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Abstract

Increased energy costs and growing environmental concerns have prompted a search
for energy-efficient and cost-effective heating solutions. Carbon dioxide (CO2) heat pumps
have emerged as a more environmentally friendly option compared to the ozone deplet-
ing traditional refrigerants like chlorofluorocarbons and hydrofluorocarbons. Despite ex-
tensive research on the use of CO2 as a refrigerant, the exploration of automatic control
strategies for enhancing accuracy and efficiency of heating systems is yet to be addressed.

This thesis presents a comprehensive investigation into the effectiveness of Proportional-
Integral-Derivative (PID) and Model Predictive Control (MPC) strategies for temperature
regulation in a CO2 heat pump system and its connected heating facility. The study aims
to compare the performance of these control methods and determine their suitability for
practical applications. To achieve this, a simulation framework was developed using Mat-
lab and Simulink. An RC model of the heating facility was constructed and connected
to two different models: a simplified radiator model and a more complex CO2 heat pump
cycle model. The PID and MPC control strategies were implemented on both models,
allowing for a direct comparison of their performance in regulating the temperature within
the facility.

The simulation results revealed that the MPC control strategy exhibited superior tem-
perature tracking capabilities compared to PID. The MPC controller demonstrated pre-
cise temperature control, ensuring the desired setpoint temperature was consistently main-
tained. Conversely, the PID controller showcased satisfactory performance in temperature
regulation, indicating its potential suitability for controlling temperatures in residential
homes. The simplicity and ease of implementation associated with PID controllers make
them a practical choice for residential applications, where precise temperature control may
not be as critical.

These findings provide valuable insights into the selection of appropriate control strate-
gies for temperature regulation in CO2 heat pump systems. The research contributes to the
understanding of PID and MPC control methods, their strengths, and their limitations. Fur-
thermore, the development of thermal building models contributes to the understanding of
energy dynamics, heat transfer processes, and the optimization of Heating, Ventilation,
and Air Conditioning (HVAC) systems. The results can guide future efforts in optimiz-
ing control strategies for enhanced energy efficiency and improved comfort in residential
heating systems.
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Sammendrag

Økte energikostnader og økende bekymring for miljøet har ført til et behov for energi-
og kostnadseffektive oppvarmingsløsninger. Karbondioksid (CO2) varmepumper er et
mer miljøvennlig alternativ sammenlignet med tradisjonelle kjølemedier som klorfluorkar-
boner og hydrofluorkarboner, som bidrar til ozonlagets nedbrytning. Til tross for omfat-
tende forskning på bruken av CO2 som kjølemedium, er det fremdeles behov for å utforske
automatiske kontrollstrategier for å forbedre nøyaktighet og effektivitet i oppvarmingssys-
temer.

Denne masteroppgaven presenterer en omfattende undersøkelse av effektiviteten til
Proporsjonal-Integral-Derivasjon (PID) og Model Predictive Control (MPC) strategier for
temperaturregulering i et CO2-basert varmepumpeanlegg og dets tilhørende oppvarmingsan-
legg. Studien har som mål å sammenligne ytelsen til disse reguleringsmetodene og bestemme
deres egnethet for praktiske anvendelser. For å oppnå dette ble det utviklet en simuler-
ingsplattform ved hjelp av Matlab og Simulink. En RC-modell av oppvarmingsanlegget
ble konstruert og koblet til to forskjellige modeller: en forenklet radiator-modell og en mer
kompleks CO2-varmepumpe-syklusmodell. PID- og MPC-reguleringsstrategiene ble im-
plementert på begge modellene, noe som muliggjorde en direkte sammenligning av deres
ytelse i temperaturreguleringen i oppvarmingsanlegget.

Simuleringsresultatene avdekket at MPC-reguleringsstrategien hadde overlegne evner
til å følge temperaturendringer sammenlignet med PID-regulering. MPC-regulatoren viste
presis temperaturkontroll og sikret at ønsket temperaturmål ble opprettholdt. PID-regulatoren
viste tilfredsstillende ytelse i temperaturreguleringen, noe som indikerer potensialet for
bruk i temperaturregulering i bolighus. PID-regulatorens enkle oppbygning og imple-
mentering gjør dem til et praktisk valg for boligapplikasjoner der rask og presis temper-
aturregulering ikke er kritisk.

Disse funnene gir verdifull innsikt i valget av egnede kontrollstrategier for temper-
aturregulering i CO2-varmepumpesystemer. Forskningen bidrar til forståelsen av PID- og
MPC-kontrollmetoder, inkludert deres styrker og begrensninger. Videre bidrar utviklingen
av termiske bygningsmodeller til økt forståelse av energidynamikk, varmeoverføringsprosesser
og optimalisering av HVAC-systemer. Resultatene kan veilede fremtidige tiltak for å op-
timalisere kontrollstrategier, med sikte på å forbedre energieffektivitet og øke komforten i
boligoppvarmingssystemer.
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1
Introduction

1.1 Background and Motivation

Energy consumption is becoming an increased concern for most households. Both the
growing concern for global warming and the high energy prices are incentives to increase
energy efficiency in residential buildings. The United States Environmental Protection
Agency states that space heating accounts for 42% of residential energy usage [1]. Reduc-
ing the energy consumption for residential heating is essential for cost and energy savings.

Heat pump systems are a common way of heating residential buildings. According
to the Norwegian Water Resources and Energy Directorate [2], heat pump systems are
delivering about 15 TWh of heat, and it is expected that they will continue to increase
the heat delivery to 18-20 TWh by 2030. This effect is distributed around about 750 000
heat pumps currently operating in the country. Although installing heat pumps can be
expensive compared to electrical heaters, using the heat pumps are much more energy
effective than the electrical alternative. Heat pumps allow for generating heat from low-
temperature sources such as outdoor air or water. Using heat pumps instead of electrical
heaters reduces the power load by 1 GW on a cold winter day. Furthermore, all heat
demand in buildings could in theory be supplied by heat pumps. Continuous development
and research on heat pumps are therefore important for optimizing the technology.

The use of traditional refrigerants in heat pumps, such as chlorofluorocarbons (CFCs)
and hydrofluorocarbons (HFCs), has been shown to have harmful effects on the ozone
layer. To mitigate this, CO2 is being used as an alternative refrigerant, which is more en-
vironmentally friendly. CFCs and HFCs used to be the preferred refrigerants over CO2
due to their improved heating and cooling properties. However, following the Montreal
Protocol’s ban on ozone-depleting refrigerants [3], the search for alternative refrigerants
intensified. Although many natural refrigerants exist, only a few meet the necessary tech-
nical and safety standards [4]. Among these, CO2 stands out as a safe and suitable option
since it is non-toxic and non-flammable, and has a low global warming potential (GWP) of
1, compared to the high GWP of HFCs (up to 3000 times greater than CO2 per kilogram)
[5]. Moreover, CO2 is economically accessible as it is a byproduct of industrial processes
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1 Introduction 1.2 Literature Review

with a net zero global impact. In the past two decades, researchers have made progress
in investigating the use of CO2 as a refrigerant, but there is still a need for more efficient
automatic control methods around the heat pump system.

Efficient automatic control methods in HVAC systems are investigated by creating dy-
namic models of buildings and control methods and simulating their behavior. Thermal
modeling and simulation are essential components of this process, enabling the under-
standing and prediction of system behavior over time. By utilizing mathematical equa-
tions, these techniques allow for experimentation and analysis of complex systems that
may be challenging to study in real-world settings. In thermal modeling, the thermal
properties of building elements are considered, allowing for the estimation of thermal
resistance and capacitance for each element. This approach, known as RC modeling, uti-
lizes resistors and capacitors to represent thermal elements. The combination of modeling
and simulation not only supports hypothesis testing, controller optimization, and informed
decision-making, but also provides valuable insights into system responses under different
operating conditions.

1.2 Literature Review
This section is a review of the literature on RC building models and automatic control
of HVAC systems, highlighting the major findings, methodologies, and theories that have
shaped the field. Gaps and limitations in the literature will also be discussed, identifying
areas for further research and potential contributions to the field. By examining the existing
literature, this review aims to provide a comprehensive understanding of the topic and
inform future research and practice.

1.2.1 RC Models
RC modeling involves combining the building elements of high thermal mass into one or
more capacitors. The number of capacitors used is the order of the model. E.g. using a
single capacitor is a first-order representation, while using two capacitors is a second-order
representation. Naturally, the more capacitors used, the more complex the RC model be-
comes. Using a combination of first and second-order representations to model buildings
have been proven to give good agreement between the model and the true measurements.
Achterbosch et.al. [6] used a second-order representation to model the external wall and
floor, while the windows, ceilings, and partitions were modeled using a first-order rep-
resentation, and the model was a good representation of the actual building. The model
was tested on houses with different construction materials and hence different thermal ca-
pacities, yet the model was able to estimate the temperature development of the physical
houses accurately. Higher-order representations are commonly used in models but tend to
be used in more complicated thermal systems. Third-ordered representations were used
by Lefebvre to model buildings [7], and by Mara et.al. to model a passive solar cell [8].
Fourth-order representations were used by Fraisse et.al to model a multi-layer wall in a
building. Yet, a second-order model was used by Underwood where 45 construction el-
ements were included, showing that the model is showing excellent agreement with the
reference[9].

2



1 Introduction 1.2.2 PID Controller Tuning in HVAC Systems

These findings suggest that RC modeling is an effective way to represent the thermal
properties of buildings and can be adapted for various types of constructions. Despite
certain drawbacks such as simplifying complex building systems and the need for higher-
ordered models to represent complicated thermal systems, the methodologies discussed
have played a significant role in advancing RC modeling as a valuable tool for thermal
modeling of buildings.

1.2.2 PID Controller Tuning in HVAC Systems
While there is a lack of specific research on systematic tuning of PID controllers for op-
timizing energy efficiency in CO2 HVAC systems, prior studies have provided valuable
insights into the automatic control of such systems. Researchers such as Zhou et al. have
developed fuzzy PID controllers for CO2 heat pump systems using the Ziegler-Nichols
method, demonstrating that PID is a viable control strategy [10]. Kasahara et al. com-
pared different tuning methods for PID controllers in HVAC systems and found that the
Ziegler-Nichols method produced satisfactory but oscillatory responses [11]. Clauß et al.
highlighted the common use of Ziegler-Nichols and Skogestad methods for controller tun-
ing when manufacturer parameters are unavailable [12]. Additionally, Xu et al. employed
trial-and-error techniques to determine optimal PID controller settings for a transcritical
CO2 electric vehicle heat pump [13]. While further research is needed to address the
specific challenges of optimizing CO2 heat pump systems’ energy efficiency through PID
controller tuning, these prior studies offer valuable starting points and insights for future
investigations.

1.2.3 MPC in HVAC Systems
In recent years, MPC has emerged as an effective method for controlling HVAC systems.
Many studies have shown that MPC can effectively control heat pump systems, providing
optimal control strategies, especially in terms of energy efficiency. For instance, Kim et
al. used MPC to control a ground-source heat pump system and found that it improved
the system’s performance by reducing energy consumption and maintaining the desired
temperature set-point [14]. A study by Yang et al. showed that MPC could be used to
control the operation of an air-to-water heat pump system by adjusting the heating capacity
and flow rate, leading to a significant reduction in energy consumption [15].

MPC problems are classified into three main problem classes - linear, nonlinear, and
hybrid. A complete overview and unified framework of MPC control in HVAC control
applications has been conducted by Drgoňa et. al. and is found in [16]. In the review, it was
found that linear MPC formulation is the simplest and computationally least demanding
to implement. It is commonly used in the building sector because linear dynamics can
accurately represent the building envelope [17]. Nonlinear MPC offers greater flexibility
and potentially improved performance by incorporating nonlinear HVAC models, but it
requires more complex modeling and increased computational resources. Studies such as
[18, 19, 20] show how nonlinear MPC is used in real applications. Hybrid MPC is useful
when dealing with integer decision variables or switching dynamics, which are common
in building applications. Although hybrid MPC requires more computational resources, it
can offer better performance compared to linear MPC [21].

3



1 Introduction 1.3 Problem Description

Drgoňa et. al. [16] also reviewed common algorithmic solutions of MPC and found
that the three solution techniques, namely implicit, explicit, and approximate MPC, have
both advantages and disadvantages. Building climate control applications have specific
characteristics such as a large number of state variables and slow dynamics, which make
online implicit MPC implementation the most common approach. However, this method
requires computational power and software dependencies [22]. Explicit MPC is feasible
for small case studies (seen in [23]) and suitable for low-level control tasks or decen-
tralized single-zone control strategies [24]. Approximate explicit MPC solutions offer
memory-based control policies with low computational footprints, making them promis-
ing for large-scale problems. They require minimal software dependencies and can operate
on lower-level hardware. The drawback is the need for the original MPC and larger train-
ing datasets. The paper also addresses uncertainties in the MPC problem and methods like
offset-free MPC, robust MPC, stochastic MPC, adaptive MPC, and learning-based MPC
for mitigating them.

The existing literature includes studies comparing different MPC formulations, mod-
eling methods, and tools to assess MPC performance. However, there is a lack of a unified
framework that specifically addresses the challenges in evaluating and assessing MPC per-
formance. Most of the literature is constrained to specific implementations and conditions
in which they were compared, while the tools are limited to the building models and MPC
approaches developed by the tool designers [16]. Furthermore, real implementations of
MPC in buildings are often short-term studies, as they are often simulated for hours or
days, instead of years [16]. It hinders the ability to assess long-term maintenance re-
quirements. Additionally, there is a lack of studies that discuss implementation costs and
payback periods. Another challenge lies in defining the criteria for comparison. While
common metrics like energy savings, operating cost reductions, and improved occupant
comfort are used, there are other important factors to consider, such as computer hardware
and software requirements, computation time, robustness to changing conditions, sensi-
tivity to model and forecast uncertainties, data requirements, implementation effort, and
installer expertise as discussed in [16]. The wide range of these factors makes it difficult
to make objective comparisons.

Despite the gaps and limitations in the literature, the use of MPC in HVAC systems
has proven to be effective in optimizing system performance and reducing energy con-
sumption. The studies on this topic have employed various approaches, including sys-
tem modeling and optimization algorithms, to achieve these results. As the demand for
energy-efficient HVAC systems continues to grow, the use of MPC is likely to become
more prevalent, leading to further advancements in the field.

1.3 Problem Description
Traditional refrigerants like CFCs and HFCs used in heat pump systems contribute to
ozone layer depletion when released into the atmosphere. To mitigate environmental harm,
CO2 has emerged as a more eco-friendly alternative for heating processes. Efficient con-
trol strategies can significantly impact the overall energy efficiency and performance of
the system. Using effective controllers in CO2-based heat pumps is therefore crucial for
optimizing energy usage.
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This project is a continuation of the semester project [25], where PID controllers for a
CO2 heat pump with a connected heating facility, located in the laboratory at the Depart-
ment of Energy and Process Engineering were attempted to be tuned. However, none of
the controllers were successfully tuned due to inaccurate temperature sensors and errors in
the software implementation. As a result, instead of working on the physical system, this
thesis involves developing mathematical models of the heat pump and heating facility. By
developing mathematical models of the system, software programs like Simulink can be
used to simulate the behavior of the system over time.

The aim of this project is to investigate the performance of PID and MPC controllers
to regulate the room temperature inside the heating facility. To achieve this, an RC model
of the heating facility (referred to as the room) is developed and connected to both a sim-
plified model of the radiator and a model of the complete CO2 heat pump cycle. The per-
formance of the two controllers is then compared, and quantitative methods are employed
to determine the optimal controller settings.

1.4 Delimitations
This project is delimited to focus solely on the modeling and simulation of the transcritical
CO2 heat pump cycle and the connected heating facility. The emphasis is on studying the
temperature development of the room by employing PID and MPC controllers to regulate
the output of a radiator. The project does not address the implementation or tuning of
the physical controllers used in the system. It should be noted that the equipment sizing
employed in the simulations does not accurately represent real-world equipment sizes. The
mathematical models developed in this project are general and can be applied to a wide
range of buildings. However, they are limited by constants and parameters specific to the
simulated heating facility.

1.5 Structure of the Report
The following paragraphs briefly describe the structure of the report. Chapter 2 is meant
to give a short recap on the thermodynamics of heat transfer before a general heat pump
cycle is described. Although all heat pumps have four primary components, CO2 heat
pumps possess an additional internal heat exchanger, which will be thoroughly explained.
The final section of the chapter explains the physical setup of the heat pump cycle and the
heating facility that is to be modeled.

In Chapter 3, a mathematical model of the heating facility is derived from the laws of
thermodynamics and by using the thermal-electrical analogy. The different elements of
the room are modeled individually before all elements are connected to make up the room
model. The room model is then verified by simulating the temperature development of the
indoor air with no added heat in Simulink. Lastly, a model of the transcritical CO2 heat
pump cycle is presented and described. An example model from MathWorks is modified
to be used as the transcritical CO2 cycle.

Chapter 4 concerns the two automatic controllers used in this project. The PID and
MPC controllers are described in this chapter. Theory for controller tuning is also included,
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as well as a description of how the MPC toolbox in Matlab works.
In Chapter 5, the two automatic controllers are implemented into the Simulink model.

The first section of the chapter involves the implementation of the controllers used in the
simplified radiator model (e.g. not modeling the CO2 heat pump cycle), while the second
section regards the CO2 cycle implementation. The selection of controller parameters for
the PID and MPC are presented.

The results of this project are presented in Chapter 6. The chapter is divided into
two sections, where the first section presents temperature development using a simplified
radiator, and the last section presents the same type of response plots but the radiator gain is
modeled using the transcritical CO2 cycle. Plots of the controller outputs and temperature
development are presented.

A discussion of the results is done in Chapter 7. Limitations of the models used are
discussed. Chapter 8 is the conclusion of this thesis, and suggestions for further work are
also included in this chapter.
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2
System Description

In this chapter, the heat pump cycle and heating facility of the physical system are de-
scribed. However, before the system is introduced, the basic theory behind heat transfer
and pumps is presented. Having an understanding of how the heat pump cycle works is
beneficial in understanding how buildings are heated up. The following paragraphs are
intended to give a short refresher on thermodynamics, in addition to explaining how a
general heat pump works. The end of this chapter explains the physical setup of the heat
pump cycle and the heating facility. Large parts of this chapter are based on the theory and
methods presented in the specialization project [25].

2.1 Heat Transfer
Exchanging heat between flowing streams, whether it is between solids, liquids, or gases is
done through a heat exchanger. While heat exchangers can exist in various configurations,
they all rely upon the fundamental principles of heat transfer, specifically conduction,
convection, and radiation.

The process of conduction involves the transfer of energy between materials through
direct contact. Convection, on the other hand, involves the transfer of energy through
the mixing of materials, which can occur through natural convection, where heat transfer
results from the density difference between fluids, or through forced convection, where
an external force such as a fan or compressor creates a pressure difference that facilitates
mixing. Radiation is another form of heat transfer that occurs through the emission and
absorption of energy via electromagnetic waves, such as visible or infrared light. The
impact of heat transfer through radiation is negligible in the context of the heat pump
system, but radiation plays an important role in heating buildings in direct sunlight [26].

In this project, the heat exchangers employed were of the closed-type variety, which
are also known as recuperators. These devices use a wall or plate to physically separate
the two fluid streams, facilitating both conductive and convective heat transfer to achieve
the desired heat transfer effect. A common implementation of this design is the plate
exchanger [27], which is the specific type utilized in the laboratory setting, as well as in
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2 System Description 2.2 Heat Pump Cycle

the Simulink model. The flow through the heat exchanger can be arranged in a variety of
configurations, with the countercurrent flow configuration being the most energy-efficient
option [28], which is also the configuration used in this project.

2.2 Heat Pump Cycle
Heat pumps are composed of four primary parts: a compressor, a condenser, an evaporator,
and an expansion valve, illustrated in Figure 2.1. In this particular system utilizing CO2
as the refrigerant, the fluid remains in a gaseous state and does not undergo condensation.
Therefore, it is appropriate to refer to the condenser as a gas cooler.

Expalsion 
valve

Compressor

Condenser

Evaporator

Figure 2.1: Schematic of a General Heat Pump System

The compressor raises the pressure and temperature of the refrigerant through an isen-
tropic process, in which the entropy remains constant. The gas cooler, a plate heat ex-
changer, is used to heat the fluid that flows through the heating facility. The hot refrigerant
gas enters the heat exchanger and heat is transferred from the gas to the fluid. The evapo-
rator evaporates the fluid, resulting in a rise in both enthalpy and entropy. The expansion
valve rapidly expands the refrigerant by reducing its pressure, causing a sudden drop in
temperature through a throttling effect, where the valve achieves adiabatic expansion of
the gas in the pipeline at a constant enthalpy.

Figure 2.2 illustrates the Pressure-Enthalpy Refrigeration Cycle for transcritical CO2
heat pumps. The intermediate steps 1’ and 3’ in the figure represent the internal heat
exchanger used in CO2 heat pump cycles to superheat and sub-cool the fluid, which im-
proves the coefficient of performance (COP) [29]. The internal heat exchanger is further
explained in Section 2.2.1. The stages in the heat pump cycle are as follows: 1-1’ repre-
sents the internal heat exchanger, 1’-2 represents the compressor, 2-3 represents the gas
cooler, 3-3’ represents the internal heat exchanger, 3-4 represents the expansion valve, and
4-1 represents the evaporator.

2.2.1 Transcritical CO2 Heat Pump Cycle
The components of the CO2 heat pump system include a compressor, gas cooler, expan-
sion valve, evaporator, liquid separator, and internal heat exchanger. The compressor, gas
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2 System Description 2.2.1 Transcritical CO2 Heat Pump Cycle

Figure 2.2: Pressure-Enthalpy diagram for trans-critical CO2 heat pump. Figure from [30]

cooler, expansion valve, and evaporator are commonly found in all heat pump systems, as
explained in the preceding paragraph. Figure 2.3 depicts a process diagram of the CO2
heat pump cycle.

Incorporating an internal heat exchanger (IHX) is a common practice in CO2 heat
pump systems [31]. The primary objective of the IHX is to facilitate the transfer of heat
from the high-pressure to the low-pressure side. By doing so, the hot, high-pressure CO2 is
sub-cooled before entering the expansion valve, while the cold vapor on the low-pressure
side is superheated before entering the compressor. This heat transfer process results in a
significant improvement in the system’s overall performance and COP [29].

It is important to note that the physical system has a liquid separator which is used to
separate out any liquids from the CO2 vapor. Lubricants or other residual fluids that may
have contaminated the stream must be removed before the refrigerant enters the compres-
sor again. Given that the heat pump is installed indoors and thus not susceptible to frost
buildup on the heat exchanger, the liquid separator has minimal impact on the system’s
performance. Its sole purpose is to ensure the proper functioning of the system, and the
piece of equipment is therefore not included in the Simulink model.

The following paragraph describes the cycle that the CO2 goes through, starting from
the compressor. The compressor raises the pressure and temperature of CO2, operating at
a pressure of approximately 90 bar, representing the high-pressure side of the process. The
refrigerant then passes through the gas cooler, which is a countercurrent heat exchanger
that cools the refrigerant utilizing the water loop (the heat sink) that heats the facility.
In the gas cooler, the refrigerant undergoes a transition from a vapor state to a denser
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2 System Description 2.3 Heating Facility

liquid-like gas state [32]. The liquid-like CO2 gas is subsequently sub-cooled in the IHX
and throttled by the expansion valve, which is regulated by a PI controller to maintain a
constant discharge pressure. The valve induces a rapid pressure reduction, which causes
a decrease in the fluid temperature, marking the low-pressure side of the system. The
CO2 enters the evaporator, where it undergoes evaporation at a constant temperature and
absorbs heat. The glycol loop serves as the heat source, although its properties are beyond
the scope of this discussion. Following the evaporation, any residual liquid is separated
from the vapor in the liquid separator. Finally, the vapor is superheated in the IHX before
re-entering the compressor and restarting the cycle.

2.3 Heating Facility
This section depicts and briefly describes the physical heating facility of the system. Con-
nected to the heat pump is the heating facility that contains the heating devices. The facility
is seen in Figure 2.4. There are five types of space heaters in the facility, including a large
and a small fan coil, floor heating, and large and small radiators. Additionally, the heating
facility includes a domestic hot water (DHW) tank, two control valves, and a pump. Al-
though the physical system involves several components, the Simulink model introduced
in the following chapter presents a simplified representation of the room. In the Simulink
model, all five space heaters are combined into a single unit, and the DHW, control valves,
and pump are not included.

Warm water is stored in the DHW tank and then leaves the tank and is regulated by
a 3-way control valve (V1) to enter the heating facility. A pump (JP3) is used to transfer
water into the space heaters. The flow of water into the floor heaters is regulated by another
control valve (V2).
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Figure 2.3: Process diagram of the heat pump cycle
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Figure 2.4: Process diagram of the heating facility
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3
Modeling

Dynamic models are simplified representations of real-world processes and are used to
describe the behavior of a system over time. The modeling of physical systems offers in-
sights into how the system will respond to various inputs and operating conditions without
having to conduct tests on the actual system. Investigating how a building responds to a
step response in temperature may take hours or days, whereas simulating the step response
using a model could take only a second or two. Lastly, advanced controllers need mathe-
matical models to filter out disturbances or to predict future outputs. The MPC controller
uses a model in addition to real data to predict future output values.

3.1 Modeling Paradigms

There are several types of models, and they are classified on how they are obtained [33].
In building modeling, three modeling paradigms are used - white-box, black-box, and
gray-box modeling.

White-box

Theoretical models or white-box models are developed using physical equations such as
the conservation laws for mass and energy. The parameters used in these models are phys-
ically meaningful and are obtained from the construction materials, the geometry of the
building, and from equipment specifications. The major drawback of white-box modeling
is that good models can become very complex and expensive to develop. Furthermore,
some parameters in the model may be unavailable, such as heat transfer coefficients. In
order to get an accurate model, thousands of parameters are often needed [16]. Since an
accurate model relies on so many parameters, many potential sources of model inaccura-
cies are introduced. On the other hand, white-box modeling has the advantage of being
easy to understand, and they are reliable over a wide range of conditions.
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3 Modeling 3.2 Conservation Laws

Black-box

Empirical models or black-box models are data-driven models obtained by fitting experi-
mental data. The model describes the dynamics of the system solely based on data without
having any prior knowledge about the physical states of the system. Black-box models are
easy to develop but tend to only be accurate for the operating conditions used in the ex-
perimental data. Black-box models offer advantages over other model paradigms, such as
lower development costs and the flexibility to use any signal as input or output, regardless
of the underlying physics. However, these models have drawbacks, including the need for
training data to create accurate models and their limited reliability beyond the range of the
training data.

Gray-box

Gray-box modeling is a hybrid of the two above, where numerical values in the parameters
are calculated using experimental data. This type of modeling includes a diverse range of
models that incorporate simplified physical relationships and rely on parameter estimation
using measured data. Typically, gray-box models simplify physics by reducing state-space
dimensionality or linearizing the equations. Grey-box modeling is the most common type
of model used in industrial processes [34], and is also the type used to model the heat
pump system.

This type of modeling has the advantages of using physical equations, working well
in a wider range of operating conditions, and they allow for parameter estimation. The
gray-box approach addresses the limitations of both white-box and black-box models.
Gray-box models, which already contain some knowledge about the system, tend to be
more reliable outside the calibration range and require less data for calibration compared
to black-box models. There is also a lower risk of overfitting. Gray-box models can be
easily adapted to meet the requirements of MPC solvers by ensuring continuity, linearity,
or differentiability. Additionally, gray-box models are portable between similar systems,
and a few model types can represent the majority of buildings [35].

The selection of a specific paradigm is primarily influenced by the resources available,
in addition to desired features of the model. Figure 3.1 shows a summary of the most
common features for the tree paradigms. For the purpose of modeling HVAC systems,
where information about the building and HVAC system, in addition to some experimental
data is available, the gray-box model approach is considered the most convenient [16]. A
commonly used type of gray-box model used in thermal building modeling is the RC anal-
ogy, which establishes a connection between a model and an electrical circuit comprising
resistors and capacitors, as discussed in the subsequent sections of this chapter.

3.2 Conservation Laws
In the physical realm, a conservation law is derived from a symmetry principle. There are
numerous conservation laws, some of which are exact while others are only approximate
[36]. Some conservation laws describe the flow of energy and mass, while others describe
momentum and angular momentum. The most important conservation laws for this project
are the conservation of mass and energy, and the laws of thermodynamics.
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3 Modeling 3.3 Thermal-electrical Analogy

Figure 3.1: Overview of typical features of the three modeling paradigms. Figure from [16]

The law of conservation of mass states that mass is neither created nor destroyed, e.g.
the total mass in a closed system will remain the same during chemical reactions or phase
changes. The law of conservation of energy is very similar as it states that energy can
neither be created nor destroyed - it can only convert from one form of energy to another.

The first law of thermodynamics states that energy cannot be created nor destroyed.
As heat is a type of energy, a large focus when creating a room model is describing the
flow of heat into and out of the room. The flow of energy in and out of the system ulti-
mately determines the temperature of the room. The second law of thermodynamics states
that energy passes from a warmer body to a colder body. Heating and cooling the room
happens through heat transfer due to convection, conduction, and radiation, as described
in Chapter 2. The laws of thermodynamics describe how heat is a form of energy that can
be transferred from one place to another. Another form of energy that behaves similarly
to heat is electricity. Both heat and electricity obey fundamental laws of physics and one
can use this property as an analogy to better understand the behavior of thermal systems
in terms of electrical concepts, and vice versa. This can be particularly useful in situations
where it is easier to measure or manipulate electrical properties than thermal properties.

3.3 Thermal-electrical Analogy
Heat transfer through conduction is expressed with Fourier’s law as:

q =
∆T

Rt
(3.1)

Here, q represents the heat flow, ∆T represents the temperature difference, and Rt repre-
sents the conductive thermal resistance.

Ohm’s law is another widely known equation that bears a striking resemblance to Eq.
3.1. By substituting q with current, I , and ∆T with voltage difference, ∆V , the equation
gives Ohm’s law. Ohm’s law states that current flowing through a conductor is directly
proportional to the change in voltage, and is expressed as:

I =
∆V

Re
(3.2)
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3 Modeling 3.4 Modeling a Room

Note that the subscript on the resistances in Eqs. 3.1 and 3.2 is utilized to differentiate
between thermal resistance (Rt) and electrical resistance (Re).

Both equations illustrate how energy is transferred through a substance by conduc-
tion. To establish the analogy between the two, the individual terms can be compared. In
Fourier’s law, q represents the heat flow or the rate of heat transfer through conduction,
while I in Ohm’s law denotes the flow of current. The temperature difference, ∆T , in
Fourier’s law measures the energy difference across a substance, whereas in Ohm’s law,
∆V is the energy per unit charge. The resistance in Ohm’s law explains a material’s abil-
ity to impede the flow of electrical charge, while in Fourier’s law, the resistance can be
expressed as:

Rt =
1

UA
(3.3)

Here, U represents the overall heat transfer coefficient and A is the area. In an electrical
circuit, resistance limits the flow of current, while in a thermal system, resistance limits
the flow of heat. Table 3.1 summarizes the main analogies between thermal and electrical
systems, including their corresponding variables and parameters.

Thermal System Electrical System
Temperature (T ) Electrical potential (voltage) (V )

Heat flow (q) Electrical current (I)
Thermal resistance (Rt) Electrical resistance (Re)

Table 3.1: Thermal-Electrical Analogy

As seen from the paragraphs above, both Fourier’s and Ohm’s law describe a materials
capacity to impede flow of energy through matter. When modeling the heat transfer in
a room, using the thermal-electrical analogy makes modeling easier as it is simpler to
measure or control electrical properties instead of thermal properties.

Due to the thermal-electrical analogy, the electrical library the Simscape extension in
Simulink can be utilized to conveniently construct a room model by assembling resistors
and capacitors. It is worth noting that the conventional modeling approach in Simulink
using transfer functions could be employed instead of using the Simscape extension. How-
ever, this method requires Laplace transformations to be applied to each resistor and capac-
itor to obtain the transfer function. The adoption of standard components in Simulink for
modeling is not only time-consuming but also leads to increased complexity and decreased
comprehensibility of the model.

3.4 Modeling a Room
In the context of building thermodynamics, heat transfer occurs through three mechanisms:
conduction, convection, and radiation. The predominant heat transfer modes within en-
closed spaces are conduction via walls, floors, and ceilings, convection through radiators
and air, and radiation via windows. Furthermore, the heat storage capacity of materials
within the space also plays a role in altering the room temperature.
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3 Modeling 3.4.1 3R2C Model

3.4.1 3R2C Model

A one-layer slab, such as a wall, is commonly modeled using a 3R2C model [9]. The
3R2C model, named after its three resistors and two capacitors, can be represented by an
electrical circuit, as illustrated in Figure 3.2. Heat transfer via convection occurs between
the outside temperature and the temperature at the outer wall surface, represented by the
first resistor (Row). Within the wall, a capacitor represents heat storage, while the resistor
represents conductive heat transfer. Two capacitors with identical values are required to
obtain two differential equations for calculating the unknown temperatures at the inner
and outer walls. Finally, the last resistor represents the convective heat transfer between
the surface of the inner wall and the enclosed space. Using this model, the differential
equations to determine the unknown temperatures, T1 and T2, can be obtained as seen in
Eqn. 3.4.

Ta

Row Tow

Cow

Rw

Ciw

Tiw
Tr

Riw

Figure 3.2: 3R2C model

C
dTow

dt
= hA(Ta − Tow) +

Tiw − Tow

R

C
dTiw

dt
= hA(Tr − Tiw) +

Tow − Tiw

R

(3.4)

The one-layer slab RC model can be represented in state-space form as a discrete time-
invariant system:

x[k + 1] = Ax[k] +Bu[k] (3.5)
y[k] = Cx[k] +Du[k] (3.6)

where x is the state vector, y is the output vector, u is the input vector, and A is the state
matrix, B is the input matrix, C is the output matrix, and D is the feedforward matrix.

The system in Figure 3.2 will have the state-space representation shown as:

 ˙Tow
˙Tiw

Ṫr

 =

−Row+Rw

RowRwC
1

RwC 0
1

RwC −Rw+Riw

RwRiwC
1

RiwC

0 1
Riw

C − 1
RiwC

Tow

Tiw

Tr

+

 1
RowC

0
0

 [
Ta

]
(3.7)
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3.4.2 Modeling the Walls and Ceiling

In terms of modeling, walls and ceilings can be considered equivalent as they both repre-
sent slabs in contact with an outer temperature and possess similar composition. The pri-
mary distinction between modeling a wall and a ceiling is the materials utilized, resulting
in unique resistor and capacitor values. In the case of simulating a multi-story building, the
outdoor temperature of the ceiling could be substituted with the temperature of the room
located above. However, this particular scenario is not applicable to the current project. In
fact, an assumption has been made that the walls and ceiling are constructed of identical
materials, allowing them to be combined and represented as a single electrical component.
This component can be represented similarly to the one depicted in Figure 3.2.

3.4.3 Modeling the Floor

The process of modeling the floor is comparable to modeling the walls and ceilings. If the
room were located on an upper level, modeling the floor would be equivalent to model-
ing the ceiling. In this particular scenario, however, the floor comes into contact with the
ground. It is assumed that the ground temperature is 0°C, and thus, an electrical ground
is employed to simulate the ground’s 0°C temperature. In Simscape, the electrical compo-
nents employed to model the floor are depicted in Figure 3.3. The capacitor signifies the
thermal mass, whereas the resistor represents the thermal resistance of the floor.

Figure 3.3: Model of the floor

3.4.4 Modeling the Window

In contrast to walls and floors, windows do not possess significant thermal mass, making it
unnecessary to include a capacitor for thermal mass in the model. Instead, the heat transfer
through the window is accounted for by considering the temperature difference between
the inside and outside air. The electrical components utilized to model the window in
Simscape are depicted in Figure 3.4.

Figure 3.4: Model of the window
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3.4.5 Room Model
A comprehensive model of the room can be created by interconnecting the building el-
ements through Simscape components. Figure 3.5 illustrates the Simulink model of the
room constructed using the Simscape electrical components. The values of the resistors
and capacitors, as well as the connection port blocks for the outdoor temperature and radi-
ator, both of which are defined as physical signals, are specified in a Matlab workspace.

Figure 3.5: Simulink/Simscape model of the room

The current room model is relatively extensive as it includes heat loss through all sur-
faces. However, it does not take into account the heat loss from ventilation and infiltration,
which can significantly affect the temperature development in a room by introducing heat
or moisture from the outside. These factors were omitted from the model to prevent exces-
sive complexity, but Section B in the Appendix provides information on how to incorporate
ventilation and infiltration into the model.

The literature provides the heat transfer coefficients (h) for the building elements. Ta-
ble 3.2 lists the convective heat transfer coefficients, which indicate how energy is trans-
ferred between a surface and a moving fluid. This energy transfer can occur due to forced
convection, where a fluid is induced by an external force, or due to natural (or free) con-
vection, which is caused by temperature differences in the fluid. Although the heating
facility room modeled in this study is situated inside a building where forced convection
occurs due to ventilation, the airflow of the external air is assumed to be small enough to
be considered natural convection.

Type of Convection h (W/(m2 ·K))
Wall to air 3

Wall to window 5
Window to air 3

Radiator to wall 7

Table 3.2: Typical values of convective heat transfer coefficients in buildings. Values found in [37]

The overall heat transfer coefficients (U ) indicate how well heat is conducted through
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3 Modeling 3.5 Verification of the Room Model

resistant mediums. A higher coefficient indicates that heat can be transferred more easily
between the medium. Building elements, typically consisting of multiple layers of ma-
terials have distinct heat transfer coefficients for each layer. However, in this project, an
approximation is made where each building element is assigned a single coefficient. The
overall heat transfer coefficients used in the model are defined in Table 3.3.

Building Element U (W/(m2 ·K))
Exterior wall 0.3
Interior wall 0.9

Window 2.3
Floor 3.0

Ceiling 2.2

Table 3.3: Typical values of overall heat transfer coefficients in building elements. Values found in
[38]

3.5 Verification of the Room Model
To verify the accuracy of the room model, simulations were conducted to ensure that the
temperature evolution matched the expected behavior.

A simulation of the room was performed to validate the one-layer slab used to model
heat transfer through the wall. No external heat was introduced to the room, so the tem-
perature development was driven solely by the initial temperature differences between the
indoor and outdoor air. Figure 3.6 depicts the temperature changes in the room over a 24-
hour period. The initial indoor temperature was set to 20°C, the initial wall temperature
was set to 10°C, and the outdoor air temperature was set to 5°C. The simulation results
demonstrate that the temperature of the room approaches that of the outdoor temperature.
As no heat is added to the room, and the surrounding temperature is lower, it is expected
that the room temperature will converge to the ambient temperature, in accordance with
the second law of thermodynamics, which states that energy flows from hotter objects to
colder ones.

In order to expand the scope of the testing, the model was subjected to varying outdoor
temperatures. Figure 3.7 illustrates the response of the system to outdoor temperatures
that fluctuate throughout the day. To represent the daily temperature fluctuations, an in-
put signal consisting of a sine wave with an amplitude of 2, a bias of 5, and a frequency
of 0.0002 rad/sec was added as an input. The results indicate that the room temperature
initially drops towards the outdoor temperature and then begins to follow the same oscil-
lation pattern, although with a slight time delay. This delay is a result of the substantial
thermal mass present in the building components. Due to the walls’ ability to store heat,
the process of dissipating and absorbing heat from the external environment is a sluggish
one, which is also why the room temperature never reaches the extremes of the outdoor
temperature.

The two plots indicate that the temperature progression in the room is behaving in a
predictable manner. As a result, the model effectively mirrors the physical system and will
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Figure 3.6: Room temperature development over 24 hours, with outdoor temperature at 5°C, initial
wall temperature at 10°C, and initial indoor temperature at 20°C.
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Figure 3.7: Room temperature development over 24 hours, with the outdoor temperature fluctuating
between 2 and 7°C, initial wall temperature at 10°C, and initial indoor temperature at 20°C.

be utilized as a simplification of the physical system to incorporate controllers into the
model and analyze them comparatively.
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3 Modeling 3.6 Modeling the CO2 Cycle

3.6 Modeling the CO2 Cycle
In this section, a model of the CO2 heat pump cycle is developed and implemented in
Matlab/Simulink. A description of the CO2 heat pump cycle was presented in Chapter 2.
Simulating this CO2 cycle, especially during the high-pressure phase in the supercritical
fluid region, is a challenging task to develop from scratch in Simulink. However, Math-
Works provides an example model of a transcritical CO2 refrigeration cycle, which can
be accessed by executing the command ssc_transcritical_refrigeration in
a Matlab command window. While the MathWorks example model is designed for re-
frigeration cycles, it can be used in heating cycles since the two cycles are fundamentally
identical, differing only in their usage. The refrigeration cycle cools the external fluid
flowing through the evaporator, while the heat pump cycle heats the external fluid flowing
through the condenser. The MathWorks model has been adapted and implemented in this
project, as shown in Figure 3.8, and is explained in the following paragraphs.

Figure 3.8: Simulink model of transcritical CO2 heat pump cycle

Figure 3.8 employs various Simscape Foundation libraries, including Two-Phase Fluid
Models, Thermal Models, and standard Simulink models. The Two-Phase Fluid library
is utilized because the working fluid comprises a mixture of liquid and gas components.
The library incorporates a Two-Phase Fluid Properties (2P) block, which specifies the
properties of the CO2. The Thermal Models are used to model fundamental thermal effects
like insulation and heat exchange.

To ensure proper regulation of the CO2 cycle, two controllers are employed—one for
the expansion valve opening and another for the compressor speed. When the two-phase
CO2 mixture enters the evaporator, the temperature at the evaporator’s inlet, T5, aligns
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3 Modeling 3.6 Modeling the CO2 Cycle

with the saturation temperature. Therefore, the difference between T6 and T5 represents
the extent of superheat within the evaporator, which is controlled through the adjustment
of the expansion valve. Meanwhile, the room temperature is governed by a controller that
modulates the shaft speed to achieve the desired flow rate. In the MathWorks example
model, PID control is utilized to regulate both the expansion valve and the compressor.
While the controller remains the same in the modified version, different values for Kp and
Ki have been determined to enhance performance. Later in the project, the PID controller
on the compressor is replaced with an MPC to allow for a comparison between the two
control types.

The heat exchange between the radiator and the hot CO2 stream, which enters the gas
cooler, is simplified as a constant delta T of 20 °C, also known as the minimum approach
temperature. The minimum approach temperature is the smallest temperature difference
between the hot and cold streams. In an ideal, infinitely large heat exchanger, where all
the heat from the hot stream was transferred to the cold stream, the temperature difference
would be 0°C. In practice, however, some heat is lost in the process. Factors such as
the design of the heat exchanger, flow rates, and thermodynamic properties of the fluids
affect the minimum approach temperature. Typical values for the minimum approach
temperature falls within the range of 5°C to 30°C [39], hence 20 °C is selected for the heat
exchanger used in the gas cooler.
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Automatic Control

All automatic controllers have the purpose of adjusting the inputs to a system in order
to attain a desired setpoint or trajectory, without human interaction. By implementing
automatic controllers in industrial processes, one can regulate the behavior of complex
systems, while ensuring safe and efficient operations. There are several types of automatic
controllers, and the choice of control is often dependent on the type of system to be con-
trolled. In general, the more complex and precise the control task, the more sophisticated
the controller needs to be. Two common controllers are the PID controllers, which are
widely used in industrial processes, and the MPC, which are popular in advanced control
applications [33].

The PID controller is a control technique that measures the error between a desired
setpoint and the actual output of the system, and then uses the three terms (proportional,
integral, and derivative) to calculate a gain in order to minimize the error. The MPC con-
troller, on the other hand, is an advanced control technique that uses a model of the system
to predict future behaviors and calculates an optimal input based on the model and on the
current output of the system. MPC minimizes a cost function over a finite time horizon
that is subject to constraints on the inputs, outputs, and states of the system. The main
difference between the two control techniques is that PID uses the current error to calcu-
late a new gain, while MPC uses a model in addition to the current error to predict how
the system will behave in the future and calculates the gain accordingly. Implementing
MPC is more complex, but is effective for controlling nonlinear, complex dynamics, or
systems subject to constraints. The PID controller is simpler and is usually sufficient for
controlling linear systems with simple dynamics.

Both control techniques have been implemented in this project to investigate how much
more efficient, if any, the advanced MPC scheme is able to regulate the room temperature
compared to the PID. This chapter presents the theoretical foundations of the two con-
trollers. Some of the theory behind the PID controller is based on the theory presented in
the specialization project [25].

24



4 Automatic Control 4.1 PID Control

4.1 PID Control
In the realm of process control, the PID controller is widely employed [33], comprising
of proportional, integral, and derivative control modes. As previously mentioned, the fun-
damental purpose of feedback control is to minimize the error signal e(t). The error is
expressed as:

e(t) = ysp(t)− ym(t) (4.1)

where ysp is the set point, and ym is the measured controlled variable. The proportional
control mode involves multiplying a constant Kc with the error signal to compute the gain.
The integral control mode calculates the gain from the integral of the error signal over time.
When a deviation from the set point is detected, the integral action accumulates the recent
error and adjusts the gain to eliminate the offset. The derivative control mode uses the rate
of change of the error signal to determine the gain.

Figure 4.1: Block diagram of parallel PID controller. Figure from [33]

There exist various types of PID controllers, but the parallel form is used and im-
plemented in Matlab and is seen in Figure 4.1. The corresponding control equation is
expressed as:

p(t) = p̄+Kc

(
e(t) +

1

τI

∫ t

0

e(t∗) dt∗ + τD
de(t)

dt

)
(4.2)

where p̄ denotes the steady-state bias, τI represents the integral or reset time, and τD rep-
resents the derivative time. The application of Laplace transformation yields the transfer
function expressed as:

P ′(s)

E(s)
= Kc

(
1 +

1

τIs
+ τDs

)
(4.3)

In numerous processes, incorporating the derivative control mode with a non-zero
value can improve the dynamic response to the controlled variable. The derivative term,
when coupled with integral action, typically offsets the destabilizing influence of the in-
tegral effect. However, when dealing with noisy processes, utilization of the derivative

25



4 Automatic Control 4.1.1 Tuning Methods

action can intensify the noise. Installing a low-pass filter can reduce the noise, but in most
processes, a PI controller proves to be satisfactory [33].

The PID controller presented in Eq. 4.3 is an ideal controller and disregards the phys-
ical constraints imposed on the system. For instance, the heat pump system is subject to
physical limits on the valve opening and the heat exchangers, each having an upper and
lower value. Newton’s Law of Cooling governs the rate of heat transfer between the hot
and cold streams, which depends on the temperature difference. The hot stream cannot
exit the heat exchanger at a temperature lower than the cold stream’s entering tempera-
ture. When the controller output exceeds its physical constraints, the controller becomes
saturated. Using a controller output gain beyond the system’s physical limits generates a
persistent error, which causes the integral term to grow progressively over time. The ad-
ditional accumulation of the integral after the controller is saturated is termed integral or
saturation windup. The integral term keeps increasing until e(t∗) ̸= 0, and only decreases
when the error changes its sign. The PID Controller block in Simulink has built-in options
for handling saturation limits and anti-windup mechanisms.

4.1.1 Tuning Methods
Tuning controllers have a major impact on the closed-loop stability of the system. Var-
ious techniques can be employed to adjust PID controllers, including transient response,
frequency response, and the utilization of transfer function models. Ziegler-Nichols (Z-N)
and Skogestad’s Simple Internal Model Control (SIMC) are two widely used analytical
methods for tuning controllers. The trial and error method is also a feasible tuning strat-
egy. The Z-N and SIMC methods are briefly described in this section, but a more in-depth
description can be found in Section C in the Appendix.

A well-tuned PID controller satisfies a few performance criteria. Most importantly,
the closed-loop system must be stable. Furthermore, effects from disturbances should
be minimized, the set-point changes are smooth and quick, the steady-state error should
be eliminated, and the control system should be robust. Tuning controllers involves a
trade-off between performance and robustness. It is desired that the controller can handle
disturbances and setpoint tracking while also being able to operate in a wide range of
conditions. The controller should therefore be a balance between the two.

Ziegler-Nichols Method

The Ziegler-Nichols tuning method is a popular heuristic method for tuning PID con-
trollers. It involves applying step responses to obtain a process reaction curve, from which
the ultimate gain and period are determined. These values are then used to find the con-
troller parameters. The method is relatively simple to use and has been widely adopted,
but can result in oscillations or overshoot in the response [33].

SIMC Method

Simple Internal Model Control is a tuning method used for processes with significant
dead-time [33]. In SIMC, a simple model is used to estimate the dead-time of the process,
and the controller parameters are adjusted accordingly. The method can provide a good

26



4 Automatic Control 4.2 Model Predictive Control

balance between stability and performance, and it has been shown to work well in practice
for many processes with time delay [40].

Typical Responses of Feedback Control Systems

Instead of using analytical tuning methods such as the Z-N and SIMC methods, trial and
error can also be utilized to tune PID controllers. This approach involves adjusting the
controller parameters based on the operator’s experience and judgment, rather than relying
on mathematical or analytical methods. This paragraph aims to briefly summarize the
qualitative impact of modifying individual controller parameters. In general, increasing the
controller gains leads to a more aggressive system response, but only up to a certain point.
Setting Kc too high can cause excessive oscillations or instability. Raising the integral
time, τI , usually slows down the controllers. It is more complicated to generalize the
effect of changing τD, but increasing it when the gain is small typically results in reduced
overshoot, settling time, and oscillations. However, if τD is too large, measurement noise
is amplified, which can lead to unwanted oscillations. Table 4.1 provides a summary of the
effects of increasing the individual controller parameters. For more detailed information
on increasing the controller parameters, see [33].

Rise time Overshoot Settling time Steady state error
Kp Decrease Increase Small change Decrease
Ki Decrease Increase Increase Eliminate
Kd Small change Decrease Decrease Small change

Table 4.1: Effect of increasing the individual controller parameters.

4.2 Model Predictive Control
When controlling multiple-input multiple-output processes with constraints, model pre-
dictive control is a commonly used control technique [33]. By having a dynamic model
of the process, in addition to using current measurements, the control scheme is able to
predict future output values. From this calculation, the input variables are calculated based
on the predictions from the model and the current measurements. The output variables are
often referred to as the controlled variables or CVs, and the input variables are referred
to as the manipulated variables or MVs. The disturbance is the difference between the
prediction and the measured variables and is called disturbance variables or DVs.

MPC is often used in addition to the standard PID controller as it has a few additional
advantages. The main objective for the MPC controller is summarized as follows by Qin
and Badgwell [41]:

• Prevents violations of constraints on inputs and outputs.
• Adjusts some output variables to their optimum, while others are maintained within

specified ranges.
• Limits excessive changes in input variables.
• Is able to control process variables even when sensors or actuators are not available.
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A block diagram of the MPC control scheme is shown in Figure 4.2. A process model
is used to predict the output variables. The difference between the process output and the
model output is used as feedback to the prediction block. The predicted outputs are used
for setpoint calculations and control calculations. A cost function is used as an optimiza-
tion objective to find the setpoints for the control calculations.

Figure 4.2: Block diagram of the MPC control scheme. Figure from [33]

The calculations done by the controller are based on current measurements and pre-
dicted future outputs. The MPC control calculations then determine a sequence of future
control actions. Figure 4.3 shows how the actual output, y, predicted output, ŷ, and the
manipulated input, u, change through the sampling time. At the current sampling time, k,
a set of M values of the input are calculated. Both the current input u(k) and the future
inputs M − 1 are included in the set. This set of M values is the number of control moves,
also called the control horizon. After M control moves, the input is held constant. The
MPC calculates the inputs so that a set of P predicted outputs (with P being the predic-
tion horizon) reaches the setpoint as effectively as possible. Based on this prediction, the
controller computes an optimal control sequence that minimizes a given cost function over
the time horizon. The optimal control sequence is then applied to the system only for the
first step of the predicted time horizon. After this first step, the system’s actual behavior
is measured and fed back to the controller, which updates its prediction for the remaining
time horizon and repeats the process.

4.2.1 MPC Toolbox in Matlab

The Model Predictive Control toolbox in Matlab is a powerful product that provides func-
tions, an app, and Simulink blocks for developing the controller. The toolbox supports
both linear and nonlinear problems, where implicit, explicit, adaptive, and gain-scheduled
MPC’s can be designed for linear problems, and single- and multi-stage nonlinear MPC’s
can be designed for nonlinear problems [42]. The performance of the controller can be
evaluated by running closed-loop simulations in Simulink. For linear MPC, where the
plant and constraints are linear and the cost function is quadratic, the standard MPC block
in Simulink can be used to design a controller.
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Figure 4.3: General concept of the MPC control scheme. Figure from [33]

Design Workflow

This paragraph provides a brief overview of the steps involved in the MPC design pro-
cess. A comprehensive guide can be found in the Documentation for the Model Predictive
Control Toolbox [42]. First, the internal plant model is defined by linearizing a nonlinear
plant or identifying it using System Identification Toolbox software. The plant signals
are then categorized into different input and output types. An MPC object is created in
the MATLAB workspace or in the MPC designer, specifying controller parameters such
as the sample time, prediction and control horizons, cost function weights, constraints,
and disturbance models. Now that the controller has been created, the performance of
the controller is evaluated by simulating the closed-loop response. Tuning the controller
parameters can be done in the MPC Designer. Refining the closed-loop design may be nec-
essary and is done by adjusting controller parameters and evaluating simulation scenarios.
Other considerations include using manipulated variable blocking, setting reference tar-
gets for over-actuated systems, tuning Kalman state estimator gains or designing a custom
estimator, and specifying terminal constraints. Before the MPC is deployed, the design is
often optimized for future simulations, and to reduce the computational cost. This can be
done by increasing sample time, shortening prediction and control horizons, limiting the
maximum number of iterations in the optimization problem, and by tuning the solver. The
controller may now be deployed to Matlab and Simulink.

Prediction Models

MPC uses plant, disturbance, and noise models for prediction and state estimation [42].
Figure 4.4 illustrates how the plant, disturbance, and noise models appear in the controller.
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Figure 4.4: Model structure used in an MPC controller. Figure from [42]

The plant model must be on a linear-time-invariant (LTI) format, and can be specified
using numeric methods like transfer functions or state-space representation, or identified
using system identification. All estimations and optimizations in the MPC are done using
discrete-time, delay-free, state-space systems with dimensionless input and output vari-
ables [42]. The MPC software performs the required computations to get the plant model
on the correct form:

xp(k + 1) = Apxp(k) +Bpuu(k) +Bpvv(k) +Bpdd(k) (4.4)
yp(k) = Cpxp(k) +Dpuu(k) +Dpvv(k) +Dpdd(k) (4.5)

where Cp = S−1
o C, Bpu, Bpv , Bpd are the columns of BSi. Dpu, Dpv , Dpd are the

columns of S−1
o DSi, and u(k), v(k), d(k) are the manipulated variables, measured dis-

turbances, and unmeasured input disturbances, respectively [42].
The plant model may include unmeasured input disturbances. The input disturbance

model can be provided as a state-space, a transfer function, or as a zero-pole-gain object,
and the MPC controller converts the model to the required form. If no input disturbance
model is provided, a default model is used (see the Getting Started Guide for details [42]).
An output disturbance model may also be provided. This type of model is often used in
practice since the output is added directly to the plant, instead of affecting the plant states
as the input disturbance does. If no output disturbance model is specified, a default model
is used. The measurement noise model is used to help the controller distinguish between
disturbances and measurement noise by specifying the noise type and its characteristics.
The noise model can be provided to the controller, if not provided, a unity static gain is
used.
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Cost Function

The MPC solves a quadratic program (QP) optimization problem at each control inter-
val. The optimization problem includes a cost function that penalizes deviations of the
predicted inputs from the reference trajectory. Having high deviations is undesired, so
the controller aims to minimize the function. The cost function is a scalar, non-negative
measure of the controllers’ performance, and for output reference tracking is formulated
as:

Jy(zk) =

ny∑
j=1

p∑
i=1

{wu
i,j

suj
[rj(k + i|k)− yj(k + i|k)]

}2

(4.6)

where k is the current control interval, p is the prediction horizon, nu is the number of
manipulated variables, zk is the QP decision given by:

zTk =
[
u(k|k)T u(k + 1|k)T . . . u(k + p− 1|k)T ϵk

]
(4.7)

yj(k+ i|k) is the predicted value of the jth plant output at the ith horizon step, rj(k+ i|k)
is the reference value for the jth plant output at the ith horizon step, syj is the scale factor
for the jth plant output, and wy

i,j is the tuning weight for the jth plant output at the ith
horizon step. ny , p, syj , and wy

i,j are constants defined by the controller specifications.
The controller receives reference values, rj(k+ i|k), over the prediction horizon. The

controller then uses a state observer to predict the plant outputs, yj(k + i|k), based on
the current state estimates, zk, and the measured disturbances. The state observer is a
mathematical model that estimates the current state of the plant based on the available
measurements. Since the controller state estimates and MD values are available at interval
k, the controller can use this information to update its predictions of the plant outputs and
adjust the manipulated variables, zk, to bring the actual plant outputs closer to the desired
setpoints. See [42] for more details about the MPC Toolbox in Matlab.
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Controller Implementation

This project involves the implementation of two control strategies: the widely used PID
and the more sophisticated MPC control strategy. To test the controllers, two models are
used in the simulations. The first model involves a simplified radiator, whereby the con-
troller regulates the radiator gain output to heat up the room. The second model comprises
the transcritical CO2 cycle, and the controllers regulate the expansion valve opening and
compressor speed to adjust the room temperature.

In the first model, the controlled variable is the room temperature, and the manipulated
variable is the radiator gain, which is adjusted to achieve the desired setpoint tempera-
ture. In the second model, when the transcritical CO2 cycle is integrated, the manipulated
variables become the expansion valve opening and compressor speed. The outdoor tem-
perature, on the other hand, serves as a disturbance to the system and is thus referred to
as the disturbance variable. An overview of the controlled, manipulated, and disturbance
variables are listed in Table 5.1.

Controlled variables (CV) Manipulated variables (MV) Disturbance variables (DV)
Room temperature Radiator gain Outdoor temperature

Expansion valve opening
Compressor speed

Table 5.1: Controlled, manipulated, and disturbance variables in the system.

5.1 Implementation for the Simplified Radiator

5.1.1 Implementation of PID in Simulink

Adjusting the temperature in the room using PID control is done by sending a signal from
the controller to an actuator to regulate the temperature in the radiator. The controller uses
feedback to find the error between the desired setpoint and the measured temperature and
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calculates an output based on the error. The PID controller block in Simulink is used in
the simplified radiator model can be seen in Figure 5.1.

Figure 5.1: Simulink model of room with PID control to regulate the temperature of the radiator

Achieving fast set point tracking with minimal oscillations is a key requirement for
a well-tuned PID controller. Several analytical methods for tuning PID controllers are
available, including transfer function models, transient response, and frequency response,
as discussed in Section 4.1.1. The trial and error approach was employed in this project to
determine the optimal control parameters.

The optimal PID parameter values were identified as follows:

Kp = 40

Ki = 0.1

Kd = 0

Here, the radiator gain is the manipulated variable, whereas the room temperature is the
controlled variable.

5.1.2 Implementation of MPC in Simulink
Implementing MPC in a Simulink model involves several steps. First, a simulation is
designed that encompasses both the plant model and the MPC controller. The inputs and
outputs of the controller are defined, and the controller block in Simulink is configured
accordingly. The simulation is then executed to assess the performance of the control
system.

The implementation of the MPC controller used in the simplified radiator model is seen
in Figure 5.2. The plant model, which represents the room model in this case, is defined
within the ’Model of room’ block. The MPC controller is designed within the MPC block.
Within this block, the prediction model, cost function, and constraints are specified. The
prediction model is employed to forecast the future behavior of the system, while the cost
function optimizes the control action. Constraints ensure that the control action adheres to
certain limits or requirements.

The MPC block takes the plant model and the MPC controller as inputs and generates
the control action as an output. Parameters such as sampling time, prediction horizon,
and control horizon are specified. To form a closed-loop system, the MPC block is con-
nected to the plant model. By doing so, the MPC controller can generate the control action

33



5 Controller Implementation 5.1.2 Implementation of MPC in Simulink

based on the predicted behavior of the plant model. Finally, the performance of the MPC
controller is evaluated by analyzing the closed-loop response of the system.

Figure 5.2: Simulink model of the room with MPC

The MPC controller is created using the linearized plant as an internal prediction
model. The linearized plant model is written as a continuous-time state-space model,
with the following A,B,C and D matrices:

x(t+ 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where

A =


−0.0004104 4.737e− 09 0.0001754 0
1.992e− 08 −0.003324 0.0009881 0.001605
0.0001754 0.000235 −0.0004104 0

0 0.0001718 0 −0.0001718

 ,

B =


0

0.000244
0
0

 , C =
[
0 1 0 0

]
, D = 0

It should be emphasized that the matrices labeled A,B,C, and D are unique for the spe-
cific Simulink model used. For instance, the matrices used in the internal prediction model
when the CO2 cycle is included in the model (see Section 5.2) will be different.

Scale Factors

Specifying the scale factors of the input and output variables in the plant is important when
the variables are of different magnitudes. Implementing scaling factors provides multiple
advantages, including optimizing default MPC tuning weights for signals of similar mag-
nitudes, simplifying the selection of cost function weights based on relative priorities, and
enhancing numerical conditioning by mitigating the influence of round-off errors in cal-
culations. The scale factor should reflect the span of the variable, which is defined as the
difference between its maximum and minimum values in the units of measurement used
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in the plant model. Internally, the MPC divides each plant input and output signal by its
respective scale factor, resulting in dimensionless signals. See the Matlab MPC Documen-
tation [42] for more details.

There are two plant input variables - the manipulated variable, MV, and the measured
disturbance, MD. There is one plant output which is the measured output, MO. The input
and output variables for the MPC used in the simplified radiator model have the following
scale factors:

MV: 50
MD: 1
MO: 4

Tuning Weights

A good MPC controller usually requires some tuning of the weights in the cost function.
To achieve a unique solution for the QP problem used in the controller, it is essential to
select appropriate cost function parameters (penalty weights) and horizons that ensure the
QP’s Hessian matrix is positive-definite. Increasing the penalty weight on the manipulated
variables ensures a positive-definite Hessian, but may result in a slower controller response
[42]. The penalty weights assigned to the output variables (OV) also alter the Hessian
matrix. Non-zero OV values prioritize OV target tracking and also increase the likelihood
of a unique QP solution.

The penalty weights used in the MPC when using the simulation of the simplified
radiator are:

MV: 0.1
MO: 2

Sample Time and Horizons

The choice of sample time, prediction horizon, and control horizon for the MPC controller
depends on the requirements of the application and the dynamics of the system. Some of
the factors to be taken into account include:

1. System dynamics: It is desired to have a sample time small enough to capture the
important dynamics of the system. However, having a too short prediction hori-
zon may not provide enough information for the controller to accurately predict the
behavior of the system, while a too large horizon may cause poor controller perfor-
mance.

2. Control objective: The prediction and control horizons should be chosen based on
the control objective. For systems where the objective of the controller is to maintain
the temperature of a room within a narrow range, the prediction horizon should be
shorter, allowing for the controller to respond quickly to changes in temperature.

3. Computational resources: Higher prediction and control horizons require more com-
putational power, which may be a challenge in real-life control applications. These
parameters should therefore be chosen with consideration for what computational
resources are available.
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4. Actuator constraints: Upper and lower limits on the actuator should also be consid-
ered when choosing the prediction and control horizons. E.g. there may be maxi-
mum and minimum values on the control input. A control horizon that is too high
may generate control inputs outside these limits.

5. Measurement noise: Measurement noise can affect the accuracy of the controller
measurements. A shorter sample time may be needed when high amounts of mea-
surement noise is present.

6. Disturbances: The choice of prediction and control horizon also depend on the
amount and impact of disturbances on the system. For systems with frequent distur-
bances, a long prediction horizon may be desirable for the controller to account for
the disturbances.

Based on the factors listed above, the sample time, prediction horizon, and control horizon
for the MPC controller were chosen to be:

Sample time: 30
Prediction horizon: 10

Control horizon: 2

Constraints

Adding constraints to the controller is essential to ensure that the system operates within its
physical limits. Constraints enable the controller to make informed decisions and generate
control actions that balance performance and feasibility. An upper limit of 100°C was set
as the constraint on the manipulated input variable.

5.2 Implementation for the CO2 Cycle
Figure 5.3 shows how the room model is connected to the transcritical CO2 heat pump
cycle. The CO2 Heat Pump system block, introduced in Chapter 3 and shown in Figure
3.8, is connected to the ’Model of room’ block through the radiator gain. The controller
in the ’CO2 Heat Pump’ block receives feedback of the room temperature and the desired
setpoint temperature to regulate the shaft speed.

5.2.1 PID Controller Parameters
In the CO2 cycle, two PID controllers are employed to regulate the expansion valve open-
ing and compressor speed. The PID controller used to regulate the shaft speed is imple-
mented as depicted in Figure 3.8. For the compressor speed controller, a trial and error
method was used to find the optimal parameter values, resulting in the following parame-
ters:

Kp = 1000

Ki = 2

Kd = 0
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Figure 5.3: Simulink model of CO2 heating cycle with heating facility

Here, the manipulated variable is the compressor speed, and the controlled variable is the
room temperature.

In contrast, tuning the parameters of the expansion valve, which regulates the superheat
in the vapor, was deemed unnecessary. Details about the expansion valve were discussed
in Chapter 3. The valve controller parameters utilized were the same as those employed in
the Matworks example model:

Kp = 0.01

Ki = 0.0001

Kd = 0

5.2.2 MPC Controller Parameters
The implementation of the MPC controller is depicted in Figure 5.4, where the manipu-
lated variable is the compressor speed and the controlled variable is the room temperature.
The selection of scale factors, penalty weights, sample time, and horizons for this im-
plementation follows the same approach as used in Section 5.1.2 when choosing these
parameters for the simplified radiator model.

Scale Factors

The input and output variables for the MPC controller used to regulate the compressor in
the CO2 heating cycle were scaled to have the following values:

MV: 6000
MD: 1
MO: 5

Tuning Weights

The penalty weights on the inputs and outputs on the controller were determined to be:

MV: 1
MO: 20
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Sample Time and Horizons

The sample time, prediction horizon and control horizon for the MPC controller were
selected to be:

Sample time: 50
Prediction horizon: 20

Control horizon: 10

Constraints

A lower limit of 0 rpm and an upper limit of 6000 rmp were set as the constraints on the
manipulated input variable in the controller.
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Figure 5.4: Simulink model of the CO2 heating cycle with MPC control
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6
Results

In this thesis, a CO2 heat pump and a connected heating facility have been modeled, and the
temperature development of the facility has been regulated using PID and MPC controllers.
The aim of the study was to compare the performance of the two controllers in terms
of their ability to maintain the desired temperature setpoint of the heating facility. The
simulation was carried out using a dynamic model of the heating facility and the CO2
heat pump system, which was developed based on the first principles of thermodynamics
and fluid mechanics. The results of the simulation will now be analyzed and compared to
determine the effectiveness of the PID and MPC controllers in controlling the temperature
of the heating facility, and to evaluate the overall performance of the CO2 heat pump
system.

To obtain comparative data for the two controllers, the same setpoint is used for the
different cases. Specifically, a step response of the set point temperature changes the
temperature from 20 to 22°C after 30 minutes. The initial temperature of the room is
set to 18°C for all simulations. Additionally, the radiator used in the simulations has an
upper saturation limit of 100°C. This constraint is imposed by the physical properties of
the system, as exceeding a temperature of 100°C would lead to an undesired phase change
in the water.

6.1 Temperature Control Using the Simplified Radiator
In this section, the room model is connected to the simplified radiator. The controller
output is equivalent to the temperature transferred from the radiator to the room.

6.1.1 Control of Temperature with PID
Figure 6.1 illustrates the temperature profile of the room and the corresponding PID con-
troller output. The setpoint temperature increases from 20 to 22°C, and the controller in-
creases the radiator temperature to the upper limit of 100°C for about five minutes before
decreasing. The controller results in a relatively fast response with minimal oscillations
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6 Results 6.1.2 Control of Temperature with MPC

in the temperature. Although the initial rise time is quite slow, the plot demonstrates that
the integral action in the controller eventually brings the room temperature to the setpoint.
The controller requires nearly 30 minutes to reach the 20°C setpoint, which is expected
given the large time constants typical of such systems.
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Figure 6.1: Step response of the development of the room temperature over one hour using a PID
controller to control the radiator temperature. (Kp = 40,Ki = 0.1,Kd = 0)

6.1.2 Control of Temperature with MPC

The results of simulating the temperature development using MPC are plotted in Figure
6.2. The MPC controller is designed to minimize the difference between the desired and
actual room temperature while considering the system’s dynamics and the constraints on
the control inputs. The same step response as for the PID controller (Figure 6.1) is also
used for the MPC. For the room temperature to reach the initial setpoint of 20°C, the con-
trol output (radiator) reaches the maximum value of 100°C for a short duration before it
drops down to 60°C. Right after the step response causes an increase in the setpoint, the
controller output increases so that the room temperature approaches the new setpoint. It
takes right under five minutes for the system to reach the new setpoint. Once the room
temperature approaches the setpoint, the controller output is reduced but is still signifi-
cantly higher than that for a setpoint of 20°C. The results indicate that the MPC controller
effectively maintains the room temperature within a narrow range around the setpoint,
outperforming the PID controller in terms of accuracy, rise time, and overshoot.
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6 Results 6.2 Temperature Control with the CO2 Cycle

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Time (minutes)

60

80

100

T
em

pe
ra

tu
re

 (
°C

)

MPC controller output

Radiator temp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Time (minutes)

18

19

20

21

22

23
T

em
pe

ra
tu

re
 (

°C
)

Temperature tracking

Ref temp
Room temp

Figure 6.2: Step response of the development of the room temperature over one hour using MPC to
control the radiator temperature.

6.2 Temperature Control with the CO2 Cycle

In this section, the simulation results using the transcritical CO2 heating cycle with PID
and MPC control are presented.

6.2.1 PID Control of the Room Temperature

Figure 6.3 illustrates how the controller output changes to track the desired setpoint tem-
perature. Initially, the room temperature is at 18°C but approaches the reference tem-
perature of 20°C. After 30 minutes, the setpoint temperature is increased to 22°C, which
causes the compressor’s shaft speed to increase. As a result, the radiator temperature rises,
which in turn increases the room temperature to the new setpoint. It takes approximately
12 minutes for the system to reach the new setpoint temperature.

It is important to note that the sudden jump in compressor speed after 30 minutes is
not feasible in the physical system. In reality, the increase in compressor speed would be
a gradual and controlled ramp-up process.
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Figure 6.3: Step response of the development of the room temperature over one hour using PID to
control the shaft speed of the compressor. (Kp = 1000,Ki = 2,Kd = 0)

6.2.2 Control of Room Temperature with MPC
Figure 6.4 displays the temperature development, compressor speed, and radiator tem-
perature of the CO2 heat pump and heating facility using MPC. The results indicate that
the performance of the MPC controller is precise and accurate. The compressor speed is
high, reaching the maximum of 6000 rpm, and resulting in a radiator temperature that sat-
urates at 100°C. These results highlight the superior controller performance of the MPC
compared to the PID and will be discussed in the following chapter.
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Figure 6.4: Step response of the development of the room temperature over one hour using an MPC
controller to control the compressor speed.
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7
Discussion

The discussion chapter aims to analyze and interpret the results obtained from the model-
ing and simulation of a CO2 heat pump and its connected heating facility, with a focus on
comparing the effectiveness of PID and MPC control strategies in regulating the temper-
ature within the facility. By simulating the temperature development using two models -
a simple radiator model and and a more complex CO2 heat pump model, the effectiveness
of the two control methods can be analyzed. The results of this study provide important
insights into the effectiveness of the two control methods for regulating room temperature
in a heating facility. The findings indicate that while both control methods can achieve
desired setpoint temperatures, the MPC method exhibits superior performance in terms of
maintaining a desired temperature, but is more complicated to implement.

7.1 Controller Comparison
In this discussion section, the PID and MPC control strategies are compared and contrasted
in terms of their performance, applicability, and implementation complexity. Specifically,
the advantages and disadvantages of each method, the trade-offs between their perfor-
mance metrics, and the factors that affect their selection and implementation in different
applications are discussed.

The results of simulating the room temperature development with the two models sug-
gest that the MPC controller is more effective than the PID controller in controlling the
temperature. It is evident that the two MPC controllers had better setpoint tracking, less
overshoot, and a smaller settling time, as observed in Figures 6.2 and 6.4. Although the
MPC controllers are suited for applications where precise temperature control is critical,
the PID controller may be better suited for temperature control in residential homes due to
their ease of implementation and decent setpoint tracking.

Several strengths and weaknesses of both the PID and MPC controllers were identified.
One of the main strengths of the PID controller is its simplicity and ease of implementa-
tion. It also has a well-established tuning methodology and can handle linear systems
well. The main weakness of the PID controller is that it can be sensitive to changes in
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the system, especially in the presence of nonlinearities and disturbances. In contrast, the
MPC controller has a more complex structure, but it can handle nonlinear systems and
disturbances more effectively, as observed when simulating the temperature development
of the CO2 cycle in Section 6.2. MPC also allows for the inclusion of constraints, which is
critical for some applications. However, the MPC controller requires more computational
resources, and the tuning process is more complex.

Considering the specific context of using controller to regulate the temperature of res-
idential homes, the PID controller emerges as a more suitable choice based on the study’s
findings. In Figure 6.3, the measured temperature overshoots the reference with approx-
imately 0.2°C, this overshoot does arguably not impact the comfort of room occupants.
While the MPC controller outperformed the PID controller in terms of accuracy and rise
time, the advantages of the PID controller, including its simplicity and ease of implemen-
tation, are more aligned with the requirements of residential temperature control, where
precise and rapid adjustments are less critical.

These findings have significant implications for temperature control in various settings.
In applications that require precise and robust temperature control, such as in hospitals,
laboratories, and clean rooms, the MPC controller may be a better choice due to its superior
accuracy and stability. However, the complexity and computational resources required
by the MPC controller may limit its use in certain applications. On the other hand, for
applications where a very high level of temperature control accuracy and stability is not
critical, such as in residential homes, the simplicity and ease of implementation of the
PID controller make it a more practical and cost-effective choice. The results highlight
the importance of choosing the appropriate controller based on the specific application
requirements and the trade-off between performance and complexity.

7.2 Limitations
As in most scientific research, it is important to recognize the constraints and possible
sources of error that may have impacted the validity and generalization of the results. This
section highlights the limitations of the project and the factors that may have influenced
the results.

7.2.1 Simplified Assumptions
The modeling and simulations are based on certain assumptions and simplifications to
make the analysis feasible. These assumptions may not capture all the complexities and
nuances of the real system, leading to limitations in the accuracy and applicability of the
results.

Room Model

The room model used in the simulation is based on mathematical equations that describe
the physical laws of the universe. While mathematical modeling is a powerful tool for
understanding complex systems and predicting their behavior under different conditions,
it is important to recognize the limitations of mathematical models and the assumptions
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on which they are based. Using the laws of physics to build models involves making
simplifications that may not perfectly capture the real-world complexities of the physical
system. It is crucial to recognize that mathematical models only work as approximations of
the real system, and validating the models against empirical data should be done whenever
possible.

A handful of assumptions were also made to simplify the modeling process. The
assumptions include:

• The room is considered to be perfectly mixed, with uniform temperature and airflow
throughout the room.

• Heat transfer between the external environment and the room occurs only through
the walls, ceiling, and floor.

• Heat sources inside the room such as people and lighting are neglected.

• The effects of humidity, air quality, and radiation are neglected.

Assuming that the temperature inside the room is uniform is arguably the largest as-
sumption made in the room model, and may be problematic as it does not reflect the
real-life conditions resulting in inaccurate or unreliable simulations. However, since it is
desired to have a simple model that is easy and fast to simulate, assuming a uniform tem-
perature was deemed necessary in this project. It is, nevertheless, important to consider
the potential limitations and inaccuracies of this assumption.

Heat Exchanger

Although assumptions are essential for simplifying systems, some simplifications can
eliminate crucial dynamics from the model and are not always ideal. The heat exchange
between the water loop and the CO2 cycle in the heating facility is a case where the simpli-
fication likely removed important information and dynamics from the model. Figure 7.1
illustrates the simplification made in the heat exchange. The simplification assumes that
the radiator gain, represented by the Gain label, is constantly 20°C lower than the hot
CO2 stream entering the gas cooler. However, in reality, the gas cooler is a heat exchanger,
as discussed in Chapter 2. By simplifying the room temperature and gain as physical
signals (e.g. a regular Simulink signal), the stream does not include flow rates or other
thermal properties of the stream. This simplification makes it impossible to determine the
actual temperature exchange between the CO2 and water stream, thus removing essential
information from the model.

7.2.2 Considerations for Controller Parameter Selection
During this project, having a quick controller was desired so that the room temperature
quickly reached the setpoint. Having the controller parameters set to an aggressive re-
sponse will, however, introduce more wear and tear on the physical system. Components
such as valves and compressors have a limited lifespan and running these aggressively will
likely require more maintenance and more frequent replacements. The potential wear and
tear on the system has not been taken into account during control design in this project but
should be investigated and considered when designing controllers on the physical system.
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Figure 7.1: Simulink model of the simplified heat exchange between the CO2 cycle and the water
loop heating up the room

7.2.3 Equipment Sizing
The sizing of equipment used in the simulations does not accurately reflect the actual sys-
tem’s size or specific conditions. This can introduce uncertainties and potential discrepan-
cies between the simulated and real-world performance. The limitations due to equipment
sizing stem from challenges such as the availability and accuracy of data, the complexity
of the models, uncertainties in load estimation, considerations of system interactions, and
capturing the dynamic nature of the system. Accurate equipment sizing requires detailed
information and coordination between components to ensure optimal performance. How-
ever, the lack of precise data, simplified modeling assumptions, and the dynamic behavior
of the system can impact the accuracy of sizing decisions. Addressing these limitations is
important for the reliability of the results, but as mentioned in Section 1.4 about delimita-
tions, the models are made general, hence having the correct equipment sizing is therefore
not emphasized in this project.

7.2.4 Generalizability
The research of this study focuses on the temperature control of a specific building, which
limits the generalizability of the findings to other buildings or systems. Although the
mathematical models used to describe the system have general applicability, the simula-
tions rely on constants and parameters specific to the heating facility under investigation.
As a result, factors like building design, climate conditions, and operational parameters
differ across buildings, which can limit the transferability of the study’s results.
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8
Conclusion

In this project, a CO2 heating cycle and its connected heating facility have been mod-
eled and simulated, and the facility’s temperature has been controlled. The simulations of
the system were conducted using Matlab and Simulink, employing a mathematical model
based on RC modeling principles to represent the facility. Two types of models were sim-
ulated: a simplified model of the radiator and a more complex model encompassing the
entire transcritical CO2 heating cycle. Both PID and MPC control strategies were applied
to the simulations, allowing for a comparative analysis of the two controllers. Through
the simulations, it was observed that both controllers exhibited distinct advantages and
limitations in maintaining the desired room temperature. The PID controller demonstrated
simplicity and ease of implementation, while the MPC controller showcased enhanced
performance in terms of quick and accurate temperature regulation.

The findings of this thesis contribute to the understanding of control strategies for room
temperature management. The comparison between PID and MPC controllers highlights
the importance of considering factors such as system dynamics, disturbances, and control
objectives when selecting an appropriate control strategy. Additionally, the specific ap-
plication requirements play a crucial role in controller selection. While MPC excels in
precise temperature control, PID control may be better suited for temperature control in
residential homes.

While this study focused on the specific CO2 heat pump and heating facility located
in the laboratory at the Department of Energy and Process Engineering at NTNU, the
insights gained from this study have broader implications. The models and methodologies
developed can be applied to various HVAC systems, facilitating more informed decision-
making and optimizing energy consumption in buildings.

8.1 Further Work

Although this study provides valuable insights into the behavior of the system under dif-
ferent control configurations, there are several areas that could be addressed in future work
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to improve the models and the performance of the controllers. In this section, an outline
of some of the potential avenues for future research are presented.

To improve the room model presented in Section 3.4, it is crucial to validate it using
empirical data. By comparing the model output with actual data from the sensors on the
heating facility in the laboratory, any discrepancies can be identified and the model can be
refined for better accuracy.

Expanding the room model to incorporate various disturbances, such as occupancy
patterns, appliance usage, and outdoor temperature changes, is essential to evaluate the
robustness of the controllers. Additionally, investigating the scalability of the proposed
control strategies to larger buildings or multiple zones will help identify challenges that
arise when scaling up the control system and propose solutions to address them.

Lastly, the implementation of controllers on the physical system remains to be done.
The thesis is delimited to only focus on the modeling of the heating cycle and facility,
and simulation of the temperature development inside the facility under different control
configurations. Implementation of the controllers is therefore mentioned here as further
work.

50



Bibliography

[1] U.S. Energy Information Administration, “2009 Residential Energy Consumption
Survey Data,” 2012. [Online]. Available: https://www.eia.gov/consumption/
residential/data/2009/

[2] I. H. Magnussen, T. Ericson, A. Fidje, J. E. Fonneløp, B. Langseth, W. W.
Rode, and B. Saugen, Varmepumper i energisystemet, 2016. [Online]. Available:
http://publikasjoner.nve.no/rapport/2016/rapport2016{ }60.pdf

[3] U. N. E. Programme, “Montreal protocol,” 1987, international treaty banning the
production and consumption of ozone-depleting substances, including refrigerants
such as chlorofluorocarbons and hydrochlorofluorocarbons. [Online]. Available:
https://ozone.unep.org/treaties/montreal-protocol-substances-deplete-ozone-layer

[4] R. U. Rony, H. Yang, S. Krishnan, and J. Song, “Recent advances in transcritical co
2 (r744) heat pump system: A review,” Energies, vol. 12, 1 2019.
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[24] M. Kvasnica, B. Takács, J. Holaza, and S. Di Cairano, “On region-free explicit model
predictive control,” in 2015 54th IEEE Conference on Decision and Control (CDC),
2015, pp. 3669–3674.

[25] E. L. Cosgriff, “Optimal control of a co2 heat pump with a heating facility,” 2022.

[26] S. A. Kalogirou, Solar Energy Engineering, second edition ed., Boston,
2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780123972705000054

[27] O. Levenspiel, Engineering Flow and Heat Exchange, 3rd ed. New York, NY:
Springer, 2014.

[28] J. R. Welty, G. L. Rorrer, D. G. Foster, and C. E. Wicks, Fundamentals of Momentum,
Heat and Mass Transfer, 5th ed. John Wiley amp; Sons, Inc., 2008.
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Appendix

A Matlab files
Constants

1 % Room dimensions
2 height_room = 2.5; % m
3 lenght_wall = 3; % m
4 debth_wall = 3; % m
5 thickness_external_wall = 0.15; % m
6 thickness_internal_wall = 0.15; % m
7 thickness_ceiling = 0.2; % m
8 thickness_floor = 0.2; % m
9

10

11 % Area
12 area_wall = height_room*lenght_wall; % mˆ2
13 area_ceiling = lenght_wall*debth_wall; % mˆ2
14 area_window = height_room*lenght_wall; % mˆ2
15 area_external_wall = height_room*lenght_wall; % mˆ2
16 area_external_roof = lenght_wall*debth_wall; % mˆ2
17 area_floor = lenght_wall*debth_wall; % mˆ2
18

19

20 % Volume
21 room_volume = height_room*lenght_wall*debth_wall; %m3
22 external_wall_volume = height_room*lenght_wall*thickness_external_wall;%m3
23 internal_wall_volume = height_room*lenght_wall*thickness_internal_wall;%m3
24 ceiling_volume = lenght_wall*debth_wall*thickness_ceiling; %m3
25 floor_volume = lenght_wall*debth_wall*thickness_floor; %m3
26

27

28 % Physical values
29 rho_air = 1.2; % kg/mˆ3
30 cp_air = 1012; % J/(kg*K)
31

32 cp_external_wall = 2700*0.2+1030*0.8; % J/(kg*K) assuming wall is 20%
wood and 80% insulation

33 rho_external_wall = 500*0.2+31*0.8; % kg/mˆ3 assuming wall is 20% wood
and 80% insulation

34 cp_internal_wall = 2700*0.2+1030*0.8; % J/(kg*K)
35 rho_internal_wall = 500*0.2+31*0.8; % kg/mˆ3
36 cp_ceiling = 2700*0.2+1030*0.8; % J/(kg*K)
37 rho_ceiling = 500*0.2+31*0.8; % kg/mˆ3
38 cp_floor = 2700*0.2+1030*0.8; % J/(kg*K)
39 rho_floor = 500*0.2+31*0.8; % kg/mˆ3
40

41

42 % Radiator
43 radiator_heat_effect = 2000; % W
44
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45

46 % Convective heat transfer coefficients
47 htc_wall_air = 3; % W/(mˆ2*K)
48 htc_window_wall = 5; % W/(mˆ2*K)
49 htc_window_air = 3; % W/(mˆ2*K)
50 htc_rad = 7; % W/(mˆ2*K)
51

52

53 % Overall heat transfer coefficients
54 U_external_wall = 0.7; % W/(mˆ2*K)
55 U_external_roof = 2.2; % W/(mˆ2*K)
56 U_floor = 3; % W/(mˆ2*K)
57 U_window = 2.3; % W/(mˆ2*K)
58

59

60 % Resistance
61 R_external_wall = 1/(area_external_wall*U_external_wall);
62 R_external_roof = 1/(area_external_roof*U_external_roof);
63 R_floor = 1/(area_floor*U_floor);
64 R_window = 1/(area_window*U_window);
65 Rconv_wall = 1/(htc_wall_air*area_wall);
66 Rconv_rad = 5*(60)/(radiator_heat_effect);
67

68

69 % Capacitance
70 C_air = room_volume*cp_air*rho_air;
71 C_external_wall = external_wall_volume*rho_external_wall*cp_external_wall;
72 C_internal_wall = internal_wall_volume*rho_internal_wall*cp_internal_wall;
73 C_floor = floor_volume*rho_floor*cp_floor;
74 C_ceiling = ceiling_volume*rho_ceiling*cp_ceiling;

Initialization

1 clc
2 close all
3 clear all
4

5 % Initial temperatures
6 Ta_init = 5; % C
7 Ti_init = 18; % C
8 Tg_init = 18; % C
9 Tz_init = 18; % C

10 Ta_init_K = Ta_init + 273.15; % K
11

12

13 % Load constants
14 run constants;
15

16 % Open and run the transciritcal CO2 cycle needed to load CO2 properties
17 open ssc_transcritical_refrigeration;
18 run ssc_transcritical_refrigeration;
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B Modeling Ventilation and Infiltration
Ventilation and infiltration can impact a room’s thermal behavior. While the heat loss
through the surfaces has been modeled earlier, the modeling of heat loss from ventilation
and infiltration remains to be added to the room model. It was chosen to not include
ventilation and infiltration to keep the original model as simple as possible. This section,
however, will explain how the room model may be expanded to include ventilation and
infiltration.

Ventilation refers to the intentional exchange of indoor air with outdoor air, while in-
filtration refers to the unintentional exchange of air through leaks or cracks in the building
envelope. Both processes can affect the room’s temperature and humidity by introducing
heat or moisture from outside. Most buildings do not have perfect insulation, and will often
lose heat from transmission, ventilation, and infiltration. Although one could consolidate
all these losses into a single heat transfer equation, it may be more clear to separate the
heat loss due to ventilation and infiltration from the transmission heat losses. The equation
for the overall heat loss due to ventilation and infiltration can be expressed as:

Q = Qv +Qi (8.1)

where Qv is the heat loss from ventilation, and Qi is the heat loss from infiltration.
The heat loss from ventilation is expressed as:

Qv = cpρqv∆T (8.2)

where cp denotes the specific heat capacity of air, ρ denotes the density of air, qv denotes
the volumetric flow of air, and ∆T denotes the temperature difference between the indoor
and outdoor air. Some of the heat loss through ventilation is often recovered through the
heat exchanger [43], this effect may be added to the mathematical expression. Equation
8.2 can be rewritten as:

Qv = (1− β/100)cpρqv∆T (8.3)

where β denotes the heat recovery efficiency in percentage. For rooms equipped with air-
air or water-air counterflow heat exchangers, the typical heat recovery efficiency is around
50% [43].

Infiltration heat loss occurs due to air leakage through construction cracks or gaps in
doors and windows. Due to the complex nature of infiltration, exact modeling is chal-
lenging and depends on various factors such as temperature differences, wind speeds, and
frequency of door openings and closures [43]. The heat loss through infiltration can be
approximated using the following equation:

Qi = cpρnV∆T (8.4)

where n represents the frequency of air replacement, i.e., how often the air is replaced, and
V is the volume of the room. A commonly used value for n is 0.5 air changes per hour,
which corresponds to 1.4× 10−4/s [43].
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C PID Tuning Methods

Ziegler-Nichols method

In 1942, Ziegler and Nichols introduced a method for tuning controllers known as the
continuous cycling method or more commonly called the Z-N method [44]. This approach
involves a trial-and-error process of identifying constants that cause the system to oscillate.
To begin, the integral and derivative actions of the controller are disabled, leaving only the
proportional action, and Kc is set to a small value such as 0.5. A small setpoint change
is introduced to create an error between the setpoint and the controlled variable while the
controller is in automatic mode. Gradually increasing the Kc value results in oscillations.
The Kc value that produces stable oscillations with a constant amplitude and period is
referred to as the ultimate gain, Kcu, while the period of oscillations is known as the
ultimate period, Pu. The tuning relations for calculating the PID controller settings were
published by Ziegler and Nichols and can be found in Table A.1.

Ziegler-Nichols Kc τI τD
P 0.5Kcu - -
PI 0.45Kcu Pu/1.2 -

PID 0.6Kcu Pu/2 Pu/8

Table A.1: Tuning relations for the Z-N method [44]

Although widely used in industry [33] and considered a straightforward tuning method
[45], the Z-N approach has certain limitations. One significant disadvantage is that the
method necessitates the process to approach the stability limits, which can be hazardous
if external disturbances or modifications to the process cause it to become unstable. Ad-
ditionally, for systems with slow process dynamics, the trial-and-error procedure used to
determine Kcu can be time-consuming. Z-N method is also known for producing quite
aggressive controllers. If a more conservative controller is desired, the Tyreus-Luyben
tuning relations can be used instead [46].

It remains uncertain whether Ziegler and Nichols initially devised the tuning approach
for PID controllers in series or parallel form [33]. In the case of the CO2 heat pump system,
the PID controller is in parallel form, which will lead to a slightly more conservative
controller when utilizing the Z-N method [47].

SIMC method

The SIMC approach shares many of the Z-N method’s principles but is known to per-
form better on systems with time delays and is also effective for handling disturbances in
setpoints and loads [40].

Before the tuning parameters are found, the SIMC method uses a model approximation
to obtain a first-order-plus-time-delay model (FOPTD). The transfer function for a FOPTD
can be expressed as:

G̃(s) =
Ke−θs

τs+ 1
(8.5)
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The controller can be represented by the following expression:

Kc =
1

K

τ

θ + τc
(8.6)

One way to identify transfer function parameters is to fit a FOPTD model with an
open-loop step response, which can be relatively simple. Other methods for fitting data
also exist, such as using a proportional-only controller in a closed-loop setpoint response
(e.g., the Z-N method) or utilizing a detailed model [40]. Nevertheless, this paragraph will
focus exclusively on the open-loop step response method.

Figure 8.1: Process reaction curve for a first-order-plus-time-delay model [33]

To determine the transfer function parameters of a FOPTD model, graphical analysis
of the process reaction curve (Figure 8.1) can be used. The ratio between the steady-state
change and the input step change, M, represents the process gain K. To determine the
time delay θ, the slope is taken at the inflection point and then intersected with the x-axis.
Similarly, the tangent line is extended to the intersection point where y = KM to find τ .
Thus, the time constant can be calculated as t = θ + τ .

In the case of lag dominant processes, where the time constant is much greater than the
time delay (τ ≫ θ), it is important to reduce the integral time to avoid slow oscillations.
According to Skogestad [47], the integral time should be set in such a way that slow oscil-
lations are avoided. This can be achieved by setting the integral time τ to the minimum of
τ and 4(τc+ θ). To achieve tight control with a smooth response, it is recommended to set
the reset time τc equal to the time delay θ. However, if the system has a small time delay,
this can lead to an overly aggressive controller. To obtain a smoother controller, τc can be
set greater than θ, and there is no upper limit to how large τc can be. However, Skogestad
suggests a maximum value for τc given by τc,max = 1

Kc,min

τ
K − θ, where Kc,min is the

minimum value of the controller gain that is required to reject a disturbance, and ∆ymax

is the maximum allowable deviation in the output.
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