more
concrete tasks and priority levels based on the goals of the specification. It is divided
into four main priority levels, critical, high, medium, and low, and the project aimed to
at least implement everything in the critical and high sections of the list. This is because
these points were necessary to make the simulator useful enough for research purposes.
The medium priority parts are nice to have features that simplify the simulator’s usage,
as well as add other useful tools to increase the simulator’s value. Lastly, the low-priority
tasks are tasks that should be looked into if time allows or can be used for future work
after the thesis is complete.

19

Development of the simulator

Figure 12: Prioritized list for feature implementation

5 Development of the simulator

After the software specification and priority list were completed in cooperation with the
supervisors of the master thesis, development started on the simulator. Based on the re-
sults from the project assignment shown in the result and discussion chapters in Appendix
12.3, it was decided to continue with Isaac Sim as the main simulation platform. This did
however change to MuJoCo during the development process as explained in Chapter 5.2.

5.1 Development with Isaac-sim

Isaac Sim [16] is as presented in Chapter 4.1 of Appendix 12.3 a semi-free to use physics
development tool that can be used for simulating different kinds of robotics. By semi-
free, it means that if it is used for research or personal projects, it is free to use, but
for commercial products, one has to pay to access the software. It is built on top of the
PhysX physics engine and was chosen for further development during the preliminary
project due to Isaac Sim containing all necessary tools to accurately simulate physics
along with future potential in cloud computing and machine learning (see the conclusion
of Appendix 12.3).

Isaac-sim, once installed through Nvidia Omniverse [16], gives the user access to an ex-
tensive library of prebuilt Python functions as well as documentation. This meant that
after installation, development started with small steps, where the first step was to create

20

Development of the simulator

a simulation from a designated Python script. This Python script had to be able to spawn
a simple object (cube) into a simulated world and return data from the object, such as
position and velocity. Due to existing demonstrations, this was relatively simple, and
some example code from Nvidia can be seen in Listing 1, which achieves this.
Listing 1: Example code for spawning a cube into a simulated world in Isaac Sim. Courtesy
of Nvidia [16]

1 from omni . i s a a c . examples . base_sample import BaseSample
2 import numpy as np
3 # Can be used to c r e a t e a new cube or to po int to an a l r eady e x i s t i n g

cube in s tage .
4 from omni . i s a a c . core . o b j e c t s import DynamicCuboid
5

6 class HelloWorld (BaseSample) :
7 def __init__(s e l f) −> None :
8 super () . __init__ ()
9 return

10

11 def setup_scene (s e l f) :
12 world = s e l f . get_world ()
13 world . scene . add_default_ground_plane ()
14 fancy_cube = world . scene . add (
15 DynamicCuboid (
16 prim_path=" /World/random_cube " ,
17 name=" fancy_cube " ,
18 p o s i t i o n=np . array ([0 , 0 , 1 . 0]) ,
19 s c a l e=np . array ([0 . 5 0 1 5 , 0 .5015 , 0 . 5 0 1 5]) ,
20 c o l o r=np . array ([0 , 0 , 1 . 0]) ,
21))
22 return

The next logical step was then to start adding specific robotic structures through either
the recognized URDF format [29] or MuJoCo’s MJCF XML format 3.7.

5.2 Problems with Isaac-sim

Once the project started investing time in adding its own URDF or MJCF files to the
simulation, errors began to appear. An already prebuilt URDF example was not able to
load into the simulator due to a variety of issues which made the project look more into
using the MJCF file format. A simple snake-like structure was then created in the MJCF
format, and after using Isaac Sims’ built-in UI MJCF loader, a snake was able to appear
in the simulated world. However, once the same results were attempted to be replicated
through the use of a Python script, the program only seemed to return errors. After about
a week of trial and error, a patch update came to Isaac Sim, which seemingly added the
missing MJCF functionality, making the snake able to load from a Python script. This
however meant that functionality that already was said to be in the simulator was, in
fact, being added over time, which meant that other errors that started to appear could
also be from missing functionality. This would lead to the master thesis being held up

21

Contents

by waiting for continuous patch updates, posing a significant problem. The choice was
therefore made to switch over to the MuJoCo physics engine as the project already had
developed an MJCF XML file that could be ported into MuJoCo instead.

5.3 Switching to MuJoCo

Once the project had figured out that MuJoCo seemed to be a better solution, testing
began on spawning the snake XML file into a simulated world. This was achieved relatively
quickly due to MuJoCo’s simple setup and many tutorials. Furthermore, it was possible to
choose between either using the C++ MuJoCo build or using its quite developed Python
API. Both frameworks were tested, but since Python was already used for development
towards Isaac Sim, it was decided to continue with Python for MuJoCo as well.

5.4 MuJoCos simulator platform

MuJoCo [13], including being a physics engine, also features a fully-fledged simulation
framework combining its physics engine discussed in Chapter 3.5.3 with the OpenGL
rendering engine. It was initially developed by Robotics LLC [30] but was acquired and
made freely available by DeepMind [31] in October 2021. The simulator platform has some
key features that are useful to understand to be able to use MuJoCo appropriately. These
key features are all well explained in [32], but a short summary taken from MuJoCo’s
documentation can be seen in Figure 13.

Figure 13: MuJoCo key features from MuJoCo’s documentation. Courtesy of [32]

22

The design and structure of the simulator

6 The design and structure of the simulator

This chapter details the software’s structure by explaining the Python simulator’s main
modules. It is helpful for getting a better understanding of how each module interacts and
what their purpose is within the simulator. This chapter also explains different choices
that were made during development and why some solutions were chosen over others. The
complete code is as per writing on GitHub [26] under the private repository SimSerpent
[33]. For access, refer to the owner of the GitHub organization the repository is posted
under. This repository also contains a ReadMe file that details how to use the software,
even though this chapter also explains it in detail.

6.1 Software module setup

Before writing any software, a diagram was created to help showcase how the software
should be structured, what modules should be developed, and how they should interact
with each other. This helped prevent unnecessary bloating of software and repetitive code
being created. The final diagram can be seen in Figure 14 after it has been revised several
times. It consists of many files but can generally be broken down into four main modules:
the files that create the model, the main simulation files that run the simulations, the
storing/plotting files for data, and the configuration file that controls many aspects of the
simulations.

6.2 Simulation module

The first module in the snake robot simulator is the simulation module which handles all
aspects of the simulation from beginning to end. This module consists of four main Python
files, simulate_snake.py, get_snake_info.py, ctrl_snake.py, and view_model.py.
This module is responsible for the following:

• Starting the simulation

• Stepping through the simulation

• Fetching data from the simulation during run time

• Controlling the robot present in the simulation

• Viewing models outside of the simulation

This module uses a few simple data structures that contain almost all the information
necessary for the simulation. These are MjModel, MjData, and MjvOption, which are

23

The design and structure of the simulator

Figure 14: Software diagram explaining relationships between the different modules in the
program. The four main modules are the simulation module, the configuration module,
the XML generation module, and the data acquisition module

shortly explained in tabular 2. For more information, see the MuJoCo documentation
found in [13]:

Data structure About

Mjmodel
The main data structure holding the MuJoCo model. It is treated
as constant by the simulator and contains information such as the
number of bodies, joints, generalized coordinates, and so on.

Mjdata
The data structure holding the simulation state. It is the workspace
where all functions read their modifiable inputs and write their
outputs.

MjvOption The data structure with simulation options. It corresponds to the
MJCF element option. One instance of it is embedded in Mjmodel.

Table 2: The different main data structures found in a MuJoCo simulation

24

The design and structure of the simulator

6.2.1 simulate_snake.py

The simulate_snake.py file is responsible for initializing, starting, running, and ending
the simulation. It consists of three main parts, a set of callback functions, the simulation
initialization, and the main simulation loop. The callback functions allow interaction
with the simulation during runtime and must exist in this file, otherwise, the simulation
cannot call them. The simulation initialization is, as the name implies, an initialization,
and this creates all elements and data structures necessary for the simulation. Lastly, the
main simulation loop runs until a set amount of simulation time has passed, which can
be edited in the configuration file. An example explaining the execution of the file can be
seen in Figure 15.

Figure 15: Main simulation loop for one run of the simulate_snake.py python file

6.2.2 get_snake_info.py

The get_snake_info.py file is responsible for returning all necessary information for
every linkage and joint that exists within the snake robot. This is achieved through many
simulated sensors and existing API functions built into MuJoCo. It uses the Mjdata data
structure discussed in Table 2 as this structure contains the updated simulation state at
every time step. It contains four main functions being:

Function About

get_link_info
Returns a dictionary with all information necessary to determine a
link’s whereabouts, meaning position, velocity, acceleration, current
angle, and angular velocity

get_joint_info Returns a dictionary with all necessary information to determine a
joint’s state such as joint angles and actuator torques in the joint.

get_contact_info
Returns a dictionary containing a list of all contacts present in the
simulation as well as the distance between those objects to check
for penetration.

get_force_info Returns a dictionary containing the size of all external and internal
force interactions for each linkage.

Table 3: The main information functions found in the simulation

25

The design and structure of the simulator

6.2.3 ctrl_snake.py

The ctrl_snake.py file controls the snake robot in the simulation environment during
runtime. It achieves this by having access to the actuators declared in the snake.xml file
and using the data.ctrl function to give commands to the actuators. Three types of
actuators are present in the snake.xml file: a torque actuator, a position actuator, and a
velocity actuator. Their names imply their purpose meaning that the torque actuator is a
torque-controlled servo motor that allows you to provide a set amount of torque directly
to the actuator. The position actuator is used for position control and enables you to
provide the wanted angle in radians as input. The position actuator itself then determines
the amount of torque necessary to achieve that position. Lastly, the velocity actuator is
used for velocity control and allows you to control how fast the joint it is connected to is
allowed to move. An example figure of how this works can be seen in Figure 16.

Figure 16: Diagram showcasing torque, position, and velocity control

As mentioned previously and seen in Figure 16, one has to use data.ctrl to send control
signals to each actuator. Data.ctrl is simply a list containing a reference to each actuator,
meaning that the first #nr_of_links - 1 is the torque controllers as they are declared
first in the XML file. The next #nr_of_links - 1 are the position controllers and the
last #nr_of_links - 1 are the velocity controllers. This should be kept in mind when
working with the controllers. Another important note is that all the actuators are SISO
meaning single input, single output. One, therefore, has to combine position and velocity
servos to, for example, create a PD controller.

26

The design and structure of the simulator

6.2.4 view_model.py

The final piece of the simulation module is the view_model.py file. This file calls MuJoCos
built-in viewer class, allowing the user to bring up a simulator window and portray the
selected MJCF file in a simulated world. This viewer also contains many valuable tools
to help study the model before doing simulations, such as the ability to control motors
manually, produce graphs for position and velocity, and much more. A screenshot of this
viewer with a novelty snake robot can be seen in Figure 17.

Figure 17: MuJoCo viewer in use

6.3 Configuration module

The second module in the snake robot simulator is the configuration module. This module
works as a configuration hub for all parts of the simulator and allows users easy access
to many different settings to help customize their simulation. This module consists of
only one file, the config.json file, and can be seen in Appendix 2. The configuration file
is divided into seven categories: general, visual, snake specifications, control parameters,
terrain, prebuilt experiments, and storing data. This categorization aims to facilitate ease
of use for users by separating configurations based on the specific aspects of the simulation
they modify. A short summary can be seen in Table 4.

27

The design and structure of the simulator

Config class About

general Controls general simulation options such as simulation
time, simulation timestep, and integrator type.

visual_options
Controls visualization options for the simulation to help
showcase important features such as contact points and
contact forces.

snake_specifications
Controls how the snake should look, the amount of
torque it should have, placement, and other useful op-
tions.

control_parameters Controls parameters used for controlling the actuators
in the snake such as Kp variables and PID variables.

terrain Gives the option to include prebuilt terrain into the sim-
ulation world.

prebuilt_experiments Gives the option to conduct prebuilt experiments to
showcase the simulator use cases.

store_data_to_csv Gives the option to select what data to store as CSV if
the user wants to store anything at all.

Table 4: The main configuration categories found in the simulator

6.4 Generate simulation world module

The third module in the snake robot simulator is the generate simulation world module.
It consists of three files, the gen_snake_model_mjcf.py, gen_terrain_model_mjcf.py,
and generate_mjcf_main.py. This module is responsible for the following:

• Generating a snake XML model based on the config file

• Generating a terrain XML model based on the config file

• Combine them both together and provide a simulation world named snake.xml

A lot of this module is built on top of a GitHub repository named MJCF by iandanforth
[34]. This repository is important as it provides Python bindings to automatically generate
XML tags directly from Python.

6.4.1 gen_snake_model_mjcf.py and gen_terrain_model_mjcf.py

The gen_snake_model_mjcf.py file is responsible for generating and combining all nec-
essary pieces to create a snake XML file. It is divided into three major parts, the function
that generates all the body parts, the function that generates all the actuators, and the
function that generates all the sensors. These three body pieces are then returned to the
main generate_mjcf_file to be combined into one large XML file.

28

The design and structure of the simulator

gen_terrain_model_mjcf.py have similar responsibilities as gen_snake_model_mjcf.py,
but instead creates all necessary terrain objects, which it returns to the main generate_mjcf_file.
It contains three prebuilt terrains that can be called from the configuration file, generate
two cylinders that create two cylinders that can be used for collision testing, generate
cylinder path that produces a path of cylinders for the snake to traverse, and gener-
ate random cylinders which spawns a bunch of cylinders around the snake in random
configurations. These three prebuilt terrains can be seen in Figure 18:

(a) Prebuilt terrain one which can be
enabled by setting generate two cylin-
ders to true in the config file

(b) Prebuilt terrain two, which can be
enabled by setting generate random
cylinders to true in the config file

(c) Prebuilt terrain three, which can
be enabled by setting generate cylinder
path to true in the config file

Figure 18: Prebuilt terrain models

If one wants to build their own terrain models, there are prebuilt functions that allow this
present in the gen_terrain_model_mjcf.py file. Call those functions at the bottom of
generate_mjcf_main.py to create new terrain models.

6.4.2 gen_mjcf_main.py

The final piece of the generate simulation world module is the gen_mjcf_main.py python
file. It is responsible for creating all pieces of the snake.xml file, and an example output
from the Python file can be seen in Appendix 2. For a more in-depth explanation of how
the file structure works, see Chapter 3.7, but in short, the file creates:

• A MuJoCo XML model with the <mujoco > tag

29

The design and structure of the simulator

• A set of main classes such as < option >, < asset >, < default >, < worldbody >,< actuator > and < sensor >. These are all explained in Chapter 3.7.2.

• A set of children to all the main classes, such as different sensors for the < sensor >
class, different actuators for the < actuator > class, and different body pieces for the< worldbody > class

• Lastly it adds terrain objects to the XML file which can be seen at the bottom of
the python file.

To change anything in the snake.xml file, one should make changes in this module as the
snake.xml file is regenerated every time one of the main simulation scripts is run.

6.5 Storing and plotting information module

The last module in the snake robot simulator is the storing and plotting module. This
module consists of two files, store_csv_data.py, and plot_csv_data.py. The term CSV
stands for (comma separated values) and is a widely used file format for storing information
such as positional data for a robot. This module is responsible for the following:

• Storing different simulation data, such as during run-time to CSV format with apt
names and folder with date and time.

• Plot interesting data with prebuilt functions based on existing CSV data.

The stored data can be customized from the configuration file by setting data the user
does not want to be stored to false. One can also select to store no data as CSV, which
can be helpful so the CSV’s does not pile up under the CSV folder.

6.6 Trade offs during development

During the development of the snake robot simulator, there were many possible solutions
for structuring both the software and the snake robot. This subchapter presents some of
the trade-offs made during development and why these trade-offs were made.

6.6.1 Using MJCF instead of URDF

In general, when designing robots to use in a simulation environment, they are usually
designed using either the URDF format or the MJCF format. URDF stands for universal
robot descriptive format and can be read more about in Article [29] while MJCF stands

30

The design and structure of the simulator

for MuJoCo Modeling XML File and is presented in Chapter 3.7. Both are viable formats
as both uniformly describe a robot in the end, but there are some key differences. One of
the main differences is that:

"MJCF provides more elements and attributes than URDF format [23], how-
ever only a few of them need to be defined explicitly by the user while others
can take default values. According to the developers, this makes MJCF files on
average shorter and more readable than URDF files defining the same robots"
(Mikhail Ivanou et al.[35]).

URDF also does not allow motor or controller descriptions in the XML file [35]. Ulti-
mately, it was selected to go with the MJCF format mainly because of the MJCF’s ability
to provide more detailed and concise descriptions of a snake robot.

6.6.2 Using simulated sensors instead of taking data directly

There were two possible options when deciding how to store information from the snake
robot during simulations. It was possible to either store data directly from the simulation
state found in Mj.data or implement sensors to record data. Both options provide the
same result, but implementing it through sensors would require more work. However, the
benefit of using sensors is that it allows for a more realistic simulation since the real robot
also will read its data from sensors found in the snake robot. These real-world sensors
will naturally sometimes experience noise which can be simulated when using simulated
sensors instead of fetching data from the Mj.data object. The sensors also convert data
from the quaternion format MuJoCo uses for most values to cartesian form, which is easier
to understand when looking at data. These two reasons made the project decide to go
with sensors where it was possible to gather data to help with realism and readability.

6.7 How to use the software

A lot of information is found in Chapter 6 that explains how the entire software works.
However, this subchapter aims to present a shorter how-to-use manual to help potential
users quickly grasp the most essential aspects and start simulating.

6.7.1 How to run a simulation

The simplest way to run a simulation and store data is to run the simulate_snake.py
file. This will read the configuration file config.json, call generate_mjcf_main.py to
create a robotic snake and spawn it into a simulation world. The robotic snake will not
do anything specific by running this file, but this is how to start a simulation.

31

Contents

6.7.2 How to control the snake robot

To control the snake robot during simulation, one has to do mainly two things. First,
one has to go to the config file and set the control method to either torque, position,
velocity, or intVelocity. It is only possible to select one type as this config is used to tell
the simulator which control function it will use for its callbacks (meaning the function
it calls once every timestep). Once a method is selected, go to the ctrl_snake.py file.
Here there are a couple of functions that can be used:

• Use the init controller function to set initial values to actuators such as proportional
gain. This function is called once during simulation init. This can and should be
controlled from the config file.

• Use init snake pos to set the initial placement for the snake to move it around or
rotate it before the simulation starts. This can and should be controlled from the
config file.

• Use either torque control, position control, velocity control, or intVelocity control
based on the method selected in the config file. In these functions, one can write
control code to move the actuators. Access the actuators using the list data.ctrl.

• When accessing the controllers, one has to access the data.ctrl list at the correct
indexes to control the correct actuators.
data.ctrl[0:(nr_of_links - 1)] accesses the torque controllers,
data.ctrl[(nr_of_links-1):(nr_of_links-1)*2] accesses the position controllers,
data.ctrl[(nr_of_links-1)*2:(nr_of_links-1)*3] accesses the velocity con-
trollers and
data.ctrl[(nr_of_links-1)*3:(nr_of_links-1)*4] accesses the intVelocity con-
trollers.

32

Experiment method

7 Experiment method

In order to assess the simulator, a wide range of experiments could be conducted. However,
after thorough discussions, it was determined that four distinct experiments would be
conducted to rigorously evaluate the simulator from various perspectives. Each subchapter
explains how to set up and complete each experiment, with each subchapter containing
one tabular, which are settings to be used in the configuration file.

7.1 Experiment I, Configuring the snake

The first experiment would be to run the main simulation file with different sets of config-
urations in config.json. The purpose of this test is to evaluate the simulator’s capability
in generating various snake robots, ensuring that everything functions as intended. The
main result from this test should be that no matter the length and width of each linkage,
number of linkages, and other configurations, everything within the snake robot should
still be placed correctly every time, and it should not break the simulator during start-up.
The three different configuration sets that will be attempted are:

Configuration set A B C
Number of links 2 5 15
Mass of link 0.3 kg 0.3 kg 0.3 kg
Link length 0.8 m 2 m 1 m
Link radius 0.25 m 0.5 m 1 m
Head position [x, y, z] [0, 0, 0] [10, 5, 0] [0, 0, 5]
Head rotation around
[x, y, z] [0, 0, 0] [0, 0, 180] [180, 0, 0]

Snake color RGBA [0, 0, 0.8, 1] (blue) [1, 0, 0, 1] (red) [0, 1, 0, 1] (green)

Table 5: Configuration settings for snake robot in experiment one

7.2 Experiment II, Collision experiments

The second experiment would be to run a couple of collision tests between a snake con-
sisting of only one linkage and a cylindrical hindrance. This experiment should be able to
show that during a head-on collision, the forces recorded from the collision should coincide
with the mass of the snake linkage times its acceleration at the point of impact (F = m*a).
This will be tested on both the x and y axis as these are the most relevant measurements
for a 2-D snake robot. The experiment will also be attempted with a snake consisting of
multiple linkages to ensure newtons second law (F = m*a) still holds despite changes in
mass. To apply forces to the snake robot so a collision may take place, the data.qvel

33

Experiment method

function will be used. Data.qvel references the Mj.data [2] structure in MuJoCo and
qvel stands for quaternion velocity and is a list containing the quaternion velocities for
each linkage in the snake robot. This means, for example, that Data.qvel[0] = 5 ap-
plies a speed of 5 m/s to the snake robot’s head in the x direction and data.qvel[1] = 5
applies a speed of 5 m/s to the snake robots head in the y direction. The configurations
used for the two snake configurations are shown in Table 6.

Configuration set A B
Number of links 1 10
Mass of link 0.3 kg 0.3 kg
Link length 0.10 m 0.10 m
Link radius 0.08 m 0.08 m
Head position [x, y, z] [0, 0, 0] [0, 0, 0]
Head rotation around
[x, y, z] [0, 0, 0] [0, 0, 0]

Friction 0 0
Integrator type RK4 (Runge Kutta 4) RK4 (Runge Kutta 4)
Simulation timestep 0.01 s (100 FPS) 0.01 s (100 FPS)

Generate two cylinders

True (Tells the system
to generate two cylinders
placed 10 m away to use for
collision experiment)

True (Tells the system
to generate two cylinders
placed 10 m away to use for
collision experiment)

Table 6: Configuration settings for snake robot in experiment two

7.3 Experiment III, Lateral undulation

The third experiment would be to attempt a known method of propulsion called lateral
undulation. Lateral undulation is when a snake does a sinusoidal movement that propa-
gates horizontal waves through the body of the snake from head to tail. These horizontal
waves will push against any irregularities in the terrain, causing propulsion as explained
by Liljebäck et al.[36]. This concept can be seen in practice in Figure 19 and be read more
about in theory Chapter 3.1. Due to time limitations as mentioned in Chapter 2.2.2, the
project is not able to add irregularities to the simulation, and only the sinusoidal move-
ment part of the experiment will be able to be completed. The simulation will instead
test lateral undulation with and without friction present to test the simulator’s ability
to accurately model the snake robot’s dynamics, as well as assess the simulator’s ability
to emulate friction. Isotropic friction (3.8.2) is used instead of anisotropic friction (3.8.2)
since MuJoCo does not allow anisotropic friction between objects unless specifically de-
signed to do so. Therefore, in theory, this will mean the snake should not be able to
move forward and should stay in place when sinusoidal movements occur, as explained in
Chapter 3.8. The snake robot will have the configuration shown in Table 7.

34

Contents

Number of links 10
Mass of link 0.3 kg
Link length 0.10 m
Link radius 0.08 m
Head position [x, y, z] [0, 0, 0]
Head rotation around
[x, y, z] [0, 0, 0]

Integrator type RK4 (Runge Kutta 4)
Control method Position
Simulation timestep 0.01 s (100 FPS)

Do_sinus True (Tells the position actuators to move as
a sinusoidal)

Maximum torque ±3Nm
Friction 0,5 (Makes the floor act like a concrete floor)
Joint damping 0.5
Joint armature 0.2
Position actuator KP 1
Velocity actuator KP 0.4

Table 7: Configuration settings for snake robot in experiment three

Figure 19: Figure showcasing lateral undulation. Courtesy of [37]

7.4 Experiment IV, Form closure

The fourth experiment would attempt the concept of form closure in the simulator.
Shortly explained, form closure is a concept where the goal is to take an object and
completely immobilize it. When the object has been entirely immobilized with respect
to rigid body transformations, meaning it can no longer move or rotate in the plane, the
object is said to be under form closure. This concept can be read more about in an article
by Jostein Løwer [38] and a visual representation of this concept can be seen in his figure
in Figure 21. If we attempt this concept on the simulated snake robot, it will look like
Figure 20 as it can not possibly move in any direction if we assume all the joints are stiff.
If we then move joint angles towards the left by shifting the values in a list, we should
observe according to the theory that the snake robot will move in a predetermined pattern
shown in Figure 20. This experiment tests the simulator’s ability to control and move
the snake robot in specific manners as well as using obstacle-aided collisions to generate
movement.

35

Contents

Figure 20: Figure showcasing form closure concept for a snake robot. The left configura-
tion showcases the starting position, and the right configuration showcases the expected
position of the snake after joint angles are shifted to the left

Figure 21: Figure showcasing form closure concept where object B has been completely
immobilized in rotation and translation. Courtesy of [38]

Number of links 16
Mass of link 0.3 kg
Link length 0.10 m
Link radius 0.08 m
Head position [x, y, z] [0, 0, 0]
Head rotation around
[x, y, z] [0, 0, 0]

Integrator type RK4 (Runge Kutta 4)
Control method Torque
Simulation timestep 0.01 s (100 FPS)

Form closure
True (Tells the simulator to place the snake in
a specific position as well as create the terrain
around it)

Maximum torque ±3Nm
Friction 0.05
Joint damping 0.5
Joint armature 0.2
Torque actuator kp 1
PID [Kp, Ki, Kd] [0.4, 0, 0]

Table 8: Configuration settings for snake robot in experiment four

36

Experiment results

8 Experiment results

8.1 Experiment I, Configuring the snake

The results of this experiment showcase three different snake configurations with varying
amounts of links, lengths and sizes of each linkage, different starting placements, and
different colors. There have also been placed cylinders in the simulation world for reference
scale. These have the coordinates [-10, 0, 0] and [0, 5, 0] with a radius of 1 meter and
height of 2 meters.

Figure 22: Configuration one showcasing a 2-linked snake. The object in the middle of
the snake is an actuator that has been set to be visible to showcase the joint

Figure 23: Configuration two showcasing a 5-linked snake. The gray objects along the
snake are actuators that have been set to be visible to showcase the joints

37

Experiment results

Figure 24: Configuration three showcasing a 15-linked snake. Actuators are not visible
here as the snake is upside down due to head rotation

8.2 Experiment II, Collision experiments

This experiment’s results showcase four collision tests completed to test the simulator’s
ability to handle contact forces. Two of the collisions are completed with one linkage on
both the x and y-axis, while two of the collisions are done with ten linkages on both the
x and y-axis. The simulation setup can be seen in Figure 25 and the results in Figure 26,
27, 28 and 29. It is important to highlight that when storing the information from these
collision tests, a simple filter was implemented to filter out unreasonably large values.
This was because the simulator, at some points, gave out unreasonably large collision
forces of up to 100.000 newtons for a split second which ruined the plots. The contact
forces with the ground have also been set to zero as these also became unreasonably high
at some points, but since the tests measure x and y collisions, they are irrelevant.

(a) Simulation world for collision test one.
Two objects to crash into where the snake
has one linkage

(b) Simulation world for collision test two.
Two objects to crash into where the snake
has ten linkages

Figure 25: Simulation world used for both collision tests

38

Experiment results

Figure 26: Collision test for one linkage with a collision along the x-axis. The first row of
the plot shows the head’s position and velocity during the experiment. The second row
shows the head’s acceleration and the total number of contacts present in the simulator
at any given time. The third row shows the measured contact forces for the head during
the experiment and how far the head penetrated the cylinder during the collision.

39

Experiment results

Figure 27: Collision test for one linkage with a collision along the y-axis. The first row of
the plot shows the head’s position and velocity during the experiment. The second row
shows the head’s acceleration and the total number of contacts present in the simulator
at any given time. The third row shows the measured contact forces for the head during
the experiment and how far the head penetrated the cylinder during the collision.

40

Experiment results

Figure 28: Collision test for ten linkages with a collision along the x-axis. The first row
of the plot shows the head’s position and velocity during the experiment. The second row
shows the head’s acceleration and the total number of contacts present in the simulator
at any given time. The third row shows the measured contact forces for the head during
the experiment and how far the head penetrated the cylinder during the collision.

41

Experiment results

Figure 29: Collision test for ten linkages with a collision along the y-axis. The first row
of the plot shows the head’s position and velocity during the experiment. The second row
shows the head’s acceleration and the total number of contacts present in the simulator
at any given time. The third row shows the measured contact forces for the head during
the experiment and how far the head penetrated the cylinder during the collision.

42

Experiment results

8.3 Experiment III, Lateral undulation

The results of experiment three, shown in Figures 31, 32, and 33, showcase how a snake
is able to complete specific controlled movements such as a sinusoidal when the actuators
are used in a specific order. The experiment also shows that the snake robot creates
propulsion even though only isotropic friction is introduced or when no friction is present.
This is further discussed in Chapter 9.3. To achieve the sinusoidal movement, a sine wave
from 0 - 180 degrees was given to the position actuators. The position actuators then
move each joint to the correct angle. Finally, the sine wave is propagated through the
robot by shifting the values backward through each position actuator.

(a) Snake placement during the beginning
of lateral undulation experiment. The
white dots on the snake are the actuators
changing color based on how much torque
is being used from 0 - ±3Nm

(b) Snake placement at the ending of lateral
undulation experiment. The white dots on
the snake are the actuators changing color
based on how much torque is being used
from 0 - ±3Nm

Figure 30: Snake position at beginning and end of lateral undulation experiment

43

Experiment results

Figure 31: Lateral undulation experiment for snake robot over 10 seconds. The first row
of the plot shows the head’s position and velocity during the experiment. The second row
shows the head’s acceleration and the total number of contacts present in the simulator
at any given time. The third row shows the measured contact forces for the head during
the experiment as well as the actuator forces for each actuator.

44

Experiment results

Figure 32: Lateral undulation experiment for snake robot over 40 seconds. The first row
of the plot shows the head’s position and velocity during the experiment. The second row
shows the head’s acceleration and the total number of contacts present in the simulator
at any given time. The third row shows the measured contact forces for the head during
the experiment as well as the actuator forces for each actuator.

45

Experiment results

Figure 33: Lateral undulation experiment for snake robot over 20 seconds without friction.
The first row of the plot shows the head’s position and velocity during the experiment.
The second row shows the head’s acceleration and the total number of contacts present
in the simulator at any given time. The third row shows the measured contact forces for
the head during the experiment as well as the actuator forces for each actuator.

46

Contents

8.4 Experiment IV, Form closure

Experiment four showcases the snake robot simulator attempt at the concept of form
closure. This concept can be read more about in Chapter 7.4. To control the snake, a
simple PID controller was created for each torque actuator present in the snake robot.
The PID controllers were then used for position control, and the output from the PID
controllers was given directly to torque actuators, thus achieving the desired joint angles.

(a) Snake placement during the beginning
of form closure experiment

(b) Snake placement at the ending of form
closure experiment

Figure 34: Snake position at beginning and end of form closure experiment

Figure 35: Form closure experiment for snake robot consisting of 16 linkages. The first
row showcases the head’s position, velocity, and acceleration throughout the simulation.
The second row showcases the joint angles for each joint, the actuator forces for each
actuator, and the contact force for the head during the simulation

47

Discussion and results

9 Discussion and results

This section discusses the results presented in Chapter 8 and the implication of these. It
is divided into four subchapters, and each subchapter discusses one of the results.

9.1 Experiment I, configuring the snake

The first experiment showcases the simulator’s ability to change the snake robot’s config-
uration from the configuration file. It showcases three specific configurations presented in
Chapter 7.1, and all these configurations were selected as they are easily visible in figures
and pictures. There is however possible to change a lot more than just the settings chosen
for this experiment, and the whole configuration file with all options can be seen in Ap-
pendix 2. The results prove that no matter the configuration used for the snake robot, all
actuators, joints, and body parts are placed correctly when auto-generated. This makes
the simulator much more user-friendly, as one does not need to understand the MJCF
file format to create a snake robot specific to one’s use case. It also makes changing the
snake robot much less time-consuming, as providing manual changes to the MJCF file is
often a time-consuming endeavor.

9.2 Experiment II, Collisions tests

The second experiment showcases the simulator’s ability to store and plot data from
simulations as well as the viability of the physics engine MuJoCo. As can be seen from
the figures in Chapter 8.2 there was completed a total of four collision tests with the
simulated snake robot. Figure 26 and 27 showcase collision tests featuring only one linkage
colliding into a cylinder on both the x and y-axis. As can be seen from the results, both
the position and velocity of the linkage change as expected during a collision, with rapid
changes present in both. Acceleration and contact forces also seem to be in accordance
to uphold newtons second law of Force = Mass * Acceleration, as can be seen in the
results in Chapter 8.2. Lastly, the number of contacts aligns well with when the collisions
occur, and penetration depth is shown to be present but is only a few centimeters at most.
Since the cylinder has a radius of 0.5 meters, this amount of penetration is not much,
considering it is a head-on collision at relatively high speeds.

The same logic goes for the collision tests consisting of multiple linkages, where position,
velocity, number of contacts, and penetration depth behave the same way. One can also
see that acceleration and force measurements are higher for the collision on the x-axis
when multiple linkages are involved. This is because there is now more mass involved in
the collision. These four collision tests display that MuJoCo is able to provide realistic
collisions with varying objects despite changes in mass. It is however important to note
here that the plots made in the results do include a filter for high values, as mentioned

48

Discussion and results

in the results Chapter 8.2. This was due to the simulator sometimes producing values up
to 100.000 newtons or above, meaning there might still be some problems with the force
measurements.

9.3 Experiment III, Lateral undulation

The third experiment showcases the simulator’s ability to control the snake robot during
runtime as well as testing friction within the simulation environment. The experiment
works by making the snake robot complete a specific sinusoidal movement attempting the
concept of lateral undulation that can be read more about in theory Chapter 3.1.

Benefits

As can be seen from the actuator forces in the result plots 31, and 32, as well as the
snapshots from the simulation 30, the snake is able to complete the sinusoidal movement.
This result is useful as it shows the possibility of moving the snake robot in specific pat-
terns allowing users to also implement control algorithms in the same manner. Another
interesting result is comparing the contact forces between the lateral undulation experi-
ment with friction 32 and the lateral undulation experiment without friction 33. In the
experiment with friction, one can clearly see from the contact forces plot that the head
of the snake robot continuously meets friction forces. This is because there are no other
points of contact for the head during the simulation, so the constantly shifting forces must
be from friction. These friction forces are also noticeably absent in the contact forces plot
from the lateral undulation experiment without friction, reinforcing this idea. This result
is useful as it shows the simulator can easily turn on and off friction from the configuration
file and that friction forces are applied correctly during simulation.

Issues

On the other hand, there are also two apparent flaws that need to be addressed. As
discussed in the experimental method for this experiment 7.3, the snake robot should not
be able to generate propulsion due to the friction being isotropic and not anisotropic.
However, as can be seen from the position plots in the results of the lateral undulation
experiments with friction 32, the snake clearly moves toward the left (x-becomes more
negative over time). We reason that there are two main causes for this behavior.

The first theory lies in how MuJoCo defines contact between each snake robot linkage,
which is a capsule, and the ground plane in a simulation. MuJoCo defines that each
capsule has two points of contact with the ground when the snake linkage lies still. This
means that in total, there should be twenty points of contact at any given time as long as
the entire snake robot touches the ground plane when it consists of ten linkages. However,
as can be seen in the number of contacts plot in Figure 31, the number of contacts shifts
during sinusoidal movement. This means that the friction that should be isotropic can
suddenly work in an anisotropic manner for short amounts of time, causing the observed
propulsion.

49

Contents

The second theory is that the specific combination of capsule-to-plane collision with
the specific contact dimension used for this experiment condim = 3 does actually cause
anisotropic friction. This is based on a forum discussion [39] from the developers of Mu-
JoCo, where it is discussed how to implement anisotropic friction even though MuJoCo
does not natively support it. Both reasons could be equally likely, but due to the time
limitation of the assignment (see Chapter 2.2.2), the project does not have the capacity
to research the issue further. A proposed solution is however presented in Chapter 11.4
as part of future work.

The other problem can be seen if one looks at the resulting plot from the lateral undulation
experiment without friction 33. Here the snake is also able to move around even though
no friction is present. This is after testing, the results of actuators seemingly causing
collisions with forward joints causing contact forces, as seen from the result plots. This
does however not seem to be a problem when friction is present, as the friction forces
seem to be enough to counteract this movement. However, this problem can be solved by
implementing contact pairs. This is a feature in MuJoCo that allows a developer to define
all contacts that the simulator should register and give specific instructions to MuJoCo
on how to handle each contact. In this way, removing all contact forces that do not come
from collisions with the ground should be possible, making the snake stay in place.

9.4 Experiment IV, Form closure

The fourth experiment showcases the simulator’s ability to perform complex experiments
that simultaneously require many interactions and moving parts. As can be seen in the
results from Chapter 8.4, the snake is able to create the expected movement when joints
are shifted during form closure. This can be seen from the snapshots of the simulation
as well as from the position plot showcasing how it steadily moves its head downwards
to the right. One can also, from the plot, see how the joint angles shift over time as
well as actuator forces, acceleration for the head of the snake, and velocity for the head
of the snake. One thing of note that can be seen from the snapshots of the simulation
34 is that the snake robot has slipped a little towards the left, causing a slight rotation
in its placement. This is a somewhat expected phenomenon called lateral slippage, but
the snake robot is still under form closure even if this is the case. If one adds two more
cylinders to change the form closure hold from second order to first order form closure,
the issue should disappear according to Jostein Løwers article [38]. This was tested in a
separate experiment which can be seen in Figure 36. Here it is possible to see that the
snake robot receives less slippage towards the left, as expected in theory.

50

Contents

Figure 36: Snake robot performing the form closure experiment, with first-order form
closure instead of second-order. The white dots are the actuators set to visible to showcase
the position of the joints

10 Conclusion

After the software had been created and experiments were conducted, the simulator had
many benefits and a few issues. Firstly the simulator is able to auto-generate a snake
robot with many different configurations and simulate it for a desired amount of time. This
makes the simulator versatile, which is a significant benefit when the current snake robot
Boa still might see changes during construction and implementation. This also makes the
simulator future-proof, as one will be able to simulate other kinds of snake robots when
new designs emerge. The simulator is also able to accurately portray collision forces,
position, velocity, and acceleration for the entirety of the snake robot, making it easy to
conduct experiments and use the data for research purposes. Lastly, the simulator is easy
to use due to everything being controlled by a configuration file making it user-friendly
whether you are an expert programmer or not. On the other hand, there are also a few
drawbacks. The simulator sometimes struggles with contact forces appearing where one
would expect to find none. This can be seen in the results from Chapter 8.3 showcasing
the lateral undulation experiment without friction. Here the system portrays contact
forces on both the x and y axis when there should, in theory, be none. The simulator also
lacks the implementation of anisotropic friction to complete lateral undulation properly.
This however is something that can be added later, as seen in future work Chapter 11.4.

In conclusion, the simulator works well and accomplishes many of the goals set in the
software specification Chapter 4, such as user-friendliness, physical realism, data acquisi-
tion and presentation, maintainability, affordability, and expandability. The project was
also able to implement almost all the features presented in the priority list in Figure 12.
Therefore, the simulator is a huge success in the eyes of the project and should be able to
be used for future research in snake robotics.

51

Future work

11 Future work

This chapter details improvements to the simulator that both could and should be made
if time would have allowed. Future software users can use this chapter to help understand
what should be developed further to make the simulator both better and more optimal.

11.1 Better control algorithms

The first step to help improve the simulator would be to improve the control algorithms
used for the actuators in the simulator. As per writing, the snake robot features four
types of actuators in each joint, torque, position, velocity, and intvelocity. The first three,
torque, position, and velocity, all take the same input argument as their name implies,
while intvelocity has a built-in integrator for its velocity, which allows one to create a PI
controller. Currently, the control strategies used in the simulator are simple PD control
for the lateral undulation experiment and PID control for the form closure experiment.
If a better control system is introduced, making the snake move as intended will be
easier. It should, however, still be noted that both PID and PD worked quite well for the
experiments completed in this thesis.

11.2 Force/torque measurement changes

Currently, both contact forces and actuator torques are measured directly from the
Mj.data object present in the MuJoCo simulator. This works completely fine, but to
make the simulator even more realistic, these measurements could be measured with sim-
ulated sensors instead. This would accomplish two things. Firstly it would allow the
program to introduce sensor noise to the force and torque measurements in the snake,
making it possible to test the snake with realistic noise. Secondly, it makes the simulated
snake robot more portable as sensors are written directly into the MJCF code of the
robot, meaning that if the robot is ported into another simulation, one could measure
these sensors the same way as in MuJoCo.

11.3 Divide up snake.xml into three separate files

While creating the automatic snake generation Python script, the project did not know
much about how the MJCF format worked. This meant that the Python script that
creates the simulation environment is divided into three Python files, but the output,
however, all ends up in the same MJCF file named snake.xml. It was discovered later
that it is possible to use the < include > tag in MuJoCo to combine different MJCF files
into one upon simulation, meaning that the terrain and snake robot could be two separate
files entirely. This would both increase readability and allow either of the MJCF files to

52

Contents

be used for other projects independently of the other. This means, for example, that it
would be possible to import terrain from other projects simply as the MJCF file into a
folder, and the terrain would be simulated.

11.4 Implement contact pair for anisotropic friction

As mentioned in Chapter 9.3 discussing the results of the lateral undulation experiment,
MuJoCo does not natively support anisotropic friction. However, a snake robot simulator
would want to have this, as one of the main ways a serpent creates propulsion is through
this anisotropic friction. There does, however, exist a method to implement anisotropic
friction in MuJoCo as discussed by MuJoCo’s creators, deepmind, in a discussion forum
[39]. The discussion talks about using the contact pair XML tag to define custom
contact interactions for specific contact pairs. This means it is possible to define a contact
pair between each linkage in the snake robot and the ground, where custom friction
components can be added. According to the discussion, it should be possible to define
friction in this contact pair to mimic anisotropic friction and even comes with an example
of how to implement it. To implement this into the autogeneration of the snake robot in
the simulator, one should create the new tag < contact > on the same level as < default >
and < asset >. One should then proceed to use a for-loop to generate one < pair > between
each linkage and the ground plane while specifying specific friction values. Lastly, this
should be added to the snake.xml file to add it to the simulation.

53

Contents

References

[1] Pål Liljebäck. Modelling, development, and control of snake robots. Vol. 2011:70.
Doktoravhandlinger ved NTNU (trykt utg.) Norwegian University of Science, Tech-
nology, Faculty of Information Technology, Mathematics, and Electrical Engineer-
ing, Department of Engineering Cybernetics, 2011. isbn: 9788247126677.

[2] A. A. Transeth et al. “Snake Robot Obstacle-Aided Locomotion: Modeling, Simu-
lations, and Experiments”. In: IEEE Transactions on Robotics 24.1 (2008), pp. 88–
104. doi: 10.1109/TRO.2007.914849.

[3] Aksel Andreas Transeth and Kristin Ytterstad Pettersen. “Developments in Snake
Robot Modeling and Locomotion”. In: 2006 9th International Conference on Con-
trol, Automation, Robotics and Vision. 2006, pp. 1–8. doi: 10.1109/ICARCV.2006.
345142.

[4] T. Yoshikawa and A. Sudou. “Dynamic hybrid position/force control of robot manipulators-
on-line estimation of unknown constraint”. In: IEEE Transactions on Robotics and
Automation 9.2 (1993), pp. 220–226. doi: 10.1109/70.238286.

[5] Jostein Løwer, Irja Gravdahl, Damiano Varagnolo, and Øyvind Stavdahl. “Propri-
oceptive contact force and contact point estimation in a stationary snake robot”.
In: IFAC-PapersOnLine 55.38 (2022). 13th IFAC Symposium on Robot Control
SYROCO 2022, pp. 160–165. issn: 2405-8963. doi: https://doi.org/10.1016/
j.ifacol.2023.01.149. url: https://www.sciencedirect.com/science/
article/pii/S240589632300157X.

[6] Victor Melhuus Joel Mörlin and Oscar Mørk. Intrinsic Force-Torque Sensor System
for a Next Generation Snake Robot. 2021. url: https://ntnuopen.ntnu.no/ntnu-
xmlui/handle/11250/2781042 (visited on October 12, 2022).

[7] Fredrik Veslum. “Assessment of the Mamba snake robot sensor system”. In: (2020).
[8] Filippo Sanfilippo, Øyvind Stavdahl, and Pål Liljebäck. “SnakeSIM: a ROS-based

control and simulation framework for perception-driven obstacle-aided locomotion
of snake robots”. In: Artificial Life and Robotics 23 (August 2018). doi: 10.1007/
s10015-018-0458-6.

[9] Atussa Koushan. Simulator for Obstacle Aided Locomotion in Snake Robots. 2019.
url: https://ntnuopen.ntnu.no/ntnu- xmlui/bitstream/handle/11250/
2780900/no.ntnu%3Ainspera%3A56990118%3A20964868.zip?sequence=2 (visited
on October 12, 2022).

[10] Open Robotics. ROS homepage. url: https://www.ros.org/ (visited on May 22,
2023).

[11] Open Robotics. Gazebo homepage. url: https://gazebosim.org/home (visited on
May 22, 2023).

[12] Khronos group. OpenGL homepage. url: https://www.opengl.org/ (visited on
May 23, 2023).

54

https://doi.org/10.1109/TRO.2007.914849
https://doi.org/10.1109/ICARCV.2006.345142
https://doi.org/10.1109/ICARCV.2006.345142
https://doi.org/10.1109/70.238286
https://doi.org/https://doi.org/10.1016/j.ifacol.2023.01.149
https://doi.org/https://doi.org/10.1016/j.ifacol.2023.01.149
https://www.sciencedirect.com/science/article/pii/S240589632300157X
https://www.sciencedirect.com/science/article/pii/S240589632300157X
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2781042
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2781042
https://doi.org/10.1007/s10015-018-0458-6
https://doi.org/10.1007/s10015-018-0458-6
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2780900/no.ntnu%3Ainspera%3A56990118%3A20964868.zip?sequence=2
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2780900/no.ntnu%3Ainspera%3A56990118%3A20964868.zip?sequence=2
https://www.ros.org/
https://gazebosim.org/home
https://www.opengl.org/

Contents

[13] MuJoCo. MuJoCo Website. url: https://mujoco.org/ (visited on May 2, 2023).
[14] Erwin Coumans. Bullet homepage. url: https://pybullet.org/wordpress/ (vis-

ited on May 26, 2023).
[15] The OGRE team. OGRE homepage. url: https://www.ogre3d.org/ (visited on

May 28, 2023).
[16] Nvidia. Isaac-Sim documentation. url: https://docs.omniverse.nvidia.com/

app_isaacsim/app_isaacsim/overview.html (visited on April 25, 2023).
[17] Coppelia Robotics AG. CoppeliaSim homepage. url: https://www.coppeliarobotics.

com/ (visited on May 22, 2023).
[18] Russ Smith. ODE homepage. url: https://www.ode.org/ (visited on May 26,

2023).
[19] Cyberbotics Ltd. Webots homepage. url: https://cyberbotics.com/ (visited on

May 22, 2023).
[20] Tom Erez, Yuval Tassa, and Emanuel Todorov. “Simulation tools for model-based

robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX”. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA). 2015, pp. 4397–
4404. doi: 10.1109/ICRA.2015.7139807.

[21] Nvidia. PhysX homepage. url: https://developer.nvidia.com/physx- sdk
(visited on May 26, 2023).

[22] Nvidia. Nvidia homepage. url: https://www.nvidia.com/en- us/ (visited on
May 30, 2023).

[23] MuJoCo. MJCF explanation. url: https://mujoco.readthedocs.io/en/latest/
XMLreference.html (visited on May 2, 2023).

[24] DeepMind. MuJoCo Python API tutorial. url: https://colab.research.google.
com/github/deepmind/mujoco/blob/main/python/tutorial.ipynb (visited on
May 21, 2023).

[25] Simon Pabst, Bernhard Thomaszewski, and Wolfgang Straßer. “Anisotropic Fric-
tion for Deformable Surfaces and Solids”. In: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’09. New Or-
leans, Louisiana: Association for Computing Machinery, 2009, pp. 149–154. isbn:
9781605586106. doi: 10.1145/1599470.1599490. url: https://doi.org/10.
1145/1599470.1599490.

[26] Github. Github homepage. url: https://github.com (visited on May 21, 2023).
[27] Python. Python PEP8 standard. url: https://peps.python.org/pep- 0008/

(visited on May 21, 2023).
[28] ROS industrial. URDF format by ROS. url: https://industrial-training-

master.readthedocs.io/en/melodic/_source/session3/Intro-to-URDF.html
(visited on May 21, 2023).

[29] Formant. URDF explanation. url: https://formant.io/urdf/ (visited on May 10,
2023).

55

https://mujoco.org/
https://pybullet.org/wordpress/
https://www.ogre3d.org/
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/
https://www.ode.org/
https://cyberbotics.com/
https://doi.org/10.1109/ICRA.2015.7139807
https://developer.nvidia.com/physx-sdk
https://www.nvidia.com/en-us/
https://mujoco.readthedocs.io/en/latest/XMLreference.html
https://mujoco.readthedocs.io/en/latest/XMLreference.html
https://colab.research.google.com/github/deepmind/mujoco/blob/main/python/tutorial.ipynb
https://colab.research.google.com/github/deepmind/mujoco/blob/main/python/tutorial.ipynb
https://doi.org/10.1145/1599470.1599490
https://doi.org/10.1145/1599470.1599490
https://doi.org/10.1145/1599470.1599490
https://github.com
https://peps.python.org/pep-0008/
https://industrial-training-master.readthedocs.io/en/melodic/_source/session3/Intro-to-URDF.html
https://industrial-training-master.readthedocs.io/en/melodic/_source/session3/Intro-to-URDF.html
https://formant.io/urdf/

Contents

[30] Robotics Technologies LLC. Robotics LLC homepage. url: https://roboticstechno.
com/ (visited on May 28, 2023).

[31] DeepMind. DeepMind homepage. url: https://www.deepmind.com/ (visited on
May 31, 2023).

[32] MuJoCo. MuJoCo key features. url: https : / / mujoco . readthedocs . io / en /
latest/overview.html (visited on May 2, 2023).

[33] Oscar Brunell Mørk. SimSerpent repository. url: https://github.com/Boa-
Snake-Robot/SimSerpent (visited on May 22, 2023).

[34] iandanforth. MJCF github repository. url: https://github.com/iandanforth/
mjcf (visited on May 5, 2023).

[35] Mikhail Ivanou, Stanislav Mikhel, and Sergei Savin. “Robot description formats and
approaches: Review”. In: 2021 International Conference "Nonlinearity, Information
and Robotics" (NIR). 2021, pp. 1–5. doi: 10.1109/NIR52917.2021.9666120.

[36] Pål Liljebäck, Kristin Y. Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl.
“Lateral undulation of snake robots: a simplified model and fundamental proper-
ties”. In: Robotica 31.7 (2013), pp. 1005–1036. doi: 10.1017/S0263574713000295.

[37] Z. V. Guo and L. Mahadevan. “Limbless undulatory propulsion on land”. In: Pro-
ceedings of the National Academy of Sciences 105.9 (2008), pp. 3179–3184. doi: 10.
1073/pnas.0705442105. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.
0705442105. url: https://www.pnas.org/doi/abs/10.1073/pnas.0705442105.

[38] Jostein Løwer. “A tutorial on form closure”.
[39] Deepmind. Github forum discussion on anisotropic friction in MuJoCo. url: https:

//github.com/deepmind/mujoco/issues/67 (visited on May 28, 2023).

56

https://roboticstechno.com/
https://roboticstechno.com/
https://www.deepmind.com/
https://mujoco.readthedocs.io/en/latest/overview.html
https://mujoco.readthedocs.io/en/latest/overview.html
https://github.com/Boa-Snake-Robot/SimSerpent
https://github.com/Boa-Snake-Robot/SimSerpent
https://github.com/iandanforth/mjcf
https://github.com/iandanforth/mjcf
https://doi.org/10.1109/NIR52917.2021.9666120
https://doi.org/10.1017/S0263574713000295
https://doi.org/10.1073/pnas.0705442105
https://doi.org/10.1073/pnas.0705442105
https://www.pnas.org/doi/pdf/10.1073/pnas.0705442105
https://www.pnas.org/doi/pdf/10.1073/pnas.0705442105
https://www.pnas.org/doi/abs/10.1073/pnas.0705442105
https://github.com/deepmind/mujoco/issues/67
https://github.com/deepmind/mujoco/issues/67

Appendix

12 Appendix

12.1 Configuration file

Listing 2: Configuration file
1 {
2 " xml_path ": "snake.xml",
3 " simulation_time ": 100,
4 " simulation_timestep ": 0.01,
5 " integrator_type ": "RK4",
6 " plot_data ": false ,
7
8 " visual_options ": {
9 " show_contact_force ": false ,

10 " show_contact_points ": false ,
11 " show_actuators ": false ,
12 " show_joints ": false ,
13 " show_center_of_mass ": false ,
14 " make_transparent ": false
15 },
16
17 " snake_specifications ": {
18 " nr_of_links ": 2,
19 " link_mass_in_kg ": 0.3,
20 " link_lenght_in_m ":0.10,
21 " link_radius_in_m ":0.08,
22 " maximum_torque_in_nm ": [-3, 3],
23 " friction ": 0.5,
24 " joint_damping ": 0.5,
25 " joint_armature ": 0.2,
26 " sensor_noise ": " disable ",
27 " sensor_noise_amount ": 0,
28 " snake_color_rgb ": [0, 0.2, 1, 1],
29 " head_position_xyz ": [0, 0, 0],
30 " head_rotation_xyz ": [0, 0, 0]
31 },
32
33 " control_parameters ":{
34 " control_method ": " position ",
35 " torque_actuator_KP ": 1,
36 " position_actuator_KP ": 0.7,
37 " velocity_actuator_KP ": 0,
38 " IntVelocity_actuator_KP ": 50,
39 " PID_parameters_Kp_Ki_Kd ": [0.4, 0, 0]
40 },
41

57

Appendix

42 " terrain ":{
43 " generate_two_cylinders ": false ,
44 " generate_random_cylinders ": false ,
45 " generate_cylinder_path ": false
46 },
47
48 " prebuilt_experiments ":{
49 " form_closure ": false ,
50 " do_sinus " : false
51 },
52
53 " store_data_to_csv ": {
54 " store_data ": false ,
55 " position ": false ,
56 " velocity ": false ,
57 "accel": false ,
58 "angle": false ,
59 " angular_vel ": false ,
60 " angular_accel ": false ,
61 " torque_actuator_forces ": false ,
62 " position_actuator_forces ": false ,
63 " velocity_actuator_forces ": false ,
64 " joint_angles ": false ,
65 " external_contact_forces ": false
66 }
67 }

12.2 MJCF file for snake robot with two linkages

Listing 3: snake.xml
1 <?xml version=" 1 .0 " encoding=" utf −8" ?>
2 <mujoco model=" snake ">
3 <opt ion g rav i ty=" 0 0 −9.81 " i n t e g r a t o r="RK4" t imestep=" 0 .01 ">
4 <f l a g s e n s o r n o i s e=" d i s a b l e " />
5 </ opt ion>
6 <a s s e t>
7 <texture b u i l t i n=" grad i ent " he ight=" 100 " rgb1=" 1 1 1 " rgb2=" 0 0 0 "

type=" skybox " width=" 100 " />
8 <texture b u i l t i n=" f l a t " he ight=" 1278 " mark=" c r o s s " markrgb=" 1 1 1 "

name=" texgeom " random=" 0 .01 " rgb1=" 0 .8 0 .6 0 . 4 " rgb2=" 0 .8 0 .6
0 .4 " type=" cube " width=" 127 " />

9 <texture b u i l t i n=" checker " he ight=" 100 " name=" texp lane " rgb1=" 0 0
0 " rgb2=" 0 .8 0 .8 0 .8 " type=" 2d" width=" 100 " />

10 <mate r i a l name=" MatPlane " r e f l e c t a n c e=" 0 .5 " s h i n i n e s s=" 1 " spe cu l a r
=" 1 " t ex repea t=" 60 60 " t ex tu re=" texp lane " />

11 <mate r i a l name="geom" tex ture=" texgeom " texuni form=" true " />
12 </ a s s e t>
13 <d e f a u l t>

58

Appendix

14 <j o i n t armature=" 0 .2 " ax i s=" 0 0 1 " damping=" 0 .5 " f r i c t i o n l o s s=" 0 "
l i m i t e d=" true " range="−90 90 " type=" hinge " />

15 <geom f r i c t i o n=" 0 .5 " mass=" 0 .3 " pos=" 0 .1 0 0 " rgba=" 1 0 1 1 " s i z e=
" 0 .08 0 .1 " type=" capsu l e " z a x i s=" 1 0 0 " />

16 </ d e f a u l t>
17 <s i z e nuser_actuator=" 1 " />
18 <worldbody>
19 <l i g h t c u t o f f=" 100 " d i f f u s e=" 1 1 1 " d i r=" 0 0 −1.3 " d i r e c t i o n a l="

t rue " exponent=" 1 " pos=" 0 0 1 .3 " spe cu l a r=" 0 .1 0 .1 0 .1 " />
20 <geom c o n a f f i n i t y=" 1 " condim=" 3 " mate r i a l=" MatPlane " name=" f l o o r "

pos=" 0 0 −0.08 " rgba=" 0 .8 0 .9 0 .8 1 " s i z e=" 100 100 100 " type="
plane " z a x i s=" 0 0 1 " />

21 <body name=" head " pos=" 0 .2 0 0 ">
22 <geom name=" head_geom " rgba=" 0 0 .2 1 1 " />
23 <f r e e j o i n t />
24 <s i t e name=" head_site " pos=" 0 .2 0 0 " />
25 <body name=" body1 " pos=" 0 .2 0 0 ">
26 <geom name="body_1_geom" rgba=" 0 0 .2 1 1 " />
27 <j o i n t name=" body_1_joint " />
28 <s i t e name=" body_1_site " pos=" 0 .2 0 0 " />
29 </body>
30 </body>
31 </worldbody>
32 <actuator>
33 <motor c t r l l i m i t e d=" true " c t r l r a n g e="−3 3 " f o r c e l i m i t e d=" true "

f o r c e r ange="−3 3 " j o i n t=" body_1_joint " />
34 <p o s i t i o n kp=" 0 " c t r l l i m i t e d=" true " c t r l r a n g e="−3 3 " f o r c e l i m i t e d=

" true " f o r c e r ange="−3 3 " j o i n t=" body_1_joint " name="
pos i t i on_servo1 " />

35 <v e l o c i t y kv=" 0 " c t r l l i m i t e d=" true " c t r l r a n g e="−3 3 " f o r c e l i m i t e d=
" true " f o r c e r ange="−3 3 " j o i n t=" body_1_joint " name="
ve loc i ty_se rvo1 " />

36 <i n t v e l o c i t y kp=" 0 " actrange=" −1.57 1 .57 " c t r l l i m i t e d=" true "
c t r l r a n g e="−3 3 " f o r c e l i m i t e d=" true " f o r c e r ange="−3 3 " j o i n t="
body_1_joint " name=" IntVe loc i ty_servo1 " />

37 </ actuator>
38 <senso r>
39 <ve lo c imet e r s i t e=" head_site " name=" ve l o c i ty_senso r0 " no i s e=" 0 " />
40 <acce l e romete r s i t e=" head_site " name=" acce l_sensor0 " no i s e=" 0 " />
41 <gyro s i t e=" head_site " name=" gyro_sensor0 " no i s e=" 0 " />
42 <ve lo c imet e r s i t e=" body_1_site " name=" ve l o c i ty_senso r1 " no i s e=" 0 " /

>
43 <acce l e romete r s i t e=" body_1_site " name=" acce l_sensor1 " no i s e=" 0 " />
44 <gyro s i t e=" body_1_site " name=" gyro_sensor1 " no i s e=" 0 " />
45 </ senso r>
46 </mujoco>

59

Appendix

12.3 Specialization project report fall 2022

Abstract

Abstract

Boa, a next generation sensor-driven snake robot, is currently under development at the
Department of Engineering Cybernetics (ITK) at the Norwegian University of Science
and Technology (NTNU). As a result, an assignment has been issued to research and
develop a contemporary snake robot simulator which can aid in rapid development of
state estimation and control strategies for Boa. This project looks into the research part
of the assignment and aims to both present different simulator frameworks and asses
their viability for snake robot research. Firstly the paper presents relevant background
information about snake robot research at ITK as well as theory on what a simulator is
and what a simulator consists of. The paper then proceeds to showcase seven different
relevant simulators for snake robot research and presents information in a structured
tabular for comparison. Lastly the paper showcases experiments completed on three of
the simulators, aswell as a discussion and a conclusion on what simulator should be used
for further development and research.

Keywords: Robotics technology, Snake Robots, Robotic simulator, Physics Engines

Sammendrag

Boa, en neste generasjons sensordrevet slangerobot, er nåværende under konstruksjon
ved Instituttet for Teknisk Kybernetikk (ITK) ved Norges teknisk-naturvitenskapelige
universitet (NTNU). Grunnet dette, har det blitt utgitt en oppgave om å undersøke og
utvikle en slangerobot simulator som kan bidra til raskere utvikling av tilstandsestimering
og kontroll algoritmer for Boa. Denne rapporten fokuserer på undersøkelsesdelen av opp-
gaven og har som mål å både presentere forskjellige simulator rammeverk og vurdere deres
brukbarhet for slangerobot forskning. Først presenterer rapporten relevant bakgrunnsin-
formasjon om slangerobot forskning ved ITK sammen med teori om hva en simulator
er og om hva den består av. Rapporten fortsetter så med å vise frem syv forskjellige
relevante simulator for slangerobot forskning og presenterer informasjon i en strukturert
tabell for enkel sammenlikning. Til slutt viser rapporten eksperimenter gjennomført på
tre av simulatorene, sammen med en diskusjon og en konklusjon rundt hvilken simulator
som einer seg best for videre utvikling og forskning.

Nøkkelord: Robotikk teknologi, Slange robotikk, Robotikk simulator og Fysikkmotor

i

60

Abstract

Abstract

Boa, a next generation sensor-driven snake robot, is currently under development at the
Department of Engineering Cybernetics (ITK) at the Norwegian University of Science
and Technology (NTNU). As a result, an assignment has been issued to research and
develop a contemporary snake robot simulator which can aid in rapid development of
state estimation and control strategies for Boa. This project looks into the research part
of the assignment and aims to both present different simulator frameworks and asses
their viability for snake robot research. Firstly the paper presents relevant background
information about snake robot research at ITK as well as theory on what a simulator is
and what a simulator consists of. The paper then proceeds to showcase seven different
relevant simulators for snake robot research and presents information in a structured
tabular for comparison. Lastly the paper showcases experiments completed on three of
the simulators, aswell as a discussion and a conclusion on what simulator should be used
for further development and research.

Keywords: Robotics technology, Snake Robots, Robotic simulator, Physics Engines

Sammendrag

Boa, en neste generasjons sensordrevet slangerobot, er nåværende under konstruksjon
ved Instituttet for Teknisk Kybernetikk (ITK) ved Norges teknisk-naturvitenskapelige
universitet (NTNU). Grunnet dette, har det blitt utgitt en oppgave om å undersøke og
utvikle en slangerobot simulator som kan bidra til raskere utvikling av tilstandsestimering
og kontroll algoritmer for Boa. Denne rapporten fokuserer på undersøkelsesdelen av opp-
gaven og har som mål å både presentere forskjellige simulator rammeverk og vurdere deres
brukbarhet for slangerobot forskning. Først presenterer rapporten relevant bakgrunnsin-
formasjon om slangerobot forskning ved ITK sammen med teori om hva en simulator
er og om hva den består av. Rapporten fortsetter så med å vise frem syv forskjellige
relevante simulator for slangerobot forskning og presenterer informasjon i en strukturert
tabell for enkel sammenlikning. Til slutt viser rapporten eksperimenter gjennomført på
tre av simulatorene, sammen med en diskusjon og en konklusjon rundt hvilken simulator
som einer seg best for videre utvikling og forskning.

Nøkkelord: Robotikk teknologi, Slange robotikk, Robotikk simulator og Fysikkmotor

i

Preface

Preface

This project report is written in the fall of 2022 for the Department of Engineering Cy-
bernetics at the Norwegian University of Science and Technology. The report is part of
a preliminary project before a written master thesis in the spring of 2023 and serves as
a starting point for said master thesis. This report covers 7.5 study points due to being
part of a two year curriculum instead of the usual 15 study points.

I would like to thank Jostein Løwer for continued guidance throughout this report and
ITK for assistance with both computers and office space.

- Oscar Mørk December 19, 2022

0.1 Perception of thesis assignment

The thesis assignment shown in 0.2 clearly states the goals of the project in a structured
list. However the first point on Give a brief overview of available physics engines and
visualizers have been perceived as give a brief overview of available physics engines and
simulator frameworks that can be relevant for robotic research. This was because the
amount of available simulators and physics engines number in the 30-40s and many would
not be relevant at all for snake robot research. Including this, point number five has also
been perceived as optional if time allows. Everything else was understood as stated in
the thesis assignment.

ii

NTNU Faculty of Information technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

Project Assignment

Student’s name: Oscar Mørk

Field: Engineering Cybernetics

Title (Norwegian): Fysikkbasert simulator for neste generasjons slangerobot

Title (English): Physics-based simulator for a next generation snake robot

Description:

Boa, a next generation sensor-driven snake robot, is currently under development at ITK. This assignment seeks to

develop a physics-based snake robot simulator, enabling rapid development of state estimation and control strategies for

the snake robot. Snake robot simulations pose strict requirements on the performance of the physics engine both in terms

of accuracy and execution time. In this assignment you will research different physics engines and visualizers that might

be suitable for developing a snake robot simulator.

1. Give a brief overview of available physics engines and visualizers (“platforms”).

2. Make a short-list of platforms that are suitable for snake robot research.

3. Perform selected simple simulations to evaluate the performance of the physics engines and visualizers for

the given application.

4. Give a recommendation for a physics engine and/or visualizer that should be used for further development of

a snake robot simulator.

5. If time permits: Showcase simple simulations of a snake robot with the chosen platform.

Co-supervisor(s): Jostein Løwer, NTNU

Trondheim, 24.08.2022

Øyvind Stavdahl
Supervisor

Preface

0.2 The thesis assignment

iii

Contents

Contents

Abstract i

Sammendrag i

Preface ii
0.1 Perception of thesis assignment . ii
0.2 The thesis assignment . iii

1 Nomenclature/Glossary 1

2 Introduction 2

3 Background and theory 3
3.1 Obstacle Aided Locomotion (OAL) . 3
3.2 Contemporary snake robots developed at ITK 4

3.2.1 The Mamba snake robot . 5
3.2.2 The Boa snake robot . 6

3.3 Previous simulators created for snake robot research 6
3.3.1 SnakeSim . 7
3.3.2 Simulator for OAL . 7
3.3.3 Motivation for creating another novel snake simulator 8

3.4 The structure and theory of physics simulators 8
3.4.1 The rendering engine . 8
3.4.2 The physics engine . 9

3.5 Contemporary physics engines . 9
3.5.1 Bullet . 9
3.5.2 ODE . 9
3.5.3 MuJoCo . 9
3.5.4 PhysX . 10
3.5.5 Key differences between the physics engines 10

3.6 Known issues with physics engines . 10

4 Researching, presenting and selecting simulators 11
4.1 Contemporary physics simulators . 12

4.1.1 Gazebo . 12
4.1.2 CoppeliaSim . 12
4.1.3 Webots . 13
4.1.4 Isaac-sim . 13
4.1.5 Unity . 13
4.1.6 MuJoCo (Standalone) . 14
4.1.7 PyBullet (Standalone) . 14

4.2 Selecting simulators for further study . 14

5 Experiment method 16

6 Experiment results 17

iv

Contents

6.1 Testing collision in CoppeliaSim . 17
6.2 Testing collision in Gazebo . 18
6.3 Testing collision with Isaac sim . 18

7 Discussion 19
7.1 The physics engines . 19
7.2 The simulator frameworks . 20

8 Conclusion 21

9 Appendix 22
9.1 A structural comparison of physics simulators 22

v

Nomenclature/Glossary

1 Nomenclature/Glossary

ITK Department of Engineering Cybernetics
NTNU Norwegian University of Science and Technology
HOAL Hybrid Obstacle Aided Locomotion
OAL Obstacle Aided Locomotion
POAL Perception Obstacle Aided Locomotion
API Application Programming Interface
GUI Graphical User Interface
Simulator Collective term for physics and rendering engines working together
Physics engine Software designed for simulating the physical behavior of objects
Rendering engine Software designed for generating visual representation of physics

1

Introduction

2 Introduction

After Pål Lilljebekks doctorate paper [1] on a new force/torque measurement technique
surrounding HOAL, NTNU began research on snake robotics implementing this premise.
This combined with other possible research benefits lead to the creation of two snake
robots named Mamba and Boa. One of the goals for these snake robots was through
experimentation to develop new control strategies and state estimation algorithms aswell
as proving HOAL as method for locomotion. However performing physical experiments on
real-life snake robots is a time consuming and costly task. From a research perspective,
it is desirable to test software, control strategies and state estimation algorithms on a
simulated robot, as simulations are cost efficient and allows for rapid turn-around time
when testing new strategies. As a result, a conscious effort has been made to develop a
new snake robot simulator for research into snake robots and OAL.

This assignment is the preliminary work for creating such a simulator where the end goal
is researching, gathering, presenting and selecting an existing simulator framework to
design a snake robot simulator with.

2

Background and theory

3 Background and theory

This chapter covers relevant theory and background for the report. It explains theory
behind Obstacle Aided Locomotion (OAL), the current state of snake robots at ITK
aswell as what a simulator is and why it is beneficial for further development of the snake
robot.

3.1 Obstacle Aided Locomotion (OAL)

In 2008, Transeth et al. published a paper named Snake Robot Obstacle-Aided Locomotion:
Modeling, Simulations, and Experiments [2]. This paper discusses how serpents mainly
use two ways to advance through terrain, called lateral undulation and obstacle aided
locomotion. The first term, lateral undulation, is used to explain how snakes exploit
the asymmetrical scales and schutes found on their belly to create friction in a single
direction, thus leading to propulsion. This method of locomotion is the most researched
and implemented in snake robotics [3] , but makes the robot overly dependent on the
surface it moves upon. The paper therefore rather looks at the other method of propulsion,
obstacle aided locomotion called OAL for short. This method employs the concept of
obstacle exploitation which implies that instead of avoiding obstacles, the snake uses
them to push against and create momentum. In this way the snake and snake robots
become more adaptable to the environment they are in and allows it to move where its
entire body cannot make contact with the ground. OAL has also evolved into a more
specialized version called Hybrid Obstacle Aided Locomotion or HOAL for short. HOAL
is the combination of obstacle aided locomotion and a technique called HPFC, Hybrid
Position/Force Control. HPFC as explained by T.Yoshikawa et al. [4] is a control strategy
that combines position control and force control to achieve a specific task. It is relevant
to know of HOAL for later explanations, but OAL will remain the focus of this report.

The theory behind OAL can be explained by looking at an example snake robot shown
in figure 1. A snake robot consists of multiple linkages which are represented by the
red, blue and green cylinders. In each of these linkages, there exists a servo motor to
generate torque aswell as a force/torque measurement system to measure said torque.
In an ideal world, where it is assumed that the friction acting on a linkage is either
known or equal to zero, the only forces acting on a linkage are the forces/torques of
the previous and next linkage aswell as that of external objects the linkage is in contact
with. Friction is denoted FR, force measurement from contact with previous linkage as
hn−1, force measurement from contact with the next linkage as hn, external forces as fext

and the summation of all external force vectors as ftot. Based on Newtons second law
shown in (2), the sum of forces equals mass times acceleration. The equation for external
forces acting on a linkage can then be shown mathematically as (3). By adding up all
the external force vectors as shown in (4), it is possible to calculate a total force vector
which gives the direction of motion the snake will achieve by pushing against the external
objects. This is an important premise for OAL.

3

Background and theory

FR ≈ 0 (1)
ΣF =ma (2)

fext =ma − hn − hn−1 (3)
ftot = fext1 + fext2 + fext3 ... + fextn (4)

Figure 1: Forces and torques applied on a 2-jointed 2D-snake pushing up against an
object. Courtesy of [5].

3.2 Contemporary snake robots developed at ITK

In 2011 a researcher named Pål Lilljebekk published his doctorate thesis titled Modelling,
development, and control of snake robots [1]. The thesis presents experiments with two
different snake robots named Wheeko and Kulko, where Kulko was used to experiment
on the premise of OAL. Kulko ended being able to measure contact forces with external
objects and was as stated by Pål lilljebekk fit for further OAL research. He did how-
ever in the last chapter of Kulko propose another method for environment sensing based
on force measurements which could simplify the snake robot design. This lead to The
Department of Engineering Cybernetics called ITK at NTNU starting work on creating
a new functional snake robot based on OAL with this new enviorment sensing method
in mind. The team that works on this is called the HOAL team and will be refereed to
this for the remainder of the report. As per writing the HOAL team have produced two
contemporary snake robots, named Mamba and Boa.

4

Background and theory

3.2.1 The Mamba snake robot

The following subsection is adapted from [5]

Figure 2: The Mamba snake robot, courtesy
of [6]

Mamba is the second snake robot based on
the OAL premise created at the Norwe-
gian University of Science and Technology,
shown in Figure 2. NTNU used the snake
robot for robotic testing on both ground
and in water. One of the main differences
between Mamba and the previous version
Kulko as presented by Pål lilljebekk was
the new intrinsic force/torque sensor sys-
tem.

The sensor system of the Mamba
snake robot
The force/torque measurement system in
theMamba robot is based on strain gauges.
As shown in figure 3, the strain gauges are mounted on an aluminum frame perpendic-
ular to each other, enabling it to measure force and torque on three axes, making it a
6-axis/multi-axis force torque transducer. Figure 3a and Figure 3b presents two different
versions of the sensor system, as there have been several attempts to both create and
improve the system. The situation however, as indicated by Fredrik Veslum [6] showed
that both systems had problems with noise, hysteresis and temperature deviation. This
including that Mambas electronics had become outdated at the time of Fredrik Velum’s
experiments made the robot unfit for further development.

(a) 3D-model of an older version(v0) of the
force-torque measurement system

(b) The strain gauge sensor system (v3)
mounted on the amplifier circuit board

Figure 3: The strain gauge sensor system in the Mamba snake robot. Courtesy of [6]
.

5

Background and theory

3.2.2 The Boa snake robot

Figure 4: The Boa snake robot, courtesy of
[7]

After the problems that were present with
Mamba, the HOAL team started develop-
ing a new snake robot called Boa. It is the
third snake robot based on OAL created at
NTNU, and is currently close to being in
a runnable state and to be used for exper-
imentation. The Boa snake in comparison
to the previous snakes employs a new ver-
sion of Pål Lilljebekks measurement sys-
tem based on industrially created sensors
instead of Mambas in house design.

The sensor system of the Boa snake
robot
Boas measurement system similarly to
Mambas still uses strain gauge measure-
ment technology to measure the forces and
torques, but has instead opted into using
commercially available senors combined together. This sensor combination is something
developed by the HOAL team in cooperation with [5] and uses two different sensors locked
together by a 3D-printed linkage to achieve necessary measurements. Boa is however still
under development, so the sensor system solution may have changed since the time of
writing.

Figure 5: Boa sensor system, courtesy of [5]

3.3 Previous simulators created for snake robot research

The topic of creating a viable simulation enviorment at ITK for a snake robot has been
attempted twice before. The first was created in 2018 called Snakesim shown in [8]
and the other was a master thesis produced in 2019 called Simulator for Obstacle Aided
Locomotion in Snake Robots shown in [9].

6

Background and theory

3.3.1 SnakeSim

The first simulator as mentioned was called Snakesim and was a ROS + Gazebo based
simulator created to provide a virtual rapid-prototyping framework for Perception Driven
Obstacle-Aided Locomotion (POAL). It featured the ability to simulate a snake robot in
environments cluttered with obstacles, aswell as the ability to add or remove sensors as
necessary. A depiction of how the software system communicated can be seen in figure
6. According to the research articles conclusion the simulator worked very well and made
it possible to swap out the sensor reading portion in the simulator with the sensors from
the actual snake robot. In this way it was basically a plug and play system which could
first asses how a snake robot would react to an enviorment and then experiment with the
robot in the same enviorment.

Figure 6: Snakesim software architecture, courtesy of [8]

3.3.2 Simulator for OAL

The second simulator created at NTNU for snake robot research was Simulator for Ob-
stacle Aided Locomotion in Snake Robots. This simulator was created as part of a master
thesis, and was created with guidance from one of the creators of Snakesim. Instead of
using an existing simulator framework, this simulator was created solely in matlab im-
plementing the physics functions directly. This allowed the simulator to be tailor made
towards testing specific concepts, but as the paper discusses there were cases where the
laws of energy conservation and momentum were violated. This means that it ended up
with simulations that does not match the real world, likely due to not implementing a
tested physics engine as a base line. The paper does however conclude that the premise
of HOAL should be further researched.

7

Background and theory

3.3.3 Motivation for creating another novel snake simulator

As shown in chapter 3.3.1 and 3.3.2, both present a viable option to provide simulations
for snake robot research. However due to different circumstances such as lack of version
control and lack of git commits both are as per now either lost or non functional. They
are by no means useless as they provide an abundance of information on how to develop a
simulator, but it does require a new one to be created. This also underlines the importance
of good version control for the coming master thesis.

3.4 The structure and theory of physics simulators

Another important subject, is the concept of what a simulator is, what it consists of and
it’s use cases. This is because a simulator is a widely used term to explain anything which
digitally mimics a real world phenomena, but a simulator usually consists of multiple
programs interacting. Here namely the physics engine and the rendering engine which
works in unison as shown in figure 7.

3.4.1 The rendering engine

The rendering engine is the software responsible for controlling and rendering graphics
in a simulation. It does this by continuously receiving information from the physics
engine, and uses the positional data to move the objects in the simulation an appropriate
amount. It is a useful tool to provide a more human interactable enviorment and varies
from simulator to simulator. Some of the most common rendering engines are OpenGL
used by MuJoCo and PyBullet and OGRE used by Gazebo and Isaac sim.

Figure 7: The simulation loop where the rendering engine is marked blue and the physics
engine is marked red. Courtesy of [10]

8

Background and theory

3.4.2 The physics engine

The physics engine is the part of the simulator which calculates how the simulation should
proceed, from one time step to the next. It is essential in any real time simulation system,
and there exists many different versions. The physics engine can be further broken down
into two parts namely collision detection and the physical engine calculation part. These
two work together to both calculate and check for collisions continuously in the simulation
which makes the movement and behavior of objects in the virtual world appear more
realistic.

3.5 Contemporary physics engines

In today’s marked, there exists many viable physics engines. There are however some
that stand out, and appear more often than others in both research and games. Four of
these which are relevant to the researched simulators in chapter 4 are presented here.

3.5.1 Bullet

Bullet is at the time of writing one of the more implemented physics engines within
robotic research. It is an open source project built in 2013 and is offered by many of
the front-runners within simulation, such as Gazebo, CoppeliaSim and alot of video game
platforms. It is written in C/C++ and is continuously updated by the community to help
it both evolve and stay up to date with current needs. It’s latest release at the time of
writing is Bullet 3.2.4 released on the 25. April 2022.

3.5.2 ODE

ODE is another one of the more used physics engines similarly to Bullet. It is present
inn almost all widely used robotics simulators such as Gazebo, Webots, CoppeliaSim and
is also open source. It is written in C/C++ and was first released on the 8. may 2001
making it quite old in the technological perspective. Its last stable release was July 30,
2020 meaning it is still being updated too this day.

3.5.3 MuJoCo

MuJoCo is one of the newer physics engines which is starting to make more and more
appearances in simulator usage. It is known to be very good at specifically collision
physics [11] which makes it interesting for the premise of OAL. It is likewise as the others
written in C/C++ and is open source. MuJoCo was first released in 2015, but re-released

9

Background and theory

as MuJoCo 2.0 in 2018. Its latest stable release is MuJoCo 2.3.0 released on the 18. Oct
2022 and is continuously being updated through community contributions.

3.5.4 PhysX

PhysX is an open-source real time physics engine developed by Nvidia as part of their
Nvidia GameWorks software suite. It was originally released as just PhysX in 2003 but
has since then been updated all the way to the newest PhysX 5 which has its latest stable
release on October 12, 2021. It is mostly known as a video game engine but in NVIDIA’s
newest project Isaac sim, it has been included as the sole physics engine meaning Nvidia
is trying to make it more applicable to research aswell. It has interfaces with both C and
Python.

3.5.5 Key differences between the physics engines

As can be seen from the chapter 3.5.1, 3.5.2, 3.5.3 and 3.5.4 they all seem to have similar
features and are hard to tell apart. There are however a couple key differences between
them based on how they approach physics calculations. The first key difference between
these physics engines is the type of equations they use to simulate dynamics. Bullet
uses a Lagrangian approach, which is based on the principle of least action. ODE uses a
Newtonian approach, which is based on Newton’s laws of motion. MuJoCo uses a Newton-
Euler approach, which is also based on Newton’s laws but includes additional terms to
model the rotational motion of objects. PhysX uses a similar Newtonian approach to
MuJoCo.

Another key difference is the type of collision detection algorithms they use. Bullet uses
an algorithm, which is optimized for high-speed collision detection. ODE uses a more
general-purpose algorithm that can handle a wider range of collision scenarios. MuJoCo
and PhysX use similar algorithms for collision detection which are both more general
purpose.

3.6 Known issues with physics engines

One of the main known problems with all existing physics engines in general is that of
collision detection and it’s problems with high velocity objects. It is something that stems
from the very nature of physics engines and how they use time steps to move the physics
forward. This means that if two objects manage to collide between time steps, they are
not caught by the physics engine leading to objects intertwining. This further leads to
physics breaking down and as a result can ruin simulations. The physics engines that
use this kind of collision detection are called DCD (Discrete collision detection). There
does however exist a sort of solution to this problem, which is called CCD (Continuous

10

Researching, presenting and selecting simulators

collision detection). CCD instead of just checking for collisions at each time step also tries
to predict the movement of the object, until the next time step occurs. In this way it is
able to prevent the collision problems, but does in turn require alot more computational
power meaning that it is not always a viable solution when real time is of the essence. It
is worth mentioning that ODE, Bullet, MuJoCo and PhysX all offer CCD.

4 Researching, presenting and selecting simulators

This section covers the work done in researching, presenting and selecting simulators to
proceed experimenting with. A recent review [12] on simulators for robotic applications
provides a good overview of the current state of the field. The following section is heavily
based on the aforementioned review.

An important first step in this project was to ascertain what makes a simulator useful
for snake robot research. To achieve this a literature search was conducted using google
scholar which yielded a couple of interesting articles, especially [12]. This research paper
provides both a definition of what a simulator should contain aswell as graphs and ta-
bles comparing information. One of these tables can be shown in figure 8 which shows
how many times relevant simulators have been cited in research articles found on google
scholar. This provides insight into what simulator platforms are preferred by the research
community which may be a good indicator on which platforms should be researched fur-
ther.

Figure 8: Citation count from 2016 to 2020 for reviewed simulators. Courtesy of [12]

Based on the number of citations in the graph presented in figure 8, it was decided too
present and compare most of the simulators that had 200 citations or more and that were
deemed usable for mobile robotic research by [12]. This is because it narrows down the
amount that has to be researched as part of this preliminary project aswell as meaning
that the simulators are most likely widely used. Including this some other simulator
platforms that were found interesting have been included aswell.

11

Researching, presenting and selecting simulators

4.1 Contemporary physics simulators

This chapter provides an overview over investigated simulator frameworks for this research
paper. A structural overview can be seen in appendix 9.1. All logos in this chapter are
taken from their respective homepages and links can be found in references [13], [14], [15],
[16], [17] and [18].

4.1.1 Gazebo

As seen from figure 8, Gazebo is one
the most mentioned simulator platforms in
google scholar meaning that it is one of if
not the most used simulator platform for
robotic research. It was firstly developed in
2004 through something called The player
project and has since then become fully standalone and is now supported by OSRF (Open-
source Robotics foundation) for future development. It is designed to run on the Linux
OS called Ubuntu and is like many other simulation tools written in C++. It provides
API support in C++ aswell making it possible to run simulations from external programs.
Gazebo also provides many different physics engines such as ODE, Bullet, Simbody and
Dart making it versatile in what the user values when completing simulations, either
speed, realism or other factors. Lastly it contains a large repertoire of sensors and objects
which makes rapid development of robotic simulations both quick and easy.

4.1.2 CoppeliaSim

Coppelia sim (previously called V-rep) is
another popular choice when simulating
ground based mobile robots such as snake
robots. It is possible to run on all major
operating systems such as Windows, Linux
and Mac OS making it easy to work with
regardless of the available computer. It is built around having both Python and Lua
scripts that it gives to each object in the simulation, aswell as API’s in many different
programming languages which one can use to interact with the simulation. It also provides
many different physics engines such as ODE, Bullet, Newton, Vortex and MuJoCo mak-
ing it very versatile based on what the simulation should focus on. Lastly and equally to
Gazebo it also contains a large repertoire of available sensors and prebuilt objects helping
with rapid development.

12

Researching, presenting and selecting simulators

4.1.3 Webots

Webots was developed by the Swiss Fed-
eral institute of Technology in 1996 and has
since then been continuously updated with
newer releases. It has also since 2018 been
released as free and open source under the
Apache 2 license. Webots runs equal to
Coppelia Sim on all major operating sys-
tems such as Windows, Linux and MAC
OS and is written in C++. It has API support for almost all major programming lan-
guages within robotics such as C, C++, Python, Matlab and Java making it quite versatile
as long as the user knows more or less any programming language. Webots does how-
ever only allow for the ODE physics engine making it less versatile. Lastly Webots also
sports a large variety of existing robots, actuators and sensors which is useful for rapid
development.

4.1.4 Isaac-sim

Isaac-sim is NVIDIA’s attempt at creating
a competitive and viable robotic simulator
within their own framework. It is not used
for robotic research by the majority of the
community as per now 8 but this is some-
thing that might change in the future. It is
available on both Linux and Windows and
has it’s main programming interface through either C or Python. Isaac sims main simu-
lator is the PhysX 5 and it does per now not allow other physics engines to be run within
it’s simulation framework. It does however benefit from being able to use Ray-tracing to
create very real looking and life like simulation environments aswell as many state of the
art possibilities within cloud computing and machine learning systems. It’s latest release
as per writing is 01.01.2022 but gets continuously updated by NVIDIA.

4.1.5 Unity

Unity is a game engine created by Unity
technologies in 2005. It is not designed to
be used for robotics, but contains alot of
the necessary tools to do so which is why
it is presented here. It benefits from having
a large world wide user base, aswell as continues updates to it’s system. It is written in
C++/C# and allow headless controll through a well established interface towards many

13

Researching, presenting and selecting simulators

code editors. Including this Unity’s personal edition is free to use and it’s last stable
release was on 28.07.2022.

4.1.6 MuJoCo (Standalone)

MuJoCo including being a physics engine
also offers a standalone product which can
be used for simulating robotics. It uses the
OpenGL rendering engine and direct com-
munication with the MuJoCo source code to complete simulations. Using a standalone
variant like this gives alot more flexibility in controlling the simulations, but may lead to
a longer development time as it lacks the user interfaces of the other simulators such as
Gazebo, Coppelia Sim and Isaac-sim. For more direct information on the physics engine,
look at chapter 3.5.3.

4.1.7 PyBullet (Standalone)

Similar to MuJoCo, Bullet also offers its own standalone version for simulation purposes.
It uses the OpenGL rendering engine with direct communication to the Bullet source code
for simulation. It does however allow a python interface towards the physics engine which
makes it both easy to implement and use. For more direct information on the physics
engine, look at chapter 3.5.1.

4.2 Selecting simulators for further study

After gathering several different and viable simulators, it was important to narrow them
down even further. It was decided to continue with three simulators as experimenting
with a simulator requires learning alot of specific details about each framework which
again requires alot of work and time. To make it easier to sort out three simulators to
experiment with, a tabular was created which listed the most desirable aspects for a snake
robot research simulator.

Must have:

• Ability to accurately simulate collision physics (Meaning does not struggle with
objects intertwining during simulations)

• Ability to run simulations without the rendering engine (headless mode) to help
speed up simulations for machine learning

• API with good documentation

14

Researching, presenting and selecting simulators

• Ability to import URDF, MJCF or other reasonable file formats

• Ability to log sensor measurements such as velocity, position, orientation, forces and
accelerations

Nice to have:

• Open-source simulator and physics engine (meaning possible to see all the source
code. This also implies that the they are free to use)

• Available on all major OS (Linux, Windows, MAC)

• Ability to implement ROS (Robot operating system)

• Compatibility with multiple programming languages

The point on accurately simulating collision physics is more related to the physics engines
the simulators use and therefore has to be assessed through experimentation. The other
parts however can be seen from the rest of chapter 4.
After comparing and discussing with the supervisor it was decided that the three simu-
lators to continue testing with was Coppelia Sim, Gazebo and Isaac sim. Gazebo
was selected due to being the most prevalent simulator for robotic research (see figure 8)
aswell as the main simulator for the previous attempt named Snakesim shown in chapter
3.3.1. Coppelia Sim was selected due to having access to MuJoCo aswell as also being
widely used by the research community. Lastly Isaac sim was chosen due to being brand
new aswell as containing alot of interesting features such as cloud computing and ma-
chine learning gyms. Including these reasons all the chosen simulators also contain all the
must have points aswell as alot of the nice to have from the tabular presented in this sub
chapter.

15

Experiment method

5 Experiment method

After selecting three simulators to continue experimenting with, it was then time to
design a test. The goal of the test as discussed in chapter 4.2 was to investigate each
simulators ability to accurately simulate collision physics. This is because using collisions
with external objects to create momentum is one of the main concepts of OAL, and as
mentioned in chapter 3.6, collision physics is also one of the main issues with physics
engines. A couple experimentation methods were proposed, but in the end it was settled
on simply bouncing a ball while looking at its position and velocity data. This gives
insight into the physics engines ability to rapidly swap momentum directions which is
crucial for when a snake robot pushes of against an object. A simple test like this also
helps make time for familiarization with the frameworks API which is another crucial
part when selecting simulators in the end. It should be pointed out however that this will
not explore the physics engines ability to handle large workloads or complex dynamics,
but this is deemed somewhat unnecessary as snake robot collisions will mostly not push
a simulators limits. The data used for the ball object in the test aswell important values
for the physic engines are presented in tabular 1.

Experiment values
Density 1.9 kg/m3

Mass 1 kg
Radius 0.5 m
Drop height 10 m
Restitution 1.00
Gravity -0.98 m/s2

Time step 1 ms
Max velocity 100m/s

Table 1: Experiment values for ball object and physics engine used in experiments

16

Experiment results

6 Experiment results

6.1 Testing collision in CoppeliaSim

The first simulator to be tested was Coppelia sim which is presented in chapter 4.1.2.
Coppelia sim has access to two of the main physics engines that were considered to be
useful for simulation purposes, namely Bullet and MuJoCo. It was therefore decided to
run the tests with these two physics engines and look at both ease of implementation
aswell as position and velocity results.

(a) Position graph for bouncing ball with
Bullet

(b) Velocity graph for bouncing ball with
Bullet

Figure 9: Plots for the Bullet engine

(a) Position graph for bouncing ball with
MuJoCo

(b) Velocity graph for bouncing ball with
MuJoCo

Figure 10: Plots for the MuJoCo engine

17

Experiment results

6.2 Testing collision in Gazebo

The second simulator to be tested was Gazebo which is presented in chapter 4.1.1. Gazebo
also has access to multiple physics engines, but since Bullet was already tested with
Coppelia sim, it was decided to test Gazebo with the ODE engine.

(a) Position graph for bouncing ball with
ODE created using Gazebos built in graph-
ing tool

(b) Velocity graph for bouncing ball with
ODE created using Gazebos built in graph-
ing tool

Figure 11: Plots for the ODE engine

6.3 Testing collision with Isaac sim

The last simulator to be tested was the Isaac sim simulator and it’s physics engine PhysX.

(a) Position graph for bouncing ball with
PhysX

(b) Velocity graph for bouncing ball with
PhysX

Figure 12: Plots for the PhysX engine

18

Discussion

7 Discussion

This section discusses results from the experiments conducted in chapter 6 and the im-
plication of these. It also discusses findings for the tested simulator frameworks aswell as
their strengths and weaknesses.

7.1 The physics engines

From the results in chapter 6, there are a few interesting observations to be made. The
first is that the time it takes before the ball loses all momentum varies from simulator
to simulator. This is because every physics engine has its own way of enabling resti-
tution (bounciness) and friction, meaning that the slight differences in simulation time
should be contributed to minor errors during setup. The second observation is that all
physics engines in all simulators manage to accurately portray changes in both velocity
and position for the ball. This is to be expected as simply dropping a ball requires little
processing power aswell as providing only one set of collisions for the engine to calculate.
It does however show that simple collisions work within the investigated simulators and
should indicate that simple snake robotic simulations, which also requires few collisions,
should be expected to work aswell. Including this simple test, a more in depth one of
three physics engines can be found in S M Longshaws paper, Numerical Modelling and
Visualization of the Evolution of Extensional Fault Systems [19]. This paper compared
the frame rates of the three physics engines ODE, Bullet and PhysX while dropping 625
spheres in consecutive iterations. This shows that when the physics engines are put under
more strain, some engines perform better than others as shown in figure 13. It should
however be noted that the experiment was conducted in 2012 which in a technological
perspective is quite old, meaning that the results could have changed by then.

Figure 13: Frame rate comparison of PhysX, Bullet and ODE when dropping 625 spheres.
Test conducted in 2012 which should be taken into consideration. Courtesy of [19]

19

Discussion

7.2 The simulator frameworks

Including looking at the physics engines, it is also important to look at the simulator
frameworks which hosts them. These do not directly affect how the physics work within
a simulation, but controls everything around it from setup, programming, GUI and API.
Each framework has some major benefits and some drawbacks which weighs in on what
should be proceeded with.

Firstly Gazebo, Gazebo benefits mainly from being one of the most used simulator frame-
works for robotic research as shown in figure 8. This provides it with a plethora of research
papers, community tutorials and other useful documentation that made both the simula-
tor and it’s API easy to comprehend. It allows multiple physics engines and is open-source
meaning it is free to use and allows the source code to be inspected. Including this there
are no major drawbacks with Gazebo and the only thing this report could find were more
personal preference differences such as lack of MJCF import formats and lack of variety
in programming languages.

Coppelia sim as explained in chapter 4.1.2 benefits majorly from having access to the
MuJoCo physics engine as this physics engine is known to be quite adept at collision
physics [11]. It does however seem that in comparison with Gazebo and Isaac sim, Cop-
pelia sims API contains less functions with more limited descriptions. This meant that
it took more time during experimentation to figure out how to access objects and gather
information, which can pose problems with further development. It does also not have the
same community presence as Gazebo making both tutorials and research papers harder
to locate. It should however be mentioned that these are minor drawbacks and Coppelia
sim on it’s own would still be plausible for snake robotic research.

Isaac sim benefits alot from being produced by Nvidia and it shows when using it’s
graphical user interface (GUI) and it’s application interface (API). Everything is very
well described and explained with well thought out tutorials which made understating it
quite simple. Isaac-sim does also provide alot more options in it’s GUI than Gazebo and
Coppelia Sim such as a large repertoire of premade materials which can be added onto
objects. Further more it has access to many other interesting software solutions such as
machine learning gym and cloud computing presented in chapter 4.1.4. Isaac sim does
however contain two drawbacks. Firstly Isaac sim is a commercial product meaning that
it’s code is closed source. This can make it difficult to understand how the software works,
to customize the software if needed or to troubleshoot problems that may arise. Secondly
Isaac sim requires the computer to contain a Nvidia Ray Tracing (RTX) graphics card
to be able to run at all. These are usually quite expensive meaning that even though
Isaac sim is free to use as per now, there still is a hidden cost behind it. This also makes
simulations difficult to complete outside of a dedicated work computer and is something
that should be considered before selecting Isaac sim.

20

Conclusion

8 Conclusion

After researching both physics engines and simulator frameworks for this project assign-
ment, it has become clear that there are both positive and negative aspects with every
physics engine and simulator framework. However, it has also become apparent that ev-
ery physics engine and simulator framework are more or less suited to be used for further
snake robot research as shown by experiments in section 6. It is therefore much up to
personal preference aswell as future potential that a simulator was selected.

In conclusion this project recommends that simulator construction and implementation
continues on Isaac sims platform. Isaac sim even with it’s drawbacks also have alot of the
same positives that Gazebo had, but due to future potential such as cloud computing,
machine learning gyms aswell as alot of other nice to have features Isaac sim seems to
be the better choice. There is also not much research completed on robotics in Isaac sim
meaning that continuing with Isaac sim can provide the added benefit of researching the
usefulness of the simulator. However in the case that the user does not have access to an
RTX graphics card, the project recommends Gazebo instead.

21

Appendix

9 Appendix

9.1 A structural comparison of physics simulators

Gazebo Coppelia
Sim Webots Isaac sim Unity MuJoCo Pybullet

General info

Open
Source
Robotics
Foundation

Coppelia
robotics

Cyberbotics
Ltd NVIDIA

Unity
Technolo-
gies

Deep Mind Bullet
physics

Supported
OS GNU/Linux

GNU/Linux,
Mac-OS,
Windows

GNU/Linux,
Mac-OS,
Windows

Ubuntu,
Windows

GNU/Linux,
Mac-OS,
Windows

GNU/Linux,
Mac-OS,
Windows

GNU/Linux,
Windows,
MAC-OS

Last release 11.0.0
(30.01.2020)

4.4
(22.08.2022)

R2022
(13.09.2022) 01.01.2022 28.07.2022 2.3.0

(18.10.2022)
3.2.4
(25.04.2022)

Programming
language C++ Lua,

Python C++ C, Python C++/C# C/C++ Python

API support C++

C,
C++,
Python,
Matlab,
Java

C,
C++,
Python,
Matlab,
Java

C, Python C++/C# C Python

Physics
engines

ODE,
Bullet,
Simbody,
Dart

Bullet,
ODE,
Vortex,
Newton,
MuJoCo

ODE PhysX 5 PhysX MuJoCo Bullet

CAD files
support

SDF,
URDF,
OBJ, STL,
Collada

OBJ, STL,
DXF, 3DS,
Collada,
URDF

WBT,
VRML,
X3D

MJCF,
XML,
URDF

FBX, Col-
lada, DXF,
OBJ

MJCF,
XML,
URDF

MJCF,
URDF,
SDF

Licences Open-
source

Free
educational
use
(Students
and
research)

Open-
source
and com-
mercially
available

Local free
use with
cloud up-
grades
possible

Open-
source
and com-
mercially
available

Open-
source

Open-
source

Supports
Force/Torque
sensor

✓ ✓ ✓ ✓ ✓ ✓ ✓

22

Appendix

References

[1] Pål Liljebäck. Modelling, development, and control of snake robots. Vol. 2011:70.
Doktoravhandlinger ved NTNU (trykt utg.) Norwegian University of Science, Tech-
nology, Faculty of Information Technology, Mathematics, and Electrical Engineer-
ing, Department of Engineering Cybernetics, 2011. isbn: 9788247126677.

[2] A. A. Transeth et al. “Snake Robot Obstacle-Aided Locomotion: Modeling, Simu-
lations, and Experiments”. In: IEEE Transactions on Robotics 24.1 (2008), pp. 88–
104. doi: 10.1109/TRO.2007.914849.

[3] Aksel Andreas Transeth and Kristin Ytterstad Pettersen. “Developments in Snake
Robot Modeling and Locomotion”. In: 2006 9th International Conference on Con-
trol, Automation, Robotics and Vision. 2006, pp. 1–8. doi: 10.1109/ICARCV.2006.
345142.

[4] T. Yoshikawa and A. Sudou. “Dynamic hybrid position/force control of robot manipulators-
on-line estimation of unknown constraint”. In: IEEE Transactions on Robotics and
Automation 9.2 (1993), pp. 220–226. doi: 10.1109/70.238286.

[5] Victor Melhuus Joel Mörlin and Oscar Mørk. Intrinsic Force-Torque Sensor System
for a Next Generation Snake Robot. 2021. url: https://ntnuopen.ntnu.no/ntnu-
xmlui/handle/11250/2781042 (visited on October 12, 2022).

[6] Fredrik Veslum. “Assessment of the Mamba snake robot sensor system”. In: (2020).
[7] Jostein Løwer, Irja Gravdahl, Damiano Varagnolo, and Øyvind Stavdahl. “Proprio-

ceptive contact force and contact point estimation in a stationary snake robot”. In:
(2022).

[8] Filippo Sanfilippo, Øyvind Stavdahl, and Pål Liljebäck. “SnakeSIM: a ROS-based
control and simulation framework for perception-driven obstacle-aided locomotion
of snake robots”. In: Artificial Life and Robotics 23 (August 2018). doi: 10.1007/
s10015-018-0458-6.

[9] Atussa Koushan. Simulator for Obstacle Aided Locomotion in Snake Robots. 2019.
url: https://ntnuopen.ntnu.no/ntnu- xmlui/bitstream/handle/11250/
2780900/no.ntnu%3Ainspera%3A56990118%3A20964868.zip?sequence=2 (visited
on October 12, 2022).

[10] Harold serrano. How a simulator works. 2019. url: https://www.haroldserrano.
com/blog/the-heart-of-a-game-engine-the-game-engine-loop (visited on
November 30, 2022).

[11] Tom Erez, Yuval Tassa, and Emanuel Todorov. “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX”. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA). 2015, pp. 4397–
4404. doi: 10.1109/ICRA.2015.7139807.

[12] Anthony Vanderkop Jack Collins Shelvin Chand and David Howard. A Review of
Physics Simulators for Robotic Applications. 2021. url: https://ieeexplore.
ieee.org/document/9386154 (visited on November 1, 2022).

23

Appendix

[13] Gazebo. Gazebo logo. url: https://gazebosim.org/home (visited on November 17,
2022).

[14] CoppeliaSim. CoppeliaSim logo. url: https://www.coppeliarobotics.com/ (vis-
ited on November 17, 2022).

[15] Webots. Webots logo. url: https://www.cyberbotics.com/ (visited on Novem-
ber 17, 2022).

[16] Nvidia. Nvidia logo. url: https://www.nvidia.com/en- gb/about- nvidia/
legal-info/logo-brand-usage/ (visited on November 19, 2022).

[17] Unity. Unity logo. url: https://unity.com/legal/branding-trademarks (vis-
ited on November 19, 2022).

[18] MuJoCo. MuJoCo logo. url: https://mujoco.org/ (visited on November 19,
2022).

[19] S M Longshaw. “Numerical Modelling and Visualization of the Evolution of Ex-
tensional Fault Systems”. English. PhD thesis. United Kingdom: The University of
Manchester, October 2011.

24

	Abstract
	Sammendrag
	Preface
	Nomenclature/Glossary
	Introduction
	Structure of thesis
	Caveats
	Comment on references in the thesis
	Time limitations

	Interpretation of thesis assignment
	The thesis assignment

	Background and Theory
	Obstacle-Aided Locomotion (OAL)
	Contemporary snake robots developed at ITK
	The Mamba snake robot
	The Boa snake robot

	Previous simulators created for snake robot research
	SnakeSim
	Simulator for OAL
	Motivation for creating another novel snake simulator

	The structure and theory of physics simulators
	The rendering engine
	The physics engine

	Contemporary physics engines
	Bullet
	ODE
	MuJoCo
	PhysX

	Common weaknesses in contemporary physics engines
	The MJCF robot modeling language
	The structure of MJCF
	The main classes of MJCF

	Friction and snake robots
	Friction
	Isotropic and anisotropic friction
	Effects of isotropic and anisotropic friction on snake robots

	Software specification
	Design goal: User-friendliness
	Design goal: Physical realism
	Design goal: Data acquisition and presentation
	Design goal: Maintainability
	Design goal: Affordability
	Design goal: Expandability
	Prioritized list of desired features

	Development of the simulator
	Development with Isaac-sim
	Problems with Isaac-sim
	Switching to MuJoCo
	MuJoCos simulator platform

	The design and structure of the simulator
	Software module setup
	Simulation module
	simulate_snake.py
	get_snake_info.py
	ctrl_snake.py
	view_model.py

	Configuration module
	Generate simulation world module
	gen_snake_model_mjcf.py and gen_terrain_model_mjcf.py
	gen_mjcf_main.py

	Storing and plotting information module
	Trade offs during development
	Using MJCF instead of URDF
	Using simulated sensors instead of taking data directly

	How to use the software
	How to run a simulation
	How to control the snake robot

	Experiment method
	Experiment I, Configuring the snake
	Experiment II, Collision experiments
	Experiment III, Lateral undulation
	Experiment IV, Form closure

	Experiment results
	Experiment I, Configuring the snake
	Experiment II, Collision experiments
	Experiment III, Lateral undulation
	Experiment IV, Form closure

	Discussion and results
	Experiment I, configuring the snake
	Experiment II, Collisions tests
	Experiment III, Lateral undulation
	Experiment IV, Form closure

	Conclusion
	Future work
	Better control algorithms
	Force/torque measurement changes
	Divide up snake.xml into three separate files
	Implement contact pair for anisotropic friction

	Appendix
	Configuration file
	MJCF file for snake robot with two linkages
	Specialization project report fall 2022

