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Abstract

The number of maritime systems being launched in the ocean is increasing every
year, including the development of offshore wind farms, underwater robotics for
ocean condition monitoring, and autonomous ship transport. Many of these activi-
ties are safety-critical, making it essential to have a closed-loop control system that
satisfies constraints arising from underlying physical limitations and safety aspects
in a robust manner. However, this is often challenging to achieve for real-world
systems. For example, autonomous ships at sea have nonlinear and uncertain
dynamics, and are subject to numerous time-varying environmental disturbances
such as waves, currents, and wind. There is increasing interest in using machine
learning-based approaches to adapt these systems to more complex scenarios, but
there is currently no standard framework to guarantee the safety and stability of
such systems.

Recently, predictive safety filters (PSF) have emerged as a promising method for
ensuring constraint satisfaction in learning-based control, bypassing the need for
explicit constraint handling in the learning algorithms themselves. The safety fil-
ter approach leads to a modular separation of the problem, allowing the usage of
arbitrary control policies in a task-agnostic way. The filter takes in a potentially
unsafe control action from the main controller and solves an optimization problem
to compute a minimal perturbation of the proposed action, which adheres to both
physical and safety-related constraints.

In this work, we combine reinforcement learning (RL) with predictive safety fil-
tering in the context of marine navigation and control. The RL agent is trained
on path following and safety adherence across a wide range of randomly generated
environments, while the predictive safety filter continuously monitors the agents’
proposed control actions and modifies them if necessary. The combined PSF/RL
scheme is implemented on a simulated model of Cybership II, a miniature replica
of a typical supply ship. Safety performance and learning rate are evaluated and
compared with those of a standard, non-PSF, RL agent. It is demonstrated that
the predictive safety filter is able to keep the vessel safe, while not prohibiting the
learning rate and performance of the RL agent.
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Sammendrag

Antall maritime stystemer som settes til havs øker for hvert år, inkludert utviklin-
gen av havvindsparker, undervannsrobotikk, og autonom skipstransport. Mange
av disse systemene er sikkerhetskritiske, noe som gjør det viktig å ha et lukket
sløyfe kontrollsystem som tilfredsstiller underliggende fysiske begrensninger og sik-
kerhetsaspekter p̊a en robust måte. Dette er imidlertid ofte utfordrende å oppn̊a
for systemer i den virkelige verden. For eksempel har autonome skip ikke-lineær
og usikker dynamikk, og er underlagt mange tidsvarierende miljøforstyrrelser som
bølger, havstrømmer og vind. Det er økende interesse for å bruke tilnærminger ba-
sert p̊a maskinlæring for å tilpasse disse systemene til mer komplekse scenarioer,
men det finnes ingen standard rammeverk for å garantere sikkerheten og stabili-
teten til slike systemer.

Nylig har prediktive sikkerhetsfiltre (PSF) dukket opp som en metode for å sikre
oppfyllesle av begrensninger i læringbasert kontroll, og omg̊ar behovet for eksplisitt
h̊andtering av begrensninger i selve læringalgoritmene. Sikkerhetsfiltertilnærmin-
gen fører til en modulær separasjon av problemet, og tillater bruk av vilk̊arlige
kontrollpolitikker (engelsk: control policies) p̊a en måte som er uavhengig av opp-
pgaven. Filteret tar inn en potensielt usikker foresl̊att kontrollhandling fra hoved-
kontrolleren og løser et optimaliseringsproblem for å beregne en minimal endring
av den foresl̊atte handlingen, som overholder b̊ade fysiske og sikkerhetsrelaterte
begrensninger.

I dette arbeidet kombinerer vi forsterkende læring (engelsk: reinforcement lear-
ning / RL) med prediktiv sikkerhetsfiltrering til marin navigasjon og kontroll.
RL-agenten blir trent p̊a sti-følging og sikkerhetsoverhodelse over et bredt spek-
ter av tilfeldig genererte miljøer, mens det prediktive sikkerhetsfilteret kontinuerlig
overv̊aker agentenes foresl̊atte kontrollhandlinger og modifiserer dem om nødvendig.
Den kombinerte PSF/RL-metoden er implementert p̊a en simulert modell av Cy-
bership II, en miniatyrreplika av et typisk forsyningsskip. Sikkerhetsytelse og
læringsrate blir evaluert og sammenlignet med en standard RL-agent uten PSF.
Det er demonstrert at det prediktive sikkerhetsfilteret er i stand til å holde fartøyet
trygt, samtidig som det ikke forhindrer læringsraten eller ytelsen til RL-agenten.
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1 Introduction

It has become common practice to employ machine learning methods for au-
tonomous control, given they can provide excellent performance for complex,
non-linear control problems and also generalize previously learned rules to new
scenarios [1]. One of the most direct approaches is reinforcement learning (RL),
which without any prior information about the physical model or surrounding
environment, iteratively can approximate optimal behavior. While RL methods
are most known for succeeding in the domain of computer games and simple, de-
terministic simulated environments, more sophisticated algorithms and increased
processing power has gradually shifted the focus of reinforcement learning toward
real-world applications.

However, a major challenge in RL and learning-based control research in general
is safety, or how to guarantee safe behavior when the main control algorithm is
of a black-box nature [2]. This thesis explores a promising method, the predictive
safety filter, for learning-based marine navigation and control. The filter ensures
safe environment exploration while minimally interfering with the operation of the
learning agent.

Autonomous surface vessels (ASVs) have the potential to improve many aspects
of the maritime transportation sector [3]. From reducing shipping costs [4], to
reducing the risk of lives lost at sea [5], ASVs have several potential benefits
compared with traditional human-controlled ships. However, the successful imple-
mentation of autonomous surface vessels implicates many challenges ranging from
handling continuously varying environmental forces impacting the vessel’s dynam-
ics to avoiding collisions with other objects in continuously changing environments.
AI-driven methods, such as reinforcement learning, play a crucial role in the devel-
opment of ASVs because of the capacity to learn from experience and generalize
learned behaviors to different scenarios, properties which are essential to operate
autonomously at sea. However, most RL-algorithms are inherently unpredictable
and non-transparent, which limits their use in safety-critical applications. Clas-
sical control theory approaches, on the other hand, can handle safety constraints
in a robust and predictable manner, but lack the ability to handle situations and
dynamics which are not explicitly accounted for.

Hybrid solutions, such as hybrid analysis and modeling, reduce uncertainty and
increase flexibility by combining physics-based and data-driven models, overcom-
ing their individual weaknesses while maximizing their strengths [6]. Therefore,
we propose a hybrid algorithm comprising a predictive safety filter and model-free
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1 Introduction

reinforcement learning for path following and collision avoidance to ensure both
flexibility and safe operation of ASVs in complex sea environments.

1.1 Motivation

The European Maritime Safety Agency (EMSA) estimates that 59% of all marine
accident events in EU member states from 2014 to 2021 was due to human error
[7]. Another report based on data from the USA National Transportation Safety
Board (NTSB) from 1975 to 2017 puts this figure at 75%, while claiming that
around 46% of marine accidents are directly caused by the crew [8]. Hence, there
is a potential to improve marine safety by employing autonomous solutions for bet-
ter decision-making at sea. Furthermore, economic and environmental advantages
are also possible with increased autonomy, resulting in greater energy efficiency
and requiring fewer people for safe operation.

Because autonomous ships can be considered a safety-critical system, human su-
pervision will likely be required in some way until a high level of autonomy is
reached. One example is the Bastø Fosen VI ferry, carrying passengers from
Horten to Moss. It utilizes automatic crossing and docking functionality, while
still maintaining a full crew to monitor the vessel to ensure safety for the pas-
sengers [9]. Therefore, the deployment of an end-to-end controller could become
more challenging if there is no feedback to verify the intended decisions of the au-
tonomous system. RL agents make decisions based on a learned policy, which can
be difficult for a human observer to interpret or use for understanding a long-term
plan. In the proposed RL + PSF approach, the predictive safety filter automat-
ically rejects unsafe actions suggested by the RL agent, reducing the need for
human monitoring and addressing concerns about the interpretability of the RL
controller. Additionally, the PSF by design computes the predicted system trajec-
tory, which easily can aid in human supervision.

1.2 Background

1.2.1 Safe reinforcement learning

A human learning to control a system would in most cases intuitively have some
notion of what is safe and not safe to do. For example, when an inexperienced
driver tries to learn the skills needed to acquire a driver’s license, they will nat-
urally think about which traffic situations are safe for them to approach. In the
beginning, driving back and forth on a parking lot could be challenging enough,
then they would progress to some roads with low traffic, and finally begin training
in an urban city area. If all goes well, and because safety is considered, the driver
should get their license without any major accidents. In reinforcement learning
(RL) one might think it would be desirable if similar behavior emerged naturally
when an algorithm tries to learn how to control a physical system. However, since

2



1.2 Background

RL is mainly done in simulations, where agents can explore different strategies
without any consequences, safety is often less of a concern. Most algorithms in-
stead focus on exploring different states as efficiently as possible, blind to the risk
of the different actions [10].

Most of the success in RL research so far has come from applications in games such
as Go [11] and Atari [12], where safety considerations are not necessary. In recent
years, complex autonomous systems, such as self-driving vehicles, delivery drones
or unmanned vessels, have been approaching integration into society. For deep RL
to be deployed in these systems that operate in close proximity to humans, there
is a need for safety precautions to avoid severe damage or, in worst case loss of
lives. Consequently, people expect an increased focus on safety in RL as training
agents in the real world is likely to become more common [13].

Defining safety. It is not straightforward to come up with a clear definition on
the meaning of safety in an RL context. There are several different approaches
in the literature trying to define what the requirements for safe RL should be
[13, 14, 15]. One common approach is to require humans to label states in an
environment as ”safe” or ”unsafe” [16]. Thus, an agent could be considered safe
if it never enters unsafe states. Another approach is centered around the notion
of ergodicity, which in essence means that an agent in any state can reach any
other state by following a suitable policy [17]. In other words, if every mistake
could be reversed, the system is safe. This requires finding the set of policies
that preserves ergodicity, which can be shown to be NP-hard [17]. An approxima-
tion of the problem can be solved more easily, but this may lead to sub-optimal
exploration. Additionally, it is impractical for many physical systems where the
ergodicity assumption does not hold [17]. Finally, there are also approaches fo-
cusing on changing the optimization criteria by e.g. maximizing the worst-case
return or minimizing the variance of the return [10]. In this work, we will refer
to safety as the ability to adhere to constraints, as other approaches can be either
impractical or insufficient [13].

Safe exploration and constrained RL. Alternatively, the question of safety in
RL algorithms can be viewed as the problem of performing safe exploration. An
RL agent learns by exploring the environment and often has no inherent way of
knowing whether an unexplored state is safe or not. Therefore, a crucial step to
ensuring safety in RL is forcing the agent to only explore states which are known to
be safe with the available information. This relates to the exploration-exploitation
dilemma, an important challenge in RL that involves deciding whether to exploit
the currently available data, or to explore new data by taking possibly unsafe ac-
tions to gain new information.

Constrained RL solves the safe exploration problem by subjecting the agent to a
set of constraints. It is one of the most used approaches in safe RL, and commonly
relies on the framework of Constrained Markov Decision Processes (CMDPs) [18].
An introduction to Markov Decision Processes (MDP) can be found in section
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1 Introduction

2.2.1. In addition to a reward function, CMDPs are equipped with a set of cost
functions that represent the constraints we want the agent to stay within. Just like
standard RL, the goal is to maximize the reward, but there is also an additional
requirement that the total cost has to be below a predetermined threshold.

This approach has been proven to be useful because constraints are a natural way
of formulating safety requirements and also because it separates the problem of
safety and maximizing the reward. In standard RL, it could be a difficult task to
find the right trade-off parameter in the reward function between solving a task
and avoiding dangerous situations [13]. If the penalty is too small, the agent will
act unsafely, and if it is too large, the agent might not learn anything. Further-
more, it is not possible to guarantee safe behavior, since the penalty for unsafe
behavior is always weighed against the reward of completing a task more efficiently.
Constrained RL resolves these problems by formulating safety requirements as con-
straints instead [13]. In this work, we explore an approach related to constrained
RL called the predictive safety filter.

1.2.2 Predictive safety filters

A promising method in the field of safe reinforcement learning is the use of the
predictive safety filter (PSF). The idea was first developed in [19]. The PSF is based
on the model predictive control (MPC) principle [20], and can be seen as a modular
and minimally intrusive safety certification mechanism suitable for a wide range
of control architectures. At every time-step the PSF module receives a proposed
control input from the high-level control system. Using the proposed control input
and the available domain knowledge, the PSF predicts the trajectory of the system
over a finite horizon and calculates the minimal control input perturbation, which
ensures that the system remains in a safe state. In practice, we can say that
the PSF acts as a safety supervisor, which only intervenes when it is absolutely
necessary to do so in order to avoid a hazardous situation. Otherwise, the nominal
operation of the system is undisturbed. Figure 1.1 shows a diagram illustrating
the concept.

RL controller

Predictive safety
filterSystem

Safe system

Figure 1.1: Predictive safety filter concept.
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1.3 Contribution, Research Objectives and Research Questions

1.3 Contribution, Research Objectives and Research
Questions

1.3.1 Contribution

The contribution of this thesis will be the design and verification of a predictive
safety filter for marine collision avoidance and control, and analysis of the per-
formance of the combined PSF/RL scheme with respect to safety adherence and
quality of navigation, in sets of randomized simulated scenarios with varying dif-
ficulty levels. By evaluating the performance of an RL agent with and without
a PSF, it is possible to highlight the advantages of utilizing a PSF, both in the
training phase and for the final agent. The motivation is to make the use of RL
in autonomous marine vessels more feasible to achieve in practice by providing
an approach with a higher level of transparency and safety assurance than other
state-of-the-art RL methods.

A thorough search of the relevant literature suggests that no previous studies have
been conducted on the application of predictive safety filtering for learning-based
marine craft navigation and control. However, other methods with similarities to
the safety filter approach have been applied more generally to the field of marine
vessel collision avoidance (COLAV). Thyri et al. [21] successfully developed a re-
active control module based on the control barrier function (CBF) principle to
act as a hazard avoidance mechanism for marine vessels. In Johansen et al. [22],
a scenario-based model predictive controller (SBMPC), which uses a set of pre-
defined course-altering strategies to find optimal collision-free paths, was shown
to be an effective and viable method for collision avoidance in marine control.
Furthermore, there are numerous attempts in applying RL for autonomous vessel
navigation [23, 24, 25], which include the research that laid the foundation for this
study. The main focus of these approaches has been to show the potential of RL
as a feasible method for achieving autonomous navigation in marine vessels. This
work goes further in focusing on the safety aspect of autonomous navigation, show-
ing that the predictive safety filter can be a promising approach for guaranteeing
safe navigation.

1.3.2 Objectives

Primary Objective: Examine whether the predictive safety filter is a viable method
for safety certification in learning-based marine navigation and control. This en-
capsulates the design, implementation, and testing of the PSF over a wide range
of simulated scenarios.

Secondary Objectives:

• Demonstrate real-time collision avoidance and safety verification using a pre-
dictive safety filter for marine control.
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1 Introduction

• Evaluate the impact of predictive safety filtering on the behavior and learning
rate of reinforcement learning agents.

• Provide insights to how predictive safety filters can facilitate the use of re-
inforcement learning in complex real-world marine environments.

1.3.3 Research Questions

The following research questions were formulated to guide the study to achieve the
presented research objectives:

• Can a PSF/RL scheme, capable of real-time collision avoidance and safety
verification, be successfully realized within an ASV simulation environment?

• What effect does predictive safety filtering have on the performance and
learning of reinforcement learning agents designed for autonomous surface
vessels?

• Are predictive safety filters a feasible approach to incorporate reinforcement
learning in real-world marine environments?

1.4 Structure of the Thesis

The thesis is structured as follows: Chapter 2 covers the theory underpinning the
ship dynamics model, the predictive safety filter, and the reinforcement learning
algorithm, as well as the steps necessary in order to design a predictive safety
filter for the chosen dynamics model. In Chapter 3, the implementation of the
PSF and the reinforcement learning algorithm is explained in detail, along with
the structure and design of the various simulation experiments. In Chapter 4,
simulation results are presented and analyzed, and the strengths and weaknesses
of the thesis are discussed. Chapter 5 concludes the report, together with a brief
discussion of the most interesting avenues for future research on the topic.
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2 Theory

This chapter covers the details of the theory and equations used in our thesis. The
chosen ship dynamics model is formulated, and the theory underpinning deep rein-
forcement learning and proximal policy optimization is presented. The nonlinear
disturbance observer used to estimate the environmental disturbances affecting the
system is outlined. Lastly, the predictive safety filter is explained, and the nec-
essary equations for applying the predictive safety filter to the autonomous vessel
are detailed.

2.1 Ship dynamics modelling

The ship used as basis for simulations and experiments is Cybership II, which is
a 1:70 scale replica of a typical supply ship [26]. System identification parameters
for the vessel were obtained from Skjetne (2004) [26]. To simulate the dynamics of
the vessel, the rigid-body 3-DOF surge-sway-yaw model described in Fossen (2011)
[27] was used.

2.1.1 Kinematics

We define the state of the system as

η =
[
x y ψ

]T
,

ν =
[
u v r

]T
,

(2.1)

where η denotes the coordinates and heading of the ship respectively, in the north,
east, and down (NED) coordinate frame. ν denotes the surge, sway, and yaw
angular velocity of the vessel. The model kinematics are given by [27]

η̇ = fkinematic(ψ,ν) = R(ψ)ν, (2.2)

where R(ψ) is the rotation matrix expressed by

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (2.3)

2.1.2 Kinetics

The model kinetics are defined as [26]

Mν̇ +C(ν)ν +D(ν)ν = τ + τd, (2.4)

7
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where M denotes the mass matrix

M =

m11 0 0
0 m22 m23

0 m32 m33


m11 = m−Xu̇

m22 = m− Yv̇

m23 = mxg − Yṙ

m32 = mxg −Nv̇

m33 = Iz −Nṙ

(2.5)

C(ν) is the Coriolis matrix

C(ν) =

 0 0 c13
0 0 c23
−c13 −c23 0


c13 = −m11v −m23r

c23 = m11u

(2.6)

and D(ν) characterizes the damping matrix

D(ν) =

d11 0 0
0 d22 d23
0 d32 d33


d11 = −Xu −X|u|u|u| −Xuuuu

2

d22 = −Yv − Y|v|v|v| − Y|r|v|r|

d23 = −Yr − Y|v|r|v| − Y|r|r|r|

d32 = −Nv −N|v|v|v| −N|r|v|r|

d33 = −Nr −N|v|r|v| −N|r|r|r|

(2.7)

Furthermore, τ =
[
Fu, Fv, Tr

]T
contains the surge force, sway force, and yaw

moment applied to the ship. Since the mass matrix M is invertible, we can
rewrite the kinetic equations as the explicit ODE

ν̇ = M−1(−C(ν)ν −D(ν)ν + τ + τd), (2.8)

where τd is a vector of generalized disturbance forces affecting the ship. In Skjetne
(2004) [26] it is also shown that, given a suitable control allocation mechanism and
sufficient vessel speed, the control force τ can be reasonably approximated by

τ = Bu =

1 0
0 0
0 1

[
Fu

Tr

]
(2.9)
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2.2 Deep Reinforcement Learning

where Fu and Tr is the applied surge force and yaw moment, respectively. Thus,
the resulting kinetics model becomes

ν̇ = fkinetic(ν,u, τd) = M−1(−C(ν)ν −D(ν)ν +Bu+ τd) (2.10)

2.1.3 Collision risk

The collision risk index (CRI) is a metric used to quantify the risk of collision
between two vessels. The approach used in the thesis is based on Heiberg et al.
[28], which is designed to be compatible with the simulation environment. The CRI
is calculated by the estimated time to the closest point of approach (TCPA) and
the estimated distance to the closest point of approach (DCPA). Additionally, it
considers the relative distance R, the relative speed V and the relative bearing θT .
To do this, it uses fuzzy comprehensive evaluation methods, where the membership
functions u(·) ∈ [0, 1] are used to determine the risk level associated with each risk
factor.

CRI = αCPA

√
u(DCPA) · u(TCPA) + αθTu (θT) + αRu(R) + αVu(V ), (2.11)

where αDCPA+αTCPA+αθT +αR+αV = 1. Further details on the CRI calculation
can be found in [28].

2.2 Deep Reinforcement Learning

In this section, we introduce the field of deep reinforcement learning to provide
an understanding of the RL methods used in this work. Reinforcement learning is
a sub-field of machine learning where a sequential decision-making agent learns a
behavioral policy by iteratively acting in an environment and optimizing its param-
eters for the reward it receives [29]. The term ”deep” refers to parameterizing the
agent using deep neural networks, improving the RL methods’ applicability and
performance, particularly in complex environments with high-dimensional state
spaces [11, 30]. Figure 2.1 shows a broad overview of the RL framework. It con-
sists of two separate systems: an agent that makes decisions and an environment
that is influenced by those decisions. Based on the feedback the agent obtains from
the environment, it gradually learns more intelligent behaviour in order to maxi-
mize the rewards it receives. It does this by updating its policy, a mapping from
states to action, which defines the agent’s behaviour. While the RL framework
could seem quite simplistic, it is inspired by how humans and animals learn and
can lead to complex, goal-oriented behaviour [29]. By trial and error, adjusting
behaviour based on feedback and the pursuit of maximizing rewards, intelligent
behaviour can emerge through different types of RL algorithms.
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Agent
Environmentaction

observation
reward

Figure 2.1: Simple overview of the RL framework. The agent performs an action
which affects the state of the environment, and in return receives a
reward and observation based on the new state.

2.2.1 RL preliminaries

One core assumption for RL is that the environment can be modeled as a Markov
Decision Process (MDP), which is defined by the tuple {S,A, T ,R, p (s0) , γ}
where

• S is the state space,

• A is the action space,

• T : S × A → p(S) is the transition function that represents the probability
that an agent ends up in a new state s′ ∈ S after taking a specific action
a ∈ A from a state s ∈ S,

• R : S × A → R is the reward function, which returns a scalar reward
associated with the transition function,

• p (s0) is the initial state distribution, and

• γ ∈ [0, 1] is the discount factor.

An agent acts in an environment according to a policy π : S → p(A). Solving
the MDP is equivalent to finding an optimal policy π⋆ that maximizes the reward.
To do this, we need to introduce the action-value function Qπ(s, a), defined as the
expectation of the cumulative return for a given policy π.

Qπ(s, a) = Eπ,T

[
K∑
k=0

γkrt+k |= s, at = a

]
(2.12)

The optimal policy π⋆ can be defined as the policy that maximizes the expected
return of Qπ(s, a).

π∗ = argmax
π

Qπ(s, a) (2.13)

= argmax
π

Eπ,T

[
K∑
k=0

γkrt+k | st = s, at = a

]
(2.14)
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2.2 Deep Reinforcement Learning

2.2.2 Value-based and policy-based methods

There are two main approaches to training model-free RL agents; value-based
methods learn an actor-value function Qπ(s, a) and derive the optimal policy from
it, while policy-based methods directly optimize a policy function πθ(a | s) with
parameters θ. A common way of doing this is by using policy gradients, which
optimize the policy by gradient ascent on the expected reward.

While the value-based approach often is more sample efficient, they also tend to be
less stable [31]. Examples of value-based methods algorithms are Deep-Q Networks
(DQN) [12] and Hindsight Experience Replay (HER) [32]. Policy-based methods
are more straightforward since they optimize the desired result, the policy. They
are generally more reliable than value-based methods but can suffer from high
sample complexity. Examples of policy-based methods are Trust Region Policy
Optimization (TRPO) [33] and Proximal policy optimization (PPO) [34].

Lastly, actor-critic methods combine the two approaches by independently param-
eterizing a policy (the actor) and a value function (the critic) while learning both
concurrently. With this, it overcomes many of the limitations of policy-based and
value-based methods [35]. Examples of actor-critic algorithms are Soft Actor-Critic
(SAC) [36] and Deep Deterministic Policy Gradient (DDPG) [37].

2.2.3 Proximal policy optimization

Proximal policy optimization (PPO) is a popular model-free algorithm in the fam-
ily of policy gradient methods, originally developed by Shulman et al. [34]. By
employing a trust region, it ensures that new policies do not deviate far from the
old policy, avoiding large policy updates that could result in unstable learning.
It does this by using a clipped surrogate objective function, which is a modified
version of the standard policy gradient objective. The surrogate objective can be
defined as follows:

LCPI(θ) = Êt

[
πθ (at | st)
πθold (at | st)

Ât

]
= Êt

[
rt(θ)Ât

]
(2.15)

where Ât is the advantage estimate, which is a measure for how much better an
action is compared to the average action in a given state. Moreover, the algorithm
uses a modified version of this, known as the clipped surrogate objective function.
This function ensures the probability ratio rt(θ) is within the range 1−ϵ and 1+ϵ.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2.16)

Algorithm 1 shows pseudocode of the complete algorithm from the original paper
[34]. The PPO algorithm is considered to be an efficient and robust algorithm,
suited for various domains [34], and it has shown good results in previous work on
the gym-auv simulation environment [25, 28]. Most notably, in Larsen et al. [38]
the PPO algorithm was shown to outperform other state-of-the-art algorithms in
a range of different scenarios in the gym-auv environment. Therefore, PPO was
chosen as the RL method for this work.
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Algorithm 1: Proximal Policy Optimization (PPO)

1: for iteration k = 1, 2, . . . do
2: for actor i = 1, 2, . . . do
3: Run policy πθold in environment for T timesteps

4: Compute advantage estimates Â1, . . . , ÂT

5: end for
6: Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

2.3 Environmental disturbance observer

To estimate the environmental disturbances affecting the ship, we use the nonlinear
disturbance observer algorithm developed in [39]. The observer system is defined
by:

τ̂d = ζ + µ(ν)

ζ̇ = h(ν, τ̂d)
(2.17)

where τ̂d is the estimate of the environmental disturbance forces affecting the ship,
and ζ is an observer variable. The estimated error and error dynamics are then
described by:

z = τd − ζ − µ(ν)

ż = τ̇d − ζ̇ − ∂µ

∂ν
ν̇

(2.18)

Assuming that the true disturbance τd is relatively slow-varying (τ̇d ≈ 0) and
inserting the ship model kinetics, the error dynamics become:

ż = −h(ν, τ̂d)−
∂µ

∂ν
M−1(D(ν)ν −C(ν)ν + τ + τd) (2.19)

By defining h(ν, τ̂d) as:

h(ν, τ̂d) = −
∂µ

∂ν
M−1(D(ν)ν −C(ν)ν + τ + τ̂d) (2.20)

, [39] shows that the observer error converges by applying:

∂µ

∂ν
= T =


Γ1

1
k11
σ 0 0

0 Γ2
1

k22
−Γ2

k23
k22k33

0 −Γ3
32

k22k33
Γ3

1
k33

 (2.21)

where σ = 1− k23k32
k22k33

and kij are the elements of the mass matrix inverse M−1:

M−1 =

k11 0 0
0 k22 k23
0 k32 k33

 (2.22)
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Γ1,2,3 are adaptive gains which will be chosen later. Using equations 2.20 and 2.21,
the disturbance observer system (2.17) becomes:

τ̂d = ζ + Tν

ζ̇ = −TM−1(D(ν)ν −C(ν)ν + τ + τ̂d)
(2.23)

2.4 Predictive Safety Filter

To ensure safe exploration, a predictive safety filter (PSF) is integrated into the
control loop of the system. The main idea of the PSF, as first developed in [19],
is to predict the future states of the system based on the current system state
x(t) and the current proposed control action from the RL-agent uL(t), and find
the minimally perturbed control action u∗

0(x(t),uL(t)) which guarantees a safe
state trajectory for all times t′ ∈ (t,∞). At every time-step the PSF solves the
finite-horizon optimal control problem (OCP):

min
ui|k,xi|k

||u0|k − uL(k)||2W

s.t. (1) x0|k = x(k)

(2) xi+1|k = f(xi|k,ui|k,∆T ) ∀i ∈ [0, N − 1]

(3) xi|k ∈ X ∀i ∈ [0, N ]

(4) ui|k ∈ U ∀i ∈ [0, N − 1]

(5) xN |k ∈ Xf

(2.24)

x(k) and uL(k) are the system state and the proposed RL control action at the
current time-step, respectively. W is the weighting matrix for the cost function.
f(·) are the discretized system model equations, where ∆T is the discretization
step length. N is the number of states in the predicted trajectory (shooting nodes),
which means that the prediction horizon is given by Tf = N ·∆T . X ⊆ Rnx denotes
the set of feasible (safe) states, while U ⊆ Rnu is the set of feasible control inputs.
The set Xf ⊆ X is called the terminal safe set [19]. The terminal safe set is a
control invariant set, which means that:

Definition 1. (Control invariant set). The set Xf is a control invariant set if
and only if, for all x|(x ∈ Xf ), there exists a control law u = k(x) ⊆ U such that
f(x,k(x)) ∈ Xf .

The terminal safety constraint xN |k ∈ Xf thus guarantees that the system will
be able to stay within the terminal safe set Xf (and by extension the feasible set
X) for all time t′ ∈ (Tf ,∞). The size of the terminal set, as well as the length
of the prediction horizon, are important factors in determining the conservatism
of the predictive safety filter. With a large terminal set and a longer prediction
horizon, the PSF has a higher degree of flexibility when computing trajectories,
as the terminal set can more easily be reached within the horizon. Figure 2.2
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visualizes how the PSF modifies unsafe trajectories, and highlights the impact of
an increased prediction horizon on trajectory modification flexibility.

After solving the OCP, the control action that is applied to the system is chosen
as u∗

0(x(k),uL(k)) = u∗
0|k. The PSF algorithm is based on the classic model

predictive control (MPC) algorithm [20]. The main difference is that while classical
MPC minimizes the OCP with respect to a reference trajectory, the PSF only
minimizes with respect to a reference control input.

(a) PSF trajectory modification with N = 2 (b) PSF trajectory modification with N = 3

Figure 2.2: Illustration of how the predictive safety filter modifies the nominal tra-
jectory based on safe set X, terminal set Xf , and number of shooting
nodes N . The nominal unsafe path in red has two possible modifica-
tions to become safe, where the dark green path is proposed by the
PSF. In the left figure the yellow path is closer to the nominal path,
but given the short prediction horizon, the PSF must take another
path more directly towards the terminal set. In the right figure, with
1 additional shooting node, the PSF can compute a trajectory which
lies closer to the nominal path, and still be able to reach the terminal
set.
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2.5 Formulation of predictive safety filter OCP for 3-DOF ASV model

2.5 Formulation of predictive safety filter OCP for
3-DOF ASV model

Recall the definition of the PSF OCP:

min
ui|k,xi|k

||u0|k − uL(k)||2W

s.t. (1) x0|k = x(k)

(2) xi+1|k = f(xi|k,ui|k,∆T ) ∀i ∈ [0, N − 1]

(3) xi|k ∈ X ∀i ∈ [0, N ]

(4) ui|k ∈ U ∀i ∈ [0, N − 1]

(5) xN |k ∈ Xf

(2.24 revisited)

We define the discrete-time system equations as:

ηk+1 = f̂kinematic(ψi|k,νi|k,∆T )

νk+1 = f̂kinetic(νi|k,ui|k, τ̂d,k,∆T )
(2.25)

where the disturbance forces τd,k have been replaced by the generalized environ-
mental disturbance estimate τ̂d,k obtained from the disturbance observer. Inserting

x =
[
η ν

]T
and using equation (2.25), we substitute constraints (1) and (2) with:

η0|k = η(k)

ν0|k = ν(k)

ηi+1|k = f̂kinematic(ψi|k,νi|k,∆T ) ∀i ∈ [0, N − 1]

νi+1|k = f̂kinetic(νi|k,ui|k, τ̂d,k,∆T ) ∀i ∈ [0, N − 1]

(2.26)

The state constraint xi|k ∈ X is deemed equivalent to the following:

1. All ship velocities are within specified upper and lower bounds: νlb ≤ νi|k ≤
νub

2. The position of the vessel is a safe distance away from any observed obstacles:
d(pi|k,Oi|k) ≥ dsafe

where d(·) is the Euclidean distance function, pi|k =
[
x y

]T
is the NED coordinate

position of the vessel at prediction step i, time step k, O ⊆ R2 is the union of all
observed obstacles at prediction step i, time step k, and dsafe is the minimum
safety distance. This can be stated formally as:

xi|k ∈ X→ ηi|k ∈ Xη ∩ νi|k ∈ Xν

ηi|k ∈ Xη ↔ d(pi|k,Oi|k) ≥ dsafe

νi|k ∈ Xν ↔ νlb ≤ νi|k ≤ νub

(2.27)

The collision avoidance methods used in this work will be described in chapter 3.
The set U is defined as:

ui|k ∈ U↔ ulb ≤ ui|k ≤ uub (2.28)
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2.5.1 Control invariant terminal set formulation

The formulation of the terminal safe set Xf follows generally the procedure used
in [40]. The main difference is that while [40] formulates the terminal safe set
with respect to lateral track error and track relative heading error, we have chosen
to formulate Xf only with respect to the velocities ν, which ensures asymptotic
safety while retaining maximal flexibility with respect to the proposed actions of
the RL-agent.

Assumption 1. (Control invariant ellipsoidal set) Let the ellipsoidal set Xe ⊆ X
be defined by Xe := {x|xTPx ≤ 1} where P is a positive definite matrix. Assume
that there exists a control law k(x) ∈ U|(x ∈ Xe) and P such that xi|k ∈ Xe →
f(xi|k,k(xi|k)) ∈ Xe.

Assumption 1 implies the existence of a control law k(x) and positive definite
matrix P which guarantees that the state x will remain in Xe ⊆ X for t ∈ (t′,∞)
as long as x(t′) ∈ Xe. Let us now define the terminal state of the system as

xf =
[
ηf νf

]T
. We now define the terminal feasible set as:

Cf := {xf | ||pf − pN |k||2 ≤ df ∩ νlb ≤ νf ≤ νub} (2.29)

Assume now that the control law kf (xf ) and positive definite matrix P 6×6
f satisfy

assumption 1 for the state xf and the feasible set Cf , which yields the terminal
constraint:

xT
f Pfxf ≤ 1 (2.30)

By adding the terminal collision avoidance constraint:

d(pN |k,ON |k) ≥ dsafe + df (2.31)

and inserting xf = xN |k, asymptotic safety with respect to obstacles is guaranteed
by: [

−d(pN |k,ON |k)
xT
N |kPfxN |k

]
≤

[
−(dsafe + df )

1

]

→

 −d(pN |k,ON |k)[
01×3 νT

N |k
]
Pf

[
03×1

νN |k

] ≤ [
−(dsafe + df )

1

]

→
[
−d(pN |k,ON |k)
νT
N |kPfννN |k

]
≤

[
−(dsafe + df )

1

]
(2.32)

where:

Pfν =

p44 p45 p46
p54 p55 p56
p64 p65 p66

 (2.33)

Equation (2.32) ensures, given the terminal velocities νN |k and the control law
kf (xf ), that the position of the ship beyond the prediction horizon (p∞) will
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deviate no more than a distance df from the terminal position pN |k. From this,
we can conclude that:

||p∞ − pN |k||2 ≤ df ∩ d(pN |k,ON |k) ≥ dsafe + df

→ d(p∞,ON |k) ≥ dsafe
(2.34)

The computation of the terminal control law kf (xf ) and matrix Pf will be detailed
in chapter 3. Figure 2.3 illustrates a simple scenario in which the PSF modifies the
ship trajectory because of the terminal safety constraint. The red arrows indicate
the nominal path of the ship. While the nominal predicted position pN satisfies the
distance requirement dsafe, the point p∞(k(x)) indicates that given the pose and
velocity at pN , it is not possible to avoid a future safety violation given the terminal
control law k(x), implying that terminal set constraint is violated. Therefore the
PSF modifies the control input so that the optimal (predicted) safe path is taken
instead, indicated by the green arrows.

Hazard

Figure 2.3: Visualization of ship trajectory modification caused by terminal safety
constraint, with N = 1 for clarity. Red arrows indicate nominal (unsafe)
trajectory, while green arrows indicate PSF modified trajectory.
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The full PSF optimal control problem formulation for the 3-DOF ship model thus
becomes:

min
ui|k,ηi|k,νi|k

||u0|k − uL(k)||2W

s.t. (1) η0|k = η(k)

(2) ν0|k = ν(k)

(3) ηi+1|k = f̂kinematic(ψi|k,νi|k,∆T ) ∀i ∈ [0, N − 1]

(4) νi+1|k = f̂kinetic(νi|k,ui|k, τ̂d,k,∆T ) ∀i ∈ [0, N − 1]

(5) d(pi|k,Oi|k) ≥ dsafe ∀i ∈ [0, N − 1]

(6) d(pN |k,ON |k) ≥ dsafe + df

(7) νlb ≤ νi|k ≤ νub ∀i ∈ [0, N ]

(8) ulb ≤ ui|k ≤ uub ∀i ∈ [0, N − 1]

(9) νT
N |kPfννN |k ≤ 1

(2.35)
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This chapter mainly covers the design and implementation of the reinforcement
learning algorithm, predictive safety filter, nonlinear disturbance observer, and the
test setup. In addition, the chosen simulation environment is presented, chiefly
focusing on the most relevant features with regard to this work. The hardware and
the various software components which we use are described, and hyperparameters
are listed and explained. All code used in the simulation experiments can be found
at: https://github.com/sveinjhu/gym-auv-safety-filter.

3.1 RL/PSF overview

An overview of the RL/PSF control architecture is shown in 3.1. Based on the
current reward and observation, the RL agent proposes a control action. The pro-
posed action uL, along with the system state is passed to the predictive safety filter,
which computes the minimally modified safe control action u0. Then, u0 is passed
as the control input for the next iteration of the model simulation. The difference
between the proposed action uL and the modified action u0, δu, is propagated to
the reward function, along with the observation vector.

Environment

Safety Filter Ship Model

Reward Function

RL Agent

Reward

Observation

Observation 

sum
-

+

Figure 3.1: Illustration the RL + PSF control design. Note that the LiDAR per-
ception features, environmental disturbances and obstacles have been
omitted from this figure for clarity.
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3.2 Training Environment

The gym-auv simulation framework by Meyer [25] was used for training and test-
ing the RL agents. The framework is based on OpenAI Gym [41], a widely used
toolkit for developing and comparing RL algorithms. The RL agent is trained by
using Stable-Baselines3’s PPO implementation [42], with hyperparameters identi-
cal to those applied in Larsen et al. [43].

3.2.1 Integrated LiDAR sensor suite

gym-auv features an integrated 2D LiDAR sensor suite which is used to detect
potential hazards in the vicinity of the ownership. The simulated 2D LiDAR
sensor consists of Nray evenly spaced detection rays, each measuring the closest
distance to an object along the direction of the ray, within the maximum detection
distance Rdetect. The rays are divided into Nsector non-overlapping sectors, each
sector containing Nray

Nsector
detection rays. A visualization of the LiDAR detection

rays is shown in figure 3.2

Table 3.1: LiDAR sensor parameters

Parameter Description Value
Nray Number of detection rays 180
Nsector Number of detection sectors 20
Rdetect Maximum detection distance 150 (m)

Figure 3.2: Visualization of LiDAR detection rays with Nrays = 100 and Rdetect =
50. Green lines indicate the direction and range of the rays.
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3.2.2 Observation vector

The observation vector used in training the agent consists of two main categories
of features: navigation and perception. The navigation features provide informa-
tion about the vessel’s state relative to the path, in order to perform successful
path-following. The perception features utilize LiDAR distance measurements to
provide information about the collision risk, facilitating obstacle avoidance. In the
following, the process of obtaining the features is explained in more detail.

Navigation features. Table 3.2 gives an overview of the six navigation features
and their definition. The first three provide information about the vessel state,
while the last three are related to the path and require additional elaboration.
Figure 3.3 illustrates the path following concepts used to find the cross-track error,
heading error, and look-ahead heading error. The parameterized path can be
represented as pd(ω) = [xd(ω), yd(ω)]

T , where xd(ω) and yd(ω) are given in the
NED-frame. The cross-track error, ϵ, is defined as the smallest Euclidean distance
from the path to the vessel’s position, which on the figure is the distance between
the ship and pd(ω̄). The look-ahead point pd (ω̄ +∆LA) is the point that lies
∆LA further a long the path from pd(ω̄), where ∆LA is the constant look-ahead
distance. Then, the heading error ψ̃ could be defined as the change in heading
needed for the vessel to navigate straight towards the look-ahead point from the
current position. Lastly, the look-ahead heading error ψ̃LA takes the path direction
at the look-ahead point, γp (ω̄ +∆LA), into account to ensure a smoother vessel
trajectory. It is defined as the difference between the heading ω and γp (ω̄ +∆LA).
Based on results from previous work by Meyer [25], it is shown that these features
provide the necessary information for the agent to intelligently follow a path.

Table 3.2: Navigation features provided to the RL agent

Navigation features Definition
Surge velocity u
Sway velocity v
Yaw rate r
Cross-track error ϵ

Heading error ψ̃

Look-ahead heading error ψ̃LA
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Figure 3.3: Illustration of path following concepts. The RL agent uses the cross-
track error ϵ, heading error ψ̃ and look-ahead heading error ψ̃LA (which
is derived from path direction at the look-ahead point γp (ω̄ +∆LA))
as navigation features.

Perception features. The perception features are based of LiDAR distance mea-
surements from the simulated LiDAR sensor suite. Based on the paper by Larsen
et al. [44], the LiDAR measurements are encoded by a pre-trained convolutional
neural network (CNN). The CNN is used to predict the CRIs corresponding to
the measurements (see subsection 2.1.3 for an explanation of the CRI calculation).
Multiple CRIs can exist for each LiDAR scan since each is associated with a dis-
tinct nearby obstacle. Based on 180 closeness measurements, the maximum of 12
CRIs are predicted and used as perception features for the RL agent. Further
details on the architecture and training of the CNN are found in [44]. Finally, the
diagram in Figure 3.4 summarizes how the observation vector is processed through
the RL agent and the PSF.
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Figure 3.4: RL agent diagram. The observation vector contains both LiDAR and
navigation features. While the navigation features are used directly in
the PPO algorithm, the LiDAR measurements are processed through
a CNN. The PPO outputs an action uL that is sent through the safety
filter. Finally, the safe action u0 can be executed in the environment.

3.3 Ship model parameters

The model parameters used for the 3-DOF Cybership II model were obtained from
[26], and are presented in table 3.3:

Table 3.3: 3-DOF Cybership II model parameters

Parameter Value Unit Parameter Value Unit

m 23.8 kg Y|r|r -0.02 kg
m

xg 0.046 m Y|v|r -0.01 kg
m

Iz 1.760 kg ·m2 Y|r|v -0.01 kg
m

Xu -0.7225 N ·s
m

Nv 0.1052 kg·s
m

Xu̇ -2.0 kg Nv̇ 0.0 kg

X|u|u -1.3274 kg
m

N|v|v 5.0437 kg
m

Xuuu -5.8664 kg·s
m2 Nr -0.5 kg·s

m

Yv -0.8612 N ·s
m

Nṙ -1.0 kg

Yv̇ -10.0 kg N|r|r 0.005 kg
m

Y|v|v -36.2823 kg
m

N|v|r -0.001 kg
m

Yr 0.1079 kg·s
m

N|r|v –0.001 kg
m

Yṙ 0.0 kg

3.4 Disturbance modelling

The sea current velocity Vc and angle βc are modeled as slow-varying constrained
random walk processes:

V̇c = WVc , s.t. |Vc| ≤ Vc,max , |WVc| ≤ WVc,max

β̇c = Wβc , s.t. |βc| ≤ βc,max , |Wβc | ≤ Wβc,max

(3.1)
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The generalized force disturbances are modeled similarly, with an additional white
noise component added to the slowly varying signal:

τd = δd +Wτ1, s.t. |τd| ≤ τd,max , |Wτ1| ≤Wτ1,max

δ̇d = Wτ2, s.t. |Wτ2| ≤Wτ2,max

(3.2)

To ensure a reasonable degree of controllability in the face of disturbances, the
maximum current velocity Vc,max is set to ∼ 20% of the maximum surge speed
umax. Similarly, the maximum surge and sway force disturbances are set to ∼ 20%
of the maximum applied surge force Fu,max, while the maximum yaw moment
disturbance is ∼ 10% of Tr,max.

3.5 Disturbance observer implementation

Table 3.4: Environmental disturbance observer parameters

Parameter Description Value
Γ1 Adaptation gain (surge force disturbance) 0.1
Γ2 Adaptation gain (sway force disturbance) 0.1
Γ3 Adaptation gain (yaw moment disturbance) 0.08

The observer system (2.23) is implemented using a simple forward-Euler scheme,
with the parameter values in table 3.4:

τ̂d,k = ζk + Tνk

ζk+1 = ζk − TM−1(D(νk)νk −C(νk)νk +Buk + τ̂d,k)∆T
(3.3)

The adaptation gains are chosen relatively small to ensure stability and sufficiently
smooth disturbance estimates. Figure 3.5 shows the typical performance of the
estimator given randomized environmental disturbance forces generated according
to equation (3.2).
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Figure 3.5: Estimates of randomly generated environmental disturbances using
adaption gains from table 3.4

3.6 Predictive safety filter implementation

3.6.1 Collision Avoidance

In the 2-dimensional gym-auv simulation environment, static obstacles are repre-
sented as circles with a given position and radius, while other ships are represented
as polygonal objects following pre-defined paths. In this work, we assume that the
predictive safety filter has access to the position, shape and velocity of ships that
must be avoided. In addition, the integrated LiDAR sensor suite is used for static
obstacle collision avoidance.

Dynamic obstacle collision avoidance

Each ship is given a circular hazard region centered at the midpoint of the ship,
with radius equal to the length of the ship. Denoting the position and velocity of
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target ship j at the current iterate as pt
j and vt

j respectively, the dynamic obstacle
collision avoidance constraint is implemented as:

||pi|k − (pt
j + vt

j · i ·∆T )||2 ≥ lj + dsafe ∀ i ∈ [0, N ], j ∈ [0, Nj] (3.4)

where ∆T is the step length, lj is the length of ship j and Nj is the number of ship
obstacles. This formulation assumes that all ship obstacles move with constant
velocities over the entire prediction horizon, which does not necessarily match the
true trajectories of the obstacles. However, results will show that satisfactory
performance is achieved by choosing an appropriately large safety distance dsafe.
Figure 3.6 visualizes the dynamic obstacle collision avoidance mechanism.

(a) Shooting node 0 (b) Shooting node 1 (c) Terminal node

Figure 3.6: Dynamic obstacle collision avoidance. Blue object indicates the target
ship, red dotted circle indicates the approximation of the area covered
by the target ship. For each prediction step, the PSF predicts the
movement of the target based on the initial velocity, and individual
collision avoidance constraints for each shooting node are computed
accordingly.

LiDAR-based collision avoidance

To encode collision avoidance constraints from the LiDAR measurements, the
Ncol ≤ Nray

Nsector
closest obstacle detections within each sector are extracted. For

each of the extracted ray measurements, the coordinates of the point of detection
pdetect are calculated by:

pdetect =

[
x
y

]
+

[
d · cos (θ + ψ)
d · sin (θ + ψ)

]
(3.5)

where d is the distance to the object measured by the ray, and θ is the angle offset
of the ray w.r.t. the heading of the ship. The LiDAR collision avoidance constraint
is then defined as:

||pi|k − pdetect,m||2 ≥ Ravoid + dsafe ∀ i ∈ [0, N ], m ∈ [0, NcolNsector] (3.6)
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3.6 Predictive safety filter implementation

where Ravoid defines the radius of avoidance around each detected point pdetect, and
NcolNsector is the total number of included ray detections. The formulation above
effectively makes it so that the boundaries of nearby obstacles are approximated as
a collection of circles centered at the detection points, with radius equal to Ravoid.
Safety is thus ensured by choosing a sufficiently high value for Ravoid, and having
a sufficiently high number Ncol detected points for each LiDAR sector. Figure 3.7
shows how the LiDAR measurements are used to generate static obstacles.

Figure 3.7: Visualization of obstacles constructed for PSF using LiDAR detec-
tion. Grey circles indicate obstacles, while red circles indicate avoid-
ance zones computed from the points at which the LiDAR detection
rays intersect the obstacles.

3.6.2 Terminal constraint computation

The computation of the matrix Pf which defines the terminal ellipsoidal invariant
set and the corresponding control law kf (x) follows the same procedure as used
in [19] and [45]. The main idea is to linearize the system and constraints w.r.t. an
equilibrium state, which allows us to construct a semi-definite program (SDP) that
simultaneously optimizes the matrix Pf and terminal control law kf (x). Hence,
we need to transform the system to the linear form:

˙̄x =Ax̄+Bū

s.t. Hx̄ ≤ h

Gū ≤ g

(3.7)

Where x̄ = x−xeq and ū = u−ueq are the states and inputs shifted with respect
to the linearization (equilibrium) points, and A and B are the state and input ma-
trices for the linearized system. The pairs {Hnh×nx ,hnh×1} and {Gng×nu , gng×1}
encode the state and input constraints as linear polytopic constraints, which means
that H and G are real-valued, column independent matrices, while h and g are
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real valued, strictly positive column vectors. nh, nx, ng, and nu are the number of
state constraints, states, inputs, and input constraints, respectively.
We choose the equilibrium state equal to the maximum surge thrust and the cor-

responding constant maximum surge velocity, xe =
[
Umax 0 0 0 0 0

]T
and

ue =
[
Fu,max 0

]T
. The maximum surge velocity is found by solving for the steady

state of the decoupled surge equation:

0 = −Du(Umax)Umax + Fu,max

→−Xuumax −X|u|u|Umax|Umax −XuuuU
3
max = Fu,max

(3.8)

The next step is to linearize the state-space system w.r.t. the equilibrium. To
simplify the process, we omit the non-linear damping terms from the system model,
because the absolute value function | · | (which appears in the non-linear damping)
is non-differentiable at the origin. In practice, since the non-linear damping terms
increase the inertia of the system, this simplification will not impact the validity
of the following results, rather we would expect that using the simplified system
will lead to a more conservative estimate of Pf than otherwise. The simplified
system model is given by:

x̃ =
[
η̃ ν̃

]
˙̃η = R(ψ̃)ν̃

˙̃ν = M−1(−C(ν̃)ν̃ −DLν̃ + u)

(3.9)

where DL is the linear damping:

DL =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (3.10)

The linearized system is then computed as:

˙̄x = Ax̄+Bū (3.11)

where:
x̄ = x̃− xe

ū = u− ue

A =

[
δ ˙̃η
δη̃T |xe

δ ˙̃η
δν̃T |xe

03×3 δ ˙̃ν
δν̃T |xe

]

B =

[
03×2

δ ˙̃ν
δũT |xe,ue

]
(3.12)

By defining the terminal control law kf (x) as a linear feedback controller and
applying it to the linearized system: kf (x̄) = Kx̄, the constraint x̄TPf x̄ ≤ 1 can
be rewritten using the closed-loop Lyapunov equation [19] defined by

(A+BK)TPf (A+BK) ≺ 0 (3.13)
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3.6 Predictive safety filter implementation

The final step before constructing the SDP is to transform the constraints to linear
polytopic form, i.e.

Hx̄ ≤ h

Gū ≤ g
(3.14)

Recall the definition of the terminal feasible set:

Cf := {xf | ||pf − pN |k||2 ≤ df ∩ νlb ≤ νf ≤ νub} (2.29 revisited)

without loss of generality, we assume pN |k = 0, which yields

Cf := {xf | ||pf ||2 ≤ df ∩ νlb ≤ νf ≤ νub} (3.15)

To satisfy the polytopic form requirement, we approximate the distance constraint
||pf ||2 ≤ df by imposing that pf must be inside the largest inscribed square of the
circle with radius df . [

|xf |
|yf |

]
≤

[
df√
2

df√
2

]
→ ||pf ||2 ≤ df (3.16)

The construction of the polytopic constraints is now trivial, as the control input
constraints and the remaining state constraints are simple bound constraints.
The largest constrained ellipsoidal set {x̄| x̄TPf x̄ ≤ 1} ∈ Cf , can now be com-
puted by solving the following SDP ([19], [45])

min
E,Y
− logdet(E)

s.t. E ⪰ 0[
([h]i − [H ]ixe)

2 [H ]iE
E[H ]Ti E

]
⪰ 0 ∀ i ∈ [1, nh][

([g]j − [G]jue)
2 [G]jE

E[G]Tj E

]
⪰ 0 ∀ j ∈ [1, ng][

E EAT + Y TBT

AE +BY E

]
⪰ 0

(3.17)

where E = P−1
f and Y = KE. From the computed optimal Pf we can ex-

tract Pfν , which is inserted in the terminal velocity constraint (8) of (2.35). The
semi-definite program in (3.17) was solved using the convex optimization python
software package CVXPY [46].

3.6.3 Predictive safety filter parameters

From equation (2.35), we define:

ulb =

[
Fu,lb

Tr,lb

]
, uub =

[
Fu,ub

Tr,ub

]
(3.18)
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The cost matrix W is defined as:

W =

[
γFu

(Fu,ub−Fu,lb)2
0

0
γTr

(Tr,ub−Tr,lb)2

]
(3.19)

where γFu and γTr are weighting constants, while the denominators ensure that
the input signals are normalized according to their respective operating ranges.
The parameters used in the implementation of the predictive safety filter is shown
in table 3.5:

Table 3.5: Predictive safety filter parameters

Parameter Description Value
N Number of shooting nodes 50
∆T Discretization step 0.5 (s)
Fu,lb Minimum surge force -0.2 (N)
Fu,ub Maximum surge force 2 (N)
Tr,lb Minimum yaw moment -0.15 (Nm)
Tr,ub Maximum yaw moment 0.15 (Nm)
Ncol Number of LiDAR COLAV detection points per sector 5
Ravoid LiDAR COLAV detection point avoidance radius 8 (m)
dsafe Minimum safe distance to hazards 5 (m)
γFu Surge force modification cost 1
γTr Yaw moment modification cost 0.01

With 50 shooting nodes and a discretization step of 0.5s, the length of the pre-
diction horizon is Tf = 50 · 0.5s = 25s, which enables the safety filter to predict
possible hazardous situations far in advance. Because γFu > γTr , the PSF is penal-
ized less for applying modifications to the yaw moment (causing the ship to turn)
as opposed to decreasing the surge force (causing the ship to slow down). As a
consequence, the ship is more likely to steer away from potential hazards instead
of slowing down to avoid them, which encourages forward progress.
The predictive safety filter is created with the acados nonlinear optimal control
software [47], using a sequential-quadratic-programming real-time-iteration scheme
(SQP-RTI), and the internal QP-solver HPIPM [48]. The model equations (3)
and (4) in 2.35 are automatically discretized by acados using an implicit Runge-
Kutta order 4 (IRK4) scheme. State constraints and collision avoidance constraints
are implemented as soft constraints to guarantee feasibility. Using the described
implementation and software, running on a laptop with an AMD Ryzen 7 4700U
processor, the average computation time of a PSF OCP iteration is around 5
milliseconds, which is sufficiently fast for real-time application.

3.7 PSF integration for digital twins

In order to demonstrate the possibility of utilizing the PSF in a digital twin, a
version of the PSF was adapted to be compatible with a model of the milliAmpere
ferry [49]. A group in the course ”Experts in Teamwork” used this to showcase
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the PSF in a realistic virtual reality (VR) environment. Figure 3.8 presents two
scenarios where the PSF is activated. The ships with the red markings are the
obstacles used in the PSF to calculate a safe trajectory. Although this demon-
stration did not use an RL agent for navigation and instead utilized inputs from a
joystick controller, it illustrates the PSF functionality in a more visually realistic
simulation environment. While it was outside the scope of this thesis to explore
the use of PSF in digital twins more thoroughly, we note that applying an RL
agent in this framework could present interesting possibilities for future work.

Figure 3.8: Illustration of a PSF implemented on a digital twin. The predicted safe
path is visualized in green (short-term prediction) and red (long-term
prediction).
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3.8 Reward function

The reward function employed is derived from the collision avoidance reward func-
tion proposed by Meyer [25], with an additional term included for safety violations
in the PSF. The reward function includes the main terms: rpath, rcolav and rPSF ,
which respectively provides rewards for path following, collision avoidance, and
safety violations. Additionally, there are two constant terms rexists and rcollision,
which is the living and collision penalty. A more detailed elaboration on the path
and collision avoidance reward can be found in [25].

Path reward. The path reward has both a velocity-based and a CTE-based
reward. The velocity-based reward is chosen in order to reward speed close to the
maximum vessel speed Umax, while the look-ahead heading term, ψ̃ is small. The
CTE-based reward penalizes large cross-track errors, with the expression going
toward zero. In order for the path reward not to be zero when the cross-track
error is large, the constant term γr is included.

r
(t)
path =

(
u(t)

Umax

cos ψ̄(t) + γr

)
︸ ︷︷ ︸

Velocity-based reward

(
exp

(
−γϵ

∣∣ϵ(t)∣∣)+ γr
)︸ ︷︷ ︸

CTE-based reward

−γ2r (3.20)

Collision avoidance reward. The collision avoidance reward penalizes the vessel
for being close to obstacles heading towards it. It uses the LiDAR sensor mea-
surements, where di is the i

th distance sensor measurement, θi is the vessel-relative
angle of the corresponding sensor ray, and viy is the y-component of the ith velocity
measurement. The final expression, which accounts for both static and dynamic
obstacles, is the following weighted average.

r
(t)
colav = −

∑N
i=1

1
1+γθ|θi|

exp
(
max

(
0, viy

)
− γxdi

)∑N
i=1

1
1+γθ|θi|

(3.21)

Safety violation reward. In order to avoid the agent to rely on the PSF, a
negative reward is added for actions that violate the constraints in the PSF. The
weighting factor γPSF decides how much the agent is penalized for being corrected
by the PSF. It considers the proposed RL input uL, the PSF-corrected input u0,
and the maximum possible input umax.

r
(t)
PSF = −γPSF ||

uL − u0

umax

∥1

= −γPSF

(∣∣∣∣Fu − Fu,PSF

Fu,max

∣∣∣∣+ ∣∣∣∣Tr − Tr,PSF

Tr,max

∣∣∣∣) (3.22)

Complete reward function. The final expression includes the two constant
terms for living and collision penalty, rexists and rcollision. Additionally, the param-
eter λ is provided to regulate the trade-off between the path and collision avoidance
reward.

r =

{
rcollision , if collision

(1− λ)rpath + λrcolav + rPSF + rexists , otherwise
(3.23)
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Table 3.6 shows the parameters used in the reward function. The majority of
them were selected based on previous work in the gym-auv environment [44].
The exception was the new parameter γPSF , which was chosen after some ex-
perimentation. A suitable value was found to ensure a large penalty for safety
violations to encourage safe actions early on in the training. Subsequently, after
safe behavior is learned, the agent could optimize for other terms in the reward
function.

Table 3.6: Reward function parameters

Parameter Interpretation Value
γe Cross-track error scaling 5
γθ Sensor angle scaling 10.0
γx Obstacle distance scaling 0.1
γPSF Safety violation scaling 5
γr Constant in path reward 1
λ Objective trade-off coefficient 0.05
rcollision Collision penalty -1000
rexists Living penalty -1.0

3.9 Test Cases

To assess the performance of the PPO + PSF agent, four test cases were de-
fined with different levels of difficulty and complexity. For test cases 1 and 2,
disturbances are not included. Removing disturbances allow us to verify the im-
plementation of the PSF, and study the impact of the PSF on the learning rate
and behavior of the agent in a controlled setting. For test cases 3 and 4, environ-
mental disturbances are added to increase the difficulty and realism of the training
and test scenarios. In the training environment, each episode continues until one
of three termination criteria was satisfied: the distance to the goal location was
less than 5 meters, the path progress exceeded 99%, or the episode reached the
maximum limit of 5000 timesteps. A description of each test case follows.

3.9.1 Case 1: Predescribed path with stationary obstacles

The first case considers a randomly generated path with stationary obstacles.
Each obstacle is generated with random size and position according to the pre-set
parameters µr, stat and σd. Table 3.7 shows the chosen parameters for the scenario
and Figure 3.9a shows an example of a generated scenario. This scenario is a good
starting point to evaluate how the inclusion of the PSF changes the performance
in a basic obstacle avoidance setting compared to the standard PPO algorithm,
which already has demonstrated good results in similar scenarios [25].
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Table 3.7: Parameters for generating case 1

Parameter Description Initialization
No,stat Number of static obstacles 8
Nw Number of path waypoints 2
Lp Path length 500

µr, stat Mean static obstacle radius 30
σd Obstacle displacement distance standard deviation 100

3.9.2 Case 2: Predescribed path with stationary and moving
obstacles

The second case includes moving obstacles in order to simulate ships in a real
marine environment. The moving obstacles are spawned similarly to the static
obstacles and follow linear trajectories. Table 3.8 shows the chosen parameters
and Figure 3.9b shows an example of a generated scenario.

Table 3.8: Parameters for generating case 2

Parameter Description Initialization
No,stat Number of static obstacles 5
No,dyn Number of dynamic obstacles 5
Nw Number of path waypoints 2
Lp Path length 500

µr, stat Mean static obstacle radius 25
µr, dyn Mean moving obstacle radius 15
σd Obstacle displacement distance standard deviation 100

3.9.3 Case 3: Predescribed path with stationary and moving
obstacles and disturbances

In test case 3, randomized environmental disturbances are added to the simula-
tions in order to assess the robustness of the predictive safety filter under more
realistic and challenging conditions. The ocean current and disturbance forces are
generated according to equation 3.1. Both static and dynamic obstacles are in-
cluded and generated using the same parameters as in case 2. The environmental
disturbances are measured using the observer described in section 3.5, and the es-
timates are included in both the predictive safety filter and the observation vector
of the reinforcement learning agent.
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(a) Scenario generated in case 1
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Figure 3.9: Sample of two randomly generated scenarios for test cases 1 and 2. Red
circles indicate static obstacles, which are randomized both in terms
of position and size. The dotted black curve indicates the path, which
might be obstructed by obstacles. If this is the case, the agent should
find the minimum necessary deviation from the path. In the right-hand
figure, red polygons indicate target ships, while the red lines show their
trajectories. Target ships are allowed to pass through static obstacles
and each other because otherwise, prohibitively complex randomization
procedures would be necessary.

3.9.4 Case 4: Realistic environment

Finally, the fourth case evaluates the algorithm’s performance in more realistic
marine environments. These environments were developed by Meyer [25] and
include terrain data from the Trondheim fjord and AIS tracking data from vessels
in the area. There are in total three challenging environments that require a
different set of skills to navigate. The Trondheim scenario requires the vessel to
follow a straight path to cross the fjord while avoiding traffic from multiple crossing
ships. In the Agdenes scenario, the vessel has to blend in with two-way traffic in
order to avoid collisions in a narrow area at the entrance of the Trondheimsfjord.
Lastly, for the Sorbuoya scenario, the vessel has to navigate through hundreds of
small islands to get to the goal, requiring proficient static obstacle avoidance. Each
scenario is generated with a random sample of ships from an AIS database, such
that the vessel will face a variety of different traffic situations. The disturbances
from Case 3 were also included in this scenario, to further improve the realism. A
snapshot of the different scenarios with ship trajectories can be seen in Figure 4.8.
These scenarios will only be used for testing the agents trained in case 3 in order
to verify the agent’s ability to generalize to novel environments.
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Figure 3.10: Snapshots from the realistic environments used in Case 4. The Trond-
heim scenario has a relatively open path, but features a significant
amount of crossing traffic. The Agdenes scenario tests the agents’
capabilities of avoiding parallel traffic, while the Sorbuoya scenario is
scattered with small islands that must be avoided.
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3.10 Evaluation

The evaluation aims to compare the standard PPO algorithm with the PPO +
PSF algorithm to demonstrate how the inclusion of the PSF changes the learning
process and behavior of the agent. The assessment of the agent’s performance was
two-fold. First, the performance during training in the environment was evaluated.
Then, testing results were examined to compare the final performance of the two
agents.

Training performance. To evaluate the training performance, we first consid-
ered the number of collisions during training. The standard PPO agent is expected
to have several collisions early on, but later go towards zero when a good policy
is learned. On the other hand, the PPO + PSF agent is expected to have zero
collisions during the entire training process since the PSF should be able to cor-
rect the actions of any suboptimal policy in order to avoid collisions. Therefore,
by comparing the number of collisions, we should be able to differentiate the two
algorithms. It is also a good indicator that the PSF ensures safe behavior. Ad-
ditionally, statistics on reward and cross-track error during training are used to
evaluate the overall performance and to understand how the inclusion of a PSF
influences the learning process.

Test performance. The trained agents are tested on 100 randomly generated
scenarios to evaluate their final performance. This sample size was chosen as it
provides statistically significant results while keeping computational time manage-
able. We decided to use slightly different performance metrics for the test results.
While the average reward and cross-track error are useful for observing the learn-
ing progress and overall performance in terms of reward, these metrics become less
relevant in a practical setting. What is more critical then, is whether the agent
reaches the goal within a reasonable time and without any collisions. Therefore, we
used the average path progress and time consumption as performance indicators,
in addition to collision avoidance. While the path progress and collision avoidance
are straightforward to calculate, the metric for time consumption requires further
explanation. The minimum possible time was set as the path length divided by the
top speed of the vessel, which corresponds to 100%. Note that this is usually not
possible to achieve in practice. The maximum time was set to the highest number
of timesteps allowed in a scenario before the episode was terminated, which was
set to 5000 in all cases, corresponding to 0%. All episodes with a collision were
excluded from the time consumption average.

In addition to statistical data collected during training and testing, figures illus-
trating the agents’ behavior in various scenarios are also provided. These can assist
in making more qualitative assessments of the performance.
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4 Results and Discussions

In this chapter, the results of the simulation experiments are presented and dis-
cussed, with each of the 4 test cases covered separately. Rolling averages of the
agents’ total reward, cross-track error and collision rate during the training phases
are plotted individually. The average episode progress, average collision avoidance
rate and average time consumption in the test phase are condensed into radar
charts, to better facilitate a comparison of the total performance of the standard
PPO agents versus the PPO + PSF agents. In addition, sample trajectories from
the various test environments are visualized and discussed.

4.1 Training results

4.1.1 Case 1: Predescribed path with stationary obstacles

Each agent was trained for 1 million timesteps, which corresponded to around 850
episodes, with the exact number depending on the time spent to complete each
scenario. As can be seen in Figure 4.1, no collisions occurred for the PPO + PSF
agent in case 1. The PPO agent conversely experienced a high collision rate early
on, but eventually reached a rate near zero. The reward for the PPO + PSF agent
is slightly higher throughout the training, which is partly because of the absence of
collisions. Additionally, the cross-track error is slightly lower for the PPO agent.
This is expected since the PSF requires the agent to be at a minimum constant
distance to every obstacle, which in some cases would mean it has to stay further
away from the path.

A comparison between the agent trajectories at different stages of the training can
be seen in Figure 4.2. These agents were trained on random scenarios in case 1
for different durations, and tested on a sample scenario to compare their perfor-
mance. After 10.000 timesteps the agent performs quite poorly, with the PPO
agent crashing at an early stage. The PSF saves the PPO + PSF agent from
crashing similarly by modifying the action to perform a sharp right turn before
the obstacle is reached. Notice that even though the agent does not reach the goal
exactly, the scenario finishes since the path progress is above 99 %, which is one
of the termination conditions. Gradually as the agents learn, we observe that the
PPO agent becomes better at collision avoidance and that both agents achieve a
lower cross-track error. After 400.000 time steps, both agents follow a close to
optimal trajectory for this specific scenario. Interestingly, the PPO + PSF agent
seems to converge to the optimal trajectory faster than the PPO agent. While this
is less evident in the cross-track error plot in Figure 4.1c, it could suggest that the
absence of collisions early on in the training accelerates the learning process.
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4 Results and Discussions

(a) Reward (b) Collision rate

(c) Cross-Track Error

Figure 4.1: Average reward, collisions, and cross-track error during training in case
1, smoothed with a rolling average over 100 episodes. The collision rate
is zero for the PPO + PSF agent during the entire training period. The
difference in collision rate is especially striking during the first 200.000
time-steps of training, where the standard PPO agent crashes in about
40% of the episodes

Furthermore, Figure 4.3 illustrates instances when the PSF is activated during
training. The green dots visualize where the agents’ intended action is regarded
as unsafe, and therefore corrected by the PSF. Because the PSF avoids situations
that otherwise likely would become collisions, the episode length for the PPO +
PSF agent is significantly higher in the early stages of training compared with the
pure PPO agent. Additionally, within a single episode, the agent can encounter
multiple situations that would have resulted in crashes without the PSF. This
allows the agent to experience more unsafe states within a shorter amount of time.
As a result, the PPO + PSF agent is able to learn more effectively from a smaller
number of training episodes.
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(a) Agent trained for 10.000 timesteps.
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(b) Agent trained for 50.000 timesteps
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(c) Agent trained for 100.000 timesteps.
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(d) Agent trained for 400.000 timesteps.

Figure 4.2: Comparison between the PPO and the PPO + PSF agent at different
stages of training. Notice that the PPO + PSF agent converges faster
to an optimal trajectory for this specific scenario.
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(a) Scenario 1
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(b) Scenario 2

Figure 4.3: PSF corrections in two scenarios for an agent trained for 50.000
timesteps. The PSF prevents a collision multiple times to ensure that
the agent reaches the goal destination. Because the PSF only opti-
mizes with respect to finding the minimum perturbation to the pro-
posed agent input, the PSF does not modify the control input until
the last time-step before collision is unavoidable. Therefore the agent
is close to the obstacles before control input modifications occur.
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4.1 Training results

4.1.2 Case 2: Predescribed path with stationary and moving
obstacles

(a) Reward (b) Collision rate

(c) Cross-Track Error

Figure 4.4: Average reward, collisions, and cross-track error during training in case
2, smoothed with a rolling average over 100 episodes. Only the PPO +
PSF with information about the moving obstacles has a collision rate
of zero during the entire training period.

In case 2 we observe that the PSF using only LiDAR for collision avoidance no
longer managed to prevent all collisions during training, as shown in figure 4.4.
However, when enhanced with explicit moving obstacle collision avoidance, the
PSF is able to predict the trajectories of the other ships, which in turn leads to
better decisions for avoiding unsafe situations. The approach proved to be effective,
resulting in zero collisions during training. In contrast, the standard PPO agent
struggled more, with a higher collision rate than in case 1, especially during the
later stages of the training, which can be seen from figure 4.4b.
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4.1.3 Case 3: Predescribed path with stationary and moving
obstacles, and environmental disturbances

(a) Reward (b) Collision rate

(c) Cross-Track Error

Figure 4.5: Average reward, collisions, and cross-track error during training in case
3, smoothed with a rolling average over 100 episodes. The added dis-
turbances lower the overall performance of the agents, but they still
converge to a satisfactory level

To account for the added disturbances in this case, the observation vector was
augmented with the estimates from the disturbance observer described in section
3.5. The training results in Figure 4.5 show that the PPO agent took a longer time
before reaching a low collision rate, compared to previous cases. As anticipated,
the cross-track error is slightly higher, while the total reward is slightly lower.
During the initial 200,000 timesteps of training, the collision rate for the standard
PPO agent actually increased before it began to learn more effective collision
avoidance behavior. Generally, the plots show more fluctuations due to the added
disturbances.
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Figure 4.6: Test results for Case 1, 2 and 3. In Case 2 and 3 the PSF was modified
to have access to information about the moving obstacles in addition
to the LiDAR obstacle detection. The PPO + PSF agent has a perfect
score on path progress and collision avoidance in all three cases.

After each agent was trained for 1 million timesteps, they were run for an addi-
tional 100 episodes to evaluate the test performance. The results are visualized in
radar charts in Figure 4.6. The PPO + PSF agents maintained perfect collision
avoidance for all 3 cases, successfully completing every episode. The standard
PPO agent did not achieve the same level of performance, scoring 98%, 96% and
95% respectively on case 1, 2 and 3 on collision avoidance. As expected, the PPO
agent generally struggled more in the scenarios with moving obstacles, while the
inclusion of the PSF improved the agent’s moving obstacle collision avoidance ca-
pabilities. The addition of disturbances in case 3 did not lower the performance
significantly, suggesting that the environmental disturbances were efficiently han-
dled by the observer. Finally, the time consumption is similar for the agents in all
three cases.
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4.2.1 Case 4: Realistic environments
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Figure 4.7: Test results for the Trondheim, Agdenes and Sorbuoya scenario. The
PPO + PSF agent performs better on path progress and collision avoid-
ance in all three cases, but it has a slightly higher time consumption.

Case 4 is the most challenging test case, with three realistic environments (Trond-
heim, Agdenes, Sørbuøya) of increasing difficulty. Prior to testing in these environ-
ments, the agents were trained for 2.000.000 time-steps on randomized scenarios
generated according to case 3, with the PPO + PSF agent using both LiDAR-
based collision avoidance and explicit moving obstacle collision avoidance. As
seen in Figure 4.7, the agents in general perform worse in these environments.
However, the discrepancy between the agents across the various performance met-
rics is also much more noticeable. Furthermore, in Figure 4.8, the path taken by
the PPO + PSF agent during one episode is plotted for all three of the realistic
environments. Observe that the Sorbuoya environment is the only case where the
agent has to significantly deviate from the path in order to reach the goal. In the
two other scenarios, the agent mostly adheres to the path, making maneuvers only
when a ship gets too close.
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4.2 Test results

For the Trondheim environment, PPO + PSF has a 0% collision rate compared to
17% for the standard PPO agent, at the expense of a slightly higher average time
consumption. Looking at the average episode progress, we see that PPO + PSF
indeed manages to successfully reach the goal more often. The PPO + PSF agent
used slightly more time, which was caused by the PSF in occasionally choosing a
longer route to avoid collisions in episodes with crossing traffic.

In the Agdenes environment, the PPO + PSF agent again performed significantly
better than standard PPO. However, a single collision was registered, meaning
that the predictive safety filter was not able to fully guarantee the safety of the
agent in this environment. Looking at the scenario where the agent collided, it
seems that the particular configuration of target ships, and the path chosen by the
agent, led to a situation where multiple ships were simultaneously approaching it
from different directions, making it extremely difficult to avoid collision. Having a
longer prediction horizon for the PSF might have enabled it to recognize the po-
tential hazard at an earlier time. It should be mentioned however that even though
the trajectories of the target ships are taken from real AIS data, they themselves
do not try to avoid collision in any way.

The Sorbuoya environment is the most difficult to navigate, which is reflected
in the results. Again the PPO + PSF agent has much lower collision rate, but
still there were two registered collisions across the 100 episodes. Additionally, the
standard PPO agent has a significantly shorter average episode duration. This is
a result of a few instances similar to the one shown in Figure 4.9 where the episode
was terminated after the maximum number of timesteps was reached. Because the
Sorbuoya environment consists of many densely packed islands, it is possible for
the agent to get stuck in virtual dead ends, where the islands blocking the forward
path are clustered in such a way that the predictive safety filter cannot find a canal
that is wide enough to pass through considering the pre-specified minimum safety
distance.

47



4 Results and Discussions

10.0 15.0 20.0 25.0
East (km)

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

N
or

th
 (k

m
)

Goal

Start

(a) Trondheim

0.0 2.0 4.0 6.0 8.0 10.0 12.0
East (km)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

N
or

th
 (k

m
)

Goal

Start

(b) Agdenes
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Figure 4.8: PPO + PSF agent trajectories in the real-world scenarios. The blue
dotted line is the path taken by agent and the red dotted lines are
the path taken by the moving obstacles. The agent stays close to
the desired path in all scenarios except for Sorbuoya, where it has to
deviate in order to avoid collision with islets.
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Figure 4.9: Example undesired agent path in Sorbuoya scenario. The PPO +
PSF agent does not manage to reach the goal because it gets stuck in
between the cluster of small islands, and can not find a path through
without safety violations.

4.3 Limitations

The test results are based on simulations of the 3-DOF ship dynamics model
described in chapter 2. Important factors such as measurement noise, model in-
accuracy and sensor failure were not considered in this report, and these must be
accounted for if physical experiments are to be conducted. The training scenarios
for the agents were randomized, however the degree of variation could be increased
in order to produce agents better capable of navigating real-world scenarios. Ad-
ditionally, the target ships used in the simulations were modeled as naive actors,
not capable of performing collision avoidance themselves. In a real setting, all
ships would cooperate in order to maximize safety. Finally, the Convention on the
International Regulations for Preventing Collisions at Sea (COLREGS) [50] was
not considered in this work. A fully functional autonomous agent should be able
to comply with COLREGS, however the specific COLREGS rules remain quite
ambiguous and are not straightforward to implement algorithmically, especially in
situations with a high number of ships involved [51]. Despite this, previous work
on implementing COLREGS in the gym-auv framework has been conducted by
Heiberg [28] with promising results. It was not considered mainly because it would
require a more sophisticated implementation of the PSF algorithm, which is be-
yond the scope of this study.
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5 Conclusion and Future Work

We have presented a solution for safe ASV control, combining reinforcement learn-
ing with a predictive safety filter. The method allows an RL agent to propose
actions, with the PSF performing corrections in order to guarantee constraint
satisfaction, which is vital for safety-critical systems. We demonstrated how the
inclusion of a PSF significantly reduces the number of collisions during testing
and training of a state-of-the-art RL algorithm in various complex scenarios, some
including environmental disturbances. Furthermore, with regard to the research
questions proposed for the thesis, the main conclusions can be summarized as fol-
lows:

Can a PSF/RL scheme, capable of real-time collision avoidance and safety verifi-
cation, be successfully realized within an ASV simulation environment? Based on
the simulation results, we are confident that the predictive safety filter is a promis-
ing strategy for ensuring safety in learning-based ship navigation and control. The
PSF successfully managed to keep the RL agent from colliding during all training
and test episodes for each of the randomly generated test cases (test case 1 to
3). In addition, the PSF-enhanced agent performed just as good as the baseline,
requiring fewer training episodes to converge to a satisfactory performance level.
Re-engineering the PPO reward function to accommodate the predictive safety
filter was relatively straightforward, requiring only an additional PSF-activation
penalty, and performing simple tuning. This indicates that the introduction of
the PSF is not prohibitive with regard to the additional time spent re-designing
the RL algorithm itself. Using state-of-the-art non-linear model predictive control
software, an average OCP solver runtime of less than 10 milliseconds was achieved,
which is comfortably within the requirements of real-time application. In addition,
the fast runtime of the optimization solver meant that the PSF-enhanced agent
needed only slightly more time to complete the same number of simulation time
steps compared with the standard PPO agent.

What effect does predictive safety filtering have on the performance and learn-
ing of reinforcement learning agents designed for autonomous surface vessels? As
expected, the predictive safety filter had the most impact in the initial phase of
training. During the first 100.000 time-steps of training the standard PPO agent
often registered a collision rate above 50%. By using the PSF, the learning agent
is able to stay alive and collect much more experience from the initial episodes.
This is advantageous not only from a safety perspective, but also in terms of learn-
ing efficiency. In miniature-scale physical experiments the cost of collision is not
necessarily high, however keeping the agent from colliding for as long as possible
can save a significant amount of time and labor that would otherwise be necessary
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to reset the episode and environment after a collision. For fully trained agents
(trained for 1 to 2 million time-steps), the PPO + PSF agents behaved similarly
to the standard PPO agents in the randomly generated environments, with close
to the same average cross-track error, and choosing similar paths most of the time.

Are predictive safety filters a feasible approach to incorporate reinforcement learn-
ing in real-world marine environments? Both agents performed worse in the real-
istic scenarios with terrain data, although the PSF-enhanced agent still performed
significantly better than the standard PPO agent. The collision avoidance rate,
and consequently the rate of successful episodes, was significantly higher for PPO
+ PSF compared with standard PPO. Still, across a total of 300 simulations in
the realistic scenarios, there were three instances where the predictive safety filter
was not able to prevent collision. Identifying the exact reasons for the collisions
is difficult, owing to the level of complexity in these environments. However, the
fact that collisions happened even with the PSF enabled suggests that transfer-
ring from generated to real environments still poses numerous challenges, and that
sufficient variation in the training phase is imperative to minimizing risk when
applying the agents to real environments. The Sorbuoya environment also showed
that in some situations, the additional safety margins imposed by the predictive
safety filter can hinder the forward progress of the agent, even though a feasi-
ble path exists. This indicates that the trade-off between safety and freedom of
exploration must be considered carefully when designing the PSF. Despite this,
the overall results suggest that predictive safety filters can significantly improve
safety when deploying RL-based autonomous vessels in real environments, thereby
increasing the viability of reinforcement learning in marine navigation and control.

Future work. In this thesis, the main focus has been on demonstrating how a
reinforcement learning agent enhanced with a predictive safety filter can learn to
perform efficient ASV navigation and control, while safety is ensured. The long-
term goal would be to apply the method on a real vessel, verifying the functionality
and effectiveness of the controller. We imagine that possible future work could
include:

• Increased realism in the simulation environment. In a real setting,
factors such as measurement noise, modeling error and sensor failure must
be handled rigorously in order to fully ensure safety and efficiency. The vari-
ation in the randomly generated environments, in terms of the distribution
and complexity of static and dynamic obstacles, can be increased to better
prepare the RL agents for the wide range of scenarios they encounter in the
real world.

• Additional randomization for more robust control. A recent paper by
Haarnoja et al. demonstrate how targeted dynamics randomization and per-
turbations during training can facilitate the sim-to-real transfer for soccer-
playing bipedal robots trained with deep RL [52]. Similar strategies could
potentially be applied in this simulation environment to get a more robust
policy applicable for real-world experimentation. A careful consideration of
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the level of randomization would then be necessary. Excessive randomiza-
tion could lead to a conservative policy, reducing the overall performance.
Conversely, insufficient randomization may not address the sim-to-real gap,
resulting in poor performance in the real environment compared to simula-
tion.

• Perform experiments on a down-scaled ship. A good starting point for
experimentation with the controller, would be to acquire a simple test setup.
This could include a small model ship with a sensor suite, objects to simulate
obstacles and a pool or a designated sea area suitable for experimentation.
With this, it would be possible to explore the challenges in transferring a
policy learned in simulation, to a real-world system.

• Multi-agent environments. Another interesting topic that was not ad-
dressed in this work is the interaction and possible cooperation between
multiple autonomous vessels. In a realistic setting, all involved ships cooper-
ate to minimize collision risk and maximize efficiency. By deploying multiple
agents simultaneously in the same environment, collective behaviors can be
studied, and multi-agent strategies for collision avoidance can be developed.
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